Home
  By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | HTML | PDF ]

Look for this book on Amazon


We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: Edison, His Life and Inventions
Author: Dyer, Frank Lewis, 1870-1941, Martin, Thomas Commerford, 1856-1924
Language: English
As this book started as an ASCII text book there are no pictures available.


*** Start of this LibraryBlog Digital Book "Edison, His Life and Inventions" ***


EDISON HIS LIFE AND INVENTIONS

By Frank Lewis Dyer

General Counsel For The Edison Laboratory And Allied Interests

And

Thomas Commerford Martin

Ex-President Of The American Institute Of Electrical Engineers



CONTENTS

     INTRODUCTION
     I.        THE AGE OF ELECTRICITY
     II.       EDISON'S PEDIGREE
     III.      BOYHOOD AT PORT HURON, MICHIGAN
     IV.       THE YOUNG TELEGRAPH OPERATOR
     V.        ARDUOUS YEARS IN THE CENTRAL WEST
     VI.       WORK AND INVENTION IN BOSTON
     VII.      THE STOCK TICKER
     VIII.     AUTOMATIC, DUPLEX, AND QUADRUPLEX TELEGRAPHY
     IX.       THE TELEPHONE, MOTOGRAPH, AND MICROPHONE
     X.        THE PHONOGRAPH
     XI.       THE INVENTION OF THE INCANDESCENT LAMP
     XII.      MEMORIES OF MENLO PARK
     XIII.     A WORLD-HUNT FOR FILAMENT MATERIAL
     XIV.      INVENTING A COMPLETE SYSTEM OF LIGHTING
     XV.       INTRODUCTION OF THE EDISON ELECTRIC LIGHT
     XVI.      THE FIRST EDISON CENTRAL STATION
     XVII.     OTHER EARLY STATIONS--THE METER
     XVIII.    THE ELECTRIC RAILWAY
     XIX.      MAGNETIC ORE MILLING WORK
     XX.       EDISON PORTLAND CEMENT
     XXI.      MOTION PICTURES
     XXII.     THE DEVELOPMENT OF THE EDISON STORAGE BATTERY
     XXIII.    MISCELLANEOUS INVENTIONS
     XXIV.     EDISON'S METHOD IN INVENTING
     XXV.      THE LABORATORY AT ORANGE AND THE STAFF
     XXVI.     EDISON IN COMMERCE AND MANUFACTURE
     XXVII.    THE VALUE OF EDISON'S INVENTIONS TO THE WORLD
     XXVIII.   THE BLACK FLAG
     XXIX.     THE SOCIAL SIDE OF EDISON
     APPENDIX
     LIST OF UNITED STATES PATENTS
     FOREIGN PATENTS
     INDEX



INTRODUCTION

PRIOR to this, no complete, authentic, and authorized record of the work
of Mr. Edison, during an active life, has been given to the world. That
life, if there is anything in heredity, is very far from finished; and
while it continues there will be new achievement.

An insistently expressed desire on the part of the public for a
definitive biography of Edison was the reason for the following pages.
The present authors deem themselves happy in the confidence reposed in
them, and in the constant assistance they have enjoyed from Mr. Edison
while preparing these pages, a great many of which are altogether
his own. This co-operation in no sense relieves the authors of
responsibility as to any of the views or statements of their own that
the book contains. They have realized the extreme reluctance of Mr.
Edison to be made the subject of any biography at all; while he has felt
that, if it must be written, it were best done by the hands of friends
and associates of long standing, whose judgment and discretion he could
trust, and whose intimate knowledge of the facts would save him from
misrepresentation.

The authors of the book are profoundly conscious of the fact that the
extraordinary period of electrical development embraced in it has been
prolific of great men. They have named some of them; but there has
been no idea of setting forth various achievements or of ascribing
distinctive merits. This treatment is devoted to one man whom his
fellow-citizens have chosen to regard as in many ways representative of
the American at his finest flowering in the field of invention during
the nineteenth century.

It is designed in these pages to bring the reader face to face with
Edison; to glance at an interesting childhood and a youthful period
marked by a capacity for doing things, and by an insatiable thirst for
knowledge; then to accompany him into the great creative stretch of
forty years, during which he has done so much. This book shows him
plunged deeply into work for which he has always had an incredible
capacity, reveals the exercise of his unsurpassed inventive ability, his
keen reasoning powers, his tenacious memory, his fertility of resource;
follows him through a series of innumerable experiments, conducted
methodically, reaching out like rays of search-light into all the
regions of science and nature, and finally exhibits him emerging
triumphantly from countless difficulties bearing with him in new arts
the fruits of victorious struggle.

These volumes aim to be a biography rather than a history of
electricity, but they have had to cover so much general ground in
defining the relations and contributions of Edison to the electrical
arts, that they serve to present a picture of the whole development
effected in the last fifty years, the most fruitful that electricity has
known. The effort has been made to avoid technique and abstruse phrases,
but some degree of explanation has been absolutely necessary in regard
to each group of inventions. The task of the authors has consisted
largely in summarizing fairly the methods and processes employed by
Edison; and some idea of the difficulties encountered by them in
so doing may be realized from the fact that one brief chapter, for
example,--that on ore milling--covers nine years of most intense
application and activity on the part of the inventor. It is something
like exhibiting the geological eras of the earth in an outline lantern
slide, to reduce an elaborate series of strenuous experiments and a vast
variety of ingenious apparatus to the space of a few hundred words.

A great deal of this narrative is given in Mr. Edison's own language,
from oral or written statements made in reply to questions addressed to
him with the object of securing accuracy. A further large part is based
upon the personal contributions of many loyal associates; and it is
desired here to make grateful acknowledgment to such collaborators as
Messrs. Samuel Insull, E. H. Johnson, F. R. Upton, R. N Dyer, S. B.
Eaton, Francis Jehl, W. S. Andrews, W. J. Jenks, W. J. Hammer, F. J.
Sprague, W. S. Mallory, and C. L. Clarke, and others, without whose
aid the issuance of this book would indeed have been impossible. In
particular, it is desired to acknowledge indebtedness to Mr. W. H.
Meadowcroft not only for substantial aid in the literary part of the
work, but for indefatigable effort to group, classify, and summarize the
boundless material embodied in Edison's note-books and memorabilia of
all kinds now kept at the Orange laboratory. Acknowledgment must also
be made of the courtesy and assistance of Mrs. Edison, and especially
of the loan of many interesting and rare photographs from her private
collection.



EDISON HIS LIFE AND INVENTIONS



CHAPTER I

THE AGE OF ELECTRICITY

THE year 1847 marked a period of great territorial acquisition by
the American people, with incalculable additions to their actual and
potential wealth. By the rational compromise with England in the dispute
over the Oregon region, President Polk had secured during 1846, for
undisturbed settlement, three hundred thousand square miles of forest,
fertile land, and fisheries, including the whole fair Columbia Valley.
Our active "policy of the Pacific" dated from that hour. With swift and
clinching succession came the melodramatic Mexican War, and February,
1848, saw another vast territory south of Oregon and west of the Rocky
Mountains added by treaty to the United States. Thus in about eighteen
months there had been pieced into the national domain for quick
development and exploitation a region as large as the entire Union
of Thirteen States at the close of the War of Independence. Moreover,
within its boundaries was embraced all the great American gold-field,
just on the eve of discovery, for Marshall had detected the shining
particles in the mill-race at the foot of the Sierra Nevada nine days
before Mexico signed away her rights in California and in all the vague,
remote hinterland facing Cathayward.

Equally momentous were the times in Europe, where the attempt to secure
opportunities of expansion as well as larger liberty for the individual
took quite different form. The old absolutist system of government was
fast breaking up, and ancient thrones were tottering. The red lava of
deep revolutionary fires oozed up through many glowing cracks in the
political crust, and all the social strata were shaken. That the wild
outbursts of insurrection midway in the fifth decade failed and died
away was not surprising, for the superincumbent deposits of tradition
and convention were thick. But the retrospect indicates that many
reforms and political changes were accomplished, although the process
involved the exile of not a few ardent spirits to America, to become
leading statesmen, inventors, journalists, and financiers. In 1847, too,
Russia began her tremendous march eastward into Central Asia, just
as France was solidifying her first gains on the littoral of northern
Africa. In England the fierce fervor of the Chartist movement, with its
violent rhetoric as to the rights of man, was sobering down and passing
pervasively into numerous practical schemes for social and political
amelioration, constituting in their entirety a most profound change
throughout every part of the national life.

Into such times Thomas Alva Edison was born, and his relations to
them and to the events of the past sixty years are the subject of
this narrative. Aside from the personal interest that attaches to the
picturesque career, so typically American, there is a broader aspect in
which the work of the "Franklin of the Nineteenth Century" touches
the welfare and progress of the race. It is difficult at any time to
determine the effect of any single invention, and the investigation
becomes more difficult where inventions of the first class have been
crowded upon each other in rapid and bewildering succession. But it will
be admitted that in Edison one deals with a central figure of the great
age that saw the invention and introduction in practical form of the
telegraph, the submarine cable, the telephone, the electric light, the
electric railway, the electric trolley-car, the storage battery, the
electric motor, the phonograph, the wireless telegraph; and that the
influence of these on the world's affairs has not been excelled at
any time by that of any other corresponding advances in the arts and
sciences. These pages deal with Edison's share in the great work of the
last half century in abridging distance, communicating intelligence,
lessening toil, improving illumination, recording forever the human
voice; and on behalf of inventive genius it may be urged that its
beneficent results and gifts to mankind compare with any to be credited
to statesman, warrior, or creative writer of the same period.

Viewed from the standpoint of inventive progress, the first half of
the nineteenth century had passed very profitably when Edison
appeared--every year marked by some notable achievement in the arts and
sciences, with promise of its early and abundant fruition in commerce
and industry. There had been exactly four decades of steam navigation
on American waters. Railways were growing at the rate of nearly
one thousand miles annually. Gas had become familiar as a means of
illumination in large cities. Looms and tools and printing-presses were
everywhere being liberated from the slow toil of man-power. The first
photographs had been taken. Chloroform, nitrous oxide gas, and ether
had been placed at the service of the physician in saving life, and
the revolver, guncotton, and nitroglycerine added to the agencies for
slaughter. New metals, chemicals, and elements had become available in
large numbers, gases had been liquefied and solidified, and the range
of useful heat and cold indefinitely extended. The safety-lamp had been
given to the miner, the caisson to the bridge-builder, the anti-friction
metal to the mechanic for bearings. It was already known how to
vulcanize rubber, and how to galvanize iron. The application of
machinery in the harvest-field had begun with the embryonic reaper,
while both the bicycle and the automobile were heralded in primitive
prototypes. The gigantic expansion of the iron and steel industry was
foreshadowed in the change from wood to coal in the smelting furnaces.
The sewing-machine had brought with it, like the friction match, one of
the most profound influences in modifying domestic life, and making it
different from that of all preceding time.

Even in 1847 few of these things had lost their novelty, most of them
were in the earlier stages of development. But it is when we turn to
electricity that the rich virgin condition of an illimitable new kingdom
of discovery is seen. Perhaps the word "utilization" or "application" is
better than discovery, for then, as now, an endless wealth of phenomena
noted by experimenters from Gilbert to Franklin and Faraday awaited the
invention that could alone render them useful to mankind. The eighteenth
century, keenly curious and ceaselessly active in this fascinating field
of investigation, had not, after all, left much of a legacy in either
principles or appliances. The lodestone and the compass; the frictional
machine; the Leyden jar; the nature of conductors and insulators;
the identity of electricity and the thunder-storm flash; the use of
lightning-rods; the physiological effects of an electrical shock--these
constituted the bulk of the bequest to which philosophers were the only
heirs. Pregnant with possibilities were many of the observations that
had been recorded. But these few appliances made up the meagre kit
of tools with which the nineteenth century entered upon its task of
acquiring the arts and conveniences now such an intimate part of "human
nature's daily food" that the average American to-day pays more for his
electrical service than he does for bread.

With the first year of the new century came Volta's invention of the
chemical battery as a means of producing electricity. A well-known
Italian picture represents Volta exhibiting his apparatus before the
young conqueror Napoleon, then ravishing from the Peninsula its treasure
of ancient art and founding an ephemeral empire. At such a moment this
gift of despoiled Italy to the world was a noble revenge, setting in
motion incalculable beneficent forces and agencies. For the first
time man had command of a steady supply of electricity without toil or
effort. The useful results obtainable previously from the current of a
frictional machine were not much greater than those to be derived from
the flight of a rocket. While the frictional appliance is still
employed in medicine, it ranks with the flint axe and the tinder-box
in industrial obsolescence. No art or trade could be founded on it; no
diminution of daily work or increase of daily comfort could be secured
with it. But the little battery with its metal plates in a weak
solution proved a perennial reservoir of electrical energy, safe and
controllable, from which supplies could be drawn at will. That which was
wild had become domesticated; regular crops took the place of haphazard
gleanings from brake or prairie; the possibility of electrical
starvation was forever left behind.

Immediately new processes of inestimable value revealed themselves; new
methods were suggested. Almost all the electrical arts now employed
made their beginnings in the next twenty-five years, and while the more
extensive of them depend to-day on the dynamo for electrical energy,
some of the most important still remain in loyal allegiance to the older
source. The battery itself soon underwent modifications, and new types
were evolved--the storage, the double-fluid, and the dry. Various
analogies next pointed to the use of heat, and the thermoelectric cell
emerged, embodying the application of flame to the junction of two
different metals. Davy, of the safety-lamp, threw a volume of current
across the gap between two sticks of charcoal, and the voltaic arc,
forerunner of electric lighting, shed its bright beams upon a dazzled
world. The decomposition of water by electrolytic action was recognized
and made the basis of communicating at a distance even before the days
of the electromagnet. The ties that bind electricity and magnetism in
twinship of relation and interaction were detected, and Faraday's work
in induction gave the world at once the dynamo and the motor. "Hitch
your wagon to a star," said Emerson. To all the coal-fields and all the
waterfalls Faraday had directly hitched the wheels of industry. Not
only was it now possible to convert mechanical energy into electricity
cheaply and in illimitable quantities, but electricity at once showed
its ubiquitous availability as a motive power. Boats were propelled by
it, cars were hauled, and even papers printed. Electroplating became
an art, and telegraphy sprang into active being on both sides of the
Atlantic.

At the time Edison was born, in 1847, telegraphy, upon which he was to
leave so indelible an imprint, had barely struggled into acceptance by
the public. In England, Wheatstone and Cooke had introduced a ponderous
magnetic needle telegraph. In America, in 1840, Morse had taken out his
first patent on an electromagnetic telegraph, the principle of which
is dominating in the art to this day. Four years later the memorable
message "What hath God wrought!" was sent by young Miss Ellsworth over
his circuits, and incredulous Washington was advised by wire of the
action of the Democratic Convention in Baltimore in nominating Polk.
By 1847 circuits had been strung between Washington and New York, under
private enterprise, the Government having declined to buy the Morse
system for $100,000. Everything was crude and primitive. The poles were
two hundred feet apart and could barely hold up a wash-line. The slim,
bare, copper wire snapped on the least provocation, and the circuit
was "down" for thirty-six days in the first six months. The little
glass-knob insulators made seductive targets for ignorant sportsmen.
Attempts to insulate the line wire were limited to coating it with
tar or smearing it with wax for the benefit of all the bees in the
neighborhood. The farthest western reach of the telegraph lines in
1847 was Pittsburg, with three-ply iron wire mounted on square glass
insulators with a little wooden pentroof for protection. In that office,
where Andrew Carnegie was a messenger boy, the magnets in use to receive
the signals sent with the aid of powerful nitric-acid batteries weighed
as much as seventy-five pounds apiece. But the business was fortunately
small at the outset, until the new device, patronized chiefly by
lottery-men, had proved its utility. Then came the great outburst of
activity. Within a score of years telegraph wires covered the whole
occupied country with a network, and the first great electrical industry
was a pronounced success, yielding to its pioneers the first great
harvest of electrical fortunes. It had been a sharp struggle for bare
existence, during which such a man as the founder of Cornell University
had been glad to get breakfast in New York with a quarter-dollar picked
up on Broadway.



CHAPTER II

EDISON'S PEDIGREE

THOMAS ALVA EDISON was born at Milan Ohio, February 11, 1847. The State
that rivals Virginia as a "Mother of Presidents" has evidently other
titles to distinction of the same nature. For picturesque detail it
would not be easy to find any story excelling that of the Edison family
before it reached the Western Reserve. The story epitomizes American
idealism, restlessness, freedom of individual opinion, and ready
adjustment to the surrounding conditions of pioneer life. The ancestral
Edisons who came over from Holland, as nearly as can be determined, in
1730, were descendants of extensive millers on the Zuyder Zee, and took
up patents of land along the Passaic River, New Jersey, close to the
home that Mr. Edison established in the Orange Mountains a hundred and
sixty years later. They landed at Elizabethport, New Jersey, and first
settled near Caldwell in that State, where some graves of the family may
still be found. President Cleveland was born in that quiet hamlet. It is
a curious fact that in the Edison family the pronunciation of the name
has always been with the long "e" sound, as it would naturally be in
the Dutch language. The family prospered and must have enjoyed public
confidence, for we find the name of Thomas Edison, as a bank official on
Manhattan Island, signed to Continental currency in 1778. According
to the family records this Edison, great-grandfather of Thomas Alva,
reached the extreme old age of 104 years. But all was not well, and,
as has happened so often before, the politics of father and son were
violently different. The Loyalist movement that took to Nova Scotia so
many Americans after the War of Independence carried with it John, the
son of this stalwart Continental. Thus it came about that Samuel Edison,
son of John, was born at Digby, Nova Scotia, in 1804. Seven years later
John Edison who, as a Loyalist or United Empire emigrant, had become
entitled under the laws of Canada to a grant of six hundred acres of
land, moved westward to take possession of this property. He made his
way through the State of New York in wagons drawn by oxen to the remote
and primitive township of Bayfield, in Upper Canada, on Lake Huron.
Although the journey occurred in balmy June, it was necessarily attended
with difficulty and privation; but the new home was situated in good
farming country, and once again this interesting nomadic family settled
down.

John Edison moved from Bayfield to Vienna, Ontario, on the northern bank
of Lake Erie. Mr. Edison supplies an interesting reminiscence of the old
man and his environment in those early Canadian days. "When I was five
years old I was taken by my father and mother on a visit to Vienna. We
were driven by carriage from Milan, Ohio, to a railroad, then to a
port on Lake Erie, thence by a canal-boat in a tow of several to Port
Burwell, in Canada, across the lake, and from there we drove to Vienna,
a short distance away. I remember my grandfather perfectly as he
appeared, at 102 years of age, when he died. In the middle of the day
he sat under a large tree in front of the house facing a well-travelled
road. His head was covered completely with a large quantity of very
white hair, and he chewed tobacco incessantly, nodding to friends as
they passed by. He used a very large cane, and walked from the chair to
the house, resenting any assistance. I viewed him from a distance, and
could never get very close to him. I remember some large pipes, and
especially a molasses jug, a trunk, and several other things that came
from Holland."

John Edison was long-lived, like his father, and reached the ripe old
age of 102, leaving his son Samuel charged with the care of the family
destinies, but with no great burden of wealth. Little is known of the
early manhood of this father of T. A. Edison until we find him keeping a
hotel at Vienna, marrying a school-teacher there (Miss Nancy Elliott, in
1828), and taking a lively share in the troublous politics of the time.
He was six feet in height, of great bodily vigor, and of such personal
dominance of character that he became a captain of the insurgent forces
rallying under the banners of Papineau and Mackenzie. The opening
years of Queen Victoria's reign witnessed a belated effort in Canada
to emphasize the principle that there should not be taxation without
representation; and this descendant of those who had left the United
States from disapproval of such a doctrine, flung himself headlong into
its support.

It has been said of Earl Durham, who pacified Canada at this time and
established the present system of government, that he made a country
and marred a career. But the immediate measures of repression enforced
before a liberal policy was adopted were sharp and severe, and Samuel
Edison also found his own career marred on Canadian soil as one result
of the Durham administration. Exile to Bermuda with other insurgents was
not so attractive as the perils of a flight to the United States. A very
hurried departure was effected in secret from the scene of trouble, and
there are romantic traditions of his thrilling journey of one hundred
and eighty-two miles toward safety, made almost entirely without food
or sleep, through a wild country infested with Indians of unfriendly
disposition. Thus was the Edison family repatriated by a picturesque
political episode, and the great inventor given a birthplace on American
soil, just as was Benjamin Franklin when his father came from England
to Boston. Samuel Edison left behind him, however, in Canada, several
brothers, all of whom lived to the age of ninety or more, and from whom
there are descendants in the region.

After some desultory wanderings for a year or two along the shores of
Lake Erie, among the prosperous towns then springing up, the family,
with its Canadian home forfeited, and in quest of another resting-place,
came to Milan, Ohio, in 1842. That pretty little village offered at the
moment many attractions as a possible Chicago. The railroad system of
Ohio was still in the future, but the Western Reserve had already become
a vast wheat-field, and huge quantities of grain from the central and
northern counties sought shipment to Eastern ports. The Huron River,
emptying into Lake Erie, was navigable within a few miles of the
village, and provided an admirable outlet. Large granaries were
established, and proved so successful that local capital was tempted
into the project of making a tow-path canal from Lockwood Landing all
the way to Milan itself. The quaint old Moravian mission and quondam
Indian settlement of one hundred inhabitants found itself of a sudden
one of the great grain ports of the world, and bidding fair to rival
Russian Odessa. A number of grain warehouses, or primitive elevators,
were built along the bank of the canal, and the produce of the region
poured in immediately, arriving in wagons drawn by four or six horses
with loads of a hundred bushels. No fewer than six hundred wagons came
clattering in, and as many as twenty sail vessels were loaded with
thirty-five thousand bushels of grain, during a single day. The canal
was capable of being navigated by craft of from two hundred to two
hundred and fifty tons burden, and the demand for such vessels soon
led to the development of a brisk ship-building industry, for which
the abundant forests of the region supplied the necessary lumber. An
evidence of the activity in this direction is furnished by the fact that
six revenue cutters were launched at this port in these brisk days of
its prime.

Samuel Edison, versatile, buoyant of temper, and ever optimistic, would
thus appear to have pitched his tent with shrewd judgment. There was
plenty of occupation ready to his hand, and more than one enterprise
received his attention; but he devoted his energies chiefly to the
making of shingles, for which there was a large demand locally and along
the lake. Canadian lumber was used principally in this industry. The
wood was imported in "bolts" or pieces three feet long. A bolt made two
shingles; it was sawn asunder by hand, then split and shaved. None but
first-class timber was used, and such shingles outlasted far those made
by machinery with their cross-grain cut. A house in Milan, on which some
of those shingles were put in 1844, was still in excellent condition
forty-two years later. Samuel Edison did well at this occupation, and
employed several men, but there were other outlets from time to time for
his business activity and speculative disposition.

Edison's mother was an attractive and highly educated woman, whose
influence upon his disposition and intellect has been profound and
lasting. She was born in Chenango County, New York, in 1810, and was the
daughter of the Rev. John Elliott, a Baptist minister and descendant of
an old Revolutionary soldier, Capt. Ebenezer Elliott, of Scotch descent.
The old captain was a fine and picturesque type. He fought all through
the long War of Independence--seven years--and then appears to have
settled down at Stonington, Connecticut. There, at any rate, he found
his wife, "grandmother Elliott," who was Mercy Peckham, daughter of a
Scotch Quaker. Then came the residence in New York State, with final
removal to Vienna, for the old soldier, while drawing his pension at
Buffalo, lived in the little Canadian town, and there died, over 100
years old. The family was evidently one of considerable culture and deep
religious feeling, for two of Mrs. Edison's uncles and two brothers were
also in the same Baptist ministry. As a young woman she became a teacher
in the public high school at Vienna, and thus met her husband, who was
residing there. The family never consisted of more than three children,
two boys and a girl. A trace of the Canadian environment is seen in the
fact that Edison's elder brother was named William Pitt, after the
great English statesman. Both his brother and the sister exhibited
considerable ability. William Pitt Edison as a youth was so clever with
his pencil that it was proposed to send him to Paris as an art student.
In later life he was manager of the local street railway lines at Port
Huron, Michigan, in which he was heavily interested. He also owned a
good farm near that town, and during the ill-health at the close of
his life, when compelled to spend much of the time indoors, he devoted
himself almost entirely to sketching. It has been noted by intimate
observers of Thomas A. Edison that in discussing any project or new idea
his first impulse is to take up any piece of paper available and make
drawings of it. His voluminous note-books are a mass of sketches.
Mrs-Tannie Edison Bailey, the sister, had, on the other hand, a great
deal of literary ability, and spent much of her time in writing.

The great inventor, whose iron endurance and stern will have enabled him
to wear down all his associates by work sustained through arduous days
and sleepless nights, was not at all strong as a child, and was of
fragile appearance. He had an abnormally large but well-shaped head, and
it is said that the local doctors feared he might have brain trouble.
In fact, on account of his assumed delicacy, he was not allowed to go to
school for some years, and even when he did attend for a short time
the results were not encouraging--his mother being hotly indignant upon
hearing that the teacher had spoken of him to an inspector as "addled."
The youth was, indeed, fortunate far beyond the ordinary in having a
mother at once loving, well-informed, and ambitious, capable herself,
from her experience as a teacher, of undertaking and giving him an
education better than could be secured in the local schools of the day.
Certain it is that under this simple regime studious habits were formed
and a taste for literature developed that have lasted to this day. If
ever there was a man who tore the heart out of books it is Edison, and
what has once been read by him is never forgotten if useful or worthy of
submission to the test of experiment.

But even thus early the stronger love of mechanical processes and of
probing natural forces manifested itself. Edison has said that he
never saw a statement in any book as to such things that he did not
involuntarily challenge, and wish to demonstrate as either right or
wrong. As a mere child the busy scenes of the canal and the grain
warehouses were of consuming interest, but the work in the ship-building
yards had an irresistible fascination. His questions were so ceaseless
and innumerable that the penetrating curiosity of an unusually strong
mind was regarded as deficiency in powers of comprehension, and the
father himself, a man of no mean ingenuity and ability, reports that
the child, although capable of reducing him to exhaustion by endless
inquiries, was often spoken of as rather wanting in ordinary acumen.
This apparent dulness is, however, a quite common incident to youthful
genius.

The constructive tendencies of this child of whom his father said once
that he had never had any boyhood days in the ordinary sense, were early
noted in his fondness for building little plank roads out of the debris
of the yards and mills. His extraordinarily retentive memory was shown
in his easy acquisition of all the songs of the lumber gangs and canal
men before he was five years old. One incident tells how he was found
one day in the village square copying laboriously the signs of the
stores. A highly characteristic event at the age of six is described by
his sister. He had noted a goose sitting on her eggs and the result. One
day soon after, he was missing. By-and-by, after an anxious search, his
father found him sitting in a nest he had made in the barn, filled with
goose-eggs and hens' eggs he had collected, trying to hatch them out.

One of Mr. Edison's most vivid recollections goes back to 1850, when as
a child three of four years old he saw camped in front of his home six
covered wagons, "prairie schooners," and witnessed their departure for
California. The great excitement over the gold discoveries was thus felt
in Milan, and these wagons, laden with all the worldly possessions of
their owners, were watched out of sight on their long journey by this
fascinated urchin, whose own discoveries in later years were to tempt
many other argonauts into the auriferous realms of electricity.

Another vivid memory of this period concerns his first realization
of the grim mystery of death. He went off one day with the son of
the wealthiest man in the town to bathe in the creek. Soon after they
entered the water the other boy disappeared. Young Edison waited around
the spot for half an hour or more, and then, as it was growing dark,
went home puzzled and lonely, but silent as to the occurrence. About two
hours afterward, when the missing boy was being searched for, a man came
to the Edison home to make anxious inquiry of the companion with whom
he had last been seen. Edison told all the circumstances with a painful
sense of being in some way implicated. The creek was at once dragged,
and then the body was recovered.

Edison had himself more than one narrow escape. Of course he fell in the
canal and was nearly drowned; few boys in Milan worth their salt omitted
that performance. On another occasion he encountered a more novel peril
by falling into the pile of wheat in a grain elevator and being almost
smothered. Holding the end of a skate-strap for another lad to shorten
with an axe, he lost the top of a finger. Fire also had its perils. He
built a fire in a barn, but the flames spread so rapidly that, although
he escaped himself, the barn was wholly destroyed, and he was publicly
whipped in the village square as a warning to other youths. Equally well
remembered is a dangerous encounter with a ram that attacked him while
he was busily engaged digging out a bumblebee's nest near an orchard
fence. The animal knocked him against the fence, and was about to butt
him again when he managed to drop over on the safe side and escape. He
was badly hurt and bruised, and no small quantity of arnica was needed
for his wounds.

Meantime little Milan had reached the zenith of its prosperity, and all
of a sudden had been deprived of its flourishing grain trade by the new
Columbus, Sandusky & Hocking Railroad; in fact, the short canal was one
of the last efforts of its kind in this country to compete with the
new means of transportation. The bell of the locomotive was everywhere
ringing the death-knell of effective water haulage, with such dire
results that, in 1880, of the 4468 miles of American freight canal, that
had cost $214,000,000, no fewer than 1893 miles had been abandoned,
and of the remaining 2575 miles quite a large proportion was not paying
expenses. The short Milan canal suffered with the rest, and to-day
lies well-nigh obliterated, hidden in part by vegetable gardens, a mere
grass-grown depression at the foot of the winding, shallow valley. Other
railroads also prevented any further competition by the canal, for a
branch of the Wheeling & Lake Erie now passes through the village, while
the Lake Shore & Michigan Southern runs a few miles to the south.

The owners of the canal soon had occasion to regret that they had
disdained the overtures of enterprising railroad promoters desirous
of reaching the village, and the consequences of commercial isolation
rapidly made themselves felt. It soon became evident to Samuel Edison
and his wife that the cozy brick home on the bluff must be given up
and the struggle with fortune resumed elsewhere. They were well-to-do,
however, and removing, in 1854, to Port Huron, Michigan, occupied a
large colonial house standing in the middle of an old Government fort
reservation of ten acres overlooking the wide expanse of the St. Clair
River just after it leaves Lake Huron. It was in many ways an ideal
homestead, toward which the family has always felt the strongest
attachment, but the association with Milan has never wholly ceased. The
old house in which Edison was born is still occupied (in 1910) by Mr.
S. O. Edison, a half-brother of Edison's father, and a man of marked
inventive ability. He was once prominent in the iron-furnace industry of
Ohio, and was for a time associated in the iron trade with the father
of the late President McKinley. Among his inventions may be mentioned a
machine for making fuel from wheat straw, and a smoke-consuming device.

This birthplace of Edison remains the plain, substantial little brick
house it was originally: one-storied, with rooms finished on the attic
floor. Being built on the hillside, its basement opens into the rear
yard. It was at first heated by means of open coal grates, which may not
have been altogether adequate in severe winters, owing to the altitude
and the north-eastern exposure, but a large furnace is one of the more
modern changes. Milan itself is not materially unlike the smaller Ohio
towns of its own time or those of later creation, but the venerable
appearance of the big elm-trees that fringe the trim lawns tells of its
age. It is, indeed, an extremely neat, snug little place, with well-kept
homes, mostly of frame construction, and flagged streets crossing
each other at right angles. There are no poor--at least, everybody is
apparently well-to-do. While a leisurely atmosphere pervades the
town, few idlers are seen. Some of the residents are engaged in local
business; some are occupied in farming and grape culture; others are
employed in the iron-works near-by, at Norwalk. The stores and places
of public resort are gathered about the square, where there is plenty
of room for hitching when the Saturday trading is done at that point,
at which periods the fitful bustle recalls the old wheat days when young
Edison ran with curiosity among the six and eight horse teams that had
brought in grain. This square is still covered with fine primeval forest
trees, and has at its centre a handsome soldiers' monument of the Civil
War, to which four paved walks converge. It is an altogether pleasant
and unpretentious town, which cherishes with no small amount of pride
its association with the name of Thomas Alva Edison.

In view of Edison's Dutch descent, it is rather singular to find him
with the name of Alva, for the Spanish Duke of Alva was notoriously the
worst tyrant ever known to the Low Countries, and his evil deeds occupy
many stirring pages in Motley's famous history. As a matter of fact,
Edison was named after Capt. Alva Bradley, an old friend of his father,
and a celebrated ship-owner on the Lakes. Captain Bradley died a few
years ago in wealth, while his old associate, with equal ability for
making money, was never able long to keep it (differing again from the
Revolutionary New York banker from whom his son's other name, "Thomas,"
was taken).



CHAPTER III

BOYHOOD AT PORT HURON, MICHIGAN

THE new home found by the Edison family at Port Huron, where Alva spent
his brief boyhood before he became a telegraph operator and roamed the
whole middle West of that period, was unfortunately destroyed by fire
just after the close of the Civil War. A smaller but perhaps more
comfortable home was then built by Edison's father on some property he
had bought at the near-by village of Gratiot, and there his mother spent
the remainder of her life in confirmed invalidism, dying in 1871. Hence
the pictures and postal cards sold largely to souvenir-hunters as the
Port Huron home do not actually show that in or around which the events
now referred to took place.

It has been a romance of popular biographers, based upon the fact that
Edison began his career as a newsboy, to assume that these earlier years
were spent in poverty and privation, as indeed they usually are by the
"newsies" who swarm and shout their papers in our large cities. While
it seems a pity to destroy this erroneous idea, suggestive of a heroic
climb from the depths to the heights, nothing could be further from the
truth. Socially the Edison family stood high in Port Huron at a time
when there was relatively more wealth and general activity than to-day.
The town in its pristine prime was a great lumber centre, and hummed
with the industry of numerous sawmills. An incredible quantity of
lumber was made there yearly until the forests near-by vanished and the
industry with them. The wealth of the community, invested largely in
this business and in allied transportation companies, was accumulated
rapidly and as freely spent during those days of prosperity in St. Clair
County, bringing with it a high standard of domestic comfort. In all
this the Edisons shared on equal terms.

Thus, contrary to the stories that have been so widely published, the
Edisons, while not rich by any means, were in comfortable circumstances,
with a well-stocked farm and large orchard to draw upon also for
sustenance. Samuel Edison, on moving to Port Huron, became a dealer in
grain and feed, and gave attention to that business for many years. But
he was also active in the lumber industry in the Saginaw district and
several other things. It was difficult for a man of such mercurial,
restless temperament to stay constant to any one occupation; in fact,
had he been less visionary he would have been more prosperous, but might
not have had a son so gifted with insight and imagination. One instance
of the optimistic vagaries which led him incessantly to spend time and
money on projects that would not have appealed to a man less sanguine
was the construction on his property of a wooden observation tower over
a hundred feet high, the top of which was reached toilsomely by winding
stairs, after the payment of twenty-five cents. It is true that the
tower commanded a pretty view by land and water, but Colonel Sellers
himself might have projected this enterprise as a possible source of
steady income. At first few visitors panted up the long flights of steps
to the breezy platform. During the first two months Edison's father
took in three dollars, and felt extremely blue over the prospect, and
to young Edison and his relatives were left the lonely pleasures of the
lookout and the enjoyment of the telescope with which it was equipped.
But one fine day there came an excursion from an inland town to see the
lake. They picnicked in the grove, and six hundred of them went up
the tower. After that the railroad company began to advertise these
excursions, and the receipts each year paid for the observatory.

It might be thought that, immersed in business and preoccupied with
schemes of this character, Mr. Edison was to blame for the neglect of
his son's education. But that was not the case. The conditions were
peculiar. It was at the Port Huron public school that Edison received
all the regular scholastic instruction he ever enjoyed--just three
months. He might have spent the full term there, but, as already noted,
his teacher had found him "addled." He was always, according to his own
recollection, at the foot of the class, and had come almost to regard
himself as a dunce, while his father entertained vague anxieties as to
his stupidity. The truth of the matter seems to be that Mrs. Edison, a
teacher of uncommon ability and force, held no very high opinion of
the average public-school methods and results, and was both eager to
undertake the instruction of her son and ambitious for the future of
a boy whom she knew from pedagogic experience to be receptive and
thoughtful to a very unusual degree. With her he found study easy and
pleasant. The quality of culture in that simple but refined home, as
well as the intellectual character of this youth without schooling, may
be inferred from the fact that before he had reached the age of twelve
he had read, with his mother's help, Gibbon's Decline and Fall of the
Roman Empire, Hume's History of England, Sears' History of the World,
Burton's Anatomy of Melancholy, and the Dictionary of Sciences; and had
even attempted to struggle through Newton's Principia, whose mathematics
were decidedly beyond both teacher and student. Besides, Edison, like
Faraday, was never a mathematician, and has had little personal use
for arithmetic beyond that which is called "mental." He said once to a
friend: "I can always hire some mathematicians, but they can't hire me."
His father, by-the-way, always encouraged these literary tastes, and
paid him a small sum for each new book mastered. It will be noted that
fiction makes no showing in the list; but it was not altogether
excluded from the home library, and Edison has all his life enjoyed
it, particularly the works of such writers as Victor Hugo, after whom,
because of his enthusiastic admiration--possibly also because of his
imagination--he was nicknamed by his fellow-operators, "Victor Hugo
Edison."

Electricity at that moment could have no allure for a youthful mind.
Crude telegraphy represented what was known of it practically, and about
that the books read by young Edison were not redundantly informational.
Even had that not been so, the inclinations of the boy barely ten years
old were toward chemistry, and fifty years later there is seen no change
of predilection. It sounds like heresy to say that Edison became an
electrician by chance, but it is the sober fact that to this pre-eminent
and brilliant leader in electrical achievement escape into the chemical
domain still has the aspect of a delightful truant holiday. One of
the earliest stories about his boyhood relates to the incident when
he induced a lad employed in the family to swallow a large quantity of
Seidlitz powders in the belief that the gases generated would enable
him to fly. The agonies of the victim attracted attention, and Edison's
mother marked her displeasure by an application of the switch kept
behind the old Seth Thomas "grandfather clock." The disastrous result
of this experiment did not discourage Edison at all, as he attributed
failure to the lad rather than to the motive power. In the cellar of
the Edison homestead young Alva soon accumulated a chemical outfit,
constituting the first in a long series of laboratories. The word
"laboratory" had always been associated with alchemists in the past,
but as with "filament" this untutored stripling applied an iconoclastic
practicability to it long before he realized the significance of the
new departure. Goethe, in his legend of Faust, shows the traditional
or conventional philosopher in his laboratory, an aged, tottering,
gray-bearded investigator, who only becomes youthful upon diabolical
intervention, and would stay senile without it. In the Edison laboratory
no such weird transformation has been necessary, for the philosopher
had youth, fiery energy, and a grimly practical determination that would
submit to no denial of the goal of something of real benefit to mankind.
Edison and Faust are indeed the extremes of philosophic thought and
accomplishment.

The home at Port Huron thus saw the first Edison laboratory. The boy
began experimenting when he was about ten or eleven years of age. He got
a copy of Parker's School Philosophy, an elementary book on physics, and
about every experiment in it he tried. Young Alva, or "Al," as he was
called, thus early displayed his great passion for chemistry, and in
the cellar of the house he collected no fewer than two hundred bottles,
gleaned in baskets from all parts of the town. These were arranged
carefully on shelves and all labelled "Poison," so that no one else
would handle or disturb them. They contained the chemicals with which
he was constantly experimenting. To others this diversion was both
mysterious and meaningless, but he had soon become familiar with all
the chemicals obtainable at the local drug stores, and had tested to
his satisfaction many of the statements encountered in his scientific
reading. Edison has said that sometimes he has wondered how it was
he did not become an analytical chemist instead of concentrating on
electricity, for which he had at first no great inclination.

Deprived of the use of a large part of her cellar, tiring of the "mess"
always to be found there, and somewhat fearful of results, his mother
once told the boy to clear everything out and restore order. The thought
of losing all his possessions was the cause of so much ardent distress
that his mother relented, but insisted that he must get a lock and key,
and keep the embryonic laboratory closed up all the time except when he
was there. This was done. From such work came an early familiarity with
the nature of electrical batteries and the production of current from
them. Apparently the greater part of his spare time was spent in the
cellar, for he did not share to any extent in the sports of the boys of
the neighborhood, his chum and chief companion, Michael Oates, being a
lad of Dutch origin, many years older, who did chores around the
house, and who could be recruited as a general utility Friday for the
experiments of this young explorer--such as that with the Seidlitz
powders.

Such pursuits as these consumed the scant pocket-money of the boy very
rapidly. He was not in regular attendance at school, and had read all
the books within reach. It was thus he turned newsboy, overcoming the
reluctance of his parents, particularly that of his mother, by pointing
out that he could by this means earn all he wanted for his experiments
and get fresh reading in the shape of papers and magazines free of
charge. Besides, his leisure hours in Detroit he would be able to spend
at the public library. He applied (in 1859) for the privilege of selling
newspapers on the trains of the Grand Trunk Railroad, between Port Huron
and Detroit, and obtained the concession after a short delay, during
which he made an essay in his task of selling newspapers.

Edison had, as a fact, already had some commercial experience from the
age of eleven. The ten acres of the reservation offered an excellent
opportunity for truck-farming, and the versatile head of the family
could not avoid trying his luck in this branch of work. A large "market
garden" was laid out, in which Edison worked pretty steadily with the
help of the Dutch boy, Michael Oates--he of the flying experiment. These
boys had a horse and small wagon intrusted to them, and every morning in
the season they would load up with onions, lettuce, peas, etc., and go
through the town.

As much as $600 was turned over to Mrs. Edison in one year from this
source. The boy was indefatigable but not altogether charmed with
agriculture. "After a while I tired of this work, as hoeing corn in
a hot sun is unattractive, and I did not wonder that it had built up
cities. Soon the Grand Trunk Railroad was extended from Toronto to Port
Huron, at the foot of Lake Huron, and thence to Detroit, at about the
same time the War of the Rebellion broke out. By a great amount of
persistence I got permission from my mother to go on the local train
as a newsboy. The local train from Port Huron to Detroit, a distance of
sixty-three miles, left at 7 A.M. and arrived again at 9.30 P.M. After
being on the train for several months, I started two stores in Port
Huron--one for periodicals, and the other for vegetables, butter, and
berries in the season. These were attended by two boys who shared in the
profits. The periodical store I soon closed, as the boy in charge could
not be trusted. The vegetable store I kept up for nearly a year. After
the railroad had been opened a short time, they put on an express which
left Detroit in the morning and returned in the evening. I received
permission to put a newsboy on this train. Connected with this train was
a car, one part for baggage and the other part for U. S. mail, but for
a long time it was not used. Every morning I had two large baskets of
vegetables from the Detroit market loaded in the mail-car and sent to
Port Huron, where the boy would take them to the store. They were much
better than those grown locally, and sold readily. I never was asked to
pay freight, and to this day cannot explain why, except that I was so
small and industrious, and the nerve to appropriate a U. S. mail-car to
do a free freight business was so monumental. However, I kept this up
for a long time, and in addition bought butter from the farmers along
the line, and an immense amount of blackberries in the season. I bought
wholesale and at a low price, and permitted the wives of the engineers
and trainmen to have the benefit of the discount. After a while there
was a daily immigrant train put on. This train generally had from seven
to ten coaches filled always with Norwegians, all bound for Iowa and
Minnesota. On these trains I employed a boy who sold bread, tobacco, and
stick candy. As the war progressed the daily newspaper sales became very
profitable, and I gave up the vegetable store."

The hours of this occupation were long, but the work was not
particularly heavy, and Edison soon found opportunity for his favorite
avocation--chemical experimentation. His train left Port Huron at 7
A.M., and made its southward trip to Detroit in about three hours. This
gave a stay in that city from 10 A.M. until the late afternoon, when the
train left, arriving at Port Huron about 9.30 P.M. The train was made up
of three coaches--baggage, smoking, and ordinary passenger or "ladies."
The baggage-car was divided into three compartments--one for trunks and
packages, one for the mail, and one for smoking. In those days no use
was made of the smoking-compartment, as there was no ventilation, and it
was turned over to young Edison, who not only kept papers there and his
stock of goods as a "candy butcher," but soon had it equipped with an
extraordinary variety of apparatus. There was plenty of leisure on the
two daily runs, even for an industrious boy, and thus he found time
to transfer his laboratory from the cellar and re-establish it on the
train.

His earnings were also excellent--so good, in fact, that eight or ten
dollars a day were often taken in, and one dollar went every day to his
mother. Thus supporting himself, he felt entitled to spend any other
profit left over on chemicals and apparatus. And spent it was, for with
access to Detroit and its large stores, where he bought his supplies,
and to the public library, where he could quench his thirst for
technical information, Edison gave up all his spare time and money to
chemistry. Surely the country could have presented at that moment no
more striking example of the passionate pursuit of knowledge under
difficulties than this newsboy, barely fourteen years of age, with his
jars and test-tubes installed on a railway baggage-car.

Nor did this amazing equipment stop at batteries and bottles. The same
little space a few feet square was soon converted by this precocious
youth into a newspaper office. The outbreak of the Civil War gave a
great stimulus to the demand for all newspapers, noticing which he
became ambitious to publish a local journal of his own, devoted to the
news of that section of the Grand Trunk road. A small printing-press
that had been used for hotel bills of fare was picked up in Detroit,
and type was also bought, some of it being placed on the train so that
composition could go on in spells of leisure. To one so mechanical in
his tastes as Edison, it was quite easy to learn the rudiments of the
printing art, and thus the Weekly Herald came into existence, of which
he was compositor, pressman, editor, publisher, and newsdealer. Only one
or two copies of this journal are now discoverable, but its appearance
can be judged from the reduced facsimile here shown. The thing was
indeed well done as the work of a youth shown by the date to be less
than fifteen years old. The literary style is good, there are only a few
trivial slips in spelling, and the appreciation is keen of what would be
interesting news and gossip. The price was three cents a copy, or eight
cents a month for regular subscribers, and the circulation ran up to
over four hundred copies an issue. This was by no means the result of
mere public curiosity, but attested the value of the sheet as a genuine
newspaper, to which many persons in the railroad service along the
line were willing contributors. Indeed, with the aid of the railway
telegraph, Edison was often able to print late news of importance, of
local origin, that the distant regular papers like those of Detroit,
which he handled as a newsboy, could not get. It is no wonder that this
clever little sheet received the approval and patronage of the English
engineer Stephenson when inspecting the Grand Trunk system, and was
noted by no less distinguished a contemporary than the London Times as
the first newspaper in the world to be printed on a train in motion.
The youthful proprietor sometimes cleared as much as twenty to thirty
dollars a month from this unique journalistic enterprise.

But all this extra work required attention, and Edison solved the
difficulty of attending also to the newsboy business by the employment
of a young friend, whom he trained and treated liberally as an
understudy. There was often plenty of work for both in the early days
of the war, when the news of battle caused intense excitement and large
sales of papers. Edison, with native shrewdness already so strikingly
displayed, would telegraph the station agents and get them to bulletin
the event of the day at the front, so that when each station was reached
there were eager purchasers waiting. He recalls in particular the
sensation caused by the great battle of Shiloh, or Pittsburg Landing,
in April, 1862, in which both Grant and Sherman were engaged, in which
Johnston died, and in which there was a ghastly total of 25,000 killed
and wounded.

In describing his enterprising action that day, Edison says that when
he reached Detroit the bulletin-boards of the newspaper offices were
surrounded with dense crowds, which read awestricken the news that there
were 60,000 killed and wounded, and that the result was uncertain. "I
knew that if the same excitement was attained at the various small towns
along the road, and especially at Port Huron, the sale of papers would
be great. I then conceived the idea of telegraphing the news ahead, went
to the operator in the depot, and by giving him Harper's Weekly and
some other papers for three months, he agreed to telegraph to all the
stations the matter on the bulletin-board. I hurriedly copied it, and he
sent it, requesting the agents to display it on the blackboards used for
stating the arrival and departure of trains. I decided that instead of
the usual one hundred papers I could sell one thousand; but not having
sufficient money to purchase that number, I determined in my desperation
to see the editor himself and get credit. The great paper at that time
was the Detroit Free Press. I walked into the office marked 'Editorial'
and told a young man that I wanted to see the editor on important
business--important to me, anyway, I was taken into an office where
there were two men, and I stated what I had done about telegraphing, and
that I wanted a thousand papers, but only had money for three hundred,
and I wanted credit. One of the men refused it, but the other told the
first spokesman to let me have them. This man, I afterward learned, was
Wilbur F. Storey, who subsequently founded the Chicago Times, and became
celebrated in the newspaper world. By the aid of another boy I lugged
the papers to the train and started folding them. The first station,
called Utica, was a small one where I generally sold two papers. I saw
a crowd ahead on the platform, and thought it some excursion, but
the moment I landed there was a rush for me; then I realized that the
telegraph was a great invention. I sold thirty-five papers there. The
next station was Mount Clemens, now a watering-place, but then a town of
about one thousand. I usually sold six to eight papers there. I decided
that if I found a corresponding crowd there, the only thing to do to
correct my lack of judgment in not getting more papers was to raise
the price from five cents to ten. The crowd was there, and I raised the
price. At the various towns there were corresponding crowds. It had
been my practice at Port Huron to jump from the train at a point
about one-fourth of a mile from the station, where the train generally
slackened speed. I had drawn several loads of sand to this point to jump
on, and had become quite expert. The little Dutch boy with the horse met
me at this point. When the wagon approached the outskirts of the town
I was met by a large crowd. I then yelled: 'Twenty-five cents apiece,
gentlemen! I haven't enough to go around!' I sold all out, and made what
to me then was an immense sum of money."

Such episodes as this added materially to his income, but did not
necessarily increase his savings, for he was then, as now, an utter
spendthrift so long as some new apparatus or supplies for experiment
could be had. In fact, the laboratory on wheels soon became crowded
with such equipment, most costly chemicals were bought on the instalment
plan, and Fresenius' Qualitative Analysis served as a basis for
ceaseless testing and study. George Pullman, who then had a small shop
at Detroit and was working on his sleeping-car, made Edison a lot of
wooden apparatus for his chemicals, to the boy's delight. Unfortunately
a sudden change came, fraught with disaster. The train, running one day
at thirty miles an hour over a piece of poorly laid track, was thrown
suddenly out of the perpendicular with a violent lurch, and, before
Edison could catch it, a stick of phosphorus was jarred from its shelf,
fell to the floor, and burst into flame. The car took fire, and the boy,
in dismay, was still trying to quench the blaze when the conductor, a
quick-tempered Scotchman, who acted also as baggage-master, hastened to
the scene with water and saved his car. On the arrival at Mount Clemens
station, its next stop, Edison and his entire outfit, laboratory,
printing-plant, and all, were promptly ejected by the enraged conductor,
and the train then moved off, leaving him on the platform, tearful and
indignant in the midst of his beloved but ruined possessions. It was
lynch law of a kind; but in view of the responsibility, this action of
the conductor lay well within his rights and duties.

It was through this incident that Edison acquired the deafness that
has persisted all through his life, a severe box on the ears from the
scorched and angry conductor being the direct cause of the infirmity.
Although this deafness would be regarded as a great affliction by most
people, and has brought in its train other serious baubles, Mr. Edison
has always regarded it philosophically, and said about it recently:
"This deafness has been of great advantage to me in various ways. When
in a telegraph office, I could only hear the instrument directly on the
table at which I sat, and unlike the other operators, I was not bothered
by the other instruments. Again, in experimenting on the telephone,
I had to improve the transmitter so I could hear it. This made the
telephone commercial, as the magneto telephone receiver of Bell was too
weak to be used as a transmitter commercially. It was the same with the
phonograph. The great defect of that instrument was the rendering of the
overtones in music, and the hissing consonants in speech. I worked over
one year, twenty hours a day, Sundays and all, to get the word 'specie'
perfectly recorded and reproduced on the phonograph. When this was done
I knew that everything else could be done which was a fact. Again,
my nerves have been preserved intact. Broadway is as quiet to me as a
country village is to a person with normal hearing."

Saddened but not wholly discouraged, Edison soon reconstituted his
laboratory and printing-office at home, although on the part of the
family there was some fear and objection after this episode, on the
score of fire. But Edison promised not to bring in anything of a
dangerous nature. He did not cease the publication of the Weekly Herald.
On the contrary, he prospered in both his enterprises until persuaded
by the "printer's devil" in the office of the Port Huron Commercial to
change the character of his journal, enlarge it, and issue it under the
name of Paul Pry, a happy designation for this or kindred ventures
in the domain of society journalism. No copies of Paul Pry can now be
found, but it is known that its style was distinctly personal, that
gossip was its specialty, and that no small offence was given to the
people whose peculiarities or peccadilloes were discussed in a frank
and breezy style by the two boys. In one instance the resentment of the
victim of such unsought publicity was so intense he laid hands on Edison
and pitched the startled young editor into the St. Clair River. The name
of this violator of the freedom of the press was thereafter excluded
studiously from the columns of Paul Pry, and the incident may have been
one of those which soon caused the abandonment of the paper. Edison
had great zest in this work, and but for the strong influences in other
directions would probably have continued in the newspaper field, in
which he was, beyond question, the youngest publisher and editor of the
day.

Before leaving this period of his career, it is to be noted that it gave
Edison many favorable opportunities. In Detroit he could spend frequent
hours in the public library, and it is matter of record that he began
his liberal acquaintance with its contents by grappling bravely with a
certain section and trying to read it through consecutively, shelf by
shelf, regardless of subject. In a way this is curiously suggestive
of the earnest, energetic method of "frontal attack" with which the
inventor has since addressed himself to so many problems in the arts and
sciences.

The Grand Trunk Railroad machine-shops at Port Huron were a great
attraction to the boy, who appears to have spent a good deal of his time
there. He who was to have much to do with the evolution of the modern
electric locomotive was fascinated by the mechanism of the steam
locomotive; and whenever he could get the chance Edison rode in the cab
with the engineer of his train. He became thoroughly familiar with the
intricacies of fire-box, boiler, valves, levers, and gears, and liked
nothing better than to handle the locomotive himself during the run.
On one trip, when the engineer lay asleep while his eager substitute
piloted the train, the boiler "primed," and a deluge overwhelmed the
young driver, who stuck to his post till the run and the ordeal were
ended. Possibly this helped to spoil a locomotive engineer, but went
to make a great master of the new motive power. "Steam is half an
Englishman," said Emerson. The temptation is strong to say that workaday
electricity is half an American. Edison's own account of the incident
is very laughable: "The engine was one of a number leased to the Grand
Trunk by the Chicago, Burlington & Quincy. It had bright brass bands all
over, the woodwork beautifully painted, and everything highly polished,
which was the custom up to the time old Commodore Vanderbilt stopped
it on his roads. After running about fifteen miles the fireman couldn't
keep his eyes open (this event followed an all-night dance of the
trainmen's fraternal organization), and he agreed to permit me to run
the engine. I took charge, reducing the speed to about twelve miles
an hour, and brought the train of seven cars to her destination at the
Grand Trunk junction safely. But something occurred which was very much
out of the ordinary. I was very much worried about the water, and I
knew that if it got low the boiler was likely to explode. I hadn't gone
twenty miles before black damp mud blew out of the stack and covered
every part of the engine, including myself. I was about to awaken the
fireman to find out the cause of this when it stopped. Then I approached
a station where the fireman always went out to the cowcatcher, opened
the oil-cup on the steam-chest, and poured oil in. I started to carry
out the procedure when, upon opening the oil-cup, the steam rushed out
with a tremendous noise, nearly knocking me off the engine. I succeeded
in closing the oil-cup and got back in the cab, and made up my mind
that she would pull through without oil. I learned afterward that the
engineer always shut off steam when the fireman went out to oil. This
point I failed to notice. My powers of observation were very much
improved after this occurrence. Just before I reached the junction
another outpour of black mud occurred, and the whole engine was a
sight--so much so that when I pulled into the yard everybody turned to
see it, laughing immoderately. I found the reason of the mud was that I
carried so much water it passed over into the stack, and this washed out
all the accumulated soot."

One afternoon about a week before Christmas Edison's train jumped the
track near Utica, a station on the line. Four old Michigan Central
cars with rotten sills collapsed in the ditch and went all to pieces,
distributing figs, raisins, dates, and candies all over the track and
the vicinity. Hating to see so much waste, Edison tried to save all he
could by eating it on the spot, but as a result "our family doctor had
the time of his life with me in this connection."

An absurd incident described by Edison throws a vivid light on the
free-and-easy condition of early railroad travel and on the Southern
extravagance of the time. "In 1860, just before the war broke out there
came to the train one afternoon, in Detroit, two fine-looking young men
accompanied by a colored servant. They bought tickets for Port Huron,
the terminal point for the train. After leaving the junction just
outside of Detroit, I brought in the evening papers. When I came
opposite the two young men, one of them said: 'Boy, what have you got?'
I said: 'Papers.' 'All right.' He took them and threw them out of the
window, and, turning to the colored man, said: 'Nicodemus, pay this
boy.' I told Nicodemus the amount, and he opened a satchel and paid me.
The passengers didn't know what to make of the transaction. I returned
with the illustrated papers and magazines. These were seized and thrown
out of the window, and I was told to get my money of Nicodemus. I then
returned with all the old magazines and novels I had not been able to
sell, thinking perhaps this would be too much for them. I was small and
thin, and the layer reached above my head, and was all I could possibly
carry. I had prepared a list, and knew the amount in case they bit
again. When I opened the door, all the passengers roared with laughter.
I walked right up to the young men. One asked me what I had. I said
'Magazines and novels.' He promptly threw them out of the window,
and Nicodemus settled. Then I came in with cracked hickory nuts, then
pop-corn balls, and, finally, molasses candy. All went out of the
window. I felt like Alexander the Great!--I had no more chance! I had
sold all I had. Finally I put a rope to my trunk, which was about
the size of a carpenter's chest, and started to pull this from the
baggage-car to the passenger-car. It was almost too much for my
strength, but at last I got it in front of those men. I pulled off my
coat, shoes, and hat, and laid them on the chest. Then he asked: 'What
have you got, boy?' I said: 'Everything, sir, that I can spare that is
for sale.' The passengers fairly jumped with laughter. Nicodemus paid me
$27 for this last sale, and threw the whole out of the door in the rear
of the car. These men were from the South, and I have always retained a
soft spot in my heart for a Southern gentleman."

While Edison was a newsboy on the train a request came to him one day
to go to the office of E. B. Ward & Company, at that time the largest
owners of steamboats on the Great Lakes. The captain of their largest
boat had died suddenly, and they wanted a message taken to another
captain who lived about fourteen miles from Ridgeway station on the
railroad. This captain had retired, taken up some lumber land, and had
cleared part of it. Edison was offered $15 by Mr. Ward to go and fetch
him, but as it was a wild country and would be dark, Edison stood out
for $25, so that he could get the companionship of another lad. The
terms were agreed to. Edison arrived at Ridgeway at 8.30 P.M., when it
was raining and as dark as ink. Getting another boy with difficulty to
volunteer, he launched out on his errand in the pitch-black night. The
two boys carried lanterns, but the road was a rough path through dense
forest. The country was wild, and it was a usual occurrence to see deer,
bear, and coon skins nailed up on the sides of houses to dry. Edison had
read about bears, but couldn't remember whether they were day or night
prowlers. The farther they went the more apprehensive they became, and
every stump in the ravished forest looked like a bear. The other lad
proposed seeking safety up a tree, but Edison demurred on the plea that
bears could climb, and that the message must be delivered that night to
enable the captain to catch the morning train. First one lantern went
out, then the other. "We leaned up against a tree and cried. I thought
if I ever got out of that scrape alive I would know more about the
habits of animals and everything else, and be prepared for all kinds of
mischance when I undertook an enterprise. However, the intense darkness
dilated the pupils of our eyes so as to make them very sensitive, and
we could just see at times the outlines of the road. Finally, just as
a faint gleam of daylight arrived, we entered the captain's yard and
delivered the message. In my whole life I never spent such a night of
horror as this, but I got a good lesson."

An amusing incident of this period is told by Edison. "When I was a
boy," he says, "the Prince of Wales, the late King Edward, came to
Canada (1860). Great preparations were made at Sarnia, the Canadian town
opposite Port Huron. About every boy, including myself, went over to
see the affair. The town was draped in flags most profusely, and carpets
were laid on the cross-walks for the prince to walk on. There were
arches, etc. A stand was built raised above the general level, where the
prince was to be received by the mayor. Seeing all these preparations,
my idea of a prince was very high; but when he did arrive I mistook the
Duke of Newcastle for him, the duke being a fine-looking man. I soon saw
that I was mistaken: that the prince was a young stripling, and did
not meet expectations. Several of us expressed our belief that a prince
wasn't much, after all, and said that we were thoroughly disappointed.
For this one boy was whipped. Soon the Canuck boys attacked the Yankee
boys, and we were all badly licked. I, myself, got a black eye. That has
always prejudiced me against that kind of ceremonial and folly." It is
certainly interesting to note that in later years the prince for whom
Edison endured the ignominy of a black eye made generous compensation
in a graceful letter accompanying the gold Albert Medal awarded by the
Royal Society of Arts.

Another incident of the period is as follows: "After selling papers in
Port Huron, which was often not reached until about 9.30 at night, I
seldom got home before 11.00 or 11.30. About half-way home from the
station and the town, and within twenty-five feet of the road in a
dense wood, was a soldiers' graveyard where three hundred soldiers were
buried, due to a cholera epidemic which took place at Fort Gratiot, near
by, many years previously. At first we used to shut our eyes and run the
horse past this graveyard, and if the horse stepped on a twig my heart
would give a violent movement, and it is a wonder that I haven't some
valvular disease of that organ. But soon this running of the horse
became monotonous, and after a while all fears of graveyards absolutely
disappeared from my system. I was in the condition of Sam Houston, the
pioneer and founder of Texas, who, it was said, knew no fear. Houston
lived some distance from the town and generally went home late at night,
having to pass through a dark cypress swamp over a corduroy road. One
night, to test his alleged fearlessness, a man stationed himself behind
a tree and enveloped himself in a sheet. He confronted Houston suddenly,
and Sam stopped and said: 'If you are a man, you can't hurt me. If you
are a ghost, you don't want to hurt me. And if you are the devil, come
home with me; I married your sister!'"

It is not to be inferred, however, from some of the preceding statements
that the boy was of an exclusively studious bent of mind. He had then,
as now, the keen enjoyment of a joke, and no particular aversion to the
practical form. An incident of the time is in point. "After the breaking
out of the war there was a regiment of volunteer soldiers quartered
at Fort Gratiot, the reservation extending to the boundary line of our
house. Nearly every night we would hear a call, such as 'Corporal of
the Guard, No. 1.' This would be repeated from sentry to sentry until it
reached the barracks, when Corporal of the Guard, No. 1, would come and
see what was wanted. I and the little Dutch boy, after returning from
the town after selling our papers, thought we would take a hand at
military affairs. So one night, when it was very dark, I shouted for
Corporal of the Guard, No. 1. The second sentry, thinking it was the
terminal sentry who shouted, repeated it to the third, and so on. This
brought the corporal along the half mile, only to find that he was
fooled. We tried him three nights; but the third night they were
watching, and caught the little Dutch boy, took him to the lock-up at
the fort, and shut him up. They chased me to the house. I rushed for the
cellar. In one small apartment there were two barrels of potatoes and a
third one nearly empty. I poured these remnants into the other barrels,
sat down, and pulled the barrel over my head, bottom up. The soldiers
had awakened my father, and they were searching for me with candles and
lanterns. The corporal was absolutely certain I came into the cellar,
and couldn't see how I could have gotten out, and wanted to know from my
father if there was no secret hiding-place. On assurance of my father,
who said that there was not, he said it was most extraordinary. I was
glad when they left, as I was cramped, and the potatoes were rotten that
had been in the barrel and violently offensive. The next morning I was
found in bed, and received a good switching on the legs from my father,
the first and only one I ever received from him, although my mother kept
a switch behind the old Seth Thomas clock that had the bark worn off.
My mother's ideas and mine differed at times, especially when I got
experimenting and mussed up things. The Dutch boy was released next
morning."



CHAPTER IV

THE YOUNG TELEGRAPH OPERATOR

"WHILE a newsboy on the railroad," says Edison, "I got very much
interested in electricity, probably from visiting telegraph offices with
a chum who had tastes similar to mine." It will also have been noted
that he used the telegraph to get items for his little journal, and to
bulletin his special news of the Civil War along the line. The next step
was natural, and having with his knowledge of chemistry no trouble about
"setting up" his batteries, the difficulties of securing apparatus were
chiefly those connected with the circuits and the instruments. American
youths to-day are given, if of a mechanical turn of mind, to amateur
telegraphy or telephony, but seldom, if ever, have to make any part of
the system constructed. In Edison's boyish days it was quite different,
and telegraphic supplies were hard to obtain. But he and his "chum"
had a line between their homes, built of common stove-pipe wire. The
insulators were bottles set on nails driven into trees and short poles.
The magnet wire was wound with rags for insulation, and pieces of spring
brass were used for keys. With an idea of securing current cheaply,
Edison applied the little that he knew about static electricity,
and actually experimented with cats, which he treated vigorously as
frictional machines until the animals fled in dismay, and Edison had
learned his first great lesson in the relative value of sources of
electrical energy. The line was made to work, however, and additional to
the messages that the boys interchanged, Edison secured practice in an
ingenious manner. His father insisted on 11.30 as proper bedtime, which
left but a short interval after the long day on the train. But each
evening, when the boy went home with a bundle of papers that had
not been sold in the town, his father would sit up reading the
"returnables." Edison, therefore, on some excuse, left the papers
with his friend, but suggested that he could get the news from him by
telegraph, bit by bit. The scheme interested his father, and was
put into effect, the messages being written down and handed over for
perusal. This yielded good practice nightly, lasting until 12 and
1 o'clock, and was maintained for some time until Mr. Edison became
willing that his son should stay up for a reasonable time. The papers
were then brought home again, and the boys amused themselves to their
hearts' content until the line was pulled down by a stray cow wandering
through the orchard. Meantime better instruments had been secured, and
the rudiments of telegraphy had been fairly mastered.

The mixed train on which Edison was employed as newsboy did the
way-freight work and shunting at the Mount Clemens station, about half
an hour being usually spent in the work. One August morning, in 1862,
while the shunting was in progress, and a laden box-car had been pushed
out of a siding, Edison, who was loitering about the platform, saw the
little son of the station agent, Mr. J. U. Mackenzie, playing with the
gravel on the main track along which the car without a brakeman was
rapidly approaching. Edison dropped his papers and his glazed cap,
and made a dash for the child, whom he picked up and lifted to safety
without a second to spare, as the wheel of the car struck his heel; and
both were cut about the face and hands by the gravel ballast on which
they fell. The two boys were picked up by the train-hands and carried
to the platform, and the grateful father at once offered to teach the
rescuer, whom he knew and liked, the art of train telegraphy and to make
an operator of him. It is needless to say that the proposal was eagerly
accepted.

Edison found time for his new studies by letting one of his friends look
after the newsboy work on the train for part of the trip, reserving
to himself the run between Port Huron and Mount Clemens. That he was
already well qualified as a beginner is evident from the fact that he
had mastered the Morse code of the telegraphic alphabet, and was able
to take to the station a neat little set of instruments he had just
finished with his own hands at a gun-shop in Detroit. This was probably
a unique achievement in itself among railway operators of that day or of
later times. The drill of the student involved chiefly the acquisition
of the special signals employed in railway work, including the numerals
and abbreviations applied to save time. Some of these have passed
into the slang of the day, "73" being well known as a telegrapher's
expression of compliments or good wishes, while "23" is an accident
or death message, and has been given broader popular significance as
a general synonym for "hoodoo." All of this came easily to Edison, who
had, moreover, as his Herald showed, an unusual familiarity with train
movement along that portion of the Grand Trunk road.

Three or four months were spent pleasantly and profitably by the youth
in this course of study, and Edison took to it enthusiastically, giving
it no less than eighteen hours a day. He then put up a little telegraph
line from the station to the village, a distance of about a mile, and
opened an office in a drug store; but the business was naturally very
small. The telegraph operator at Port Huron knowing of his proficiency,
and wanting to get into the United States Military Telegraph Corps,
where the pay in those days of the Civil War was high, succeeded in
convincing his brother-in-law, Mr. M. Walker, that young Edison could
fill the position. Edison was, of course, well acquainted with the
operators along the road and at the southern terminal, and took up his
new duties very easily. The office was located in a jewelry store, where
newspapers and periodicals were also sold. Edison was to be found at the
office both day and night, sleeping there. "I became quite valuable to
Mr. Walker. After working all day I worked at the office nights as well,
for the reason that 'press report' came over one of the wires until 3
A.M., and I would cut in and copy it as well as I could, to become more
rapidly proficient. The goal of the rural telegraph operator was to be
able to take press. Mr. Walker tried to get my father to apprentice me
at $20 per month, but they could not agree. I then applied for a job on
the Grand Trunk Railroad as a railway operator, and was given a place,
nights, at Stratford Junction, Canada." Apparently his friend Mackenzie
helped him in the matter. The position carried a salary of $25 per
month. No serious objections were raised by his family, for the distance
from Port Huron was not great, and Stratford was near Bayfield, the
old home from which the Edisons had come, so that there were doubtless
friends or even relatives in the vicinity. This was in 1863.

Mr. Walker was an observant man, who has since that time installed a
number of waterworks systems and obtained several patents of his own. He
describes the boy of sixteen as engrossed intensely in his experiments
and scientific reading, and somewhat indifferent, for this reason, to
his duties as operator. This office was not particularly busy, taking
from $50 to $75 a month, but even the messages taken in would remain
unsent on the hook while Edison was in the cellar below trying to solve
some chemical problem. The manager would see him studying sometimes
an article in such a paper as the Scientific American, and then
disappearing to buy a few sundries for experiments. Returning from the
drug store with his chemicals, he would not be seen again until required
by his duties, or until he had found out for himself, if possible, in
this offhand manner, whether what he had read was correct or not. When
he had completed his experiment all interest in it was lost, and the
jars and wires would be left to any fate that might befall them. In like
manner Edison would make free use of the watchmaker's tools that lay
on the little table in the front window, and would take the wire pliers
there without much thought as to their value as distinguished from a
lineman's tools. The one idea was to do quickly what he wanted to do;
and the same swift, almost headlong trial of anything that comes to
hand, while the fervor of a new experiment is felt, has been noted
at all stages of the inventor's career. One is reminded of Palissy's
recklessness, when in his efforts to make the enamel melt on his pottery
he used the very furniture of his home for firewood.

Mr. Edison remarks the fact that there was very little difference
between the telegraph of that time and of to-day, except the general use
of the old Morse register with the dots and dashes recorded by indenting
paper strips that could be read and checked later at leisure if
necessary. He says: "The telegraph men couldn't explain how it worked,
and I was always trying to get them to do so. I think they couldn't. I
remember the best explanation I got was from an old Scotch line repairer
employed by the Montreal Telegraph Company, which operated the railroad
wires. He said that if you had a dog like a dachshund, long enough to
reach from Edinburgh to London, if you pulled his tail in Edinburgh he
would bark in London. I could understand that, but I never could get
it through me what went through the dog or over the wire." To-day
Mr. Edison is just as unable to solve the inner mystery of electrical
transmission. Nor is he alone. At the banquet given to celebrate his
jubilee in 1896 as professor at Glasgow University, Lord Kelvin, the
greatest physicist of our time, admitted with tears in his eyes and the
note of tragedy in his voice, that when it came to explaining the
nature of electricity, he knew just as little as when he had begun as
a student, and felt almost as though his life had been wasted while he
tried to grapple with the great mystery of physics.

Another episode of this period is curious in its revelation of the
tenacity with which Edison has always held to some of his oldest
possessions with a sense of personal attachment. "While working
at Stratford Junction," he says, "I was told by one of the freight
conductors that in the freight-house at Goodrich there were several
boxes of old broken-up batteries. I went there and found over eighty
cells of the well-known Grove nitric-acid battery. The operator there,
who was also agent, when asked by me if I could have the electrodes of
each cell, made of sheet platinum, gave his permission readily, thinking
they were of tin. I removed them all, amounting to several ounces.
Platinum even in those days was very expensive, costing several dollars
an ounce, and I owned only three small strips. I was overjoyed at this
acquisition, and those very strips and the reworked scrap are used to
this day in my laboratory over forty years later."

It was at Stratford that Edison's inventiveness was first displayed. The
hours of work of a night operator are usually from 7 P.M. to 7 A.M., and
to insure attention while on duty it is often provided that the operator
every hour, from 9 P.M. until relieved by the day operator, shall send
in the signal "6" to the train dispatcher's office. Edison revelled in
the opportunity for study and experiment given him by his long hours
of freedom in the daytime, but needed sleep, just as any healthy youth
does. Confronted by the necessity of sending in this watchman's signal
as evidence that he was awake and on duty, he constructed a small wheel
with notches on the rim, and attached it to the clock in such a manner
that the night-watchman could start it when the line was quiet, and at
each hour the wheel revolved and sent in accurately the dots required
for "sixing." The invention was a success, the device being, indeed,
similar to that of the modern district messenger box; but it was soon
noticed that, in spite of the regularity of the report, "Sf" could not
be raised even if a train message were sent immediately after. Detection
and a reprimand came in due course, but were not taken very seriously.

A serious occurrence that might have resulted in accident drove him soon
after from Canada, although the youth could hardly be held to blame for
it. Edison says: "This night job just suited me, as I could have the
whole day to myself. I had the faculty of sleeping in a chair any time
for a few minutes at a time. I taught the night-yardman my call, so I
could get half an hour's sleep now and then between trains, and in case
the station was called the watchman would awaken me. One night I got an
order to hold a freight train, and I replied that I would. I rushed out
to find the signalman, but before I could find him and get the signal
set, the train ran past. I ran to the telegraph office, and reported
that I could not hold her. The reply was: 'Hell!' The train dispatcher,
on the strength of my message that I would hold the train, had permitted
another to leave the last station in the opposite direction. There was a
lower station near the junction where the day operator slept. I started
for it on foot. The night was dark, and I fell into a culvert and was
knocked senseless." Owing to the vigilance of the two engineers on
the locomotives, who saw each other approaching on the straight single
track, nothing more dreadful happened than a summons to the thoughtless
operator to appear before the general manager at Toronto. On reaching
the manager's office, his trial for neglect of duty was fortunately
interrupted by the call of two Englishmen; and while their conversation
proceeded, Edison slipped quietly out of the room, hurried to the Grand
Trunk freight depot, found a conductor he knew taking out a freight
train for Sarnia, and was not happy until the ferry-boat from Sarnia had
landed him once more on the Michigan shore. The Grand Trunk still owes
Mr. Edison the wages due him at the time he thus withdrew from its
service, but the claim has never been pressed.

The same winter of 1863-64, while at Port Huron, Edison had a further
opportunity of displaying his ingenuity. An ice-jam had broken the light
telegraph cable laid in the bed of the river across to Sarnia, and thus
communication was interrupted. The river is three-quarters of a mile
wide, and could not be crossed on foot; nor could the cable be repaired.
Edison at once suggested using the steam whistle of the locomotive,
and by manipulating the valve conversed the short and long outbursts of
shrill sound into the Morse code. An operator on the Sarnia shore was
quick enough to catch the significance of the strange whistling, and
messages were thus sent in wireless fashion across the ice-floes in the
river. It is said that such signals were also interchanged by military
telegraphers during the war, and possibly Edison may have heard of
the practice; but be that as it may, he certainly showed ingenuity
and resource in applying such a method to meet the necessity. It is
interesting to note that at this point the Grand Trunk now has its St.
Clair tunnel, through which the trains are hauled under the river-bed by
electric locomotives.

Edison had now begun unconsciously the roaming and drifting that took
him during the next five years all over the Middle States, and that
might well have wrecked the career of any one less persistent
and industrious. It was a period of his life corresponding to the
Wanderjahre of the German artisan, and was an easy way of gratifying a
taste for travel without the risk of privation. To-day there is little
temptation to the telegrapher to go to distant parts of the country on
the chance that he may secure a livelihood at the key. The ranks are
well filled everywhere, and of late years the telegraph as an art or
industry has shown relatively slight expansion, owing chiefly to the
development of telephony. Hence, if vacancies occur, there are plenty of
operators available, and salaries have remained so low as to lead to one
or two formidable and costly strikes that unfortunately took no account
of the economic conditions of demand and supply. But in the days of the
Civil War there was a great dearth of skilful manipulators of the key.
About fifteen hundred of the best operators in the country were at the
front on the Federal side alone, and several hundred more had enlisted.
This created a serious scarcity, and a nomadic operator going to any
telegraphic centre would be sure to find a place open waiting for him.
At the close of the war a majority of those who had been with the two
opposed armies remained at the key under more peaceful surroundings, but
the rapid development of the commercial and railroad systems fostered a
new demand, and then for a time it seemed almost impossible to train
new operators fast enough. In a few years, however, the telephone sprang
into vigorous existence, dating from 1876, drawing off some of the
most adventurous spirits from the telegraph field; and the deterrent
influence of the telephone on the telegraph had made itself felt by
1890. The expiration of the leading Bell telephone patents, five years
later, accentuated even more sharply the check that had been put
on telegraphy, as hundreds and thousands of "independent" telephone
companies were then organized, throwing a vast network of toll lines
over Ohio, Indiana, Illinois, Iowa, and other States, and affording
cheap, instantaneous means of communication without any necessity for
the intervention of an operator.

It will be seen that the times have changed radically since Edison
became a telegrapher, and that in this respect a chapter of electrical
history has been definitely closed. There was a day when the art offered
a distinct career to all of its practitioners, and young men of ambition
and good family were eager to begin even as messenger boys, and were
ready to undergo a severe ordeal of apprenticeship with the belief that
they could ultimately attain positions of responsibility and profit.
At the same time operators have always been shrewd enough to regard the
telegraph as a stepping-stone to other careers in life. A bright fellow
entering the telegraph service to-day finds the experience he may
gain therein valuable, but he soon realizes that there are not enough
good-paying official positions to "go around," so as to give each worthy
man a chance after he has mastered the essentials of the art. He feels,
therefore, that to remain at the key involves either stagnation or
deterioration, and that after, say, twenty-five years of practice he
will have lost ground as compared with friends who started out in other
occupations. The craft of an operator, learned without much difficulty,
is very attractive to a youth, but a position at the key is no place
for a man of mature years. His services, with rare exceptions, grow less
valuable as he advances in age and nervous strain breaks him down. On
the contrary, men engaged in other professions find, as a rule, that
they improve and advance with experience, and that age brings larger
rewards and opportunities.

The list of well-known Americans who have been graduates of the key is
indeed an extraordinary one, and there is no department of our national
life in which they have not distinguished themselves. The contrast,
in this respect, between them and their European colleagues is highly
significant. In Europe the telegraph systems are all under government
management, the operators have strictly limited spheres of promotion,
and at the best the transition from one kind of employment to another is
not made so easily as in the New World. But in the United States we have
seen Rufus Bullock become Governor of Georgia, and Ezra Cornell Governor
of New York. Marshall Jewell was Postmaster-General of President
Grant's Cabinet, and Daniel Lamont was Secretary of State in President
Cleveland's. Gen. T. T. Eckert, past-President of the Western Union
Telegraph Company, was Assistant Secretary of War under President
Lincoln; and Robert J. Wynne, afterward a consul-general, served as
Assistant Postmaster General. A very large proportion of the
presidents and leading officials of the great railroad systems are old
telegraphers, including Messrs. W. C. Brown, President of the New York
Central Railroad, and Marvin Hughitt, President of the Chicago & North
western Railroad. In industrial and financial life there have been
Theodore N. Vail, President of the Bell telephone system; L. C. Weir,
late President of the Adams Express; A. B. Chandler, President of the
Postal Telegraph and Cable Company; Sir W. Van Home, identified with
Canadian development; Robert C. Clowry, President of the Western
Union Telegraph Company; D. H. Bates, Manager of the Baltimore &
Ohio telegraph for Robert Garrett; and Andrew Carnegie, the greatest
ironmaster the world has ever known, as well as its greatest
philanthropist. In journalism there have been leaders like Edward
Rosewater, founder of the Omaha Bee; W. J. Elverson, of the Philadelphia
Press; and Frank A. Munsey, publisher of half a dozen big magazines.
George Kennan has achieved fame in literature, and Guy Carleton and
Harry de Souchet have been successful as dramatists. These are but
typical of hundreds of men who could be named who have risen from
work at the key to become recognized leaders in differing spheres of
activity.

But roving has never been favorable to the formation of steady habits.
The young men who thus floated about the country from one telegraph
office to another were often brilliant operators, noted for speed in
sending and receiving, but they were undisciplined, were without the
restraining influences of home life, and were so highly paid for their
work that they could indulge freely in dissipation if inclined that way.
Subjected to nervous tension for hours together at the key, many of them
unfortunately took to drink, and having ended one engagement in a city
by a debauch that closed the doors of the office to them, would drift
away to the nearest town, and there securing work, would repeat the
performance. At one time, indeed, these men were so numerous and so
much in evidence as to constitute a type that the public was disposed
to accept as representative of the telegraphic fraternity; but as the
conditions creating him ceased to exist, the "tramp operator" also
passed into history. It was, however, among such characters that Edison
was very largely thrown in these early days of aimless drifting, to
learn something perhaps of their nonchalant philosophy of life, sharing
bed and board with them under all kinds of adverse conditions, but
always maintaining a stoic abstemiousness, and never feeling other than
a keen regret at the waste of so much genuine ability and kindliness on
the part of those knights errant of the key whose inevitable fate might
so easily have been his own.

Such a class or group of men can always be presented by an individual
type, and this is assuredly best embodied in Milton F. Adams, one of
Edison's earliest and closest friends, to whom reference will be made in
later chapters, and whose life has been so full of adventurous episodes
that he might well be regarded as the modern Gil Blas. That career is
certainly well worth the telling as "another story," to use the Kipling
phrase. Of him Edison says: "Adams was one of a class of operators never
satisfied to work at any place for any great length of time. He had the
'wanderlust.' After enjoying hospitality in Boston in 1868-69, on the
floor of my hall-bedroom, which was a paradise for the entomologist,
while the boarding-house itself was run on the banting system of flesh
reduction, he came to me one day and said: 'Good-bye, Edison; I have
got sixty cents, and I am going to San Francisco.' And he did go. How, I
never knew personally. I learned afterward that he got a job there, and
then within a week they had a telegraphers' strike. He got a big
torch and sold patent medicine on the streets at night to support the
strikers. Then he went to Peru as partner of a man who had a grizzly
bear which they proposed entering against a bull in the bull-ring in
that city. The grizzly was killed in five minutes, and so the scheme
died. Then Adams crossed the Andes, and started a market-report
bureau in Buenos Ayres. This didn't pay, so he started a restaurant in
Pernambuco, Brazil. There he did very well, but something went wrong
(as it always does to a nomad), so he went to the Transvaal, and ran a
panorama called 'Paradise Lost' in the Kaffir kraals. This didn't pay,
and he became the editor of a newspaper; then went to England to raise
money for a railroad in Cape Colony. Next I heard of him in New York,
having just arrived from Bogota, United States of Colombia, with a power
of attorney and $2000 from a native of that republic, who had applied
for a patent for tightening a belt to prevent it from slipping on a
pulley--a device which he thought a new and great invention, but which
was in use ever since machinery was invented. I gave Adams, then, a
position as salesman for electrical apparatus. This he soon got tired
of, and I lost sight of him." Adams, in speaking of this episode, says
that when he asked for transportation expenses to St. Louis, Edison
pulled out of his pocket a ferry ticket to Hoboken, and said to his
associates: "I'll give him that, and he'll get there all right." This
was in the early days of electric lighting; but down to the present
moment the peregrinations of this versatile genius of the key have never
ceased in one hemisphere or the other, so that as Mr. Adams himself
remarked to the authors in April, 1908: "The life has been somewhat
variegated, but never dull."

The fact remains also that throughout this period Edison, while himself
a very Ishmael, never ceased to study, explore, experiment. Referring
to this beginning of his career, he mentions a curious fact that
throws light on his ceaseless application. "After I became a telegraph
operator," he says, "I practiced for a long time to become a rapid
reader of print, and got so expert I could sense the meaning of a whole
line at once. This faculty, I believe, should be taught in schools, as
it appears to be easily acquired. Then one can read two or three books
in a day, whereas if each word at a time only is sensed, reading is
laborious."



CHAPTER V

ARDUOUS YEARS IN THE CENTRAL WEST

IN 1903, when accepting the position of honorary electrician to the
International Exposition held in St. Louis in 1904, to commemorate the
centenary of the Louisiana Purchase, Mr. Edison spoke in his letter
of the Central West as a "region where as a young telegraph operator I
spent many arduous years before moving East." The term of probation
thus referred to did not end until 1868, and while it lasted Edison's
wanderings carried him from Detroit to New Orleans, and took him, among
other cities, to Indianapolis, Cincinnati, Louisville, and Memphis, some
of which he visited twice in his peregrinations to secure work. From
Canada, after the episodes noted in the last chapter, he went to Adrian,
Michigan, and of what happened there Edison tells a story typical of
his wanderings for several years to come. "After leaving my first job
at Stratford Junction, I got a position as operator on the Lake Shore &
Michigan Southern at Adrian, Michigan, in the division superintendent's
office. As usual, I took the 'night trick,' which most operators
disliked, but which I preferred, as it gave me more leisure to
experiment. I had obtained from the station agent a small room, and had
established a little shop of my own. One day the day operator wanted to
get off, and I was on duty. About 9 o'clock the superintendent handed me
a despatch which he said was very important, and which I must get off at
once. The wire at the time was very busy, and I asked if I should
break in. I got orders to do so, and acting under those orders of the
superintendent, I broke in and tried to send the despatch; but the
other operator would not permit it, and the struggle continued for ten
minutes. Finally I got possession of the wire and sent the message. The
superintendent of telegraph, who then lived in Adrian and went to his
office in Toledo every day, happened that day to be in the Western Union
office up-town--and it was the superintendent I was really struggling
with! In about twenty minutes he arrived livid with rage, and I was
discharged on the spot. I informed him that the general superintendent
had told me to break in and send the despatch, but the general
superintendent then and there repudiated the whole thing. Their families
were socially close, so I was sacrificed. My faith in human nature got a
slight jar."

Edison then went to Toledo and secured a position at Fort Wayne, on the
Pittsburg, Fort Wayne & Chicago Railroad, now leased to the Pennsylvania
system. This was a "day job," and he did not like it. He drifted two
months later to Indianapolis, arriving there in the fall of 1864, when
he was at first assigned to duty at the Union Station at a salary of $75
a month for the Western Union Telegraph Company, whose service he
now entered, and with which he has been destined to maintain highly
important and close relationships throughout a large part of his life.
Superintendent Wallick appears to have treated him generously and to
have loaned him instruments, a kindness that was greatly appreciated,
for twenty years later the inventor called on his old employer, and
together they visited the scene where the borrowed apparatus had been
mounted on a rough board in the depot. Edison did not stay long in
Indianapolis, however, resigning in February, 1865, and proceeding to
Cincinnati. The transfer was possibly due to trouble caused by one of
his early inventions embodying what has been characterized by an expert
as "probably the most simple and ingenious arrangement of connections
for a repeater." His ambition was to take "press report," but finding,
even after considerable practice, that he "broke" frequently, he
adjusted two embossing Morse registers--one to receive the press
matter, and the other to repeat the dots and dashes at a lower speed, so
that the message could be copied leisurely. Hence he could not be rushed
or "broken" in receiving, while he could turn out "copy" that was a
marvel of neatness and clearness. All was well so long as ordinary
conditions prevailed, but when an unusual pressure occurred the little
system fell behind, and the newspapers complained of the slowness with
which reports were delivered to them. It is easy to understand that with
matter received at a rate of forty words per minute and worked off at
twenty-five words per minute a serious congestion or delay would result,
and the newspapers were more anxious for the news than they were for
fine penmanship.

Of this device Mr. Edison remarks: "Together we took press for several
nights, my companion keeping the apparatus in adjustment and I copying.
The regular press operator would go to the theatre or take a nap, only
finishing the report after 1 A.M. One of the newspapers complained of
bad copy toward the end of the report--that, is from 1 to 3 A.M., and
requested that the operator taking the report up to 1 A.M.--which was
ourselves--take it all, as the copy then was perfectly unobjectionable.
This led to an investigation by the manager, and the scheme was
forbidden.

"This instrument, many years afterward, was applied by me for
transferring messages from one wire to any other wire simultaneously,
or after any interval of time. It consisted of a disk of paper, the
indentations being formed in a volute spiral, exactly as in the disk
phonograph to-day. It was this instrument which gave me the idea of the
phonograph while working on the telephone."

Arrived in Cincinnati, where he got employment in the Western Union
commercial telegraph department at a wage of $60 per month, Edison
made the acquaintance of Milton F. Adams, already referred to as facile
princeps the typical telegrapher in all his more sociable and brilliant
aspects. Speaking of that time, Mr. Adams says: "I can well recall when
Edison drifted in to take a job. He was a youth of about eighteen years,
decidedly unprepossessing in dress and rather uncouth in manner. I was
twenty-one, and very dudish. He was quite thin in those days, and his
nose was very prominent, giving a Napoleonic look to his face, although
the curious resemblance did not strike me at the time. The boys did not
take to him cheerfully, and he was lonesome. I sympathized with him, and
we became close companions. As an operator he had no superiors and very
few equals. Most of the time he was monkeying with the batteries and
circuits, and devising things to make the work of telegraphy less
irksome. He also relieved the monotony of office-work by fitting up the
battery circuits to play jokes on his fellow-operators, and to deal with
the vermin that infested the premises. He arranged in the cellar what he
called his 'rat paralyzer,' a very simple contrivance consisting of two
plates insulated from each other and connected with the main battery.
They were so placed that when a rat passed over them the fore feet on
the one plate and the hind feet on the other completed the circuit and
the rat departed this life, electrocuted."

Shortly after Edison's arrival at Cincinnati came the close of the Civil
War and the assassination of President Lincoln. It was natural that
telegraphers should take an intense interest in the general struggle,
for not only did they handle all the news relating to it, but many of
them were at one time or another personal participants. For example, one
of the operators in the Cincinnati office was George Ellsworth, who was
telegrapher for Morgan, the famous Southern Guerrilla, and was with him
when he made his raid into Ohio and was captured near the Pennsylvania
line. Ellsworth himself made a narrow escape by swimming the Ohio
River with the aid of an army mule. Yet we can well appreciate the
unimpressionable way in which some of the men did their work, from an
anecdote that Mr. Edison tells of that awful night of Friday, April 14,
1865: "I noticed," he says, "an immense crowd gathering in the street
outside a newspaper office. I called the attention of the other
operators to the crowd, and we sent a messenger boy to find the cause
of the excitement. He returned in a few minutes and shouted 'Lincoln's
shot.' Instinctively the operators looked from one face to another to
see which man had received the news. All the faces were blank, and every
man said he had not taken a word about the shooting. 'Look over your
files,' said the boss to the man handling the press stuff. For a few
moments we waited in suspense, and then the man held up a sheet of
paper containing a short account of the shooting of the President. The
operator had worked so mechanically that he had handled the news without
the slightest knowledge of its significance." Mr. Adams says that at the
time the city was en fete on account of the close of the war, the name
of the assassin was received by telegraph, and it was noted with a
thrill of horror that it was that of a brother of Edwin Booth and of
Junius Brutus Booth--the latter of whom was then playing at the old
National Theatre. Booth was hurried away into seclusion, and the next
morning the city that had been so gay over night with bunting was draped
with mourning.

Edison's diversions in Cincinnati were chiefly those already observed.
He read a great deal, but spent most of his leisure in experiment. Mr.
Adams remarks: "Edison and I were very fond of tragedy. Forrest and John
McCullough were playing at the National Theatre, and when our capital
was sufficient we would go to see those eminent tragedians alternate in
Othello and Iago. Edison always enjoyed Othello greatly. Aside from an
occasional visit to the Loewen Garden 'over the Rhine,' with a glass of
beer and a few pretzels, consumed while listening to the excellent music
of a German band, the theatre was the sum and substance of our innocent
dissipation."

The Cincinnati office, as a central point, appears to have been
attractive to many of the clever young operators who graduated from it
to positions of larger responsibility. Some of them were conspicuous for
their skill and versatility. Mr. Adams tells this interesting story as
an illustration: "L. C. Weir, or Charlie, as he was known, at that
time agent for the Adams Express Company, had the remarkable ability of
taking messages and copying them twenty-five words behind the sender.
One day he came into the operating-room, and passing a table he heard
Louisville calling Cincinnati. He reached over to the key and answered
the call. My attention was arrested by the fact that he walked off after
responding, and the sender happened to be a good one. Weir coolly asked
for a pen, and when he sat down the sender was just one message ahead
of him with date, address, and signature. Charlie started in, and in a
beautiful, large, round hand copied that message. The sender went right
along, and when he finished with six messages closed his key. When Weir
had done with the last one the sender began to think that after all
there had been no receiver, as Weir did not 'break,' but simply gave
his O. K. He afterward became president of the Adams Express, and was
certainly a wonderful operator." The operating-room referred to was on
the fifth floor of the building with no elevators.

Those were the early days of trade unionism in telegraphy, and the
movement will probably never quite die out in the craft which has always
shown so much solidarity. While Edison was in Cincinnati a delegation
of five union operators went over from Cleveland to form a local branch,
and the occasion was one of great conviviality. Night came, but the
unionists were conspicuous by their absence, although more circuits than
one were intolerant of delay and clamorous for attention---eight local
unionists being away. The Cleveland report wire was in special need, and
Edison, almost alone in the office, devoted himself to it all through
the night and until 3 o'clock the next morning, when he was relieved.

He had previously been getting $80 a month, and had eked this out
by copying plays for the theatre. His rating was that of a "plug" or
inferior operator; but he was determined to lift himself into the class
of first-class operators, and had kept up the practice of going to the
office at night to "copy press," acting willingly as a substitute for
any operator who wanted to get off for a few hours--which often meant
all night. Speaking of this special ordeal, for which he had thus been
unconsciously preparing, Edison says: "My copy looked fine if viewed
as a whole, as I could write a perfectly straight line across the wide
sheet, which was not ruled. There were no flourishes, but the individual
letters would not bear close inspection. When I missed understanding a
word, there was no time to think what it was, so I made an illegible one
to fill in, trusting to the printers to sense it. I knew they could read
anything, although Mr. Bloss, an editor of the Inquirer, made such bad
copy that one of his editorials was pasted up on the notice-board in the
telegraph office with an offer of one dollar to any man who could 'read
twenty consecutive words.' Nobody ever did it. When I got through I
was too nervous to go home, so waited the rest of the night for the day
manager, Mr. Stevens, to see what was to be the outcome of this Union
formation and of my efforts. He was an austere man, and I was afraid of
him. I got the morning papers, which came out at 4 A. M., and the press
report read perfectly, which surprised me greatly. I went to work on
my regular day wire to Portsmouth, Ohio, and there was considerable
excitement, but nothing was said to me, neither did Mr. Stevens examine
the copy on the office hook, which I was watching with great interest.
However, about 3 P. M. he went to the hook, grabbed the bunch and
looked at it as a whole without examining it in detail, for which I
was thankful. Then he jabbed it back on the hook, and I knew I was all
right. He walked over to me, and said: 'Young man, I want you to work
the Louisville wire nights; your salary will be $125.' Thus I got from
the plug classification to that of a 'first-class man.'"

But no sooner was this promotion secured than he started again on his
wanderings southward, while his friend Adams went North, neither
having any difficulty in making the trip. "The boys in those days
had extraordinary facilities for travel. As a usual thing it was only
necessary for them to board a train and tell the conductor they were
operators. Then they would go as far as they liked. The number of
operators was small, and they were in demand everywhere." It was in this
way Edison made his way south as far as Memphis, Tennessee, where the
telegraph service at that time was under military law, although the
operators received $125 a month. Here again Edison began to invent and
improve on existing apparatus, with the result of having once more to
"move on." The story may be told in his own terse language: "I was not
the inventor of the auto repeater, but while in Memphis I worked on
one. Learning that the chief operator, who was a protege of the
superintendent, was trying in some way to put New York and New Orleans
together for the first time since the close of the war, I redoubled my
efforts, and at 2 o'clock one morning I had them speaking to each other.
The office of the Memphis Avalanche was in the same building. The paper
got wind of it and sent messages. A column came out in the morning about
it; but when I went to the office in the afternoon to report for duty I
was discharged with out explanation. The superintendent would not even
give me a pass to Nashville, so I had to pay my fare. I had so little
money left that I nearly starved at Decatur, Alabama, and had to stay
three days before going on north to Nashville. Arrived in that city,
I went to the telegraph office, got money enough to buy a little solid
food, and secured a pass to Louisville. I had a companion with me who
was also out of a job. I arrived at Louisville on a bitterly cold day,
with ice in the gutters. I was wearing a linen duster and was not much
to look at, but got a position at once, working on a press wire. My
travelling companion was less successful on account of his 'record.'
They had a limit even in those days when the telegraph service was so
demoralized."

Some reminiscences of Mr. Edison are of interest as bearing not only
upon the "demoralized" telegraph service, but the conditions from
which the New South had to emerge while working out its salvation. "The
telegraph was still under military control, not having been turned over
to the original owners, the Southern Telegraph Company. In addition to
the regular force, there was an extra force of two or three operators,
and some stranded ones, who were a burden to us, for board was high.
One of these derelicts was a great source of worry to me, personally. He
would come in at all hours and either throw ink around or make a lot
of noise. One night he built a fire in the grate and started to throw
pistol cartridges into the flames. These would explode, and I was twice
hit by the bullets, which left a black-and-blue mark. Another night he
came in and got from some part of the building a lot of stationery with
'Confederate States' printed at the head. He was a fine operator, and
wrote a beautiful hand. He would take a sheet of this paper, write
capital 'A', and then take another sheet and make the 'A' differently;
and so on through the alphabet; each time crumpling the paper up in his
hand and throwing it on the floor. He would keep this up until the room
was filled nearly flush with the table. Then he would quit.

"Everything at that time was 'wide open.' Disorganization reigned
supreme. There was no head to anything. At night myself and a companion
would go over to a gorgeously furnished faro-bank and get our midnight
lunch. Everything was free. There were over twenty keno-rooms running.
One of them that I visited was in a Baptist church, the man with the
wheel being in the pulpit, and the gamblers in the pews.

"While there the manager of the telegraph office was arrested for
something I never understood, and incarcerated in a military prison
about half a mile from the office. The building was in plain sight from
the office, and four stories high. He was kept strictly incommunicado.
One day, thinking he might be confined in a room facing the office, I
put my arm out of the window and kept signalling dots and dashes by the
movement of the arm. I tried this several times for two days. Finally
he noticed it, and putting his arm through the bars of the window he
established communication with me. He thus sent several messages to his
friends, and was afterward set free."

Another curious story told by Edison concerns a fellow-operator on night
duty at Chattanooga Junction, at the time he was at Memphis: "When it
was reported that Hood was marching on Nashville, one night a Jew came
into the office about 11 o'clock in great excitement, having heard the
Hood rumor. He, being a large sutler, wanted to send a message to save
his goods. The operator said it was impossible--that orders had been
given to send no private messages. Then the Jew wanted to bribe my
friend, who steadfastly refused for the reason, as he told the Jew, that
he might be court-martialled and shot. Finally the Jew got up to $800.
The operator swore him to secrecy and sent the message. Now there was
no such order about private messages, and the Jew, finding it out,
complained to Captain Van Duzer, chief of telegraphs, who investigated
the matter, and while he would not discharge the operator, laid him
off indefinitely. Van Duzer was so lenient that if an operator were
discharged, all the operator had to do was to wait three days and then
go and sit on the stoop of Van Duzer's office all day, and he would be
taken back. But Van Duzer swore he would never give in in this case.
He said that if the operator had taken $800 and sent the message at the
regular rate, which was twenty-five cents, it would have been all right,
as the Jew would be punished for trying to bribe a military operator;
but when the operator took the $800 and then sent the message deadhead,
he couldn't stand it, and he would never relent."

A third typical story of this period deals with a cipher message for
Thomas. Mr. Edison narrates it as follows: "When I was an operator in
Cincinnati working the Louisville wire nights for a time, one night a
man over on the Pittsburg wire yelled out: 'D. I. cipher,' which meant
that there was a cipher message from the War Department at Washington
and that it was coming--and he yelled out 'Louisville.' I started
immediately to call up that place. It was just at the change of shift in
the office. I could not get Louisville, and the cipher message began to
come. It was taken by the operator on the other table direct from the
War Department. It was for General Thomas, at Nashville. I called for
about twenty minutes and notified them that I could not get Louisville.
I kept at it for about fifteen minutes longer, and notified them that
there was still no answer from Louisville. They then notified the War
Department that they could not get Louisville. Then we tried to get it
by all kinds of roundabout ways, but in no case could anybody get them
at that office. Soon a message came from the War Department to send
immediately for the manager of the Cincinnati office. He was brought to
the office and several messages were exchanged, the contents of which,
of course, I did not know, but the matter appeared to be very serious,
as they were afraid of General Hood, of the Confederate Army, who was
then attempting to march on Nashville; and it was very important that
this cipher of about twelve hundred words or so should be got through
immediately to General Thomas. I kept on calling up to 12 or 1 o'clock,
but no Louisville. About 1 o'clock the operator at the Indianapolis
office got hold of an operator on a wire which ran from Indianapolis to
Louisville along the railroad, who happened to come into his office. He
arranged with this operator to get a relay of horses, and the message
was sent through Indianapolis to this operator who had engaged horses to
carry the despatches to Louisville and find out the trouble, and get the
despatches through without delay to General Thomas. In those days the
telegraph fraternity was rather demoralized, and the discipline was very
lax. It was found out a couple of days afterward that there were
three night operators at Louisville. One of them had gone over to
Jeffersonville and had fallen off a horse and broken his leg, and was
in a hospital. By a remarkable coincidence another of the men had
been stabbed in a keno-room, and was also in hospital while the third
operator had gone to Cynthiana to see a man hanged and had got left by
the train."

     I think the most important line of
     investigation is the production of
     Electricity direct from carbon.
     Edison

Young Edison remained in Louisville for about two years, quite a long
stay for one with such nomadic instincts. It was there that he perfected
the peculiar vertical style of writing which, beginning with him in
telegraphy, later became so much of a fad with teachers of penmanship
and in the schools. He says of this form of writing, a current example
of which is given above: "I developed this style in Louisville while
taking press reports. My wire was connected to the 'blind' side of a
repeater at Cincinnati, so that if I missed a word or sentence, or if
the wire worked badly, I could not break in and get the last words,
because the Cincinnati man had no instrument by which he could hear me.
I had to take what came. When I got the job, the cable across the
Ohio River at Covington, connecting with the line to Louisville, had a
variable leak in it, which caused the strength of the signalling current
to make violent fluctuations. I obviated this by using several relays,
each with a different adjustment, working several sounders all connected
with one sounding-plate. The clatter was bad, but I could read it with
fair ease. When, in addition to this infernal leak, the wires north to
Cleveland worked badly, it required a large amount of imagination to get
the sense of what was being sent. An imagination requires an appreciable
time for its exercise, and as the stuff was coming at the rate of
thirty-five to forty words a minute, it was very difficult to write down
what was coming and imagine what wasn't coming. Hence it was necessary
to become a very rapid writer, so I started to find the fastest style. I
found that the vertical style, with each letter separate and without
any flourishes, was the most rapid, and that the smaller the letter
the greater the rapidity. As I took on an average from eight to fifteen
columns of news report every day, it did not take long to perfect
this method." Mr. Edison has adhered to this characteristic style of
penmanship down to the present time.

As a matter of fact, the conditions at Louisville at that time were not
much better than they had been at Memphis. The telegraph operating-room
was in a deplorable condition. It was on the second story of a
dilapidated building on the principal street of the city, with the
battery-room in the rear; behind which was the office of the agent of
the Associated Press. The plastering was about one-third gone from the
ceiling. A small stove, used occasionally in the winter, was connected
to the chimney by a tortuous pipe. The office was never cleaned. The
switchboard for manipulating the wires was about thirty-four inches
square. The brass connections on it were black with age and with the
arcing effects of lightning, which, to young Edison, seemed particularly
partial to Louisville. "It would strike on the wires," he says, "with
an explosion like a cannon-shot, making that office no place for an
operator with heart-disease." Around the dingy walls were a dozen
tables, the ends next to the wall. They were about the size of those
seen in old-fashioned country hotels for holding the wash-bowl and
pitcher. The copper wires connecting the instruments to the switchboard
were small, crystallized, and rotten. The battery-room was filled
with old record-books and message bundles, and one hundred cells of
nitric-acid battery, arranged on a stand in the centre of the room. This
stand, as well as the floor, was almost eaten through by the destructive
action of the powerful acid. Grim and uncompromising as the description
reads, it was typical of the equipment in those remote days of the
telegraph at the close of the war.

Illustrative of the length to which telegraphers could go at a time when
they were so much in demand, Edison tells the following story: "When I
took the position there was a great shortage of operators. One night at
2 A.M. another operator and I were on duty. I was taking press report,
and the other man was working the New York wire. We heard a heavy tramp,
tramp, tramp on the rickety stairs. Suddenly the door was thrown
open with great violence, dislodging it from one of the hinges. There
appeared in the doorway one of the best operators we had, who
worked daytime, and who was of a very quiet disposition except when
intoxicated. He was a great friend of the manager of the office. His
eyes were bloodshot and wild, and one sleeve had been torn away from his
coat. Without noticing either of us he went up to the stove and kicked
it over. The stove-pipe fell, dislocated at every joint. It was half
full of exceedingly fine soot, which floated out and filled the room
completely. This produced a momentary respite to his labors. When the
atmosphere had cleared sufficiently to see, he went around and pulled
every table away from the wall, piling them on top of the stove in the
middle of the room. Then he proceeded to pull the switchboard away from
the wall. It was held tightly by screws. He succeeded, finally, and when
it gave way he fell with the board, and striking on a table cut
himself so that he soon became covered with blood. He then went to the
battery-room and knocked all the batteries off on the floor. The nitric
acid soon began to combine with the plaster in the room below, which
was the public receiving-room for messengers and bookkeepers. The excess
acid poured through and ate up the account-books. After having finished
everything to his satisfaction, he left. I told the other operator to
do nothing. We would leave things just as they were, and wait until the
manager came. In the mean time, as I knew all the wires coming through
to the switchboard, I rigged up a temporary set of instruments so that
the New York business could be cleared up, and we also got the remainder
of the press matter. At 7 o'clock the day men began to appear. They were
told to go down-stairs and wait the coming of the manager. At 8 o'clock
he appeared, walked around, went into the battery-room, and then came to
me, saying: 'Edison, who did this?' I told him that Billy L. had come in
full of soda-water and invented the ruin before him. He walked backward
and forward, about a minute, then coming up to my table put his fist
down, and said: 'If Billy L. ever does that again, I will discharge
him.' It was needless to say that there were other operators who took
advantage of that kind of discipline, and I had many calls at night
after that, but none with such destructive effects."

This was one aspect of life as it presented itself to the sensitive
and observant young operator in Louisville. But there was another,
more intellectual side, in the contact afforded with journalism and its
leaders, and the information taken in almost unconsciously as to the
political and social movements of the time. Mr. Edison looks back on
this with great satisfaction. "I remember," he says, "the discussions
between the celebrated poet and journalist George D. Prentice, then
editor of the Courier-Journal, and Mr. Tyler, of the Associated Press.
I believe Prentice was the father of the humorous paragraph of the
American newspaper. He was poetic, highly educated, and a brilliant
talker. He was very thin and small. I do not think he weighed over one
hundred and twenty five pounds. Tyler was a graduate of Harvard, and had
a very clear enunciation, and, in sharp contrast to Prentice, he was a
large man. After the paper had gone to press, Prentice would generally
come over to Tyler's office and start talking. Having while in Tyler's
office heard them arguing on the immortality of the soul, etc., I asked
permission of Mr. Tyler if, after finishing the press matter, I might
come in and listen to the conversation, which I did many times after.
One thing I never could comprehend was that Tyler had a sideboard with
liquors and generally crackers. Prentice would pour out half a glass of
what they call corn whiskey, and would dip the crackers in it and eat
them. Tyler took it sans food. One teaspoonful of that stuff would put
me to sleep."

Mr. Edison throws also a curious side-light on the origin of the comic
column in the modern American newspaper, the telegraph giving to a new
joke or a good story the ubiquity and instantaneity of an important
historical event. "It was the practice of the press operators all over
the country at that time, when a lull occurred, to start in and send
jokes or stories the day men had collected; and these were copied and
pasted up on the bulletin-board. Cleveland was the originating
office for 'press,' which it received from New York, and sent it out
simultaneously to Milwaukee, Chicago, Toledo, Detroit, Pittsburg,
Columbus, Dayton, Cincinnati, Indianapolis, Vincennes, Terre Haute, St.
Louis, and Louisville. Cleveland would call first on Milwaukee, if he
had anything. If so, he would send it, and Cleveland would repeat it to
all of us. Thus any joke or story originating anywhere in that area
was known the next day all over. The press men would come in and copy
anything which could be published, which was about three per cent. I
collected, too, quite a large scrap-book of it, but unfortunately have
lost it."

Edison tells an amusing story of his own pursuits at this time. Always
an omnivorous reader, he had some difficulty in getting a sufficient
quantity of literature for home consumption, and was in the habit
of buying books at auctions and second-hand stores. One day at an
auction-room he secured a stack of twenty unbound volumes of the North
American Review for two dollars. These he had bound and delivered at the
telegraph office. One morning, when he was free as usual at 3 o'clock,
he started off at a rapid pace with ten volumes on his shoulder. He
found himself very soon the subject of a fusillade. When he stopped, a
breathless policeman grabbed him by the throat and ordered him to drop
his parcel and explain matters, as a suspicious character. He opened the
package showing the books, somewhat to the disgust of the officer, who
imagined he had caught a burglar sneaking away in the dark alley with
his booty. Edison explained that being deaf he had heard no challenge,
and therefore had kept moving; and the policeman remarked apologetically
that it was fortunate for Edison he was not a better shot.

The incident is curiously revelatory of the character of the man, for
it must be admitted that while literary telegraphers are by no means
scarce, there are very few who would spend scant savings on back numbers
of a ponderous review at an age when tragedy, beer, and pretzels are far
more enticing. Through all his travels Edison has preserved those books,
and has them now in his library at Llewellyn Park, on Orange Mountain,
New Jersey.

Drifting after a time from Louisville, Edison made his way as far north
as Detroit, but, like the famous Duke of York, soon made his way back
again. Possibly the severer discipline after the happy-go-lucky regime
in the Southern city had something to do with this restlessness, which
again manifested itself, however, on his return thither. The end of the
war had left the South a scene of destruction and desolation, and
many men who had fought bravely and well found it hard to reconcile
themselves to the grim task of reconstruction. To them it seemed better
to "let ill alone" and seek some other clime where conditions would
be less onerous. At this moment a great deal of exaggerated talk was
current as to the sunny life and easy wealth of Latin America, and under
its influences many "unreconstructed" Southerners made their way
to Mexico, Brazil, Peru, or the Argentine. Telegraph operators were
naturally in touch with this movement, and Edison's fertile
imagination was readily inflamed by the glowing idea of all these vague
possibilities. Again he threw up his steady work and, with a couple of
sanguine young friends, made his way to New Orleans. They had the
notion of taking positions in the Brazilian Government telegraphs, as
an advertisement had been inserted in some paper stating that operators
were wanted. They had timed their departure from Louisville so as to
catch a specially chartered steamer, which was to leave New Orleans for
Brazil on a certain day, to convey a large number of Confederates and
their families, who were disgusted with the United States and were
going to settle in Brazil, where slavery still prevailed. Edison and his
friends arrived in New Orleans just at the time of the great riot, when
several hundred negroes were killed, and the city was in the hands of
a mob. The Government had seized the steamer chartered for Brazil, in
order to bring troops from the Yazoo River to New Orleans to stop the
rioting. The young operators therefore visited another shipping-office
to make inquiries as to vessels for Brazil, and encountered an old
Spaniard who sat in a chair near the steamer agent's desk, and to
whom they explained their intentions. He had lived and worked in South
America, and was very emphatic in his assertion, as he shook his yellow,
bony finger at them, that the worst mistake they could possibly make
would be to leave the United States. He would not leave on any account,
and they as young Americans would always regret it if they forsook their
native land, whose freedom, climate, and opportunities could not be
equalled anywhere on the face of the globe. Such sincere advice as this
could not be disdained, and Edison made his way North again. One cannot
resist speculation as to what might have happened to Edison himself and
to the development of electricity had he made this proposed plunge into
the enervating tropics. It will be remembered that at a somewhat similar
crisis in life young Robert Burns entertained seriously the idea of
forsaking Scotland for the West Indies. That he did not go was certainly
better for Scottish verse, to which he contributed later so many
immortal lines; and it was probably better for himself, even if he died
a gauger. It is simply impossible to imagine Edison working out the
phonograph, telephone, and incandescent lamp under the tropical climes
he sought. Some years later he was informed that both his companions had
gone to Vera Cruz, Mexico, and had died there of yellow fever.

Work was soon resumed at Louisville, where the dilapidated old office
occupied at the close of the war had been exchanged for one much more
comfortable and luxurious in its equipment. As before, Edison was
allotted to press report, and remembers very distinctly taking the
Presidential message and veto of the District of Columbia bill
by President Johnson. As the matter was received over the wire he
paragraphed it so that each printer had exactly three lines, thus
enabling the matter to be set up very expeditiously in the newspaper
offices. This earned him the gratitude of the editors, a dinner, and all
the newspaper "exchanges" he wanted. Edison's accounts of the sprees and
debauches of other night operators in the loosely managed offices enable
one to understand how even a little steady application to the work in
hand would be appreciated. On one occasion Edison acted as treasurer for
his bibulous companions, holding the stakes, so to speak, in order that
the supply of liquor might last longer. One of the mildest mannered of
the party took umbrage at the parsimony of the treasurer and knocked
him down, whereupon the others in the party set upon the assailant and
mauled him so badly that he had to spend three weeks in hospital. At
another time two of his companions sharing the temporary hospitality of
his room smashed most of the furniture, and went to bed with their boots
on. Then his kindly good-nature rebelled. "I felt that this was running
hospitality into the ground, so I pulled them out and left them on the
floor to cool off from their alcoholic trance."

Edison seems on the whole to have been fairly comfortable and happy in
Louisville, surrounding himself with books and experimental apparatus,
and even inditing a treatise on electricity. But his very thirst for
knowledge and new facts again proved his undoing. The instruments in the
handsome new offices were fastened in their proper places, and operators
were strictly forbidden to remove them, or to use the batteries except
on regular work. This prohibition meant little to Edison, who had access
to no other instruments except those of the company. "I went one night,"
he says, "into the battery-room to obtain some sulphuric acid for
experimenting. The carboy tipped over, the acid ran out, went through
to the manager's room below, and ate up his desk and all the carpet. The
next morning I was summoned before him, and told that what the company
wanted was operators, not experimenters. I was at liberty to take my pay
and get out."

The fact that Edison is a very studious man, an insatiate lover and
reader of books, is well known to his associates; but surprise is often
expressed at his fund of miscellaneous information. This, it will be
seen, is partly explained by his work for years as a "press" reporter.
He says of this: "The second time I was in Louisville, they had moved
into a new office, and the discipline was now good. I took the press
job. In fact, I was a very poor sender, and therefore made the taking
of press report a specialty. The newspaper men allowed me to come over
after going to press at 3 A.M. and get all the exchanges I wanted. These
I would take home and lay at the foot of my bed. I never slept more than
four or five hours' so that I would awake at nine or ten and read
these papers until dinner-time. I thus kept posted, and knew from their
activity every member of Congress, and what committees they were on; and
all about the topical doings, as well as the prices of breadstuffs
in all the primary markets. I was in a much better position than
most operators to call on my imagination to supply missing words or
sentences, which were frequent in those days of old, rotten wires, badly
insulated, especially on stormy nights. Upon such occasions I had to
supply in some cases one-fifth of the whole matter--pure guessing--but
I got caught only once. There had been some kind of convention in
Virginia, in which John Minor Botts was the leading figure. There
was great excitement about it, and two votes had been taken in the
convention on the two days. There was no doubt that the vote the next
day would go a certain way. A very bad storm came up about 10 o'clock,
and my wire worked very badly. Then there was a cessation of all
signals; then I made out the words 'Minor Botts.' The next was a New
York item. I filled in a paragraph about the convention and how the vote
had gone, as I was sure it would. But next day I learned that instead of
there being a vote the convention had adjourned without action until the
day after." In like manner, it was at Louisville that Mr. Edison got
an insight into the manner in which great political speeches are more
frequently reported than the public suspects. "The Associated Press
had a shorthand man travelling with President Johnson when he made his
celebrated swing around the circle in a private train delivering hot
speeches in defence of his conduct. The man engaged me to write out
the notes from his reading. He came in loaded and on the verge of
incoherence. We started in, but about every two minutes I would have to
scratch out whole paragraphs and insert the same things said in
another and better way. He would frequently change words, always to the
betterment of the speech. I couldn't understand this, and when he got
through, and I had copied about three columns, I asked him why those
changes, if he read from notes. 'Sonny,' he said, 'if these politicians
had their speeches published as they deliver them, a great many
shorthand writers would be out of a job. The best shorthanders and the
holders of good positions are those who can take a lot of rambling,
incoherent stuff and make a rattling good speech out of it.'"

Going back to Cincinnati and beginning his second term there as an
operator, Edison found the office in new quarters and with greatly
improved management. He was again put on night duty, much to his
satisfaction. He rented a room in the top floor of an office building,
bought a cot and an oil-stove, a foot lathe, and some tools. He
cultivated the acquaintance of Mr. Sommers, superintendent of telegraph
of the Cincinnati & Indianapolis Railroad, who gave him permission to
take such scrap apparatus as he might desire, that was of no use to the
company. With Sommers on one occasion he had an opportunity to indulge
his always strong sense of humor. "Sommers was a very witty man,"
he says, "and fond of experimenting. We worked on a self-adjusting
telegraph relay, which would have been very valuable if we could have
got it. I soon became the possessor of a second-hand Ruhmkorff induction
coil, which, although it would only give a small spark, would twist the
arms and clutch the hands of a man so that he could not let go of the
apparatus. One day we went down to the round-house of the Cincinnati &
Indianapolis Railroad and connected up the long wash-tank in the room
with the coil, one electrode being connected to earth. Above this
wash-room was a flat roof. We bored a hole through the roof, and could
see the men as they came in. The first man as he entered dipped his
hands in the water. The floor being wet he formed a circuit, and up went
his hands. He tried it the second time, with the same result. He then
stood against the wall with a puzzled expression. We surmised that
he was waiting for somebody else to come in, which occurred shortly
after--with the same result. Then they went out, and the place was soon
crowded, and there was considerable excitement. Various theories
were broached to explain the curious phenomenon. We enjoyed the sport
immensely." It must be remembered that this was over forty years ago,
when there was no popular instruction in electricity, and when its
possibilities for practical joking were known to very few. To-day such a
crowd of working-men would be sure to include at least one student of
a night school or correspondence course who would explain the mystery
offhand.

Note has been made of the presence of Ellsworth in the Cincinnati
office, and his service with the Confederate guerrilla Morgan, for whom
he tapped Federal wires, read military messages, sent false ones, and
did serious mischief generally. It is well known that one operator can
recognize another by the way in which he makes his signals--it is his
style of handwriting. Ellsworth possessed in a remarkable degree the
skill of imitating these peculiarities, and thus he deceived the Union
operators easily. Edison says that while apparently a quiet man in
bearing, Ellsworth, after the excitement of fighting, found the tameness
of a telegraph office obnoxious, and that he became a bad "gun man"
in the Panhandle of Texas, where he was killed. "We soon became
acquainted," says Edison of this period in Cincinnati, "and he wanted me
to invent a secret method of sending despatches so that an intermediate
operator could not tap the wire and understand it. He said that if it
could be accomplished, he could sell it to the Government for a large
sum of money. This suited me, and I started in and succeeded in making
such an instrument, which had in it the germ of my quadruplex now used
throughout the world, permitting the despatch of four messages over
one wire simultaneously. By the time I had succeeded in getting the
apparatus to work, Ellsworth suddenly disappeared. Many years afterward
I used this little device again for the same purpose. At Menlo Park, New
Jersey, I had my laboratory. There were several Western Union wires cut
into the laboratory, and used by me in experimenting at night. One day
I sat near an instrument which I had left connected during the night. I
soon found it was a private wire between New York and Philadelphia, and
I heard among a lot of stuff a message that surprised me. A week after
that I had occasion to go to New York, and, visiting the office of
the lessee of the wire, I asked him if he hadn't sent such and such a
message. The expression that came over his face was a sight. He asked me
how I knew of any message. I told him the circumstances, and suggested
that he had better cipher such communications, or put on a secret
sounder. The result of the interview was that I installed for him my old
Cincinnati apparatus, which was used thereafter for many years."

Edison did not make a very long stay in Cincinnati this time, but went
home after a while to Port Huron. Soon tiring of idleness and isolation
he sent "a cry from Macedonia" to his old friend "Milt" Adams, who was
in Boston, and whom he wished to rejoin if he could get work promptly in
the East.

Edison himself gives the details of this eventful move, when he went
East to grow up with the new art of electricity. "I had left Louisville
the second time, and went home to see my parents. After stopping at home
for some time, I got restless, and thought I would like to work in the
East. Knowing that a former operator named Adams, who had worked with me
in the Cincinnati office, was in Boston, I wrote him that I wanted a job
there. He wrote back that if I came on immediately he could get me in
the Western Union office. I had helped out the Grand Trunk Railroad
telegraph people by a new device when they lost one of the two submarine
cables they had across the river, making the remaining cable act just as
well for their purpose, as if they had two. I thought I was entitled
to a pass, which they conceded; and I started for Boston. After leaving
Toronto a terrific blizzard came up and the train got snowed under in a
cut. After staying there twenty-four hours, the trainmen made snowshoes
of fence-rail splints and started out to find food, which they did about
a half mile away. They found a roadside inn, and by means of snowshoes
all the passengers were taken to the inn. The train reached Montreal
four days late. A number of the passengers and myself went to the
military headquarters to testify in favor of a soldier who was on
furlough, and was two days late, which was a serious matter with
military people, I learned. We willingly did this, for this soldier
was a great story-teller, and made the time pass quickly. I met here a
telegraph operator named Stanton, who took me to his boarding-house,
the most cheerless I have ever been in. Nobody got enough to eat; the
bedclothes were too short and too thin; it was 28 degrees below zero,
and the wash-water was frozen solid. The board was cheap, being only
$1.50 per week.

"Stanton said that the usual live-stock accompaniment of operators'
boarding-houses was absent; he thought the intense cold had caused
them to hibernate. Stanton, when I was working in Cincinnati, left his
position and went out on the Union Pacific to work at Julesburg, which
was a cattle town at that time and very tough. I remember seeing him off
on the train, never expecting to see him again. Six months afterward,
while working press wire in Cincinnati, about 2 A.M., there was flung
into the middle of the operating-room a large tin box. It made a
report like a pistol, and we all jumped up startled. In walked Stanton.
'Gentlemen,' he said 'I have just returned from a pleasure trip to the
land beyond the Mississippi. All my wealth is contained in my metallic
travelling case and you are welcome to it.' The case contained one
paper collar. He sat down, and I noticed that he had a woollen comforter
around his neck with his coat buttoned closely. The night was intensely
warm. He then opened his coat and revealed the fact that he had nothing
but the bare skin. 'Gentlemen,' said he, 'you see before you an operator
who has reached the limit of impecuniosity.'" Not far from the limit of
impecuniosity was Edison himself, as he landed in Boston in 1868 after
this wintry ordeal.

This chapter has run to undue length, but it must not close without one
citation from high authority as to the service of the military telegraph
corps so often referred to in it. General Grant in his Memoirs,
describing the movements of the Army of the Potomac, lays stress on the
service of his telegraph operators, and says: "Nothing could be more
complete than the organization and discipline of this body of brave and
intelligent men. Insulated wires were wound upon reels, two men and a
mule detailed to each reel. The pack-saddle was provided with a rack
like a sawbuck, placed crosswise, so that the wheel would revolve
freely; there was a wagon provided with a telegraph operator,
battery, and instruments for each division corps and army, and for my
headquarters. Wagons were also loaded with light poles supplied with an
iron spike at each end to hold the wires up. The moment troops were in
position to go into camp, the men would put up their wires. Thus in a
few minutes' longer time than it took a mule to walk the length of
its coil, telegraphic communication would be effected between all the
headquarters of the army. No orders ever had to be given to establish
the telegraph."



CHAPTER VI

WORK AND INVENTION IN BOSTON

MILTON ADAMS was working in the office of the Franklin Telegraph Company
in Boston when he received Edison's appeal from Port Huron, and with
characteristic impetuosity at once made it his business to secure a
position for his friend. There was no opening in the Franklin office, so
Adams went over to the Western Union office, and asked the manager,
Mr. George F. Milliken, if he did not want an operator who, like young
Lochinvar, came out of the West. "What kind of copy does he make?" was
the cautious response. "I passed Edison's letter through the window for
his inspection. Milliken read it, and a look of surprise came over his
countenance as he asked me if he could take it off the line like that. I
said he certainly could, and that there was nobody who could stick him.
Milliken said that if he was that kind of an operator I could send for
him, and I wrote to Edison to come on, as I had a job for him in the
main office of the Western Union." Meantime Edison had secured his pass
over the Grand Trunk Railroad, and spent four days and nights on the
journey, suffering extremes of cold and hunger. Franklin's arrival in
Philadelphia finds its parallel in the very modest debut of Adams's
friend in Boston.

It took only five minutes for Edison to get the "job," for
Superintendent Milliken, a fine type of telegraph official, saw quickly
through the superficialities, and realized that it was no ordinary
young operator he was engaging. Edison himself tells the story of what
happened. "The manager asked me when I was ready to go to work. 'Now,'
I replied I was then told to return at 5.30 P.M., and punctually at that
hour I entered the main operating-room and was introduced to the night
manager. The weather being cold, and being clothed poorly, my peculiar
appearance caused much mirth, and, as I afterward learned, the night
operators had consulted together how they might 'put up a job on the jay
from the woolly West.' I was given a pen and assigned to the New York
No. 1 wire. After waiting an hour, I was told to come over to a special
table and take a special report for the Boston Herald, the conspirators
having arranged to have one of the fastest senders in New York send the
despatch and 'salt' the new man. I sat down unsuspiciously at the table,
and the New York man started slowly. Soon he increased his speed, to
which I easily adapted my pace. This put my rival on his mettle, and he
put on his best powers, which, however, were soon reached. At this
point I happened to look up, and saw the operators all looking over my
shoulder, with their faces shining with fun and excitement. I knew then
that they were trying to put up a job on me, but kept my own counsel.
The New York man then commenced to slur over his words, running them
together and sticking the signals; but I had been used to this style
of telegraphy in taking report, and was not in the least discomfited.
Finally, when I thought the fun had gone far enough, and having
about completed the special, I quietly opened the key and remarked,
telegraphically, to my New York friend: 'Say, young man, change off and
send with your other foot.' This broke the New York man all up, and he
turned the job over to another man to finish."

Edison had a distaste for taking press report, due to the fact that
it was steady, continuous work, and interfered with the studies and
investigations that could be carried on in the intervals of ordinary
commercial telegraphy. He was not lazy in any sense. While he had no
very lively interest in the mere routine work of a telegraph office,
he had the profoundest curiosity as to the underlying principles of
electricity that made telegraphy possible, and he had an unflagging
desire and belief in his own ability to improve the apparatus he handled
daily. The whole intellectual atmosphere of Boston was favorable to the
development of the brooding genius in this shy, awkward, studious youth,
utterly indifferent to clothes and personal appearance, but ready to
spend his last dollar on books and scientific paraphernalia. It is
matter of record that he did once buy a new suit for thirty dollars in
Boston, but the following Sunday, while experimenting with acids in his
little workshop, the suit was spoiled. "That is what I get for putting
so much money in a new suit," was the laconic remark of the youth, who
was more than delighted to pick up a complete set of Faraday's works
about the same time. Adams says that when Edison brought home these
books at 4 A.M. he read steadily until breakfast-time, and then he
remarked, enthusiastically: "Adams, I have got so much to do and life is
so short, I am going to hustle." And thereupon he started on a run for
breakfast. Edison himself says: "It was in Boston I bought Faraday's
works. I think I must have tried about everything in those books. His
explanations were simple. He used no mathematics. He was the Master
Experimenter. I don't think there were many copies of Faraday's works
sold in those days. The only people who did anything in electricity were
the telegraphers and the opticians making simple school apparatus to
demonstrate the principles." One of these firms was Palmer & Hall, whose
catalogue of 1850 showed a miniature electric locomotive made by Mr.
Thomas Hall, and exhibited in operation the following year at the
Charitable Mechanics' Fair in Boston. In 1852 Mr. Hall made for a Dr.
A. L. Henderson, of Buffalo, New York, a model line of railroad with
electric-motor engine, telegraph line, and electric railroad signals,
together with a figure operating the signals at each end of the line
automatically. This was in reality the first example of railroad trains
moved by telegraph signals, a practice now so common and universal as
to attract no comment. To show how little some fundamental methods can
change in fifty years, it may be noted that Hall conveyed the current
to his tiny car through forty feet of rail, using the rail as conductor,
just as Edison did more than thirty years later in his historic
experiments for Villard at Menlo Park; and just as a large proportion of
American trolley systems do at this present moment.

It was among such practical, investigating folk as these that Edison was
very much at home. Another notable man of this stamp, with whom Edison
was thrown in contact, was the late Mr. Charles Williams, who, beginning
his career in the electrical field in the forties, was at the height of
activity as a maker of apparatus when Edison arrived in the city; and
who afterward, as an associate of Alexander Graham Bell, enjoyed the
distinction of being the first manufacturer in the world of telephones.
At his Court Street workshop Edison was a frequent visitor. Telegraph
repairs and experiments were going on constantly, especially on the
early fire-alarm telegraphs [1] of Farmer and Gamewell, and with the aid
of one of the men there--probably George Anders--Edison worked out
into an operative model his first invention, a vote-recorder, the first
Edison patent, for which papers were executed on October 11, 1868,
and which was taken out June 1, 1869, No. 90,646. The purpose of
this particular device was to permit a vote in the National House of
Representatives to be taken in a minute or so, complete lists being
furnished of all members voting on the two sides of any question Mr.
Edison, in recalling the circumstances, says: "Roberts was the telegraph
operator who was the financial backer to the extent of $100. The
invention when completed was taken to Washington. I think it was
exhibited before a committee that had something to do with the Capitol.
The chairman of the committee, after seeing how quickly and perfectly
it worked, said: 'Young man, if there is any invention on earth that
we don't want down here, it is this. One of the greatest weapons in
the hands of a minority to prevent bad legislation is filibustering on
votes, and this instrument would prevent it.' I saw the truth of
this, because as press operator I had taken miles of Congressional
proceedings, and to this day an enormous amount of time is wasted during
each session of the House in foolishly calling the members' names and
recording and then adding their votes, when the whole operation could be
done in almost a moment by merely pressing a particular button at each
desk. For filibustering purposes, however, the present methods are
most admirable." Edison determined from that time forth to devote his
inventive faculties only to things for which there was a real, genuine
demand, something that subserved the actual necessities of humanity.
This first patent was taken out for him by the late Hon. Carroll
D. Wright, afterward U. S. Commissioner of Labor, and a well-known
publicist, then practicing patent law in Boston. He describes Edison as
uncouth in manner, a chewer rather than a smoker of tobacco, but full of
intelligence and ideas.

     [Footnote 1: The general scheme of a fire-alarm telegraph
     system embodies a central office to which notice can be sent
     from any number of signal boxes of the outbreak of a fire in
     the district covered by the box, the central office in turn
     calling out the nearest fire engines, and warning the fire
     department in general of the occurrence. Such fire alarms
     can be exchanged automatically, or by operators, and are
     sometimes associated with a large fire-alarm bell or
     whistle. Some boxes can be operated by the passing public;
     others need special keys. The box mechanism is usually of
     the ratchet, step-by-step movement, familiar in district
     messenger call-boxes.]

Edison's curiously practical, though imaginative, mind demanded
realities to work upon, things that belong to "human nature's daily
food," and he soon harked back to telegraphy, a domain in which he
was destined to succeed, and over which he was to reign supreme as
an inventor. He did not, however, neglect chemistry, but indulged his
tastes in that direction freely, although we have no record that
this work was anything more, at that time, than the carrying out of
experiments outlined in the books. The foundations were being laid for
the remarkable chemical knowledge that later on grappled successfully
with so many knotty problems in the realm of chemistry; notably with
the incandescent lamp and the storage battery. Of one incident in his
chemical experiments he tells the following story: "I had read in a
scientific paper the method of making nitroglycerine, and was so fired
by the wonderful properties it was said to possess, that I determined
to make some of the compound. We tested what we considered a very small
quantity, but this produced such terrible and unexpected results that we
became alarmed, the fact dawning upon us that we had a very large
white elephant in our possession. At 6 A.M. I put the explosive into
a sarsaparilla bottle, tied a string to it, wrapped it in a paper,
and gently let it down into the sewer, corner of State and Washington
Streets." The associate in this was a man whom he had found endeavoring
to make electrical apparatus for sleight-of-hand performances.

In the Boston telegraph office at that time, as perhaps at others, there
were operators studying to enter college; possibly some were already in
attendance at Harvard University. This condition was not unusual at one
time; the first electrical engineer graduated from Columbia University,
New York, followed up his studies while a night operator, and came out
brilliantly at the head of his class. Edison says of these scholars that
they paraded their knowledge rather freely, and that it was his delight
to go to the second-hand book stores on Cornhill and study up questions
which he could spring upon them when he got an occasion. With those
engaged on night duty he got midnight lunch from an old Irishman called
"the Cake Man," who appeared regularly with his wares at 12 midnight.
"The office was on the ground floor, and had been a restaurant previous
to its occupation by the Western Union Telegraph Company. It was
literally loaded with cockroaches, which lived between the wall and the
board running around the room at the floor, and which came after the
lunch. These were such a bother on my table that I pasted two strips
of tinfoil on the wall at my desk, connecting one piece to the positive
pole of the big battery supplying current to the wires and the negative
pole to the other strip. The cockroaches moving up on the wall would
pass over the strips. The moment they got their legs across both strips
there was a flash of light and the cockroaches went into gas. This
automatic electrocuting device attracted so much attention, and got half
a column in an evening paper, that the manager made me stop it." The
reader will remember that a similar plan of campaign against rats was
carried out by Edison while in the West.

About this time Edison had a narrow escape from injury that might easily
have shortened his career, and he seems to have provoked the trouble
more or less innocently by using a little elementary chemistry. "After
being in Boston several months," he says, "working New York wire No.
1, I was requested to work the press wire, called the 'milk route,' as
there were so many towns on it taking press simultaneously. New
York office had reported great delays on the wire, due to operators
constantly interrupting, or 'breaking,' as it was called, to have words
repeated which they had failed to get; and New York claimed that Boston
was one of the worst offenders. It was a rather hard position for me,
for if I took the report without breaking, it would prove the previous
Boston operator incompetent. The results made the operator have some
hard feelings against me. He was put back on the wire, and did much
better after that. It seems that the office boy was down on this man.
One night he asked me if I could tell him how to fix a key so that it
would not 'break,' even if the circuit-breaker was open, and also so
that it could not be easily detected. I told him to jab a penful of
ink on the platinum points, as there was sugar enough to make it
sufficiently thick to hold up when the operator tried to break--the
current still going through the ink so that he could not break.

"The next night about 1 A.M. this operator, on the press wire, while
I was standing near a House printer studying it, pulled out a glass
insulator, then used upside down as a substitute for an ink-bottle,
and threw it with great violence at me, just missing my head. It would
certainly have killed me if it had not missed. The cause of the trouble
was that this operator was doing the best he could not to break, but
being compelled to, opened his key and found he couldn't. The press
matter came right along, and he could not stop it. The office boy had
put the ink in a few minutes before, when the operator had turned his
head during a lull. He blamed me instinctively as the cause of the
trouble. Later on we became good friends. He took his meals at the same
emaciator that I did. His main object in life seemed to be acquiring
the art of throwing up wash-pitchers and catching them without breaking
them. About one-third of his salary was used up in paying for pitchers."

One day a request reached the Western Union Telegraph office in Boston,
from the principal of a select school for young ladies, to the effect
that she would like some one to be sent up to the school to exhibit and
describe the Morse telegraph to her "children." There has always been
a warm interest in Boston in the life and work of Morse, who was born
there, at Charlestown, barely a mile from the birthplace of Franklin,
and this request for a little lecture on Morse's telegraph was quite
natural. Edison, who was always ready to earn some extra money for his
experiments, and was already known as the best-informed operator in the
office, accepted the invitation. What happened is described by Adams
as follows: "We gathered up a couple of sounders, a battery, and sonic
wire, and at the appointed time called on her to do the stunt. Her
school-room was about twenty by twenty feet, not including a small
platform. We rigged up the line between the two ends of the room, Edison
taking the stage while I was at the other end of the room. All being
in readiness, the principal was told to bring in her children. The door
opened and in came about twenty young ladies elegantly gowned, not one
of whom was under seventeen. When Edison saw them I thought he would
faint. He called me on the line and asked me to come to the stage and
explain the mysteries of the Morse system. I replied that I thought he
was in the right place, and told him to get busy with his talk on dots
and dashes. Always modest, Edison was so overcome he could hardly speak,
but he managed to say, finally, that as his friend Mr. Adams was better
equipped with cheek than he was, we would change places, and he would
do the demonstrating while I explained the whole thing. This caused the
bevy to turn to see where the lecturer was. I went on the stage, said
something, and we did some telegraphing over the line. I guess it was
satisfactory; we got the money, which was the main point to us." Edison
tells the story in a similar manner, but insists that it was he who
saved the situation. "I managed to say that I would work the apparatus,
and Mr. Adams would make the explanations. Adams was so embarrassed
that he fell over an ottoman. The girls tittered, and this increased
his embarrassment until he couldn't say a word. The situation was so
desperate that for a reason I never could explain I started in myself
and talked and explained better than I ever did before or since. I can
talk to two or three persons; but when there are more they radiate some
unknown form of influence which paralyzes my vocal cords. However, I got
out of this scrape, and many times afterward when I chanced with other
operators to meet some of the young ladies on their way home from
school, they would smile and nod, much to the mystification of the
operators, who were ignorant of this episode."

Another amusing story of this period of impecuniosity and financial
strain is told thus by Edison: "My friend Adams was working in the
Franklin Telegraph Company, which competed with the Western Union. Adams
was laid off, and as his financial resources had reached absolute zero
centigrade, I undertook to let him sleep in my hall bedroom. I generally
had hall bedrooms, because they were cheap and I needed money to
buy apparatus. I also had the pleasure of his genial company at the
boarding-house about a mile distant, but at the sacrifice of some
apparatus. One morning, as we were hastening to breakfast, we came
into Tremont Row, and saw a large crowd in front of two small 'gents'
furnishing goods stores. We stopped to ascertain the cause of the
excitement. One store put up a paper sign in the display window which
said: 'Three-hundred pairs of stockings received this day, five cents a
pair--no connection with the store next door.' Presently the other store
put up a sign stating they had received three hundred pairs, price three
cents per pair, and stated that they had no connection with the store
next door. Nobody went in. The crowd kept increasing. Finally, when the
price had reached three pairs for one cent, Adams said to me: 'I can't
stand this any longer; give me a cent.' I gave him a nickel, and he
elbowed his way in; and throwing the money on the counter, the store
being filled with women clerks, he said: 'Give me three pairs.' The
crowd was breathless, and the girl took down a box and drew out three
pairs of baby socks. 'Oh!' said Adams, 'I want men's size.' 'Well, sir,
we do not permit one to pick sizes for that amount of money.' And the
crowd roared; and this broke up the sales."

It has generally been supposed that Edison did not take up work on the
stock ticker until after his arrival a little later in New York; but he
says: "After the vote-recorder I invented a stock ticker, and started a
ticker service in Boston; had thirty or forty subscribers, and operated
from a room over the Gold Exchange. This was about a year after Callahan
started in New York." To say the least, this evidenced great ability
and enterprise on the part of the youth. The dealings in gold during the
Civil War and after its close had brought gold indicators into use, and
these had soon been followed by "stock tickers," the first of which
was introduced in New York in 1867. The success of this new but still
primitively crude class of apparatus was immediate. Four manufacturers
were soon busy trying to keep pace with the demands for it from brokers;
and the Gold & Stock Telegraph Company formed to exploit the system soon
increased its capital from $200,000 to $300,000, paying 12 per cent.
dividends on the latter amount. Within its first year the capital was
again increased to $1,000,000, and dividends of 10 per cent. were paid
easily on that sum also. It is needless to say that such facts became
quickly known among the operators, from whose ranks, of course, the new
employees were enlisted; and it was a common ambition among the more
ingenious to produce a new ticker. From the beginning, each phase
of electrical development--indeed, each step in mechanics--has been
accompanied by the well-known phenomenon of invention; namely, the
attempt of the many to perfect and refine and even re-invent where one
or two daring spirits have led the way. The figures of capitalization
and profit just mentioned were relatively much larger in the sixties
than they are to-day; and to impressionable young operators they spelled
illimitable wealth. Edison was, how ever, about the only one in Boston
of whom history makes record as achieving any tangible result in this
new art; and he soon longed for the larger telegraphic opportunity of
New York. His friend, Milt Adams, went West with quenchless zest for
that kind of roving life and aimless adventure of which the serious
minded Edison had already had more than enough. Realizing that to New
York he must look for further support in his efforts, Edison, deep in
debt for his embryonic inventions, but with high hope and courage,
now made the next momentous step in his career. He was far riper in
experience and practice of his art than any other telegrapher of his
age, and had acquired, moreover, no little knowledge of the practical
business of life. Note has been made above of his invention of a stock
ticker in Boston, and of his establishing a stock-quotation circuit.
This was by no means all, and as a fitting close to this chapter he may
be quoted as to some other work and its perils in experimentation:
"I also engaged in putting up private lines, upon which I used
an alphabetical dial instrument for telegraphing between business
establishments, a forerunner of modern telephony. This instrument
was very simple and practical, and any one could work it after a few
minutes' explanation. I had these instruments made at Mr. Hamblet's, who
had a little shop where he was engaged in experimenting with electric
clocks. Mr. Hamblet was the father and introducer in after years of the
Western Union Telegraph system of time distribution. My laboratory was
the headquarters for the men, and also of tools and supplies for those
private lines. They were put up cheaply, as I used the roofs of houses,
just as the Western Union did. It never occurred to me to ask permission
from the owners; all we did was to go to the store, etc., say we
were telegraph men, and wanted to go up to the wires on the roof; and
permission was always granted.

"In this laboratory I had a large induction coil which I had borrowed to
make some experiments with. One day I got hold of both electrodes of
the coil, and it clinched my hand on them so that I couldn't let go. The
battery was on a shelf. The only way I could get free was to back off
and pull the coil, so that the battery wires would pull the cells off
the shelf and thus break the circuit. I shut my eyes and pulled, but the
nitric acid splashed all over my face and ran down my back. I rushed to
a sink, which was only half big enough, and got in as well as I could
and wiggled around for several minutes to permit the water to dilute the
acid and stop the pain. My face and back were streaked with yellow; the
skin was thoroughly oxidized. I did not go on the street by daylight for
two weeks, as the appearance of my face was dreadful. The skin, however,
peeled off, and new skin replaced it without any damage."



CHAPTER VII

THE STOCK TICKER


"THE letters and figures used in the language of the tape," said a
well-known Boston stock speculator, "are very few, but they spell ruin
in ninety-nine million ways." It is not to be inferred, however, that
the modern stock ticker has anything to do with the making or losing
of fortunes. There were regular daily stock-market reports in London
newspapers in 1825, and New York soon followed the example. As far back
as 1692, Houghton issued in London a weekly review of financial and
commercial transactions, upon which Macaulay based the lively narrative
of stock speculation in the seventeenth century, given in his famous
history. That which the ubiquitous stock ticker has done is to give
instantaneity to the news of what the stock market is doing, so that at
every minute, thousands of miles apart, brokers, investors, and gamblers
may learn the exact conditions. The existence of such facilities is to
be admired rather than deplored. News is vital to Wall Street, and there
is no living man on whom the doings in Wall Street are without effect.
The financial history of the United States and of the world, as shown
by the prices of government bonds and general securities, has been told
daily for forty years on these narrow strips of paper tape, of which
thousands of miles are run yearly through the "tickers" of New York
alone. It is true that the record of the chattering little machine, made
in cabalistic abbreviations on the tape, can drive a man suddenly to the
very verge of insanity with joy or despair; but if there be blame for
that, it attaches to the American spirit of speculation and not to
the ingenious mechanism which reads and registers the beating of the
financial pulse.

Edison came first to New York in 1868, with his early stock printer,
which he tried unsuccessfully to sell. He went back to Boston, and quite
undismayed got up a duplex telegraph. "Toward the end of my stay in
Boston," he says, "I obtained a loan of money, amounting to $800, to
build a peculiar kind of duplex telegraph for sending two messages over
a single wire simultaneously. The apparatus was built, and I left
the Western Union employ and went to Rochester, New York, to test the
apparatus on the lines of the Atlantic & Pacific Telegraph between that
city and New York. But the assistant at the other end could not be made
to understand anything, notwithstanding I had written out a very minute
description of just what to do. After trying for a week I gave it up and
returned to New York with but a few cents in my pocket." Thus he who
has never speculated in a stock in his life was destined to make the
beginnings of his own fortune by providing for others the apparatus
that should bring to the eye, all over a great city, the momentary
fluctuations of stocks and bonds. No one could have been in direr
poverty than he when the steamboat landed him in New York in 1869. He
was in debt, and his few belongings in books and instruments had to
be left behind. He was not far from starving. Mr. W. S. Mallory, an
associate of many years, quotes directly from him on this point: "Some
years ago we had a business negotiation in New York which made it
necessary for Mr. Edison and me to visit the city five or six times
within a comparatively short period. It was our custom to leave Orange
about 11 A.M., and on arrival in New York to get our lunch before
keeping the appointments, which were usually made for two o'clock.
Several of these lunches were had at Delmonico's, Sherry's, and other
places of similar character, but one day, while en route, Mr. Edison
said: 'I have been to lunch with you several times; now to-day I am
going to take you to lunch with me, and give you the finest lunch you
ever had.' When we arrived in Hoboken, we took the downtown ferry across
the Hudson, and when we arrived on the Manhattan side Mr. Edison led the
way to Smith & McNell's, opposite Washington Market, and well known to
old New Yorkers. We went inside and as soon as the waiter appeared
Mr. Edison ordered apple dumplings and a cup of coffee for himself. He
consumed his share of the lunch with the greatest possible pleasure.
Then, as soon as he had finished, he went to the cigar counter and
purchased cigars. As we walked to keep the appointment he gave me the
following reminiscence: When he left Boston and decided to come to New
York he had only money enough for the trip. After leaving the boat his
first thought was of breakfast; but he was without money to obtain it.
However, in passing a wholesale tea-house he saw a man tasting tea, so
he went in and asked the 'taster' if he might have some of the tea. This
the man gave him, and thus he obtained his first breakfast in New York.
He knew a telegraph operator here, and on him he depended for a loan to
tide him over until such time as he should secure a position. During the
day he succeeded in locating this operator, but found that he also was
out of a job, and that the best he could do was to loan him one dollar,
which he did. This small sum of money represented both food and lodging
until such time as work could be obtained. Edison said that as the
result of the time consumed and the exercise in walking while he found
his friend, he was extremely hungry, and that he gave most serious
consideration as to what he should buy in the way of food, and what
particular kind of food would be most satisfying and filling. The result
was that at Smith & McNell's he decided on apple dumplings and a cup
of coffee, than which he never ate anything more appetizing. It was not
long before he was at work and was able to live in a normal manner."

During the Civil War, with its enormous increase in the national debt
and the volume of paper money, gold had gone to a high premium; and, as
ever, by its fluctuations in price the value of all other commodities
was determined. This led to the creation of a "Gold Room" in Wall
Street, where the precious metal could be dealt in; while for dealings
in stocks there also existed the "Regular Board," the "Open Board," and
the "Long Room." Devoted to one, but the leading object of speculation,
the "Gold Room" was the very focus of all the financial and gambling
activity of the time, and its quotations governed trade and commerce.
At first notations in chalk on a blackboard sufficed, but seeing their
inadequacy, Dr. S. S. Laws, vice-president and actual presiding officer
of the Gold Exchange, devised and introduced what was popularly known
as the "gold indicator." This exhibited merely the prevailing price of
gold; but as its quotations changed from instant to instant, it was in
a most literal sense "the cynosure of neighboring eyes." One indicator
looked upon the Gold Room; the other opened toward the street. Within
the exchange the face could easily be seen high up on the west wall of
the room, and the machine was operated by Mr. Mersereau, the official
registrar of the Gold Board.

Doctor Laws, who afterward became President of the State University of
Missouri, was an inventor of unusual ability and attainments. In
his early youth he had earned his livelihood in a tool factory; and,
apparently with his savings, he went to Princeton, where he studied
electricity under no less a teacher than the famous Joseph Henry. At the
outbreak of the war in 1861 he was president of one of the Presbyterian
synodical colleges in the South, whose buildings passed into the hands
of the Government. Going to Europe, he returned to New York in 1863,
and, becoming interested with a relative in financial matters, his
connection with the Gold Exchange soon followed, when it was organized.
The indicating mechanism he now devised was electrical, controlled at
central by two circuit-closing keys, and was a prototype of all the
later and modern step-by-step printing telegraphs, upon which the
distribution of financial news depends. The "fraction" drum of the
indicator could be driven in either direction, known as the advance and
retrograde movements, and was divided and marked in eighths. It geared
into a "unit" drum, just as do speed-indicators and cyclometers. Four
electrical pulsations were required to move the drum the distance
between the fractions. The general operation was simple, and in
normally active times the mechanism and the registrar were equal to all
emergencies. But it is obvious that the record had to be carried away
to the brokers' offices and other places by messengers; and the delay,
confusion, and mistakes soon suggested to Doctor Laws the desirability
of having a number of indicators at such scattered points, operated by a
master transmitter, and dispensing with the regiments of noisy boys.
He secured this privilege of distribution, and, resigning from the
exchange, devoted his exclusive attention to the "Gold Reporting
Telegraph," which he patented, and for which, at the end of 1866, he had
secured fifty subscribers. His indicators were small oblong boxes, in
the front of which was a long slot, allowing the dials as they travelled
past, inside, to show the numerals constituting the quotation; the dials
or wheels being arranged in a row horizontally, overlapping each other,
as in modern fare registers which are now seen on most trolley cars. It
was not long before there were three hundred subscribers; but the very
success of this device brought competition and improvement. Mr. E. A.
Callahan, an ingenious printing-telegraph operator, saw that there
were unexhausted possibilities in the idea, and his foresight and
inventiveness made him the father of the "ticker," in connection with
which he was thus, like Laws, one of the first to grasp and exploit the
underlying principle of the "central station" as a universal source
of supply. The genesis of his invention Mr. Callahan has told in an
interesting way: "In 1867, on the site of the present Mills Building on
Broad Street, opposite the Stock Exchange of today, was an old building
which had been cut up to subserve the necessities of its occupants, all
engaged in dealing in gold and stocks. It had one main entrance from the
street to a hallway, from which entrance to the offices of two prominent
broker firms was obtained. Each firm had its own army of boys, numbering
from twelve to fifteen, whose duties were to ascertain the latest
quotations from the different exchanges. Each boy devoted his attention
to some particularly active stock. Pushing each other to get into these
narrow quarters, yelling out the prices at the door, and pushing back
for later ones, the hustle made this doorway to me a most undesirable
refuge from an April shower. I was simply whirled into the street.
I naturally thought that much of this noise and confusion might be
dispensed with, and that the prices might be furnished through some
system of telegraphy which would not require the employment of skilled
operators. The conception of the stock ticker dates from this incident."

Mr. Callahan's first idea was to distribute gold quotations, and to
this end he devised an "indicator." It consisted of two dials mounted
separately, each revolved by an electromagnet, so that the desired
figures were brought to an aperture in the case enclosing the apparatus,
as in the Laws system. Each shaft with its dial was provided with two
ratchet wheels, one the reverse of the other. One was used in connection
with the propelling lever, which was provided with a pawl to fit into
the teeth of the reversed ratchet wheel on its forward movement. It was
thus made impossible for either dial to go by momentum beyond its limit.
Learning that Doctor Laws, with the skilful aid of F. L. Pope, was
already active in the same direction, Mr. Callahan, with ready wit,
transformed his indicator into a "ticker" that would make a printed
record. The name of the "ticker" came through the casual remark of
an observer to whom the noise was the most striking feature of the
mechanism. Mr. Callahan removed the two dials, and, substituting type
wheels, turned the movements face to face, so that each type wheel
could imprint its characters upon a paper tape in two lines. Three wires
stranded together ran from the central office to each instrument. Of
these one furnished the current for the alphabet wheel, one for the
figure wheel, and one for the mechanism that took care of the inking and
printing on the tape. Callahan made the further innovation of insulating
his circuit wires, although the cost was then forty times as great as
that of bare wire. It will be understood that electromagnets were the
ticker's actuating agency. The ticker apparatus was placed under a
neat glass shade and mounted on a shelf. Twenty-five instruments were
energized from one circuit, and the quotations were supplied from a
"central" at 18 New Street. The Gold & Stock Telegraph Company was
promptly organized to supply to brokers the system, which was very
rapidly adopted throughout the financial district of New York, at the
southern tip of Manhattan Island. Quotations were transmitted by the
Morse telegraph from the floor of the Stock Exchange to the "central,"
and thence distributed to the subscribers. Success with the "stock" news
system was instantaneous.

It was at this juncture that Edison reached New York, and according to
his own statement found shelter at night in the battery-room of the Gold
Indicator Company, having meantime applied for a position as operator
with the Western Union. He had to wait a few days, and during this time
he seized the opportunity to study the indicators and the complicated
general transmitter in the office, controlled from the keyboard of the
operator on the floor of the Gold Exchange. What happened next has been
the basis of many inaccurate stories, but is dramatic enough as told
in Mr. Edison's own version: "On the third day of my arrival and while
sitting in the office, the complicated general instrument for sending
on all the lines, and which made a very great noise, suddenly came to
a stop with a crash. Within two minutes over three hundred boys--a boy
from every broker in the street--rushed up-stairs and crowded the long
aisle and office, that hardly had room for one hundred, all yelling that
such and such a broker's wire was out of order and to fix it at once.
It was pandemonium, and the man in charge became so excited that he lost
control of all the knowledge he ever had. I went to the indicator, and,
having studied it thoroughly, knew where the trouble ought to be, and
found it. One of the innumerable contact springs had broken off and had
fallen down between the two gear wheels and stopped the instrument; but
it was not very noticeable. As I went out to tell the man in charge
what the matter was, Doctor Laws appeared on the scene, the most excited
person I had seen. He demanded of the man the cause of the trouble, but
the man was speechless. I ventured to say that I knew what the trouble
was, and he said, 'Fix it! Fix it! Be quick!' I removed the spring and
set the contact wheels at zero; and the line, battery, and inspecting
men all scattered through the financial district to set the instruments.
In about two hours things were working again. Doctor Laws came in to ask
my name and what I was doing. I told him, and he asked me to come to his
private office the following day. His office was filled with stacks of
books all relating to metaphysics and kindred matters. He asked me a
great many questions about the instruments and his system, and I showed
him how he could simplify things generally. He then requested that I
should call next day. On arrival, he stated at once that he had decided
to put me in charge of the whole plant, and that my salary would be $300
per month! This was such a violent jump from anything I had ever seen
before, that it rather paralyzed me for a while, I thought it was too
much to be lasting, but I determined to try and live up to that salary
if twenty hours a day of hard work would do it. I kept this position,
made many improvements, devised several stock tickers, until the Gold &
Stock Telegraph Company consolidated with the Gold Indicator Company."
Certainly few changes in fortune have been more sudden and dramatic in
any notable career than this which thus placed an ill-clad, unkempt,
half-starved, eager lad in a position of such responsibility in days
when the fluctuations in the price of gold at every instant meant
fortune or ruin to thousands.

Edison, barely twenty-one years old, was a keen observer of the stirring
events around him. "Wall Street" is at any time an interesting study,
but it was never at a more agitated and sensational period of its
history than at this time. Edison's arrival in New York coincided
with an active speculation in gold which may, indeed, be said to have
provided him with occupation; and was soon followed by the attempt
of Mr. Jay Gould and his associates to corner the gold market,
precipitating the panic of Black Friday, September 24, 1869. Securing
its import duties in the precious metal and thus assisting to create an
artificial stringency in the gold market, the Government had made it
a practice to relieve the situation by selling a million of gold each
month. The metal was thus restored to circulation. In some manner,
President Grant was persuaded that general conditions and the movement
of the crops would be helped if the sale of gold were suspended for
a time; and, this put into effect, he went to visit an old friend in
Pennsylvania remote from railroads and telegraphs. The Gould pool had
acquired control of $10,000,000 in gold, and drove the price upward
rapidly from 144 toward their goal of 200. On Black Friday they
purchased another $28,000,000 at 160, and still the price went up. The
financial and commercial interests of the country were in panic; but
the pool persevered in its effort to corner gold, with a profit of many
millions contingent on success. Yielding to frantic requests, President
Grant, who returned to Washington, caused Secretary Boutwell, of the
Treasury, to throw $4,000,000 of gold into the market. Relief was
instantaneous, the corner was broken, but the harm had been done.
Edison's remarks shed a vivid side-light on this extraordinary episode:
"On Black Friday," he says, "we had a very exciting time with the
indicators. The Gould and Fisk crowd had cornered gold, and had run the
quotations up faster than the indicator could follow. The indicator was
composed of several wheels; on the circumference of each wheel were the
numerals; and one wheel had fractions. It worked in the same way as an
ordinary counter; one wheel made ten revolutions, and at the tenth
it advanced the adjacent wheel; and this in its turn having gone ten
revolutions, advanced the next wheel, and so on. On the morning of
Black Friday the indicator was quoting 150 premium, whereas the bids by
Gould's agents in the Gold Room were 165 for five millions or any part.
We had a paper-weight at the transmitter (to speed it up), and by one
o'clock reached the right quotation. The excitement was prodigious. New
Street, as well as Broad Street, was jammed with excited people. I sat
on the top of the Western Union telegraph booth to watch the surging,
crazy crowd. One man came to the booth, grabbed a pencil, and attempted
to write a message to Boston. The first stroke went clear off the blank;
he was so excited that he had the operator write the message for him.
Amid great excitement Speyer, the banker, went crazy and it took five
men to hold him; and everybody lost their head. The Western Union
operator came to me and said: 'Shake, Edison, we are O. K. We haven't
got a cent.' I felt very happy because we were poor. These occasions are
very enjoyable to a poor man; but they occur rarely."

There is a calm sense of detachment about this description that has
been possessed by the narrator even in the most anxious moments of his
career. He was determined to see all that could be seen, and, quitting
his perch on the telegraph booth, sought the more secluded headquarters
of the pool forces. "A friend of mine was an operator who worked in the
office of Belden & Company, 60 Broadway, which were headquarters for
Fisk. Mr. Gould was up-town in the Erie offices in the Grand Opera
House. The firm on Broad Street, Smith, Gould & Martin, was the other
branch. All were connected with wires. Gould seemed to be in charge,
Fisk being the executive down-town. Fisk wore a velvet corduroy coat
and a very peculiar vest. He was very chipper, and seemed to be
light-hearted and happy. Sitting around the room were about a dozen
fine-looking men. All had the complexion of cadavers. There was a basket
of champagne. Hundreds of boys were rushing in paying checks, all checks
being payable to Belden & Company. When James Brown, of Brown Brothers
& Company, broke the corner by selling five million gold, all payments
were repudiated by Smith, Gould & Martin; but they continued to receive
checks at Belden & Company's for some time, until the Street got wind of
the game. There was some kind of conspiracy with the Government people
which I could not make out, but I heard messages that opened my eyes as
to the ramifications of Wall Street. Gold fell to 132, and it took us
all night to get the indicator back to that quotation. All night long
the streets were full of people. Every broker's office was brilliantly
lighted all night, and all hands were at work. The clearing-house for
gold had been swamped, and all was mixed up. No one knew if he was
bankrupt or not."

Edison in those days rather liked the modest coffee-shops, and mentions
visiting one. "When on the New York No. 1 wire, that I worked in Boston,
there was an operator named Jerry Borst at the other end. He was a
first-class receiver and rapid sender. We made up a scheme to hold this
wire, so he changed one letter of the alphabet and I soon got used
to it; and finally we changed three letters. If any operator tried to
receive from Borst, he couldn't do it, so Borst and I always worked
together. Borst did less talking than any operator I ever knew. Never
having seen him, I went while in New York to call upon him. I did all
the talking. He would listen, stroke his beard, and say nothing. In the
evening I went over to an all-night lunch-house in Printing House Square
in a basement--Oliver's. Night editors, including Horace Greeley, and
Henry Raymond, of the New York Times, took their midnight lunch there.
When I went with Borst and another operator, they pointed out two or
three men who were then celebrated in the newspaper world. The night was
intensely hot and close. After getting our lunch and upon reaching the
sidewalk, Borst opened his mouth, and said: 'That's a great place; a
plate of cakes, a cup of coffee, and a Russian bath, for ten cents.'
This was about fifty per cent. of his conversation for two days."

The work of Edison on the gold-indicator had thrown him into close
relationship with Mr. Franklin L. Pope, the young telegraph engineer
then associated with Doctor Laws, and afterward a distinguished expert
and technical writer, who became President of the American Institute of
Electrical Engineers in 1886. Each recognized the special ability of
the other, and barely a week after the famous events of Black Friday the
announcement of their partnership appeared in the Telegrapher of
October 1, 1869. This was the first "professional card," if it may be so
described, ever issued in America by a firm of electrical engineers, and
is here reproduced. It is probable that the advertisement, one of the
largest in the Telegrapher, and appearing frequently, was not paid for
at full rates, as the publisher, Mr. J. N. Ashley, became a partner in
the firm, and not altogether a "sleeping one" when it came to a division
of profits, which at times were considerable. In order to be nearer his
new friend Edison boarded with Pope at Elizabeth, New Jersey, for some
time, living "the strenuous life" in the performance of his duties.
Associated with Pope and Ashley, he followed up his work on telegraph
printers with marked success. "While with them I devised a printer
to print gold quotations instead of indicating them. The lines were
started, and the whole was sold out to the Gold & Stock Telegraph
Company. My experimenting was all done in the small shop of a Doctor
Bradley, located near the station of the Pennsylvania Railroad in Jersey
City. Every night I left for Elizabeth on the 1 A.M. train, then walked
half a mile to Mr. Pope's house and up at 6 A.M. for breakfast to catch
the 7 A.M. train. This continued all winter, and many were the occasions
when I was nearly frozen in the Elizabeth walk." This Doctor Bradley
appears to have been the first in this country to make electrical
measurements of precision with the galvanometer, but was an old-school
experimenter who would work for years on an instrument without
commercial value. He was also extremely irascible, and when on one
occasion the connecting wire would not come out of one of the binding
posts of a new and costly galvanometer, he jerked the instrument to
the floor and then jumped on it. He must have been, however, a man of
originality, as evidenced by his attempt to age whiskey by electricity,
an attempt that has often since been made. "The hobby he had at the
time I was there," says Edison, "was the aging of raw whiskey by passing
strong electric currents through it. He had arranged twenty jars with
platinum electrodes held in place by hard rubber. When all was ready, he
filled the cells with whiskey, connected the battery, locked the door of
the small room in which they were placed, and gave positive orders that
no one should enter. He then disappeared for three days. On the second
day we noticed a terrible smell in the shop, as if from some dead
animal. The next day the doctor arrived and, noticing the smell, asked
what was dead. We all thought something had got into his whiskey-room
and died. He opened it and was nearly overcome. The hard rubber he used
was, of course, full of sulphur, and this being attacked by the nascent
hydrogen, had produced sulphuretted hydrogen gas in torrents, displacing
all of the air in the room. Sulphuretted hydrogen is, as is well known,
the gas given off by rotten eggs."

Another glimpse of this period of development is afforded by an
interesting article on the stock-reporting telegraph in the Electrical
World of March 4, 1899, by Mr. Ralph W. Pope, the well-known Secretary
of the American Institute of Electrical Engineers, who had as a youth an
active and intimate connection with that branch of electrical industry.
In the course of his article he mentions the curious fact that Doctor
Laws at first, in receiving quotations from the Exchanges, was so
distrustful of the Morse system that he installed long lines of
speaking-tube as a more satisfactory and safe device than a telegraph
wire. As to the relations of that time Mr. Pope remarks: "The rivalry
between the two concerns resulted in consolidation, Doctor Laws's
enterprise being absorbed by the Gold & Stock Telegraph Company, while
the Laws stock printer was relegated to the scrap-heap and the museum.
Competition in the field did not, however, cease. Messrs. Pope and
Edison invented a one-wire printer, and started a system of 'gold
printers' devoted to the recording of gold quotations and sterling
exchange only. It was intended more especially for importers and
exchange brokers, and was furnished at a lower price than the indicator
service.... The building and equipment of private telegraph lines was
also entered upon. This business was also subsequently absorbed by the
Gold & Stock Telegraph Company, which was probably at this time at the
height of its prosperity. The financial organization of the company was
peculiar and worthy of attention. Each subscriber for a machine paid
in $100 for the privilege of securing an instrument. For the service
he paid $25 weekly. In case he retired or failed, he could transfer
his 'right,' and employees were constantly on the alert for purchasable
rights, which could be disposed of at a profit. It was occasionally
worth the profit to convince a man that he did not actually own the
machine which had been placed in his office.... The Western Union
Telegraph Company secured a majority of its stock, and Gen. Marshall
Lefferts was elected president. A private-line department was
established, and the business taken over from Pope, Edison, and Ashley
was rapidly enlarged."

At this juncture General Lefferts, as President of the Gold & Stock
Telegraph Company, requested Edison to go to work on improving the stock
ticker, furnishing the money; and the well-known "Universal" ticker, in
wide-spread use in its day, was one result. Mr. Edison gives a graphic
picture of the startling effect on his fortunes: "I made a great many
inventions; one was the special ticker used for many years outside of
New York in the large cities. This was made exceedingly simple, as
they did not have the experts we had in New York to handle anything
complicated. The same ticker was used on the London Stock Exchange.
After I had made a great number of inventions and obtained patents, the
General seemed anxious that the matter should be closed up. One day I
exhibited and worked a successful device whereby if a ticker should get
out of unison in a broker's office and commence to print wild figures,
it could be brought to unison from the central station, which saved the
labor of many men and much trouble to the broker. He called me into his
office, and said: 'Now, young man, I want to close up the matter of your
inventions. How much do you think you should receive?' I had made up
my mind that, taking into consideration the time and killing pace I
was working at, I should be entitled to $5000, but could get along with
$3000. When the psychological moment arrived, I hadn't the nerve to
name such a large sum, so I said: 'Well, General, suppose you make me an
offer.' Then he said: 'How would $40,000 strike you?' This caused me to
come as near fainting as I ever got. I was afraid he would hear my heart
beat. I managed to say that I thought it was fair. 'All right, I will
have a contract drawn; come around in three days and sign it, and I
will give you the money.' I arrived on time, but had been doing some
considerable thinking on the subject. The sum seemed to be very large
for the amount of work, for at that time I determined the value by the
time and trouble, and not by what the invention was worth to others. I
thought there was something unreal about it. However, the contract was
handed to me. I signed without reading it." Edison was then handed the
first check he had ever received, one for $40,000 drawn on the Bank of
New York, at the corner of William and Wall Streets. On going to the
bank and passing in the check at the wicket of the paying teller,
some brief remarks were made to him, which in his deafness he did not
understand. The check was handed back to him, and Edison, fancying for a
moment that in some way he had been cheated, went outside "to the
large steps to let the cold sweat evaporate." He then went back to the
General, who, with his secretary, had a good laugh over the matter,
told him the check must be endorsed, and sent with him a young man to
identify him. The ceremony of identification performed with the paying
teller, who was quite merry over the incident, Edison was given the
amount in bundles of small bills "until there certainly seemed to be one
cubic foot." Unaware that he was the victim of a practical joke, Edison
proceeded gravely to stow away the money in his overcoat pockets and all
his other pockets. He then went to Newark and sat up all night with
the money for fear it might be stolen. Once more he sought help next
morning, when the General laughed heartily, and, telling the clerk that
the joke must not be carried any further, enabled him to deposit the
currency in the bank and open an account.

Thus in an inconceivably brief time had Edison passed from poverty to
independence; made a deep impression as to his originality and ability
on important people, and brought out valuable inventions; lifting
himself at one bound out of the ruck of mediocrity, and away from the
deadening drudgery of the key. Best of all he was enterprising, one of
the leaders and pioneers for whom the world is always looking; and, to
use his own criticism of himself, he had "too sanguine a temperament
to keep money in solitary confinement." With quiet self-possession he
seized his opportunity, began to buy machinery, rented a shop and got
work for it. Moving quickly into a larger shop, Nos. 10 and 12 Ward
Street, Newark, New Jersey, he secured large orders from General
Lefferts to build stock tickers, and employed fifty men. As business
increased he put on a night force, and was his own foreman on both
shifts. Half an hour of sleep three or four times in the twenty-four
hours was all he needed in those days, when one invention succeeded
another with dazzling rapidity, and when he worked with the fierce,
eruptive energy of a great volcano, throwing out new ideas incessantly
with spectacular effect on the arts to which they related. It has always
been a theory with Edison that we sleep altogether too much; but on
the other hand he never, until long past fifty, knew or practiced the
slightest moderation in work or in the use of strong coffee and black
cigars. He has, moreover, while of tender and kindly disposition, never
hesitated to use men up as freely as a Napoleon or Grant; seeing only
the goal of a complete invention or perfected device, to attain which
all else must become subsidiary. He gives a graphic picture of his first
methods as a manufacturer: "Nearly all my men were on piece work, and
I allowed them to make good wages, and never cut until the pay became
absurdly high as they got more expert. I kept no books. I had two hooks.
All the bills and accounts I owed I jabbed on one hook; and memoranda of
all owed to myself I put on the other. When some of the bills fell due,
and I couldn't deliver tickers to get a supply of money, I gave a note.
When the notes were due, a messenger came around from the bank with the
note and a protest pinned to it for $1.25. Then I would go to New York
and get an advance, or pay the note if I had the money. This method of
giving notes for my accounts and having all notes protested I kept up
over two years, yet my credit was fine. Every store I traded with was
always glad to furnish goods, perhaps in amazed admiration of my system
of doing business, which was certainly new." After a while Edison got
a bookkeeper, whose vagaries made him look back with regret on the
earlier, primitive method. "The first three months I had him go over
the books to find out how much we had made. He reported $3000. I gave
a supper to some of my men to celebrate this, only to be told two days
afterward that he had made a mistake, and that we had lost $500; and
then a few days after that he came to me again and said he was all
mixed up, and now found that we had made over $7000." Edison changed
bookkeepers, but never thereafter counted anything real profit until he
had paid all his debts and had the profits in the bank.

The factory work at this time related chiefly to stock tickers,
principally the "Universal," of which at one time twelve hundred were
in use. Edison's connection with this particular device was very close
while it lasted. In a review of the ticker art, Mr. Callahan stated,
with rather grudging praise, that "a ticker at the present time (1901)
would be considered as impracticable and unsalable if it were not
provided with a unison device," and he goes on to remark: "The first
unison on stock tickers was one used on the Laws printer. [2] It was a
crude and unsatisfactory piece of mechanism and necessitated doubling
of the battery in order to bring it into action. It was short-lived. The
Edison unison comprised a lever with a free end travelling in a spiral
or worm on the type-wheel shaft until it met a pin at the end of the
worm, thus obstructing the shaft and leaving the type-wheels at the
zero-point until released by the printing lever. This device is too
well known to require a further description. It is not applicable to any
instrument using two independently moving type-wheels; but on nearly if
not all other instruments will be found in use." The stock ticker has
enjoyed the devotion of many brilliant inventors--G. M. Phelps, H. Van
Hoevenbergh, A. A. Knudson, G. B. Scott, S. D. Field, John Burry--and
remains in extensive use as an appliance for which no substitute or
competitor has been found. In New York the two great stock exchanges
have deemed it necessary to own and operate a stock-ticker service for
the sole benefit of their members; and down to the present moment the
process of improvement has gone on, impelled by the increasing volume of
business to be reported. It is significant of Edison's work, now dimmed
and overlaid by later advances, that at the very outset he recognized
the vital importance of interchangeability in the construction of this
delicate and sensitive apparatus. But the difficulties of these early
days were almost insurmountable. Mr. R. W. Pope says of the "Universal"
machines that they were simple and substantial and generally
satisfactory, but adds: "These instruments were supposed to have been
made with interchangeable parts; but as a matter of fact the instances
in which these parts would fit were very few. The instruction-book
prepared for the use of inspectors stated that 'The parts should not be
tinkered nor bent, as they are accurately made and interchangeable.' The
difficulties encountered in fitting them properly doubtless gave rise
to a story that Mr. Edison had stated that there were three degrees of
interchangeability. This was interpreted to mean: First, the parts will
fit; second, they will almost fit; third, they do not fit, and can't be
made to fit."

     [Footnote 2: This I invented as well.--T. A. E.]

This early shop affords an illustration of the manner in which Edison
has made a deep impression on the personnel of the electrical arts. At
a single bench there worked three men since rich or prominent. One
was Sigmund Bergmann, for a time partner with Edison in his lighting
developments in the United States, and now head and principal owner
of electrical works in Berlin employing ten thousand men. The next
man adjacent was John Kruesi, afterward engineer of the great General
Electric Works at Schenectady. A third was Schuckert, who left the bench
to settle up his father's little estate at Nuremberg, stayed there and
founded electrical factories, which became the third largest in Germany,
their proprietor dying very wealthy. "I gave them a good training as
to working hours and hustling," says their quondam master; and this is
equally true as applied to many scores of others working in companies
bearing the Edison name or organized under Edison patents. It is
curiously significant in this connection that of the twenty-one
presidents of the national society, the American Institute of Electrical
Engineers, founded in 1884, eight have been intimately associated with
Edison--namely, Norvin Green and F. L. Pope, as business colleagues of
the days of which we now write; while Messrs. Frank J. Sprague, T. C.
Martin, A. E. Kennelly, S. S. Wheeler, John W. Lieb, Jr., and Louis A.
Ferguson have all been at one time or another in the Edison employ. The
remark was once made that if a famous American teacher sat at one end
of a log and a student at the other end, the elements of a successful
university were present. It is equally true that in Edison and the many
men who have graduated from his stern school of endeavor, America has
had its foremost seat of electrical engineering.



CHAPTER VIII

AUTOMATIC, DUPLEX, AND QUADRUPLEX TELEGRAPHY

WORK of various kinds poured in upon the young manufacturer, busy also
with his own schemes and inventions, which soon began to follow so many
distinct lines of inquiry that it ceases to be easy or necessary for the
historian to treat them all in chronological sequence. Some notion of
his ceaseless activity may be formed from the fact that he started no
fewer than three shops in Newark during 1870-71, and while directing
these was also engaged by the men who controlled the Automatic Telegraph
Company of New York, which had a circuit to Washington, to help it out
of its difficulties. "Soon after starting the large shop (10 and 12 Ward
Street, Newark), I rented shop-room to the inventor of a new rifle.
I think it was the Berdan. In any event, it was a rifle which was
subsequently adopted by the British Army. The inventor employed a
tool-maker who was the finest and best tool-maker I had ever seen. I
noticed that he worked pretty near the whole of the twenty-four hours.
This kind of application I was looking for. He was getting $21.50 per
week, and was also paid for overtime. I asked him if he could run the
shop. 'I don't know; try me!' he said. 'All right, I will give you $60
per week to run both shifts.' He went at it. His executive ability
was greater than that of any other man I have yet seen. His memory was
prodigious, conversation laconic, and movements rapid. He doubled
the production inside three months, without materially increasing the
pay-roll, by increasing the cutting speeds of tools, and by the use of
various devices. When in need of rest he would lie down on a work-bench,
sleep twenty or thirty minutes, and wake up fresh. As this was just what
I could do, I naturally conceived a great pride in having such a man in
charge of my work. But almost everything has trouble connected with it.
He disappeared one day, and although I sent men everywhere that it was
likely he could be found, he was not discovered. After two weeks he came
into the factory in a terrible condition as to clothes and face. He sat
down and, turning to me, said: 'Edison, it's no use, this is the third
time; I can't stand prosperity. Put my salary back and give me a job.' I
was very sorry to learn that it was whiskey that spoiled such a career.
I gave him an inferior job and kept him for a long time."

Edison had now entered definitely upon that career as an inventor which
has left so deep an imprint on the records of the United States Patent
Office, where from his first patent in 1869 up to the summer of 1910
no fewer than 1328 separate patents have been applied for in his name,
averaging thirty-two every year, and one about every eleven days; with a
substantially corresponding number issued. The height of this inventive
activity was attained about 1882, in which year no fewer than 141
patents were applied for, and seventy-five granted to him, or nearly
nine times as many as in 1876, when invention as a profession may
be said to have been adopted by this prolific genius. It will be
understood, of course, that even these figures do not represent the full
measure of actual invention, as in every process and at every step there
were many discoveries that were not brought to patent registration, but
remained "trade secrets." And furthermore, that in practically every
case the actual patented invention followed from one to a dozen or more
gradually developing forms of the same idea.

An Englishman named George Little had brought over a system of automatic
telegraphy which worked well on a short line, but was a failure when put
upon the longer circuits for which automatic methods are best adapted.
The general principle involved in automatic or rapid telegraphs, except
the photographic ones, is that of preparing the message in advance, for
dispatch, by perforating narrow strips of paper with holes--work which
can be done either by hand-punches or by typewriter apparatus. A certain
group of perforations corresponds to a Morse group of dots and dashes
for a letter of the alphabet. When the tape thus made ready is run
rapidly through a transmitting machine, electrical contact occurs
wherever there is a perforation, permitting the current from the battery
to flow into the line and thus transmit signals correspondingly. At
the distant end these signals are received sometimes on an ink-writing
recorder as dots and dashes, or even as typewriting letters; but in
many of the earlier systems, like that of Bain, the record at the higher
rates of speed was effected by chemical means, a tell-tale stain
being made on the travelling strip of paper by every spurt of incoming
current. Solutions of potassium iodide were frequently used for this
purpose, giving a sharp, blue record, but fading away too rapidly.

The Little system had perforating apparatus operated by electromagnets;
its transmitting machine was driven by a small electromagnetic motor;
and the record was made by electrochemical decomposition, the writing
member being a minute platinum roller instead of the more familiar iron
stylus. Moreover, a special type of wire had been put up for the single
circuit of two hundred and eighty miles between New York and Washington.
This is believed to have been the first "compound" wire made for
telegraphic or other signalling purposes, the object being to secure
greater lightness with textile strength and high conductivity. It had a
steel core, with a copper ribbon wound spirally around it, and tinned
to the core wire. But the results obtained were poor, and in their
necessity the parties in interest turned to Edison.

Mr. E. H. Johnson tells of the conditions: "Gen. W. J. Palmer and some
New York associates had taken up the Little automatic system and had
expended quite a sum in its development, when, thinking they had reduced
it to practice, they got Tom Scott, of the Pennsylvania Railroad to send
his superintendent of telegraph over to look into and report upon it. Of
course he turned it down. The syndicate was appalled at this report, and
in this extremity General Palmer thought of the man who had impressed
him as knowing it all by the telling of telegraphic tales as a means of
whiling away lonesome hours on the plains of Colorado, where they were
associated in railroad-building. So this man--it was I--was sent for to
come to New York and assuage their grief if possible. My report was that
the system was sound fundamentally, that it contained the germ of a good
thing, but needed working out. Associated with General Palmer was one
Col. Josiah C. Reiff, then Eastern bond agent for the Kansas Pacific
Railroad. The Colonel was always resourceful, and didn't fail in
this case. He knew of a young fellow who was doing some good work for
Marshall Lefferts, and who it was said was a genius at invention, and
a very fiend for work. His name was Edison, and he had a shop out at
Newark, New Jersey. He came and was put in my care for the purpose of a
mutual exchange of ideas and for a report by me as to his competency in
the matter. This was my introduction to Edison. He confirmed my views
of the automatic system. He saw its possibilities, as well as the chief
obstacles to be overcome--viz., the sluggishness of the wire, together
with the need of mechanical betterment of the apparatus; and he agreed
to take the job on one condition--namely, that Johnson would stay and
help, as 'he was a man with ideas.' Mr. Johnson was accordingly given
three months' leave from Colorado railroad-building, and has never seen
Colorado since."

Applying himself to the difficulties with wonted energy, Edison devised
new apparatus, and solved the problem to such an extent that he and his
assistants succeeded in transmitting and recording one thousand words
per minute between New York and Washington, and thirty-five hundred
words per minute to Philadelphia. Ordinary manual transmission by key
is not in excess of forty to fifty words a minute. Stated very briefly,
Edison's principal contribution to the commercial development of the
automatic was based on the observation that in a line of considerable
length electrical impulses become enormously extended, or sluggish, due
to a phenomenon known as self-induction, which with ordinary Morse work
is in a measure corrected by condensers. But in the automatic the aim
was to deal with impulses following each other from twenty-five to one
hundred times as rapidly as in Morse lines, and to attempt to receive
and record intelligibly such a lightning-like succession of signals
would have seemed impossible. But Edison discovered that by utilizing
a shunt around the receiving instrument, with a soft iron core, the
self-induction would produce a momentary and instantaneous reversal of
the current at the end of each impulse, and thereby give an absolutely
sharp definition to each signal. This discovery did away entirely with
sluggishness, and made it possible to secure high speeds over lines of
comparatively great lengths. But Edison's work on the automatic did
not stop with this basic suggestion, for he took up and perfected the
mechanical construction of the instruments, as well as the perforators,
and also suggested numerous electrosensitive chemicals for the
receivers, so that the automatic telegraph, almost entirely by reason of
his individual work, was placed on a plane of commercial practicability.
The long line of patents secured by him in this art is an interesting
exhibit of the development of a germ to a completed system, not, as
is usually the case, by numerous inventors working over considerable
periods of time, but by one man evolving the successive steps at a white
heat of activity.

This system was put in commercial operation, but the company, now
encouraged, was quite willing to allow Edison to work out his idea of an
automatic that would print the message in bold Roman letters instead
of in dots and dashes; with consequent gain in speed in delivery of
the message after its receipt in the operating-room, it being obviously
necessary in the case of any message received in Morse characters to
copy it in script before delivery to the recipient. A large shop was
rented in Newark, equipped with $25,000 worth of machinery, and Edison
was given full charge. Here he built their original type of apparatus,
as improved, and also pushed his experiments on the letter system so far
that at a test, between New York and Philadelphia, three thousand words
were sent in one minute and recorded in Roman type. Mr. D. N. Craig, one
of the early organizers of the Associated Press, became interested
in this company, whose president was Mr. George Harrington, formerly
Assistant Secretary of the United States Treasury.

Mr. Craig brought with him at this time--the early seventies--from
Milwaukee a Mr. Sholes, who had a wooden model of a machine to which had
been given the then new and unfamiliar name of "typewriter." Craig
was interested in the machine, and put the model in Edison's hands to
perfect. "This typewriter proved a difficult thing," says Edison, "to
make commercial. The alignment of the letters was awful. One letter
would be one-sixteenth of an inch above the others; and all the letters
wanted to wander out of line. I worked on it till the machine gave
fair results. [3] Some were made and used in the office of the Automatic
company. Craig was very sanguine that some day all business letters
would be written on a typewriter. He died before that took place; but
it gradually made its way. The typewriter I got into commercial shape is
now known as the Remington. About this time I got an idea I could devise
an apparatus by which four messages could simultaneously be sent over a
single wire without interfering with each other. I now had five shops,
and with experimenting on this new scheme I was pretty busy; at least I
did not have ennui."

     [Footnote 3: See illustration on opposite page, showing
     reproduction of the work done with this machine.]

A very interesting picture of Mr. Edison at this time is furnished by
Mr. Patrick B. Delany, a well-known inventor in the field of automatic
and multiplex telegraphy, who at that time was a chief operator of the
Franklin Telegraph Company at Philadelphia. His remark about Edison that
"his ingenuity inspired confidence, and wavering financiers stiffened
up when it became known that he was to develop the automatic" is a
noteworthy evidence of the manner in which the young inventor had
already gained a firm footing. He continues: "Edward H. Johnson was
brought on from the Denver & Rio Grande Railway to assist in the
practical introduction of automatic telegraphy on a commercial basis,
and about this time, in 1872, I joined the enterprise. Fairly good
results were obtained between New York and Washington, and Edison,
indifferent to theoretical difficulties, set out to prove high speeds
between New York and Charleston, South Carolina, the compound wire being
hitched up to one of the Southern & Atlantic wires from Washington to
Charleston for the purpose of experimentation. Johnson and I went to the
Charleston end to carry out Edison's plans, which were rapidly unfolded
by telegraph every night from a loft on lower Broadway, New York. We
could only get the wire after all business was cleared, usually about
midnight, and for months, in the quiet hours, that wire was subjected
to more electrical acrobatics than any other wire ever experienced. When
the experiments ended, Edison's system was put into regular commercial
operation between New York and Washington; and did fine work. If the
single wire had not broken about every other day, the venture would have
been a financial success; but moisture got in between the copper ribbon
and the steel core, setting up galvanic action which made short work of
the steel. The demonstration was, however, sufficiently successful to
impel Jay Gould to contract to pay about $4,000,000 in stock for the
patents. The contract was never completed so far as the $4,000,000
were concerned, but Gould made good use of it in getting control of the
Western Union."

One of the most important persons connected with the automatic
enterprise was Mr. George Harrington, to whom we have above referred,
and with whom Mr. Edison entered into close confidential relations, so
that the inventions made were held jointly, under a partnership deed
covering "any inventions or improvements that may be useful or desired
in automatic telegraphy." Mr. Harrington was assured at the outset by
Edison that while the Little perforator would give on the average only
seven or eight words per minute, which was not enough for commercial
purposes, he could devise one giving fifty or sixty words, and that
while the Little solution for the receiving tape cost $15 to $17 per
gallon, he could furnish a ferric solution costing only five or six
cents per gallon. In every respect Edison "made good," and in a short
time the system was a success, "Mr. Little having withdrawn his obsolete
perforator, his ineffective resistance, his costly chemical solution, to
give place to Edison's perforator, Edison's resistance and devices, and
Edison's solution costing a few cents per gallon. But," continues Mr.
Harrington, in a memorable affidavit, "the inventive efforts of Mr.
Edison were not confined to automatic telegraphy, nor did they cease
with the opening of that line to Washington." They all led up to the
quadruplex.

Flattered by their success, Messrs. Harrington and Reiff, who owned with
Edison the foreign patents for the new automatic system, entered into an
arrangement with the British postal telegraph authorities for a trial
of the system in England, involving its probable adoption if successful.
Edison was sent to England to make the demonstration, in 1873, reporting
there to Col. George E. Gouraud, who had been an associate in the United
States Treasury with Mr. Harrington, and was now connected with the
new enterprise. With one small satchel of clothes, three large boxes of
instruments, and a bright fellow-telegrapher named Jack Wright, he took
voyage on the Jumping Java, as she was humorously known, of the Cunard
line. The voyage was rough and the little Java justified her reputation
by jumping all over the ocean. "At the table," says Edison, "there were
never more than ten or twelve people. I wondered at the time how it
could pay to run an ocean steamer with so few people; but when we got
into calm water and could see the green fields, I was astounded to see
the number of people who appeared. There were certainly two or three
hundred. I learned afterward that they were mostly going to the Vienna
Exposition. Only two days could I get on deck, and on one of these a
gentleman had a bad scalp wound from being thrown against the iron wall
of a small smoking-room erected over a freight hatch."

Arrived in London, Edison set up his apparatus at the Telegraph Street
headquarters, and sent his companion to Liverpool with the instruments
for that end. The condition of the test was that he was to send from
Liverpool and receive in London, and to record at the rate of one
thousand words per minute, five hundred words to be sent every half hour
for six hours. Edison was given a wire and batteries to operate with,
but a preliminary test soon showed that he was going to fail. Both wire
and batteries were poor, and one of the men detailed by the authorities
to watch the test remarked quietly, in a friendly way: "You are not
going to have much show. They are going to give you an old Bridgewater
Canal wire that is so poor we don't work it, and a lot of 'sand
batteries' at Liverpool." [4] The situation was rather depressing to
the young American thus encountering, for the first time, the stolid
conservatism and opposition to change that characterizes so much of
official life and methods in Europe. "I thanked him," says Edison, "and
hoped to reciprocate somehow. I knew I was in a hole. I had been staying
at a little hotel in Covent Garden called the Hummums! and got nothing
but roast beef and flounders, and my imagination was getting into a
coma. What I needed was pastry. That night I found a French pastry shop
in High Holborn Street and filled up. My imagination got all right.
Early in the morning I saw Gouraud, stated my case, and asked if he
would stand for the purchase of a powerful battery to send to Liverpool.
He said 'Yes.' I went immediately to Apps on the Strand and asked if
he had a powerful battery. He said he hadn't; that all that he had was
Tyndall's Royal Institution battery, which he supposed would not
serve. I saw it--one hundred cells--and getting the price--one hundred
guineas--hurried to Gouraud. He said 'Go ahead.' I telegraphed to the
man in Liverpool. He came on, got the battery to Liverpool, set up and
ready, just two hours before the test commenced. One of the principal
things that made the system a success was that the line was put to earth
at the sending end through a magnet, and the extra current from this,
passed to the line, served to sharpen the recording waves. This new
battery was strong enough to pass a powerful current through the magnet
without materially diminishing the strength of the line current."

     [Footnote 4: The sand battery is now obsolete. In this type,
     the cell containing the elements was filled with sand, which
     was kept moist with an electrolyte.]

The test under these more favorable circumstances was a success. "The
record was as perfect as copper plate, and not a single remark was made
in the 'time lost' column." Edison was now asked if he thought he could
get a greater speed through submarine cables with this system than with
the regular methods, and replied that he would like a chance to try
it. For this purpose, twenty-two hundred miles of Brazilian cable then
stored under water in tanks at the Greenwich works of the Telegraph
Construction & Maintenance Company, near London, was placed at his
disposal from 8 P.M. until 6 A.M. "This just suited me, as I preferred
night-work. I got my apparatus down and set up, and then to get a
preliminary idea of what the distortion of the signal would be, I sent a
single dot, which should have been recorded upon my automatic paper by
a mark about one-thirty-second of an inch long. Instead of that it was
twenty-seven feet long! If I ever had any conceit, it vanished from my
boots up. I worked on this cable more than two weeks, and the best I
could do was two words per minute, which was only one-seventh of what
the guaranteed speed of the cable should be when laid. What I did
not know at the time was that a coiled cable, owing to induction, was
infinitely worse than when laid out straight, and that my speed was as
good as, if not better than, with the regular system; but no one told me
this." While he was engaged on these tests Colonel Gouraud came down
one night to visit him at the lonely works, spent a vigil with him, and
toward morning wanted coffee. There was only one little inn near
by, frequented by longshoremen and employees from the soap-works and
cement-factories--a rough lot--and there at daybreak they went as soon
as the other customers had left for work. "The place had a bar and six
bare tables, and was simply infested with roaches. The only things
that I ever could get were coffee made from burnt bread, with brown
molasses-cake. I ordered these for Gouraud. The taste of the coffee, the
insects, etc., were too much. He fainted. I gave him a big dose of gin,
and this revived him. He went back to the works and waited until six
when the day men came, and telegraphed for a carriage. He lost all
interest in the experiments after that, and I was ordered back to
America." Edison states, however, that the automatic was finally adopted
in England and used for many years; indeed, is still in use there. But
they took whatever was needed from his system, and he "has never had a
cent from them."

Arduous work was at once resumed at home on duplex and quadruplex
telegraphy, just as though there had been no intermission or
discouragement over dots twenty-seven feet long. A clue to his activity
is furnished in the fact that in 1872 he had applied for thirty-eight
patents in the class of telegraphy, and twenty-five in 1873; several
of these being for duplex methods, on which he had experimented. The
earlier apparatus had been built several years prior to this, as shown
by a curious little item of news that appeared in the Telegrapher
of January 30, 1869: "T. A. Edison has resigned his situation in the
Western Union office, Boston, and will devote his time to bringing out
his inventions." Oh, the supreme, splendid confidence of youth! Six
months later, as we have seen, he had already made his mark, and the
same journal, in October, 1869, could say: "Mr. Edison is a young man
of the highest order of mechanical talent, combined with good scientific
electrical knowledge and experience. He has already invented and
patented a number of valuable and useful inventions, among which may be
mentioned the best instrument for double transmission yet brought out."
Not bad for a novice of twenty-two. It is natural, therefore, after his
intervening work on indicators, stock tickers, automatic telegraphs, and
typewriters, to find him harking back to duplex telegraphy, if, indeed,
he can be said to have dropped it in the interval. It has always been
one of the characteristic features of Edison's method of inventing that
work in several lines has gone forward at the same time. No one line of
investigation has ever been enough to occupy his thoughts fully; or to
express it otherwise, he has found rest in turning from one field of
work to another, having absolutely no recreations or hobbies, and not
needing them. It may also be said that, once entering it, Mr. Edison has
never abandoned any field of work. He may change the line of attack; he
may drop the subject for a time; but sooner or later the note-books or
the Patent Office will bear testimony to the reminiscent outcropping of
latent thought on the matter. His attention has shifted chronologically,
and by process of evolution, from one problem to another, and some
results are found to be final; but the interest of the man in the thing
never dies out. No one sees more vividly than he the fact that in the
interplay of the arts one industry shapes and helps another, and that no
invention lives to itself alone.

The path to the quadruplex lay through work on the duplex, which,
suggested first by Moses G. Farmer in 1852, had been elaborated by many
ingenious inventors, notably in this country by Stearns, before Edison
once again applied his mind to it. The different methods of such
multiple transmission--namely, the simultaneous dispatch of the two
communications in opposite directions over the same wire, or the
dispatch of both at once in the same direction--gave plenty of play to
ingenuity. Prescott's Elements of the Electric Telegraph, a standard
work in its day, described "a method of simultaneous transmission
invented by T. A. Edison, of New Jersey, in 1873," and says of it: "Its
peculiarity consists in the fact that the signals are transmitted in one
direction by reversing the polarity of a constant current, and in the
opposite direction by increasing or decreasing the strength of the same
current." Herein lay the germ of the Edison quadruplex. It is also noted
that "In 1874 Edison invented a method of simultaneous transmission
by induced currents, which has given very satisfactory results in
experimental trials." Interest in the duplex as a field of invention
dwindled, however, as the quadruplex loomed up, for while the one
doubled the capacity of a circuit, the latter created three "phantom
wires," and thus quadruplexed the working capacity of any line to which
it was applied. As will have been gathered from the above, the principle
embodied in the quadruplex is that of working over the line with two
currents from each end that differ from each other in strength or
nature, so that they will affect only instruments adapted to respond
to just such currents and no others; and by so arranging the receiving
apparatus as not to be affected by the currents transmitted from its
own end of the line. Thus by combining instruments that respond only
to variation in the strength of current from the distant station, with
instruments that respond only to the change in the direction of current
from the distant station, and by grouping a pair of these at each end of
the line, the quadruplex is the result. Four sending and four receiving
operators are kept busy at each end, or eight in all. Aside from other
material advantages, it is estimated that at least from $15,000,000 to
$20,000,000 has been saved by the Edison quadruplex merely in the cost
of line construction in America.

The quadruplex has not as a rule the same working efficiency that
four separate wires have. This is due to the fact that when one of the
receiving operators is compelled to "break" the sending operator for
any reason, the "break" causes the interruption of the work of eight
operators, instead of two, as would be the case on a single wire. The
working efficiency of the quadruplex, therefore, with the apparatus in
good working condition, depends entirely upon the skill of the operators
employed to operate it. But this does not reflect upon or diminish the
ingenuity required for its invention. Speaking of the problem involved,
Edison said some years later to Mr. Upton, his mathematical assistant,
that "he always considered he was only working from one room to another.
Thus he was not confused by the amount of wire and the thought of
distance."

The immense difficulties of reducing such a system to practice may be
readily conceived, especially when it is remembered that the "line"
itself, running across hundreds of miles of country, is subject to all
manner of atmospheric conditions, and varies from moment to moment in
its ability to carry current, and also when it is borne in mind that
the quadruplex requires at each end of the line a so-called "artificial
line," which must have the exact resistance of the working line and must
be varied with the variations in resistance of the working line. At this
juncture other schemes were fermenting in his brain; but the quadruplex
engrossed him. "This problem was of most difficult and complicated kind,
and I bent all my energies toward its solution. It required a peculiar
effort of the mind, such as the imagining of eight different things
moving simultaneously on a mental plane, without anything to demonstrate
their efficiency." It is perhaps hardly to be wondered at that when
notified he would have to pay 12 1/2 per cent. extra if his taxes in
Newark were not at once paid, he actually forgot his own name when asked
for it suddenly at the City Hall, lost his place in the line, and, the
fatal hour striking, had to pay the surcharge after all!

So important an invention as the quadruplex could not long go begging,
but there were many difficulties connected with its introduction, some
of which are best described in Mr. Edison's own words: "Around 1873 the
owners of the Automatic Telegraph Company commenced negotiations with
Jay Gould for the purchase of the wires between New York and Washington,
and the patents for the system, then in successful operation. Jay Gould
at that time controlled the Atlantic & Pacific Telegraph Company, and
was competing with the Western Union and endeavoring to depress Western
Union stock on the Exchange. About this time I invented the quadruplex.
I wanted to interest the Western Union Telegraph Company in it, with
a view of selling it, but was unsuccessful until I made an arrangement
with the chief electrician of the company, so that he could be known as
a joint inventor and receive a portion of the money. At that time I was
very short of money, and needed it more than glory. This electrician
appeared to want glory more than money, so it was an easy trade.
I brought my apparatus over and was given a separate room with a
marble-tiled floor, which, by-the-way, was a very hard kind of floor to
sleep on, and started in putting on the finishing touches.

"After two months of very hard work, I got a detail at regular times of
eight operators, and we got it working nicely from one room to another
over a wire which ran to Albany and back. Under certain conditions of
weather, one side of the quadruplex would work very shakily, and I had
not succeeded in ascertaining the cause of the trouble. On a certain
day, when there was a board meeting of the company, I was to make an
exhibition test. The day arrived. I had picked the best operators in New
York, and they were familiar with the apparatus. I arranged that if a
storm occurred, and the bad side got shaky, they should do the best
they could and draw freely on their imaginations. They were sending old
messages. About 1, o'clock everything went wrong, as there was a storm
somewhere near Albany, and the bad side got shaky. Mr. Orton, the
president, and Wm. H. Vanderbilt and the other directors came in. I had
my heart trying to climb up around my oesophagus. I was paying a sheriff
five dollars a day to withhold judgment which had been entered against
me in a case which I had paid no attention to; and if the quadruplex had
not worked before the president, I knew I was to have trouble and might
lose my machinery. The New York Times came out next day with a full
account. I was given $5000 as part payment for the invention, which
made me easy, and I expected the whole thing would be closed up. But Mr.
Orton went on an extended tour just about that time. I had paid for all
the experiments on the quadruplex and exhausted the money, and I was
again in straits. In the mean time I had introduced the apparatus on the
lines of the company, where it was very successful.

"At that time the general superintendent of the Western Union was Gen.
T. T. Eckert (who had been Assistant Secretary of War with Stanton).
Eckert was secretly negotiating with Gould to leave the Western Union
and take charge of the Atlantic & Pacific--Gould's company. One day
Eckert called me into his office and made inquiries about money matters.
I told him Mr. Orton had gone off and left me without means, and I was
in straits. He told me I would never get another cent, but that he
knew a man who would buy it. I told him of my arrangement with the
electrician, and said I could not sell it as a whole to anybody; but if
I got enough for it, I would sell all my interest in any SHARE I might
have. He seemed to think his party would agree to this. I had a set
of quadruplex over in my shop, 10 and 12 Ward Street, Newark, and he
arranged to bring him over next evening to see the apparatus. So the
next morning Eckert came over with Jay Gould and introduced him to me.
This was the first time I had ever seen him. I exhibited and explained
the apparatus, and they departed. The next day Eckert sent for me, and
I was taken up to Gould's house, which was near the Windsor Hotel, Fifth
Avenue. In the basement he had an office. It was in the evening, and we
went in by the servants' entrance, as Eckert probably feared that he
was watched. Gould started in at once and asked me how much I wanted.
I said: 'Make me an offer.' Then he said: 'I will give you $30,000.' I
said: 'I will sell any interest I may have for that money,' which was
something more than I thought I could get. The next morning I went with
Gould to the office of his lawyers, Sherman & Sterling, and received a
check for $30,000, with a remark by Gould that I had got the steamboat
Plymouth Rock, as he had sold her for $30,000 and had just received the
check. There was a big fight on between Gould's company and the Western
Union, and this caused more litigation. The electrician, on account
of the testimony involved, lost his glory. The judge never decided
the case, but went crazy a few months afterward." It was obviously a
characteristically shrewd move on the part of Mr. Gould to secure an
interest in the quadruplex, as a factor in his campaign against the
Western Union, and as a decisive step toward his control of that system,
by the subsequent merger that included not only the Atlantic & Pacific
Telegraph Company, but the American Union Telegraph Company.

Nor was Mr. Gould less appreciative of the value of Edison's automatic
system. Referring to matters that will be taken up later in the
narrative, Edison says: "After this Gould wanted me to help install the
automatic system in the Atlantic & Pacific company, of which General
Eckert had been elected president, the company having bought the
Automatic Telegraph Company. I did a lot of work for this company making
automatic apparatus in my shop at Newark. About this time I invented a
district messenger call-box system, and organized a company called the
Domestic Telegraph Company, and started in to install the system in
New York. I had great difficulty in getting subscribers, having tried
several canvassers, who, one after the other, failed to get subscribers.
When I was about to give it up, a test operator named Brown, who was
on the Automatic Telegraph wire between New York and Washington, which
passed through my Newark shop, asked permission to let him try and see
if he couldn't get subscribers. I had very little faith in his ability
to get any, but I thought I would give him a chance, as he felt
certain of his ability to succeed. He started in, and the results were
surprising. Within a month he had procured two hundred subscribers, and
the company was a success. I have never quite understood why six men
should fail absolutely, while the seventh man should succeed. Perhaps
hypnotism would account for it. This company was sold out to the
Atlantic & Pacific company." As far back as 1872, Edison had applied for
a patent on district messenger signal boxes, but it was not issued until
January, 1874, another patent being granted in September of the same
year. In this field of telegraph application, as in others, Edison was
a very early comer, his only predecessor being the fertile and ingenious
Callahan, of stock-ticker fame. The first president of the Gold & Stock
Telegraph Company, Elisha W. Andrews, had resigned in 1870 in order
to go to England to introduce the stock ticker in London. He lived in
Englewood, New Jersey, and the very night he had packed his trunk the
house was burglarized. Calling on his nearest friend the next morning
for even a pair of suspenders, Mr. Andrews was met with regrets of
inability, because the burglars had also been there. A third and fourth
friend in the vicinity was appealed to with the same disheartening reply
of a story of wholesale spoliation. Mr. Callahan began immediately to
devise a system of protection for Englewood; but at that juncture a
servant-girl who had been for many years with a family on the Heights
in Brooklyn went mad suddenly and held an aged widow and her daughter
as helpless prisoners for twenty-four hours without food or water. This
incident led to an extension of the protective idea, and very soon a
system was installed in Brooklyn with one hundred subscribers. Out of
this grew in turn the district messenger system, for it was just as
easy to call a messenger as to sound a fire-alarm or summon the police.
To-day no large city in America is without a service of this character,
but its function was sharply limited by the introduction of the
telephone.

Returning to the automatic telegraph it is interesting to note that so
long as Edison was associated with it as a supervising providence it did
splendid work, which renders the later neglect of automatic or "rapid
telegraphy" the more remarkable. Reid's standard Telegraph in America
bears astonishing testimony on this point in 1880, as follows: "The
Atlantic & Pacific Telegraph Company had twenty-two automatic stations.
These included the chief cities on the seaboard, Buffalo, Chicago,
and Omaha. The through business during nearly two years was largely
transmitted in this way. Between New York and Boston two thousand words
a minute have been sent. The perforated paper was prepared at the rate
of twenty words per minute. Whatever its demerits this system enabled
the Atlantic & Pacific company to handle a much larger business during
1875 and 1876 than it could otherwise have done with its limited
number of wires in their then condition." Mr. Reid also notes as a
very thorough test of the perfect practicability of the system, that it
handled the President's message, December 3, 1876, of 12,600 words with
complete success. This long message was filed at Washington at 1.05 and
delivered in New York at 2.07. The first 9000 words were transmitted
in forty-five minutes. The perforated strips were prepared in thirty
minutes by ten persons, and duplicated by nine copyists. But to-day,
nearly thirty-five years later, telegraphy in America is still
practically on a basis of hand transmission!

Of this period and his association with Jay Gould, some very interesting
glimpses are given by Edison. "While engaged in putting in the automatic
system, I saw a great deal of Gould, and frequently went uptown to his
office to give information. Gould had no sense of humor. I tried several
times to get off what seemed to me a funny story, but he failed to see
any humor in them. I was very fond of stories, and had a choice
lot, always kept fresh, with which I could usually throw a man into
convulsions. One afternoon Gould started in to explain the great future
of the Union Pacific Railroad, which he then controlled. He got a map,
and had an immense amount of statistics. He kept at it for over four
hours, and got very enthusiastic. Why he should explain to me, a mere
inventor, with no capital or standing, I couldn't make out. He had a
peculiar eye, and I made up my mind that there was a strain of insanity
somewhere. This idea was strengthened shortly afterward when the Western
Union raised the monthly rental of the stock tickers. Gould had one in
his house office, which he watched constantly. This he had removed,
to his great inconvenience, because the price had been advanced a few
dollars! He railed over it. This struck me as abnormal. I think Gould's
success was due to abnormal development. He certainly had one trait
that all men must have who want to succeed. He collected every kind of
information and statistics about his schemes, and had all the data. His
connection with men prominent in official life, of which I was aware,
was surprising to me. His conscience seemed to be atrophied, but that
may be due to the fact that he was contending with men who never had any
to be atrophied. He worked incessantly until 12 or 1 o'clock at night.
He took no pride in building up an enterprise. He was after money, and
money only. Whether the company was a success or a failure mattered not
to him. After he had hammered the Western Union through his opposition
company and had tired out Mr. Vanderbilt, the latter retired from
control, and Gould went in and consolidated his company and controlled
the Western Union. He then repudiated the contract with the Automatic
Telegraph people, and they never received a cent for their wires or
patents, and I lost three years of very hard labor. But I never had any
grudge against him, because he was so able in his line, and as long as
my part was successful the money with me was a secondary consideration.
When Gould got the Western Union I knew no further progress in
telegraphy was possible, and I went into other lines." The truth is
that General Eckert was a conservative--even a reactionary--and being
prejudiced like many other American telegraph managers against "machine
telegraphy," threw out all such improvements.

The course of electrical history has been variegated by some very
remarkable litigation; but none was ever more extraordinary than that
referred to here as arising from the transfer of the Automatic Telegraph
Company to Mr. Jay Gould and the Atlantic & Pacific Telegraph Company.
The terms accepted by Colonel Reiff from Mr. Gould, on December 30,
1874, provided that the purchasing telegraph company should increase its
capital to $15,000,000, of which the Automatic interests were to receive
$4,000,000 for their patents, contracts, etc. The stock was then selling
at about 25, and in the later consolidation with the Western Union
"went in" at about 60; so that the real purchase price was not less than
$1,000,000 in cash. There was a private arrangement in writing with Mr.
Gould that he was to receive one-tenth of the "result" to the Automatic
group, and a tenth of the further results secured at home and abroad.
Mr. Gould personally bought up and gave money and bonds for one or two
individual interests on the above basis, including that of Harrington,
who in his representative capacity executed assignments to Mr. Gould.
But payments were then stopped, and the other owners were left without
any compensation, although all that belonged to them in the shape of
property and patents was taken over bodily into Atlantic & Pacific
hands, and never again left them. Attempts at settlement were made in
their behalf, and dragged wearily, due apparently to the fact that
the plans were blocked by General Eckert, who had in some manner taken
offence at a transaction effected without his active participation in
all the details. Edison, who became under the agreement the electrician
of the Atlantic & Pacific Telegraph Company, has testified to the
unfriendly attitude assumed toward him by General Eckert, as president.
In a graphic letter from Menlo Park to Mr. Gould, dated February 2,
1877, Edison makes a most vigorous and impassioned complaint of
his treatment, "which, acting cumulatively, was a long, unbroken
disappointment to me"; and he reminds Mr. Gould of promises made to
him the day the transfer had been effected of Edison's interest in the
quadruplex. The situation was galling to the busy, high-spirited young
inventor, who, moreover, "had to live"; and it led to his resumption of
work for the Western Union Telegraph Company, which was only too glad to
get him back. Meantime, the saddened and perplexed Automatic group was
left unpaid, and it was not until 1906, on a bill filed nearly thirty
years before, that Judge Hazel, in the United States Circuit Court
for the Southern District of New York, found strongly in favor of the
claimants and ordered an accounting. The court held that there had been
a most wrongful appropriation of the patents, including alike those
relating to the automatic, the duplex, and the quadruplex, all being
included in the general arrangement under which Mr. Gould had held put
his tempting bait of $4,000,000. In the end, however, the complainant
had nothing to show for all his struggle, as the master who made the
accounting set the damages at one dollar!

Aside from the great value of the quadruplex, saving millions of
dollars, for a share in which Edison received $30,000, the automatic
itself is described as of considerable utility by Sir William Thomson in
his juror report at the Centennial Exposition of 1876, recommending it
for award. This leading physicist of his age, afterward Lord Kelvin, was
an adept in telegraphy, having made the ocean cable talk, and he saw in
Edison's "American Automatic," as exhibited by the Atlantic & Pacific
company, a most meritorious and useful system. With the aid of Mr. E.
H. Johnson he made exhaustive tests, carrying away with him to Glasgow
University the surprising records that he obtained. His official report
closes thus: "The electromagnetic shunt with soft iron core, invented
by Mr. Edison, utilizing Professor Henry's discovery of electromagnetic
induction in a single circuit to produce a momentary reversal of the
line current at the instant when the battery is thrown off and so cut
off the chemical marks sharply at the proper instant, is the electrical
secret of the great speed he has achieved. The main peculiarities of Mr.
Edison's automatic telegraph shortly stated in conclusion are: (1) the
perforator; (2) the contact-maker; (3) the electromagnetic shunt; and
(4) the ferric cyanide of iron solution. It deserves award as a very
important step in land telegraphy." The attitude thus disclosed toward
Mr. Edison's work was never changed, except that admiration grew as
fresh inventions were brought forward. To the day of his death Lord
Kelvin remained on terms of warmest friendship with his American
co-laborer, with whose genius he thus first became acquainted at
Philadelphia in the environment of Franklin.

It is difficult to give any complete idea of the activity maintained at
the Newark shops during these anxious, harassed years, but the statement
that at one time no fewer than forty-five different inventions were
being worked upon, will furnish some notion of the incandescent activity
of the inventor and his assistants. The hours were literally endless;
and upon one occasion, when the order was in hand for a large quantity
of stock tickers, Edison locked his men in until the job had been
finished of making the machine perfect, and "all the bugs taken out,"
which meant sixty hours of unintermitted struggle with the difficulties.
Nor were the problems and inventions all connected with telegraphy.
On the contrary, Edison's mind welcomed almost any new suggestion as a
relief from the regular work in hand. Thus: "Toward the latter part of
1875, in the Newark shop, I invented a device for multiplying copies of
letters, which I sold to Mr. A. B. Dick, of Chicago, and in the years
since it has been universally introduced throughout the world. It is
called the 'Mimeograph.' I also invented devices for and introduced
paraffin paper, now used universally for wrapping up candy, etc."
The mimeograph employs a pointed stylus, used as in writing with a
lead-pencil, which is moved over a kind of tough prepared paper placed
on a finely grooved steel plate. The writing is thus traced by means of
a series of minute perforations in the sheet, from which, as a stencil,
hundreds of copies can be made. Such stencils can be prepared on
typewriters. Edison elaborated this principle in two other forms--one
pneumatic and one electric--the latter being in essence a reciprocating
motor. Inside the barrel of the electric pen a little plunger, carrying
the stylus, travels to and fro at a very high rate of speed, due to the
attraction and repulsion of the solenoid coils of wire surrounding it;
and as the hand of the writer guides it the pen thus makes its record
in a series of very minute perforations in the paper. The current from
a small battery suffices to energize the pen, and with the stencil thus
made hundreds of copies of the document can be furnished. As a matter
of fact, as many as three thousand copies have been made from a single
mimeographic stencil of this character.



CHAPTER IX

THE TELEPHONE, MOTOGRAPH, AND MICROPHONE

A VERY great invention has its own dramatic history. Episodes full of
human interest attend its development. The periods of weary struggle,
the daring adventure along unknown paths, the clash of rival claimants,
are closely similar to those which mark the revelation and subjugation
of a new continent. At the close of the epoch of discovery it is seen
that mankind as a whole has made one more great advance; but in the
earlier stages one watched chiefly the confused vicissitudes of fortune
of the individual pioneers. The great modern art of telephony has had
thus in its beginnings, its evolution, and its present status as a
universal medium of intercourse, all the elements of surprise, mystery,
swift creation of wealth, tragic interludes, and colossal battle that
can appeal to the imagination and hold public attention. And in this
new electrical industry, in laying its essential foundations, Edison has
again been one of the dominant figures.

As far back as 1837, the American, Page, discovered the curious fact
that an iron bar, when magnetized and demagnetized at short intervals
of time, emitted sounds due to the molecular disturbances in the mass.
Philipp Reis, a simple professor in Germany, utilized this principle in
the construction of apparatus for the transmission of sound; but in the
grasp of the idea he was preceded by Charles Bourseul, a young French
soldier in Algeria, who in 1854, under the title of "Electrical
Telephony," in a Parisian illustrated paper, gave a brief and lucid
description as follows:


"We know that sounds are made by vibrations, and are made sensible to
the ear by the same vibrations, which are reproduced by the intervening
medium. But the intensity of the vibrations diminishes very rapidly with
the distance; so that even with the aid of speaking-tubes and trumpets
it is impossible to exceed somewhat narrow limits. Suppose a man speaks
near a movable disk sufficiently flexible to lose none of the vibrations
of the voice; that this disk alternately makes and breaks the connection
with a battery; you may have at a distance another disk which will
simultaneously execute the same vibrations.... Any one who is not deaf
and dumb may use this mode of transmission, which would require no
apparatus except an electric battery, two vibrating disks, and a wire."

This would serve admirably for a portrayal of the Bell telephone, except
that it mentions distinctly the use of the make-and-break method (i.
e., where the circuit is necessarily opened and closed as in telegraphy,
although, of course, at an enormously higher rate), which has never
proved practical.

So far as is known Bourseul was not practical enough to try his own
suggestion, and never made a telephone. About 1860, Reis built several
forms of electrical telephonic apparatus, all imitating in some degree
the human ear, with its auditory tube, tympanum, etc., and examples
of the apparatus were exhibited in public not only in Germany, but in
England. There is a variety of testimony to the effect that not only
musical sounds, but stray words and phrases, were actually transmitted
with mediocre, casual success. It was impossible, however, to maintain
the devices in adjustment for more than a few seconds, since the
invention depended upon the make-and-break principle, the circuit being
made and broken every time an impulse-creating sound went through it,
causing the movement of the diaphragm on which the sound-waves impinged.
Reis himself does not appear to have been sufficiently interested in the
marvellous possibilities of the idea to follow it up--remarking to the
man who bought his telephonic instruments and tools that he had shown
the world the way. In reality it was not the way, although a monument
erected to his memory at Frankfort styles him the inventor of the
telephone. As one of the American judges said, in deciding an early
litigation over the invention of the telephone, a hundred years of Reis
would not have given the world the telephonic art for public use. Many
others after Reis tried to devise practical make-and-break telephones,
and all failed; although their success would have rendered them very
valuable as a means of fighting the Bell patent. But the method was a
good starting-point, even if it did not indicate the real path. If Reis
had been willing to experiment with his apparatus so that it did not
make-and-break, he would probably have been the true father of the
telephone, besides giving it the name by which it is known. It was not
necessary to slam the gate open and shut. All that was required was to
keep the gate closed, and rattle the latch softly. Incidentally it
may be noted that Edison in experimenting with the Reis transmitter
recognized at once the defect caused by the make-and-break action, and
sought to keep the gap closed by the use, first, of one drop of water,
and later of several drops. But the water decomposed, and the incurable
defect was still there.

The Reis telephone was brought to America by Dr. P. H. Van der Weyde,
a well-known physicist in his day, and was exhibited by him before a
technical audience at Cooper Union, New York, in 1868, and described
shortly after in the technical press. The apparatus attracted attention,
and a set was secured by Prof. Joseph Henry for the Smithsonian
Institution. There the famous philosopher showed and explained it to
Alexander Graham Bell, when that young and persevering Scotch genius
went to get help and data as to harmonic telegraphy, upon which he was
working, and as to transmitting vocal sounds. Bell took up immediately
and energetically the idea that his two predecessors had dropped--and
reached the goal. In 1875 Bell, who as a student and teacher of vocal
physiology had unusual qualifications for determining feasible methods
of speech transmission, constructed his first pair of magneto telephones
for such a purpose. In February of 1876 his first telephone patent was
applied for, and in March it was issued. The first published account
of the modern speaking telephone was a paper read by Bell before the
American Academy of Arts and Sciences in Boston in May of that year;
while at the Centennial Exposition at Philadelphia the public first
gained any familiarity with it. It was greeted at once with scientific
acclaim and enthusiasm as a distinctly new and great invention, although
at first it was regarded more as a scientific toy than as a commercially
valuable device.

By an extraordinary coincidence, the very day that Bell's application
for a patent went into the United States Patent Office, a caveat was
filed there by Elisha Gray, of Chicago, covering the specific idea of
transmitting speech and reproducing it in a telegraphic circuit "through
an instrument capable of vibrating responsively to all the tones of
the human voice, and by which they are rendered audible." Out of this
incident arose a struggle and a controversy whose echoes are yet heard
as to the legal and moral rights of the two inventors, the assertion
even being made that one of the most important claims of Gray, that on
a liquid battery transmitter, was surreptitiously "lifted" into the
Bell application, then covering only the magneto telephone. It was also
asserted that the filing of the Gray caveat antedated by a few hours
the filing of the Bell application. All such issues when brought to
the American courts were brushed aside, the Bell patent being broadly
maintained in all its remarkable breadth and fullness, embracing an
entire art; but Gray was embittered and chagrined, and to the last
expressed his belief that the honor and glory should have been his. The
path of Gray to the telephone was a natural one. A Quaker carpenter who
studied five years at Oberlin College, he took up electrical invention,
and brought out many ingenious devices in rapid succession in the
telegraphic field, including the now universal needle annunciator for
hotels, etc., the useful telautograph, automatic self-adjusting relays,
private-line printers--leading up to his famous "harmonic" system. This
was based upon the principle that a sound produced in the presence of a
reed or tuning-fork responding to the sound, and acting as the armature
of a magnet in a closed circuit, would, by induction, set up electric
impulses in the circuit and cause a distant magnet having a similarly
tuned armature to produce the same tone or note. He also found that over
the same wire at the same time another series of impulses corresponding
to another note could be sent through the agency of a second set
of magnets without in any way interfering with the first series of
impulses. Building the principle into apparatus, with a keyboard and
vibrating "reeds" before his magnets, Doctor Gray was able not only to
transmit music by his harmonic telegraph, but went so far as to send
nine different telegraph messages at the same instant, each set of
instruments depending on its selective note, while any intermediate
office could pick up the message for itself by simply tuning its relays
to the keynote required. Theoretically the system could be split up into
any number of notes and semi-tones. Practically it served as the basis
of some real telegraphic work, but is not now in use. Any one can
realize, however, that it did not take so acute and ingenious a mind
very long to push forward to the telephone, as a dangerous competitor
with Bell, who had also, like Edison, been working assiduously in the
field of acoustic and multiple telegraphs. Seen in the retrospect, the
struggle for the goal at this moment was one of the memorable incidents
in electrical history.

Among the interesting papers filed at the Orange Laboratory is a
lithograph, the size of an ordinary patent drawing, headed "First
Telephone on Record." The claim thus made goes back to the period
when all was war, and when dispute was hot and rife as to the actual
invention of the telephone. The device shown, made by Edison in 1875,
was actually included in a caveat filed January 14, 1876, a month before
Bell or Gray. It shows a little solenoid arrangement, with one end
of the plunger attached to the diaphragm of a speaking or resonating
chamber. Edison states that while the device is crudely capable of use
as a magneto telephone, he did not invent it for transmitting speech,
but as an apparatus for analyzing the complex waves arising from various
sounds. It was made in pursuance of his investigations into the subject
of harmonic telegraphs. He did not try the effect of sound-waves
produced by the human voice until Bell came forward a few months later;
but he found then that this device, made in 1875, was capable of use as
a telephone. In his testimony and public utterances Edison has always
given Bell credit for the discovery of the transmission of articulate
speech by talking against a diaphragm placed in front of an
electromagnet; but it is only proper here to note, in passing, the
curious fact that he had actually produced a device that COULD talk,
prior to 1876, and was therefore very close to Bell, who took the
one great step further. A strong characterization of the value and
importance of the work done by Edison in the development of the carbon
transmitter will be found in the decision of Judge Brown in the United
States Circuit Court of Appeals, sitting in Boston, on February 27,
1901, declaring void the famous Berliner patent of the Bell telephone
system. [5]

     [Footnote 5: See Federal Reporter, vol. 109, p. 976 et seq.]

Bell's patent of 1876 was of an all-embracing character, which only
the make-and-break principle, if practical, could have escaped. It was
pointed out in the patent that Bell discovered the great principle that
electrical undulations induced by the vibrations of a current produced
by sound-waves can be represented graphically by the same sinusoidal
curve that expresses the original sound vibrations themselves; or, in
other words, that a curve representing sound vibrations will correspond
precisely to a curve representing electric impulses produced or
generated by those identical sound vibrations--as, for example, when
the latter impinge upon a diaphragm acting as an armature of an
electromagnet, and which by movement to and fro sets up the electric
impulses by induction. To speak plainly, the electric impulses
correspond in form and character to the sound vibration which they
represent. This reduced to a patent "claim" governed the art as firmly
as a papal bull for centuries enabled Spain to hold the Western
world. The language of the claim is: "The method of and apparatus for
transmitting vocal or other sounds telegraphically as herein described,
by causing electrical undulations similar in form to the vibrations of
the air accompanying the said vocal or other sounds substantially as set
forth." It was a long time, however, before the inclusive nature of this
grant over every possible telephone was understood or recognized, and
litigation for and against the patent lasted during its entire life. At
the outset, the commercial value of the telephone was little appreciated
by the public, and Bell had the greatest difficulty in securing capital;
but among far-sighted inventors there was an immediate "rush to the gold
fields." Bell's first apparatus was poor, the results being described by
himself as "unsatisfactory and discouraging," which was almost as
true of the devices he exhibited at the Philadelphia Centennial. The
new-comers, like Edison, Berliner, Blake, Hughes, Gray, Dolbear, and
others, brought a wealth of ideas, a fund of mechanical ingenuity,
and an inventive ability which soon made the telephone one of the most
notable gains of the century, and one of the most valuable additions
to human resources. The work that Edison did was, as usual, marked by
infinite variety of method as well as by the power to seize on the
one needed element of practical success. Every one of the six million
telephones in use in the United States, and of the other millions in use
through out the world, bears the imprint of his genius, as at one time
the instruments bore his stamped name. For years his name was branded
on every Bell telephone set, and his patents were a mainstay of what has
been popularly called the "Bell monopoly." Speaking of his own efforts
in this field, Mr. Edison says:

"In 1876 I started again to experiment for the Western Union and
Mr. Orton. This time it was the telephone. Bell invented the first
telephone, which consisted of the present receiver, used both as a
transmitter and a receiver (the magneto type). It was attempted to
introduce it commercially, but it failed on account of its faintness and
the extraneous sounds which came in on its wires from various causes.
Mr. Orton wanted me to take hold of it and make it commercial. As I
had also been working on a telegraph system employing tuning-forks,
simultaneously with both Bell and Gray, I was pretty familiar with the
subject. I started in, and soon produced the carbon transmitter, which
is now universally used.

"Tests were made between New York and Philadelphia, also between New
York and Washington, using regular Western Union wires. The noises were
so great that not a word could be heard with the Bell receiver when used
as a transmitter between New York and Newark, New Jersey. Mr. Orton and
W. K. Vanderbilt and the board of directors witnessed and took part
in the tests. The Western Union then put them on private lines. Mr.
Theodore Puskas, of Budapest, Hungary, was the first man to suggest
a telephone exchange, and soon after exchanges were established. The
telephone department was put in the hands of Hamilton McK. Twombly,
Vanderbilt's ablest son-in-law, who made a success of it. The Bell
company, of Boston, also started an exchange, and the fight was on,
the Western Union pirating the Bell receiver, and the Boston company
pirating the Western Union transmitter. About this time I wanted to be
taken care of. I threw out hints of this desire. Then Mr. Orton sent
for me. He had learned that inventors didn't do business by the regular
process, and concluded he would close it right up. He asked me how much
I wanted. I had made up my mind it was certainly worth $25,000, if it
ever amounted to anything for central-station work, so that was the sum
I had in mind to stick to and get--obstinately. Still it had been an
easy job, and only required a few months, and I felt a little shaky and
uncertain. So I asked him to make me an offer. He promptly said he would
give me $100,000. 'All right,' I said. 'It is yours on one condition,
and that is that you do not pay it all at once, but pay me at the rate
of $6000 per year for seventeen years'--the life of the patent. He
seemed only too pleased to do this, and it was closed. My ambition was
about four times too large for my business capacity, and I knew that I
would soon spend this money experimenting if I got it all at once, so
I fixed it that I couldn't. I saved seventeen years of worry by this
stroke."

Thus modestly is told the debut of Edison in the telephone art, to which
with his carbon transmitter he gave the valuable principle of varying
the resistance of the transmitting circuit with changes in the pressure,
as well as the vital practice of using the induction coil as a means of
increasing the effective length of the talking circuit. Without these,
modern telephony would not and could not exist. [6] But Edison, in
telephonic work, as in other directions, was remarkably fertile and
prolific. His first inventions in the art, made in 1875-76, continue
through many later years, including all kinds of carbon instruments
--the water telephone, electrostatic telephone, condenser telephone,
chemical telephone, various magneto telephones, inertia telephone,
mercury telephone, voltaic pile telephone, musical transmitter, and the
electromotograph. All were actually made and tested.


     [Footnote 6: Briefly stated, the essential difference
     between Bell's telephone and Edison's is this: With the
     former the sound vibrations impinge upon a steel diaphragm
     arranged adjacent to the pole of a bar electromagnet,
     whereby the diaphragm acts as an armature, and by its
     vibrations induces very weak electric impulses in the
     magnetic coil. These impulses, according to Bell's theory,
     correspond in form to the sound-waves, and passing over the
     line energize the magnet coil at the receiving end, and by
     varying the magnetism cause the receiving diaphragm to be
     similarly vibrated to reproduce the sounds. A single
     apparatus is therefore used at each end, performing the
     double function of transmitter and receiver. With Edison's
     telephone a closed circuit is used on which is constantly
     flowing a battery current, and included in that circuit is a
     pair of electrodes, one or both of which is of carbon. These
     electrodes are always in contact with a certain initial
     pressure, so that current will be always flowing over the
     circuit. One of the electrodes is connected with the
     diaphragm on which the sound-waves impinge, and the
     vibration of this diaphragm causes the pressure between the
     electrodes to be correspondingly varied, and thereby effects
     a variation in the current, resulting in the production of
     impulses which actuate the receiving magnet. In other words,
     with Bell's telephone the sound-waves themselves generate
     the electric impulses, which are hence extremely faint. With
     the Edison telephone, the sound-waves actuate an electric
     valve, so to speak, and permit variations in a current of
     any desired strength.

     A second distinction between the two telephones is this:
     With the Bell apparatus the very weak electric impulses
     generated by the vibration of the transmitting diaphragm
     pass over the entire line to the receiving end, and in
     consequence the permissible length of line is limited to a
     few miles under ideal conditions. With Edison's telephone
     the battery current does not flow on the main line, but
     passes through the primary circuit of an induction coil, by
     which corresponding impulses of enormously higher potential
     are sent out on the main line to the receiving end. In
     consequence, the line may be hundreds of miles in length. No
     modern telephone system in use to-day lacks these
     characteristic features--the varying resistance and the
     induction coil.]


The principle of the electromotograph was utilized by Edison in
more ways than one, first of all in telegraphy at this juncture. The
well-known Page patent, which had lingered in the Patent Office for
years, had just been issued, and was considered a formidable weapon. It
related to the use of a retractile spring to withdraw the armature
lever from the magnet of a telegraph or other relay or sounder, and thus
controlled the art of telegraphy, except in simple circuits. "There was
no known way," remarks Edison, "whereby this patent could be evaded, and
its possessor would eventually control the use of what is known as the
relay and sounder, and this was vital to telegraphy. Gould was pounding
the Western Union on the Stock Exchange, disturbing its railroad
contracts, and, being advised by his lawyers that this patent was of
great value, bought it. The moment Mr. Orton heard this he sent for me
and explained the situation, and wanted me to go to work immediately and
see if I couldn't evade it or discover some other means that could be
used in case Gould sustained the patent. It seemed a pretty hard job,
because there was no known means of moving a lever at the other end of
a telegraph wire except by the use of a magnet. I said I would go at it
that night. In experimenting some years previously, I had discovered
a very peculiar phenomenon, and that was that if a piece of metal
connected to a battery was rubbed over a moistened piece of chalk
resting on a metal connected to the other pole, when the current passed
the friction was greatly diminished. When the current was reversed the
friction was greatly increased over what it was when no current was
passing. Remembering this, I substituted a piece of chalk rotated by
a small electric motor for the magnet, and connecting a sounder to a
metallic finger resting on the chalk, the combination claim of Page was
made worthless. A hitherto unknown means was introduced in the electric
art. Two or three of the devices were made and tested by the company's
expert. Mr. Orton, after he had me sign the patent application and got
it in the Patent Office, wanted to settle for it at once. He asked my
price. Again I said: 'Make me an offer.' Again he named $100,000. I
accepted, providing he would pay it at the rate of $6000 a year for
seventeen years. This was done, and thus, with the telephone money, I
received $12,000 yearly for that period from the Western Union Telegraph
Company."

A year or two later the motograph cropped up again in Edison's work in a
curious manner. The telephone was being developed in England, and Edison
had made arrangements with Colonel Gouraud, his old associate in the
automatic telegraph, to represent his interests. A company was formed, a
large number of instruments were made and sent to Gouraud in London, and
prospects were bright. Then there came a threat of litigation from
the owners of the Bell patent, and Gouraud found he could not push
the enterprise unless he could avoid using what was asserted to be an
infringement of the Bell receiver. He cabled for help to Edison, who
sent back word telling him to hold the fort. "I had recourse again,"
says Edison, "to the phenomenon discovered by me years previous, that
the friction of a rubbing electrode passing over a moist chalk surface
was varied by electricity. I devised a telephone receiver which was
afterward known as the 'loud-speaking telephone,' or 'chalk receiver.'
There was no magnet, simply a diaphragm and a cylinder of compressed
chalk about the size of a thimble. A thin spring connected to the centre
of the diaphragm extended outwardly and rested on the chalk cylinder,
and was pressed against it with a pressure equal to that which would be
due to a weight of about six pounds. The chalk was rotated by hand.
The volume of sound was very great. A person talking into the carbon
transmitter in New York had his voice so amplified that he could be
heard one thousand feet away in an open field at Menlo Park. This great
excess of power was due to the fact that the latter came from the person
turning the handle. The voice, instead of furnishing all the power
as with the present receiver, merely controlled the power, just as an
engineer working a valve would control a powerful engine.

"I made six of these receivers and sent them in charge of an expert on
the first steamer. They were welcomed and tested, and shortly afterward
I shipped a hundred more. At the same time I was ordered to send twenty
young men, after teaching them to become expert. I set up an exchange,
around the laboratory, of ten instruments. I would then go out and get
each one out of order in every conceivable way, cutting the wires of
one, short-circuiting another, destroying the adjustment of a third,
putting dirt between the electrodes of a fourth, and so on. A man would
be sent to each to find out the trouble. When he could find the trouble
ten consecutive times, using five minutes each, he was sent to London.
About sixty men were sifted to get twenty. Before all had arrived,
the Bell company there, seeing we could not be stopped, entered into
negotiations for consolidation. One day I received a cable from Gouraud
offering '30,000' for my interest. I cabled back I would accept. When
the draft came I was astonished to find it was for L30,000. I had
thought it was dollars."

In regard to this singular and happy conclusion, Edison makes some
interesting comments as to the attitude of the courts toward inventors,
and the difference between American and English courts. "The men I sent
over were used to establish telephone exchanges all over the Continent,
and some of them became wealthy. It was among this crowd in London that
Bernard Shaw was employed before he became famous. The chalk telephone
was finally discarded in favor of the Bell receiver--the latter being
more simple and cheaper. Extensive litigation with new-comers followed.
My carbon-transmitter patent was sustained, and preserved the monopoly
of the telephone in England for many years. Bell's patent was not
sustained by the courts. Sir Richard Webster, now Chief-Justice of
England, was my counsel, and sustained all of my patents in England for
many years. Webster has a marvellous capacity for understanding things
scientific; and his address before the courts was lucidity itself. His
brain is highly organized. My experience with the legal fraternity is
that scientific subjects are distasteful to them, and it is rare in this
country, on account of the system of trying patent suits, for a judge
really to reach the meat of the controversy, and inventors scarcely ever
get a decision squarely and entirely in their favor. The fault rests, in
my judgment, almost wholly with the system under which testimony to the
extent of thousands of pages bearing on all conceivable subjects, many
of them having no possible connection with the invention in dispute,
is presented to an over-worked judge in an hour or two of argument
supported by several hundred pages of briefs; and the judge is supposed
to extract some essence of justice from this mass of conflicting, blind,
and misleading statements. It is a human impossibility, no matter how
able and fair-minded the judge may be. In England the case is different.
There the judges are face to face with the experts and other witnesses.
They get the testimony first-hand and only so much as they need, and
there are no long-winded briefs and arguments, and the case is decided
then and there, a few months perhaps after suit is brought, instead of
many years afterward, as in this country. And in England, when a case is
once finally decided it is settled for the whole country, while here it
is not so. Here a patent having once been sustained, say, in Boston,
may have to be litigated all over again in New York, and again in
Philadelphia, and so on for all the Federal circuits. Furthermore, it
seems to me that scientific disputes should be decided by some
court containing at least one or two scientific men--men capable of
comprehending the significance of an invention and the difficulties of
its accomplishment--if justice is ever to be given to an inventor. And
I think, also, that this court should have the power to summon before it
and examine any recognized expert in the special art, who might be able
to testify to FACTS for or against the patent, instead of trying
to gather the truth from the tedious essays of hired experts, whose
depositions are really nothing but sworn arguments. The real gist of
patent suits is generally very simple, and I have no doubt that any
judge of fair intelligence, assisted by one or more scientific advisers,
could in a couple of days at the most examine all the necessary
witnesses; hear all the necessary arguments, and actually decide an
ordinary patent suit in a way that would more nearly be just, than
can now be done at an expenditure of a hundred times as much money and
months and years of preparation. And I have no doubt that the time taken
by the court would be enormously less, because if a judge attempts to
read the bulky records and briefs, that work alone would require several
days.

"Acting as judges, inventors would not be very apt to correctly decide
a complicated law point; and on the other hand, it is hard to see how a
lawyer can decide a complicated scientific point rightly. Some inventors
complain of our Patent Office, but my own experience with the Patent
Office is that the examiners are fair-minded and intelligent, and when
they refuse a patent they are generally right; but I think the whole
trouble lies with the system in vogue in the Federal courts for trying
patent suits, and in the fact, which cannot be disputed, that the
Federal judges, with but few exceptions, do not comprehend complicated
scientific questions. To secure uniformity in the several Federal
circuits and correct errors, it has been proposed to establish a central
court of patent appeals in Washington. This I believe in; but this court
should also contain at least two scientific men, who would not be blind
to the sophistry of paid experts. [7] Men whose inventions would have
created wealth of millions have been ruined and prevented from making
any money whereby they could continue their careers as creators of
wealth for the general good, just because the experts befuddled the
judge by their misleading statements."


     [Footnote 7: As an illustration of the perplexing nature of
     expert evidence in patent cases, the reader will probably be
     interested in perusing the following extracts from the
     opinion of Judge Dayton, in the suit of Bryce Bros. Co. vs.
     Seneca Glass Co., tried in the United States Circuit Court,
     Northern District of West Virginia, reported in The Federal
     Reporter, 140, page 161:

     "On this subject of the validity of this patent, a vast
     amount of conflicting, technical, perplexing, and almost
     hypercritical discussion and opinion has been indulged, both
     in the testimony and in the able and exhaustive arguments
     and briefs of counsel. Expert Osborn for defendant, after
     setting forth minutely his superior qualifications
     mechanical education, and great experience, takes up in
     detail the patent claims, and shows to his own entire
     satisfaction that none of them are new; that all of them
     have been applied, under one form or another, in some
     twenty-two previous patents, and in two other machines, not
     patented, to-wit, the Central Glass and Kuny Kahbel ones;
     that the whole machine is only 'an aggregation of well-known
     mechanical elements that any skilled designer would bring to
     his use in the construction of such a machine.' This
     certainly, under ordinary conditions, would settle the
     matter beyond peradventure; for this witness is a very wise
     and learned man in these things, and very positive. But
     expert Clarke appears for the plaintiff, and after setting
     forth just as minutely his superior qualifications,
     mechanical education, and great experience, which appear
     fully equal in all respects to those of expert Osborn,
     proceeds to take up in detail the patent claims, and shows
     to his entire satisfaction that all, with possibly one
     exception, are new, show inventive genius, and distinct
     advances upon the prior art. In the most lucid, and even
     fascinating, way he discusses all the parts of this machine,
     compares it with the others, draws distinctions, points out
     the merits of the one in controversy and the defects of all
     the others, considers the twenty-odd patents referred to by
     Osborn, and in the politest, but neatest, manner imaginable
     shows that expert Osborn did not know what he was talking
     about, and sums the whole matter up by declaring this
     'invention of Mr. Schrader's, as embodied in the patent in
     suit, a radical and wide departure, from the Kahbel machine'
     (admitted on all sides to be nearest prior approach to it),
     'a distinct and important advance in the art of engraving
     glassware, and generally a machine for this purpose which
     has involved the exercise of the inventive faculty in the
     highest degree.'

     "Thus a more radical and irreconcilable disagreement between
     experts touching the same thing could hardly be found. So it
     is with the testimony. If we take that for the defendant,
     the Central Glass Company machine, and especially the Kuny
     Kahbel machine, built and operated years before this patent
     issued, and not patented, are just as good, just as
     effective and practical, as this one, and capable of turning
     out just as perfect work and as great a variety of it. On
     the other hand, if we take that produced by the plaintiff,
     we are driven to the conclusion that these prior machines,
     the product of the same mind, were only progressive steps
     forward from utter darkness, so to speak, into full
     inventive sunlight, which made clear to him the solution of
     the problem in this patented machine. The shortcomings of
     the earlier machines are minutely set forth, and the
     witnesses for the plaintiff are clear that they are neither
     practical nor profitable.

     "But this is not all of the trouble that confronts us in
     this case. Counsel of both sides, with an indomitable
     courage that must command admiration, a courage that has led
     them to a vast amount of study, investigation, and thought,
     that in fact has made them all experts, have dissected this
     record of 356 closely printed pages, applied all mechanical
     principles and laws to the facts as they see them, and,
     besides, have ransacked the law-books and cited an enormous
     number of cases, more or less in point, as illustration of
     their respective contentions. The courts find nothing more
     difficult than to apply an abstract principle to all classes
     of cases that may arise. The facts in each case so
     frequently create an exception to the general rule that such
     rule must be honored rather in its breach than in its
     observance. Therefore, after a careful examination of these
     cases, it is no criticism of the courts to say that both
     sides have found abundant and about an equal amount of
     authority to sustain their respective contentions, and, as a
     result, counsel have submitted, in briefs, a sum total of
     225 closely printed pages, in which they have clearly, yet,
     almost to a mathematical certainty, demonstrated on the one
     side that this Schrader machine is new and patentable, and
     on the other that it is old and not so. Under these
     circumstances, it would be unnecessary labor and a fruitless
     task for me to enter into any further technical discussion
     of the mechanical problems involved, for the purpose of
     seeking to convince either side of its error. In cases of
     such perplexity as this generally some incidents appear that
     speak more unerringly than do the tongues of the witnesses,
     and to some of these I purpose to now refer."]

Mr. Bernard Shaw, the distinguished English author, has given a most
vivid and amusing picture of this introduction of Edison's telephone
into England, describing the apparatus as "a much too ingenious
invention, being nothing less than a telephone of such stentorian
efficiency that it bellowed your most private communications all over
the house, instead of whispering them with some sort of discretion."
Shaw, as a young man, was employed by the Edison Telephone Company,
and was very much alive to his surroundings, often assisting in public
demonstrations of the apparatus "in a manner which I am persuaded laid
the foundation of Mr. Edison's reputation." The sketch of the men sent
over from America is graphic: "Whilst the Edison Telephone Company
lasted it crowded the basement of a high pile of offices in Queen
Victoria Street with American artificers. These deluded and romantic men
gave me a glimpse of the skilled proletariat of the United States. They
sang obsolete sentimental songs with genuine emotion; and their language
was frightful even to an Irishman. They worked with a ferocious
energy which was out of all proportion to the actual result achieved.
Indomitably resolved to assert their republican manhood by taking no
orders from a tall-hatted Englishman whose stiff politeness covered
his conviction that they were relatively to himself inferior and common
persons, they insisted on being slave-driven with genuine American oaths
by a genuine free and equal American foreman. They utterly despised the
artfully slow British workman, who did as little for his wages as he
possibly could; never hurried himself; and had a deep reverence for one
whose pocket could be tapped by respectful behavior. Need I add that
they were contemptuously wondered at by this same British workman as
a parcel of outlandish adult boys who sweated themselves for their
employer's benefit instead of looking after their own interest? They
adored Mr. Edison as the greatest man of all time in every possible
department of science, art, and philosophy, and execrated Mr. Graham
Bell, the inventor of the rival telephone, as his Satanic adversary;
but each of them had (or intended to have) on the brink of completion
an improvement on the telephone, usually a new transmitter. They were
free-souled creatures, excellent company, sensitive, cheerful, and
profane; liars, braggarts, and hustlers, with an air of making slow old
England hum, which never left them even when, as often happened, they
were wrestling with difficulties of their own making, or struggling in
no-thoroughfares, from which they had to be retrieved like stray sheep
by Englishmen without imagination enough to go wrong."

Mr. Samuel Insull, who afterward became private secretary to Mr. Edison,
and a leader in the development of American electrical manufacturing
and the central-station art, was also in close touch with the London
situation thus depicted, being at the time private secretary to Colonel
Gouraud, and acting for the first half hour as the amateur telephone
operator in the first experimental exchange erected in Europe. He
took notes of an early meeting where the affairs of the company were
discussed by leading men like Sir John Lubbock (Lord Avebury) and the
Right Hon. E. P. Bouverie (then a cabinet minister), none of whom
could see in the telephone much more than an auxiliary for getting
out promptly in the next morning's papers the midnight debates in
Parliament. "I remember another incident," says Mr. Insull. "It was at
some celebration of one of the Royal Societies at the Burlington House,
Piccadilly. We had a telephone line running across the roofs to the
basement of the building. I think it was to Tyndall's laboratory in
Burlington Street. As the ladies and gentlemen came through, they
naturally wanted to look at the great curiosity, the loud-speaking
telephone: in fact, any telephone was a curiosity then. Mr. and Mrs.
Gladstone came through. I was handling the telephone at the Burlington
House end. Mrs. Gladstone asked the man over the telephone whether he
knew if a man or woman was speaking; and the reply came in quite loud
tones that it was a man!"

With Mr. E. H. Johnson, who represented Edison, there went to England
for the furtherance of this telephone enterprise, Mr. Charles Edison,
a nephew of the inventor. He died in Paris, October, 1879, not twenty
years of age. Stimulated by the example of his uncle, this brilliant
youth had already made a mark for himself as a student and inventor,
and when only eighteen he secured in open competition the contract to
install a complete fire-alarm telegraph system for Port Huron. A few
months later he was eagerly welcomed by his uncle at Menlo Park,
and after working on the telephone was sent to London to aid in its
introduction. There he made the acquaintance of Professor Tyndall,
exhibited the telephone to the late King of England; and also won the
friendship of the late King of the Belgians, with whom he took up the
project of establishing telephonic communication between Belgium and
England. At the time of his premature death he was engaged in installing
the Edison quadruplex between Brussels and Paris, being one of the very
few persons then in Europe familiar with the working of that invention.

Meantime, the telephonic art in America was undergoing very rapid
development. In March, 1878, addressing "the capitalists of the Electric
Telephone Company" on the future of his invention, Bell outlined with
prophetic foresight and remarkable clearness the coming of the modern
telephone exchange. Comparing with gas and water distribution, he said:
"In a similar manner, it is conceivable that cables of telephone wires
could be laid underground or suspended overhead communicating by branch
wires with private dwellings, country houses, shops, manufactories,
etc., uniting them through the main cable with a central office,
where the wire could be connected as desired, establishing direct
communication between any two places in the city.... Not only so, but I
believe, in the future, wires will unite the head offices of telephone
companies in different cities; and a man in one part of the country may
communicate by word of mouth with another in a distant place."

All of which has come to pass. Professor Bell also suggested how this
could be done by "the employ of a man in each central office for the
purpose of connecting the wires as directed." He also indicated the two
methods of telephonic tariff--a fixed rental and a toll; and mentioned
the practice, now in use on long-distance lines, of a time charge. As
a matter of fact, this "centralizing" was attempted in May, 1877, in
Boston, with the circuits of the Holmes burglar-alarm system, four
banking-houses being thus interconnected; while in January of 1878 the
Bell telephone central-office system at New Haven, Connecticut, was
opened for business, "the first fully equipped commercial telephone
exchange ever established for public or general service."

All through this formative period Bell had adhered to and introduced the
magneto form of telephone, now used only as a receiver, and very poorly
adapted for the vital function of a speech-transmitter. From August,
1877, the Western Union Telegraph Company worked along the other line,
and in 1878, with its allied Gold & Stock Telegraph Company, it brought
into existence the American Speaking Telephone Company to introduce
the Edison apparatus, and to create telephone exchanges all over the
country. In this warfare, the possession of a good battery transmitter
counted very heavily in favor of the Western Union, for upon that the
real expansion of the whole industry depended; but in a few months
the Bell system had its battery transmitter, too, tending to equalize
matters. Late in the same year patent litigation was begun which brought
out clearly the merits of Bell, through his patent, as the original and
first inventor of the electric speaking telephone; and the Western Union
Telegraph Company made terms with its rival. A famous contract bearing
date of November 10, 1879, showed that under the Edison and other
controlling patents the Western Union Company had already set going some
eighty-five exchanges, and was making large quantities of telephonic
apparatus. In return for its voluntary retirement from the telephonic
field, the Western Union Telegraph Company, under this contract,
received a royalty of 20 per cent. of all the telephone earnings of the
Bell system while the Bell patents ran; and thus came to enjoy an annual
income of several hundred thousand dollars for some years, based chiefly
on its modest investment in Edison's work. It was also paid several
thousand dollars in cash for the Edison, Phelps, Gray, and other
apparatus on hand. It secured further 40 per cent. of the stock of the
local telephone systems of New York and Chicago; and last, but by no
means least, it exacted from the Bell interests an agreement to stay out
of the telegraph field.

By March, 1881, there were in the United States only nine cities of
more than ten thousand inhabitants, and only one of more than fifteen
thousand, without a telephone exchange. The industry thrived under
competition, and the absence of it now had a decided effect in checking
growth; for when the Bell patent expired in 1893, the total of telephone
sets in operation in the United States was only 291,253. To quote from
an official Bell statement:


"The brief but vigorous Western Union competition was a kind of blessing
in disguise. The very fact that two distinct interests were actively
engaged in the work of organizing and establishing competing telephone
exchanges all over the country, greatly facilitated the spread of the
idea and the growth of the business, and familiarized the people with
the use of the telephone as a business agency; while the keenness of the
competition, extending to the agents and employees of both companies,
brought about a swift but quite unforeseen and unlooked-for expansion
in the individual exchanges of the larger cities, and a corresponding
advance in their importance, value, and usefulness."

The truth of this was immediately shown in 1894, after the Bell patents
had expired, by the tremendous outburst of new competitive activity, in
"independent" country systems and toll lines through sparsely settled
districts--work for which the Edison apparatus and methods were
peculiarly adapted, yet against which the influence of the Edison patent
was invoked. The data secured by the United States Census Office in 1902
showed that the whole industry had made gigantic leaps in eight years,
and had 2,371,044 telephone stations in service, of which 1,053,866
were wholly or nominally independent of the Bell. By 1907 an even
more notable increase was shown, and the Census figures for that year
included no fewer than 6,118,578 stations, of which 1,986,575 were
"independent." These six million instruments every single set employing
the principle of the carbon transmitter--were grouped into 15,527 public
exchanges, in the very manner predicted by Bell thirty years before,
and they gave service in the shape of over eleven billions of talks. The
outstanding capitalized value of the plant was $814,616,004, the income
for the year was nearly $185,000,000, and the people employed were
140,000. If Edison had done nothing else, his share in the creation
of such an industry would have entitled him to a high place among
inventors.

This chapter is of necessity brief in its reference to many extremely
interesting points and details; and to some readers it may seem
incomplete in its references to the work of other men than Edison, whose
influence on telephony as an art has also been considerable. In reply to
this pertinent criticism, it may be pointed out that this is a life of
Edison, and not of any one else; and that even the discussion of his
achievements alone in these various fields requires more space than the
authors have at their disposal. The attempt has been made, however,
to indicate the course of events and deal fairly with the facts. The
controversy that once waged with great excitement over the invention
of the microphone, but has long since died away, is suggestive of the
difficulties involved in trying to do justice to everybody. A standard
history describes the microphone thus:


"A form of apparatus produced during the early days of the telephone
by Professor Hughes, of England, for the purpose of rendering faint,
indistinct sounds distinctly audible, depended for its operation on the
changes that result in the resistance of loose contacts. This apparatus
was called the microphone, and was in reality but one of the many forms
that it is possible to give to the telephone transmitter. For example,
the Edison granular transmitter was a variety of microphone, as was also
Edison's transmitter, in which the solid button of carbon was employed.
Indeed, even the platinum point, which in the early form of the Reis
transmitter pressed against the platinum contact cemented to the centre
of the diaphragm, was a microphone."

At a time when most people were amazed at the idea of hearing, with
the aid of a "microphone," a fly walk at a distance of many miles, the
priority of invention of such a device was hotly disputed. Yet without
desiring to take anything from the credit of the brilliant American,
Hughes, whose telegraphic apparatus is still in use all over Europe, it
may be pointed out that this passage gives Edison the attribution of at
least two original forms of which those suggested by Hughes were mere
variations and modifications. With regard to this matter, Mr. Edison
himself remarks: "After I sent one of my men over to London especially,
to show Preece the carbon transmitter, and where Hughes first saw it,
and heard it--then within a month he came out with the microphone,
without any acknowledgment whatever. Published dates will show that
Hughes came along after me."

There have been other ways also in which Edison has utilized the
peculiar property that carbon possesses of altering its resistance
to the passage of current, according to the pressure to which it is
subjected, whether at the surface, or through closer union of the
mass. A loose road with a few inches of dust or pebbles on it offers
appreciable resistance to the wheels of vehicles travelling over it; but
if the surface is kept hard and smooth the effect is quite different.
In the same way carbon, whether solid or in the shape of finely divided
powder, offers a high resistance to the passage of electricity; but
if the carbon is squeezed together the conditions change, with less
resistance to electricity in the circuit. For his quadruplex system,
Mr. Edison utilized this fact in the construction of a rheostat or
resistance box. It consists of a series of silk disks saturated with a
sizing of plumbago and well dried. The disks are compressed by means of
an adjustable screw; and in this manner the resistance of a circuit can
be varied over a wide range.

In like manner Edison developed a "pressure" or carbon relay, adapted
to the transference of signals of variable strength from one circuit to
another. An ordinary relay consists of an electromagnet inserted in the
main line for telegraphing, which brings a local battery and sounder
circuit into play, reproducing in the local circuit the signals sent
over the main line. The relay is adjusted to the weaker currents likely
to be received, but the signals reproduced on the sounder by the agency
of the relay are, of course, all of equal strength, as they depend upon
the local battery, which has only this steady work to perform. In cases
where it is desirable to reproduce the signals in the local circuit with
the same variations in strength as they are received by the relay,
the Edison carbon pressure relay does the work. The poles of the
electromagnet in the local circuit are hollowed out and filled up with
carbon disks or powdered plumbago. The armature and the carbon-tipped
poles of the electromagnet form part of the local circuit; and if the
relay is actuated by a weak current the armature will be attracted
but feebly. The carbon being only slightly compressed will offer
considerable resistance to the flow of current from the local battery,
and therefore the signal on the local sounder will be weak. If, on the
contrary, the incoming current on the main line be strong, the armature
will be strongly attracted, the carbon will be sharply compressed, the
resistance in the local circuit will be proportionately lowered, and the
signal heard on the local sounder will be a loud one. Thus it will be
seen, by another clever juggle with the willing agent, carbon, for which
he has found so many duties, Edison is able to transfer or transmit
exactly, to the local circuit, the main-line current in all its minutest
variations.

In his researches to determine the nature of the motograph phenomena,
and to open up other sources of electrical current generation, Edison
has worked out a very ingenious and somewhat perplexing piece of
apparatus known as the "chalk battery." It consists of a series of chalk
cylinders mounted on a shaft revolved by hand. Resting against each of
these cylinders is a palladium-faced spring, and similar springs make
contact with the shaft between each cylinder. By connecting all these
springs in circuit with a galvanometer and revolving the shaft rapidly,
a notable deflection is obtained of the galvanometer needle, indicating
the production of electrical energy. The reason for this does not appear
to have been determined.

Last but not least, in this beautiful and ingenious series, comes the
"tasimeter," an instrument of most delicate sensibility in the presence
of heat. The name is derived from the Greek, the use of the apparatus
being primarily to measure extremely minute differences of pressure.
A strip of hard rubber with pointed ends rests perpendicularly on a
platinum plate, beneath which is a carbon button, under which again lies
another platinum plate. The two plates and the carbon button form part
of an electric circuit containing a battery and a galvanometer. The
hard-rubber strip is exceedingly sensitive to heat. The slightest degree
of heat imparted to it causes it to expand invisibly, thus increasing
the pressure contact on the carbon button and producing a variation
in the resistance of the circuit, registered immediately by the little
swinging needle of the galvanometer. The instrument is so sensitive that
with a delicate galvanometer it will show the impingement of the heat
from a person's hand thirty feet away. The suggestion to employ such
an apparatus in astronomical observations occurs at once, and it may
be noted that in one instance the heat of rays of light from the remote
star Arcturus gave results.



CHAPTER X

THE PHONOGRAPH

AT the opening of the Electrical Show in New York City in October, 1908,
to celebrate the jubilee of the Atlantic Cable and the first quarter
century of lighting with the Edison service on Manhattan Island, the
exercises were all conducted by means of the Edison phonograph. This
included the dedicatory speech of Governor Hughes, of New York; the
modest remarks of Mr. Edison, as president; the congratulations of the
presidents of several national electric bodies, and a number of vocal
and instrumental selections of operatic nature. All this was heard
clearly by a very large audience, and was repeated on other evenings.
The same speeches were used again phonographically at the Electrical
Show in Chicago in 1909--and now the records are preserved for
reproduction a hundred or a thousand years hence. This tour de force,
never attempted before, was merely an exemplification of the value
of the phonograph not only in establishing at first hand the facts of
history, but in preserving the human voice. What would we not give to
listen to the very accents and tones of the Sermon on the Mount, the
orations of Demosthenes, the first Pitt's appeal for American liberty,
the Farewell of Washington, or the Address at Gettysburg? Until Edison
made his wonderful invention in 1877, the human race was entirely
without means for preserving or passing on to posterity its own
linguistic utterances or any other vocal sound. We have some idea how
the ancients looked and felt and wrote; the abundant evidence takes us
back to the cave-dwellers. But all the old languages are dead, and the
literary form is their embalmment. We do not even know definitely how
Shakespeare's and Goldsmith's plays were pronounced on the stage in
the theatres of the time; while it is only a guess that perhaps Chaucer
would sound much more modern than he scans.

The analysis of sound, which owes so much to Helmholtz, was one step
toward recording; and the various means of illustrating the phenomena of
sound to the eye and ear, prior to the phonograph, were all ingenious.
One can watch the dancing little flames of Koenig, and see a voice
expressed in tongues of fire; but the record can only be photographic.
In like manner, the simple phonautograph of Leon Scott, invented about
1858, records on a revolving cylinder of blackened paper the sound
vibrations transmitted through a membrane to which a tiny stylus is
attached; so that a human mouth uses a pen and inscribes its sign vocal.
Yet after all we are just as far away as ever from enabling the young
actors at Harvard to give Aristophanes with all the true, subtle
intonation and inflection of the Athens of 400 B.C. The instrument
is dumb. Ingenuity has been shown also in the invention of
"talking-machines," like Faber's, based on the reed organ pipe. These
automata can be made by dexterous manipulation to jabber a little, like
a doll with its monotonous "ma-ma," or a cuckoo clock; but they lack
even the sterile utility of the imitative art of ventriloquism. The real
great invention lies in creating devices that shall be able to evoke
from tinfoil, wax, or composition at any time to-day or in the future
the sound that once was as evanescent as the vibrations it made on the
air.

Contrary to the general notion, very few of the great modern inventions
have been the result of a sudden inspiration by which, Minerva-like,
they have sprung full-fledged from their creators' brain; but, on the
contrary, they have been evolved by slow and gradual steps, so that
frequently the final advance has been often almost imperceptible. The
Edison phonograph is an important exception to the general rule; not,
of course, the phonograph of the present day with all of its mechanical
perfection, but as an instrument capable of recording and reproducing
sound. Its invention has been frequently attributed to the discovery
that a point attached to a telephone diaphragm would, under the effect
of sound-waves, vibrate with sufficient force to prick the finger. The
story, though interesting, is not founded on fact; but, if true, it is
difficult to see how the discovery in question could have contributed
materially to the ultimate accomplishment. To a man of Edison's
perception it is absurd to suppose that the effect of the so-called
discovery would not have been made as a matter of deduction long
before the physical sensation was experienced. As a matter of fact, the
invention of the phonograph was the result of pure reason. Some time
prior to 1877, Edison had been experimenting on an automatic telegraph
in which the letters were formed by embossing strips of paper with the
proper arrangement of dots and dashes. By drawing this strip beneath a
contact lever, the latter was actuated so as to control the circuits and
send the desired signals over the line. It was observed that when the
strip was moved very rapidly the vibration of the lever resulted in
the production of an audible note. With these facts before him, Edison
reasoned that if the paper strip could be imprinted with elevations
and depressions representative of sound-waves, they might be caused to
actuate a diaphragm so as to reproduce the corresponding sounds.
The next step in the line of development was to form the necessary
undulations on the strip, and it was then reasoned that original sounds
themselves might be utilized to form a graphic record by actuating a
diaphragm and causing a cutting or indenting point carried thereby to
vibrate in contact with a moving surface, so as to cut or indent the
record therein. Strange as it may seem, therefore, and contrary to the
general belief, the phonograph was developed backward, the production of
the sounds being of prior development to the idea of actually recording
them.

Mr. Edison's own account of the invention of the phonograph is intensely
interesting. "I was experimenting," he says, "on an automatic method
of recording telegraph messages on a disk of paper laid on a revolving
platen, exactly the same as the disk talking-machine of to-day. The
platen had a spiral groove on its surface, like the disk. Over this was
placed a circular disk of paper; an electromagnet with the embossing
point connected to an arm travelled over the disk; and any signals given
through the magnets were embossed on the disk of paper. If this disk was
removed from the machine and put on a similar machine provided with
a contact point, the embossed record would cause the signals to be
repeated into another wire. The ordinary speed of telegraphic signals
is thirty-five to forty words a minute; but with this machine several
hundred words were possible.

"From my experiments on the telephone I knew of the power of a diaphragm
to take up sound vibrations, as I had made a little toy which, when
you recited loudly in the funnel, would work a pawl connected to the
diaphragm; and this engaging a ratchet-wheel served to give continuous
rotation to a pulley. This pulley was connected by a cord to a little
paper toy representing a man sawing wood. Hence, if one shouted: 'Mary
had a little lamb,' etc., the paper man would start sawing wood. I
reached the conclusion that if I could record the movements of the
diaphragm properly, I could cause such record to reproduce the original
movements imparted to the diaphragm by the voice, and thus succeed in
recording and reproducing the human voice.

"Instead of using a disk I designed a little machine using a cylinder
provided with grooves around the surface. Over this was to be placed
tinfoil, which easily received and recorded the movements of the
diaphragm. A sketch was made, and the piece-work price, $18, was marked
on the sketch. I was in the habit of marking the price I would pay on
each sketch. If the workman lost, I would pay his regular wages; if he
made more than the wages, he kept it. The workman who got the sketch was
John Kruesi. I didn't have much faith that it would work, expecting that
I might possibly hear a word or so that would give hope of a future for
the idea. Kruesi, when he had nearly finished it, asked what it was for.
I told him I was going to record talking, and then have the machine talk
back. He thought it absurd. However, it was finished, the foil was
put on; I then shouted 'Mary had a little lamb,' etc. I adjusted the
reproducer, and the machine reproduced it perfectly. I was never so
taken aback in my life. Everybody was astonished. I was always afraid
of things that worked the first time. Long experience proved that
there were great drawbacks found generally before they could be got
commercial; but here was something there was no doubt of."

No wonder that honest John Kruesi, as he stood and listened to the
marvellous performance of the simple little machine he had himself just
finished, ejaculated in an awe-stricken tone: "Mein Gott im Himmel!" And
yet he had already seen Edison do a few clever things. No wonder they
sat up all night fixing and adjusting it so as to get better and better
results--reciting and singing, trying each other's voices, and then
listening with involuntary awe as the words came back again and again,
just as long as they were willing to revolve the little cylinder with
its dotted spiral indentations in the tinfoil under the vibrating stylus
of the reproducing diaphragm. It took a little time to acquire the knack
of turning the crank steadily while leaning over the recorder to talk
into the machine; and there was some deftness required also in fastening
down the tinfoil on the cylinder where it was held by a pin running in
a longitudinal slot. Paraffined paper appears also to have been
experimented with as an impressible material. It is said that Carman,
the foreman of the machine shop, had gone the length of wagering Edison
a box of cigars that the device would not work. All the world knows that
he lost.

The original Edison phonograph thus built by Kruesi is preserved in the
South Kensington Museum, London. That repository can certainly have no
greater treasure of its kind. But as to its immediate use, the inventor
says: "That morning I took it over to New York and walked into the
office of the Scientific American, went up to Mr. Beach's desk, and said
I had something to show him. He asked what it was. I told him I had a
machine that would record and reproduce the human voice. I opened the
package, set up the machine and recited, 'Mary had a little lamb,' etc.
Then I reproduced it so that it could be heard all over the room. They
kept me at it until the crowd got so great Mr. Beach was afraid the
floor would collapse; and we were compelled to stop. The papers next
morning contained columns. None of the writers seemed to understand how
it was done. I tried to explain, it was so very simple, but the results
were so surprising they made up their minds probably that they never
would understand it--and they didn't.

"I started immediately making several larger and better machines, which
I exhibited at Menlo Park to crowds. The Pennsylvania Railroad ran
special trains. Washington people telegraphed me to come on. I took
a phonograph to Washington and exhibited it in the room of James G.
Blaine's niece (Gail Hamilton); and members of Congress and notable
people of that city came all day long until late in the evening. I made
one break. I recited 'Mary,' etc., and another ditty:

     'There was a little girl, who had a little curl
     Right in the middle of her forehead;
     And when she was good she was very, very good,
     But when she was bad she was horrid.'

"It will be remembered that Senator Roscoe Conkling, then very prominent,
had a curl of hair on his forehead; and all the caricaturists developed
it abnormally. He was very sensitive about the subject. When he came in
he was introduced; but being rather deaf, I didn't catch his name, but
sat down and started the curl ditty. Everybody tittered, and I was told
that Mr. Conkling was displeased. About 11 o'clock at night word was
received from President Hayes that he would be very much pleased if I
would come up to the White House. I was taken there, and found Mr. Hayes
and several others waiting. Among them I remember Carl Schurz, who was
playing the piano when I entered the room. The exhibition continued till
about 12.30 A.M., when Mrs. Hayes and several other ladies, who had been
induced to get up and dress, appeared. I left at 3.30 A.M.

"For a long time some people thought there was trickery. One morning
at Menlo Park a gentleman came to the laboratory and asked to see the
phonograph. It was Bishop Vincent, who helped Lewis Miller found the
Chautauqua I exhibited it, and then he asked if he could speak a few
words. I put on a fresh foil and told him to go ahead. He commenced to
recite Biblical names with immense rapidity. On reproducing it he said:
'I am satisfied, now. There isn't a man in the United States who could
recite those names with the same rapidity.'"

The phonograph was now fairly launched as a world sensation, and a
reference to the newspapers of 1878 will show the extent to which it and
Edison were themes of universal discussion. Some of the press notices
of the period were most amazing--and amusing. As though the real
achievements of this young man, barely thirty, were not tangible
and solid enough to justify admiration of his genius, the "yellow
journalists" of the period began busily to create an "Edison myth," with
gross absurdities of assertion and attribution from which the modest
subject of it all has not yet ceased to suffer with unthinking people.
A brilliantly vicious example of this method of treatment is to be found
in the Paris Figaro of that year, which under the appropriate title of
"This Astounding Eddison" lay bare before the French public the most
startling revelations as to the inventor's life and character. "It
should be understood," said this journal, "that Mr. Eddison does not
belong to himself. He is the property of the telegraph company which
lodges him in New York at a superb hotel; keeps him on a luxurious
footing, and pays him a formidable salary so as to be the one to know
of and profit by his discoveries. The company has, in the dwelling of
Eddison, men in its employ who do not quit him for a moment, at the
table, on the street, in the laboratory. So that this wretched man,
watched more closely than ever was any malefactor, cannot even give a
moment's thought to his own private affairs without one of his guards
asking him what he is thinking about." This foolish "blague" was
accompanied by a description of Edison's new "aerophone," a steam
machine which carried the voice a distance of one and a half miles. "You
speak to a jet of vapor. A friend previously advised can answer you
by the same method." Nor were American journals backward in this wild
exaggeration.

The furor had its effect in stimulating a desire everywhere on the
part of everybody to see and hear the phonograph. A small commercial
organization was formed to build and exploit the apparatus, and the
shops at Menlo Park laboratory were assisted by the little Bergmann shop
in New York. Offices were taken for the new enterprise at 203 Broadway,
where the Mail and Express building now stands, and where, in a
general way, under the auspices of a talented dwarf, C. A. Cheever, the
embryonic phonograph and the crude telephone shared rooms and expenses.
Gardiner G. Hubbard, father-in-law of Alex. Graham Bell, was one of the
stockholders in the Phonograph Company, which paid Edison $10,000 cash
and a 20 per cent. royalty. This curious partnership was maintained for
some time, even when the Bell Telephone offices were removed to Reade
Street, New York, whither the phonograph went also; and was perhaps
explained by the fact that just then the ability of the phonograph as
a money-maker was much more easily demonstrated than was that of
the telephone, still in its short range magneto stage and awaiting
development with the aid of the carbon transmitter.

The earning capacity of the phonograph then, as largely now, lay in its
exhibition qualities. The royalties from Boston, ever intellectually
awake and ready for something new, ran as high as $1800 a week. In New
York there was a ceaseless demand for it, and with the aid of Hilbourne
L. Roosevelt, a famous organ builder, and uncle of ex-President
Roosevelt, concerts were given at which the phonograph was "featured."
To manage this novel show business the services of James Redpath were
called into requisition with great success. Redpath, famous as a friend
and biographer of John Brown, as a Civil War correspondent, and as
founder of the celebrated Redpath Lyceum Bureau in Boston, divided
the country into territories, each section being leased for exhibition
purposes on a basis of a percentage of the "gate money." To 203
Broadway from all over the Union flocked a swarm of showmen, cranks, and
particularly of old operators, who, the seedier they were in appearance,
the more insistent they were that "Tom" should give them, for the sake
of "Auld lang syne," this chance to make a fortune for him and for
themselves. At the top of the building was a floor on which these
novices were graduated in the use and care of the machine, and then,
with an equipment of tinfoil and other supplies, they were sent out on
the road. It was a diverting experience while it lasted. The excitement
over the phonograph was maintained for many months, until a large
proportion of the inhabitants of the country had seen it; and then the
show receipts declined and dwindled away. Many of the old operators,
taken on out of good-nature, were poor exhibitors and worse accountants,
and at last they and the machines with which they had been intrusted
faded from sight. But in the mean time Edison had learned many lessons
as to this practical side of development that were not forgotten when
the renascence of the phonograph began a few years later, leading up to
the present enormous and steady demand for both machines and records.

It deserves to be pointed out that the phonograph has changed little in
the intervening years from the first crude instruments of 1877-78. It
has simply been refined and made more perfect in a mechanical sense.
Edison was immensely impressed with its possibilities, and greatly
inclined to work upon it, but the coming of the electric light compelled
him to throw all his energies for a time into the vast new field
awaiting conquest. The original phonograph, as briefly noted above, was
rotated by hand, and the cylinder was fed slowly longitudinally by means
of a nut engaging a screw thread on the cylinder shaft. Wrapped
around the cylinder was a sheet of tinfoil, with which engaged a small
chisel-like recording needle, connected adhesively with the centre of
an iron diaphragm. Obviously, as the cylinder was turned, the needle
followed a spiral path whose pitch depended upon that of the feed screw.
Along this path a thread was cut in the cylinder so as to permit the
needle to indent the foil readily as the diaphragm vibrated. By rotating
the cylinder and by causing the diaphragm to vibrate under the effect
of vocal or musical sounds, the needle-like point would form a series
of indentations in the foil corresponding to and characteristic of the
sound-waves. By now engaging the point with the beginning of the grooved
record so formed, and by again rotating the cylinder, the undulations of
the record would cause the needle and its attached diaphragm to vibrate
so as to effect the reproduction. Such an apparatus was necessarily
undeveloped, and was interesting only from a scientific point of view.
It had many mechanical defects which prevented its use as a practical
apparatus. Since the cylinder was rotated by hand, the speed at which
the record was formed would vary considerably, even with the same
manipulator, so that it would have been impossible to record and
reproduce music satisfactorily; in doing which exact uniformity of
speed is essential. The formation of the record in tinfoil was also
objectionable from a practical standpoint, since such a record was faint
and would be substantially obliterated after two or three reproductions.
Furthermore, the foil could not be easily removed from and replaced
upon the instrument, and consequently the reproduction had to follow the
recording immediately, and the successive tinfoils were thrown away. The
instrument was also heavy and bulky. Notwithstanding these objections
the original phonograph created, as already remarked, an enormous
popular excitement, and the exhibitions were considered by many
sceptical persons as nothing more than clever ventriloquism. The
possibilities of the instrument as a commercial apparatus were
recognized from the very first, and some of the fields in which it was
predicted that the phonograph would be used are now fully occupied.
Some have not yet been realized. Writing in 1878 in the North
American-Review, Mr. Edison thus summed up his own ideas as to the
future applications of the new invention:


"Among the many uses to which the phonograph will be applied are the
following:

1. Letter writing and all kinds of dictation without the aid of a
stenographer.

2. Phonographic books, which will speak to blind people without effort
on their part.

3. The teaching of elocution.

4. Reproduction of music.

5. The 'Family Record'--a registry of sayings, reminiscences, etc., by
members of a family in their own voices, and of the last words of dying
persons.

6. Music-boxes and toys.

7. Clocks that should announce in articulate speech the time for going
home, going to meals, etc.

8. The preservation of languages by exact reproduction of the manner of
pronouncing.

9. Educational purposes; such as preserving the explanations made by a
teacher, so that the pupil can refer to them at any moment, and
spelling or other lessons placed upon the phonograph for convenience in
committing to memory.

10. Connection with the telephone, so as to make that instrument an
auxiliary in the transmission of permanent and invaluable records,
instead of being the recipient of momentary and fleeting communication."


Of the above fields of usefulness in which it was expected that
the phonograph might be applied, only three have been commercially
realized--namely, the reproduction of musical, including vaudeville or
talking selections, for which purpose a very large proportion of
the phonographs now made is used; the employment of the machine as a
mechanical stenographer, which field has been taken up actively only
within the past few years; and the utilization of the device for the
teaching of languages, for which purpose it has been successfully
employed, for example, by the International Correspondence Schools of
Scranton, Pennsylvania, for several years. The other uses, however,
which were early predicted for the phonograph have not as yet been
worked out practically, although the time seems not far distant when its
general utility will be widely enlarged. Both dolls and clocks have been
made, but thus far the world has not taken them seriously.

The original phonograph, as invented by Edison, remained in its
crude and immature state for almost ten years--still the object of
philosophical interest, and as a convenient text-book illustration of
the effect of sound vibration. It continued to be a theme of curious
interest to the imaginative, and the subject of much fiction, while
its neglected commercial possibilities were still more or less vaguely
referred to. During this period of arrested development, Edison was
continuously working on the invention and commercial exploitation of
the incandescent lamp. In 1887 his time was comparatively free, and the
phonograph was then taken up with renewed energy, and the effort made to
overcome its mechanical defects and to furnish a commercial instrument,
so that its early promise might be realized. The important changes made
from that time up to 1890 converted the phonograph from a scientific toy
into a successful industrial apparatus. The idea of forming the record
on tinfoil had been early abandoned, and in its stead was substituted a
cylinder of wax-like material, in which the record was cut by a minute
chisel-like gouging tool. Such a record or phonogram, as it was then
called, could be removed from the machine or replaced at any time, many
reproductions could be obtained without wearing out the record, and
whenever desired the record could be shaved off by a turning-tool so
as to present a fresh surface on which a new record could be formed,
something like an ancient palimpsest. A wax cylinder having walls less
than one-quarter of an inch in thickness could be used for receiving a
large number of records, since the maximum depth of the record groove is
hardly ever greater than one one-thousandth of an inch. Later on, and
as the crowning achievement in the phonograph field, from a commercial
point of view, came the duplication of records to the extent of many
thousands from a single "master." This work was actively developed
between the years 1890 and 1898, and its difficulties may be appreciated
when the problem is stated; the copying from a single master of many
millions of excessively minute sound-waves having a maximum width of one
hundredth of an inch, and a maximum depth of one thousandth of an
inch, or less than the thickness of a sheet of tissue-paper. Among the
interesting developments of this process was the coating of the original
or master record with a homogeneous film of gold so thin that three
hundred thousand of these piled one on top of the other would present a
thickness of only one inch!

Another important change was in the nature of a reversal of the original
arrangement, the cylinder or mandrel carrying the record being mounted
in fixed bearings, and the recording or reproducing device being fed
lengthwise, like the cutting-tool of a lathe, as the blank or record was
rotated. It was early recognized that a single needle for forming the
record and the reproduction therefrom was an undesirable arrangement,
since the formation of the record required a very sharp cutting-tool,
while satisfactory and repeated reproduction suggested the use of a
stylus which would result in the minimum wear. After many experiments
and the production of a number of types of machines, the present
recorders and reproducers were evolved, the former consisting of a
very small cylindrical gouging tool having a diameter of about forty
thousandths of an inch, and the latter a ball or button-shaped stylus
with a diameter of about thirty-five thousandths of an inch. By using
an incisor of this sort, the record is formed of a series of connected
gouges with rounded sides, varying in depth and width, and with which
the reproducer automatically engages and maintains its engagement.
Another difficulty encountered in the commercial development of the
phonograph was the adjustment of the recording stylus so as to enter the
wax-like surface to a very slight depth, and of the reproducer so as
to engage exactly the record when formed. The earlier types of machines
were provided with separate screws for effecting these adjustments;
but considerable skill was required to obtain good results, and great
difficulty was experienced in meeting the variations in the wax-like
cylinders, due to the warping under atmospheric changes. Consequently,
with the early types of commercial phonographs, it was first necessary
to shave off the blank accurately before a record was formed thereon,
in order that an absolutely true surface might be presented. To overcome
these troubles, the very ingenious suggestion was then made and adopted,
of connecting the recording and reproducing styluses to their respective
diaphragms through the instrumentality of a compensating weight,
which acted practically as a fixed support under the very rapid sound
vibrations, but which yielded readily to distortions or variations
in the wax-like cylinders. By reason of this improvement, it became
possible to do away with all adjustments, the mass of the compensating
weight causing the recorder to engage the blank automatically to the
required depth, and to maintain the reproducing stylus always with the
desired pressure on the record when formed. These automatic adjustments
were maintained even though the blank or record might be so much out of
true as an eighth of an inch, equal to more than two hundred times the
maximum depth of the record groove.

Another improvement that followed along the lines adopted by Edison for
the commercial development of the phonograph was making the recording
and reproducing styluses of sapphire, an extremely hard, non-oxidizable
jewel, so that those tiny instruments would always retain their true
form and effectively resist wear. Of course, in this work many other
things were done that may still be found on the perfected phonograph
as it stands to-day, and many other suggestions were made which were
contemporaneously adopted, but which were later abandoned. For the
curious-minded, reference is made to the records in the Patent Office,
which will show that up to 1893 Edison had obtained upward of sixty-five
patents in this art, from which his line of thought can be very closely
traced. The phonograph of to-day, except for the perfection of its
mechanical features, in its beauty of manufacture and design, and in
small details, may be considered identical with the machine of 1889,
with the exception that with the latter the rotation of the record
cylinder was effected by an electric motor.

Its essential use as then contemplated was as a substitute for
stenographers, and the most extravagant fancies were indulged in as to
utility in that field. To exploit the device commercially, the patents
were sold to Philadelphia capitalists, who organized the North American
Phonograph Company, through which leases for limited periods were
granted to local companies doing business in special territories,
generally within the confines of a single State. Under that plan,
resembling the methods of 1878, the machines and blank cylinders were
manufactured by the Edison Phonograph Works, which still retains its
factories at Orange, New Jersey. The marketing enterprise was early
doomed to failure, principally because the instruments were not well
understood, and did not possess the necessary refinements that would fit
them for the special field in which they were to be used. At first the
instruments were leased; but it was found that the leases were seldom
renewed. Efforts were then made to sell them, but the prices were
high--from $100 to $150. In the midst of these difficulties, the chief
promoter of the enterprise, Mr. Lippincott, died; and it was soon found
that the roseate dreams of success entertained by the sanguine promoters
were not to be realized. The North American Phonograph Company failed,
its principal creditor being Mr. Edison, who, having acquired the assets
of the defunct concern, organized the National Phonograph Company, to
which he turned over the patents; and with characteristic energy he
attempted again to build up a business with which his favorite and, to
him, most interesting invention might be successfully identified. The
National Phonograph Company from the very start determined to retire at
least temporarily from the field of stenographic use, and to exploit the
phonograph for musical purposes as a competitor of the music-box. Hence
it was necessary that for such work the relatively heavy and expensive
electric motor should be discarded, and a simple spring motor
constructed with a sufficiently sensitive governor to permit accurate
musical reproduction. Such a motor was designed, and is now used on
all phonographs except on such special instruments as may be made with
electric motors, as well as on the successful apparatus that has more
recently been designed and introduced for stenographic use. Improved
factory facilities were introduced; new tools were made, and various
types of machines were designed so that phonographs can now be bought at
prices ranging from $10 to $200. Even with the changes which were thus
made in the two machines, the work of developing the business was slow,
as a demand had to be created; and the early prejudice of the public
against the phonograph, due to its failure as a stenographic apparatus,
had to be overcome. The story of the phonograph as an industrial
enterprise, from this point of departure, is itself full of interest,
but embraces so many details that it is necessarily given in a separate
later chapter. We must return to the days of 1878, when Edison, with at
least three first-class inventions to his credit--the quadruplex, the
carbon telephone, and the phonograph--had become a man of mark and a
"world character."

The invention of the phonograph was immediately followed, as usual, by
the appearance of several other incidental and auxiliary devices, some
patented, and others remaining simply the application of the
principles of apparatus that had been worked out. One of these was the
telephonograph, a combination of a telephone at a distant station with a
phonograph. The diaphragm of the phonograph mouthpiece is actuated by an
electromagnet in the same way as that of an ordinary telephone receiver,
and in this manner a record of the message spoken from a distance can
be obtained and turned into sound at will. Evidently such a process
is reversible, and the phonograph can send a message to the distant
receiver.

This idea was brilliantly demonstrated in practice in February, 1889, by
Mr. W. J. Hammer, one of Edison's earliest and most capable associates,
who carried on telephonographic communication between New York and an
audience in Philadelphia. The record made in New York on the Edison
phonograph was repeated into an Edison carbon transmitter, sent over one
hundred and three miles of circuit, including six miles of underground
cable; received by an Edison motograph; repeated by that on to a
phonograph; transferred from the phonograph to an Edison carbon
transmitter, and by that delivered to the Edison motograph receiver in
the enthusiastic lecture-hall, where every one could hear each sound
and syllable distinctly. In real practice this spectacular playing with
sound vibrations, as if they were lacrosse balls to toss around between
the goals, could be materially simplified.

The modern megaphone, now used universally in making announcements
to large crowds, particularly at sporting events, is also due to this
period as a perfection by Edison of many antecedent devices going back,
perhaps, much further than the legendary funnels through which Alexander
the Great is said to have sent commands to his outlying forces. The
improved Edison megaphone for long-distance work comprised two horns of
wood or metal about six feet long, tapering from a diameter of two feet
six inches at the mouth to a small aperture provided with ear-tubes.
These converging horns or funnels, with a large speaking-trumpet in
between them, are mounted on a tripod, and the megaphone is complete.
Conversation can be carried on with this megaphone at a distance of
over two miles, as with a ship or the balloon. The modern megaphone
now employs the receiver form thus introduced as its very effective
transmitter, with which the old-fashioned speaking-trumpet cannot
possibly compete; and the word "megaphone" is universally applied to the
single, side-flaring horn.

A further step in this line brought Edison to the "aerophone," around
which the Figaro weaved its fanciful description. In the construction
of the aerophone the same kind of tympanum is used as in the phonograph,
but the imitation of the human voice, or the transmission of sound,
is effected by the quick opening and closing of valves placed within
a steam-whistle or an organ-pipe. The vibrations of the diaphragm
communicated to the valves cause them to operate in synchronism, so that
the vibrations are thrown upon the escaping air or steam; and the result
is an instrument with a capacity of magnifying the sounds two hundred
times, and of hurling them to great distances intelligibly, like a huge
fog-siren, but with immense clearness and penetration. All this study
of sound transmission over long distances without wires led up to
the consideration and invention of pioneer apparatus for wireless
telegraphy--but that also is another chapter.

Yet one more ingenious device of this period must be noted--Edison's
vocal engine, the patent application for which was executed in August,
1878, the patent being granted the following December. Reference to
this by Edison himself has already been quoted. The "voice-engine," or
"phonomotor," converts the vibrations of the voice or of music, acting
on the diaphragm, into motion which is utilized to drive some secondary
appliance, whether as a toy or for some useful purpose. Thus a man can
actually talk a hole through a board.

Somewhat weary of all this work and excitement, and not having enjoyed
any cessation from toil, or period of rest, for ten years, Edison jumped
eagerly at the opportunity afforded him in the summer of 1878 of making
a westward trip. Just thirty years later, on a similar trip over the
same ground, he jotted down for this volume some of his reminiscences.
The lure of 1878 was the opportunity to try the ability of his delicate
tasimeter during the total eclipse of the sun, July 29. His admiring
friend, Prof. George F. Barker, of the University of Pennsylvania, with
whom he had now been on terms of intimacy for some years, suggested the
holiday, and was himself a member of the excursion party that made
its rendezvous at Rawlins, Wyoming Territory. Edison had tested his
tasimeter, and was satisfied that it would measure down to the millionth
part of a degree Fahrenheit. It was just ten years since he had left the
West in poverty and obscurity, a penniless operator in search of a job;
but now he was a great inventor and famous, a welcome addition to the
band of astronomers and physicists assembled to observe the eclipse and
the corona.

"There were astronomers from nearly every nation," says Mr. Edison. "We
had a special car. The country at that time was rather new; game was
in great abundance, and could be seen all day long from the car window,
especially antelope. We arrived at Rawlins about 4 P.M. It had a small
machine shop, and was the point where locomotives were changed for the
next section. The hotel was a very small one, and by doubling up we were
barely accommodated. My room-mate was Fox, the correspondent of the New
York Herald. After we retired and were asleep a thundering knock on
the door awakened us. Upon opening the door a tall, handsome man with
flowing hair dressed in western style entered the room. His eyes were
bloodshot, and he was somewhat inebriated. He introduced himself as
'Texas Jack'--Joe Chromondo--and said he wanted to see Edison, as he had
read about me in the newspapers. Both Fox and I were rather scared, and
didn't know what was to be the result of the interview. The landlord
requested him not to make so much noise, and was thrown out into the
hall. Jack explained that he had just come in with a party which had
been hunting, and that he felt fine. He explained, also, that he was the
boss pistol-shot of the West; that it was he who taught the celebrated
Doctor Carver how to shoot. Then suddenly pointing to a weather-vane on
the freight depot, he pulled out a Colt revolver and fired through the
window, hitting the vane. The shot awakened all the people, and they
rushed in to see who was killed. It was only after I told him I was
tired and would see him in the morning that he left. Both Fox and I were
so nervous we didn't sleep any that night.

"We were told in the morning that Jack was a pretty good fellow, and was
not one of the 'bad men,' of whom they had a good supply. They had one
in the jail, and Fox and I went over to see him. A few days before he
had held up a Union Pacific train and robbed all the passengers. In
the jail also was a half-breed horse-thief. We interviewed the bad man
through bars as big as railroad rails. He looked like a 'bad man.' The
rim of his ear all around came to a sharp edge and was serrated. His
eyes were nearly white, and appeared as if made of glass and set
in wrong, like the life-size figures of Indians in the Smithsonian
Institution. His face was also extremely irregular. He wouldn't answer a
single question. I learned afterward that he got seven years in prison,
while the horse-thief was hanged. As horses ran wild, and there was no
protection, it meant death to steal one."

This was one interlude among others. "The first thing the astronomers
did was to determine with precision their exact locality upon the earth.
A number of observations were made, and Watson, of Michigan University,
with two others, worked all night computing, until they agreed. They
said they were not in error more than one hundred feet, and that the
station was twelve miles out of the position given on the maps. It
seemed to take an immense amount of mathematics. I preserved one of
the sheets, which looked like the time-table of a Chinese railroad. The
instruments of the various parties were then set up in different parts
of the little town, and got ready for the eclipse which was to occur in
three or four days. Two days before the event we all got together, and
obtaining an engine and car, went twelve miles farther west to visit the
United States Government astronomers at a place called Separation, the
apex of the Great Divide, where the waters run east to the Mississippi
and west to the Pacific. Fox and I took our Winchester rifles with an
idea of doing a little shooting. After calling on the Government people
we started to interview the telegraph operator at this most lonely and
desolate spot. After talking over old acquaintances I asked him if
there was any game around. He said, 'Plenty of jack-rabbits.' These
jack-rabbits are a very peculiar species. They have ears about six
inches long and very slender legs, about three times as long as those
of an ordinary rabbit, and travel at a great speed by a series of jumps,
each about thirty feet long, as near as I could judge. The local
people called them 'narrow-gauge mules.' Asking the operator the best
direction, he pointed west, and noticing a rabbit in a clear space in
the sage bushes, I said, 'There is one now.' I advanced cautiously to
within one hundred feet and shot. The rabbit paid no attention. I
then advanced to within ten feet and shot again--the rabbit was still
immovable. On looking around, the whole crowd at the station were
watching--and then I knew the rabbit was stuffed! However, we did shoot
a number of live ones until Fox ran out of cartridges. On returning to
the station I passed away the time shooting at cans set on a pile of
tins. Finally the operator said to Fox: 'I have a fine Springfield
musket, suppose you try it!' So Fox took the musket and fired. It
knocked him nearly over. It seems that the musket had been run over by
a handcar, which slightly bent the long barrel, but not sufficiently for
an amateur like Fox to notice. After Fox had his shoulder treated with
arnica at the Government hospital tent, we returned to Rawlins."

The eclipse was, however, the prime consideration, and Edison followed
the example of his colleagues in making ready. The place which he
secured for setting up his tasimeter was an enclosure hardly suitable
for the purpose, and he describes the results as follows:

"I had my apparatus in a small yard enclosed by a board fence six feet
high, at one end there was a house for hens. I noticed that they all
went to roost just before totality. At the same time a slight wind
arose, and at the moment of totality the atmosphere was filled with
thistle-down and other light articles. I noticed one feather,
whose weight was at least one hundred and fifty milligrams, rise
perpendicularly to the top of the fence, where it floated away on the
wind. My apparatus was entirely too sensitive, and I got no results."
It was found that the heat from the corona of the sun was ten times
the index capacity of the instrument; but this result did not leave the
value of the device in doubt. The Scientific American remarked;

"Seeing that the tasimeter is affected by a wider range of etheric
undulations than the eye can take cognizance of, and is withal far more
acutely sensitive, the probabilities are that it will open up hitherto
inaccessible regions of space, and possibly extend the range of aerial
knowledge as far beyond the limit obtained by the telescope as that is
beyond the narrow reach of unaided vision."


The eclipse over, Edison, with Professor Barker, Major Thornberg,
several soldiers, and a number of railroad officials, went hunting about
one hundred miles south of the railroad in the Ute country. A few months
later the Major and thirty soldiers were ambushed near the spot at
which the hunting-party had camped, and all were killed. Through an
introduction from Mr. Jay Gould, who then controlled the Union Pacific,
Edison was allowed to ride on the cow-catchers of the locomotives. "The
different engineers gave me a small cushion, and every day I rode in
this manner, from Omaha to the Sacramento Valley, except through the
snow-shed on the summit of the Sierras, without dust or anything else to
obstruct the view. Only once was I in danger when the locomotive struck
an animal about the size of a small cub bear--which I think was a
badger. This animal struck the front of the locomotive just under the
headlight with great violence, and was then thrown off by the rebound. I
was sitting to one side grasping the angle brace, so no harm was done."

This welcome vacation lasted nearly two months; but Edison was back in
his laboratory and hard at work before the end of August, gathering
up many loose ends, and trying out many thoughts and ideas that had
accumulated on the trip. One hot afternoon--August 30th, as shown by
the document in the case--Mr. Edison was found by one of the authors
of this biography employed most busily in making a mysterious series of
tests on paper, using for ink acids that corrugated and blistered the
paper where written upon. When interrogated as to his object, he stated
that the plan was to afford blind people the means of writing directly
to each other, especially if they were also deaf and could not hear a
message on the phonograph. The characters which he was thus forming on
the paper were high enough in relief to be legible to the delicate touch
of a blind man's fingers, and with simple apparatus letters could be
thus written, sent, and read. There was certainly no question as to the
result obtained at the moment, which was all that was asked; but the
Edison autograph thus and then written now shows the paper eaten out by
the acid used, although covered with glass for many years. Mr. Edison
does not remember that he ever recurred to this very interesting test.

He was, however, ready for anything new or novel, and no record can ever
be made or presented that would do justice to a tithe of the thoughts
and fancies daily and hourly put upon the rack. The famous note-books,
to which reference will be made later, were not begun as a regular
series, as it was only the profusion of these ideas that suggested
the vital value of such systematic registration. Then as now, the
propositions brought to Edison ranged over every conceivable subject,
but the years have taught him caution in grappling with them. He tells
an amusing story of one dilemma into which his good-nature led him at
this period: "At Menlo Park one day, a farmer came in and asked if I
knew any way to kill potato-bugs. He had twenty acres of potatoes, and
the vines were being destroyed. I sent men out and culled two quarts
of bugs, and tried every chemical I had to destroy them. Bisulphide of
carbon was found to do it instantly. I got a drum and went over to the
potato farm and sprinkled it on the vines with a pot. Every bug dropped
dead. The next morning the farmer came in very excited and reported
that the stuff had killed the vines as well. I had to pay $300 for not
experimenting properly."

During this year, 1878, the phonograph made its way also to Europe,
and various sums of money were paid there to secure the rights to its
manufacture and exploitation. In England, for example, the Microscopic
Company paid $7500 down and agreed to a royalty, while arrangements were
effected also in France, Russia, and other countries. In every instance,
as in this country, the commercial development had to wait several
years, for in the mean time another great art had been brought into
existence, demanding exclusive attention and exhaustive toil. And when
the work was done the reward was a new heaven and a new earth--in the
art of illumination.



CHAPTER XI

THE INVENTION OF THE INCANDESCENT LAMP

IT is possible to imagine a time to come when the hours of work and rest
will once more be regulated by the sun. But the course of civilization
has been marked by an artificial lengthening of the day, and by a
constant striving after more perfect means of illumination. Why mankind
should sleep through several hours of sunlight in the morning, and
stay awake through a needless time in the evening, can probably only be
attributed to total depravity. It is certainly a most stupid, expensive,
and harmful habit. In no one thing has man shown greater fertility of
invention than in lighting; to nothing does he cling more tenaciously
than to his devices for furnishing light. Electricity to-day reigns
supreme in the field of illumination, but every other kind of artificial
light that has ever been known is still in use somewhere. Toward its
light-bringers the race has assumed an attitude of veneration, though it
has forgotten, if it ever heard, the names of those who first brightened
its gloom and dissipated its darkness. If the tallow candle, hitherto
unknown, were now invented, its creator would be hailed as one of the
greatest benefactors of the present age.

Up to the close of the eighteenth century, the means of house and street
illumination were of two generic kinds--grease and oil; but then came
a swift and revolutionary change in the adoption of gas. The ideas and
methods of Murdoch and Lebon soon took definite shape, and "coal smoke"
was piped from its place of origin to distant points of consumption.
As early as 1804, the first company ever organized for gas lighting was
formed in London, one side of Pall Mall being lit up by the enthusiastic
pioneer, Winsor, in 1807. Equal activity was shown in America, and
Baltimore began the practice of gas lighting in 1816. It is true that
there were explosions, and distinguished men like Davy and Watt opined
that the illuminant was too dangerous; but the "spirit of coal" had
demonstrated its usefulness convincingly, and a commercial development
began, which, for extent and rapidity, was not inferior to that marking
the concurrent adoption of steam in industry and transportation.

Meantime the wax candle and the Argand oil lamp held their own bravely.
The whaling fleets, long after gas came into use, were one of the
greatest sources of our national wealth. To New Bedford, Massachusetts,
alone, some three or four hundred ships brought their whale and sperm
oil, spermaceti, and whalebone; and at one time that port was accounted
the richest city in the United States in proportion to its population.
The ship-owners and refiners of that whaling metropolis were slow to
believe that their monopoly could ever be threatened by newer sources of
illumination; but gas had become available in the cities, and coal-oil
and petroleum were now added to the list of illuminating materials. The
American whaling fleet, which at the time of Edison's birth mustered
over seven hundred sail, had dwindled probably to a bare tenth when he
took up the problem of illumination; and the competition of oil from the
ground with oil from the sea, and with coal-gas, had made the artificial
production of light cheaper than ever before, when up to the middle
of the century it had remained one of the heaviest items of domestic
expense. Moreover, just about the time that Edison took up incandescent
lighting, water-gas was being introduced on a large scale as a
commercial illuminant that could be produced at a much lower cost than
coal-gas.

Throughout the first half of the nineteenth century the search for a
practical electric light was almost wholly in the direction of employing
methods analogous to those already familiar; in other words, obtaining
the illumination from the actual consumption of the light-giving
material. In the third quarter of the century these methods were
brought to practicality, but all may be referred back to the brilliant
demonstrations of Sir Humphry Davy at the Royal Institution, circa
1809-10, when, with the current from a battery of two thousand cells, he
produced an intense voltaic arc between the points of consuming sticks
of charcoal. For more than thirty years the arc light remained an
expensive laboratory experiment; but the coming of the dynamo placed
that illuminant on a commercial basis. The mere fact that electrical
energy from the least expensive chemical battery using up zinc and
acids costs twenty times as much as that from a dynamo--driven by
steam-engine--is in itself enough to explain why so many of the electric
arts lingered in embryo after their fundamental principles had been
discovered. Here is seen also further proof of the great truth that one
invention often waits for another.

From 1850 onward the improvements in both the arc lamp and the dynamo
were rapid; and under the superintendence of the great Faraday, in 1858,
protecting beams of intense electric light from the voltaic arc were
shed over the waters of the Straits of Dover from the beacons of South
Foreland and Dungeness. By 1878 the arc-lighting industry had sprung
into existence in so promising a manner as to engender an extraordinary
fever and furor of speculation. At the Philadelphia Centennial
Exposition of 1876, Wallace-Farmer dynamos built at Ansonia,
Connecticut, were shown, with the current from which arc lamps were
there put in actual service. A year or two later the work of Charles F.
Brush and Edward Weston laid the deep foundation of modern arc lighting
in America, securing as well substantial recognition abroad.

Thus the new era had been ushered in, but it was based altogether on the
consumption of some material--carbon--in a lamp open to the air. Every
lamp the world had ever known did this, in one way or another. Edison
himself began at that point, and his note-books show that he made
various experiments with this type of lamp at a very early stage.
Indeed, his experiments had led him so far as to anticipate in 1875 what
are now known as "flaming arcs," the exceedingly bright and generally
orange or rose-colored lights which have been introduced within the last
few years, and are now so frequently seen in streets and public places.
While the arcs with plain carbons are bluish-white, those with carbons
containing calcium fluoride have a notable golden glow.

He was convinced, however, that the greatest field of lighting lay in
the illumination of houses and other comparatively enclosed areas,
to replace the ordinary gas light, rather than in the illumination
of streets and other outdoor places by lights of great volume
and brilliancy. Dismissing from his mind quickly the commercial
impossibility of using arc lights for general indoor illumination,
he arrived at the conclusion that an electric lamp giving light by
incandescence was the solution of the problem.

Edison was familiar with the numerous but impracticable and commercially
unsuccessful efforts that had been previously made by other inventors
and investigators to produce electric light by incandescence, and at the
time that he began his experiments, in 1877, almost the whole scientific
world had pronounced such an idea as impossible of fulfilment. The
leading electricians, physicists, and experts of the period had been
studying the subject for more than a quarter of a century, and with but
one known exception had proven mathematically and by close reasoning
that the "Subdivision of the Electric Light," as it was then termed, was
practically beyond attainment. Opinions of this nature have ever been
but a stimulus to Edison when he has given deep thought to a subject,
and has become impressed with strong convictions of possibility, and
in this particular case he was satisfied that the subdivision of the
electric light--or, more correctly, the subdivision of the electric
current--was not only possible but entirely practicable.

It will have been perceived from the foregoing chapters that from the
time of boyhood, when he first began to rub against the world, his
commercial instincts were alert and predominated in almost all of the
enterprises that he set in motion. This characteristic trait had grown
stronger as he matured, having received, as it did, fresh impetus and
strength from his one lapse in the case of his first patented invention,
the vote-recorder. The lesson he then learned was to devote his
inventive faculties only to things for which there was a real, genuine
demand, and that would subserve the actual necessities of humanity; and
it was probably a fortunate circumstance that this lesson was learned
at the outset of his career as an inventor. He has never assumed to be a
philosopher or "pure scientist."

In order that the reader may grasp an adequate idea of the magnitude and
importance of Edison's invention of the incandescent lamp, it will be
necessary to review briefly the "state of the art" at the time he
began his experiments on that line. After the invention of the voltaic
battery, early in the last century, experiments were made which
determined that heat could be produced by the passage of the electric
current through wires of platinum and other metals, and through pieces
of carbon, as noted already, and it was, of course, also observed that
if sufficient current were passed through these conductors they could be
brought from the lower stage of redness up to the brilliant white heat
of incandescence. As early as 1845 the results of these experiments were
taken advantage of when Starr, a talented American who died at the early
age of twenty-five, suggested, in his English patent of that year, two
forms of small incandescent electric lamps, one having a burner made
from platinum foil placed under a glass cover without excluding the air;
and the other composed of a thin plate or pencil of carbon enclosed in
a Torricellian vacuum. These suggestions of young Starr were followed
by many other experimenters, whose improvements consisted principally in
devices to increase the compactness and portability of the lamp, in
the sealing of the lamp chamber to prevent the admission of air, and
in means for renewing the carbon burner when it had been consumed. Thus
Roberts, in 1852, proposed to cement the neck of the glass globe into a
metallic cup, and to provide it with a tube or stop-cock for exhaustion
by means of a hand-pump. Lodyguine, Konn, Kosloff, and Khotinsky,
between 1872 and 1877, proposed various ingenious devices for perfecting
the joint between the metal base and the glass globe, and also provided
their lamps with several short carbon pencils, which were automatically
brought into circuit successively as the pencils were consumed. In 1876
or 1877, Bouliguine proposed the employment of a long carbon pencil, a
short section only of which was in circuit at any one time and formed
the burner, the lamp being provided with a mechanism for automatically
pushing other sections of the pencil into position between the contacts
to renew the burner. Sawyer and Man proposed, in 1878, to make
the bottom plate of glass instead of metal, and provided ingenious
arrangements for charging the lamp chamber with an atmosphere of pure
nitrogen gas which does not support combustion.

These lamps and many others of similar character, ingenious as they
were, failed to become of any commercial value, due, among other things,
to the brief life of the carbon burner. Even under the best conditions
it was found that the carbon members were subject to a rapid
disintegration or evaporation, which experimenters assumed was due to
the disrupting action of the electric current; and hence the conclusion
that carbon contained in itself the elements of its own destruction, and
was not a suitable material for the burner of an incandescent lamp. On
the other hand, platinum, although found to be the best of all materials
for the purpose, aside from its great expense, and not combining with
oxygen at high temperatures as does carbon, required to be brought
so near the melting-point in order to give light, that a very slight
increase in the temperature resulted in its destruction. It was assumed
that the difficulty lay in the material of the burner itself, and not in
its environment.

It was not realized up to such a comparatively recent date as 1879 that
the solution of the great problem of subdivision of the electric current
would not, however, be found merely in the production of a durable
incandescent electric lamp--even if any of the lamps above referred to
had fulfilled that requirement. The other principal features necessary
to subdivide the electric current successfully were: the burning of an
indefinite number of lights on the same circuit; each light to give
a useful and economical degree of illumination; and each light to
be independent of all the others in regard to its operation and
extinguishment.

The opinions of scientific men of the period on the subject are well
represented by the two following extracts--the first, from a lecture at
the Royal United Service Institution, about February, 1879, by Mr. (Sir)
W. H. Preece, one of the most eminent electricians in England,
who, after discussing the question mathematically, said: "Hence the
sub-division of the light is an absolute ignis fatuus." The other
extract is from a book written by Paget Higgs, LL.D., D.Sc., published
in London in 1879, in which he says: "Much nonsense has been talked
in relation to this subject. Some inventors have claimed the power to
'indefinitely divide' the electric current, not knowing or forgetting
that such a statement is incompatible with the well-proven law of
conservation of energy."

"Some inventors," in the last sentence just quoted, probably--indeed,
we think undoubtedly--refers to Edison, whose earlier work in electric
lighting (1878) had been announced in this country and abroad, and
who had then stated boldly his conviction of the practicability of
the subdivision of the electrical current. The above extracts are good
illustrations, however, of scientific opinions up to the end of
1879, when Mr. Edison's epoch-making invention rendered them entirely
untenable. The eminent scientist, John Tyndall, while not sharing these
precise views, at least as late as January 17, 1879, delivered a lecture
before the Royal Institution on "The Electric Light," when, after
pointing out the development of the art up to Edison's work, and showing
the apparent hopelessness of the problem, he said: "Knowing something of
the intricacy of the practical problem, I should certainly prefer seeing
it in Edison's hands to having it in mine."

The reader may have deemed this sketch of the state of the art to be
a considerable digression; but it is certainly due to the subject to
present the facts in such a manner as to show that this great invention
was neither the result of improving some process or device that was
known or existing at the time, nor due to any unforeseen lucky chance,
nor the accidental result of other experiments. On the contrary, it was
the legitimate outcome of a series of exhaustive experiments founded
upon logical and original reasoning in a mind that had the courage and
hardihood to set at naught the confirmed opinions of the world,
voiced by those generally acknowledged to be the best exponents of the
art--experiments carried on amid a storm of jeers and derision, almost
as contemptuous as if the search were for the discovery of perpetual
motion. In this we see the man foreshadowed by the boy who, when he
obtained his books on chemistry or physics, did not accept any statement
of fact or experiment therein, but worked out every one of them himself
to ascertain whether or not they were true.

Although this brings the reader up to the year 1879, one must turn back
two years and accompany Edison in his first attack on the electric-light
problem. In 1877 he sold his telephone invention (the carbon
transmitter) to the Western Union Telegraph Company, which had
previously come into possession also of his quadruplex inventions,
as already related. He was still busily engaged on the telephone,
on acoustic electrical transmission, sextuplex telegraphs, duplex
telegraphs, miscellaneous carbon articles, and other inventions of a
minor nature. During the whole of the previous year and until late in
the summer of 1877, he had been working with characteristic energy and
enthusiasm on the telephone; and, in developing this invention to a
successful issue, had preferred the use of carbon and had employed it in
numerous forms, especially in the form of carbonized paper.

Eighteen hundred and seventy-seven in Edison's laboratory was a
veritable carbon year, for it was carbon in some shape or form for
interpolation in electric circuits of various kinds that occupied the
thoughts of the whole force from morning to night. It is not surprising,
therefore, that in September of that year, when Edison turned his
thoughts actively toward electric lighting by incandescence, his early
experiments should be in the line of carbon as an illuminant. His
originality of method was displayed at the very outset, for one of the
first experiments was the bringing to incandescence of a strip of carbon
in the open air to ascertain merely how much current was required.
This conductor was a strip of carbonized paper about an inch long,
one-sixteenth of an inch broad, and six or seven one-thousandths of an
inch thick, the ends of which were secured to clamps that formed the
poles of a battery. The carbon was lighted up to incandescence, and, of
course, oxidized and disintegrated immediately. Within a few days this
was followed by experiments with the same kind of carbon, but in vacuo
by means of a hand-worked air-pump. This time the carbon strip burned
at incandescence for about eight minutes. Various expedients to prevent
oxidization were tried, such, for instance, as coating the carbon with
powdered glass, which in melting would protect the carbon from the
atmosphere, but without successful results.

Edison was inclined to concur in the prevailing opinion as to the easy
destructibility of carbon, but, without actually settling the point in
his mind, he laid aside temporarily this line of experiment and entered
a new field. He had made previously some trials of platinum wire as
an incandescent burner for a lamp, but left it for a time in favor of
carbon. He now turned to the use of almost infusible metals--such as
boron, ruthenium, chromium, etc.--as separators or tiny bridges between
two carbon points, the current acting so as to bring these separators
to a high degree of incandescence, at which point they would emit a
brilliant light. He also placed some of these refractory metals directly
in the circuit, bringing them to incandescence, and used silicon in
powdered form in glass tubes placed in the electric circuit. His notes
include the use of powdered silicon mixed with lime or other very
infusible non-conductors or semi-conductors. Edison's conclusions on
these substances were that, while in some respects they were within the
bounds of possibility for the subdivision of the electric current, they
did not reach the ideal that he had in mind for commercial results.

Edison's systematized attacks on the problem were two in number, the
first of which we have just related, which began in September, 1877, and
continued until about January, 1878. Contemporaneously, he and his
force of men were very busily engaged day and night on other important
enterprises and inventions. Among the latter, the phonograph may be
specially mentioned, as it was invented in the late fall of 1877. From
that time until July, 1878, his time and attention day and night were
almost completely absorbed by the excitement caused by the invention and
exhibition of the machine. In July, feeling entitled to a brief vacation
after several years of continuous labor, Edison went with the expedition
to Wyoming to observe an eclipse of the sun, and incidentally to test
his tasimeter, a delicate instrument devised by him for measuring
heat transmitted through immense distances of space. His trip has been
already described. He was absent about two months. Coming home rested
and refreshed, Mr. Edison says: "After my return from the trip to
observe the eclipse of the sun, I went with Professor Barker, Professor
of Physics in the University of Pennsylvania, and Doctor Chandler,
Professor of Chemistry in Columbia College, to see Mr. Wallace, a large
manufacturer of brass in Ansonia, Connecticut. Wallace at this time was
experimenting on series arc lighting. Just at that time I wanted to take
up something new, and Professor Barker suggested that I go to work and
see if I could subdivide the electric light so it could be got in small
units like gas. This was not a new suggestion, because I had made a
number of experiments on electric lighting a year before this. They had
been laid aside for the phonograph. I determined to take up the search
again and continue it. On my return home I started my usual course of
collecting every kind of data about gas; bought all the transactions
of the gas-engineering societies, etc., all the back volumes of gas
journals, etc. Having obtained all the data, and investigated gas-jet
distribution in New York by actual observations, I made up my mind that
the problem of the subdivision of the electric current could be solved
and made commercial." About the end of August, 1878, he began his second
organized attack on the subdivision of the current, which was steadily
maintained until he achieved signal victory a year and two months later.

The date of this interesting visit to Ansonia is fixed by an inscription
made by Edison on a glass goblet which he used. The legend in diamond
scratches runs: "Thomas A. Edison, September 8, 1878, made under the
electric light." Other members of the party left similar memorials,
which under the circumstances have come to be greatly prized. A number
of experiments were witnessed in arc lighting, and Edison secured
a small Wallace-Farmer dynamo for his own work, as well as a set of
Wallace arc lamps for lighting the Menlo Park laboratory. Before leaving
Ansonia, Edison remarked, significantly: "Wallace, I believe I can beat
you making electric lights. I don't think you are working in the right
direction." Another date which shows how promptly the work was resumed
is October 14, 1878, when Edison filed an application for his first
lighting patent: "Improvement in Electric Lights." In after years,
discussing the work of Wallace, who was not only a great pioneer
electrical manufacturer, but one of the founders of the wire-drawing and
brass-working industry, Edison said: "Wallace was one of the earliest
pioneers in electrical matters in this country. He has done a great deal
of good work, for which others have received the credit; and the
work which he did in the early days of electric lighting others
have benefited by largely, and he has been crowded to one side and
forgotten." Associated in all this work with Wallace at Ansonia was
Prof. Moses G. Farmer, famous for the introduction of the fire-alarm
system; as the discoverer of the self-exciting principle of the modern
dynamo; as a pioneer experimenter in the electric-railway field; as a
telegraph engineer, and as a lecturer on mines and explosives to
naval classes at Newport. During 1858, Farmer, who, like Edison, was a
ceaseless investigator, had made a series of studies upon the production
of light by electricity, and had even invented an automatic regulator
by which a number of platinum lamps in multiple arc could be kept at
uniform voltage for any length of time. In July, 1859, he lit up one of
the rooms of his house at Salem, Massachusetts, every evening with such
lamps, using in them small pieces of platinum and iridium wire, which
were made to incandesce by means of current from primary batteries.
Farmer was not one of the party that memorable day in September, but his
work was known through his intimate connection with Wallace, and there
is no doubt that reference was made to it. Such work had not led
very far, the "lamps" were hopelessly short-lived, and everything was
obviously experimental; but it was all helpful and suggestive to one
whose open mind refused no hint from any quarter.

At the commencement of his new attempts, Edison returned to his
experiments with carbon as an incandescent burner for a lamp, and made
a very large number of trials, all in vacuo. Not only were the ordinary
strip paper carbons tried again, but tissue-paper coated with tar and
lampblack was rolled into thin sticks, like knitting-needles, carbonized
and raised to incandescence in vacuo. Edison also tried hard carbon,
wood carbons, and almost every conceivable variety of paper carbon in
like manner. With the best vacuum that he could then get by means of the
ordinary air-pump, the carbons would last, at the most, only from ten to
fifteen minutes in a state of incandescence. Such results were evidently
not of commercial value.

Edison then turned his attention in other directions. In his earliest
consideration of the problem of subdividing the electric current, he had
decided that the only possible solution lay in the employment of a lamp
whose incandescing body should have a high resistance combined with a
small radiating surface, and be capable of being used in what is called
"multiple arc," so that each unit, or lamp, could be turned on or off
without interfering with any other unit or lamp. No other arrangement
could possibly be considered as commercially practicable.

The full significance of the three last preceding sentences will not be
obvious to laymen, as undoubtedly many of the readers of this book may
be; and now being on the threshold of the series of Edison's experiments
that led up to the basic invention, we interpolate a brief explanation,
in order that the reader may comprehend the logical reasoning and work
that in this case produced such far-reaching results.

If we consider a simple circuit in which a current is flowing, and
include in the circuit a carbon horseshoe-like conductor which it is
desired to bring to incandescence by the heat generated by the current
passing through it, it is first evident that the resistance offered to
the current by the wires themselves must be less than that offered by
the burner, because, otherwise current would be wasted as heat in the
conducting wires. At the very foundation of the electric-lighting art is
the essentially commercial consideration that one cannot spend very much
for conductors, and Edison determined that, in order to use wires of a
practicable size, the voltage of the current (i.e., its pressure or
the characteristic that overcomes resistance to its flow) should be one
hundred and ten volts, which since its adoption has been the standard.
To use a lower voltage or pressure, while making the solution of the
lighting problem a simple one as we shall see, would make it necessary
to increase the size of the conducting wires to a prohibitive extent.
To increase the voltage or pressure materially, while permitting
some saving in the cost of conductors, would enormously increase the
difficulties of making a sufficiently high resistance conductor to
secure light by incandescence. This apparently remote consideration
--weight of copper used--was really the commercial key to the problem,
just as the incandescent burner was the scientific key to that problem.
Before Edison's invention incandescent lamps had been suggested as
a possibility, but they were provided with carbon rods or strips of
relatively low resistance, and to bring these to incandescence required
a current of low pressure, because a current of high voltage would pass
through them so readily as not to generate heat; and to carry a current
of low pressure through wires without loss would require wires of
enormous size. [8] Having a current of relatively high pressure to
contend with, it was necessary to provide a carbon burner which, as
compared with what had previously been suggested, should have a very
great resistance. Carbon as a material, determined after patient search,
apparently offered the greatest hope, but even with this substance the
necessary high resistance could be obtained only by making the burner
of extremely small cross-section, thereby also reducing its radiating
surface. Therefore, the crucial point was the production of a hair-like
carbon filament, with a relatively great resistance and small radiating
surface, capable of withstanding mechanical shock, and susceptible of
being maintained at a temperature of over two thousand degrees for a
thousand hours or more before breaking. And this filamentary conductor
required to be supported in a vacuum chamber so perfectly formed and
constructed that during all those hours, and subjected as it is to
varying temperatures, not a particle of air should enter to disintegrate
the filament. And not only so, but the lamp after its design must not
be a mere laboratory possibility, but a practical commercial article
capable of being manufactured at low cost and in large quantities. A
statement of what had to be done in those days of actual as well as
scientific electrical darkness is quite sufficient to explain Tyndall's
attitude of mind in preferring that the problem should be in Edison's
hands rather than in his own. To say that the solution of the problem
lay merely in reducing the size of the carbon burner to a mere hair, is
to state a half-truth only; but who, we ask, would have had the temerity
even to suggest that such an attenuated body could be maintained at a
white heat, without disintegration, for a thousand hours? The solution
consisted not only in that, but in the enormous mass of patiently
worked-out details--the manufacture of the filaments, their uniform
carbonization, making the globes, producing a perfect vacuum, and
countless other factors, the omission of any one of which would probably
have resulted eventually in failure.


     [Footnote 8: As a practical illustration of these facts it
     was calculated by Professor Barker, of the University of
     Pennsylvania (after Edison had invented the incandescent
     lamp), that if it should cost $100,000 for copper conductors
     to supply current to Edison lamps in a given area, it would
     cost about $200,000,000 for copper conductors for lighting
     the same area by lamps of the earlier experimenters--such,
     for instance, as the lamp invented by Konn in 1875. This
     enormous difference would be accounted for by the fact that
     Edison's lamp was one having a high resistance and
     relatively small radiating surface, while Konn's lamp was
     one having a very low resistance and large radiating
     surface.]

Continuing the digression one step farther in order to explain the term
"multiple arc," it may be stated that there are two principal systems
of distributing electric current, one termed "series," and the other
"multiple arc." The two are illustrated, diagrammatically, side by side,
the arrows indicating flow of current. The series system, it will be
seen, presents one continuous path for the current. The current for the
last lamp must pass through the first and all the intermediate lamps.
Hence, if any one light goes out, the continuity of the path is broken,
current cannot flow, and all the lamps are extinguished unless a loop
or by-path is provided. It is quite obvious that such a system would be
commercially impracticable where small units, similar to gas jets, were
employed. On the other hand, in the multiple-arc system, current may be
considered as flowing in two parallel conductors like the vertical sides
of a ladder, the ends of which never come together. Each lamp is placed
in a separate circuit across these two conductors, like a rung in the
ladder, thus making a separate and independent path for the current in
each case. Hence, if a lamp goes out, only that individual subdivision,
or ladder step, is affected; just that one particular path for the
current is interrupted, but none of the other lamps is interfered with.
They remain lighted, each one independent of the other. The reader will
quite readily understand, therefore, that a multiple-arc system is the
only one practically commercial where electric light is to be used in
small units like those of gas or oil.

Such was the nature of the problem that confronted Edison at the outset.
There was nothing in the whole world that in any way approximated a
solution, although the most brilliant minds in the electrical art had
been assiduously working on the subject for a quarter of a century
preceding. As already seen, he came early to the conclusion that the
only solution lay in the use of a lamp of high resistance and small
radiating surface, and, with characteristic fervor and energy, he
attacked the problem from this standpoint, having absolute faith in
a successful outcome. The mere fact that even with the successful
production of the electric lamp the assault on the complete problem
of commercial lighting would hardly be begun did not deter him in the
slightest. To one of Edison's enthusiastic self-confidence the long
vista of difficulties ahead--we say it in all sincerity--must have been
alluring.

After having devoted several months to experimental trials of carbon,
at the end of 1878, as already detailed, he turned his attention to the
platinum group of metals and began a series of experiments in which he
used chiefly platinum wire and iridium wire, and alloys of refractory
metals in the form of wire burners for incandescent lamps. These metals
have very high fusing-points, and were found to last longer than the
carbon strips previously used when heated up to incandescence by the
electric current, although under such conditions as were then possible
they were melted by excess of current after they had been lighted a
comparatively short time, either in the open air or in such a vacuum as
could be obtained by means of the ordinary air-pump.

Nevertheless, Edison continued along this line of experiment with
unremitting vigor, making improvement after improvement, until about
April, 1879, he devised a means whereby platinum wire of a given length,
which would melt in the open air when giving a light equal to four
candles, would emit a light of twenty-five candle-power without fusion.
This was accomplished by introducing the platinum wire into an all-glass
globe, completely sealed and highly exhausted of air, and passing a
current through the platinum wire while the vacuum was being made.
In this, which was a new and radical invention, we see the first step
toward the modern incandescent lamp. The knowledge thus obtained that
current passing through the platinum during exhaustion would drive out
occluded gases (i.e., gases mechanically held in or upon the metal), and
increase the infusibility of the platinum, led him to aim at securing
greater perfection in the vacuum, on the theory that the higher the
vacuum obtained, the higher would be the infusibility of the platinum
burner. And this fact also was of the greatest importance in making
successful the final use of carbon, because without the subjection of
the carbon to the heating effect of current during the formation of the
vacuum, the presence of occluded gases would have been a fatal obstacle.

Continuing these experiments with most fervent zeal, taking no account
of the passage of time, with an utter disregard for meals, and but
scanty hours of sleep snatched reluctantly at odd periods of the day
or night, Edison kept his laboratory going without cessation. A great
variety of lamps was made of the platinum-iridium type, mostly with
thermal devices to regulate the temperature of the burner and prevent
its being melted by an excess of current. The study of apparatus for
obtaining more perfect vacua was unceasingly carried on, for Edison
realized that in this there lay a potent factor of ultimate success.
About August he had obtained a pump that would produce a vacuum up to
about the one-hundred-thousandth part of an atmosphere, and some time
during the next month, or beginning of October, had obtained one that
would produce a vacuum up to the one-millionth part of an atmosphere.
It must be remembered that the conditions necessary for MAINTAINING this
high vacuum were only made possible by his invention of the one-piece
all-glass globe, in which all the joints were hermetically sealed during
its manufacture into a lamp, whereby a high vacuum could be retained
continuously for any length of time.

In obtaining this perfection of vacuum apparatus, Edison realized that
he was approaching much nearer to a solution of the problem. In his
experiments with the platinum-iridium lamps, he had been working all
the time toward the proposition of high resistance and small radiating
surface, until he had made a lamp having thirty feet of fine platinum
wire wound upon a small bobbin of infusible material; but the desired
economy, simplicity, and durability were not obtained in this manner,
although at all times the burner was maintained at a critically high
temperature. After attaining a high degree of perfection with these
lamps, he recognized their impracticable character, and his mind
reverted to the opinion he had formed in his early experiments two years
before--viz., that carbon had the requisite resistance to permit a very
simple conductor to accomplish the object if it could be used in the
form of a hair-like "filament," provided the filament itself could be
made sufficiently homogeneous. As we have already seen, he could not use
carbon successfully in his earlier experiments, for the strips of carbon
he then employed, although they were much larger than "filaments,"
would not stand, but were consumed in a few minutes under the imperfect
conditions then at his command.

Now, however, that he had found means for obtaining and maintaining high
vacua, Edison immediately went back to carbon, which from the first
he had conceived of as the ideal substance for a burner. His next step
proved conclusively the correctness of his old deductions. On October
21, 1879, after many patient trials, he carbonized a piece of cotton
sewing-thread bent into a loop or horseshoe form, and had it sealed
into a glass globe from which he exhausted the air until a vacuum up to
one-millionth of an atmosphere was produced. This lamp, when put on
the circuit, lighted up brightly to incandescence and maintained its
integrity for over forty hours, and lo! the practical incandescent lamp
was born. The impossible, so called, had been attained; subdivision
of the electric-light current was made practicable; the goal had
been reached; and one of the greatest inventions of the century
was completed. Up to this time Edison had spent over $40,000 in his
electric-light experiments, but the results far more than justified the
expenditure, for with this lamp he made the discovery that the FILAMENT
of carbon, under the conditions of high vacuum, was commercially
stable and would stand high temperatures without the disintegration and
oxidation that took place in all previous attempts that he knew of
for making an incandescent burner out of carbon. Besides, this lamp
possessed the characteristics of high resistance and small radiating
surface, permitting economy in the outlay for conductors, and requiring
only a small current for each unit of light--conditions that were
absolutely necessary of fulfilment in order to accomplish commercially
the subdivision of the electric-light current.

This slender, fragile, tenuous thread of brittle carbon, glowing
steadily and continuously with a soft light agreeable to the eyes,
was the tiny key that opened the door to a world revolutionized in
its interior illumination. It was a triumphant vindication of Edison's
reasoning powers, his clear perceptions, his insight into possibilities,
and his inventive faculty, all of which had already been productive of
so many startling, practical, and epoch-making inventions. And now he
had stepped over the threshold of a new art which has since become so
world-wide in its application as to be an integral part of modern human
experience. [9]


     [Footnote 9: The following extract from Walker on Patents
     (4th edition) will probably be of interest to the reader:

     "Sec. 31a. A meritorious exception, to the rule of the last
     section, is involved in the adjudicated validity of the
     Edison incandescent-light patent. The carbon filament, which
     constitutes the only new part of the combination of the
     second claim of that patent, differs from the earlier carbon
     burners of Sawyer and Man, only in having a diameter of one-
     sixty-fourth of an inch or less, whereas the burners of
     Sawyer and Man had a diameter of one-thirty-second of an
     inch or more. But that reduction of one-half in diameter
     increased the resistance of the burner FOURFOLD, and reduced
     its radiating surface TWOFOLD, and thus increased eightfold,
     its ratio of resistance to radiating surface. That eightfold
     increase of proportion enabled the resistance of the
     conductor of electricity from the generator to the burner to
     be increased eightfold, without any increase of percentage
     of loss of energy in that conductor, or decrease of
     percentage of development of heat in the burner; and thus
     enabled the area of the cross-section of that conductor to
     be reduced eightfold, and thus to be made with one-eighth of
     the amount of copper or other metal, which would be required
     if the reduction of diameter of the burner from one-thirty-
     second to one-sixty-fourth of an inch had not been made. And
     that great reduction in the size and cost of conductors,
     involved also a great difference in the composition of the
     electric energy employed in the system; that difference
     consisting in generating the necessary amount of electrical
     energy with comparatively high electromotive force, and
     comparatively low current, instead of contrariwise. For this
     reason, the use of carbon filaments, one-sixty-fourth of an
     inch in diameter or less, instead of carbon burners one-
     thirty-second of an inch in diameter or more, not only
     worked an enormous economy in conductors, but also
     necessitated a great change in generators, and did both
     according to a philosophy, which Edison was the first to
     know, and which is stated in this paragraph in its simplest
     form and aspect, and which lies at the foundation of the
     incandescent electric lighting of the world."]


No sooner had the truth of this new principle been established than
the work to establish it firmly and commercially was carried on
more assiduously than ever. The next immediate step was a further
investigation of the possibilities of improving the quality of the
carbon filament. Edison had previously made a vast number of experiments
with carbonized paper for various electrical purposes, with such good
results that he once more turned to it and now made fine filament-like
loops of this material which were put into other lamps. These proved
even more successful (commercially considered) than the carbonized
thread--so much so that after a number of such lamps had been made and
put through severe tests, the manufacture of lamps from these paper
carbons was begun and carried on continuously. This necessitated first
the devising and making of a large number of special tools for cutting
the carbon filaments and for making and putting together the various
parts of the lamps. Meantime, great excitement had been caused in this
country and in Europe by the announcement of Edison's success. In the
Old World, scientists generally still declared the impossibility of
subdividing the electric-light current, and in the public press Mr.
Edison was denounced as a dreamer. Other names of a less complimentary
nature were applied to him, even though his lamp were actually in
use, and the principle of commercial incandescent lighting had been
established.

Between October 21, 1879, and December 21, 1879, some hundreds of these
paper-carbon lamps had been made and put into actual use, not only in
the laboratory, but in the streets and several residences at Menlo Park,
New Jersey, causing great excitement and bringing many visitors from
far and near. On the latter date a full-page article appeared in the
New York Herald which so intensified the excited feeling that Mr. Edison
deemed it advisable to make a public exhibition. On New Year's Eve,
1879, special trains were run to Menlo Park by the Pennsylvania
Railroad, and over three thousand persons took advantage of the
opportunity to go out there and witness this demonstration for
themselves. In this great crowd were many public officials and men of
prominence in all walks of life, who were enthusiastic in their praises.

In the mean time, the mind that conceived and made practical this
invention could not rest content with anything less than perfection,
so far as it could be realized. Edison was not satisfied with paper
carbons. They were not fully up to the ideal that he had in mind. What
he sought was a perfectly uniform and homogeneous carbon, one like the
"One-Hoss Shay," that had no weak spots to break down at inopportune
times. He began to carbonize everything in nature that he could lay
hands on. In his laboratory note-books are innumerable jottings of the
things that were carbonized and tried, such as tissue-paper, soft paper,
all kinds of cardboards, drawing-paper of all grades, paper saturated
with tar, all kinds of threads, fish-line, threads rubbed with tarred
lampblack, fine threads plaited together in strands, cotton soaked in
boiling tar, lamp-wick, twine, tar and lampblack mixed with a proportion
of lime, vulcanized fibre, celluloid, boxwood, cocoanut hair and shell,
spruce, hickory, baywood, cedar and maple shavings, rosewood, punk,
cork, bagging, flax, and a host of other things. He also extended his
searches far into the realms of nature in the line of grasses, plants,
canes, and similar products, and in these experiments at that time
and later he carbonized, made into lamps, and tested no fewer than six
thousand different species of vegetable growths.

The reasons for such prodigious research are not apparent on the face of
the subject, nor is this the occasion to enter into an explanation, as
that alone would be sufficient to fill a fair-sized book. Suffice it
to say that Edison's omnivorous reading, keen observation, power of
assimilating facts and natural phenomena, and skill in applying the
knowledge thus attained to whatever was in hand, now came into full play
in determining that the results he desired could only be obtained in
certain directions.

At this time he was investigating everything with a microscope, and one
day in the early part of 1880 he noticed upon a table in the laboratory
an ordinary palm-leaf fan. He picked it up and, looking it over,
observed that it had a binding rim made of bamboo, cut from the outer
edge of the cane; a very long strip. He examined this, and then gave it
to one of his assistants, telling him to cut it up and get out of it
all the filaments he could, carbonize them, put them into lamps, and try
them. The results of this trial were exceedingly successful, far better
than with anything else thus far used; indeed, so much so, that after
further experiments and microscopic examinations Edison was convinced
that he was now on the right track for making a thoroughly stable,
commercial lamp; and shortly afterward he sent a man to Japan to procure
further supplies of bamboo. The fascinating story of the bamboo hunt
will be told later; but even this bamboo lamp was only one item of
a complete system to be devised--a system that has since completely
revolutionized the art of interior illumination.

Reference has been made in this chapter to the preliminary study that
Edison brought to bear on the development of the gas art and industry.
This study was so exhaustive that one can only compare it to the careful
investigation made in advance by any competent war staff of the elements
of strength and weakness, on both sides, in a possible campaign. A
popular idea of Edison that dies hard, pictures a breezy, slap-dash,
energetic inventor arriving at new results by luck and intuition, making
boastful assertions and then winning out by mere chance. The native
simplicity of the man, the absence of pose and ceremony, do much to
strengthen this notion; but the real truth is that while gifted with
unusual imagination, Edison's march to the goal of a new invention is
positively humdrum and monotonous in its steady progress. No one ever
saw Edison in a hurry; no one ever saw him lazy; and that which he did
with slow, careful scrutiny six months ago, he will be doing with just
as much calm deliberation of research six months hence--and six years
hence if necessary. If, for instance, he were asked to find the most
perfect pebble on the Atlantic shore of New Jersey, instead of hunting
here, there, and everywhere for the desired object, we would no doubt
find him patiently screening the entire beach, sifting out the most
perfect stones and eventually, by gradual exclusion, reaching the
long-sought-for pebble; and the mere fact that in this search years
might be taken, would not lessen his enthusiasm to the slightest extent.

In the "prospectus book" among the series of famous note-books, all the
references and data apply to gas. The book is numbered 184, falls into
the period now dealt with, and runs along casually with items spread
out over two or three years. All these notes refer specifically to
"Electricity vs. Gas as General Illuminants," and cover an astounding
range of inquiry and comment. One of the very first notes tells the
whole story: "Object, Edison to effect exact imitation of all done by
gas, so as to replace lighting by gas by lighting by electricity. To
improve the illumination to such an extent as to meet all requirements
of natural, artificial, and commercial conditions." A large programme,
but fully executed! The notes, it will be understood, are all in
Edison's handwriting. They go on to observe that "a general system of
distribution is the only possible means of economical illumination," and
they dismiss isolated-plant lighting as in mills and factories as of so
little importance to the public--"we shall leave the consideration of
this out of this book." The shrewd prophecy is made that gas will be
manufactured less for lighting, as the result of electrical competition,
and more and more for heating, etc., thus enlarging its market and
increasing its income. Comment is made on kerosene and its cost, and all
kinds of general statistics are jotted down as desirable. Data are to be
obtained on lamp and dynamo efficiency, and "Another review of the whole
thing as worked out upon pure science principles by Rowland, Young,
Trowbridge; also Rowland on the possibilities and probabilities of
cheaper production by better manufacture--higher incandescence without
decrease of life of lamps." Notes are also made on meters and motors.
"It doesn't matter if electricity is used for light or for power";
while small motors, it is observed, can be used night or day, and small
steam-engines are inconvenient. Again the shrewd comment: "Generally
poorest district for light, best for power, thus evening up whole
city--the effect of this on investment."

It is pointed out that "Previous inventions failed--necessities
for commercial success and accomplishment by Edison. Edison's great
effort--not to make a large light or a blinding light, but a small light
having the mildness of gas." Curves are then called for of iron
and copper investment--also energy line--curves of candle-power and
electromotive force; curves on motors; graphic representation of
the consumption of gas January to December; tables and formulae;
representations graphically of what one dollar will buy in different
kinds of light; "table, weight of copper required different distance,
100-ohm lamp, 16 candles"; table with curves showing increased
economy by larger engine, higher power, etc. There is not much that is
dilettante about all this. Note is made of an article in April, 1879,
putting the total amount of gas investment in the whole world at that
time at $1,500,000,000; which is now (1910) about the amount of the
electric-lighting investment in the United States. Incidentally a note
remarks: "So unpleasant is the effect of the products of gas that in the
new Madison Square Theatre every gas jet is ventilated by special tubes
to carry away the products of combustion." In short, there is no aspect
of the new problem to which Edison failed to apply his acutest powers;
and the speed with which the new system was worked out and introduced
was simply due to his initial mastery of all the factors in the older
art. Luther Stieringer, an expert gas engineer and inventor, whose
services were early enlisted, once said that Edison knew more about gas
than any other man he had ever met. The remark is an evidence of the
kind of preparation Edison gave himself for his new task.



CHAPTER XII

MEMORIES OF MENLO PARK

FROM the spring of 1876 to 1886 Edison lived and did his work at Menlo
Park; and at this stage of the narrative, midway in that interesting and
eventful period, it is appropriate to offer a few notes and jottings on
the place itself, around which tradition is already weaving its fancies,
just as at the time the outpouring of new inventions from it invested
the name with sudden prominence and with the glamour of romance.
"In 1876 I moved," says Edison, "to Menlo Park, New Jersey, on the
Pennsylvania Railroad, several miles below Elizabeth. The move was due
to trouble I had about rent. I had rented a small shop in Newark, on the
top floor of a padlock factory, by the month. I gave notice that I
would give it up at the end of the month, paid the rent, moved out,
and delivered the keys. Shortly afterward I was served with a paper,
probably a judgment, wherein I was to pay nine months' rent. There was
some law, it seems, that made a monthly renter liable for a year. This
seemed so unjust that I determined to get out of a place that permitted
such injustice." For several Sundays he walked through different parts
of New Jersey with two of his assistants before he decided on Menlo
Park. The change was a fortunate one, for the inventor had married Miss
Mary E. Stillwell, and was now able to establish himself comfortably
with his wife and family while enjoying immediate access to the new
laboratory. Every moment thus saved was valuable.

To-day the place and region have gone back to the insignificance from
which Edison's genius lifted them so startlingly. A glance from the
car windows reveals only a gently rolling landscape dotted with modest
residences and unpretentious barns; and there is nothing in sight by way
of memorial to suggest that for nearly a decade this spot was the scene
of the most concentrated and fruitful inventive activity the world has
ever known. Close to the Menlo Park railway station is a group of
gaunt and deserted buildings, shelter of the casual tramp, and slowly
crumbling away when not destroyed by the carelessness of some ragged
smoker. This silent group of buildings comprises the famous old
laboratory and workshops of Mr. Edison, historic as being the birthplace
of the carbon transmitter, the phonograph, the incandescent lamp,
and the spot where Edison also worked out his systems of electrical
distribution, his commercial dynamo, his electric railway, his
megaphone, his tasimeter, and many other inventions of greater or lesser
degree. Here he continued, moreover, his earlier work on the quadruplex,
sextuplex, multiplex, and automatic telegraphs, and did his notable
pioneer work in wireless telegraphy. As the reader knows, it had been a
master passion with Edison from boyhood up to possess a laboratory,
in which with free use of his own time and powers, and with command of
abundant material resources, he could wrestle with Nature and probe her
closest secrets. Thus, from the little cellar at Port Huron, from the
scant shelves in a baggage car, from the nooks and corners of dingy
telegraph offices, and the grimy little shops in New York and Newark,
he had now come to the proud ownership of an establishment to which
his favorite word "laboratory" might justly be applied. Here he could
experiment to his heart's content and invent on a larger, bolder scale
than ever--and he did!

Menlo Park was the merest hamlet. Omitting the laboratory structures, it
had only about seven houses, the best looking of which Edison lived in,
a place that had a windmill pumping water into a reservoir. One of the
stories of the day was that Edison had his front gate so connected with
the pumping plant that every visitor as he opened or closed the gate
added involuntarily to the supply in the reservoir. Two or three of the
houses were occupied by the families of members of the staff; in the
others boarders were taken, the laboratory, of course, furnishing all
the patrons. Near the railway station was a small saloon kept by an old
Scotchman named Davis, where billiards were played in idle moments,
and where in the long winter evenings the hot stove was a centre of
attraction to loungers and story-tellers. The truth is that there
was very little social life of any kind possible under the strenuous
conditions prevailing at the laboratory, where, if anywhere, relaxation
was enjoyed at odd intervals of fatigue and waiting.

The main laboratory was a spacious wooden building of two floors. The
office was in this building at first, until removed to the brick library
when that was finished. There S. L. Griffin, an old telegraph friend
of Edison, acted as his secretary and had charge of a voluminous and
amazing correspondence. The office employees were the Carman brothers
and the late John F. Randolph, afterwards secretary. According to Mr.
Francis Jehl, of Budapest, then one of the staff, to whom the writers
are indebted for a great deal of valuable data on this period: "It
was on the upper story of this laboratory that the most important
experiments were executed, and where the incandescent lamp was born.
This floor consisted of a large hall containing several long tables,
upon which could be found all the various instruments, scientific and
chemical apparatus that the arts at that time could produce. Books
lay promiscuously about, while here and there long lines of
bichromate-of-potash cells could be seen, together with experimental
models of ideas that Edison or his assistants were engaged upon. The
side walls of this hall were lined with shelves filled with bottles,
phials, and other receptacles containing every imaginable chemical and
other material that could be obtained, while at the end of this hall,
and near the organ which stood in the rear, was a large glass case
containing the world's most precious metals in sheet and wire form,
together with very rare and costly chemicals. When evening came on, and
the last rays of the setting sun penetrated through the side windows,
this hall looked like a veritable Faust laboratory.

"On the ground floor we had our testing-table, which stood on two large
pillars of brick built deep into the earth in order to get rid of all
vibrations on account of the sensitive instruments that were upon it.
There was the Thomson reflecting mirror galvanometer and electrometer,
while nearby were the standard cells by which the galvanometers were
adjusted and standardized. This testing-table was connected by means
of wires with all parts of the laboratory and machine-shop, so that
measurements could be conveniently made from a distance, as in those
days we had no portable and direct-reading instruments, such as now
exist. Opposite this table we installed, later on, our photometrical
chamber, which was constructed on the Bunsen principle. A little way
from this table, and separated by a partition, we had the chemical
laboratory with its furnaces and stink-chambers. Later on another
chemical laboratory was installed near the photometer-room, and this Dr.
A. Haid had charge of."

Next to the laboratory in importance was the machine-shop, a large and
well-lighted building of brick, at one end of which there was the boiler
and engine-room. This shop contained light and heavy lathes, boring and
drilling machines, all kinds of planing machines; in fact, tools of all
descriptions, so that any apparatus, however delicate or heavy, could be
made and built as might be required by Edison in experimenting. Mr. John
Kruesi had charge of this shop, and was assisted by a number of skilled
mechanics, notably John Ott, whose deft fingers and quick intuitive
grasp of the master's ideas are still in demand under the more recent
conditions at the Llewellyn Park laboratory in Orange.

Between the machine-shop and the laboratory was a small building of wood
used as a carpenter-shop, where Tom Logan plied his art. Nearby was the
gasoline plant. Before the incandescent lamp was perfected, the
only illumination was from gasoline gas; and that was used later
for incandescent-lamp glass-blowing, which was done in another small
building on one side of the laboratory. Apparently little or no lighting
service was obtained from the Wallace-Farmer arc lamps secured from
Ansonia, Connecticut. The dynamo was probably needed for Edison's own
experiments.

On the outskirts of the property was a small building in which lampblack
was crudely but carefully manufactured and pressed into very small
cakes, for use in the Edison carbon transmitters of that time. The
night-watchman, Alfred Swanson, took care of this curious plant, which
consisted of a battery of petroleum lamps that were forced to burn to
the sooting point. During his rounds in the night Swanson would find
time to collect from the chimneys the soot that the lamps gave. It was
then weighed out into very small portions, which were pressed into cakes
or buttons by means of a hand-press. These little cakes were delicately
packed away between layers of cotton in small, light boxes and shipped
to Bergmann in New York, by whom the telephone transmitters were being
made. A little later the Edison electric railway was built on the
confines of the property out through the woods, at first only a third
of a mile in length, but reaching ultimately to Pumptown, almost three
miles away.

Mr. Edison's own words may be quoted as to the men with whom he
surrounded himself here and upon whose services he depended principally
for help in the accomplishment of his aims. In an autobiographical
article in the Electrical World of March 5, 1904, he says: "It is
interesting to note that in addition to those mentioned above (Charles
Batchelor and Frank Upton), I had around me other men who ever since
have remained active in the field, such as Messrs. Francis Jehl, William
J. Hammer, Martin Force, Ludwig K. Boehm, not forgetting that good
friend and co-worker, the late John Kruesi. They found plenty to do in
the various developments of the art, and as I now look back I sometimes
wonder how we did so much in so short a time." Mr. Jehl in his
reminiscences adds another name to the above--namely, that of John W.
Lawson, and then goes on to say: "These are the names of the pioneers of
incandescent lighting, who were continuously at the side of Edison day
and night for some years, and who, under his guidance, worked upon the
carbon-filament lamp from its birth to ripe maturity. These men all had
complete faith in his ability and stood by him as on a rock, guarding
their work with the secretiveness of a burglar-proof safe. Whenever it
leaked out in the world that Edison was succeeding in his work on the
electric light, spies and others came to the Park; so it was of the
utmost importance that the experiments and their results should be kept
a secret until Edison had secured the protection of the Patent Office."
With this staff was associated from the first Mr. E. H. Johnson, whose
work with Mr. Edison lay chiefly, however, outside the laboratory,
taking him to all parts of the country and to Europe. There were also
to be regarded as detached members of it the Bergmann brothers,
manufacturing for Mr. Edison in New York, and incessantly experimenting
for him. In addition there must be included Mr. Samuel Insull, whose
activities for many years as private secretary and financial manager
were devoted solely to Mr. Edison's interests, with Menlo Park as a
centre and main source of anxiety as to pay-rolls and other constantly
recurring obligations. The names of yet other associates occur from
time to time in this narrative--"Edison men" who have been very proud
of their close relationship to the inventor and his work at old Menlo.
"There was also Mr. Charles L. Clarke, who devoted himself mainly to
engineering matters, and later on acted as chief engineer of the Edison
Electric Light Company for some years. Then there were William Holzer
and James Hipple, both of whom took an active part in the practical
development of the glass-blowing department of the laboratory, and,
subsequently, at the first Edison lamp factory at Menlo Park. Later on
Messrs. Jehl, Hipple, and Force assisted Mr. Batchelor to install the
lamp-works of the French Edison Company at Ivry-sur-Seine. Then there
were Messrs. Charles T. Hughes, Samuel D. Mott, and Charles T. Mott, who
devoted their time chiefly to commercial affairs. Mr. Hughes conducted
most of this work, and later on took a prominent part in Edison's
electric-railway experiments. His business ability was on a high level,
while his personal character endeared him to us all."

Among other now well-known men who came to us and assisted in various
kinds of work were Messrs. Acheson, Worth, Crosby, Herrick, and Hill,
while Doctor Haid was placed by Mr. Edison in charge of a special
chemical laboratory. Dr. E. L. Nichols was also with us for a short time
conducting a special series of experiments. There was also Mr. Isaacs,
who did a great deal of photographic work, and to whom we must be
thankful for the pictures of Menlo Park in connection with Edison's
work.

"Among others who were added to Mr. Kruesi's staff in the machine-shop
were Messrs. J. H. Vail and W. S. Andrews. Mr. Vail had charge of the
dynamo-room. He had a good general knowledge of machinery, and very
soon acquired such familiarity with the dynamos that he could skip about
among them with astonishing agility to regulate their brushes or to
throw rosin on the belts when they began to squeal. Later on he took
an active part in the affairs and installations of the Edison Light
Company. Mr. Andrews stayed on Mr. Kruesi's staff as long as the
laboratory machine-shop was kept open, after which he went into the
employ of the Edison Electric Light Company and became actively engaged
in the commercial and technical exploitation of the system. Another man
who was with us at Menlo Park was Mr. Herman Claudius, an Austrian, who
at one time was employed in connection with the State Telegraphs of his
country. To him Mr. Edison assigned the task of making a complete model
of the network of conductors for the contemplated first station in New
York."

Mr. Francis R. Upton, who was early employed by Mr. Edison as his
mathematician, furnishes a pleasant, vivid picture of his chief
associates engaged on the memorable work at Menlo Park. He says: "Mr.
Charles Batchelor was Mr. Edison's principal assistant at that time. He
was an Englishman, and came to this country to set up the thread-weaving
machinery for the Clark thread-works. He was a most intelligent,
patient, competent, and loyal assistant to Mr. Edison. I remember
distinctly seeing him work many hours to mount a small filament; and
his hand would be as steady and his patience as unyielding at the end
of those many hours as it was at the beginning, in spite of repeated
failures. He was a wonderful mechanic; the control that he had of his
fingers was marvellous, and his eyesight was sharp. Mr. Batchelor's
judgment and good sense were always in evidence.

"Mr. Kruesi was the superintendent, a Swiss trained in the best Swiss
ideas of accuracy. He was a splendid mechanic with a vigorous temper,
and wonderful ability to work continuously and to get work out of men.
It was an ideal combination, that of Edison, Batchelor, and Kruesi. Mr.
Edison with his wonderful flow of ideas which were sharply defined in
his mind, as can be seen by any of the sketches that he made, as he
evidently always thinks in three dimensions; Mr. Kruesi, willing to take
the ideas, and capable of comprehending them, would distribute the work
so as to get it done with marvellous quickness and great accuracy.
Mr. Batchelor was always ready for any special fine experimenting or
observation, and could hold to whatever he was at as long as Mr. Edison
wished; and always brought to bear on what he was at the greatest
skill."

While Edison depended upon Upton for his mathematical work, he was wont
to check it up in a very practical manner, as evidenced by the following
incident described by Mr. Jehl: "I was once with Mr. Upton calculating
some tables which he had put me on, when Mr. Edison appeared with a
glass bulb having a pear-shaped appearance in his hand. It was the kind
that we were going to use for our lamp experiments; and Mr. Edison asked
Mr. Upton to please calculate for him its cubic contents in centimetres.
Now Mr. Upton was a very able mathematician, who, after he finished his
studies at Princeton, went to Germany and got his final gloss under that
great master, Helmholtz. Whatever he did and worked on was executed in
a pure mathematical manner, and any wrangler at Oxford would have been
delighted to see him juggle with integral and differential equations,
with a dexterity that was surprising. He drew the shape of the bulb
exactly on paper, and got the equation of its lines with which he was
going to calculate its contents, when Mr. Edison again appeared and
asked him what it was. He showed Edison the work he had already done on
the subject, and told him that he would very soon finish calculating
it. 'Why,' said Edison, 'I would simply take that bulb and fill it
with mercury and weigh it; and from the weight of the mercury and its
specific gravity I'll get it in five minutes, and use less mental energy
than is necessary in such a fatiguing operation.'"

Menlo Park became ultimately the centre of Edison's business life as
it was of his inventing. After the short distasteful period during the
introduction of his lighting system, when he spent a large part of his
time at the offices at 65 Fifth Avenue, New York, or on the actual work
connected with the New York Edison installation, he settled back again
in Menlo Park altogether. Mr. Samuel Insull describes the business
methods which prevailed throughout the earlier Menlo Park days of "storm
and stress," and the curious conditions with which he had to deal as
private secretary: "I never attempted to systematize Edison's business
life. Edison's whole method of work would upset the system of any
office. He was just as likely to be at work in his laboratory at
midnight as midday. He cared not for the hours of the day or the days
of the week. If he was exhausted he might more likely be asleep in the
middle of the day than in the middle of the night, as most of his work
in the way of inventions was done at night. I used to run his office on
as close business methods as my experience admitted; and I would get at
him whenever it suited his convenience. Sometimes he would not go over
his mail for days at a time; but other times he would go regularly to
his office in the morning. At other times my engagements used to be with
him to go over his business affairs at Menlo Park at night, if I was
occupied in New York during the day. In fact, as a matter of convenience
I used more often to get at him at night, as it left my days free to
transact his affairs, and enabled me, probably at a midnight luncheon,
to get a few minutes of his time to look over his correspondence and get
his directions as to what I should do in some particular negotiation or
matter of finance. While it was a matter of suiting Edison's convenience
as to when I should transact business with him, it also suited my own
ideas, as it enabled me after getting through my business with him to
enjoy the privilege of watching him at his work, and to learn something
about the technical side of matters. Whatever knowledge I may have of
the electric light and power industry I feel I owe it to the tuition of
Edison. He was about the most willing tutor, and I must confess that he
had to be a patient one."

Here again occurs the reference to the incessant night-work at Menlo
Park, a note that is struck in every reminiscence and in every record
of the time. But it is not to be inferred that the atmosphere of grim
determination and persistent pursuit of the new invention characteristic
of this period made life a burden to the small family of laborers
associated with Edison. Many a time during the long, weary nights of
experimenting Edison would call a halt for refreshments, which he had
ordered always to be sent in when night-work was in progress. Everything
would be dropped, all present would join in the meal, and the last good
story or joke would pass around. In his notes Mr. Jehl says: "Our lunch
always ended with a cigar, and I may mention here that although Edison
was never fastidious in eating, he always relished a good cigar, and
seemed to find in it consolation and solace.... It often happened that
while we were enjoying the cigars after our midnight repast, one of the
boys would start up a tune on the organ and we would all sing together,
or one of the others would give a solo. Another of the boys had a voice
that sounded like something between the ring of an old tomato can and
a pewter jug. He had one song that he would sing while we roared with
laughter. He was also great in imitating the tin-foil phonograph....
When Boehm was in good-humor he would play his zither now and then, and
amuse us by singing pretty German songs. On many of these occasions the
laboratory was the rendezvous of jolly and convivial visitors, mostly
old friends and acquaintances of Mr. Edison. Some of the office
employees would also drop in once in a while, and as everybody present
was always welcome to partake of the midnight meal, we all enjoyed
these gatherings. After a while, when we were ready to resume work, our
visitors would intimate that they were going home to bed, but we fellows
could stay up and work, and they would depart, generally singing some
song like Good-night, ladies! . . . It often happened that when Edison
had been working up to three or four o'clock in the morning, he would
lie down on one of the laboratory tables, and with nothing but a couple
of books for a pillow, would fall into a sound sleep. He said it did
him more good than being in a soft bed, which spoils a man. Some of the
laboratory assistants could be seen now and then sleeping on a table in
the early morning hours. If their snoring became objectionable to those
still at work, the 'calmer' was applied. This machine consisted of
a Babbitt's soap box without a cover. Upon it was mounted a broad
ratchet-wheel with a crank, while into the teeth of the wheel there
played a stout, elastic slab of wood. The box would be placed on the
table where the snorer was sleeping and the crank turned rapidly. The
racket thus produced was something terrible, and the sleeper would jump
up as though a typhoon had struck the laboratory. The irrepressible
spirit of humor in the old days, although somewhat strenuous at times,
caused many a moment of hilarity which seemed to refresh the boys, and
enabled them to work with renewed vigor after its manifestation." Mr.
Upton remarks that often during the period of the invention of the
incandescent lamp, when under great strain and fatigue, Edison would go
to the organ and play tunes in a primitive way, and come back to crack
jokes with the staff. "But I have often felt that Mr. Edison never could
comprehend the limitations of the strength of other men, as his own
physical and mental strength have always seemed to be without limit.
He could work continuously as long as he wished, and had sleep at his
command. His sleep was always instant, profound, and restful. He
has told me that he never dreamed. I have known Mr. Edison now for
thirty-one years, and feel that he has always kept his mind direct and
simple, going straight to the root of troubles. One of the peculiarities
I have noticed is that I have never known him to break into a
conversation going on around him, and ask what people were talking
about. The nearest he would ever come to it was when there had evidently
been some story told, and his face would express a desire to join in the
laugh, which would immediately invite telling the story to him."

Next to those who worked with Edison at the laboratory and were with
him constantly at Menlo Park were the visitors, some of whom were his
business associates, some of them scientific men, and some of them
hero-worshippers and curiosity-hunters. Foremost in the first category
was Mr. E. H. Johnson, who was in reality Edison's most intimate friend,
and was required for constant consultation; but whose intense activity,
remarkable grasp of electrical principles, and unusual powers of
exposition, led to his frequent detachment for long trips, including
those which resulted in the introduction of the telephone, phonograph,
and electric light in England and on the Continent. A less frequent
visitor was Mr. S. Bergmann, who had all he needed to occupy his time
in experimenting and manufacturing, and whose contemporaneous Wooster
Street letter-heads advertised Edison's inventions as being made there,
Among the scientists were Prof. George F. Barker, of Philadelphia, a
big, good-natured philosopher, whose valuable advice Edison esteemed
highly. In sharp contrast to him was the earnest, serious Rowland, of
Johns Hopkins University, afterward the leading American physicist of
his day. Profs. C. F. Brackett and C. F. Young, of Princeton University,
were often received, always interested in what Edison was doing, and
proud that one of their own students, Mr. Upton, was taking such a
prominent part in the development of the work.

Soon after the success of the lighting experiments and the installation
at Menlo Park became known, Edison was besieged by persons from all
parts of the world anxious to secure rights and concessions for their
respective countries. Among these was Mr. Louis Rau, of Paris, who
organized the French Edison Company, the pioneer Edison lighting
corporation in Europe, and who, with the aid of Mr. Batchelor,
established lamp-works and a machine-shop at Ivry sur-Seine, near Paris,
in 1882. It was there that Mr. Nikola Tesla made his entree into the
field of light and power, and began his own career as an inventor; and
there also Mr. Etienne Fodor, general manager of the Hungarian General
Electric Company at Budapest, received his early training. It was he who
erected at Athens the first European Edison station on the now universal
three-wire system. Another visitor from Europe, a little later, was
Mr. Emil Rathenau, the present director of the great Allgemeine
Elektricitaets Gesellschaft of Germany. He secured the rights for the
empire, and organized the Berlin Edison system, now one of the largest
in the world. Through his extraordinary energy and enterprise the
business made enormous strides, and Mr. Rathenau has become one of the
most conspicuous industrial figures in his native country. From Italy
came Professor Colombo, later a cabinet minister, with his friend Signor
Buzzi, of Milan. The rights were secured for the peninsula; Colombo and
his friends organized the Italian Edison Company, and erected at Milan
the first central station in that country. Mr. John W. Lieb, Jr., now
a vice-president of the New York Edison Company, was sent over by Mr.
Edison to steer the enterprise technically, and spent ten years in
building it up, with such brilliant success that he was later decorated
as Commander of the Order of the Crown of Italy by King Victor. Another
young American enlisted into European service was Mr. E. G. Acheson,
the inventor of carborundum, who built a number of plants in Italy and
France before he returned home. Mr. Lieb has since become President of
the American Institute of Electrical Engineers and the Association of
Edison Illuminating Companies, while Doctor Acheson has been President
of the American Electrochemical Society.

Switzerland sent Messrs. Turrettini, Biedermann, and Thury, all
distinguished engineers, to negotiate for rights in the republic; and
so it went with regard to all the other countries of Europe, as well as
those of South America. It was a question of keeping such visitors away
rather than of inviting them to take up the exploitation of the Edison
system; for what time was not spent in personal interviews was required
for the masses of letters from every country under the sun, all making
inquiries, offering suggestions, proposing terms. Nor were the
visitors merely those on business bent. There were the lion-hunters and
celebrities, of whom Sarah Bernhardt may serve as a type. One visit
of note was that paid by Lieut. G. W. De Long, who had an earnest and
protracted conversation with Edison over the Arctic expedition he was
undertaking with the aid of Mr. James Gordon Bennett, of the New York
Herald. The Jeannette was being fitted out, and Edison told De Long
that he would make and present him with a small dynamo machine, some
incandescent lamps, and an arc lamp. While the little dynamo was being
built all the men in the laboratory wrote their names on the paper
insulation that was wound upon the iron core of the armature. As the
Jeannette had no steam-engine on board that could be used for the
purpose, Edison designed the dynamo so that it could be worked by man
power and told Lieutenant De Long "it would keep the boys warm up in the
Arctic," when they generated current with it. The ill-fated ship never
returned from her voyage, but went down in the icy waters of the North,
there to remain until some future cataclysm of nature, ten thousand
years hence, shall reveal the ship and the first marine dynamo as
curious relics of a remote civilization.

Edison also furnished De Long with a set of telephones provided with
extensible circuits, so that parties on the ice-floes could go long
distances from the ship and still keep in communication with her. So
far as the writers can ascertain this is the first example of "field
telephony." Another nautical experiment that he made at this time,
suggested probably by the requirements of the Arctic expedition, was a
buoy that was floated in New York harbor, and which contained a small
Edison dynamo and two or three incandescent lamps. The dynamo was driven
by the wave or tide motion through intermediate mechanism, and thus the
lamps were lit up from time to time, serving as signals. These were the
prototypes of the lighted buoys which have since become familiar, as in
the channel off Sandy Hook.

One notable afternoon was that on which the New York board of aldermen
took a special train out to Menlo Park to see the lighting system
with its conductors underground in operation. The Edison Electric
Illuminating Company was applying for a franchise, and the aldermen,
for lack of scientific training and specific practical information, were
very sceptical on the subject--as indeed they might well be. "Mr. Edison
demonstrated personally the details and merits of the system to them.
The voltage was increased to a higher pressure than usual, and all the
incandescent lamps at Menlo Park did their best to win the approbation
of the New York City fathers. After Edison had finished exhibiting all
the good points of his system, he conducted his guests upstairs in the
laboratory, where a long table was spread with the best things that one
of the most prominent New York caterers could furnish. The laboratory
witnessed high times that night, for all were in the best of humor,
and many a bottle was drained in toasting the health of Edison and the
aldermen." This was one of the extremely rare occasions on which Edison
has addressed an audience; but the stake was worth the effort. The
representatives of New York could with justice drink the health of the
young inventor, whose system is one of the greatest boons the city has
ever had conferred upon it.

Among other frequent visitors was Mr, Edison's father, "one of those
amiable, patriarchal characters with a Horace Greeley beard, typical
Americans of the old school," who would sometimes come into the
laboratory with his two grandchildren, a little boy and girl called
"Dash" and "Dot." He preferred to sit and watch his brilliant son at
work "with an expression of satisfaction on his face that indicated
a sense of happiness and content that his boy, born in that distant,
humble home in Ohio, had risen to fame and brought such honor upon the
name. It was, indeed, a pathetic sight to see a father venerate his son
as the elder Edison did." Not less at home was Mr. Mackenzie, the Mt.
Clemens station agent, the life of whose child Edison had saved when
a train newsboy. The old Scotchman was one of the innocent, chartered
libertines of the place, with an unlimited stock of good jokes and
stories, but seldom of any practical use. On one occasion, however, when
everything possible and impossible under the sun was being carbonized
for lamp filaments, he allowed a handful of his bushy red beard to
be taken for the purpose; and his laugh was the loudest when the
Edison-Mackenzie hair lamps were brought up to incandescence--their
richness in red rays being slyly attributed to the nature of the
filamentary material! Oddly enough, a few years later, some inventor
actually took out a patent for making incandescent lamps with carbonized
hair for filaments!

Yet other visitors again haunted the place, and with the following
reminiscence of one of them, from Mr. Edison himself, this part of the
chapter must close: "At Menlo Park one cold winter night there came into
the laboratory a strange man in a most pitiful condition. He was nearly
frozen, and he asked if he might sit by the stove. In a few moments
he asked for the head man, and I was brought forward. He had a head of
abnormal size, with highly intellectual features and a very small and
emaciated body. He said he was suffering very much, and asked if I
had any morphine. As I had about everything in chemistry that could be
bought, I told him I had. He requested that I give him some, so I got
the morphine sulphate. He poured out enough to kill two men, when I told
him that we didn't keep a hotel for suicides, and he had better cut the
quantity down. He then bared his legs and arms, and they were literally
pitted with scars, due to the use of hypodermic syringes. He said he had
taken it for years, and it required a big dose to have any effect. I let
him go ahead. In a short while he seemed like another man and began to
tell stories, and there were about fifty of us who sat around listening
until morning. He was a man of great intelligence and education. He
said he was a Jew, but there was no distinctive feature to verify
this assertion. He continued to stay around until he finished every
combination of morphine with an acid that I had, probably ten ounces all
told. Then he asked if he could have strychnine. I had an ounce of the
sulphate. He took enough to kill a horse, and asserted it had as good an
effect as morphine. When this was gone, the only thing I had left was a
chunk of crude opium, perhaps two or three pounds. He chewed this up and
disappeared. I was greatly disappointed, because I would have laid in
another stock of morphine to keep him at the laboratory. About a week
afterward he was found dead in a barn at Perth Amboy."

Returning to the work itself, note of which has already been made
in this and preceding chapters, we find an interesting and unique
reminiscence in Mr. Jehl's notes of the reversion to carbon as a
filament in the lamps, following an exhibition of metallic-filament
lamps given in the spring of 1879 to the men in the syndicate advancing
the funds for these experiments: "They came to Menlo Park on a late
afternoon train from New York. It was already dark when they were
conducted into the machine-shop, where we had several platinum lamps
installed in series. When Edison had finished explaining the principles
and details of the lamp, he asked Kruesi to let the dynamo machine run.
It was of the Gramme type, as our first dynamo of the Edison design
was not yet finished. Edison then ordered the 'juice' to be turned
on slowly. To-day I can see those lamps rising to a cherry red, like
glowbugs, and hear Mr. Edison saying 'a little more juice,' and the
lamps began to glow. 'A little more' is the command again, and then one
of the lamps emits for an instant a light like a star in the distance,
after which there is an eruption and a puff; and the machine-shop is in
total darkness. We knew instantly which lamp had failed, and Batchelor
replaced that by a good one, having a few in reserve near by. The
operation was repeated two or three times with about the same results,
after which the party went into the library until it was time to catch
the train for New York."

Such an exhibition was decidedly discouraging, and it was not a jubilant
party that returned to New York, but: "That night Edison remained in the
laboratory meditating upon the results that the platinum lamp had given
so far. I was engaged reading a book near a table in the front, while
Edison was seated in a chair by a table near the organ. With his head
turned downward, and that conspicuous lock of hair hanging loosely on
one side, he looked like Napoleon in the celebrated picture, On the
Eve of a Great Battle. Those days were heroic ones, for he then
battled against mighty odds, and the prospects were dim and not very
encouraging. In cases of emergency Edison always possessed a keen
faculty of deciding immediately and correctly what to do; and the
decision he then arrived at was predestined to be the turning-point
that led him on to ultimate success.... After that exhibition we had a
house-cleaning at the laboratory, and the metallic-filament lamps were
stored away, while preparations were made for our experiments on carbon
lamps."

Thus the work went on. Menlo Park has hitherto been associated in the
public thought with the telephone, phonograph, and incandescent
lamp; but it was there, equally, that the Edison dynamo and system of
distribution were created and applied to their specific purposes. While
all this study of a possible lamp was going on, Mr. Upton was busy
calculating the economy of the "multiple arc" system, and making a great
many tables to determine what resistance a lamp should have for the best
results, and at what point the proposed general system would fall off
in economy when the lamps were of the lower resistance that was then
generally assumed to be necessary. The world at that time had not the
shadow of an idea as to what the principles of a multiple arc system
should be, enabling millions of lamps to be lighted off distributing
circuits, each lamp independent of every other; but at Menlo Park at
that remote period in the seventies Mr. Edison's mathematician was
formulating the inventor's conception in clear, instructive figures;
"and the work then executed has held its own ever since." From the
beginning of his experiments on electric light, Mr. Edison had a
well-defined idea of producing not only a practicable lamp, but also
a SYSTEM of commercial electric lighting. Such a scheme involved the
creation of an entirely new art, for there was nothing on the face of
the earth from which to draw assistance or precedent, unless we except
the elementary forms of dynamos then in existence. It is true, there
were several types of machines in use for the then very limited field of
arc lighting, but they were regarded as valueless as a part of a great
comprehensive scheme which could supply everybody with light. Such
machines were confessedly inefficient, although representing the
farthest reach of a young art. A commission appointed at that time by
the Franklin Institute, and including Prof. Elihu Thomson, investigated
the merits of existing dynamos and reported as to the best of them: "The
Gramme machine is the most economical as a means of converting motive
force into electricity; it utilizes in the arc from 38 to 41 per cent.
of the motive work produced, after deduction is made for friction
and the resistance of the air." They reported also that the Brush arc
lighting machine "produces in the luminous arc useful work equivalent to
31 per cent. of the motive power employed, or to 38 1/2 per cent. after
the friction has been deducted." Commercial possibilities could not
exist in the face of such low economy as this, and Mr. Edison realized
that he would have to improve the dynamo himself if he wanted a better
machine. The scientific world at that time was engaged in a controversy
regarding the external and internal resistance of a circuit in which
a generator was situated. Discussing the subject Mr. Jehl, in his
biographical notes, says: "While this controversy raged in the
scientific papers, and criticism and confusion seemed at its height,
Edison and Upton discussed this question very thoroughly, and Edison
declared he did not intend to build up a system of distribution in which
the external resistance would be equal to the internal resistance.
He said he was just about going to do the opposite; he wanted a large
external resistance and a low internal one. He said he wanted to sell
the energy outside of the station and not waste it in the dynamo and
conductors, where it brought no profits.... In these later days, when
these ideas of Edison are used as common property, and are applied in
every modern system of distribution, it is astonishing to remember that
when they were propounded they met with most vehement antagonism from
the world at large." Edison, familiar with batteries in telegraphy,
could not bring himself to believe that any substitute generator of
electrical energy could be efficient that used up half its own possible
output before doing an equal amount of outside work.

Undaunted by the dicta of contemporaneous science, Mr. Edison attacked
the dynamo problem with his accustomed vigor and thoroughness. He chose
the drum form for his armature, and experimented with different kinds
of iron. Cores were made of cast iron, others of forged iron; and still
others of sheets of iron of various thicknesses separated from each
other by paper or paint. These cores were then allowed to run in an
excited field, and after a given time their temperature was measured and
noted. By such practical methods Edison found that the thin, laminated
cores of sheet iron gave the least heat, and had the least amount of
wasteful eddy currents. His experiments and ideas on magnetism at that
period were far in advance of the time. His work and tests regarding
magnetism were repeated later on by Hopkinson and Kapp, who then
elucidated the whole theory mathematically by means of formulae and
constants. Before this, however, Edison had attained these results by
pioneer work, founded on his original reasoning, and utilized them in
the construction of his dynamo, thus revolutionizing the art of building
such machines.

After thorough investigation of the magnetic qualities of different
kinds of iron, Edison began to make a study of winding the cores,
first determining the electromotive force generated per turn of wire at
various speeds in fields of different intensities. He also considered
various forms and shapes for the armature, and by methodical and
systematic research obtained the data and best conditions upon which
he could build his generator. In the field magnets of his dynamo he
constructed the cores and yoke of forged iron having a very large
cross-section, which was a new thing in those days. Great attention was
also paid to all the joints, which were smoothed down so as to make a
perfect magnetic contact. The Edison dynamo, with its large masses of
iron, was a vivid contrast to the then existing types with their meagre
quantities of the ferric element. Edison also made tests on his field
magnets by slowly raising the strength of the exciting current, so that
he obtained figures similar to those shown by a magnetic curve, and in
this way found where saturation commenced, and where it was useless to
expend more current on the field. If he had asked Upton at the time to
formulate the results of his work in this direction, for publication, he
would have anticipated the historic work on magnetism that was executed
by the two other investigators; Hopkinson and Kapp, later on.

The laboratory note-books of the period bear abundant evidence of the
systematic and searching nature of these experiments and investigations,
in the hundreds of pages of notes, sketches, calculations, and tables
made at the time by Edison, Upton, Batchelor, Jehl, and by others who
from time to time were intrusted with special experiments to
elucidate some particular point. Mr. Jehl says: "The experiments on
armature-winding were also very interesting. Edison had a number of
small wooden cores made, at both ends of which we inserted little brass
nails, and we wound the wooden cores with twine as if it were wire on an
armature. In this way we studied armature-winding, and had matches where
each of us had a core, while bets were made as to who would be the first
to finish properly and correctly a certain kind of winding. Care had
to be taken that the wound core corresponded to the direction of the
current, supposing it were placed in a field and revolved. After Edison
had decided this question, Upton made drawings and tables from which the
real armatures were wound and connected to the commutator. To a
student of to-day all this seems simple, but in those days the art
of constructing dynamos was about as dark as air navigation is at
present.... Edison also improved the armature by dividing it and the
commutator into a far greater number of sections than up to that time
had been the practice. He was also the first to use mica in insulating
the commutator sections from each other."

In the mean time, during the progress of the investigations on the
dynamo, word had gone out to the world that Edison expected to invent a
generator of greater efficiency than any that existed at the time. Again
he was assailed and ridiculed by the technical press, for had not the
foremost electricians and physicists of Europe and America worked for
years on the production of dynamos and arc lamps as they then existed?
Even though this young man at Menlo Park had done some wonderful things
for telegraphy and telephony; even if he had recorded and reproduced
human speech, he had his limitations, and could not upset the settled
dictum of science that the internal resistance must equal the external
resistance.

Such was the trend of public opinion at the time, but "after Mr. Kruesi
had finished the first practical dynamo, and after Mr. Upton had tested
it thoroughly and verified his figures and results several times--for he
also was surprised--Edison was able to tell the world that he had made
a generator giving an efficiency of 90 per cent." Ninety per cent. as
against 40 per cent. was a mighty hit, and the world would not believe
it. Criticism and argument were again at their height, while Upton,
as Edison's duellist, was kept busy replying to private and public
challenges of the fact.... "The tremendous progress of the world in
the last quarter of a century, owing to the revolution caused by the
all-conquering march of 'Heavy Current Engineering,' is the outcome of
Edison's work at Menlo Park that raised the efficiency of the dynamo
from 40 per cent. to 90 per cent."

Mr. Upton sums it all up very precisely in his remarks upon this period:
"What has now been made clear by accurate nomenclature was then very
foggy in the text-books. Mr. Edison had completely grasped the effect
of subdivision of circuits, and the influence of wires leading to such
subdivisions, when it was most difficult to express what he knew in
technical language. I remember distinctly when Mr. Edison gave me the
problem of placing a motor in circuit in multiple arc with a fixed
resistance; and I had to work out the problem entirely, as I could
find no prior solution. There was nothing I could find bearing upon
the counter electromotive force of the armature, and the effect of the
resistance of the armature on the work given out by the armature. It was
a wonderful experience to have problems given me out of the intuitions
of a great mind, based on enormous experience in practical work, and
applying to new lines of progress. One of the main impressions left upon
me after knowing Mr. Edison for many years is the marvellous accuracy of
his guesses. He will see the general nature of a result long before it
can be reached by mathematical calculation. His greatness was always to
be clearly seen when difficulties arose. They always made him cheerful,
and started him thinking; and very soon would come a line of suggestions
which would not end until the difficulty was met and overcome, or found
insurmountable. I have often felt that Mr. Edison got himself purposely
into trouble by premature publications and otherwise, so that he would
have a full incentive to get himself out of the trouble."

This chapter may well end with a statement from Mr. Jehl, shrewd and
observant, as a participator in all the early work of the development of
the Edison lighting system: "Those who were gathered around him in the
old Menlo Park laboratory enjoyed his confidence, and he theirs. Nor was
this confidence ever abused. He was respected with a respect which only
great men can obtain, and he never showed by any word or act that he was
their employer in a sense that would hurt the feelings, as is often the
case in the ordinary course of business life. He conversed, argued, and
disputed with us all as if he were a colleague on the same footing. It
was his winning ways and manners that attached us all so loyally to his
side, and made us ever ready with a boundless devotion to execute any
request or desire." Thus does a great magnet, run through a heap of sand
and filings, exert its lines of force and attract irresistibly to itself
the iron and steel particles that are its affinity, and having sifted
them out, leaving the useless dust behind, hold them to itself with
responsive tenacity.



CHAPTER XIII

A WORLD-HUNT FOR FILAMENT MATERIAL

IN writing about the old experimenting days at Menlo Park, Mr. F. R.
Upton says: "Edison's day is twenty-four hours long, for he has always
worked whenever there was anything to do, whether day or night, and
carried a force of night workers, so that his experiments could go on
continually. If he wanted material, he always made it a principle to
have it at once, and never hesitated to use special messengers to get
it. I remember in the early days of the electric light he wanted a
mercury pump for exhausting the lamps. He sent me to Princeton to get
it. I got back to Metuchen late in the day, and had to carry the pump
over to the laboratory on my back that evening, set it up, and work all
night and the next day getting results."

This characteristic principle of obtaining desired material in the
quickest and most positive way manifested itself in the search that
Edison instituted for the best kind of bamboo for lamp filaments,
immediately after the discovery related in a preceding chapter. It is
doubtful whether, in the annals of scientific research and experiment,
there is anything quite analogous to the story of this search and the
various expeditions that went out from the Edison laboratory in 1880 and
subsequent years, to scour the earth for a material so apparently simple
as a homogeneous strip of bamboo, or other similar fibre. Prolonged
and exhaustive experiment, microscopic examination, and an intimate
knowledge of the nature of wood and plant fibres, however, had led
Edison to the conclusion that bamboo or similar fibrous filaments were
more suitable than anything else then known for commercial incandescent
lamps, and he wanted the most perfect for that purpose. Hence, the
quickest way was to search the tropics until the proper material was
found.

The first emissary chosen for this purpose was the late William H.
Moore, of Rahway, New Jersey, who left New York in the summer of 1880,
bound for China and Japan, these being the countries preeminently noted
for the production of abundant species of bamboo. On arrival in the
East he quickly left the cities behind and proceeded into the interior,
extending his search far into the more remote country districts,
collecting specimens on his way, and devoting much time to the study of
the bamboo, and in roughly testing the relative value of its fibre in
canes of one, two, three, four, and five year growths. Great bales of
samples were sent to Edison, and after careful tests a certain variety
and growth of Japanese bamboo was determined to be the most satisfactory
material for filaments that had been found. Mr. Moore, who was
continuing his searches in that country, was instructed to arrange for
the cultivation and shipment of regular supplies of this particular
species. Arrangements to this end were accordingly made with a Japanese
farmer, who began to make immediate shipments, and who subsequently
displayed so much ingenuity in fertilizing and cross-fertilizing that
the homogeneity of the product was constantly improved. The use of this
bamboo for Edison lamp filaments was continued for many years.

Although Mr. Moore did not meet with the exciting adventures of some
subsequent explorers, he encountered numerous difficulties and novel
experiences in his many months of travel through the hinterland of Japan
and China. The attitude toward foreigners thirty years ago was not as
friendly as it has since become, but Edison, as usual, had made a happy
choice of messengers, as Mr. Moore's good nature and diplomacy attested.
These qualities, together with his persistence and perseverance and
faculty of intelligent discrimination in the matter of fibres, helped to
make his mission successful, and gave to him the honor of being the
one who found the bamboo which was adopted for use as filaments in
commercial Edison lamps.

Although Edison had satisfied himself that bamboo furnished the most
desirable material thus far discovered for incandescent-lamp filaments,
he felt that in some part of the world there might be found a natural
product of the same general character that would furnish a still more
perfect and homogeneous material. In his study of this subject, and
during the prosecution of vigorous and searching inquiries in various
directions, he learned that Mr. John C. Brauner, then residing in
Brooklyn, New York, had an expert knowledge of indigenous plants of the
particular kind desired. During the course of a geological survey which
he had made for the Brazilian Government, Mr. Brauner had examined
closely the various species of palms which grow plentifully in that
country, and of them there was one whose fibres he thought would be just
what Edison wanted.

Accordingly, Mr. Brauner was sent for and dispatched to Brazil in
December, 1880, to search for and send samples of this and such other
palms, fibres, grasses, and canes as, in his judgment, would be suitable
for the experiments then being carried on at Menlo Park. Landing at
Para, he crossed over into the Amazonian province, and thence proceeded
through the heart of the country, making his way by canoe on the rivers
and their tributaries, and by foot into the forests and marshes of
a vast and almost untrodden wilderness. In this manner Mr. Brauner
traversed about two thousand miles of the comparatively unknown interior
of Southern Brazil, and procured a large variety of fibrous specimens,
which he shipped to Edison a few months later. When these fibres arrived
in the United States they were carefully tested and a few of them found
suitable but not superior to the Japanese bamboo, which was then being
exclusively used in the manufacture of commercial Edison lamps.

Later on Edison sent out an expedition to explore the wilds of Cuba and
Jamaica. A two months' investigation of the latter island revealed a
variety of bamboo growths, of which a great number of specimens were
obtained and shipped to Menlo Park; but on careful test they were found
inferior to the Japanese bamboo, and hence rejected. The exploration of
the glades and swamps of Florida by three men extended over a period
of five months in a minute search for fibrous woods of the palmetto
species. A great variety was found, and over five hundred boxes of
specimens were shipped to the laboratory from time to time, but none of
them tested out with entirely satisfactory results.

The use of Japanese bamboo for carbon filaments was therefore continued
in the manufacture of lamps, although an incessant search was maintained
for a still more perfect material. The spirit of progress, so pervasive
in Edison's character, led him, however, to renew his investigations
further afield by sending out two other men to examine the bamboo and
similar growths of those parts of South America not covered by Mr.
Brauner. These two men were Frank McGowan and C. F. Hanington, both
of whom had been for nearly seven years in the employ of the Edison
Electric Light Company in New York. The former was a stocky, rugged
Irishman, possessing the native shrewdness and buoyancy of his race,
coupled with undaunted courage and determination; and the latter was
a veteran of the Civil War, with some knowledge of forest and field,
acquired as a sportsman. They left New York in September, 1887, arriving
in due time at Para, proceeding thence twenty-three hundred miles up the
Amazon River to Iquitos. Nothing of an eventful nature occurred during
this trip, but on arrival at Iquitos the two men separated; Mr. McGowan
to explore on foot and by canoe in Peru, Ecuador, and Colombia, while
Mr. Hanington returned by the Amazon River to Para. Thence Hanington
went by steamer to Montevideo, and by similar conveyance up the River
de la Plata and through Uruguay, Argentine, and Paraguay to the
southernmost part of Brazil, collecting a large number of specimens of
palms and grasses.

The adventures of Mr. McGowan, after leaving Iquitos, would fill a book
if related in detail. The object of the present narrative and the space
at the authors' disposal, however, do not permit of more than a brief
mention of his experiences. His first objective point was Quito, about
five hundred miles away, which he proposed to reach on foot and by means
of canoeing on the Napo River through a wild and comparatively unknown
country teeming with tribes of hostile natives. The dangers of the
expedition were pictured to him in glowing colors, but spurning
prophecies of dire disaster, he engaged some native Indians and a canoe
and started on his explorations, reaching Quito in eighty-seven days,
after a thorough search of the country on both sides of the Napo River.
From Quito he went to Guayaquil, from there by steamer to Buenaventura,
and thence by rail, twelve miles, to Cordova. From this point he set out
on foot to explore the Cauca Valley and the Cordilleras.

Mr. McGowan found in these regions a great variety of bamboo, small and
large, some species growing seventy-five to one hundred feet in height,
and from six to nine inches in diameter. He collected a large number
of specimens, which were subsequently sent to Orange for Edison's
examination. After about fifteen months of exploration attended by much
hardship and privation, deserted sometimes by treacherous guides, twice
laid low by fevers, occasionally in peril from Indian attacks, wild
animals and poisonous serpents, tormented by insect pests, endangered
by floods, one hundred and nineteen days without meat, ninety-eight days
without taking off his clothes, Mr. McGowan returned to America, broken
in health but having faithfully fulfilled the commission intrusted to
him. The Evening Sun, New York, obtained an interview with him at that
time, and in its issue of May 2, 1889, gave more than a page to a brief
story of his interesting adventures, and then commented editorially upon
them, as follows:


"A ROMANCE OF SCIENCE"


"The narrative given elsewhere in the Evening Sun of the wanderings of
Edison's missionary of science, Mr. Frank McGowan, furnishes a new proof
that the romances of real life surpass any that the imagination can
frame.

"In pursuit of a substance that should meet the requirements of the
Edison incandescent lamp, Mr. McGowan penetrated the wilderness of the
Amazon, and for a year defied its fevers, beasts, reptiles, and deadly
insects in his quest of a material so precious that jealous Nature has
hidden it in her most secret fastnesses.

"No hero of mythology or fable ever dared such dragons to rescue some
captive goddess as did this dauntless champion of civilization. Theseus,
or Siegfried, or any knight of the fairy books might envy the victories
of Edison's irresistible lieutenant.

"As a sample story of adventure, Mr. McGowan's narrative is a marvel fit
to be classed with the historic journeyings of the greatest travellers.
But it gains immensely in interest when we consider that it succeeded in
its scientific purpose. The mysterious bamboo was discovered, and large
quantities of it were procured and brought to the Wizard's laboratory,
there to suffer another wondrous change and then to light up our
pleasure-haunts and our homes with a gentle radiance."


A further, though rather sad, interest attaches to the McGowan story,
for only a short time had elapsed after his return to America when he
disappeared suddenly and mysteriously, and in spite of long-continued
and strenuous efforts to obtain some light on the subject, no clew
or trace of him was ever found. He was a favorite among the Edison
"oldtimers," and his memory is still cherished, for when some of the
"boys" happen to get together, as they occasionally do, some one is
almost sure to "wonder what became of poor 'Mac.'" He was last seen at
Mouquin's famous old French restaurant on Fulton Street, New York, where
he lunched with one of the authors of this book and the late Luther
Stieringer. He sat with them for two or three hours discussing his
wonderful trip, and telling some fascinating stories of adventure. Then
the party separated at the Ann Street door of the restaurant, after
making plans to secure the narrative in more detailed form for
subsequent use--and McGowan has not been seen from that hour to this.
The trail of the explorer was more instantly lost in New York than in
the vast recesses of the Amazon swamps.

The next and last explorer whom Edison sent out in search of
natural fibres was Mr. James Ricalton, of Maplewood, New Jersey, a
school-principal, a well-known traveller, and an ardent student of
natural science. Mr. Ricalton's own story of his memorable expedition is
so interesting as to be worthy of repetition here:

"A village schoolmaster is not unaccustomed to door-rappings; for the
steps of belligerent mothers are often thitherward bent seeking redress
for conjured wrongs to their darling boobies.

"It was a bewildering moment, therefore, to the Maplewood teacher when,
in answering a rap at the door one afternoon, he found, instead of an
irate mother, a messenger from the laboratory of the world's greatest
inventor bearing a letter requesting an audience a few hours later.

"Being the teacher to whom reference is made, I am now quite willing to
confess that for the remainder of that afternoon, less than a problem
in Euclid would have been sufficient to disqualify me for the remaining
scholastic duties of the hour. I felt it, of course, to be no small
honor for a humble teacher to be called to the sanctum of Thomas A.
Edison. The letter, however, gave no intimation of the nature of the
object for which I had been invited to appear before Mr. Edison....

"When I was presented to Mr. Edison his way of setting forth the
mission he had designated for me was characteristic of how a great mind
conceives vast undertakings and commands great things in few words. At
this time Mr. Edison had discovered that the fibre of a certain bamboo
afforded a very desirable carbon for the electric lamp, and the variety
of bamboo used was a product of Japan. It was his belief that in other
parts of the world other and superior varieties might be found, and to
that end he had dispatched explorers to bamboo regions in the valleys
of the great South American rivers, where specimens were found of
extraordinary quality; but the locality in which these specimens were
found was lost in the limitless reaches of those great river-bottoms.
The great necessity for more durable carbons became a desideratum so
urgent that the tireless inventor decided to commission another explorer
to search the tropical jungles of the Orient.

"This brings me then to the first meeting of Edison, when he set forth
substantially as follows, as I remember it twenty years ago, the purpose
for which he had called me from my scholastic duties. With a quizzical
gleam in his eye, he said: 'I want a man to ransack all the tropical
jungles of the East to find a better fibre for my lamp; I expect it to
be found in the palm or bamboo family. How would you like that job?'
Suiting my reply to his love of brevity and dispatch, I said, 'That
would suit me.' 'Can you go to-morrow?' was his next question. 'Well,
Mr. Edison, I must first of all get a leave of absence from my Board of
Education, and assist the board to secure a substitute for the time of
my absence. How long will it take, Mr. Edison?' 'How can I tell? Maybe
six months, and maybe five years; no matter how long, find it.' He
continued: 'I sent a man to South America to find what I want; he found
it; but lost the place where he found it, so he might as well never have
found it at all.' Hereat I was enjoined to proceed forthwith to court
the Board of Education for a leave of absence, which I did successfully,
the board considering that a call so important and honorary was entitled
to their unqualified favor, which they generously granted.

"I reported to Mr. Edison on the following day, when he instructed me to
come to the laboratory at once to learn all the details of drawing and
carbonizing fibres, which it would be necessary to do in the Oriental
jungles. This I did, and, in the mean time, a set of suitable tools for
this purpose had been ordered to be made in the laboratory. As soon as
I learned my new trade, which I accomplished in a few days, Mr. Edison
directed me to the library of the laboratory to occupy a few days in
studying the geography of the Orient and, particularly, in drawing maps
of the tributaries of the Ganges, the Irrawaddy, and the Brahmaputra
rivers, and other regions which I expected to explore.

"It was while thus engaged that Mr. Edison came to me one day and said:
'If you will go up to the house' (his palatial home not far away) 'and
look behind the sofa in the library you will find a joint of bamboo, a
specimen of that found in South America; bring it down and make a study
of it; if you find something equal to that I will be satisfied.' At the
home I was guided to the library by an Irish servant-woman, to whom I
communicated my knowledge of the definite locality of the sample joint.
She plunged her arm, bare and herculean, behind the aforementioned sofa,
and holding aloft a section of wood, called out in a mood of discovery:
'Is that it?' Replying in the affirmative, she added, under an impulse
of innocent divination that whatever her wizard master laid hands upon
could result in nothing short of an invention, 'Sure, sor, and what's he
going to invint out o' that?'

"My kit of tools made, my maps drawn, my Oriental geography reviewed, I
come to the point when matters of immediate departure are discussed; and
when I took occasion to mention to my chief that, on the subject of life
insurance, underwriters refuse to take any risks on an enterprise so
hazardous, Mr. Edison said that, if I did not place too high a valuation
on my person, he would take the risk himself. I replied that I was born
and bred in New York State, but now that I had become a Jersey man I did
not value myself at above fifteen hundred dollars. Edison laughed and
said that he would assume the risk, and another point was settled. The
next matter was the financing of the trip, about which Mr. Edison asked
in a tentative way about the rates to the East. I told him the expense
of such a trip could not be determined beforehand in detail, but that I
had established somewhat of a reputation for economic travel, and that
I did not believe any traveller could surpass me in that respect. He
desired no further assurance in that direction, and thereupon ordered a
letter of credit made out with authorization to order a second when the
first was exhausted. Herein then are set forth in briefest space the
preliminaries of a circuit of the globe in quest of fibre.

"It so happened that the day on which I set out fell on Washington's
Birthday, and I suggested to my boys and girls at school that they make
a line across the station platform near the school at Maplewood,
and from this line I would start eastward around the world, and if
good-fortune should bring me back I would meet them from the westward at
the same line. As I had often made them 'toe the scratch,' for once they
were only too well pleased to have me toe the line for them.

"This was done, and I sailed via England and the Suez Canal to Ceylon,
that fair isle to which Sindbad the Sailor made his sixth voyage,
picturesquely referred to in history as the 'brightest gem in the
British Colonial Crown.' I knew Ceylon to be eminently tropical; I knew
it to be rich in many varieties of the bamboo family, which has been
called the king of the grasses; and in this family had I most hope of
finding the desired fibre. Weeks were spent in this paradisiacal isle.
Every part was visited. Native wood craftsmen were offered a premium on
every new species brought in, and in this way nearly a hundred species
were tested, a greater number than was found in any other country. One
of the best specimens tested during the entire trip around the world was
found first in Ceylon, although later in Burmah, it being indigenous
to the latter country. It is a gigantic tree-grass or reed growing in
clumps of from one to two hundred, often twelve inches in diameter, and
one hundred and fifty feet high, and known as the giant bamboo (Bambusa
gigantia). This giant grass stood the highest test as a carbon, and on
account of its extraordinary size and qualities I extend it this special
mention. With others who have given much attention to this remarkable
reed, I believe that in its manifold uses the bamboo is the world's
greatest dendral benefactor.

"From Ceylon I proceeded to India, touching the great peninsula first
at Cape Comorin, and continuing northward by way of Pondicherry, Madura,
and Madras; and thence to the tableland of Bangalore and the Western
Ghauts, testing many kinds of wood at every point, but particularly the
palm and bamboo families. From the range of the Western Ghauts I went to
Bombay and then north by the way of Delhi to Simla, the summer capital
of the Himalayas; thence again northward to the headwaters of the Sutlej
River, testing everywhere on my way everything likely to afford the
desired carbon.

"On returning from the mountains I followed the valleys of the Jumna
and the Ganges to Calcutta, whence I again ascended the Sub-Himalayas to
Darjeeling, where the numerous river-bottoms were sprinkled plentifully
with many varieties of bamboo, from the larger sizes to dwarfed species
covering the mountain slopes, and not longer than the grass of meadows.
Again descending to the plains I passed eastward to the Brahmaputra
River, which I ascended to the foot-hills in Assam; but finding nothing
of superior quality in all this northern region I returned to Calcutta
and sailed thence to Rangoon, in Burmah; and there, finding no samples
giving more excellent tests in the lower reaches of the Irrawaddy,
I ascended that river to Mandalay, where, through Burmese bamboo
wiseacres, I gathered in from round about and tested all that the
unusually rich Burmese flora could furnish. In Burmah the giant bamboo,
as already mentioned, is found indigenous; but beside it no superior
varieties were found. Samples tested at several points on the Malay
Peninsula showed no new species, except at a point north of Singapore,
where I found a species large and heavy which gave a test nearly equal
to that of the giant bamboo in Ceylon.

"After completing the Malay Peninsula I had planned to visit Java and
Borneo; but having found in the Malay Peninsula and in Ceylon a bamboo
fibre which averaged a test from one to two hundred per cent. better
than that in use at the lamp factory, I decided it was unnecessary to
visit these countries or New Guinea, as my 'Eureka' had already been
established, and that I would therefore set forth over the return
hemisphere, searching China and Japan on the way. The rivers in Southern
China brought down to Canton bamboos of many species, where this
wondrously utilitarian reed enters very largely into the industrial life
of that people, and not merely into the industrial life, but even into
the culinary arts, for bamboo sprouts are a universal vegetable
in China; but among all the bamboos of China I found none of
superexcellence in carbonizing qualities. Japan came next in the
succession of countries to be explored, but there the work was much
simplified, from the fact that the Tokio Museum contains a complete
classified collection of all the different species in the empire, and
there samples could be obtained and tested.

"Now the last of the important bamboo-producing countries in the globe
circuit had been done, and the 'home-lap' was in order; the broad
Pacific was spanned in fourteen days; my natal continent in six; and
on the 22d of February, on the same day, at the same hour, at the
same minute, one year to a second, 'little Maude,' a sweet maid of the
school, led me across the line which completed the circuit of the globe,
and where I was greeted by the cheers of my boys and girls. I at once
reported to Mr. Edison, whose manner of greeting my return was as
characteristic of the man as his summary and matter-of-fact manner of my
dispatch. His little catechism of curious inquiry was embraced in four
small and intensely Anglo-Saxon words--with his usual pleasant smile he
extended his hand and said: 'Did you get it?' This was surely a summing
of a year's exploration not less laconic than Caesar's review of his
Gallic campaign. When I replied that I had, but that he must be the
final judge of what I had found, he said that during my absence he
had succeeded in making an artificial carbon which was meeting the
requirements satisfactorily; so well, indeed, that I believe no
practical use was ever made of the bamboo fibres thereafter.

"I have herein given a very brief resume of my search for fibre through
the Orient; and during my connection with that mission I was at all
times not less astonished at Mr. Edison's quick perception of conditions
and his instant decision and his bigness of conceptions, than I had
always been with his prodigious industry and his inventive genius.

"Thinking persons know that blatant men never accomplish much, and
Edison's marvellous brevity of speech along with his miraculous
achievements should do much to put bores and garrulity out of fashion."

Although Edison had instituted such a costly and exhaustive search
throughout the world for the most perfect of natural fibres, he did not
necessarily feel committed for all time to the exclusive use of that
material for his lamp filaments. While these explorations were in
progress, as indeed long before, he had given much thought to the
production of some artificial compound that would embrace not only the
required homogeneity, but also many other qualifications necessary for
the manufacture of an improved type of lamp which had become desirable
by reason of the rapid adoption of his lighting system.

At the very time Mr. McGowan was making his explorations deep in South
America, and Mr. Ricalton his swift trip around the world, Edison,
after much investigation and experiment, had produced a compound which
promised better results than bamboo fibres. After some changes dictated
by experience, this artificial filament was adopted in the manufacture
of lamps. No radical change was immediately made, however, but the
product of the lamp factory was gradually changed over, during the
course of a few years, from the use of bamboo to the "squirted"
filament, as the new material was called. An artificial compound of one
kind or another has indeed been universally adopted for the purpose
by all manufacturers; hence the incandescing conductors in all
carbon-filament lamps of the present day are made in that way. The fact
remains, however, that for nearly nine years all Edison lamps (many
millions in the aggregate) were made with bamboo filaments, and many of
them for several years after that, until bamboo was finally abandoned in
the early nineties, except for use in a few special types which were so
made until about the end of 1908. The last few years have witnessed
a remarkable advance in the manufacture of incandescent lamps in the
substitution of metallic filaments for those of carbon. It will be
remembered that many of the earlier experiments were based on the use of
strips of platinum; while other rare metals were the subject of casual
trial. No real success was attained in that direction, and for many
years the carbon-filament lamp reigned supreme. During the last four
or five years lamps with filaments made from tantalum and tungsten have
been produced and placed on the market with great success, and are now
largely used. Their price is still very high, however, as compared with
that of the carbon lamp, which has been vastly improved in methods of
construction, and whose average price of fifteen cents is only one-tenth
of what it was when Edison first brought it out.

With the close of Mr. McGowan's and Mr. Ricalton's expeditions, there
ended the historic world-hunt for natural fibres. From start to finish
the investigations and searches made by Edison himself, and carried on
by others under his direction, are remarkable not only from the fact
that they entailed a total expenditure of about $100,000, (disbursed
under his supervision by Mr. Upton), but also because of their unique
inception and thoroughness they illustrate one of the strongest traits
of his character--an invincible determination to leave no stone unturned
to acquire that which he believes to be in existence, and which, when
found, will answer the purpose that he has in mind.



CHAPTER XIV

INVENTING A COMPLETE SYSTEM OF LIGHTING

IN Berlin, on December 11, 1908, with notable eclat, the seventieth
birthday was celebrated of Emil Rathenau, the founder of the great
Allgemein Elektricitaets Gesellschaft. This distinguished German,
creator of a splendid industry, then received the congratulations of his
fellow-countrymen, headed by Emperor William, who spoke enthusiastically
of his services to electro-technics and to Germany. In his interesting
acknowledgment, Mr. Rathenau told how he went to Paris in 1881, and at
the electrical exhibition there saw the display of Edison's inventions
in electric lighting "which have met with as little proper appreciation
as his countless innovations in connection with telegraphy, telephony,
and the entire electrical industry." He saw the Edison dynamo, and he
saw the incandescent lamp, "of which millions have been manufactured
since that day without the great master being paid the tribute to his
invention." But what impressed the observant, thoroughgoing German was
the breadth with which the whole lighting art had been elaborated and
perfected, even at that early day. "The Edison system of lighting was as
beautifully conceived down to the very details, and as thoroughly worked
out as if it had been tested for decades in various towns. Neither
sockets, switches, fuses, lamp-holders, nor any of the other accessories
necessary to complete the installation were wanting; and the generating
of the current, the regulation, the wiring with distributing boxes,
house connections, meters, etc., all showed signs of astonishing skill
and incomparable genius."

Such praise on such an occasion from the man who introduced incandescent
electric lighting into Germany is significant as to the continued
appreciation abroad of Mr. Edison's work. If there is one thing modern
Germany is proud and jealous of, it is her leadership in electrical
engineering and investigation. But with characteristic insight, Mr.
Rathenau here placed his finger on the great merit that has often been
forgotten. Edison was not simply the inventor of a new lamp and a
new dynamo. They were invaluable elements, but far from all that was
necessary. His was the mighty achievement of conceiving and executing
in all its details an art and an industry absolutely new to the world.
Within two years this man completed and made that art available in its
essential, fundamental facts, which remain unchanged after thirty years
of rapid improvement and widening application.

Such a stupendous feat, whose equal is far to seek anywhere in the
history of invention, is worth studying, especially as the task will
take us over much new ground and over very little of the territory
already covered. Notwithstanding the enormous amount of thought and
labor expended on the incandescent lamp problem from the autumn of
1878 to the winter of 1879, it must not be supposed for one moment that
Edison's whole endeavor and entire inventive skill had been given to the
lamp alone, or the dynamo alone. We have sat through the long watches
of the night while Edison brooded on the real solution of the swarming
problems. We have gazed anxiously at the steady fingers of the deft and
cautious Batchelor, as one fragile filament after another refused to
stay intact until it could be sealed into its crystal prison and there
glow with light that never was before on land or sea. We have calculated
armatures and field coils for the new dynamo with Upton, and held the
stakes for Jehl and his fellows at their winding bees. We have seen the
mineral and vegetable kingdoms rifled and ransacked for substances that
would yield the best "filament." We have had the vague consciousness of
assisting at a great development whose evidences to-day on every hand
attest its magnitude. We have felt the fierce play of volcanic effort,
lifting new continents of opportunity from the infertile sea, without
any devastation of pre-existing fields of human toil and harvest. But
it still remains to elucidate the actual thing done; to reduce it to
concrete data, and in reducing, to unfold its colossal dimensions.

The lighting system that Edison contemplated in this entirely new
departure from antecedent methods included the generation of electrical
energy, or current, on a very large scale; its distribution throughout
extended areas, and its division and subdivision into small units
converted into light at innumerable points in every direction from
the source of supply, each unit to be independent of every other and
susceptible to immediate control by the user.

This was truly an altogether prodigious undertaking. We need not
wonder that Professor Tyndall, in words implying grave doubt as to the
possibility of any solution of the various problems, said publicly that
he would much rather have the matter in Edison's hands than in his own.
There were no precedents, nothing upon which to build or improve. The
problems could only be answered by the creation of new devices and
methods expressly worked out for their solution. An electric lamp
answering certain specific requirements would, indeed, be the key to the
situation, but its commercial adaptation required a multifarious variety
of apparatus and devices. The word "system" is much abused in invention,
and during the early days of electric lighting its use applied to a mere
freakish lamp or dynamo was often ludicrous. But, after all, nothing
short of a complete system could give real value to the lamp as an
invention; nothing short of a system could body forth the new art to
the public. Let us therefore set down briefly a few of the leading items
needed for perfect illumination by electricity, all of which were part
of the Edison programme:

First--To conceive a broad and fundamentally correct method of
distributing the current, satisfactory in a scientific sense and
practical commercially in its efficiency and economy. This meant, ready
made, a comprehensive plan analogous to illumination by gas, with a
network of conductors all connected together, so that in any given city
area the lights could be fed with electricity from several directions,
thus eliminating any interruption due to the disturbance on any
particular section.

Second--To devise an electric lamp that would give about the same amount
of light as a gas jet, which custom had proven to be a suitable and
useful unit. This lamp must possess the quality of requiring only a
small investment in the copper conductors reaching it. Each lamp must
be independent of every other lamp. Each and all the lights must be
produced and operated with sufficient economy to compete on a commercial
basis with gas. The lamp must be durable, capable of being easily and
safely handled by the public, and one that would remain capable of
burning at full incandescence and candle-power a great length of time.

Third--To devise means whereby the amount of electrical energy furnished
to each and every customer could be determined, as in the case of gas,
and so that this could be done cheaply and reliably by a meter at the
customer's premises.

Fourth--To elaborate a system or network of conductors capable of being
placed underground or overhead, which would allow of being tapped at any
intervals, so that service wires could be run from the main conductors
in the street into each building. Where these mains went below
the surface of the thoroughfare, as in large cities, there must be
protective conduit or pipe for the copper conductors, and these pipes
must allow of being tapped wherever necessary. With these conductors and
pipes must also be furnished manholes, junction-boxes, connections, and
a host of varied paraphernalia insuring perfect general distribution.

Fifth--To devise means for maintaining at all points in an extended area
of distribution a practically even pressure of current, so that all
the lamps, wherever located, near or far away from the central station,
should give an equal light at all times, independent of the number that
might be turned on; and safeguarding the lamps against rupture by sudden
and violent fluctuations of current. There must also be means for thus
regulating at the point where the current was generated the quality or
pressure of the current throughout the whole lighting area, with devices
for indicating what such pressure might actually be at various points in
the area.

Sixth--To design efficient dynamos, such not being in existence at the
time, that would convert economically the steam-power of high-speed
engines into electrical energy, together with means for connecting and
disconnecting them with the exterior consumption circuits; means for
regulating, equalizing their loads, and adjusting the number of dynamos
to be used according to the fluctuating demands on the central station.
Also the arrangement of complete stations with steam and electric
apparatus and auxiliary devices for insuring their efficient and
continuous operation.

Seventh--To invent devices that would prevent the current from becoming
excessive upon any conductors, causing fire or other injury; also
switches for turning the current on and off; lamp-holders, fixtures, and
the like; also means and methods for establishing the interior circuits
that were to carry current to chandeliers and fixtures in buildings.

Here was the outline of the programme laid down in the autumn of 1878,
and pursued through all its difficulties to definite accomplishment in
about eighteen months, some of the steps being made immediately, others
being taken as the art evolved. It is not to be imagined for one moment
that Edison performed all the experiments with his own hands. The method
of working at Menlo Park has already been described in these pages
by those who participated. It would not only have been physically
impossible for one man to have done all this work himself, in view of
the time and labor required, and the endless detail; but most of the
apparatus and devices invented or suggested by him as the art took shape
required the handiwork of skilled mechanics and artisans of a high order
of ability. Toward the end of 1879 the laboratory force thus numbered at
least one hundred earnest men. In this respect of collaboration, Edison
has always adopted a policy that must in part be taken to explain his
many successes. Some inventors of the greatest ability, dealing with
ideas and conceptions of importance, have found it impossible to
organize or even to tolerate a staff of co-workers, preferring solitary
and secret toil, incapable of team work, or jealous of any intrusion
that could possibly bar them from a full and complete claim to the
result when obtained. Edison always stood shoulder to shoulder with his
associates, but no one ever questioned the leadership, nor was it ever
in doubt where the inspiration originated. The real truth is that Edison
has always been so ceaselessly fertile of ideas himself, he has had more
than his whole staff could ever do to try them all out; he has sought
co-operation, but no exterior suggestion. As a matter of fact a great
many of the "Edison men" have made notable inventions of their own, with
which their names are imperishably associated; but while they were with
Edison it was with his work that they were and must be busied.

It was during this period of "inventing a system" that so much
systematic and continuous work with good results was done by Edison in
the design and perfection of dynamos. The value of his contributions
to the art of lighting comprised in this work has never been fully
understood or appreciated, having been so greatly overshadowed by
his invention of the incandescent lamp, and of a complete system of
distribution. It is a fact, however, that the principal improvements he
made in dynamo-electric generators were of a radical nature and remain
in the art. Thirty years bring about great changes, especially in a
field so notably progressive as that of the generation of electricity;
but different as are the dynamos of to-day from those of the earlier
period, they embody essential principles and elements that Edison then
marked out and elaborated as the conditions of success. There was indeed
prompt appreciation in some well-informed quarters of what Edison was
doing, evidenced by the sensation caused in the summer of 1881, when
he designed, built, and shipped to Paris for the first Electrical
Exposition ever held, the largest dynamo that had been built up to that
time. It was capable of lighting twelve hundred incandescent lamps, and
weighed with its engine twenty-seven tons, the armature alone weighing
six tons. It was then, and for a long time after, the eighth wonder of
the scientific world, and its arrival and installation in Paris were
eagerly watched by the most famous physicists and electricians of
Europe.

Edison's amusing description of his experience in shipping the dynamo to
Paris when built may appropriately be given here: "I built a very large
dynamo with the engine directly connected, which I intended for the
Paris Exposition of 1881. It was one or two sizes larger than those I
had previously built. I had only a very short period in which to get it
ready and put it on a steamer to reach the Exposition in time. After the
machine was completed we found the voltage was too low. I had to devise
a way of raising the voltage without changing the machine, which I did
by adding extra magnets. After this was done, we tested the machine, and
the crank-shaft of the engine broke and flew clear across the shop.
By working night and day a new crank-shaft was put in, and we only had
three days left from that time to get it on board the steamer; and had
also to run a test. So we made arrangements with the Tammany leader, and
through him with the police, to clear the street--one of the New York
crosstown streets--and line it with policemen, as we proposed to make a
quick passage, and didn't know how much time it would take. About four
hours before the steamer had to get it, the machine was shut down after
the test, and a schedule was made out in advance of what each man had
to do. Sixty men were put on top of the dynamo to get it ready, and each
man had written orders as to what he was to perform. We got it all taken
apart and put on trucks and started off. They drove the horses with a
fire-bell in front of them to the French pier, the policemen lining
the streets. Fifty men were ready to help the stevedores get it on the
steamer--and we were one hour ahead of time."

This Exposition brings us, indeed, to a dramatic and rather pathetic
parting of the ways. The hour had come for the old laboratory force that
had done such brilliant and memorable work to disband, never again to
assemble under like conditions for like effort, although its members all
remained active in the field, and many have ever since been associated
prominently with some department of electrical enterprise. The fact
was they had done their work so well they must now disperse to show
the world what it was, and assist in its industrial exploitation. In
reality, they were too few for the demands that reached Edison from
all parts of the world for the introduction of his system; and in the
emergency the men nearest to him and most trusted were those upon whom
he could best depend for such missionary work as was now required.
The disciples full of fire and enthusiasm, as well as of knowledge and
experience, were soon scattered to the four winds, and the rapidity
with which the Edison system was everywhere successfully introduced is
testimony to the good judgment with which their leader had originally
selected them as his colleagues. No one can say exactly just how this
process of disintegration began, but Mr. E. H. Johnson had already been
sent to England in the Edison interests, and now the question arose as
to what should be done with the French demands and the Paris Electrical
Exposition, whose importance as a point of new departure in electrical
industry was speedily recognized on both sides of the Atlantic. It is
very interesting to note that as the earlier staff broke up, Edison
became the centre of another large body, equally devoted, but more
particularly concerned with the commercial development of his ideas. Mr.
E. G. Acheson mentions in his personal notes on work at the laboratory,
that in December of 1880, while on some experimental work, he was called
to the new lamp factory started recently at Menlo Park, and there
found Edison, Johnson, Batchelor, and Upton in conference, and "Edison
informed me that Mr. Batchelor, who was in charge of the construction,
development, and operation of the lamp factory, was soon to sail
for Europe to prepare for the exhibit to be made at the Electrical
Exposition to be held in Paris during the coming summer." These
preparations overlap the reinforcement of the staff with some notable
additions, chief among them being Mr. Samuel Insull, whose interesting
narrative of events fits admirably into the story at this stage, and
gives a vivid idea of the intense activity and excitement with which the
whole atmosphere around Edison was then surcharged: "I first met Edison
on March 1, 1881. I arrived in New York on the City of Chester about
five or six in the evening, and went direct to 65 Fifth Avenue. I had
come over to act as Edison's private secretary, the position having been
obtained for me through the good offices of Mr. E. H. Johnson, whom I
had known in London, and who wrote to Mr. U. H. Painter, of Washington,
about me in the fall of 1880. Mr. Painter sent the letter on to Mr.
Batchelor, who turned it over to Edison. Johnson returned to America
late in the fall of 1880, and in January, 1881, cabled to me to come
to this country. At the time he cabled for me Edison was still at Menlo
Park, but when I arrived in New York the famous offices of the Edison
Electric Light Company had been opened at '65' Fifth Avenue, and Edison
had moved into New York with the idea of assisting in the exploitation
of the Light Company's business.

"I was taken by Johnson direct from the Inman Steamship pier to 65 Fifth
Avenue, and met Edison for the first time. There were three rooms on
the ground floor at that time. The front one was used as a kind of
reception-room; the room immediately behind it was used as the office of
the president of the Edison Electric Light Company, Major S. B. Eaton.
The rear room, which was directly back of the front entrance hall, was
Edison's office, and there I first saw him. There was very little in
the room except a couple of walnut roller-top desks--which were very
generally used in American offices at that time. Edison received me with
great cordiality. I think he was possibly disappointed at my being so
young a man; I had only just turned twenty-one, and had a very boyish
appearance. The picture of Edison is as vivid to me now as if the
incident occurred yesterday, although it is now more than twenty-nine
years since that first meeting. I had been connected with Edison's
affairs in England as private secretary to his London agent for about
two years; and had been taught by Johnson to look on Edison as the
greatest electrical inventor of the day--a view of him, by-the-way,
which has been greatly strengthened as the years have rolled by. Owing
to this, and to the fact that I felt highly flattered at the appointment
as his private secretary, I was naturally prepared to accept him as a
hero. With my strict English ideas as to the class of clothes to be worn
by a prominent man, there was nothing in Edison's dress to impress me.
He wore a rather seedy black diagonal Prince Albert coat and waistcoat,
with trousers of a dark material, and a white silk handkerchief around
his neck, tied in a careless knot falling over the stiff bosom of a
white shirt somewhat the worse for wear. He had a large wide-awake
hat of the sombrero pattern then generally used in this country, and a
rough, brown overcoat, cut somewhat similarly to his Prince Albert
coat. His hair was worn quite long, and hanging carelessly over his fine
forehead. His face was at that time, as it is now, clean shaven. He was
full in face and figure, although by no means as stout as he has grown
in recent years. What struck me above everything else was the wonderful
intelligence and magnetism of his expression, and the extreme brightness
of his eyes. He was far more modest than in my youthful picture of him.
I had expected to find a man of distinction. His appearance, as a whole,
was not what you would call 'slovenly,' it is best expressed by the word
'careless.'"

Mr. Insull supplements this pen-picture by another, bearing upon the
hustle and bustle of the moment: "After a short conversation Johnson
hurried me off to meet his family, and later in the evening, about
eight o'clock, he and I returned to Edison's office; and I found myself
launched without further ceremony into Edison's business affairs.
Johnson had already explained to me that he was sailing the next
morning, March 2d, on the S.S. Arizona, and that Mr. Edison wanted to
spend the evening discussing matters in connection with his European
affairs. It was assumed, inasmuch as I had just arrived from London,
that I would be able to give more or less information on this subject.
As Johnson was to sail the next morning at five o'clock, Edison
explained that it would be necessary for him to have an understanding
of European matters. Edison started out by drawing from his desk a
check-book and stating how much money he had in the bank; and he wanted
to know what European telephone securities were most salable, as
he wished to raise the necessary funds to put on their feet the
incandescent lamp factory, the Electric Tube works, and the necessary
shops to build dynamos. All through the interview I was tremendously
impressed with Edison's wonderful resourcefulness and grasp, and his
immediate appreciation of any suggestion of consequence bearing on the
subject under discussion.

"He spoke with very great enthusiasm of the work before him--namely, the
development of his electric-lighting system; and his one idea seemed to
be to raise all the money he could with the object of pouring it
into the manufacturing side of the lighting business. I remember how
extraordinarily I was impressed with him on this account, as I had
just come from a circle of people in London who not only questioned the
possibility of the success of Edison's invention, but often expressed
doubt as to whether the work he had done could be called an invention at
all. After discussing affairs with Johnson--who was receiving his final
instructions from Edison--far into the night, and going down to the
steamer to see Johnson aboard, I finished my first night's business
with Edison somewhere between four and five in the morning, feeling
thoroughly imbued with the idea that I had met one of the great master
minds of the world. You must allow for my youthful enthusiasm, but you
must also bear in mind Edison's peculiar gift of magnetism, which has
enabled him during his career to attach so many men to him. I fell a
victim to the spell at the first interview."

Events moved rapidly in those days. The next morning, Tuesday, Edison
took his new fidus Achates with him to a conference with John Roach, the
famous old ship-builder, and at it agreed to take the AEtna Iron works,
where Roach had laid the foundations of his fame and fortune. These
works were not in use at the time. They were situated on Goerck Street,
New York, north of Grand Street, on the east side of the city,
and there, very soon after, was established the first Edison
dynamo-manufacturing establishment, known for many years as the Edison
Machine Works. The same night Insull made his first visit to Menlo Park.
Up to that time he had seen very little incandescent lighting, for the
simple reason that there was very little to see. Johnson had had a
few Edison lamps in London, lit up from primary batteries, as a
demonstration; and in the summer of 1880 Swan had had a few series
lamps burning in London. In New York a small gas-engine plant was being
started at the Edison offices on Fifth Avenue. But out at Menlo Park
there was the first actual electric-lighting central station, supplying
distributed incandescent lamps and some electric motors by means of
underground conductors imbedded in asphaltum and surrounded by a wooden
box. Mr. Insull says: "The system employed was naturally the two-wire,
as at that time the three-wire had not been thought of. The lamps
were partly of the horseshoe filament paper-carbon type, and partly
bamboo-filament lamps, and were of an efficiency of 95 to 100 watts per
16 c.p. I can never forget the impression that this first view of the
electric-lighting industry produced on me. Menlo Park must always be
looked upon as the birthplace of the electric light and power industry.
At that time it was the only place where could be seen an electric
light and power multiple arc distribution system, the operation of which
seemed as successful to my youthful mind as the operation of one of the
large metropolitan systems to-day. I well remember about ten o'clock
that night going down to the Menlo Park depot and getting the station
agent, who was also the telegraph operator, to send some cable messages
for me to my London friends, announcing that I had seen Edison's
incandescent lighting system in actual operation, and that so far as I
could tell it was an accomplished fact. A few weeks afterward I received
a letter from one of my London friends, who was a doubting Thomas,
upbraiding me for coming so soon under the spell of the 'Yankee
inventor.'"

It was to confront and deal with just this element of doubt in London
and in Europe generally, that the dispatch of Johnson to England and of
Batchelor to France was intended. Throughout the Edison staff there
was a mingled feeling of pride in the work, resentment at the doubts
expressed about it, and keen desire to show how excellent it was.
Batchelor left for Paris in July, 1881--on his second trip to Europe
that year--and the exhibit was made which brought such an instantaneous
recognition of the incalculable value of Edison's lighting inventions,
as evidenced by the awards and rewards immediately bestowed upon him. He
was made an officer of the Legion of Honor, and Prof. George F. Barker
cabled as follows from Paris, announcing the decision of the expert jury
which passed upon the exhibits: "Accept my congratulations. You have
distanced all competitors and obtained a diploma of honor, the highest
award given in the Exposition. No person in any class in which you were
an exhibitor received a like reward."

Nor was this all. Eminent men in science who had previously expressed
their disbelief in the statements made as to the Edison system were now
foremost in generous praise of his notable achievements, and accorded
him full credit for its completion. A typical instance was M. Du Moncel,
a distinguished electrician, who had written cynically about Edison's
work and denied its practicability. He now recanted publicly in this
language, which in itself shows the state of the art when Edison came
to the front: "All these experiments achieved but moderate success, and
when, in 1879, the new Edison incandescent carbon lamp was announced,
many of the scientists, and I, particularly, doubted the accuracy of
the reports which came from America. This horseshoe of carbonized
paper seemed incapable to resist mechanical shocks and to maintain
incandescence for any considerable length of time. Nevertheless, Mr.
Edison was not discouraged, and despite the active opposition made to
his lamp, despite the polemic acerbity of which he was the object, he
did not cease to perfect it; and he succeeded in producing the lamps
which we now behold exhibited at the Exposition, and are admired by all
for their perfect steadiness."

The competitive lamps exhibited and tested at this time comprised those
of Edison, Maxim, Swan, and Lane-Fox. The demonstration of Edison's
success stimulated the faith of his French supporters, and rendered
easier the completion of plans for the Societe Edison Continental, of
Paris, formed to operate the Edison patents on the Continent of Europe.
Mr. Batchelor, with Messrs. Acheson and Hipple, and one or two other
assistants, at the close of the Exposition transferred their energies
to the construction and equipment of machine-shops and lamp factories
at Ivry-sur-Seine for the company, and in a very short time the
installation of plants began in various countries--France, Italy,
Holland, Belgium, etc.

All through 1881 Johnson was very busy, for his part, in England. The
first "Jumbo" Edison dynamo had gone to Paris; the second and third
went to London, where they were installed in 1881 by Mr. Johnson and his
assistant, Mr. W. J. Hammer, in the three-thousand-light central station
on Holborn Viaduct, the plant going into operation on January 12,
1882. Outside of Menlo Park this was the first regular station for
incandescent lighting in the world, as the Pearl Street station in New
York did not go into operation until September of the same year. This
historic plant was hurriedly thrown together on Crown land, and would
doubtless have been the nucleus of a great system but for the passage of
the English electric lighting act of 1882, which at once throttled the
industry by its absurd restrictive provisions, and which, though
greatly modified, has left England ever since in a condition of serious
inferiority as to development in electric light and power. The streets
and bridges of Holborn Viaduct were lighted by lamps turned on and
off from the station, as well as the famous City Temple of Dr. Joseph
Parker, the first church in the world to be lighted by incandescent
lamps--indeed, so far as can be ascertained, the first church to be
illuminated by electricity in any form. Mr. W. J. Hammer, who supplies
some very interesting notes on the installation, says: "I well remember
the astonishment of Doctor Parker and his associates when they noted the
difference of temperature as compared with gas. I was informed that the
people would not go in the gallery in warm weather, owing to the great
heat caused by the many gas jets, whereas on the introduction of the
incandescent lamp there was no complaint." The telegraph operating-room
of the General Post-Office, at St. Martin's-Le Grand and Newgate Street
nearby, was supplied with four hundred lamps through the instrumentality
of Mr. (Sir) W. H. Preece, who, having been seriously sceptical as to
Mr. Edison's results, became one of his most ardent advocates, and did
much to facilitate the introduction of the light. This station supplied
its customers by a network of feeders and mains of the standard
underground two-wire Edison tubing-conductors in sections of iron
pipe--such as was used subsequently in New York, Milan, and other
cities. It also had a measuring system for the current, employing the
Edison electrolytic meter. Arc lamps were operated from its circuits,
and one of the first sets of practicable storage batteries was used
experimentally at the station. In connection with these batteries
Mr. Hammer tells a characteristic anecdote of Edison: "A careless boy
passing through the station whistling a tune and swinging carelessly a
hammer in his hand, rapped a carboy of sulphuric acid which happened to
be on the floor above a 'Jumbo' dynamo. The blow broke the glass carboy,
and the acid ran down upon the field magnets of the dynamo, destroying
the windings of one of the twelve magnets. This accident happened while
I was taking a vacation in Germany, and a prominent scientific man
connected with the company cabled Mr. Edison to know whether the machine
would work if the coil was cut out. Mr. Edison sent the laconic reply:
'Why doesn't he try it and see?' Mr. E. H. Johnson was kept busy not
only with the cares and responsibilities of this pioneer English
plant, but by negotiations as to company formations, hearings before
Parliamentary committees, and particularly by distinguished visitors,
including all the foremost scientific men in England, and a great
many well-known members of the peerage. Edison was fortunate in being
represented by a man with so much address, intimate knowledge of the
subject, and powers of explanation. As one of the leading English papers
said at the time, with equal humor and truth: 'There is but one Edison,
and Johnson is his prophet.'"

As the plant continued in operation, various details and ideas of
improvement emerged, and Mr. Hammer says: "Up to the time of the
construction of this plant it had been customary to place a single-pole
switch on one wire and a safety fuse on the other; and the practice of
putting fuses on both sides of a lighting circuit was first used here.
Some of the first, if not the very first, of the insulated fixtures were
used in this plant, and many of the fixtures were equipped with ball
insulating joints, enabling the chandeliers--or 'electroliers'--to be
turned around, as was common with the gas chandeliers. This particular
device was invented by Mr. John B. Verity, whose firm built many of
the fixtures for the Edison Company, and constructed the notable
electroliers shown at the Crystal Palace Exposition of 1882."

We have made a swift survey of developments from the time when the
system of lighting was ready for use, and when the staff scattered to
introduce it. It will be readily understood that Edison did not sit
with folded hands or drop into complacent satisfaction the moment he
had reached the practical stage of commercial exploitation. He was not
willing to say "Let us rest and be thankful," as was one of England's
great Liberal leaders after a long period of reform. On the contrary, he
was never more active than immediately after the work we have summed
up at the beginning of this chapter. While he had been pursuing his
investigations of the generator in conjunction with the experiments
on the incandescent lamp, he gave much thought to the question of
distribution of the current over large areas, revolving in his mind
various plans for the accomplishment of this purpose, and keeping his
mathematicians very busy working on the various schemes that suggested
themselves from time to time. The idea of a complete system had been in
his mind in broad outline for a long time, but did not crystallize into
commercial form until the incandescent lamp was an accomplished fact.
Thus in January, 1880, his first patent application for a "System of
Electrical Distribution" was signed. It was filed in the Patent Office a
few days later, but was not issued as a patent until August 30, 1887. It
covered, fundamentally, multiple arc distribution, how broadly will
be understood from the following extracts from the New York Electrical
Review of September 10, 1887: "It would appear as if the entire field
of multiple distribution were now in the hands of the owners of this
patent.... The patent is about as broad as a patent can be, being
regardless of specific devices, and laying a powerful grasp on the
fundamental idea of multiple distribution from a number of generators
throughout a metallic circuit."

Mr. Edison made a number of other applications for patents on electrical
distribution during the year 1880. Among these was the one covering the
celebrated "Feeder" invention, which has been of very great commercial
importance in the art, its object being to obviate the "drop" in
pressure, rendering lights dim in those portions of an electric-light
system that were remote from the central station. [10]

     [Footnote 10: For further explanation of "Feeder" patent,
     see Appendix.]

From these two patents alone, which were absolutely basic and
fundamental in effect, and both of which were, and still are, put into
actual use wherever central-station lighting is practiced, the reader
will see that Mr. Edison's patient and thorough study, aided by his keen
foresight and unerring judgment, had enabled him to grasp in advance
with a master hand the chief and underlying principles of a true
system--that system which has since been put into practical use all over
the world, and whose elements do not need the touch or change of more
modern scientific knowledge.

These patents were not by any means all that he applied for in the
year 1880, which it will be remembered was the year in which he was
perfecting the incandescent electric lamp and methods, to put into the
market for competition with gas. It was an extraordinarily busy year for
Mr. Edison and his whole force, which from time to time was increased
in number. Improvement upon improvement was the order of the day. That
which was considered good to-day was superseded by something better and
more serviceable to-morrow. Device after device, relating to some
part of the entire system, was designed, built, and tried, only to
be rejected ruthlessly as being unsuitable; but the pursuit was not
abandoned. It was renewed over and over again in innumerable ways until
success had been attained.

During the year 1880 Edison had made application for sixty patents, of
which thirty-two were in relation to incandescent lamps; seven covered
inventions relating to distributing systems (including the two above
particularized); five had reference to inventions of parts, such
as motors, sockets, etc.; six covered inventions relating to
dynamo-electric machines; three related to electric railways, and seven
to miscellaneous apparatus, such as telegraph relays, magnetic ore
separators, magneto signalling apparatus, etc.

The list of Mr. Edison's patents (see Appendices) is not only a monument
to his life's work, but serves to show what subjects he has worked on
from year to year since 1868. The reader will see from an examination
of this list that the years 1880, 1881, 1882, and 1883 were the most
prolific periods of invention. It is worth while to scrutinize this list
closely to appreciate the wide range of his activities. Not that his
patents cover his entire range of work by any means, for his note-books
reveal a great number of major and minor inventions for which he has
not seen fit to take out patents. Moreover, at the period now described
Edison was the victim of a dishonest patent solicitor, who deprived him
of a number of patents in the following manner:

"Around 1881-82 I had several solicitors attending to different classes
of work. One of these did me a most serious injury. It was during
the time that I was developing my electric-lighting system, and I was
working and thinking very hard in order to cover all the numerous parts,
in order that it would be complete in every detail. I filed a great many
applications for patents at that time, but there were seventy-eight of
the inventions I made in that period that were entirely lost to me
and my company by reason of the dishonesty of this patent solicitor.
Specifications had been drawn, and I had signed and sworn to the
application for patents for these seventy-eight inventions, and
naturally I supposed they had been filed in the regular way.

"As time passed I was looking for some action of the Patent Office, as
usual, but none came. I thought it very strange, but had no suspicions
until I began to see my inventions recorded in the Patent Office Gazette
as being patented by others. Of course I ordered an investigation, and
found that the patent solicitor had drawn from the company the fees for
filing all these applications, but had never filed them. All the papers
had disappeared, however, and what he had evidently done was to sell
them to others, who had signed new applications and proceeded to take
out patents themselves on my inventions. I afterward found that he
had been previously mixed up with a somewhat similar crooked job in
connection with telephone patents.

"I am free to confess that the loss of these seventy-eight inventions
has left a sore spot in me that has never healed. They were important,
useful, and valuable, and represented a whole lot of tremendous work
and mental effort, and I had had a feeling of pride in having overcome
through them a great many serious obstacles, One of these inventions
covered the multipolar dynamo. It was an elaborated form of the type
covered by my patent No. 219,393 which had a ring armature. I modified
and improved on this form and had a number of pole pieces placed all
around the ring, with a modified form of armature winding. I built
one of these machines and ran it successfully in our early days at the
Goerck Street shop.

"It is of no practical use to mention the man's name. I believe he is
dead, but he may have left a family. The occurrence is a matter of the
old Edison Company's records."

It will be seen from an examination of the list of patents in the
Appendix that Mr. Edison has continued year after year adding to
his contributions to the art of electric lighting, and in the last
twenty-eight years--1880-1908--has taken out no fewer than three hundred
and seventy-five patents in this branch of industry alone. These patents
may be roughly tabulated as follows:

  Incandescent lamps and their manufacture....................149
  Distributing systems and their control and regulation....... 77
  Dynamo-electric machines and accessories....................106
  Minor parts, such as sockets, switches, safety catches,
  meters, underground conductors and parts, etc............... 43

Quite naturally most of these patents cover inventions that are in
the nature of improvements or based upon devices which he had already
created; but there are a number that relate to inventions absolutely
fundamental and original in their nature. Some of these have already
been alluded to; but among the others there is one which is worthy
of special mention in connection with the present consideration of a
complete system. This is patent No. 274,290, applied for November 27,
1882, and is known as the "Three-wire" patent. It is described more
fully in the Appendix.

The great importance of the "Feeder" and "Three-wire" inventions will be
apparent when it is realized that without them it is a question whether
electric light could be sold to compete with low-priced gas, on account
of the large investment in conductors that would be necessary. If a
large city area were to be lighted from a central station by means
of copper conductors running directly therefrom to all parts of the
district, it would be necessary to install large conductors, or suffer
such a drop of pressure at the ends most remote from the station as
to cause the lights there to burn with a noticeable diminution of
candle-power. The Feeder invention overcame this trouble, and made it
possible to use conductors ONLY ONE-EIGHTH THE SIZE that would otherwise
have been necessary to produce the same results.

A still further economy in cost of conductors was effected by the
"Three-wire" invention, by the use of which the already diminished
conductors could be still further reduced TO ONE-THIRD of this smaller
size, and at the same time allow of the successful operation of the
station with far better results than if it were operated exactly as at
first conceived. The Feeder and Three-wire systems are at this day used
in all parts of the world, not only in central-station work, but in the
installation and operation of isolated electric-light plants in
large buildings. No sensible or efficient station manager or electric
contractor would ever think of an installation made upon any other plan.
Thus Mr. Edison's early conceptions of the necessities of a complete
system, one of them made even in advance of practice, have stood firm,
unimproved, and unchanged during the past twenty-eight years, a period
of time which has witnessed more wonderful and rapid progress in
electrical science and art than has been known during any similar art or
period of time since the world began.

It must be remembered that the complete system in all its parts is not
comprised in the few of Mr. Edison's patents, of which specific mention
is here made. In order to comprehend the magnitude and extent of his
work and the quality of his genius, it is necessary to examine minutely
the list of patents issued for the various elements which go to make up
such a system. To attempt any relation in detail of the conception and
working-out of each part or element; to enter into any description of
the almost innumerable experiments and investigations that were
made would entail the writing of several volumes, for Mr. Edison's
close-written note-books covering these subjects number nearly two
hundred.

It is believed that enough evidence has been given in this chapter
to lead to an appreciation of the assiduous work and practical skill
involved in "inventing a system" of lighting that would surpass, and to
a great extent, in one single quarter of a century, supersede all the
other methods of illumination developed during long centuries. But it
will be appropriate before passing on to note that on January 17, 1908,
while this biography was being written, Mr. Edison became the fourth
recipient of the John Fritz gold medal for achievement in industrial
progress. This medal was founded in 1902 by the professional friends
and associates of the veteran American ironmaster and metallurgical
inventor, in honor of his eightieth birthday. Awards are made by a board
of sixteen engineers appointed in equal numbers from the four great
national engineering societies--the American Society of Civil
Engineers, the American Institute of Mining Engineers, the American
Society of Mechanical Engineers, and the American Institute of
Electrical Engineers, whose membership embraces the very pick and flower
of professional engineering talent in America. Up to the time of the
Edison award, three others had been made. The first was to Lord Kelvin,
the Nestor of physics in Europe, for his work in submarine-cable
telegraphy and other scientific achievement. The second was to George
Westinghouse for the air-brake. The third was to Alexander Graham Bell
for the invention and introduction of the telephone. The award to Edison
was not only for his inventions in duplex and quadruplex telegraphy, and
for the phonograph, but for the development of a commercially practical
incandescent lamp, and the development of a complete system of electric
lighting, including dynamos, regulating devices, underground system,
protective devices, and meters. Great as has been the genius brought
to bear on electrical development, there is no other man to whom such a
comprehensive tribute could be paid.



CHAPTER XV

INTRODUCTION OF THE EDISON ELECTRIC LIGHT

IN the previous chapter on the invention of a system, the narrative has
been carried along for several years of activity up to the verge of the
successful and commercial application of Edison's ideas and devices
for incandescent electric lighting. The story of any one year in this
period, if treated chronologically, would branch off in a great many
different directions, some going back to earlier work, others forward to
arts not yet within the general survey; and the effect of such treatment
would be confusing. In like manner the development of the Edison
lighting system followed several concurrent, simultaneous lines of
advance; and an effort was therefore made in the last chapter to give
a rapid glance over the whole movement, embracing a term of nearly five
years, and including in its scope both the Old World and the New. What
is necessary to the completeness of the story at this stage is not to
recapitulate, but to take up some of the loose ends of threads woven
in and follow them through until the clear and comprehensive picture of
events can be seen.

Some things it would be difficult to reproduce in any picture of the art
and the times. One of the greatest delusions of the public in regard
to any notable invention is the belief that the world is waiting for it
with open arms and an eager welcome. The exact contrary is the truth.
There is not a single new art or device the world has ever enjoyed of
which it can be said that it was given an immediate and enthusiastic
reception. The way of the inventor is hard. He can sometimes raise
capital to help him in working out his crude conceptions, but even then
it is frequently done at a distressful cost of personal surrender. When
the result is achieved the invention makes its appeal on the score of
economy of material or of effort; and then "labor" often awaits with
crushing and tyrannical spirit to smash the apparatus or forbid its very
use. Where both capital and labor are agreed that the object is worthy
of encouragement, there is the supreme indifference of the public to
overcome, and the stubborn resistance of pre-existing devices to combat.
The years of hardship and struggle are thus prolonged, the chagrin
of poverty and neglect too frequently embitters the inventor's scanty
bread; and one great spirit after another has succumbed to the defeat
beyond which lay the procrastinated triumph so dearly earned. Even in
America, where the adoption of improvements and innovations is regarded
as so prompt and sure, and where the huge tolls of the Patent Office and
the courts bear witness to the ceaseless efforts of the inventor, it is
impossible to deny the sad truth that unconsciously society discourages
invention rather than invites it. Possibly our national optimism as
revealed in invention--the seeking a higher good--needs some check.
Possibly the leaders would travel too fast and too far on the road
to perfection if conservatism did not also play its salutary part in
insisting that the procession move forward as a whole.

Edison and his electric light were happily more fortunate than other men
and inventions, in the relative cordiality of the reception given them.
The merit was too obvious to remain unrecognized. Nevertheless, it was
through intense hostility and opposition that the young art made its
way, pushed forward by Edison's own strong personality and by his
unbounded, unwavering faith in the ultimate success of his system. It
may seem strange that great effort was required to introduce a light so
manifestly convenient, safe, agreeable, and advantageous, but the
facts are matter of record; and to-day the recollection of some of the
episodes brings a fierce glitter into the eye and keen indignation into
the voice of the man who has come so victoriously through it all.

It was not a fact at any time that the public was opposed to the idea of
the electric light. On the contrary, the conditions for its acceptance
had been ripening fast. Yet the very vogue of the electric arc light
made harder the arrival of the incandescent. As a new illuminant for the
streets, the arc had become familiar, either as a direct substitute
for the low gas lamp along the sidewalk curb, or as a novel form of
moonlight, raised in groups at the top of lofty towers often a hundred
and fifty feet high. Some of these lights were already in use for large
indoor spaces, although the size of the unit, the deadly pressure of
the current, and the sputtering sparks from the carbons made them
highly objectionable for such purposes. A number of parent arc-lighting
companies were in existence, and a great many local companies had
been called into being under franchises for commercial business and to
execute regular city contracts for street lighting. In this manner a
good deal of capital and the energies of many prominent men in politics
and business had been rallied distinctively to the support of arc
lighting. Under the inventive leadership of such brilliant men as Brush,
Thomson, Weston, and Van Depoele--there were scores of others--the
industry had made considerable progress and the art had been firmly
established. Here lurked, however, very vigorous elements of opposition,
for Edison predicted from the start the superiority of the small
electric unit of light, and devoted himself exclusively to its
perfection and introduction. It can be readily seen that this situation
made it all the more difficult for the Edison system to secure the large
sums of money needed for its exploitation, and to obtain new franchises
or city ordinances as a public utility. Thus in a curious manner the
modern art of electric lighting was in a very true sense divided against
itself, with intense rivalries and jealousies which were none the less
real because they were but temporary and occurred in a field where
ultimate union of forces was inevitable. For a long period the arc
was dominant and supreme in the lighting branch of the electrical
industries, in all respects, whether as to investment, employees,
income, and profits, or in respect to the manufacturing side. When
the great National Electric Light Association was formed in 1885, its
organizers were the captains of arc lighting, and not a single Edison
company or licensee could be found in its ranks, or dared to solicit
membership. The Edison companies, soon numbering about three hundred,
formed their own association--still maintained as a separate and useful
body--and the lines were tensely drawn in a way that made it none too
easy for the Edison service to advance, or for an impartial man
to remain friendly with both sides. But the growing popularity of
incandescent lighting, the flexibility and safety of the system, the
ease with which other electric devices for heat, power, etc., could be
put indiscriminately on the same circuits with the lamps, in due course
rendered the old attitude of opposition obviously foolish and untenable.
The United States Census Office statistics of 1902 show that the income
from incandescent lighting by central stations had by that time become
over 52 per cent. of the total, while that from arc lighting was less
than 29; and electric-power service due to the ease with which motors
could be introduced on incandescent circuits brought in 15 per
cent. more. Hence twenty years after the first Edison stations were
established the methods they involved could be fairly credited with no
less than 67 per cent. of all central-station income in the country, and
the proportion has grown since then. It will be readily understood
that under these conditions the modern lighting company supplies to its
customers both incandescent and arc lighting, frequently from the same
dynamo-electric machinery as a source of current; and that the old feud
as between the rival systems has died out. In fact, for some years past
the presidents of the National Electric Light Association have been
chosen almost exclusively from among the managers of the great Edison
lighting companies in the leading cities.

The other strong opposition to the incandescent light came from the gas
industry. There also the most bitter feeling was shown. The gas manager
did not like the arc light, but it interfered only with his street
service, which was not his largest source of income by any means. What
did arouse his ire and indignation was to find this new opponent, the
little incandescent lamp, pushing boldly into the field of interior
lighting, claiming it on a great variety of grounds of superiority, and
calmly ignoring the question of price, because it was so much better.
Newspaper records and the pages of the technical papers of the day
show to what an extent prejudice and passion were stirred up and the
astounding degree to which the opposition to the new light was carried.

Here again was given a most convincing demonstration of the truth that
such an addition to the resources of mankind always carries with it
unsuspected benefits even for its enemies. In two distinct directions
the gas art was immediately helped by Edison's work. The competition was
most salutary in the stimulus it gave to improvements in processes for
making, distributing, and using gas, so that while vast economies have
been effected at the gas works, the customer has had an infinitely
better light for less money. In the second place, the coming of the
incandescent light raised the standard of illumination in such a manner
that more gas than ever was wanted in order to satisfy the popular
demand for brightness and brilliancy both indoors and on the street. The
result of the operation of these two forces acting upon it wholly from
without, and from a rival it was desired to crush, has been to increase
enormously the production and use of gas in the last twenty-five
years. It is true that the income of the central stations is now over
$300,000,000 a year, and that isolated-plant lighting represents also a
large amount of diverted business; but as just shown, it would obviously
be unfair to regard all this as a loss from the standpoint of gas. It is
in great measure due to new sources of income developed by electricity
for itself.

A retrospective survey shows that had the men in control of the American
gas-lighting art, in 1880, been sufficiently far-sighted, and had they
taken a broader view of the situation, they might easily have remained
dominant in the whole field of artificial lighting by securing the
ownership of the patents and devices of the new industry. Apparently not
a single step of that kind was undertaken, nor probably was there a gas
manager who would have agreed with Edison in the opinion written down
by him at the time in little note-book No. 184, that gas properties were
having conferred on them an enhanced earning capacity. It was doubtless
fortunate and providential for the electric-lighting art that in its
state of immature development it did not fall into the hands of men
who were opposed to its growth, and would not have sought its technical
perfection. It was allowed to carve out its own career, and thus escaped
the fate that is supposed to have attended other great inventions--of
being bought up merely for purposes of suppression. There is a vague
popular notion that this happens to the public loss; but the truth is
that no discovery of any real value is ever entirely lost. It may be
retarded; but that is all. In the case of the gas companies and the
incandescent light, many of them to whom it was in the early days as
great an irritant as a red flag to a bull, emulated the performance of
that animal and spent a great deal of money and energy in bellowing and
throwing up dirt in the effort to destroy the hated enemy. This was not
long nor universally the spirit shown; and to-day in hundreds of cities
the electric and gas properties are united under the one management,
which does not find it impossible to push in a friendly and progressive
way the use of both illuminants. The most conspicuous example of this
identity of interest is given in New York itself.

So much for the early opposition, of which there was plenty. But it may
be questioned whether inertia is not equally to be dreaded with active
ill-will. Nothing is more difficult in the world than to get a good many
hundreds of thousands or millions of people to do something they have
never done before. A very real difficulty in the introduction of his
lamp and lighting system by Edison lay in the absolute ignorance of
the public at large, not only as to its merits, but as to the very
appearance of the light, Some few thousand people had gone out to Menlo
Park, and had there seen the lamps in operation at the laboratory or
on the hillsides, but they were an insignificant proportion of the
inhabitants of the United States. Of course, a great many accounts
were written and read, but while genuine interest was aroused it was
necessarily apathetic. A newspaper description or a magazine article
may be admirably complete in itself, with illustrations, but until some
personal experience is had of the thing described it does not convey
a perfect mental picture, nor can it always make the desire active and
insistent. Generally, people wait to have the new thing brought to them;
and hence, as in the case of the Edison light, an educational campaign
of a practical nature is a fundamental condition of success.

Another serious difficulty confronting Edison and his associates
was that nowhere in the world were there to be purchased any of the
appliances necessary for the use of the lighting system. Edison had
resolved from the very first that the initial central station embodying
his various ideas should be installed in New York City, where he could
superintend the installation personally, and then watch the operation.
Plans to that end were now rapidly maturing; but there would be needed
among many other things--every one of them new and novel--dynamos,
switchboards, regulators, pressure and current indicators, fixtures
in great variety, incandescent lamps, meters, sockets, small switches,
underground conductors, junction-boxes, service-boxes, manhole-boxes,
connectors, and even specially made wire. Now, not one of these
miscellaneous things was in existence; not an outsider was sufficiently
informed about such devices to make them on order, except perhaps the
special wire. Edison therefore started first of all a lamp factory in
one of the buildings at Menlo Park, equipped it with novel machinery and
apparatus, and began to instruct men, boys, and girls, as they could be
enlisted, in the absolutely new art, putting Mr. Upton in charge.

With regard to the conditions attendant upon the manufacture of the
lamps, Edison says: "When we first started the electric light we had to
have a factory for manufacturing lamps. As the Edison Light Company
did not seem disposed to go into manufacturing, we started a small
lamp factory at Menlo Park with what money I could raise from my other
inventions and royalties, and some assistance. The lamps at that time
were costing about $1.25 each to make, so I said to the company: 'If you
will give me a contract during the life of the patents, I will make all
the lamps required by the company and deliver them for forty cents.' The
company jumped at the chance of this offer, and a contract was drawn
up. We then bought at a receiver's sale at Harrison, New Jersey, a very
large brick factory building which had been used as an oil-cloth works.
We got it at a great bargain, and only paid a small sum down, and
the balance on mortgage. We moved the lamp works from Menlo Park to
Harrison. The first year the lamps cost us about $1.10 each. We sold
them for forty cents; but there were only about twenty or thirty
thousand of them. The next year they cost us about seventy cents, and we
sold them for forty. There were a good many, and we lost more money the
second year than the first. The third year I succeeded in getting up
machinery and in changing the processes, until it got down so that they
cost somewhere around fifty cents. I still sold them for forty cents,
and lost more money that year than any other, because the sales were
increasing rapidly. The fourth year I got it down to thirty-seven cents,
and I made all the money up in one year that I had lost previously. I
finally got it down to twenty-two cents, and sold them for forty cents;
and they were made by the million. Whereupon the Wall Street people
thought it was a very lucrative business, so they concluded they would
like to have it, and bought us out.

"One of the incidents which caused a very great cheapening was that,
when we started, one of the important processes had to be done by
experts. This was the sealing on of the part carrying the filament into
the globe, which was rather a delicate operation in those days, and
required several months of training before any one could seal in a fair
number of parts in a day. When we got to the point where we employed
eighty of these experts they formed a union; and knowing it was
impossible to manufacture lamps without them, they became very insolent.
One instance was that the son of one of these experts was employed in
the office, and when he was told to do anything would not do it, or
would give an insolent reply. He was discharged, whereupon the union
notified us that unless the boy was taken back the whole body would go
out. It got so bad that the manager came to me and said he could not
stand it any longer; something had got to be done. They were not only
more surly; they were diminishing the output, and it became impossible
to manage the works. He got me enthused on the subject, so I started in
to see if it were not possible to do that operation by machinery. After
feeling around for some days I got a clew how to do it. I then put men
on it I could trust, and made the preliminary machinery. That seemed to
work pretty well. I then made another machine which did the work nicely.
I then made a third machine, and would bring in yard men, ordinary
laborers, etc., and when I could get these men to put the parts together
as well as the trained experts, in an hour, I considered the machine
complete. I then went secretly to work and made thirty of the machines.
Up in the top loft of the factory we stored those machines, and at night
we put up the benches and got everything all ready. Then we discharged
the office-boy. Then the union went out. It has been out ever since.

"When we formed the works at Harrison we divided the interests into one
hundred shares or parts at $100 par. One of the boys was hard up after
a time, and sold two shares to Bob Cutting. Up to that time we had never
paid anything; but we got around to the point where the board declared
a dividend every Saturday night. We had never declared a dividend when
Cutting bought his shares, and after getting his dividends for three
weeks in succession, he called up on the telephone and wanted to know
what kind of a concern this was that paid a weekly dividend. The works
sold for $1,085,000."

Incidentally it may be noted, as illustrative of the problems brought
to Edison, that while he had the factory at Harrison an importer in the
Chinese trade went to him and wanted a dynamo to be run by hand power.
The importer explained that in China human labor was cheaper than steam
power. Edison devised a machine to answer the purpose, and put long
spokes on it, fitted it up, and shipped it to China. He has not,
however, heard of it since.

For making the dynamos Edison secured, as noted in the preceding
chapter, the Roach Iron Works on Goerck Street, New York, and this
was also equipped. A building was rented on Washington Street, where
machinery and tools were put in specially designed for making the
underground tube conductors and their various paraphernalia; and the
faithful John Kruesi was given charge of that branch of production. To
Sigmund Bergmann, who had worked previously with Edison on telephone
apparatus and phonographs, and was already making Edison specialties in
a small way in a loft on Wooster Street, New York, was assigned the task
of constructing sockets, fixtures, meters, safety fuses, and numerous
other details.

Thus, broadly, the manufacturing end of the problem of introduction was
cared for. In the early part of 1881 the Edison Electric Light Company
leased the old Bishop mansion at 65 Fifth Avenue, close to Fourteenth
Street, for its headquarters and show-rooms. This was one of the finest
homes in the city of that period, and its acquisition was a premonitory
sign of the surrender of the famous residential avenue to commerce. The
company needed not only offices, but, even more, such an interior as
would display to advantage the new light in everyday use; and this house
with its liberal lines, spacious halls, lofty ceilings, wide parlors,
and graceful, winding stairway was ideal for the purpose. In fact, in
undergoing this violent change, it did not cease to be a home in the
real sense, for to this day many an Edison veteran's pulse is quickened
by some chance reference to "65," where through many years the work of
development by a loyal and devoted band of workers was centred. Here
Edison and a few of his assistants from Menlo Park installed immediately
in the basement a small generating plant, at first with a gas-engine
which was not successful, and then with a Hampson high-speed engine and
boiler, constituting a complete isolated plant. The building was wired
from top to bottom, and equipped with all the appliances of the art. The
experience with the little gas-engine was rather startling. "At an early
period at '65' we decided," says Edison, "to light it up with the Edison
system, and put a gas-engine in the cellar, using city gas. One day it
was not going very well, and I went down to the man in charge and got
exploring around. Finally I opened the pedestal--a storehouse for tools,
etc. We had an open lamp, and when we opened the pedestal, it blew the
doors off, and blew out the windows, and knocked me down, and the other
man."

For the next four or five years "65" was a veritable beehive, day and
night. The routine was very much the same as that at the laboratory, in
its utter neglect of the clock. The evenings were not only devoted to
the continuance of regular business, but the house was thrown open to
the public until late at night, never closing before ten o'clock, so as
to give everybody who wished an opportunity to see that great novelty
of the time--the incandescent light--whose fame had meanwhile been
spreading all over the globe. The first year, 1881, was naturally that
which witnessed the greatest rush of visitors; and the building hardly
ever closed its doors till midnight. During the day business was carried
on under great stress, and Mr. Insull has described how Edison was to
be found there trying to lead the life of a man of affairs in the
conventional garb of polite society, instead of pursuing inventions and
researches in his laboratory. But the disagreeable ordeal could not be
dodged. After the experience Edison could never again be tempted to quit
his laboratory and work for any length of time; but in this instance
there were some advantages attached to the sacrifice, for the crowds of
lion-hunters and people seeking business arrangements would only have
gone out to Menlo Park; while, on the other hand, the great plans for
lighting New York demanded very close personal attention on the spot.

As it was, not only Edison, but all the company's directors, officers,
and employees, were kept busy exhibiting and explaining the light. To
the public of that day, when the highest known form of house illuminant
was gas, the incandescent lamp, with its ability to burn in any
position, its lack of heat so that you could put your hand on the
brilliant glass globe; the absence of any vitiating effect on the
atmosphere, the obvious safety from fire; the curious fact that you
needed no matches to light it, and that it was under absolute control
from a distance--these and many other features came as a distinct
revelation and marvel, while promising so much additional comfort,
convenience, and beauty in the home, that inspection was almost
invariably followed by a request for installation.

The camaraderie that existed at this time was very democratic, for all
were workers in a common cause; all were enthusiastic believers in the
doctrine they proclaimed, and hoped to profit by the opening up of
the new art. Often at night, in the small hours, all would adjourn for
refreshments to a famous resort nearby, to discuss the events of to-day
and to-morrow, full of incident and excitement. The easy relationship of
the time is neatly sketched by Edison in a humorous complaint as to his
inability to keep his own cigars: "When at '65' I used to have in my
desk a box of cigars. I would go to the box four or five times to get a
cigar, but after it got circulated about the building, everybody would
come to get my cigars, so that the box would only last about a day and
a half. I was telling a gentleman one day that I could not keep a
cigar. Even if I locked them up in my desk they would break it open. He
suggested to me that he had a friend over on Eighth Avenue who made a
superior grade of cigars, and who would show them a trick. He said he
would have some of them made up with hair and old paper, and I could put
them in without a word and see the result. I thought no more about the
matter. He came in two or three months after, and said: 'How did that
cigar business work?' I didn't remember anything about it. On coming to
investigate, it appeared that the box of cigars had been delivered and
had been put in my desk, and I had smoked them all! I was too busy on
other things to notice."

It was no uncommon sight to see in the parlors in the evening John
Pierpont Morgan, Norvin Green, Grosvenor P. Lowrey, Henry Villard,
Robert L. Cutting, Edward D. Adams, J. Hood Wright, E. G. Fabbri, R.
M. Galloway, and other men prominent in city life, many of them
stock-holders and directors; all interested in doing this educational
work. Thousands of persons thus came--bankers, brokers, lawyers,
editors, and reporters, prominent business men, electricians, insurance
experts, under whose searching and intelligent inquiries the facts were
elicited, and general admiration was soon won for the system, which in
advance had solved so many new problems. Edison himself was in universal
request and the subject of much adulation, but altogether too busy and
modest to be spoiled by it. Once in a while he felt it his duty to go
over the ground with scientific visitors, many of whom were from abroad,
and discuss questions which were not simply those of technique, but
related to newer phenomena, such as the action of carbon, the nature
and effects of high vacua; the principles of electrical subdivision; the
value of insulation, and many others which, unfortunate to say, remain
as esoteric now as they were then, ever fruitful themes of controversy.

Speaking of those days or nights, Edison says: "Years ago one of the
great violinists was Remenyi. After his performances were over he used
to come down to '65' and talk economics, philosophy, moral science, and
everything else. He was highly educated and had great mental capacity.
He would talk with me, but I never asked him to bring his violin. One
night he came with his violin, about twelve o'clock. I had a library
at the top of the house, and Remenyi came up there. He was in a genial
humor, and played the violin for me for about two hours--$2000 worth.
The front doors were closed, and he walked up and down the room as he
played. After that, every time he came to New York he used to call at
'65' late at night with his violin. If we were not there, he could come
down to the slums at Goerck Street, and would play for an hour or two
and talk philosophy. I would talk for the benefit of his music. Henry E.
Dixey, then at the height of his 'Adonis' popularity, would come in
in those days, after theatre hours, and would entertain us with
stories--1882-84. Another visitor who used to give us a good deal of
amusement and pleasure was Captain Shaw, the head of the London Fire
Brigade. He was good company. He would go out among the fire-laddies
and have a great time. One time Robert Lincoln and Anson Stager, of the
Western Union, interested in the electric light, came on to make some
arrangement with Major Eaton, President of the Edison Electric Light
Company. They came to '65' in the afternoon, and Lincoln commenced
telling stories--like his father. They told stories all the afternoon,
and that night they left for Chicago. When they got to Cleveland, it
dawned upon them that they had not done any business, so they had
to come back on the next train to New York to transact it. They were
interested in the Chicago Edison Company, now one of the largest of the
systems in the world. Speaking of telling stories, I once got telling
a man stories at the Harrison lamp factory, in the yard, as he was
leaving. It was winter, and he was all in furs. I had nothing on to
protect me against the cold. I told him one story after the other--six
of them. Then I got pleurisy, and had to be shipped to Florida for
cure."

The organization of the Edison Electric Light Company went back to 1878;
but up to the time of leasing 65 Fifth Avenue it had not been engaged
in actual business. It had merely enjoyed the delights of anxious
anticipation, and the perilous pleasure of backing Edison's experiments.
Now active exploitation was required. Dr. Norvin Green, the well-known
President of the Western Union Telegraph Company, was president also of
the Edison Company, but the pressing nature of his regular duties
left him no leisure for such close responsible management as was now
required. Early in 1881 Mr. Grosvenor P. Lowrey, after consultation with
Mr. Edison, prevailed upon Major S. B. Eaton, the leading member of
a very prominent law firm in New York, to accept the position of
vice-president and general manager of the company, in which, as also in
some of the subsidiary Edison companies, and as president, he continued
actively and energetically for nearly four years, a critical, formative
period in which the solidity of the foundation laid is attested by the
magnitude and splendor of the superstructure.

The fact that Edison conferred at this point with Mr. Lowrey should,
perhaps, be explained in justice to the distinguished lawyer, who for so
many years was the close friend of the inventor, and the chief counsel
in all the tremendous litigation that followed the effort to enforce and
validate the Edison patents. As in England Mr. Edison was fortunate in
securing the legal assistance of Sir Richard Webster, afterward Lord
Chief Justice of England, so in America it counted greatly in his favor
to enjoy the advocacy of such a man as Lowrey, prominent among the
famous leaders of the New York bar. Born in Massachusetts, Mr. Lowrey,
in his earlier days of straitened circumstances, was accustomed to
defray some portion of his educational expenses by teaching music in the
Berkshire villages, and by a curious coincidence one of his pupils
was F. L. Pope, later Edison's partner for a time. Lowrey went West to
"Bleeding Kansas" with the first Governor, Reeder, and both were active
participants in the exciting scenes of the "Free State" war until driven
away in 1856, like many other free-soilers, by the acts of the "Border
Ruffian" legislature. Returning East, Mr. Lowrey took up practice in New
York, soon becoming eminent in his profession, and upon the accession of
William Orton to the presidency of the Western Union Telegraph Company
in 1866, he was appointed its general counsel, the duties of which post
he discharged for fifteen years. One of the great cases in which he
thus took a leading and distinguished part was that of the quadruplex
telegraph; and later he acted as legal adviser to Henry Villard in his
numerous grandiose enterprises. Lowrey thus came to know Edison, to
conceive an intense admiration for him, and to believe in his ability
at a time when others could not detect the fire of genius smouldering
beneath the modest exterior of a gaunt young operator slowly
"finding himself." It will be seen that Mr Lowrey was in a peculiarly
advantageous position to make his convictions about Edison felt, so
that it was he and his friends who rallied quickly to the new banner
of discovery, and lent to the inventor the aid that came at a critical
period. In this connection it may be well to quote an article that
appeared at the time of Mr. Lowrey's death, in 1893: "One of the most
important services which Mr. Lowrey has ever performed was in furnishing
and procuring the necessary financial backing for Thomas A. Edison in
bringing out and perfecting his system of incandescent lighting. With
characteristic pertinacity, Mr. Lowrey stood by the inventor through
thick and thin, in spite of doubt, discouragement, and ridicule, until
at last success crowned his efforts. In all the litigation which has
resulted from the wide-spread infringements of the Edison patents, Mr.
Lowrey has ever borne the burden and heat of the day, and perhaps in
no other field has he so personally distinguished himself as in the
successful advocacy of the claims of Edison to the invention of the
incandescent lamp and everything 'hereunto pertaining.'"

This was the man of whom Edison had necessarily to make a confidant and
adviser, and who supplied other things besides the legal direction and
financial alliance, by his knowledge of the world and of affairs. There
were many vital things to be done in the exploitation of the system that
Edison simply could not and would not do; but in Lowrey's savoir faire,
ready wit and humor, chivalry of devotion, graceful eloquence, and
admirable equipoise of judgment were all the qualities that the occasion
demanded and that met the exigencies.

We are indebted to Mr. Insull for a graphic sketch of Edison at this
period, and of the conditions under which work was done and progress was
made: "I do not think I had any understanding with Edison when I first
went with him as to my duties. I did whatever he told me, and looked
after all kinds of affairs, from buying his clothes to financing his
business. I used to open the correspondence and answer it all, sometimes
signing Edison's name with my initial, and sometimes signing my own
name. If the latter course was pursued, and I was addressing a stranger,
I would sign as Edison's private secretary. I held his power of
attorney, and signed his checks. It was seldom that Edison signed
a letter or check at this time. If he wanted personally to send a
communication to anybody, if it was one of his close associates, it
would probably be a pencil memorandum signed 'Edison.' I was a shorthand
writer, but seldom took down from Edison's dictation, unless it was on
some technical subject that I did not understand. I would go over
the correspondence with Edison, sometimes making a marginal note in
shorthand, and sometimes Edison would make his own notes on letters, and
I would be expected to clean up the correspondence with Edison's laconic
comments as a guide as to the character of answer to make. It was a very
common thing for Edison to write the words 'Yes' or 'No,' and this would
be all I had on which to base my answer. Edison marginalized documents
extensively. He had a wonderful ability in pointing out the weak points
of an agreement or a balance-sheet, all the while protesting he was no
lawyer or accountant; and his views were expressed in very few words,
but in a characteristic and emphatic manner.

"The first few months I was with Edison he spent most of the time in the
office at 65 Fifth Avenue. Then there was a great deal of trouble with
the life of the lamps there, and he disappeared from the office and
spent his time largely at Menlo Park. At another time there was a great
deal of trouble with some of the details of construction of the dynamos,
and Edison spent a lot of time at Goerck Street, which had been rapidly
equipped with the idea of turning out bi-polar dynamo-electric machines,
direct-connected to the engine, the first of which went to Paris and
London, while the next were installed in the old Pearl Street station
of the Edison Electric Illuminating Company of New York, just south of
Fulton Street, on the west side of the street. Edison devoted a great
deal of his time to the engineering work in connection with the laying
out of the first incandescent electric-lighting system in New York.
Apparently at that time--between the end of 1881 and spring of 1882--the
most serious work was the manufacture and installation of underground
conductors in this territory. These conductors were manufactured by
the Electric Tube Company, which Edison controlled in a shop at 65
Washington Street, run by John Kruesi. Half-round copper conductors were
used, kept in place relatively to each other and in the tube, first of
all by a heavy piece of cardboard, and later on by a rope; and then put
in a twenty-foot iron pipe; and a combination of asphaltum and linseed
oil was forced into the pipe for the insulation. I remember as a
coincidence that the building was only twenty feet wide. These lengths
of conductors were twenty feet six inches long, as the half-round
coppers extended three inches beyond the drag-ends of the lengths of
pipe; and in one of the operations we used to take the length of tubing
out of the window in order to turn it around. I was elected secretary of
the Electric Tube Company, and was expected to look after its finance;
and it was in this position that my long intimacy with John Kruesi
started."

At this juncture a large part of the correspondence referred very
naturally to electric lighting, embodying requests for all kinds of
information, catalogues, prices, terms, etc.; and all these letters were
turned over to the lighting company by Edison for attention. The company
was soon swamped with propositions for sale of territorial rights and
with other negotiations, and some of these were accompanied by the offer
of very large sums of money. It was the beginning of the electric-light
furor which soon rose to sensational heights. Had the company accepted
the cash offers from various localities, it could have gathered several
millions of dollars at once into its treasury; but this was not at
all in accord with Mr. Edison's idea, which was to prove by actual
experience the commercial value of the system, and then to license
central-station companies in large cities and towns, the parent company
taking a percentage of their capital for the license under the Edison
patents, and contracting also for the supply of apparatus, lamps, etc.
This left the remainder of the country open for the cash sale of plants
wherever requested. His counsels prevailed, and the wisdom of the policy
adopted was seen in the swift establishment of Edison companies in
centres of population both great and small, whose business has ever been
a constant and growing source of income for the parent manufacturing
interests.

From first to last Edison has been an exponent and advocate of the
central-station idea of distribution now so familiar to the public mind,
but still very far from being carried out to its logical conclusion.
In this instance, demands for isolated plants for lighting factories,
mills, mines, hotels, etc., began to pour in, and something had to be
done with them. This was a class of plant which the inquirers desired to
purchase outright and operate themselves, usually because of remoteness
from any possible source of general supply of current. It had not been
Edison's intention to cater to this class of customer until his broad
central-station plan had been worked out, and he has always discouraged
the isolated plant within the limits of urban circuits; but this demand
was so insistent it could not be denied, and it was deemed desirable to
comply with it at once, especially as it was seen that the steady call
for supplies and renewals would benefit the new Edison manufacturing
plants. After a very short trial, it was found necessary to create
a separate organization for this branch of the industry, leaving the
Edison Electric Light Company to continue under the original plan of
operation as a parent, patent-holding and licensing company. Accordingly
a new and distinct corporation was formed called the Edison Company for
Isolated Lighting, to which was issued a special license to sell and
operate plants of a self-contained character. As a matter of fact such
work began in advance of almost every other kind. A small plant using
the paper-carbon filament lamps was furnished by Edison at the earnest
solicitation of Mr. Henry Villard for the steamship Columbia, in 1879,
and it is amusing to note that Mr. Upton carried the lamps himself
to the ship, very tenderly and jealously, like fresh eggs, in a
market-garden basket. The installation was most successful. Another
pioneer plant was that equipped and started in January, 1881, for Hinds
& Ketcham, a New York firm of lithographers and color printers, who
had previously been able to work only by day, owing to difficulties in
color-printing by artificial light. A year later they said: "It is the
best substitute for daylight we have ever known, and almost as cheap."

Mr. Edison himself describes various instances in which the demand for
isolated plants had to be met: "One night at '65,'" he says, "James
Gordon Bennett came in. We were very anxious to get into a printing
establishment. I had caused a printer's composing case to be set up with
the idea that if we could get editors and publishers in to see it, we
should show them the advantages of the electric light. So ultimately
Mr. Bennett came, and after seeing the whole operation of everything,
he ordered Mr. Howland, general manager of the Herald, to light the
newspaper offices up at once with electricity."

Another instance of the same kind deals with the introduction of the
light for purely social purposes: "While at 65 Fifth Avenue," remarks
Mr. Edison, "I got to know Christian Herter, then the largest decorator
in the United States. He was a highly intellectual man, and I loved to
talk to him. He was always railing against the rich people, for whom
he did work, for their poor taste. One day Mr. W. H. Vanderbilt came
to '65,' saw the light, and decided that he would have his new house
lighted with it. This was one of the big 'box houses' on upper Fifth
Avenue. He put the whole matter in the hands of his son-in-law, Mr. H.
McK. Twombly, who was then in charge of the telephone department of
the Western Union. Twombly closed the contract with us for a plant. Mr.
Herter was doing the decoration, and it was extraordinarily fine. After
a while we got the engines and boilers and wires all done, and the
lights in position, before the house was quite finished, and thought we
would have an exhibit of the light. About eight o'clock in the evening
we lit up, and it was very good. Mr. Vanderbilt and his wife and some
of his daughters came in, and were there a few minutes when a fire
occurred. The large picture-gallery was lined with silk cloth interwoven
with fine metallic thread. In some manner two wires had got crossed with
this tinsel, which became red-hot, and the whole mass was soon afire. I
knew what was the matter, and ordered them to run down and shut off.
It had not burst into flame, and died out immediately. Mrs. Vanderbilt
became hysterical, and wanted to know where it came from. We told her we
had the plant in the cellar, and when she learned we had a boiler there
she said she would not occupy the house. She would not live over a
boiler. We had to take the whole installation out. The houses afterward
went onto the New York Edison system."

The art was, however, very crude and raw, and as there were no artisans
in existence as mechanics or electricians who had any knowledge of the
practice, there was inconceivable difficulty in getting such isolated
plants installed, as well as wiring the buildings in the district to be
covered by the first central station in New York. A night school was,
therefore, founded at Fifth Avenue, and was put in charge of Mr. E. H.
Johnson, fresh from his successes in England. The most available men for
the purpose were, of course, those who had been accustomed to wiring
for the simpler electrical systems then in vogue--telephones,
district-messenger calls, burglar alarms, house annunciators, etc., and
a number of these "wiremen" were engaged and instructed patiently in
the rudiments of the new art by means of a blackboard and oral lessons.
Students from the technical schools and colleges were also eager
recruits, for here was something that promised a career, and one that
was especially alluring to youth because of its novelty. These beginners
were also instructed in general engineering problems under the guidance
of Mr. C. L. Clarke, who was brought in from the Menlo Park laboratory
to assume charge of the engineering part of the company's affairs.
Many of these pioneer students and workmen became afterward large and
successful contractors, or have filled positions of distinction
as managers and superintendents of central stations. Possibly the
electrical industry may not now attract as much adventurous genius as it
did then, for automobiles, aeronautics, and other new arts have come
to the front in a quarter of a century to enlist the enthusiasm of a
younger generation of mercurial spirits; but it is certain that at the
period of which we write, Edison himself, still under thirty-five, was
the centre of an extraordinary group of men, full of effervescing and
aspiring talent, to which he gave glorious opportunity.

A very novel literary feature of the work was the issuance of a bulletin
devoted entirely to the Edison lighting propaganda. Nowadays the
"house organ," as it is called, has become a very hackneyed feature
of industrial development, confusing in its variety and volume, and
a somewhat doubtful adjunct to a highly perfected, widely circulating
periodical technical press. But at that time, 1882, the Bulletin of
the Edison Electric Light Company, published in ordinary 12mo form, was
distinctly new in advertising and possibly unique, as it is difficult
to find anything that compared with it. The Bulletin was carried on for
some years, until its necessity was removed by the development of other
opportunities for reaching the public; and its pages serve now as a
vivid and lively picture of the period to which its record applies. The
first issue, of January 12, 1882, was only four pages, but it dealt
with the question of insurance; plants at Santiago, Chili, and Rio de
Janeiro; the European Company with 3,500,000 francs subscribed; the work
in Paris, London, Strasburg, and Moscow; the laying of over six miles of
street mains in New York; a patent decision in favor of Edison; and the
size of safety catch wire. By April of 1882, the Bulletin had attained
the respectable size of sixteen pages; and in December it was a portly
magazine of forty-eight. Every item bears testimony to the rapid
progress being made; and by the end of 1882 it is seen that no fewer
than 153 isolated Edison plants had been installed in the United States
alone, with a capacity of 29,192 lamps. Moreover, the New York central
station had gone into operation, starting at 3 P.M. on September 4, and
at the close of 1882 it was lighting 225 houses wired for about 5000
lamps. This epochal story will be told in the next chapter. Most
interesting are the Bulletin notes from England, especially in regard
to the brilliant exhibition given by Mr. E. H. Johnson at the Crystal
Palace, Sydenham, visited by the Duke and Duchess of Edinburgh, twice by
the Dukes of Westminster and Sutherland, by three hundred members of
the Gas Institute, and by innumerable delegations from cities, boroughs,
etc. Describing this before the Royal Society of Arts, Sir W. H. Preece,
F.R.S., remarked: "Many unkind things have been said of Mr. Edison and
his promises; perhaps no one has been severer in this direction than
myself. It is some gratification for me to announce my belief that he
has at last solved the problem he set himself to solve, and to be able
to describe to the Society the way in which he has solved it." Before
the exhibition closed it was visited by the Prince and Princess of
Wales--now the deceased Edward VII. and the Dowager Queen Alexandra--and
the Princess received from Mr. Johnson as a souvenir a tiny electric
chandelier fashioned like a bouquet of fern leaves and flowers, the buds
being some of the first miniature incandescent lamps ever made.

The first item in the first Bulletin dealt with the "Fire Question," and
all through the successive issues runs a series of significant items on
the same subject. Many of them are aimed at gas, and there are several
grim summaries of death and fires due to gas-leaks or explosions. A
tendency existed at the time to assume that electricity was altogether
safe, while its opponents, predicating their attacks on arc-lighting
casualties, insisted it was most dangerous. Edison's problem in
educating the public was rather difficult, for while his low-pressure,
direct-current system has always been absolutely without danger to life,
there has also been the undeniable fact that escaping electricity might
cause a fire just as a leaky water-pipe can flood a house. The important
question had arisen, therefore, of satisfying the fire underwriters
as to the safety of the system. He had foreseen that there would be an
absolute necessity for special devices to prevent fires from occurring
by reason of any excess of current flowing in any circuit; and several
of his earliest detail lighting inventions deal with this subject. The
insurance underwriters of New York and other parts of the country gave
a great deal of time and study to the question through their most
expert representatives, with the aid of Edison and his associates, other
electric-light companies cooperating; and the knowledge thus gained
was embodied in insurance rules to govern wiring for electric lights,
formulated during the latter part of 1881, adopted by the New York Board
of Fire Underwriters, January 12, 1882, and subsequently endorsed
by other boards in the various insurance districts. Under temporary
rulings, however, a vast amount of work had already been done, but
it was obvious that as the industry grew there would be less and less
possibility of supervision except through such regulations, insisting
upon the use of the best devices and methods. Indeed, the direct
superintendence soon became unnecessary, owing to the increasing
knowledge and greater skill acquired by the installing staff; and this
system of education was notably improved by a manual written by Mr.
Edison himself. Copies of this brochure are as scarce to-day as First
Folio Shakespeares, and command prices equal to those of other American
first editions. The little book is the only known incursion of its
author into literature, if we except the brief articles he has written
for technical papers and for the magazines. It contained what was at
once a full, elaborate, and terse explanation of a complete isolated
plant, with diagrams of various methods of connection and operation, and
a carefully detailed description of every individual part, its functions
and its characteristics. The remarkable success of those early years was
indeed only achieved by following up with Chinese exactness the minute
and intimate methods insisted upon by Edison as to the use of the
apparatus and devices employed. It was a curious example of establishing
standard practice while changing with kaleidoscopic rapidity all the
elements involved. He was true to an ideal as to the pole-star, but was
incessantly making improvements in every direction. With an iconoclasm
that has often seemed ruthless and brutal he did not hesitate to
sacrifice older devices the moment a new one came in sight that embodied
a real advance in securing effective results. The process is heroic but
costly. Nobody ever had a bigger scrap-heap than Edison; but who dare
proclaim the process intrinsically wasteful if the losses occur in the
initial stages, and the economies in all the later ones?

With Edison in this introduction of his lighting system the method
was ruthless, but not reckless. At an early stage of the commercial
development a standardizing committee was formed, consisting of the
heads of all the departments, and to this body was intrusted the task of
testing and criticising all existing and proposed devices, as well as of
considering the suggestions and complaints of workmen offered from
time to time. This procedure was fruitful in two principal results--the
education of the whole executive force in the technical details of
the system; and a constant improvement in the quality of the Edison
installations; both contributing to the rapid growth of the industry.

For many years Goerck Street played an important part in Edison's
affairs, being the centre of all his manufacture of heavy machinery. But
it was not in a desirable neighborhood, and owing to the rapid growth of
the business soon became disadvantageous for other reasons. Edison tells
of his frequent visits to the shops at night, with the escort of "Jim"
Russell, a well-known detective, who knew all the denizens of the
place: "We used to go out at night to a little, low place, an all-night
house--eight feet wide and twenty-two feet long--where we got a lunch
at two or three o'clock in the morning. It was the toughest kind of
restaurant ever seen. For the clam chowder they used the same four clams
during the whole season, and the average number of flies per pie was
seven. This was by actual count."

As to the shops and the locality: "The street was lined with rather old
buildings and poor tenements. We had not much frontage. As our business
increased enormously, our quarters became too small, so we saw the
district Tammany leader and asked him if we could not store castings
and other things on the sidewalk. He gave us permission--told us to go
ahead, and he would see it was all right. The only thing he required for
this was that when a man was sent with a note from him asking us to
give him a job, he was to be put on. We had a hand-laborer foreman--'Big
Jim'--a very powerful Irishman, who could lift above half a ton. When
one of the Tammany aspirants appeared, he was told to go right to work
at $1.50 per day. The next day he was told off to lift a certain piece,
and if the man could not lift it he was discharged. That made the
Tammany man all safe. Jim could pick the piece up easily. The other man
could not, and so we let him out. Finally the Tammany leader called a
halt, as we were running big engine lathes out on the sidewalk, and he
was afraid we were carrying it a little too far. The lathes were worked
right out in the street, and belted through the windows of the shop."

At last it became necessary to move from Goerck Street, and Mr. Edison
gives a very interesting account of the incidents in connection with
the transfer of the plant to Schenectady, New York: "After our works at
Goerck Street got too small, we had labor troubles also. It seems I had
rather a socialistic strain in me, and I raised the pay of the workmen
twenty-five cents an hour above the prevailing rate of wages, whereupon
Hoe & Company, our near neighbors, complained at our doing this. I said
I thought it was all right. But the men, having got a little more
wages, thought they would try coercion and get a little more, as we
were considered soft marks. Whereupon they struck at a time that
was critical. However, we were short of money for pay-rolls; and we
concluded it might not be so bad after all, as it would give us a
couple of weeks to catch up. So when the men went out they appointed a
committee to meet us; but for two weeks they could not find us, so they
became somewhat more anxious than we were. Finally they said they would
like to go back. We said all right, and back they went. It was quite a
novelty to the men not to be able to find us when they wanted to; and
they didn't relish it at all.

"What with these troubles and the lack of room, we decided to find
a factory elsewhere, and decided to try the locomotive works up at
Schenectady. It seems that the people there had had a falling out among
themselves, and one of the directors had started opposition works; but
before he had completed all the buildings and put in machinery some
compromise was made, and the works were for sale. We bought them very
reasonably and moved everything there. These works were owned by me and
my assistants until sold to the Edison General Electric Company. At one
time we employed several thousand men; and since then the works have
been greatly expanded.

"At these new works our orders were far in excess of our capital to
handle the business, and both Mr. Insull and I were afraid we might get
into trouble for lack of money. Mr. Insull was then my business manager,
running the whole thing; and, therefore, when Mr. Henry Villard and his
syndicate offered to buy us out, we concluded it was better to be
sure than be sorry; so we sold out for a large sum. Villard was a very
aggressive man with big ideas, but I could never quite understand him.
He had no sense of humor. I remember one time we were going up on the
Hudson River boat to inspect the works, and with us was Mr. Henderson,
our chief engineer, who was certainly the best raconteur of funny
stories I ever knew. We sat at the tail-end of the boat, and he started
in to tell funny stories. Villard could not see a single point, and
scarcely laughed at all; and Henderson became so disconcerted he had to
give it up. It was the same way with Gould. In the early telegraph days
I remember going with him to see Mackay in 'The Impecunious Country
Editor.' It was very funny, full of amusing and absurd situations; but
Gould never smiled once."

The formation of the Edison General Electric Company involved the
consolidation of the immediate Edison manufacturing interests in
electric light and power, with a capitalization of $12,000,000, now a
relatively modest sum; but in those days the amount was large, and
the combination caused a great deal of newspaper comment as to such
a coinage of brain power. The next step came with the creation of the
great General Electric Company of to-day, a combination of the Edison,
Thomson-Houston, and Brush lighting interests in manufacture, which
to this day maintains the ever-growing plants at Harrison, Lynn, and
Schenectady, and there employs from twenty to twenty-five thousand
people.



CHAPTER XVI

THE FIRST EDISON CENTRAL STATION

A NOTED inventor once said at the end of a lifetime of fighting to
defend his rights, that he found there were three stages in all great
inventions: the first, in which people said the thing could not be done;
the second, in which they said anybody could do it; and the third,
in which they said it had always been done by everybody. In his
central-station work Edison has had very much this kind of experience;
for while many of his opponents came to acknowledge the novelty and
utility of his plans, and gave him unstinted praise, there are doubtless
others who to this day profess to look upon him merely as an adapter.
How different the view of so eminent a scientist as Lord Kelvin was,
may be appreciated from his remark when in later years, in reply to the
question why some one else did not invent so obvious and simple a thing
as the Feeder System, he said: "The only answer I can think of is that
no one else was Edison."

Undaunted by the attitude of doubt and the predictions of impossibility,
Edison had pushed on until he was now able to realize all his ideas as
to the establishment of a central station in the work that culminated
in New York City in 1882. After he had conceived the broad plan, his
ambition was to create the initial plant on Manhattan Island, where it
would be convenient of access for watching its operation, and where the
demonstration of its practicability would have influence in financial
circles. The first intention was to cover a district extending from
Canal Street on the north to Wall Street on the south; but Edison
soon realized that this territory was too extensive for the initial
experiment, and he decided finally upon the district included between
Wall, Nassau, Spruce, and Ferry streets, Peck Slip and the East River,
an area nearly a square mile in extent. One of the preliminary steps
taken to enable him to figure on such a station and system was to have
men go through this district on various days and note the number of gas
jets burning at each hour up to two or three o'clock in the morning. The
next step was to divide the region into a number of sub-districts and
institute a house-to-house canvass to ascertain precisely the data and
conditions pertinent to the project. When the canvass was over, Edison
knew exactly how many gas jets there were in every building in the
entire district, the average hours of burning, and the cost of light;
also every consumer of power, and the quantity used; every hoistway to
which an electric motor could be applied; and other details too numerous
to mention, such as related to the gas itself, the satisfaction of
the customers, and the limitations of day and night demand. All this
information was embodied graphically in large maps of the district, by
annotations in colored inks; and Edison thus could study the question
with every detail before him. Such a reconnaissance, like that of a
coming field of battle, was invaluable, and may help give a further idea
of the man's inveterate care for the minutiae of things.

The laboratory note-books of this period--1878-80, more
particularly--show an immense amount of calculation by Edison and his
chief mathematician, Mr. Upton, on conductors for the distribution of
current over large areas, and then later in the district described.
With the results of this canvass before them, the sizes of the main
conductors to be laid throughout the streets of this entire territory
were figured, block by block; and the results were then placed on the
map. These data revealed the fact that the quantity of copper required
for the main conductors would be exceedingly large and costly; and,
if ever, Edison was somewhat dismayed. But as usual this apparently
insurmountable difficulty only spurred him on to further effort. It
was but a short time thereafter that he solved the knotty problem by an
invention mentioned in a previous chapter. This is known as the "feeder
and main" system, for which he signed the application for a patent on
August 4, 1880. As this invention effected a saving of seven-eighths of
the cost of the chief conductors in a straight multiple arc system, the
mains for the first district were refigured, and enormous new maps were
made, which became the final basis of actual installation, as they were
subsequently enlarged by the addition of every proposed junction-box,
bridge safety-catch box, and street-intersection box in the whole area.

When this patent, after protracted fighting, was sustained by Judge
Green in 1893, the Electrical Engineer remarked that the General
Electric Company "must certainly feel elated" because of its importance;
and the journal expressed its fear that although the specifications and
claims related only to the maintenance of uniform pressure of current on
lighting circuits, the owners might naturally seek to apply it also to
feeders used in the electric-railway work already so extensive. At this
time, however, the patent had only about a year of life left, owing
to the expiration of the corresponding English patent. The fact that
thirteen years had elapsed gives a vivid idea of the ordeal involved in
sustaining a patent and the injustice to the inventor, while there is
obviously hardship to those who cannot tell from any decision of the
court whether they are infringing or not. It is interesting to note that
the preparation for hearing this case in New Jersey was accompanied by
models to show the court exactly the method and its economy, as
worked out in comparison with what is known as the "tree system"
of circuits--the older alternative way of doing it. As a basis of
comparison, a district of thirty-six city blocks in the form of a square
was assumed. The power station was placed at the centre of the square;
each block had sixteen consumers using fifteen lights each. Conductors
were run from the station to supply each of the four quarters of the
district with light. In one example the "feeder" system was used; in
the other the "tree." With these models were shown two cubes which
represented one one-hundredth of the actual quantity of copper required
for each quarter of the district by the two-wire tree system as compared
with the feeder system under like conditions. The total weight of copper
for the four quarter districts by the tree system was 803,250 pounds,
but when the feeder system was used it was only 128,739 pounds! This
was a reduction from $23.24 per lamp for copper to $3.72 per lamp. Other
models emphasized this extraordinary contrast. At the time Edison was
doing this work on economizing in conductors, much of the criticism
against him was based on the assumed extravagant use of copper implied
in the obvious "tree" system, and it was very naturally said that there
was not enough copper in the world to supply his demands. It is true
that the modern electrical arts have been a great stimulator of copper
production, now taking a quarter of all made; yet evidently but for such
inventions as this such arts could not have come into existence at
all, or else in growing up they would have forced copper to starvation
prices. [11]

     [Footnote 11: For description of feeder patent see
     Appendix.]

It should be borne in mind that from the outset Edison had determined
upon installing underground conductors as the only permanent and
satisfactory method for the distribution of current from central
stations in cities; and that at Menlo Park he laid out and operated such
a system with about four hundred and twenty-five lamps. The underground
system there was limited to the immediate vicinity of the laboratory and
was somewhat crude, as well as much less complicated than would be the
network of over eighty thousand lineal feet, which he calculated to be
required for the underground circuits in the first district of New York
City. At Menlo Park no effort was made for permanency; no provision
was needed in regard to occasional openings of the street for various
purposes; no new customers were to be connected from time to time to
the mains, and no repairs were within contemplation. In New York the
question of permanency was of paramount importance, and the other
contingencies were sure to arise as well as conditions more easy
to imagine than to forestall. These problems were all attacked in a
resolute, thoroughgoing manner, and one by one solved by the invention
of new and unprecedented devices that were adequate for the purposes of
the time, and which are embodied in apparatus of slight modification in
use up to the present day.

Just what all this means it is hard for the present generation to
imagine. New York and all the other great cities in 1882, and for
some years thereafter, were burdened and darkened by hideous masses
of overhead wires carried on ugly wooden poles along all the main
thoroughfares. One after another rival telegraph and telephone, stock
ticker, burglar-alarm, and other companies had strung their circuits
without any supervision or restriction; and these wires in all
conditions of sag or decay ramified and crisscrossed in every direction,
often hanging broken and loose-ended for months, there being no official
compulsion to remove any dead wire. None of these circuits carried
dangerous currents; but the introduction of the arc light brought an
entirely new menace in the use of pressures that were even worse than
the bully of the West who "kills on sight," because this kindred peril
was invisible, and might lurk anywhere. New poles were put up, and
the lighting circuits on them, with but a slight insulation of cotton
impregnated with some "weather-proof" compound, straggled all over the
city exposed to wind and rain and accidental contact with other wires,
or with the metal of buildings. So many fatalities occurred that the
insulated wire used, called "underwriters," because approved by the
insurance bodies, became jocularly known as "undertakers," and efforts
were made to improve its protective qualities. Then came the overhead
circuits for distributing electrical energy to motors for operating
elevators, driving machinery, etc., and these, while using a lower,
safer potential, were proportionately larger. There were no wires
underground. Morse had tried that at the very beginning of electrical
application, in telegraphy, and all agreed that renewals of the
experiment were at once costly and foolish. At last, in cities like
New York, what may be styled generically the "overhead system" of wires
broke down under its own weight; and various methods of underground
conductors were tried, hastened in many places by the chopping down of
poles and wires as the result of some accident that stirred the public
indignation. One typical tragic scene was that in New York, where,
within sight of the City Hall, a lineman was killed at his work on
the arc light pole, and his body slowly roasted before the gaze of the
excited populace, which for days afterward dropped its silver and copper
coin into the alms-box nailed to the fatal pole for the benefit of his
family. Out of all this in New York came a board of electrical
control, a conduit system, and in the final analysis the Public
Service Commission, that is credited to Governor Hughes as the furthest
development of utility corporation control.

The "road to yesterday" back to Edison and his insistence on underground
wires is a long one, but the preceding paragraph traces it. Even
admitting that the size and weight of his low-tension conductors
necessitated putting them underground, this argues nothing against the
propriety and sanity of his methods. He believed deeply and firmly in
the analogy between electrical supply and that for water and gas, and
pointed to the trite fact that nobody hoisted the water and gas mains
into the air on stilts, and that none of the pressures were inimical
to human safety. The arc-lighting methods were unconsciously and
unwittingly prophetic of the latter-day long-distance transmissions at
high pressure that, electrically, have placed the energy of Niagara at
the command of Syracuse and Utica, and have put the power of the falling
waters of the Sierras at the disposal of San Francisco, two hundred
miles away. But within city limits overhead wires, with such
space-consuming potentials, are as fraught with mischievous peril to the
public as the dynamite stored by a nonchalant contractor in the cellar
of a schoolhouse. As an offset, then, to any tendency to depreciate the
intrinsic value of Edison's lighting work, let the claim be here set
forth modestly and subject to interference, that he was the father of
underground wires in America, and by his example outlined the policy now
dominant in every city of the first rank. Even the comment of a cynic
in regard to electrical development may be accepted: "Some electrical
companies wanted all the air; others apparently had use for all the
water; Edison only asked for the earth."

The late Jacob Hess, a famous New York Republican politician, was a
member of the commission appointed to put the wires underground in New
York City, in the "eighties." He stated that when the commission was
struggling with the problem, and examining all kinds of devices and
plans, patented and unpatented, for which fabulous sums were often
asked, the body turned to Edison in its perplexity and asked for advice.
Edison said: "All you have to do, gentlemen, is to insulate your wires,
draw them through the cheapest thing on earth--iron pipe--run your pipes
through channels or galleries under the street, and you've got the whole
thing done." This was practically the system adopted and in use to
this day. What puzzled the old politician was that Edison would accept
nothing for his advice.

Another story may also be interpolated here as to the underground work
done in New York for the first Edison station. It refers to the "man
higher up," although the phrase had not been coined in those days
of lower public morality. That a corporation should be "held up" was
accepted philosophically by the corporation as one of the unavoidable
incidents of its business; and if the corporation "got back" by securing
some privilege without paying for it, the public was ready to condone
if not applaud. Public utilities were in the making, and no one in
particular had a keen sense of what was right or what was wrong, in
the hard, practical details of their development. Edison tells this
illuminating story: "When I was laying tubes in the streets of New York,
the office received notice from the Commissioner of Public Works to
appear at his office at a certain hour. I went up there with a gentleman
to see the Commissioner, H. O. Thompson. On arrival he said to me: 'You
are putting down these tubes. The Department of Public Works requires
that you should have five inspectors to look after this work, and that
their salary shall be $5 per day, payable at the end of each week.
Good-morning.' I went out very much crestfallen, thinking I would be
delayed and harassed in the work which I was anxious to finish, and
was doing night and day. We watched patiently for those inspectors to
appear. The only appearance they made was to draw their pay Saturday
afternoon."

Just before Christmas in 1880--December 17--as an item for the silk
stocking of Father Knickerbocker--the Edison Electric Illuminating
Company of New York was organized. In pursuance of the policy adhered
to by Edison, a license was issued to it for the exclusive use of
the system in that territory--Manhattan Island--in consideration of a
certain sum of money and a fixed percentage of its capital in stock for
the patent rights. Early in 1881 it was altogether a paper enterprise,
but events moved swiftly as narrated already, and on June 25, 1881,
the first "Jumbo" prototype of the dynamo-electric machines to generate
current at the Pearl Street station was put through its paces before
being shipped to Paris to furnish new sensations to the flaneur of the
boulevards. A number of the Edison officers and employees assembled at
Goerck Street to see this "gigantic" machine go into action, and watched
its performance with due reverence all through the night until five
o'clock on Sunday morning, when it respected the conventionalities by
breaking a shaft and suspending further tests. After this dynamo was
shipped to France, and its successors to England for the Holborn Viaduct
plant, Edison made still further improvements in design, increasing
capacity and economy, and then proceeded vigorously with six machines
for Pearl Street.

An ideal location for any central station is at the very centre of the
district served. It may be questioned whether it often goes there. In
the New York first district the nearest property available was a double
building at Nos. 255 and 257 Pearl Street, occupying a lot so by 100
feet. It was four stories high, with a fire-wall dividing it into
two equal parts. One of these parts was converted for the uses of the
station proper, and the other was used as a tube-shop by the underground
construction department, as well as for repair-shops, storage, etc.
Those were the days when no one built a new edifice for station
purposes; that would have been deemed a fantastic extravagance. One
early station in New York for arc lighting was an old soap-works whose
well-soaked floors did not need much additional grease to render them
choice fuel for the inevitable flames. In this Pearl Street instance,
the building, erected originally for commercial uses, was quite
incapable of sustaining the weight of the heavy dynamos and
steam-engines to be installed on the second floor; so the old flooring
was torn out and a new one of heavy girders supported by stiff columns
was substituted. This heavy construction, more familiar nowadays, and
not unlike the supporting metal structure of the Manhattan Elevated
road, was erected independent of the enclosing walls, and occupied the
full width of 257 Pearl Street, and about three-quarters of its depth.
This change in the internal arrangements did not at all affect the ugly
external appearance, which did little to suggest the stately and
ornate stations since put up by the New York Edison Company, the latest
occupying whole city blocks.

Of this episode Edison gives the following account: "While planning
for my first New York station--Pearl Street--of course, I had no real
estate, and from lack of experience had very little knowledge of its
cost in New York; so I assumed a rather large, liberal amount of it to
plan my station on. It occurred to me one day that before I went too far
with my plans I had better find out what real estate was worth. In my
original plan I had 200 by 200 feet. I thought that by going down on a
slum street near the water-front I would get some pretty cheap property.
So I picked out the worst dilapidated street there was, and found I
could only get two buildings, each 25 feet front, one 100 feet deep and
the other 85 feet deep. I thought about $10,000 each would cover it;
but when I got the price I found that they wanted $75,000 for one and
$80,000 for the other. Then I was compelled to change my plans and
go upward in the air where real estate was cheap. I cleared out the
building entirely to the walls and built my station of structural
ironwork, running it up high."

Into this converted structure was put the most complete steam plant
obtainable, together with all the mechanical and engineering adjuncts
bearing upon economical and successful operation. Being in a narrow
street and a congested district, the plant needed special facilities for
the handling of coal and ashes, as well as for ventilation and forced
draught. All of these details received Mr. Edison's personal care and
consideration on the spot, in addition to the multitude of other affairs
demanding his thought. Although not a steam or mechanical engineer, his
quick grasp of principles and omnivorous reading had soon supplied the
lack of training; nor had he forgotten the practical experience picked
up as a boy on the locomotives of the Grand Trunk road. It is to
be noticed as a feature of the plant, in common with many of later
construction, that it was placed well away from the water's edge,
and equipped with non-condensing engines; whereas the modern plant
invariably seeks the bank of a river or lake for the purpose of a
generous supply of water for its condensing engines or steam-turbines.
These are among the refinements of practice coincidental with the
advance of the art.

At the award of the John Fritz gold medal in April, 1909, to Charles T.
Porter for his work in advancing the knowledge of steam-engineering, and
for improvements in engine construction, Mr. Frank J. Sprague spoke on
behalf of the American Institute of Electrical Engineers of the debt of
electricity to the high-speed steam-engine. He recalled the fact that
at the French Exposition of 1867 Mr. Porter installed two Porter-Allen
engines to drive electric alternating-current generators for supplying
current to primitive lighthouse apparatus. While the engines were not
directly coupled to the dynamos, it was a curious fact that the piston
speeds and number of revolutions were what is common to-day in isolated
direct-coupled plants. In the dozen years following Mr. Porter built
many engines with certain common characteristics--i.e., high piston
speed and revolutions, solid engine bed, and babbitt-metal bearings; but
there was no electric driving until 1880, when Mr. Porter installed a
high-speed engine for Edison at his laboratory in Menlo Park. Shortly
after this he was invited to construct for the Edison Pearl Street
station the first of a series of engines for so-called "steam-dynamos,"
each independently driven by a direct-coupled engine. Mr. Sprague
compared the relations thus established between electricity and the
high-speed engine not to those of debtor and creditor, but rather to
those of partners--an industrial marriage--one of the most important
in the engineering world. Here were two machines destined to be joined
together, economizing space, enhancing economy, augmenting capacity,
reducing investment, and increasing dividends.

While rapid progress was being made in this and other directions, the
wheels of industry were humming merrily at the Edison Tube Works, for
over fifteen miles of tube conductors were required for the district,
besides the boxes to connect the network at the street intersections,
and the hundreds of junction boxes for taking the service conductors
into each of the hundreds of buildings. In addition to the immense
amount of money involved, this specialized industry required an enormous
amount of experiment, as it called for the development of an entirely
new art. But with Edison's inventive fertility--if ever there was a
cross-fertilizer of mechanical ideas it is he--and with Mr. Kruesi's
never-failing patience and perseverance applied to experiment and
evolution, rapid progress was made. A franchise having been obtained
from the city, the work of laying the underground conductors began in
the late fall of 1881, and was pushed with almost frantic energy. It
is not to be supposed, however, that the Edison tube system had then
reached a finality of perfection in the eyes of its inventor. In his
correspondence with Kruesi, as late as 1887, we find Edison bewailing
the inadequacy of the insulation of the conductors under twelve hundred
volts pressure, as for example: "Dear Kruesi,--There is nothing wrong
with your present compound. It is splendid. The whole trouble is
air-bubbles. The hotter it is poured the greater the amount of
air-bubbles. At 212 it can be put on rods and there is no bubble. I have
a man experimenting and testing all the time. Until I get at the proper
method of pouring and getting rid of the air-bubbles, it will be waste
of time to experiment with other asphalts. Resin oil distils off easily.
It may answer, but paraffine or other similar substances must be put in
to prevent brittleness, One thing is certain, and that is, everything
must be poured in layers, not only the boxes, but the tubes. The tube
itself should have a thin coating. The rope should also have a coating.
The rods also. The whole lot, rods and rope, when ready for tube, should
have another coat, and then be placed in tube and filled. This will
do the business." Broad and large as a continent in his ideas, if ever
there was a man of finical fussiness in attention to detail, it
is Edison. A letter of seven pages of about the same date in 1887
expatiates on the vicious troubles caused by the air-bubble, and remarks
with fine insight into the problems of insulation and the idea of layers
of it: "Thus you have three separate coatings, and it is impossible an
air-hole in one should match the other."

To a man less thorough and empirical in method than Edison, it would
have been sufficient to have made his plans clear to associates or
subordinates and hold them responsible for accurate results. No such
vicarious treatment would suit him, ready as he has always been to share
the work where he could give his trust. In fact he realized, as no
one else did at this stage, the tremendous import of this novel and
comprehensive scheme for giving the world light; and he would not let
go, even if busy to the breaking-point. Though plunged in a veritable
maelstrom of new and important business interests, and though applying
for no fewer than eighty-nine patents in 1881, all of which were
granted, he superintended on the spot all this laying of underground
conductors for the first district. Nor did he merely stand around and
give orders. Day and night he actually worked in the trenches with the
laborers, amid the dirt and paving-stones and hurry-burly of traffic,
helping to lay the tubes, filling up junction-boxes, and taking part in
all the infinite detail. He wanted to know for himself how things
went, why for some occult reason a little change was necessary, what
improvement could be made in the material. His hours of work were not
regulated by the clock, but lasted until he felt the need of a little
rest. Then he would go off to the station building in Pearl Street,
throw an overcoat on a pile of tubes, lie down and sleep for a few
hours, rising to resume work with the first gang. There was a small
bedroom on the third floor of the station available for him, but
going to bed meant delay and consumed time. It is no wonder that such
impatience, such an enthusiasm, drove the work forward at a headlong
pace.

Edison says of this period: "When we put down the tubes in the lower
part of New York, in the streets, we kept a big stock of them in the
cellar of the station at Pearl Street. As I was on all the time, I would
take a nap of an hour or so in the daytime--any time--and I used to
sleep on those tubes in the cellar. I had two Germans who were testing
there, and both of them died of diphtheria, caught in the cellar, which
was cold and damp. It never affected me."

It is worth pausing just a moment to glance at this man taking a fitful
rest on a pile of iron pipe in a dingy building. His name is on the
tip of the world's tongue. Distinguished scientists from every part of
Europe seek him eagerly. He has just been decorated and awarded high
honors by the French Government. He is the inventor of wonderful new
apparatus, and the exploiter of novel and successful arts. The magic of
his achievements and the rumors of what is being done have caused a wild
drop in gas securities, and a sensational rise in his own electric-light
stock from $100 to $3500 a share. Yet these things do not at all affect
his slumber or his democratic simplicity, for in that, as in everything
else, he is attending strictly to business, "doing the thing that is
next to him."

Part of the rush and feverish haste was due to the approach of frost,
which, as usual in New York, suspended operations in the earth; but the
laying of the conductors was resumed promptly in the spring of 1882; and
meantime other work had been advanced. During the fall and winter months
two more "Jumbo" dynamos were built and sent to London, after which the
construction of six for New York was swiftly taken in hand. In the month
of May three of these machines, each with a capacity of twelve hundred
incandescent lamps, were delivered at Pearl Street and assembled on the
second floor. On July 5th--owing to the better opportunity for ceaseless
toil given by a public holiday--the construction of the operative part
of the station was so far completed that the first of the dynamos
was operated under steam; so that three days later the satisfactory
experiment was made of throwing its flood of electrical energy into a
bank of one thousand lamps on an upper floor. Other tests followed in
due course. All was excitement. The field-regulating apparatus and the
electrical-pressure indicator--first of its kind--were also tested,
and in turn found satisfactory. Another vital test was made at this
time--namely, of the strength of the iron structure itself on which the
plant was erected. This was done by two structural experts; and not till
he got their report as to ample factors of safety was Edison reassured
as to this detail.

A remark of Edison, familiar to all who have worked with him, when it
is reported to him that something new goes all right and is satisfactory
from all points of view, is: "Well, boys, now let's find the bugs,"
and the hunt for the phylloxera begins with fiendish, remorseless zest.
Before starting the plant for regular commercial service, he began
personally a series of practical experiments and tests to ascertain in
advance what difficulties would actually arise in practice, so that he
could provide remedies or preventives. He had several cots placed in the
adjoining building, and he and a few of his most strenuous assistants
worked day and night, leaving the work only for hurried meals and a
snatch of sleep. These crucial tests, aiming virtually to break the
plant down if possible within predetermined conditions, lasted several
weeks, and while most valuable in the information they afforded, did
not hinder anything, for meantime customers' premises throughout the
district were being wired and supplied with lamps and meters.

On Monday, September 4, 1882, at 3 o'clock, P.M., Edison realized the
consummation of his broad and original scheme. The Pearl Street station
was officially started by admitting steam to the engine of one of the
"Jumbos," current was generated, turned into the network of underground
conductors, and was transformed into light by the incandescent lamps
that had thus far been installed. This date and event may properly be
regarded as historical, for they mark the practical beginning of a new
art, which in the intervening years has grown prodigiously, and is still
increasing by leaps and bounds.

Everything worked satisfactorily in the main. There were a few
mechanical and engineering annoyances that might naturally be expected
to arise in a new and unprecedented enterprise; but nothing of
sufficient moment to interfere with the steady and continuous supply
of current to customers at all hours of the day and night. Indeed, once
started, this station was operated uninterruptedly for eight years with
only insignificant stoppage.

It will have been noted by the reader that there was nothing to indicate
rashness in starting up the station, as only one dynamo was put in
operation. Within a short time, however, it was deemed desirable to
supply the underground network with more current, as many additional
customers had been connected and the demand for the new light was
increasing very rapidly. Although Edison had successfully operated
several dynamos in multiple arc two years before--i.e., all feeding
current together into the same circuits--there was not, at this early
period of experience, any absolute certainty as to what particular
results might occur upon the throwing of the current from two or more
such massive dynamos into a great distributing system. The sequel
showed the value of Edison's cautious method in starting the station by
operating only a single unit at first.

He decided that it would be wise to make the trial operation of a second
"Jumbo" on a Sunday, when business houses were closed in the district,
thus obviating any danger of false impressions in the public mind in the
event of any extraordinary manifestations. The circumstances attending
the adding of a second dynamo are thus humorously described by Edison:
"My heart was in my mouth at first, but everything worked all right....
Then we started another engine and threw them in parallel. Of all the
circuses since Adam was born, we had the worst then! One engine would
stop, and the other would run up to about a thousand revolutions, and
then they would see-saw. The trouble was with the governors. When
the circus commenced, the gang that was standing around ran out
precipitately, and I guess some of them kept running for a block or two.
I grabbed the throttle of one engine, and E. H. Johnson, who was the
only one present to keep his wits, caught hold of the other, and we shut
them off." One of the "gang" that ran, but, in this case, only to
the end of the room, afterward said: "At the time it was a terrifying
experience, as I didn't know what was going to happen. The engines and
dynamos made a horrible racket, from loud and deep groans to a hideous
shriek, and the place seemed to be filled with sparks and flames of all
colors. It was as if the gates of the infernal regions had been suddenly
opened."

This trouble was at once attacked by Edison in his characteristic and
strenuous way. The above experiment took place between three and four
o'clock on a Sunday afternoon, and within a few hours he had gathered
his superintendent and men of the machine-works and had them at work on
a shafting device that he thought would remedy the trouble. He says: "Of
course, I discovered that what had happened was that one set was running
the other as a motor. I then put up a long shaft, connecting all the
governors together, and thought this would certainly cure the trouble;
but it didn't. The torsion of the shaft was so great that one governor
still managed to get ahead of the others. Well, it was a serious state
of things, and I worried over it a lot. Finally I went down to Goerck
Street and got a piece of shafting and a tube in which it fitted. I
twisted the shafting one way and the tube the other as far as I could,
and pinned them together. In this way, by straining the whole outfit up
to its elastic limit in opposite directions, the torsion was practically
eliminated, and after that the governors ran together all right."

Edison realized, however, that in commercial practice this was only a
temporary expedient, and that a satisfactory permanence of results could
only be attained with more perfect engines that could be depended upon
for close and simple regulation. The engines that were made part of the
first three "Jumbos" placed in the station were the very best that could
be obtained at the time, and even then had been specially designed and
built for the purpose. Once more quoting Edison on this subject: "About
that time" (when he was trying to run several dynamos in parallel in the
Pearl Street station) "I got hold of Gardiner C. Sims, and he undertook
to build an engine to run at three hundred and fifty revolutions
and give one hundred and seventy-five horse-power. He went back to
Providence and set to work, and brought the engine back with him to the
shop. It worked only a few minutes when it busted. That man sat around
that shop and slept in it for three weeks, until he got his engine right
and made it work the way he wanted it to. When he reached this period
I gave orders for the engine-works to run night and day until we got
enough engines, and when all was ready we started the engines. Then
everything worked all right.... One of these engines that Sims built ran
twenty-four hours a day, three hundred and sixty-five days in the year,
for over a year before it stopped." [12]

     [Footnote 12: We quote the following interesting notes of
     Mr. Charles L. Clarke on the question of see-sawing, or
     "hunting," as it was afterward termed:

"In the Holborn Viaduct station the difficulty of 'hunting' was not
experienced. At the time the 'Jumbos' were first operated in multiple
arc, April 8, 1882, one machine was driven by a Porter-Allen engine,
and the other by an Armington & Sims engine, and both machines were on
a solid foundation. At the station at Milan, Italy, the first 'Jumbos'
operated in multiple arc were driven by Porter-Allen engines, and
dash-pots were applied to the governors. These machines were also upon a
solid foundation, and no trouble was experienced.

"At the Pearl Street station, however, the machines were supported upon
long iron floor-beams, and at the high speed of 350 revolutions per
minute, considerable vertical vibration was given to the engines. And
the writer is inclined to the opinion that this vibration, acting in the
same direction as the action of gravitation, which was one of the two
controlling forces in the operation of the Porter-Allen governor, was
the primary cause of the 'hunting.' In the Armington & Sims engine the
controlling forces in the operation of the governor were the centrifugal
force of revolving weights, and the opposing force of compressed
springs, and neither the action of gravitation nor the vertical
vibrations of the engine could have any sensible effect upon the
governor."]

The Pearl Street station, as this first large plant was called, made
rapid and continuous growth in its output of electric current. It
started, as we have said, on September 4, 1882, supplying about four
hundred lights to a comparatively small number of customers. Among those
first supplied was the banking firm of Drexel, Morgan & Company, corner
of Broad and Wall streets, at the outermost limits of the system. Before
the end of December of the same year the light had so grown in favor
that it was being supplied to over two hundred and forty customers whose
buildings were wired for over five thousand lamps. By this time three
more "Jumbos" had been added to the plant. The output from this time
forward increased steadily up to the spring of 1884, when the demands of
the station necessitated the installation of two additional "Jumbos"
in the adjoining building, which, with the venous improvements that had
been made in the mean time, gave the station a capacity of over eleven
thousand lamps actually in service at any one time.

During the first three months of operating the Pearl Street station
light was supplied to customers without charge. Edison had perfect
confidence in his meters, and also in the ultimate judgment of the
public as to the superiority of the incandescent electric light as
against other illuminants. He realized, however, that in the beginning
of the operation of an entirely novel plant there was ample opportunity
for unexpected contingencies, although the greatest care had been
exercised to make everything as perfect as possible. Mechanical defects
or other unforeseen troubles in any part of the plant or underground
system might arise and cause temporary stoppages of operation, thus
giving grounds for uncertainty which would create a feeling of public
distrust in the permanence of the supply of light.

As to the kind of mishap that was wont to occur, Edison tells the
following story: "One afternoon, after our Pearl Street station started,
a policeman rushed in and told us to send an electrician at once up to
the corner of Ann and Nassau streets--some trouble. Another man and
I went up. We found an immense crowd of men and boys there and in
the adjoining streets--a perfect jam. There was a leak in one of our
junction-boxes, and on account of the cellars extending under the
street, the top soil had become insulated. Hence, by means of this leak
powerful currents were passing through this thin layer of moist earth.
When a horse went to pass over it he would get a very severe shock. When
I arrived I saw coming along the street a ragman with a dilapidated old
horse, and one of the boys told him to go over on the other side of
the road--which was the place where the current leaked. When the ragman
heard this he took that side at once. The moment the horse struck the
electrified soil he stood straight up in the air, and then reared again;
and the crowd yelled, the policeman yelled; and the horse started to run
away. This continued until the crowd got so serious that the policeman
had to clear it out; and we were notified to cut the current off. We got
a gang of men, cut the current off for several junction-boxes, and fixed
the leak. One man who had seen it came to me next day and wanted me to
put in apparatus for him at a place where they sold horses. He said he
could make a fortune with it, because he could get old nags in there and
make them act like thoroughbreds."

So well had the work been planned and executed, however, that nothing
happened to hinder the continuous working of the station and the supply
of light to customers. Hence it was decided in December, 1882, to begin
charging a price for the service, and, accordingly, Edison electrolytic
meters were installed on the premises of each customer then connected.
The first bill for lighting, based upon the reading of one of these
meters, amounted to $50.40, and was collected on January 18, 1883, from
the Ansonia Brass and Copper Company, 17 and 19 Cliff Street. Generally
speaking, customers found that their bills compared fairly with gas
bills for corresponding months where the same amount of light was used,
and they paid promptly and cheerfully, with emphatic encomiums of the
new light. During November, 1883, a little over one year after the
station was started, bills for lighting amounting to over $9000 were
collected.

An interesting story of meter experience in the first few months of
operation of the Pearl Street station is told by one of the "boys" who
was then in position to know the facts; "Mr. J. P. Morgan, whose firm
was one of the first customers, expressed to Mr. Edison some doubt as
to the accuracy of the meter. The latter, firmly convinced of its
correctness, suggested a strict test by having some cards printed and
hung on each fixture at Mr. Morgan's place. On these cards was to be
noted the number of lamps in the fixture, and the time they were turned
on and off each day for a month. At the end of that time the lamp-hours
were to be added together by one of the clerks and figured on a basis of
a definite amount per lamp-hour, and compared with the bill that would
be rendered by the station for the corresponding period. The results
of the first month's test showed an apparent overcharge by the Edison
company. Mr. Morgan was exultant, while Mr. Edison was still confident
and suggested a continuation of the test. Another month's trial showed
somewhat similar results. Mr. Edison was a little disturbed, but
insisted that there was a mistake somewhere. He went down to Drexel,
Morgan & Company's office to investigate, and, after looking around,
asked when the office was cleaned out. He was told it was done at night
by the janitor, who was sent for, and upon being interrogated as to what
light he used, said that he turned on a central fixture containing about
ten lights. It came out that he had made no record of the time these
lights were in use. He was told to do so in future, and another month's
test was made. On comparison with the company's bill, rendered on the
meter-reading, the meter came within a few cents of the amount computed
from the card records, and Mr. Morgan was completely satisfied of the
accuracy of the meter."

It is a strange but not extraordinary commentary on the perversity of
human nature and the lack of correct observation, to note that even
after the Pearl Street station had been in actual operation twenty-four
hours a day for nearly three months, there should still remain an
attitude of "can't be done." That such a scepticism still obtained is
evidenced by the public prints of the period. Edison's electric-light
system and his broad claims were freely discussed and animadverted upon
at the very time he was demonstrating their successful application. To
show some of the feeling at the time, we reproduce the following letter,
which appeared November 29, 1882:

"To the Editor of the Sun:

"SIR,--In reading the discussions relative to the Pearl Street station
of the Edison light, I have noted that while it is claimed that there
is scarcely any loss from leakage of current, nothing is said about the
loss due to the resistance of the long circuits. I am informed that this
is the secret of the failure to produce with the power in position a
sufficient amount of current to run all the lamps that have been put
up, and that while six, and even seven, lights to the horse-power may be
produced from an isolated plant, the resistance of the long underground
wires reduces this result in the above case to less than three lights to
the horse-power, thus making the cost of production greatly in excess of
gas. Can the Edison company explain this? 'INVESTIGATOR'."

This was one of the many anonymous letters that had been written to the
newspapers on the subject, and the following reply by the Edison company
was printed December 3, 1882:


"To the Editor of the Sun:

"SIR,--'Investigator' in Wednesday's Sun, says that the Edison company
is troubled at its Pearl Street station with a 'loss of current, due
to the resistance of the long circuits'; also that, whereas Edison gets
'six or even seven lights to the horse-power in isolated plants, the
resistance of the long underground wires reduces that result in the
Pearl Street station to less than three lights to the horse-power.' Both
of these statements are false. As regards loss due to resistance, there
is a well-known law for determining it, based on Ohm's law. By use of
that law we knew in advance, that is to say, when the original plans for
the station were drawn, just what this loss would be, precisely the same
as a mechanical engineer when constructing a mill with long lines of
shafting can forecast the loss of power due to friction. The practical
result in the Pearl Street station has fully demonstrated the
correctness of our estimate thus made in advance. As regards our getting
only three lights per horse-power, our station has now been running
three months, without stopping a moment, day or night, and we invariably
get over six lamps per horse-power, or substantially the same as we do
in our isolated plants. We are now lighting one hundred and ninety-three
buildings, wired for forty-four hundred lamps, of which about two-thirds
are in constant use, and we are adding additional houses and lamps
daily. These figures can be verified at the office of the Board of
Underwriters, where certificates with full details permitting the use of
our light are filed by their own inspector. To light these lamps we run
from one to three dynamos, according to the lamps in use at any given
time, and we shall start additional dynamos as fast as we can connect
more buildings. Neither as regards the loss due to resistance, nor as
regards the number of lamps per horse-power, is there the slightest
trouble or disappointment on the part of our company, and your
correspondent is entirely in error is assuming that there is. Let me
suggest that if 'Investigator' really wishes to investigate, and is
competent and willing to learn the exact facts, he can do so at this
office, where there is no mystery of concealment, but, on the contrary,
a strong desire to communicate facts to intelligent inquirers. Such
a method of investigating must certainly be more satisfactory to one
honestly seeking knowledge than that of first assuming an error as the
basis of a question, and then demanding an explanation.

"Yours very truly,

"S. B. EATON, President."


Viewed from the standpoint of over twenty-seven years later, the wisdom
and necessity of answering anonymous newspaper letters of this kind
might be deemed questionable, but it must be remembered that, although
the Pearl Street station was working successfully, and Edison's
comprehensive plans were abundantly vindicated, the enterprise
was absolutely new and only just stepping on the very threshold of
commercial exploitation. To enter in and possess the land required the
confidence of capital and the general public. Hence it was necessary to
maintain a constant vigilance to defeat the insidious attacks of carping
critics and others who would attempt to injure the Edison system by
misleading statements.

It will be interesting to the modern electrician to note that when this
pioneer station was started, and in fact for some little time afterward,
there was not a single electrical instrument in the whole station--not
a voltmeter or an ammeter! Nor was there a central switchboard! Each
dynamo had its own individual control switch. The feeder connections
were all at the front of the building, and the general voltage control
apparatus was on the floor above. An automatic pressure indicator had
been devised and put in connection with the main circuits. It consisted,
generally speaking, of an electromagnet with relays connecting with a
red and a blue lamp. When the electrical pressure was normal,
neither lamp was lighted; but if the electromotive force rose above a
predetermined amount by one or two volts, the red lamp lighted up,
and the attendant at the hand-wheel of the field regulator inserted
resistance in the field circuit, whereas, if the blue lamp lighted,
resistance was cut out until the pressure was raised to normal. Later on
this primitive indicator was supplanted by the "Bradley Bridge," a crude
form of the "Howell" pressure indicators, which were subsequently used
for many years in the Edison stations.

Much could be added to make a complete pictorial description of the
historic Pearl Street station, but it is not within the scope of this
narrative to enter into diffuse technical details, interesting as they
may be to many persons. We cannot close this chapter, however, without
mention of the fate of the Pearl Street station, which continued in
successful commercial operation until January 2, 1890, when it was
partially destroyed by fire. All the "Jumbos" were ruined, excepting No.
9, which is still a venerated relic in the possession of the New
York Edison Company. Luckily, the boilers were unharmed. Belt-driven
generators and engines were speedily installed, and the station was
again in operation in a few days. The uninjured "Jumbo," No. 9, again
continued to perform its duty. But in the words of Mr. Charles L.
Clarke, "the glory of the old Pearl Street station, unique in bearing
the impress of Mr. Edison's personality, and, as it were, constructed
with his own hands, disappeared in the flame and smoke of that Thursday
morning fire."

The few days' interruption of the service was the only serious one
that has taken place in the history of the New York Edison Company from
September 4, 1882, to the present date. The Pearl Street station was
operated for some time subsequent to the fire, but increasing demands
in the mean time having led to the construction of other stations, the
mains of the First District were soon afterward connected to another
plant, the Pearl Street station was dismantled, and the building was
sold in 1895.

The prophetic insight into the magnitude of central-station lighting
that Edison had when he was still experimenting on the incandescent lamp
over thirty years ago is a little less than astounding, when it is so
amply verified in the operations of the New York Edison Company (the
successor of the Edison Electric Illuminating Company of New York) and
many others. At the end of 1909 the New York Edison Company alone was
operating twenty-eight stations and substations, having a total capacity
of 159,500 kilowatts. Connected with its lines were approximately 85,000
customers wired for 3,813,899 incandescent lamps and nearly 225,000
horse-power through industrial electric motors connected with the
underground service. A large quantity of electrical energy is also
supplied for heating and cooking, charging automobiles, chemical and
plating work, and various other uses.



CHAPTER XVII

OTHER EARLY STATIONS--THE METER

WE have now seen the Edison lighting system given a complete, convincing
demonstration in Paris, London, and New York; and have noted steps taken
for its introduction elsewhere on both sides of the Atlantic. The Paris
plant, like that at the Crystal Palace, was a temporary exhibit. The
London plant was less temporary, but not permanent, supplying before
it was torn out no fewer than three thousand lamps in hotels, churches,
stores, and dwellings in the vicinity of Holborn Viaduct. There Messrs.
Johnson and Hammer put into practice many of the ideas now standard in
the art, and secured much useful data for the work in New York, of which
the story has just been told.

As a matter of fact the first Edison commercial station to be operated
in this country was that at Appleton, Wisconsin, but its only serious
claim to notice is that it was the initial one of the system driven by
water-power. It went into service August 15, 1882, about three weeks
before the Pearl Street station. It consisted of one small dynamo of
a capacity of two hundred and eighty lights of 10 c.p. each, and was
housed in an unpretentious wooden shed. The dynamo-electric machine,
though small, was robust, for under all the varying speeds of
water-power, and the vicissitudes of the plant to which it, belonged, it
continued in active use until 1899--seventeen years.

Edison was from the first deeply impressed with the possibilities of
water-power, and, as this incident shows, was prompt to seize such a
very early opportunity. But his attention was in reality concentrated
closely on the supply of great centres of population, a task which
he then felt might well occupy his lifetime; and except in regard to
furnishing isolated plants he did not pursue further the development of
hydro-electric stations. That was left to others, and to the application
of the alternating current, which has enabled engineers to harness
remote powers, and, within thoroughly economical limits, transmit
thousands of horse-power as much as two hundred miles at pressures
of 80,000 and 100,000 volts. Owing to his insistence on low pressure,
direct current for use in densely populated districts, as the only safe
and truly universal, profitable way of delivering electrical energy to
the consumers, Edison has been frequently spoken of as an opponent
of the alternating current. This does him an injustice. At the time
a measure was before the Virginia legislature, in 1890, to limit the
permissible pressures of current so as to render it safe, he said: "You
want to allow high pressure wherever the conditions are such that by
no possible accident could that pressure get into the houses of
the consumers; you want to give them all the latitude you can." In
explaining this he added: "Suppose you want to take the falls down at
Richmond, and want to put up a water-power? Why, if we erect a station
at the falls, it is a great economy to get it up to the city. By digging
a cheap trench and putting in an insulated cable, and connecting such
station with the central part of Richmond, having the end of the cable
come up into the station from the earth and there connected with motors,
the power of the falls would be transmitted to these motors. If now the
motors were made to run dynamos conveying low-pressure currents to the
public, there is no possible way whereby this high-pressure current
could get to the public." In other words, Edison made the sharp
fundamental distinction between high pressure alternating current for
transmission and low pressure direct current for distribution; and this
is exactly the practice that has been adopted in all the great cities
of the country to-day. There seems no good reason for believing that it
will change. It might perhaps have been altogether better for Edison,
from the financial standpoint, if he had not identified himself so
completely with one kind of current, but that made no difference to him,
as it was a matter of conviction; and Edison's convictions are granitic.
Moreover, this controversy over the two currents, alternating and
direct, which has become historical in the field of electricity--and
is something like the "irrepressible conflict" we heard of years ago
in national affairs--illustrates another aspect of Edison's character.
Broad as the prairies and free in thought as the winds that sweep them,
he is idiosyncratically opposed to loose and wasteful methods, to plans
of empire that neglect the poor at the gate. Everything he has done has
been aimed at the conservation of energy, the contraction of space,
the intensification of culture. Burbank and his tribe represent in the
vegetable world, Edison in the mechanical. Not only has he developed
distinctly new species, but he has elucidated the intensive art of
getting $1200 out of an electrical acre instead of $12--a manured
market-garden inside London and a ten-bushel exhausted wheat farm
outside Lawrence, Kansas, being the antipodes of productivity--yet very
far short of exemplifying the difference of electrical yield between an
acre of territory in Edison's "first New York district" and an acre in
some small town.

Edison's lighting work furnished an excellent basis--in fact, the only
one--for the development of the alternating current now so generally
employed in central-station work in America; and in the McGraw
Electrical Directory of April, 1909, no fewer than 4164 stations out of
5780 reported its use. When the alternating current was introduced for
practical purposes it was not needed for arc lighting, the circuit for
which, from a single dynamo, would often be twenty or thirty miles
in length, its current having a pressure of not less than five or six
thousand volts. For some years it was not found feasible to operate
motors on alternating-current circuits, and that reason was often
urged against it seriously. It could not be used for electroplating
or deposition, nor could it charge storage batteries, all of which are
easily within the ability of the direct current. But when it came to be
a question of lighting a scattered suburb, a group of dwellings on the
outskirts, a remote country residence or a farm-house, the alternating
current, in all elements save its danger, was and is ideal. Its thin
wires can be carried cheaply over vast areas, and at each local point
of consumption the transformer of size exactly proportioned to its
local task takes the high-voltage transmission current and lowers its
potential at a ratio of 20 or 40 to 1, for use in distribution and
consumption circuits. This evolution has been quite distinct, with its
own inventors like Gaulard and Gibbs and Stanley, but came subsequent
to the work of supplying small, dense areas of population; the art thus
growing from within, and using each new gain as a means for further
achievement.

Nor was the effect of such great advances as those made by Edison
limited to the electrical field. Every department of mechanics was
stimulated and benefited to an extraordinary degree. Copper for the
circuits was more highly refined than ever before to secure the best
conductivity, and purity was insisted on in every kind of insulation.
Edison was intolerant of sham and shoddy, and nothing would satisfy him
that could not stand cross-examination by microscope, test-tube, and
galvanometer. It was, perhaps, the steam-engine on which the deepest
imprint for good was made, referred to already in the remarks of Mr.
F. J. Sprague in the preceding chapter, but best illustrated in the
perfection of the modern high-speed engine of the Armington & Sims type.
Unless he could secure an engine of smoother running and more exactly
governed and regulated than those available for his dynamo and lamp,
Edison realized that he would find it almost impossible to give a steady
light. He did not want his customers to count the heart-beats of the
engine in the flicker of the lamp. Not a single engine was even within
gunshot of the standard thus set up, but the emergency called forth its
man in Gardiner C. Sims, a talented draughtsman and designer who
had been engaged in locomotive construction and in the engineering
department of the United States Navy. He may be quoted as to what
happened: "The deep interest, financial and moral, and friendly backing
I received from Mr. Edison, together with valuable suggestions, enabled
me to bring out the engine; as I was quite alone in the world--poor--I
had found a friend who knew what he wanted and explained it clearly. Mr.
Edison was a leader far ahead of the time. He compelled the design of
the successful engine.

"Our first engine compelled the inventing and making of a suitable
engine indicator to indicate it--the Tabor. He obtained the desired
speed and load with a friction brake; also regulator of speed; but
waited for an indicator to verify it. Then again there was no known way
to lubricate an engine for continuous running, and Mr. Edison informed
me that as a marine engine started before the ship left New York and
continued running until it reached its home port, so an engine for his
purposes must produce light at all times. That was a poser to me, for a
five-hours' run was about all that had been required up to that time.

"A day or two later Mr. Edison inquired: 'How far is it from here to
Lawrence; it is a long walk, isn't it?' 'Yes, rather.' He said: 'Of
course you will understand I meant without oil.' To say I was deeply
perplexed does not express my feelings. We were at the machine works,
Goerck Street. I started for the oil-room, when, about entering, I saw a
small funnel lying on the floor. It had been stepped on and flattened. I
took it up, and it had solved the engine-oiling problem--and my walk to
Lawrence like a tramp actor's was off! The eccentric strap had a round
glass oil-cup with a brass base that screwed into the strap. I took it
off, and making a sketch, went to Dave Cunningham, having the funnel
in my hand to illustrate what I wanted made. I requested him to make a
sheet-brass oil-cup and solder it to the base I had. He did so. I then
had a standard made to hold another oil-cup, so as to see and regulate
the drop-feed. On this combination I obtained a patent which is now
universally used."

It is needless to say that in due course the engine builders of
the United States developed a variety of excellent prime movers for
electric-light and power plants, and were grateful to the art from which
such a stimulus came to their industry; but for many years one never saw
an Edison installation without expecting to find one or more Armington
& Sims high-speed engines part of it. Though the type has gone out of
existence, like so many other things that are useful in their day and
generation, it was once a very vital part of the art, and one more
illustration of that intimate manner in which the advances in different
fields of progress interact and co-operate.

Edison had installed his historic first great central-station system
in New York on the multiple arc system covered by his feeder and main
invention, which resulted in a notable saving in the cost of conductors
as against a straight two-wire system throughout of the "tree" kind.
He soon foresaw that still greater economy would be necessary for
commercial success not alone for the larger territory opening, but for
the compact districts of large cities. Being firmly convinced that there
was a way out, he pushed aside a mass of other work, and settled down to
this problem, with the result that on November 20, 1882, only two
months after current had been sent out from Pearl Street, he executed an
application for a patent covering what is now known as the "three-wire
system." It has been universally recognized as one of the most valuable
inventions in the history of the lighting art. [13] Its use resulted in a
saving of over 60 per cent. of copper in conductors, figured on the most
favorable basis previously known, inclusive of those calculated under
his own feeder and main system. Such economy of outlay being effected in
one of the heaviest items of expense in central-station construction,
it was now made possible to establish plants in towns where the large
investment would otherwise have been quite prohibitive. The invention
is in universal use today, alike for direct and for alternating current,
and as well in the equipment of large buildings as in the distribution
system of the most extensive central-station networks. One cannot
imagine the art without it.

     [Footnote 13: For technical description and illustration of
     this invention, see Appendix.]

The strong position held by the Edison system, under the strenuous
competition that was already springing up, was enormously improved by
the introduction of the three-wire system; and it gave an immediate
impetus to incandescent lighting. Desiring to put this new system into
practical use promptly, and receiving applications for licenses from all
over the country, Edison selected Brockton, Massachusetts, and Sunbury,
Pennsylvania, as the two towns for the trial. Of these two Brockton
required the larger plant, but with the conductors placed underground.
It was the first to complete its arrangements and close its contract.
Mr. Henry Villard, it will be remembered, had married the daughter of
Garrison, the famous abolitionist, and it was through his relationship
with the Garrison family that Brockton came to have the honor of
exemplifying so soon the principles of an entirely new art. Sunbury,
however, was a much smaller installation, employed overhead conductors,
and hence was the first to "cross the tape." It was specially suited for
a trial plant also, in the early days when a yield of six or eight lamps
to the horse-power was considered subject for congratulation. The town
being situated in the coal region of Pennsylvania, good coal could then
be obtained there at seventy-five cents a ton.

The Sunbury generating plant consisted of an Armington & Sims engine
driving two small Edison dynamos having a total capacity of about four
hundred lamps of 16 c.p. The indicating instruments were of the crudest
construction, consisting of two voltmeters connected by "pressure wires"
to the centre of electrical distribution. One ammeter, for measuring
the quantity of current output, was interpolated in the "neutral bus" or
third-wire return circuit to indicate when the load on the two machines
was out of balance. The circuits were opened and closed by means of
about half a dozen roughly made plug-switches. [14] The "bus-bars" to
receive the current from the dynamos were made of No. 000 copper line
wire, straightened out and fastened to the wooden sheathing of the
station by iron staples without any presence to insulation. Commenting
upon this Mr. W. S. Andrews, detailed from the central staff, says: "The
interior winding of the Sunbury station, including the running of two
three-wire feeders the entire length of the building from back to
front, the wiring up of the dynamos and switchboard and all instruments,
together with bus-bars, etc.--in fact, all labor and material used
in the electrical wiring installation--amounted to the sum of $90. I
received a rather sharp letter from the New York office expostulating
for this EXTRAVAGANT EXPENDITURE, and stating that great economy must
be observed in future!" The street conductors were of the overhead
pole-line construction, and were installed by the construction company
that had been organized by Edison to build and equip central stations.
A special type of street pole had been devised by him for the three-wire
system.


     [Footnote 14: By reason of the experience gained at this
     station through the use of these crude plug-switches, Mr.
     Edison started a competition among a few of his assistants
     to devise something better. The result was the invention of
     a "breakdown" switch by Mr. W. S. Andrews, which was
     accepted by Mr. Edison as the best of the devices suggested,
     and was developed and used for a great many years
     afterward.]


Supplementing the story of Mr. Andrews is that of Lieut. F. J. Sprague,
who also gives a curious glimpse of the glorious uncertainties and
vicissitudes of that formative period. Mr. Sprague served on the jury
at the Crystal Palace Exhibition with Darwin's son--the present Sir
Horace--and after the tests were ended left the Navy and entered
Edison's service at the suggestion of Mr. E. H. Johnson, who was
Edison's shrewd recruiting sergeant in those days: "I resigned sooner
than Johnson expected, and he had me on his hands. Meanwhile he had
called upon me to make a report of the three-wire system, known in
England as the Hopkinson, both Dr. John Hopkinson and Mr. Edison being
independent inventors at practically the same time. I reported on that,
left London, and landed in New York on the day of the opening of the
Brooklyn Bridge in 1883--May 24--with a year's leave of absence.

"I reported at the office of Mr. Edison on Fifth Avenue and told him I
had seen Johnson. He looked me over and said: 'What did he promise you?'
I replied: 'Twenty-five hundred dollars a year.' He did not say much,
but looked it. About that time Mr. Andrews and I came together. On July
2d of that year we were ordered to Sunbury, and to be ready to start the
station on the fourth. The electrical work had to be done in forty-eight
hours! Having travelled around the world, I had cultivated an
indifference to any special difficulties of that kind. Mr. Andrews and
I worked in collaboration until the night of the third. I think he was
perhaps more appreciative than I was of the discipline of the Edison
Construction Department, and thought it would be well for us to wait
until the morning of the fourth before we started up. I said we were
sent over to get going, and insisted on starting up on the night of the
third. We had an Armington & Sims engine with sight-feed oiler. I had
never seen one, and did not know how it worked, with the result that we
soon burned up the babbitt metal in the bearings and spent a good part
of the night getting them in order. The next day Mr. Edison, Mr. Insull,
and the chief engineer of the construction department appeared on
the scene and wanted to know what had happened. They found an engine
somewhat loose in the bearings, and there followed remarks which would
not look well in print. Andrews skipped from under; he obeyed orders; I
did not. But the plant ran, and it was the first three-wire station in
this country."

Seen from yet another angle, the worries of this early work were not
merely those of the men on the "firing line." Mr. Insull, in speaking
of this period, says: "When it was found difficult to push the
central-station business owing to the lack of confidence in its
financial success, Edison decided to go into the business of promoting
and constructing central-station plants, and he formed what was known as
the Thomas A. Edison Construction Department, which he put me in charge
of. The organization was crude, the steam-engineering talent poor,
and owing to the impossibility of getting any considerable capital
subscribed, the plants were put in as cheaply as possible. I believe
that this construction department was unkindly named the 'Destruction
Department.' It served its purpose; never made any money; and I had the
unpleasant task of presiding at its obsequies."

On July 4th the Sunbury plant was put into commercial operation by
Edison, and he remained a week studying its conditions and watching for
any unforeseen difficulty that might arise. Nothing happened, however,
to interfere with the successful running of the station, and for twenty
years thereafter the same two dynamos continued to furnish light in
Sunbury. They were later used as reserve machines, and finally, with the
engine, retired from service as part of the "Collection of Edisonia";
but they remain in practically as good condition as when installed in
1883.

Sunbury was also provided with the first electro-chemical meters used
in the United States outside New York City, so that it served also to
accentuate electrical practice in a most vital respect--namely, the
measurement of the electrical energy supplied to customers. At this time
and long after, all arc lighting was done on a "flat rate" basis. The
arc lamp installed outside a customer's premises, or in a circuit for
public street lighting, burned so many hours nightly, so many nights in
the month; and was paid for at that rate, subject to rebate for hours
when the lamp might be out through accident. The early arc lamps were
rated to require 9 to 10 amperes of current, at 45 volts pressure each,
receiving which they were estimated to give 2000 c.p., which was arrived
at by adding together the light found at four different positions, so
that in reality the actual light was about 500 c.p. Few of these data
were ever actually used, however; and it was all more or less a matter
of guesswork, although the central-station manager, aiming to give good
service, would naturally see that the dynamos were so operated as to
maintain as steadily as possible the normal potential and current. The
same loose methods applied to the early attempts to use electric motors
on arc-lighting circuits, and contracts were made based on the size of
the motor, the width of the connecting belt, or the amount of power the
customer thought he used--never on the measurement of the electrical
energy furnished him.

Here again Edison laid the foundation of standard practice. It is true
that even down to the present time the flat rate is applied to a great
deal of incandescent lighting, each lamp being charged for individually
according to its probable consumption during each month. This may
answer, perhaps, in a small place where the manager can gauge pretty
closely from actual observation what each customer does; but even then
there are elements of risk and waste; and obviously in a large city such
a method would soon be likely to result in financial disaster to the
plant. Edison held that the electricity sold must be measured just like
gas or water, and he proceeded to develop a meter. There was infinite
scepticism around him on the subject, and while other inventors were
also giving the subject their thought, the public took it for granted
that anything so utterly intangible as electricity, that could not be
seen or weighed, and only gave secondary evidence of itself at the exact
point of use, could not be brought to accurate registration. The general
attitude of doubt was exemplified by the incident in Mr. J. P. Morgan's
office, noted in the last chapter. Edison, however, had satisfied
himself that there were various ways of accomplishing the task, and had
determined that the current should be measured on the premises of
every consumer. His electrolytic meter was very successful, and was
of widespread use in America and in Europe until the perfection of
mechanical meters by Elihu Thomson and others brought that type into
general acceptance. Hence the Edison electrolytic meter is no longer
used, despite its excellent qualities. Houston & Kennelly in their
Electricity in Everyday Life sum the matter up as follows: "The Edison
chemical meter is capable of giving fair measurements of the amount of
current passing. By reason, however, of dissatisfaction caused from the
inability of customers to read the indications of the meter, it has in
later years, to a great extent, been replaced by registering meters that
can be read by the customer."

The principle employed in the Edison electrolytic meter is that which
exemplifies the power of electricity to decompose a chemical substance.
In other words it is a deposition bath, consisting of a glass cell in
which two plates of chemically pure zinc are dipped in a solution of
zinc sulphate. When the lights or motors in the circuit are turned on,
and a certain definite small portion of the current is diverted to flow
through the meter, from the positive plate to the negative plate, the
latter increases in weight by receiving a deposit of metallic zinc; the
positive plate meantime losing in weight by the metal thus carried
away from it. This difference in weight is a very exact measure of the
quantity of electricity, or number of ampere-hours, that have, so to
speak, passed through the cell, and hence of the whole consumption in
the circuit. The amount thus due from the customer is ascertained by
removing the cell, washing and drying the plates, and weighing them in
a chemical balance. Associated with this simple form of apparatus
were various ingenious details and refinements to secure regularity of
operation, freedom from inaccuracy, and immunity from such tampering
as would permit theft of current or damage. As the freezing of the zinc
sulphate solution in cold weather would check its operation, Edison
introduced, for example, into the meter an incandescent lamp and a
thermostat so arranged that when the temperature fell to a certain
point, or rose above another point, it was cut in or out; and in this
manner the meter could be kept from freezing. The standard Edison meter
practice was to remove the cells once a month to the meter-room of the
central-station company for examination, another set being substituted.
The meter was cheap to manufacture and install, and not at all liable to
get out of order.

In December, 1888, Mr. W. J. Jenks read an interesting paper before the
American Institute of Electrical Engineers on the six years of practical
experience had up to that time with the meter, then more generally in
use than any other. It appears from the paper that twenty-three Edison
stations were then equipped with 5187 meters, which were relied upon for
billing the monthly current consumption of 87,856 lamps and 350 motors
of 1000 horse-power total. This represented about 75 per cent. of the
entire lamp capacity of the stations. There was an average cost per lamp
for meter operation of twenty-two cents a year, and each meter took
care of an average of seventeen lamps. It is worthy of note, as to the
promptness with which the Edison stations became paying properties,
that four of the metered stations were earning upward of 15 per cent.
on their capital stock; three others between 8 and 10 per cent.; eight
between 5 and 8 per cent.; the others having been in operation too short
a time to show definite results, although they also went quickly to
a dividend basis. Reports made in the discussion at the meeting by
engineers showed the simplicity and success of the meter. Mr. C. L.
Edgar, of the Boston Edison system, stated that he had 800 of the meters
in service cared for by two men and three boys, the latter employed in
collecting the meter cells; the total cost being perhaps $2500 a year.
Mr. J. W. Lieb wrote from Milan, Italy, that he had in use on the Edison
system there 360 meters ranging from 350 ampere-hours per month up to
30,000.

In this connection it should be mentioned that the Association of Edison
Illuminating Companies in the same year adopted resolutions unanimously
to the effect that the Edison meter was accurate, and that its use was
not expensive for stations above one thousand lights; and that the best
financial results were invariably secured in a station selling current
by meter. Before the same association, at its meeting in September,
1898, at Sault Ste. Marie, Mr. C. S. Shepard read a paper on the meter
practice of the New York Edison Company, giving data as to the large
number of Edison meters in use and the transition to other types, of
which to-day the company has several on its circuits: "Until October,
1896, the New York Edison Company metered its current in consumer's
premises exclusively by the old-style chemical meters, of which there
were connected on that date 8109. It was then determined to purchase
no more." Mr. Shepard went on to state that the chemical meters were
gradually displaced, and that on September 1, 1898, there were on the
system 5619 mechanical and 4874 chemical. The meter continued in general
service during 1899, and probably up to the close of the century.

Mr. Andrews relates a rather humorous meter story of those early days:
"The meter man at Sunbury was a firm and enthusiastic believer in the
correctness of the Edison meter, having personally verified its reading
many times by actual comparison of lamp-hours. One day, on making out a
customer's bill, his confidence received a severe shock, for the meter
reading showed a consumption calling for a charge of over $200,
whereas he knew that the light actually used should not cost more than
one-quarter of that amount. He weighed and reweighed the meter plates,
and pursued every line of investigation imaginable, but all in vain. He
felt he was up against it, and that perhaps another kind of a job would
suit him better. Once again he went to the customer's meter to look
around, when a small piece of thick wire on the floor caught his eye.
The problem was solved. He suddenly remembered that after weighing
the plates he went and put them in the customer's meter; but the wire
attached to one of the plates was too long to go in the meter, and he
had cut it off. He picked up the piece of wire, took it to the station,
weighed it carefully, and found that it accounted for about $150 worth
of electricity, which was the amount of the difference."

Edison himself is, however, the best repertory of stories when it comes
to the difficulties of that early period, in connection with metering
the current and charging for it. He may be quoted at length as follows:
"When we started the station at Pearl Street, in September, 1882, we
were not very commercial. We put many customers on, but did not make out
many bills. We were more interested in the technical condition of the
station than in the commercial part. We had meters in which there were
two bottles of liquid. To prevent these electrolytes from freezing we
had in each meter a strip of metal. When it got very cold the metal
would contract and close a circuit, and throw a lamp into circuit
inside the meter. The heat from this lamp would prevent the liquid from
freezing, so that the meter could go on doing its duty. The first cold
day after starting the station, people began to come in from their
offices, especially down in Front Street and Water Street, saying the
meter was on fire. We received numerous telephone messages about it.
Some had poured water on it, and others said: 'Send a man right up to
put it out.'

"After the station had been running several months and was technically
a success, we began to look after the financial part. We started to
collect some bills; but we found that our books were kept badly, and
that the person in charge, who was no business man, had neglected that
part of it. In fact, he did not know anything about the station, anyway.
So I got the directors to permit me to hire a man to run the station.
This was Mr. Chinnock, who was then superintendent of the Metropolitan
Telephone Company of New York. I knew Chinnock to be square and of
good business ability, and induced him to leave his job. I made him a
personal guarantee, that if he would take hold of the station and put it
on a commercial basis, and pay 5 per cent. on $600,000, I would give him
$10,000 out of my own pocket. He took hold, performed the feat, and
I paid him the $10,000. I might remark in this connection that years
afterward I applied to the Edison Electric Light Company asking them
if they would not like to pay me this money, as it was spent when I was
very hard up and made the company a success, and was the foundation of
their present prosperity. They said they 'were sorry'--that is, 'Wall
Street sorry'--and refused to pay it. This shows what a nice, genial,
generous lot of people they have over in Wall Street.

"Chinnock had a great deal of trouble getting the customers straightened
out. I remember one man who had a saloon on Nassau Street. He had had
his lights burning for two or three months. It was in June, and Chinnock
put in a bill for $20; July for $20; August about $28; September about
$35. Of course the nights were getting longer. October about $40;
November about $45. Then the man called Chinnock up. He said: 'I want to
see you about my electric-light bill.' Chinnock went up to see him. He
said: 'Are you the manager of this electric-light plant?' Chinnock said:
'I have the honor.' 'Well,' he said, my bill has gone from $20 up to
$28, $35, $45. I want you to understand, young fellow, that my limit is
$60.'

"After Chinnock had had all this trouble due to the incompetency of the
previous superintendent, a man came in and said to him: 'Did Mr. Blank
have charge of this station?' 'Yes.' 'Did he know anything about running
a station like this?' Chinnock said: 'Does he KNOW anything about
running a station like this? No, sir. He doesn't even suspect anything.'

"One day Chinnock came to me and said: 'I have a new customer.' I said:
'What is it?' He said: 'I have a fellow who is going to take two hundred
and fifty lights.' I said: 'What for?' 'He has a place down here in a
top loft, and has got two hundred and fifty barrels of "rotgut" whiskey.
He puts a light down in the barrel and lights it up, and it ages the
whiskey.' I met Chinnock several weeks after, and said: 'How is the
whiskey man getting along?' 'It's all right; he is paying his bill. It
fixes the whiskey and takes the shudder right out of it.' Somebody went
and took out a patent on this idea later.

"In the second year we put the Stock Exchange on the circuits of the
station, but were very fearful that there would be a combination of
heavy demand and a dark day, and that there would be an overloaded
station. We had an index like a steam-gauge, called an ampere-meter, to
indicate the amount of current going out. I was up at 65 Fifth Avenue
one afternoon. A sudden black cloud came up, and I telephoned to
Chinnock and asked him about the load. He said: 'We are up to the
muzzle, and everything is running all right.' By-and-by it became so
thick we could not see across the street. I telephoned again, and felt
something would happen, but fortunately it did not. I said to
Chinnock: 'How is it now?' He replied: 'Everything is red-hot, and the
ampere-meter has made seventeen revolutions.'"

In 1883 no such fittings as "fixture insulators" were known. It was
the common practice to twine the electric wires around the disused
gas-fixtures, fasten them with tape or string, and connect them to
lamp-sockets screwed into attachments under the gas-burners--elaborated
later into what was known as the "combination fixture." As a result
it was no uncommon thing to see bright sparks snapping between the
chandelier and the lighting wires during a sharp thunder-storm. A
startling manifestation of this kind happened at Sunbury, when the vivid
display drove nervous guests of the hotel out into the street, and the
providential storm led Mr. Luther Stieringer to invent the "insulating
joint." This separated the two lighting systems thoroughly, went into
immediate service, and is universally used to-day.

Returning to the more specific subject of pioneer plants of importance,
that at Brockton must be considered for a moment, chiefly for the reason
that the city was the first in the world to possess an Edison station
distributing current through an underground three-wire network of
conductors--the essentially modern contemporaneous practice,
standard twenty-five years later. It was proposed to employ pole-line
construction with overhead wires, and a party of Edison engineers drove
about the town in an open barouche with a blue-print of the circuits and
streets spread out on their knees, to determine how much tree-trimming
would be necessary. When they came to some heavily shaded spots, the
fine trees were marked "T" to indicate that the work in getting through
them would be "tough." Where the trees were sparse and the foliage was
thin, the same cheerful band of vandals marked the spots "E" to indicate
that there it would be "easy" to run the wires. In those days public
opinion was not so alive as now to the desirability of preserving
shade-trees, and of enhancing the beauty of a city instead of destroying
it. Brockton had a good deal of pride in its fine trees, and a strong
sentiment was very soon aroused against the mutilation proposed so
thoughtlessly. The investors in the enterprise were ready and anxious
to meet the extra cost of putting the wires underground. Edison's own
wishes were altogether for the use of the methods he had so carefully
devised; and hence that bustling home of shoe manufacture was spared
this infliction of more overhead wires.

The station equipment at Brockton consisted at first of three dynamos,
one of which was so arranged as to supply both sides of the system
during light loads by a breakdown switch connection. This arrangement
interfered with correct meter registration, as the meters on one side of
the system registered backward during the hours in which the combination
was employed. Hence, after supplying an all-night customer whose lamps
were on one side of the circuits, the company might be found to owe him
some thing substantial in the morning. Soon after the station went into
operation this ingenious plan was changed, and the third dynamo was
replaced by two others. The Edison construction department took entire
charge of the installation of the plant, and the formal opening was
attended on October 1, 1883, by Mr. Edison, who then remained a week in
ceaseless study and consultation over the conditions developed by
this initial three-wire underground plant. Some idea of the confidence
inspired by the fame of Edison at this period is shown by the fact that
the first theatre ever lighted from a central station by incandescent
lamps was designed this year, and opened in 1884 at Brockton with an
equipment of three hundred lamps. The theatre was never piped for gas!
It was also from the Brockton central station that current was first
supplied to a fire-engine house--another display of remarkably early
belief in the trustworthiness of the service, under conditions where
continuity of lighting was vital. The building was equipped in such a
manner that the striking of the fire-alarm would light every lamp in
the house automatically and liberate the horses. It was at this central
station that Lieutenant Sprague began his historic work on the electric
motor; and here that another distinguished engineer and inventor, Mr. H.
Ward Leonard, installed the meters and became meter man, in order that
he might study in every intimate detail the improvements and refinements
necessary in that branch of the industry.

The authors are indebted for these facts and some other data embodied in
this book to Mr. W. J. Jenks, who as manager of this plant here made his
debut in the Edison ranks. He had been connected with local telephone
interests, but resigned to take active charge of this plant, imbibing
quickly the traditional Edison spirit, working hard all day and sleeping
in the station at night on a cot brought there for that purpose. It
was a time of uninterrupted watchfulness. The difficulty of obtaining
engineers in those days to run the high-speed engines (three hundred and
fifty revolutions per minute) is well illustrated by an amusing incident
in the very early history of the station. A locomotive engineer had
been engaged, as it was supposed he would not be afraid of anything. One
evening there came a sudden flash of fire and a spluttering, sizzling
noise. There had been a short-circuit on the copper mains in the
station. The fireman hid behind the boiler and the engineer jumped out
of the window. Mr. Sprague realized the trouble, quickly threw off the
current and stopped the engine.

Mr. Jenks relates another humorous incident in connection with this
plant: "One night I heard a knock at the office door, and on opening it
saw two well-dressed ladies, who asked if they might be shown through.
I invited them in, taking them first to the boiler-room, where I showed
them the coal-pile, explaining that this was used to generate steam in
the boiler. We then went to the dynamo-room, where I pointed out the
machines converting the steam-power into electricity, appearing later in
the form of light in the lamps. After that they were shown the meters
by which the consumption of current was measured. They appeared to be
interested, and I proceeded to enter upon a comparison of coal made
into gas or burned under a boiler to be converted into electricity. The
ladies thanked me effusively and brought their visit to a close. As they
were about to go through the door, one of them turned to me and said:
'We have enjoyed this visit very much, but there is one question we
would like to ask: What is it that you make here?'"

The Brockton station was for a long time a show plant of the Edison
company, and had many distinguished visitors, among them being Prof.
Elihu Thomson, who was present at the opening, and Sir W. H. Preece,
of London. The engineering methods pursued formed the basis of similar
installations in Lawrence, Massachusetts, in November, 1883; in Fall
River, Massachusetts, in December, 1883; and in Newburgh, New York, the
following spring.

Another important plant of this period deserves special mention, as it
was the pioneer in the lighting of large spaces by incandescent lamps.
This installation of five thousand lamps on the three-wire system was
made to illuminate the buildings at the Louisville, Kentucky,
Exposition in 1883, and, owing to the careful surveys, calculations,
and preparations of H. M. Byllesby and the late Luther Stieringer, was
completed and in operation within six weeks after the placing of the
order. The Jury of Awards, in presenting four medals to the Edison
company, took occasion to pay a high compliment to the efficiency of the
system. It has been thought by many that the magnificent success of
this plant did more to stimulate the growth of the incandescent lighting
business than any other event in the history of the Edison company. It
was literally the beginning of the electrical illumination of American
Expositions, carried later to such splendid displays as those of the
Chicago World's Fair in 1893, Buffalo in 1901, and St. Louis in 1904.

Thus the art was set going in the United States under many difficulties,
but with every sign of coming triumph. Reference has already been made
to the work abroad in Paris and London. The first permanent Edison
station in Europe was that at Milan, Italy, for which the order was
given as early as May, 1882, by an enterprising syndicate. Less than
a year later, March 3, 1883, the installation was ready and was put in
operation, the Theatre Santa Radegonda having been pulled down and a
new central-station building erected in its place--probably the first
edifice constructed in Europe for the specific purpose of incandescent
lighting. Here "Jumbos" were installed from time to time, until at
last there were no fewer than ten of them; and current was furnished
to customers with a total of nearly ten thousand lamps connected to the
mains. This pioneer system was operated continuously until February
9, 1900, or for a period of about seventeen years, when the sturdy old
machines, still in excellent condition, were put out of service, so that
a larger plant could be installed to meet the demand. This new plant
takes high-tension polyphase current from a water-power thirty or forty
miles away at Paderno, on the river Adda, flowing from the Apennines;
but delivers low-tension direct current for distribution to the regular
Edison three-wire system throughout Milan.

About the same time that southern Europe was thus opened up to the
new system, South America came into line, and the first Edison central
station there was installed at Santiago, Chile, in the summer of 1883,
under the supervision of Mr. W. N. Stewart. This was the result of the
success obtained with small isolated plants, leading to the formation of
an Edison company. It can readily be conceived that at such an extreme
distance from the source of supply of apparatus the plant was subject to
many peculiar difficulties from the outset, of which Mr. Stewart speaks
as follows: "I made an exhibition of the 'Jumbo' in the theatre
at Santiago, and on the first evening, when it was filled with the
aristocracy of the city, I discovered to my horror that the binding wire
around the armature was slowly stripping off and going to pieces. We had
no means of boring out the field magnets, and we cut grooves in them.
I think the machine is still running (1907). The station went into
operation soon after with an equipment of eight Edison 'K' dynamos with
certain conditions inimical to efficiency, but which have not hindered
the splendid expansion of the local system. With those eight dynamos we
had four belts between each engine and the dynamo. The steam pressure
was limited to seventy-five pounds per square inch. We had two-wire
underground feeders, sent without any plans or specifications for their
installation. The station had neither voltmeter nor ammeter. The current
pressure was regulated by a galvanometer. We were using coal costing $12
a ton, and were paid for our light in currency worth fifty cents on the
dollar. The only thing I can be proud of in connection with the plant is
the fact that I did not design it, that once in a while we made out to
pay its operating expenses, and that occasionally we could run it for
three months without a total breakdown."

It was not until 1885 that the first Edison station in Germany was
established; but the art was still very young, and the plant represented
pioneer lighting practice in the Empire. The station at Berlin comprised
five boilers, and six vertical steam-engines driving by belts twelve
Edison dynamos, each of about fifty-five horse-power capacity. A model
of this station is preserved in the Deutschen Museum at Munich. In the
bulletin of the Berlin Electricity Works for May, 1908, it is said with
regard to the events that led up to the creation of the system, as noted
already at the Rathenau celebration: "The year 1881 was a mile-stone
in the history of the Allgemeine Elektricitaets Gesellschaft. The
International Electrical Exposition at Paris was intended to place
before the eyes of the civilized world the achievements of the
century. Among the exhibits of that Exposition was the Edison system
of incandescent lighting. IT BECAME THE BASIS OF MODERN HEAVY
CURRENT TECHNICS." The last phrase is italicized as being a happy and
authoritative description, as well as a tribute.

This chapter would not be complete if it failed to include some
reference to a few of the earlier isolated plants of a historic
character. Note has already been made of the first Edison plants afloat
on the Jeannette and Columbia, and the first commercial plant in the New
York lithographic establishment. The first mill plant was placed in the
woollen factory of James Harrison at Newburgh, New York, about September
15, 1881. A year later, Mr. Harrison wrote with some pride: "I believe
my mill was the first lighted with your electric light, and therefore
may be called No. 1. Besides being job No. 1 it is a No. 1 job, and a
No. 1 light, being better and cheaper than gas and absolutely safe as
to fire." The first steam-yacht lighted by incandescent lamps was James
Gordon Bennett's Namouna, equipped early in 1882 with a plant for one
hundred and twenty lamps of eight candlepower, which remained in use
there many years afterward.

The first Edison plant in a hotel was started in October, 1881, at the
Blue Mountain House in the Adirondacks, and consisted of two "Z" dynamos
with a complement of eight and sixteen candle lamps. The hotel is
situated at an elevation of thirty-five hundred feet above the sea, and
was at that time forty miles from the railroad. The machinery was taken
up in pieces on the backs of mules from the foot of the mountain. The
boilers were fired by wood, as the economical transportation of coal was
a physical impossibility. For a six-hour run of the plant one-quarter of
a cord of wood was required, at a cost of twenty-five cents per cord.

The first theatre in the United States to be lighted by an Edison
isolated plant was the Bijou Theatre, Boston. The installation of
boilers, engines, dynamos, wiring, switches, fixtures, three stage
regulators, and six hundred and fifty lamps, was completed in eleven
days after receipt of the order, and the plant was successfully operated
at the opening of the theatre, on December 12, 1882.

The first plant to be placed on a United States steamship was the
one consisting of an Edison "Z" dynamo and one hundred and twenty
eight-candle lamps installed on the Fish Commission's steamer Albatross
in 1883. The most interesting feature of this installation was the
employment of special deep-sea lamps, supplied with current through a
cable nine hundred and forty feet in length, for the purpose of alluring
fish. By means of the brilliancy of the lamps marine animals in the
lower depths were attracted and then easily ensnared.



CHAPTER XVIII

THE ELECTRIC RAILWAY

EDISON had no sooner designed his dynamo in 1879 than he adopted the
same form of machine for use as a motor. The two are shown in the
Scientific American of October 18, 1879, and are alike, except that
the dynamo is vertical and the motor lies in a horizontal position,
the article remarking: "Its construction differs but slightly from the
electric generator." This was but an evidence of his early appreciation
of the importance of electricity as a motive power; but it will probably
surprise many people to know that he was the inventor of an electric
motor before he perfected his incandescent lamp. His interest in the
subject went back to his connection with General Lefferts in the days of
the evolution of the stock ticker. While Edison was carrying on his shop
at Newark, New Jersey, there was considerable excitement in electrical
circles over the Payne motor, in regard to the alleged performance of
which Governor Cornell of New York and other wealthy capitalists were
quite enthusiastic. Payne had a shop in Newark, and in one small room
was the motor, weighing perhaps six hundred pounds. It was of circular
form, incased in iron, with the ends of several small magnets sticking
through the floor. A pulley and belt, connected to a circular saw larger
than the motor, permitted large logs of oak timber to be sawed with ease
with the use of two small cells of battery. Edison's friend, General
Lefferts, had become excited and was determined to invest a large sum
of money in the motor company, but knowing Edison's intimate familiarity
with all electrical subjects he was wise enough to ask his young expert
to go and see the motor with him. At an appointed hour Edison went to
the office of the motor company and found there the venerable Professor
Morse, Governor Cornell, General Lefferts, and many others who had been
invited to witness a performance of the motor. They all proceeded to the
room where the motor was at work. Payne put a wire in the binding-post
of the battery, the motor started, and an assistant began sawing a heavy
oak log. It worked beautifully, and so great was the power developed,
apparently, from the small battery, that Morse exclaimed: "I am thankful
that I have lived to see this day." But Edison kept a close watch on the
motor. The results were so foreign to his experience that he knew there
was a trick in it. He soon discovered it. While holding his hand on the
frame of the motor he noticed a tremble coincident with the exhaust of
an engine across the alleyway, and he then knew that the power came from
the engine by a belt under the floor, shifted on and off by a magnet,
the other magnets being a blind. He whispered to the General to put
his hand on the frame of the motor, watch the exhaust, and note the
coincident tremor. The General did so, and in about fifteen seconds he
said: "Well, Edison, I must go now. This thing is a fraud." And thus
he saved his money, although others not so shrewdly advised were easily
persuaded to invest by such a demonstration.

A few years later, in 1878, Edison went to Wyoming with a group of
astronomers, to test his tasimeter during an eclipse of the sun, and
saw the land white to harvest. He noticed the long hauls to market or
elevator that the farmers had to make with their loads of grain at great
expense, and conceived the idea that as ordinary steam-railroad service
was too costly, light electric railways might be constructed that could
be operated automatically over simple tracks, the propelling motors
being controlled at various points. Cheap to build and cheap to
maintain, such roads would be a great boon to the newer farming regions
of the West, where the highways were still of the crudest character, and
where transportation was the gravest difficulty with which the settlers
had to contend. The plan seems to have haunted him, and he had no
sooner worked out a generator and motor that owing to their low internal
resistance could be operated efficiently, than he turned his hand to the
practical trial of such a railroad, applicable to both the haulage of
freight and the transportation of passengers. Early in 1880, when the
tremendous rush of work involved in the invention of the incandescent
lamp intermitted a little, he began the construction of a stretch of
track close to the Menlo Park laboratory, and at the same time built an
electric locomotive to operate over it.

This is a fitting stage at which to review briefly what had been done
in electric traction up to that date. There was absolutely no art, but
there had been a number of sporadic and very interesting experiments
made. The honor of the first attempt of any kind appears to rest with
this country and with Thomas Davenport, a self-trained blacksmith, of
Brandon, Vermont, who made a small model of a circular electric railway
and cars in 1834, and exhibited it the following year in Springfield,
Boston, and other cities. Of course he depended upon batteries for
current, but the fundamental idea was embodied of using the track for
the circuit, one rail being positive and the other negative, and the
motor being placed across or between them in multiple arc to receive
the current. Such are also practically the methods of to-day. The little
model was in good preservation up to the year 1900, when, being shipped
to the Paris Exposition, it was lost, the steamer that carried it
foundering in mid-ocean. The very broad patent taken out by this simple
mechanic, so far ahead of his times, was the first one issued in
America for an electric motor. Davenport was also the first man to apply
electric power to the printing-press, in 1840. In his traction work he
had a close second in Robert Davidson, of Aberdeen, Scotland, who in
1839 operated both a lathe and a small locomotive with the motor he had
invented. His was the credit of first actually carrying passengers--two
at a time, over a rough plank road--while it is said that his was the
first motor to be tried on real tracks, those of the Edinburgh-Glasgow
road, making a speed of four miles an hour.

The curse of this work and of all that succeeded it for a score of years
was the necessity of depending upon chemical batteries for current, the
machine usually being self-contained and hauling the batteries along
with itself, as in the case of the famous Page experiments in April,
1851, when a speed of nineteen miles an hour was attained on the line
of the Washington & Baltimore road. To this unfruitful period belonged,
however, the crude idea of taking the current from a stationary source
of power by means of an overhead contact, which has found its practical
evolution in the modern ubiquitous trolley; although the patent for
this, based on his caveat of 1879, was granted several years later
than that to Stephen D. Field, for the combination of an electric motor
operated by means of a current from a stationary dynamo or source of
electricity conducted through the rails. As a matter of fact, in 1856
and again in 1875, George F. Green, a jobbing machinist, of Kalamazoo,
Michigan, built small cars and tracks to which current was fed from a
distant battery, enough energy being utilized to haul one hundred pounds
of freight or one passenger up and down a "road" two hundred feet long.
All the work prior to the development of the dynamo as a source of
current was sporadic and spasmodic, and cannot be said to have left any
trace on the art, though it offered many suggestions as to operative
methods.

The close of the same decade of the nineteenth century that saw the
electric light brought to perfection, saw also the realization in
practice of all the hopes of fifty years as to electric traction. Both
utilizations depended upon the supply of current now cheaply obtainable
from the dynamo. These arts were indeed twins, feeding at inexhaustible
breasts. In 1879, at the Berlin Exhibition, the distinguished firm of
Siemens, to whose ingenuity and enterprise electrical development owes
so much, installed a road about one-third of a mile in length, over
which the locomotive hauled a train of three small cars at a speed of
about eight miles an hour, carrying some twenty persons every trip.
Current was fed from a dynamo to the motor through a central third rail,
the two outer rails being joined together as the negative or return
circuit. Primitive but essentially successful, this little road made a
profound impression on the minds of many inventors and engineers, and
marked the real beginning of the great new era, which has already seen
electricity applied to the operation of main lines of trunk railways.
But it is not to be supposed that on the part of the public there was
any great amount of faith then discernible; and for some years the
pioneers had great difficulty, especially in this country, in raising
money for their early modest experiments. Of the general conditions at
this moment Frank J. Sprague says in an article in the Century Magazine
of July, 1905, on the creation of the new art: "Edison was perhaps
nearer the verge of great electric-railway possibilities than any other
American. In the face of much adverse criticism he had developed the
essentials of the low-internal-resistance dynamo with high-resistance
field, and many of the essential features of multiple-arc distribution,
and in 1880 he built a small road at his laboratory at Menlo Park."

On May 13th of the year named this interesting road went into operation
as the result of hard and hurried work of preparation during the spring
months. The first track was about a third of a mile in length, starting
from the shops, following a country road, passing around a hill at the
rear and curving home, in the general form of the letter "U." The rails
were very light. Charles T. Hughes, who went with Edison in 1879,
and was in charge of much of the work, states that they were "second"
street-car rails, insulated with tar canvas paper and things of that
sort--"asphalt." They were spiked down on ordinary sleepers laid upon
the natural grade, and the gauge was about three feet six inches. At one
point the grade dropped some sixty feet in a distance of three hundred,
and the curves were of recklessly short radius. The dynamos supplying
current to the road were originally two of the standard size "Z"
machines then being made at the laboratory, popularly known throughout
the Edison ranks as "Longwaisted Mary Anns," and the circuits from these
were carried out to the rails by underground conductors. They were not
large--about twelve horse-power each--generating seventy-five amperes
of current at one hundred and ten volts, so that not quite twenty-five
horse-power of electrical energy was available for propulsion.

The locomotive built while the roadbed was getting ready was a
four-wheeled iron truck, an ordinary flat dump-car about six feet long
and four feet wide, upon which was mounted a "Z" dynamo used as a motor,
so that it had a capacity of about twelve horsepower. This machine was
laid on its side, with the armature end coming out at the front of the
locomotive, and the motive power was applied to the driving-axle by a
cumbersome series of friction pulleys. Each wheel of the locomotive had
a metal rim and a centre web of wood or papier-mache, and the current
picked up by one set of wheels was carried through contact brushes and
a brass hub to the motor; the circuit back to the track, or other rail,
being closed through the other wheels in a similar manner. The motor had
its field-magnet circuit in permanent connection as a shunt across the
rails, protected by a crude bare copper-wire safety-catch. A switch in
the armature circuit enabled the motorman to reverse the direction of
travel by reversing the current flow through the armature coils.

Things went fairly well for a time on that memorable Thursday afternoon,
when all the laboratory force made high holiday and scrambled for
foothold on the locomotive for a trip; but the friction gearing was
not equal to the sudden strain put upon it during one run and went to
pieces. Some years later, also, Daft again tried friction gear in his
historical experiments on the Manhattan Elevated road, but the results
were attended with no greater success. The next resort of Edison was to
belts, the armature shafting belted to a countershaft on the locomotive
frame, and the countershaft belted to a pulley on the car-axle. The
lever which threw the former friction gear into adjustment was made to
operate an idler pulley for tightening the axle-belt. When the motor
was started, the armature was brought up to full revolution and then the
belt was tightened on the car-axle, compelling motion of the locomotive.
But the belts were liable to slip a great deal in the process, and the
chafing of the belts charred them badly. If that did not happen, and if
the belt was made taut suddenly, the armature burned out--which it
did with disconcerting frequency. The next step was to use a number of
resistance-boxes in series with the armature, so that the locomotive
could start with those in circuit, and then the motorman could bring it
up to speed gradually by cutting one box out after the other. To stop
the locomotive, the armature circuit was opened by the main switch,
stopping the flow of current, and then brakes were applied by long
levers. Matters generally and the motors in particular went much better,
even if the locomotive was so freely festooned with resistance-boxes
all of perceptible weight and occupying much of the limited space. These
details show forcibly and typically the painful steps of advance that
every inventor in this new field had to make in the effort to reach not
alone commercial practicability, but mechanical feasibility. It was all
empirical enough; but that was the only way open even to the highest
talent.

Smugglers landing laces and silks have been known to wind them around
their bodies, as being less ostentatious than carrying them in a trunk.
Edison thought his resistance-boxes an equally superfluous display, and
therefore ingeniously wound some copper resistance wire around one of
the legs of the motor field magnet, where it was out of the way, served
as a useful extra field coil in starting up the motor, and dismissed
most of the boxes back to the laboratory--a few being retained under the
seat for chance emergencies. Like the boxes, this coil was in series
with the armature, and subject to plugging in and out at will by the
motorman. Thus equipped, the locomotive was found quite satisfactory,
and long did yeoman service. It was given three cars to pull, one an
open awning-car with two park benches placed back to back; one a flat
freight-car, and one box-car dubbed the "Pullman," with which Edison
illustrated a system of electric braking. Although work had been begun
so early in the year, and the road had been operating since May, it was
not until July that Edison executed any application for patents on his
"electromagnetic railway engine," or his ingenious braking system. Every
inventor knows how largely his fate lies in the hands of a competent and
alert patent attorney, in both the preparation and the prosecution
of his case; and Mr. Sprague is justified in observing in his Century
article: "The paucity of controlling claims obtained in these early
patents is remarkable." It is notorious that Edison did not then enjoy
the skilful aid in safeguarding his ideas that he commanded later.

The daily newspapers and technical journals lost no time in bringing the
road to public attention, and the New York Herald of June 25th was swift
to suggest that here was the locomotive that would be "most pleasing to
the average New Yorker, whose head has ached with noise, whose eyes have
been filled with dust, or whose clothes have been ruined with oil." A
couple of days later, the Daily Graphic illustrated and described
the road and published a sketch of a one-hundred-horse-power electric
locomotive for the use of the Pennsylvania Railroad between Perth Amboy
and Rahway. Visitors, of course, were numerous, including many curious,
sceptical railroad managers, few if any of whom except Villard could
see the slightest use for the new motive power. There is, perhaps,
some excuse for such indifference. No men in the world have more new
inventions brought to them than railroad managers, and this was the
rankest kind of novelty. It was not, indeed, until a year later, in
May, 1881, that the first regular road collecting fares was put in
operation--a little stretch of one and a half miles from Berlin to
Lichterfelde, with one miniature motorcar. Edison was in reality doing
some heavy electric-railway engineering, his apparatus full of ideas,
suggestions, prophecies; but to the operators of long trunk lines it
must have seemed utterly insignificant and "excellent fooling."

Speaking of this situation, Mr. Edison says: "One day Frank Thomson,
the President of the Pennsylvania Railroad, came out to see the electric
light and the electric railway in operation. The latter was then about
a mile long. He rode on it. At that time I was getting out plans to
make an electric locomotive of three hundred horse-power with six-foot
drivers, with the idea of showing people that they could dispense with
their steam locomotives. Mr. Thomson made the objection that it was
impracticable, and that it would be impossible to supplant steam. His
great experience and standing threw a wet blanket on my hopes. But
I thought he might perhaps be mistaken, as there had been many such
instances on record. I continued to work on the plans, and about three
years later I started to build the locomotive at the works at Goerck
Street, and had it about finished when I was switched off on some other
work. One of the reasons why I felt the electric railway to be eminently
practical was that Henry Villard, the President of the Northern Pacific,
said that one of the greatest things that could be done would be to
build right-angle feeders into the wheat-fields of Dakota and bring in
the wheat to the main lines, as the farmers then had to draw it from
forty to eighty miles. There was a point where it would not pay to
raise it at all; and large areas of the country were thus of no value.
I conceived the idea of building a very light railroad of narrow gauge,
and had got all the data as to the winds on the plains, and found that
it would be possible with very large windmills to supply enough power to
drive those wheat trains."

Among others who visited the little road at this juncture were persons
interested in the Manhattan Elevated system of New York, on which
experiments were repeatedly tried later, but which was not destined
to adopt a method so obviously well suited to all the conditions until
after many successful demonstrations had been made on elevated roads
elsewhere. It must be admitted that Mr. Edison was not very profoundly
impressed with the desire entertained in that quarter to utilize any
improvement, for he remarks: "When the Elevated Railroad in New York, up
Sixth Avenue, was started there was a great clamor about the noise, and
injunctions were threatened. The management engaged me to make a report
on the cause of the noise. I constructed an instrument that would record
the sound, and set out to make a preliminary report, but I found that
they never intended to do anything but let the people complain."

It was upon the co-operation of Villard that Edison fell back, and an
agreement was entered into between them on September 14, 1881, which
provided that the latter would "build two and a half miles of electric
railway at Menlo Park, equipped with three cars, two locomotives, one
for freight, and one for passengers, capacity of latter sixty miles an
hour. Capacity freight engine, ten tons net freight; cost of handling
a ton of freight per mile per horse-power to be less than ordinary
locomotive.... If experiments are successful, Villard to pay actual
outlay in experiments, and to treat with the Light Company for the
installation of at least fifty miles of electric railroad in the wheat
regions." Mr. Edison is authority for the statement that Mr. Villard
advanced between $35,000 and $40,000, and that the work done was very
satisfactory; but it did not end at that time in any practical results,
as the Northern Pacific went into the hands of a receiver, and Mr.
Villard's ability to help was hopelessly crippled. The directors of the
Edison Electric Light Company could not be induced to have anything
to do with the electric railway, and Mr. Insull states that the money
advanced was treated by Mr. Edison as a personal loan and repaid to
Mr. Villard, for whom he had a high admiration and a strong feeling
of attachment. Mr. Insull says: "Among the financial men whose close
personal friendship Edison enjoyed, I would mention Henry Villard, who,
I think, had a higher appreciation of the possibilities of the Edison
system than probably any other man of his time in Wall Street. He
dropped out of the business at the time of the consolidation of the
Thomson-Houston Company with the Edison General Electric Company; but
from the earliest days of the business, when it was in its experimental
period, when the Edison light and power system was but an idea, down
to the day of his death, Henry Villard continued a strong supporter not
only with his influence, but with his money. He was the first capitalist
to back individually Edison's experiments in electric railways."

In speaking of his relationships with Mr. Villard at this time, Edison
says: "When Villard was all broken down, and in a stupor caused by his
disasters in connection with the Northern Pacific, Mrs. Villard sent for
me to come and cheer him up. It was very difficult to rouse him from his
despair and apathy, but I talked about the electric light to him, and
its development, and told him that it would help him win it all back and
put him in his former position. Villard made his great rally; he made
money out of the electric light; and he got back control of the Northern
Pacific. Under no circumstances can a hustler be kept down. If he is
only square, he is bound to get back on his feet. Villard has often been
blamed and severely criticised, but he was not the only one to blame.
His engineers had spent $20,000,000 too much in building the road, and
it was not his fault if he found himself short of money, and at that
time unable to raise any more."

Villard maintained his intelligent interest in electric-railway
development, with regard to which Edison remarks: "At one time Mr.
Villard got the idea that he would run the mountain division of the
Northern Pacific Railroad by electricity. He asked me if it could be
done. I said: 'Certainly, it is too easy for me to undertake; let some
one else do it.' He said: 'I want you to tackle the problem,' and
he insisted on it. So I got up a scheme of a third rail and shoe and
erected it in my yard here in Orange. When I got it all ready, he had
all his division engineers come on to New York, and they came over here.
I showed them my plans, and the unanimous decision of the engineers was
that it was absolutely and utterly impracticable. That system is on the
New York Central now, and was also used on the New Haven road in its
first work with electricity."

At this point it may be well to cite some other statements of Edison as
to kindred work, with which he has not usually been associated in the
public mind. "In the same manner I had worked out for the Manhattan
Elevated Railroad a system of electric trains, and had the control of
each car centred at one place--multiple control. This was afterward
worked out and made practical by Frank Sprague. I got up a slot contact
for street railways, and have a patent on it--a sliding contact in a
slot. Edward Lauterbach was connected with the Third Avenue Railroad in
New York--as counsel--and I told him he was making a horrible mistake
putting in the cable. I told him to let the cable stand still and send
electricity through it, and he would not have to move hundreds of tons
of metal all the time. He would rue the day when he put the cable in."
It cannot be denied that the prophecy was fulfilled, for the cable was
the beginning of the frightful financial collapse of the system, and was
torn out in a few years to make way for the triumphant "trolley in the
slot."

Incidental glimpses of this work are both amusing and interesting.
Hughes, who was working on the experimental road with Mr. Edison,
tells the following story: "Villard sent J. C. Henderson, one of his
mechanical engineers, to see the road when it was in operation, and we
went down one day--Edison, Henderson, and I--and went on the locomotive.
Edison ran it, and just after we started there was a trestle sixty feet
long and seven feet deep, and Edison put on all the power. When we went
over it we must have been going forty miles an hour, and I could see the
perspiration come out on Henderson. After we got over the trestle and
started on down the track, Henderson said: 'When we go back I will walk.
If there is any more of that kind of running I won't be in it myself.'"
To the correspondence of Grosvenor P. Lowrey we are indebted for a
similar reminiscence, under date of June 5, 1880: "Goddard and I have
spent a part of the day at Menlo, and all is glorious. I have ridden at
forty miles an hour on Mr. Edison's electric railway--and we ran off the
track. I protested at the rate of speed over the sharp curves, designed
to show the power of the engine, but Edison said they had done it often.
Finally, when the last trip was to be taken, I said I did not like
it, but would go along. The train jumped the track on a short curve,
throwing Kruesi, who was driving the engine, with his face down in the
dirt, and another man in a comical somersault through some underbrush.
Edison was off in a minute, jumping and laughing, and declaring it a
most beautiful accident. Kruesi got up, his face bleeding and a good
deal shaken; and I shall never forget the expression of voice and face
in which he said, with some foreign accent: 'Oh! yes, pairfeckly safe.'
Fortunately no other hurts were suffered, and in a few minutes we had
the train on the track and running again."

All this rough-and-ready dealing with grades and curves was not mere
horse-play, but had a serious purpose underlying it, every trip having
its record as to some feature of defect or improvement. One particular
set of experiments relating to such work was made on behalf of visitors
from South America, and were doubtless the first tests of the kind made
for that continent, where now many fine electric street and interurban
railway systems are in operation. Mr. Edison himself supplies the
following data: "During the electric-railway experiments at Menlo Park,
we had a short spur of track up one of the steep gullies. The experiment
came about in this way. Bogota, the capital of Columbia, is reached on
muleback--or was--from Honda on the headwaters of the Magdalena River.
There were parties who wanted to know if transportation over the mule
route could not be done by electricity. They said the grades were
excessive, and it would cost too much to do it with steam locomotives,
even if they could climb the grades. I said: 'Well, it can't be much
more than 45 per cent.; we will try that first. If it will do that it
will do anything else.' I started at 45 per cent. I got up an electric
locomotive with a grip on the rail by which it went up the 45 per cent.
grade. Then they said the curves were very short. I put the curves in.
We started the locomotive with nobody on it, and got up to twenty miles
an hour, taking those curves of very short radius; but it was weeks
before we could prevent it from running off. We had to bank the tracks
up to an angle of thirty degrees before we could turn the curve and stay
on. These Spanish parties were perfectly satisfied we could put in
an electric railway from Honda to Bogota successfully, and then they
disappeared. I have never seen them since. As usual, I paid for the
experiment."

In the spring of 1883 the Electric Railway Company of America was
incorporated in the State of New York with a capital of $2,000,000 to
develop the patents and inventions of Edison and Stephen D. Field,
to the latter of whom the practical work of active development was
confided, and in June of the same year an exhibit was made at the
Chicago Railway Exposition, which attracted attention throughout
the country, and did much to stimulate the growing interest in
electric-railway work. With the aid of Messrs. F. B. Rae, C. L. Healy,
and C. O. Mailloux a track and locomotive were constructed for the
company by Mr. Field and put in service in the gallery of the main
exhibition building. The track curved sharply at either end on a radius
of fifty-six feet, and the length was about one-third of a mile. The
locomotive named "The Judge," after Justice Field, an uncle of Stephen
D. Field, took current from a central rail between the two outer rails,
that were the return circuit, the contact being a rubbing wire brush on
each side of the "third rail," answering the same purpose as the contact
shoe of later date. The locomotive weighed three tons, was twelve feet
long, five feet wide, and made a speed of nine miles an hour with a
trailer car for passengers. Starting on June 5th, when the exhibition
closed on June 23d this tiny but typical road had operated for over 118
hours, had made over 446 miles, and had carried 26,805 passengers. After
the exposition closed the outfit was taken during the same year to
the exposition at Louisville, Kentucky, where it was also successful,
carrying a large number of passengers. It deserves note that at Chicago
regular railway tickets were issued to paying passengers, the first ever
employed on American electric railways.

With this modest but brilliant demonstration, to which the illustrious
names of Edison and Field were attached, began the outburst of
excitement over electric railways, very much like the eras of
speculation and exploitation that attended only a few years earlier
the introduction of the telephone and the electric light, but with such
significant results that the capitalization of electric roads in America
is now over $4,000,000,000, or twice as much as that of the other two
arts combined. There was a tremendous rush into the electric-railway
field after 1883, and an outburst of inventive activity that has rarely,
if ever, been equalled. It is remarkable that, except Siemens, no
European achieved fame in this early work, while from America the ideas
and appliances of Edison, Van Depoele, Sprague, Field, Daft, and Short
have been carried and adopted all over the world.

Mr. Edison was consulting electrician for the Electric Railway Company,
but neither a director nor an executive officer. Just what the trouble
was as to the internal management of the corporation it is hard to
determine a quarter of a century later; but it was equipped with all
essential elements to dominate an art in which after its first efforts
it remained practically supine and useless, while other interests
forged ahead and reaped both the profit and the glory. Dissensions arose
between the representatives of the Field and Edison interests, and
in April, 1890, the Railway Company assigned its rights to the Edison
patents to the Edison General Electric Company, recently formed by
the consolidation of all the branches of the Edison light, power, and
manufacturing industry under one management. The only patent rights
remaining to the Railway Company were those under three Field patents,
one of which, with controlling claims, was put in suit June, 1890,
against the Jamaica & Brooklyn Road Company, a customer of the Edison
General Electric Company. This was, to say the least, a curious and
anomalous situation. Voluminous records were made by both parties to
the suit, and in the spring of 1894 the case was argued before the
late Judge Townsend, who wrote a long opinion dismissing the bill of
complaint. [15] The student will find therein a very complete and
careful study of the early electric-railway art. After this decision was
rendered, the Electric Railway Company remained for several years in a
moribund condition, and on the last day of 1896 its property was placed
in the hands of a receiver. In February of 1897 the receiver sold the
three Field patents to their original owner, and he in turn sold them to
the Westinghouse Electric and Manufacturing Company. The Railway Company
then went into voluntary dissolution, a sad example of failure to seize
the opportunity at the psychological moment, and on the part of the
inventor to secure any adequate return for years of effort and struggle
in founding one of the great arts. Neither of these men was squelched by
such a calamitous result, but if there were not something of bitterness
in their feelings as they survey what has come of their work, they would
not be human.

As a matter of fact, Edison retained a very lively interest in
electric-railway progress long after the pregnant days at Menlo Park,
one of the best evidences of which is an article in the New York
Electrical Engineer of November 18, 1891, which describes some important
and original experiments in the direction of adapting electrical
conditions to the larger cities. The overhead trolley had by that time
begun its victorious career, but there was intense hostility displayed
toward it in many places because of the inevitable increase in the
number of overhead wires, which, carrying, as they did, a current of
high voltage and large quantity, were regarded as a menace to life and
property. Edison has always manifested a strong objection to overhead
wires in cities, and urged placing them underground; and the outcry
against the overhead "deadly" trolley met with his instant sympathy.
His study of the problem brought him to the development of the modern
"substation," although the twists that later evolutions have given the
idea have left it scarcely recognizable.

     [Footnote 15: See 61 Fed. Rep. 655.]

Mr. Villard, as President of the Edison General Electric Company,
requested Mr. Edison, as electrician of the company, to devise a
street-railway system which should be applicable to the largest cities
where the use of the trolley would not be permitted, where the slot
conduit system would not be used, and where, in general, the details of
construction should be reduced to the simplest form. The limits imposed
practically were such as to require that the system should not cost more
than a cable road to install. Edison reverted to his ingenious lighting
plan of years earlier, and thus settled on a method by which
current should be conveyed from the power plant at high potential to
motor-generators placed below the ground in close proximity to the
rails. These substations would convert the current received at a
pressure of, say, one thousand volts to one of twenty volts available
between rail and rail, with a corresponding increase in the volume of
the current. With the utilization of heavy currents at low voltage it
became necessary, of course, to devise apparatus which should be able to
pick up with absolute certainty one thousand amperes of current at
this pressure through two inches of mud, if necessary. With his wonted
activity and fertility Edison set about devising such a contact, and
experimented with metal wheels under all conditions of speed and track
conditions. It was several months before he could convey one hundred
amperes by means of such contacts, but he worked out at last a
satisfactory device which was equal to the task. The next point was
to secure a joint between contiguous rails such as would permit of
the passage of several thousand amperes without introducing undue
resistance. This was also accomplished.

Objections were naturally made to rails out in the open on the street
surface carrying large currents at a potential of twenty volts. It was
said that vehicles with iron wheels passing over the tracks and spanning
the two rails would short-circuit the current, "chew" themselves up,
and destroy the dynamos generating the current by choking all that
tremendous amount of energy back into them. Edison tackled the objection
squarely and short-circuited his track with such a vehicle, but
succeeded in getting only about two hundred amperes through the wheels,
the low voltage and the insulating properties of the axle-grease being
sufficient to account for such a result. An iron bar was also used,
polished, and with a man standing on it to insure solid contact; but
only one thousand amperes passed through it--i.e., the amount required
by a single car, and, of course, much less than the capacity of the
generators able to operate a system of several hundred cars.

Further interesting experiments showed that the expected large leakage
of current from the rails in wet weather did not materialize. Edison
found that under the worst conditions with a wet and salted track, at a
potential difference of twenty volts between the two rails, the
extreme loss was only two and one-half horse-power. In this respect the
phenomenon followed the same rule as that to which telegraph wires are
subject--namely, that the loss of insulation is greater in damp, murky
weather when the insulators are covered with wet dust than during heavy
rains when the insulators are thoroughly washed by the action of the
water. In like manner a heavy rain-storm cleaned the tracks from
the accumulations due chiefly to the droppings of the horses, which
otherwise served largely to increase the conductivity. Of course, in dry
weather the loss of current was practically nothing, and, under ordinary
conditions, Edison held, his system was in respect to leakage and the
problems of electrolytic attack of the current on adjacent pipes, etc.,
as fully insulated as the standard trolley network of the day. The cost
of his system Mr. Edison placed at from $30,000 to $100,000 per mile of
double track, in accordance with local conditions, and in this respect
comparing very favorably with the cable systems then so much in favor
for heavy traffic. All the arguments that could be urged in support of
this ingenious system are tenable and logical at the present moment; but
the trolley had its way except on a few lines where the conduit-and-shoe
method was adopted; and in the intervening years the volume of traffic
created and handled by electricity in centres of dense population has
brought into existence the modern subway.

But down to the moment of the preparation of this biography, Edison has
retained an active interest in transportation problems, and his latest
work has been that of reviving the use of the storage battery for
street-car purposes. At one time there were a number of storage-battery
lines and cars in operation in such cities as Washington, New York,
Chicago, and Boston; but the costs of operation and maintenance
were found to be inordinately high as compared with those of the
direct-supply methods, and the battery cars all disappeared. The need
for them under many conditions remained, as, for example, in places
in Greater New York where the overhead trolley wires are forbidden as
objectionable, and where the ground is too wet or too often submerged
to permit of the conduit with the slot. Some of the roads in Greater
New York have been anxious to secure such cars, and, as usual, the most
resourceful electrical engineer and inventor of his times has made
the effort. A special experimental track has been laid at the Orange
laboratory, and a car equipped with the Edison storage battery and other
devices has been put under severe and extended trial there and in New
York.

Menlo Park, in ruin and decay, affords no traces of the early Edison
electric-railway work, but the crude little locomotive built by Charles
T. Hughes was rescued from destruction, and has become the property
of the Pratt Institute, of Brooklyn, to whose thousands of technical
students it is a constant example and incentive. It was loaned in 1904
to the Association of Edison Illuminating Companies, and by it exhibited
as part of the historical Edison collection at the St. Louis Exposition.



CHAPTER XIX

MAGNETIC ORE MILLING WORK

DURING the Hudson-Fulton celebration of October, 1909, Burgomaster Van
Leeuwen, of Amsterdam, member of the delegation sent officially from
Holland to escort the Half Moon and participate in the functions of the
anniversary, paid a visit to the Edison laboratory at Orange to see
the inventor, who may be regarded as pre-eminent among those of Dutch
descent in this country. Found, as usual, hard at work--this time on his
cement house, of which he showed the iron molds--Edison took occasion to
remark that if he had achieved anything worth while, it was due to the
obstinacy and pertinacity he had inherited from his forefathers.
To which it may be added that not less equally have the nature
of inheritance and the quality of atavism been exhibited in his
extraordinary predilection for the miller's art. While those Batavian
ancestors on the low shores of the Zuyder Zee devoted their energies to
grinding grain, he has been not less assiduous than they in reducing the
rocks of the earth itself to flour.

Although this phase of Mr. Edison's diverse activities is not as
generally known to the world as many others of a more popular character,
the milling of low-grade auriferous ores and the magnetic separation of
iron ores have been subjects of engrossing interest and study to him for
many years. Indeed, his comparatively unknown enterprise of separating
magnetically and putting into commercial form low-grade iron ore,
as carried on at Edison, New Jersey, proved to be the most colossal
experiment that he has ever made.

If a person qualified to judge were asked to answer categorically as to
whether or not that enterprise was a failure, he could truthfully answer
both yes and no. Yes, in that circumstances over which Mr. Edison had no
control compelled the shutting down of the plant at the very moment of
success; and no, in that the mechanically successful and commercially
practical results obtained, after the exercise of stupendous efforts
and the expenditure of a fortune, are so conclusive that they must
inevitably be the reliance of many future iron-masters. In other words,
Mr. Edison was at least a quarter of a century ahead of the times in the
work now to be considered.

Before proceeding to a specific description of this remarkable
enterprise, however, let us glance at an early experiment in separating
magnetic iron sands on the Atlantic sea-shore: "Some years ago I heard
one day that down at Quogue, Long Island, there were immense deposits
of black magnetic sand. This would be very valuable if the iron could
be separated from the sand. So I went down to Quogue with one of my
assistants and saw there for miles large beds of black sand on the beach
in layers from one to six inches thick--hundreds of thousands of tons.
My first thought was that it would be a very easy matter to concentrate
this, and I found I could sell the stuff at a good price. I put up a
small plant, but just as I got it started a tremendous storm came
up, and every bit of that black sand went out to sea. During the
twenty-eight years that have intervened it has never come back." This
incident was really the prelude to the development set forth in this
chapter.

In the early eighties Edison became familiar with the fact that the
Eastern steel trade was suffering a disastrous change, and that business
was slowly drifting westward, chiefly by reason of the discovery and
opening up of enormous deposits of high-grade iron ore in the upper
peninsula of Michigan. This ore could be excavated very cheaply by
means of improved mining facilities, and transported at low cost to lake
ports. Hence the iron and steel mills east of the Alleghanies--compelled
to rely on limited local deposits of Bessemer ore, and upon foreign
ores which were constantly rising in value--began to sustain a serious
competition with Western mills, even in Eastern markets.

Long before this situation arose, it had been recognized by Eastern
iron-masters that sooner or later the deposits of high-grade ore would
be exhausted, and, in consequence, there would ensue a compelling
necessity to fall back on the low-grade magnetic ores. For many years it
had been a much-discussed question how to make these ores available
for transportation to distant furnaces. To pay railroad charges on
ores carrying perhaps 80 to 90 per cent. of useless material would
be prohibitive. Hence the elimination of the worthless "gangue" by
concentration of the iron particles associated with it, seemed to be the
only solution of the problem.

Many attempts had been made in by-gone days to concentrate the iron in
such ores by water processes, but with only a partial degree of success.
The impossibility of obtaining a uniform concentrate was a most serious
objection, had there not indeed been other difficulties which rendered
this method commercially impracticable. It is quite natural, therefore,
that the idea of magnetic separation should have occurred to many
inventors. Thus we find numerous instances throughout the last century
of experiments along this line; and particularly in the last forty or
fifty years, during which various attempts have been made by others than
Edison to perfect magnetic separation and bring it up to something like
commercial practice. At the time he took up the matter, however, no
one seems to have realized the full meaning of the tremendous problems
involved.

From 1880 to 1885, while still very busy in the development of his
electric-light system, Edison found opportunity to plan crushing and
separating machinery. His first patent on the subject was applied for
and issued early in 1880. He decided, after mature deliberation, that
the magnetic separation of low-grade ores on a colossal scale at a low
cost was the only practical way of supplying the furnace-man with a high
quality of iron ore. It was his opinion that it was cheaper to quarry
and concentrate lean ore in a big way than to attempt to mine, under
adverse circumstances, limited bodies of high-grade ore. He appreciated
fully the serious nature of the gigantic questions involved; and his
plans were laid with a view to exercising the utmost economy in the
design and operation of the plant in which he contemplated the automatic
handling of many thousands of tons of material daily. It may be stated
as broadly true that Edison engineered to handle immense masses of stuff
automatically, while his predecessors aimed chiefly at close separation.

Reduced to its barest, crudest terms, the proposition of magnetic
separation is simplicity itself. A piece of the ore (magnetite) may be
reduced to powder and the ore particles separated therefrom by the help
of a simple hand magnet. To elucidate the basic principle of Edison's
method, let the crushed ore fall in a thin stream past such a magnet.
The magnetic particles are attracted out of the straight line of the
falling stream, and being heavy, gravitate inwardly and fall to one
side of a partition placed below. The non-magnetic gangue descends in
a straight line to the other side of the partition. Thus a complete
separation is effected.

Simple though the principle appears, it was in its application to vast
masses of material and in the solving of great engineering problems
connected therewith that Edison's originality made itself manifest in
the concentrating works that he established in New Jersey, early in the
nineties. Not only did he develop thoroughly the refining of the crushed
ore, so that after it had passed the four hundred and eighty magnets
in the mill, the concentrates came out finally containing 91 to 93 per
cent. of iron oxide, but he also devised collateral machinery, methods
and processes all fundamental in their nature. These are too numerous to
specify in detail, as they extended throughout the various ramifications
of the plant, but the principal ones are worthy of mention, such as:

     The giant rolls (for crushing).
     Intermediate rolls.
     Three-high rolls.
     Giant cranes (215 feet long span).
     Vertical dryer.
     Belt conveyors.
     Air separation.
     Mechanical separation of phosphorus.
     Briquetting.

That Mr. Edison's work was appreciated at the time is made evident
by the following extract from an article describing the Edison
plant, published in The Iron Age of October 28, 1897; in which, after
mentioning his struggle with adverse conditions, it says: "There is very
little that is showy, from the popular point of view, in the gigantic
work which Mr. Edison has done during these years, but to those who are
capable of grasping the difficulties encountered, Mr. Edison appears
in the new light of a brilliant constructing engineer grappling with
technical and commercial problems of the highest order. His genius as
an inventor is revealed in many details of the great concentrating
plant.... But to our mind, originality of the highest type as a
constructor and designer appears in the bold way in which he sweeps
aside accepted practice in this particular field and attains results not
hitherto approached. He pursues methods in ore-dressing at which
those who are trained in the usual practice may well stand aghast.
But considering the special features of the problems to be solved, his
methods will be accepted as those economically wise and expedient."

A cursory glance at these problems will reveal their import. Mountains
must be reduced to dust; all this dust must be handled in detail, so
to speak, and from it must be separated the fine particles of iron
constituting only one-fourth or one-fifth of its mass; and then this
iron-ore dust must be put into such shape that it could be
commercially shipped and used. One of the most interesting and striking
investigations made by Edison in this connection is worthy of note,
and may be related in his own words: "I felt certain that there must be
large bodies of magnetite in the East, which if crushed and concentrated
would satisfy the wants of the Eastern furnaces for steel-making.
Having determined to investigate the mountain regions of New Jersey, I
constructed a very sensitive magnetic needle, which would dip toward the
earth if brought over any considerable body of magnetic iron ore. One
of my laboratory assistants went out with me and we visited many of the
mines of New Jersey, but did not find deposits of any magnitude.
One day, however, as we drove over a mountain range, not known as
iron-bearing land, I was astonished to find that the needle was strongly
attracted and remained so; thus indicating that the whole mountain was
underlaid with vast bodies of magnetic ore.

"I knew it was a commercial problem to produce high-grade Bessemer ore
from these deposits, and took steps to acquire a large amount of the
property. I also planned a great magnetic survey of the East, and I
believe it remains the most comprehensive of its kind yet performed. I
had a number of men survey a strip reaching from Lower Canada to North
Carolina. The only instrument we used was the special magnetic needle.
We started in Lower Canada and travelled across the line of march
twenty-five miles; then advanced south one thousand feet; then back
across the line of march again twenty-five miles; then south another
thousand feet, across again, and so on. Thus we advanced all the way to
North Carolina, varying our cross-country march from two to twenty-five
miles, according to geological formation. Our magnetic needle indicated
the presence and richness of the invisible deposits of magnetic ore.
We kept minute records of these indications, and when the survey was
finished we had exact information of the deposits in every part of
each State we had passed through. We also knew the width, length, and
approximate depth of every one of these deposits, which were enormous.

"The amount of ore disclosed by this survey was simply fabulous. How
much so may be judged from the fact that in the three thousand acres
immediately surrounding the mills that I afterward established at
Edison there were over 200,000,000 tons of low-grade ore. I also secured
sixteen thousand acres in which the deposit was proportionately as
large. These few acres alone contained sufficient ore to supply the
whole United States iron trade, including exports, for seventy years."

Given a mountain of rock containing only one-fifth to one-fourth
magnetic iron, the broad problem confronting Edison resolved itself into
three distinct parts--first, to tear down the mountain bodily and grind
it to powder; second, to extract from this powder the particles of iron
mingled in its mass; and, third, to accomplish these results at a cost
sufficiently low to give the product a commercial value.

Edison realized from the start that the true solution of this problem
lay in the continuous treatment of the material, with the maximum
employment of natural forces and the minimum of manual labor and
generated power. Hence, all his conceptions followed this general
principle so faithfully and completely that we find in the plant
embodying his ideas the forces of momentum and gravity steadily in
harness and keeping the traces taut; while there was no touch of the
human hand upon the material from the beginning of the treatment to its
finish--the staff being employed mainly to keep watch on the correct
working of the various processes.

It is hardly necessary to devote space to the beginnings of the
enterprise, although they are full of interest. They served, however, to
convince Edison that if he ever expected to carry out his scheme on the
extensive scale planned, he could not depend upon the market to supply
suitable machinery for important operations, but would be obliged to
devise and build it himself. Thus, outside the steam-shovel and such
staple items as engines, boilers, dynamos, and motors, all of the
diverse and complex machinery of the entire concentrating plant, as
subsequently completed, was devised by him especially for the purpose.
The necessity for this was due to the many radical variations made from
accepted methods.

No such departure was as radical as that of the method of crushing the
ore. Existing machinery for this purpose had been designed on the
basis of mining methods then in vogue, by which the rock was thoroughly
shattered by means of high explosives and reduced to pieces of one
hundred pounds or less. These pieces were then crushed by power directly
applied. If a concentrating mill, planned to treat five or six thousand
tons per day, were to be operated on this basis the investment in
crushers and the supply of power would be enormous, to say nothing of
the risk of frequent breakdowns by reason of multiplicity of machinery
and parts. From a consideration of these facts, and with his usual
tendency to upset traditional observances, Edison conceived the bold
idea of constructing gigantic rolls which, by the force of momentum,
would be capable of crushing individual rocks of vastly greater size
than ever before attempted. He reasoned that the advantages thus
obtained would be fourfold: a minimum of machinery and parts; greater
compactness; a saving of power; and greater economy in mining. As this
last-named operation precedes the crushing, let us first consider it as
it was projected and carried on by him.

Perhaps quarrying would be a better term than mining in this case, as
Edison's plan was to approach the rock and tear it down bodily. The
faith that "moves mountains" had a new opportunity. In work of this
nature it had been customary, as above stated, to depend upon a high
explosive, such as dynamite, to shatter and break the ore to lumps
of one hundred pounds or less. This, however, he deemed to be a most
uneconomical process, for energy stored as heat units in dynamite at
$260 per ton was much more expensive than that of calories in a ton of
coal at $3 per ton. Hence, he believed that only the minimum of work
should be done with the costly explosive; and, therefore, planned to use
dynamite merely to dislodge great masses of rock, and depended upon the
steam-shovel, operated by coal under the boiler, to displace, handle,
and remove the rock in detail. This was the plan that was subsequently
put into practice in the great works at Edison, New Jersey. A series of
three-inch holes twenty feet deep were drilled eight feet apart, about
twelve feet back of the ore-bank, and into these were inserted dynamite
cartridges. The blast would dislodge thirty to thirty-five thousand tons
of rock, which was scooped up by great steam-shovels and loaded on to
skips carried by a line of cars on a narrow-gauge railroad running
to and from the crushing mill. Here the material was automatically
delivered to the giant rolls. The problem included handling and crushing
the "run of the mine," without selection. The steam-shovel did not
discriminate, but picked up handily single pieces weighing five or six
tons and loaded them on the skips with quantities of smaller lumps.
When the skips arrived at the giant rolls, their contents were dumped
automatically into a superimposed hopper. The rolls were well named, for
with ear-splitting noise they broke up in a few seconds the great pieces
of rock tossed in from the skips.

It is not easy to appreciate to the full the daring exemplified in these
great crushing rolls, or rather "rock-crackers," without having watched
them in operation delivering their "solar-plexus" blows. It was only
as one might stand in their vicinity and hear the thunderous roar
accompanying the smashing and rending of the massive rocks as they
disappeared from view that the mind was overwhelmed with a sense of the
magnificent proportions of this operation. The enormous force exerted
during this process may be illustrated from the fact that during its
development, in running one of the early forms of rolls, pieces of rock
weighing more than half a ton would be shot up in the air to a height of
twenty or twenty-five feet.

The giant rolls were two solid cylinders, six feet in diameter and five
feet long, made of cast iron. To the faces of these rolls were bolted a
series of heavy, chilled-iron plates containing a number of projecting
knobs two inches high. Each roll had also two rows of four-inch knobs,
intended to strike a series of hammer-like blows. The rolls were set
face to face fourteen inches apart, in a heavy frame, and the total
weight was one hundred and thirty tons, of which seventy tons were in
moving parts. The space between these two rolls allowed pieces of rock
measuring less than fourteen inches to descend to other smaller rolls
placed below. The giant rolls were belt-driven, in opposite directions,
through friction clutches, although the belt was not depended upon for
the actual crushing. Previous to the dumping of a skip, the rolls were
speeded up to a circumferential velocity of nearly a mile a minute, thus
imparting to them the terrific momentum that would break up easily in a
few seconds boulders weighing five or six tons each. It was as though a
rock of this size had got in the way of two express trains travelling
in opposite directions at nearly sixty miles an hour. In other words,
it was the kinetic energy of the rolls that crumbled up the rocks with
pile-driver effect. This sudden strain might have tended to stop the
engine driving the rolls; but by an ingenious clutch arrangement the
belt was released at the moment of resistance in the rolls by reason of
the rocks falling between them. The act of breaking and crushing would
naturally decrease the tremendous momentum, but after the rock was
reduced and the pieces had passed through, the belt would again come
into play, and once more speed up the rolls for a repetition of their
regular prize-fighter duty.

On leaving the giant rolls the rocks, having been reduced to pieces not
larger than fourteen inches, passed into the series of "Intermediate
Rolls" of similar construction and operation, by which they were still
further reduced, and again passed on to three other sets of rolls
of smaller dimensions. These latter rolls were also face-lined with
chilled-iron plates; but, unlike the larger ones, were positively
driven, reducing the rock to pieces of about one-half-inch size, or
smaller. The whole crushing operation of reduction from massive boulders
to small pebbly pieces having been done in less time than the telling
has occupied, the product was conveyed to the "Dryer," a tower nine
feet square and fifty feet high, heated from below by great open furnace
fires. All down the inside walls of this tower were placed cast-iron
plates, nine feet long and seven inches wide, arranged alternately in
"fish-ladder" fashion. The crushed rock, being delivered at the top,
would fall down from plate to plate, constantly exposing different
surfaces to the heat, until it landed completely dried in the lower
portion of the tower, where it fell into conveyors which took it up to
the stock-house.

This method of drying was original with Edison. At the time this adjunct
to the plant was required, the best dryer on the market was of a rotary
type, which had a capacity of only twenty tons per hour, with the
expenditure of considerable power. As Edison had determined upon
treating two hundred and fifty tons or more per hour, he decided to
devise an entirely new type of great capacity, requiring a minimum of
power (for elevating the material), and depending upon the force of
gravity for handling it during the drying process. A long series of
experiments resulted in the invention of the tower dryer with a capacity
of three hundred tons per hour.

The rock, broken up into pieces about the size of marbles, having been
dried and conveyed to the stock-house, the surplusage was automatically
carried out from the other end of the stock-house by conveyors, to
pass through the next process, by which it was reduced to a powder. The
machinery for accomplishing this result represents another interesting
and radical departure of Edison from accepted usage. He had investigated
all the crushing-machines on the market, and tried all he could get.
He found them all greatly lacking in economy of operation; indeed, the
highest results obtainable from the best were 18 per cent. of actual
work, involving a loss of 82 per cent. by friction. His nature revolted
at such an immense loss of power, especially as he proposed the crushing
of vast quantities of ore. Thus, he was obliged to begin again at the
foundation, and he devised a crushing-machine which was subsequently
named the "Three-High Rolls," and which practically reversed the above
figures, as it developed 84 per cent. of work done with only 16 per
cent. loss in friction.

A brief description of this remarkable machine will probably interest
the reader. In the two end pieces of a heavy iron frame were set three
rolls, or cylinders--one in the centre, another below, and the other
above--all three being in a vertical line. These rolls were of cast
iron three feet in diameter, having chilled-iron smooth face-plates of
considerable thickness. The lowest roll was set in a fixed bearing at
the bottom of the frame, and, therefore, could only turn around on its
axis. The middle and top rolls were free to move up or down from and
toward the lower roll, and the shafts of the middle and upper rolls were
set in a loose bearing which could slip up and down in the iron frame.
It will be apparent, therefore, that any material which passed in
between the top and the middle rolls, and the middle and bottom rolls,
could be ground as fine as might be desired, depending entirely upon the
amount of pressure applied to the loose rolls. In operation the material
passed first through the upper and middle rolls, and then between the
middle and lowest rolls.

This pressure was applied in a most ingenious manner. On the ends of the
shafts of the bottom and top rolls there were cylindrical sleeves, or
bearings, having seven sheaves, in which was run a half-inch endless
wire rope. This rope was wound seven times over the sheaves as above,
and led upward and over a single-groove sheave which was operated by the
piston of an air cylinder, and in this manner the pressure was applied
to the rolls. It will be seen, therefore, that the system consisted in a
single rope passed over sheaves and so arranged that it could be varied
in length, thus providing for elasticity in exerting pressure and
regulating it as desired. The efficiency of this system was incomparably
greater than that of any other known crusher or grinder, for while a
pressure of one hundred and twenty-five thousand pounds could be exerted
by these rolls, friction was almost entirely eliminated because the
upper and lower roll bearings turned with the rolls and revolved in the
wire rope, which constituted the bearing proper.

The same cautious foresight exercised by Edison in providing a safety
device--the fuse--to prevent fires in his electric-light system, was
again displayed in this concentrating plant, where, to save possible
injury to its expensive operating parts, he devised an analogous factor,
providing all the crushing machinery with closely calculated "safety
pins," which, on being overloaded, would shear off and thus stop the
machine at once.

The rocks having thus been reduced to fine powder, the mass was ready
for screening on its way to the magnetic separators. Here again Edison
reversed prior practice by discarding rotary screens and devising a form
of tower screen, which, besides having a very large working capacity
by gravity, eliminated all power except that required to elevate the
material. The screening process allowed the finest part of the crushed
rock to pass on, by conveyor belts, to the magnetic separators, while
the coarser particles were in like manner automatically returned to the
rolls for further reduction.

In a narrative not intended to be strictly technical, it would probably
tire the reader to follow this material in detail through the numerous
steps attending the magnetic separation. These may be seen in a
diagram reproduced from the above-named article in the Iron Age, and
supplemented by the following extract from the Electrical Engineer,
New York, October 28, 1897: "At the start the weakest magnet at the top
frees the purest particles, and the second takes care of others; but the
third catches those to which rock adheres, and will extract particles
of which only one-eighth is iron. This batch of material goes back for
another crushing, so that everything is subjected to an equality of
refining. We are now in sight of the real 'concentrates,' which are
conveyed to dryer No. 2 for drying again, and are then delivered to
the fifty-mesh screens. Whatever is fine enough goes through to the
eight-inch magnets, and the remainder goes back for recrushing.
Below the eight-inch magnets the dust is blown out of the particles
mechanically, and they then go to the four-inch magnets for final
cleansing and separation.... Obviously, at each step the percentage of
felspar and phosphorus is less and less until in the final concentrates
the percentage of iron oxide is 91 to 93 per cent. As intimated at the
outset, the tailings will be 75 per cent. of the rock taken from the
veins of ore, so that every four tons of crude, raw, low-grade ore will
have yielded roughly one ton of high-grade concentrate and three tons of
sand, the latter also having its value in various ways."

This sand was transported automatically by belt conveyors to the rear of
the works to be stored and sold. Being sharp, crystalline, and even in
quality, it was a valuable by-product, finding a ready sale for
building purposes, railway sand-boxes, and various industrial uses. The
concentrate, in fine powdery form, was delivered in similar manner to a
stock-house.

As to the next step in the process, we may now quote again from the
article in the Iron Age: "While Mr. Edison and his associates were
working on the problem of cheap concentration of iron ore, an added
difficulty faced them in the preparation of the concentrates for the
market. Furnacemen object to more than a very small proportion of fine
ore in their mixtures, particularly when the ore is magnetic, not easily
reduced. The problem to be solved was to market an agglomerated material
so as to avoid the drawbacks of fine ore. The agglomerated product must
be porous so as to afford access of the furnace-reducing gases to the
ore. It must be hard enough to bear transportation, and to carry the
furnace burden without crumbling to pieces. It must be waterproof, to a
certain extent, because considerations connected with securing low rates
of freight make it necessary to be able to ship the concentrates to
market in open coal cars, exposed to snow and rain. In many respects the
attainment of these somewhat conflicting ends was the most perplexing
of the problems which confronted Mr. Edison. The agglomeration of the
concentrates having been decided upon, two other considerations, not
mentioned above, were of primary importance--first, to find a suitable
cheap binding material; and, second, its nature must be such that
very little would be necessary per ton of concentrates. These severe
requirements were staggering, but Mr. Edison's courage did not falter.
Although it seemed a well-nigh hopeless task, he entered upon the
investigation with his usual optimism and vim. After many months
of unremitting toil and research, and the trial of thousands of
experiments, the goal was reached in the completion of a successful
formula for agglomerating the fine ore and pressing it into briquettes
by special machinery."

This was the final process requisite for the making of a completed
commercial product. Its practice, of course, necessitated the addition
of an entirely new department of the works, which was carried into
effect by the construction and installation of the novel mixing and
briquetting machinery, together with extensions of the conveyors, with
which the plant had already been liberally provided.

Briefly described, the process consisted in mixing the concentrates with
the special binding material in machines of an entirely new type, and in
passing the resultant pasty mass into the briquetting machines, where it
was pressed into cylindrical cakes three inches in diameter and one and
a half inches thick, under successive pressures of 7800, 14,000, and
60,000 pounds. Each machine made these briquettes at the rate of sixty
per minute, and dropped them into bucket conveyors by which they were
carried into drying furnaces, through which they made five loops, and
were then delivered to cross-conveyors which carried them into the
stock-house. At the end of this process the briquettes were so hard
that they would not break or crumble in loading on the cars or in
transportation by rail, while they were so porous as to be capable of
absorbing 26 per cent. of their own volume in alcohol, but repelling
water absolutely--perfect "old soaks."

Thus, with never-failing persistence and patience, coupled with intense
thought and hard work, Edison met and conquered, one by one, the complex
difficulties that confronted him. He succeeded in what he had set out
to do, and it is now to be noted that the product he had striven so
sedulously to obtain was a highly commercial one, for not only did the
briquettes of concentrated ore fulfil the purpose of their creation, but
in use actually tended to increase the working capacity of the furnace,
as the following test, quoted from the Iron Age, October 28, 1897,
will attest: "The only trial of any magnitude of the briquettes in
the blast-furnace was carried through early this year at the Crane Iron
Works, Catasauqua, Pennsylvania, by Leonard Peckitt.

"The furnace at which the test was made produces from one hundred to one
hundred and ten tons per day when running on the ordinary mixture. The
charging of briquettes was begun with a percentage of 25 per cent.,
and was carried up to 100 per cent. The following is the record of the
results:

  RESULTS OF WORKING BRIQUETTES AT THE CRANE FURNACE


                  Quantity of                       Phos-             ManDate
  Briquette      Tons     Silica   phorus   Sulphur  ganese
                    Working
                   Per Cent.
  January 5th          25        104        2.770    0.830    0.018    0.500
  January 6th          37 1/2  4 1/2        2.620    0 740    0.018    0.350
  January 7th          50        138 1/2    2.572    0.580    0.015    0.200
  January 8th          75        119        1.844    0.264    0.022    0.200
  January 9th         100        138 1/2    1.712    0.147    0.038    0.185

"On the 9th, at 5 P.M., the briquettes having been nearly exhausted,
the percentage was dropped to 25 per cent., and on the 10th the output
dropped to 120 tons, and on the 11th the furnace had resumed the usual
work on the regular standard ores.

"These figures prove that the yield of the furnace is considerably
increased. The Crane trial was too short to settle the question to what
extent the increase in product may be carried. This increase in output,
of course, means a reduction in the cost of labor and of general
expenses.

"The richness of the ore and its purity of course affect the limestone
consumption. In the case of the Crane trial there was a reduction from
30 per cent. to 12 per cent. of the ore charge.

"Finally, the fuel consumption is reduced, which in the case of the
Eastern plants, with their relatively costly coke, is a very important
consideration. It is regarded as possible that Eastern furnaces will
be able to use a smaller proportion of the costlier coke and
correspondingly increase in anthracite coal, which is a cheaper fuel
in that section. So far as foundry iron is concerned, the experience at
Catasauqua, Pennsylvania, brief as it has been, shows that a stronger
and tougher metal is made."

Edison himself tells an interesting little story in this connection,
when he enjoyed the active help of that noble character, John Fritz,
the distinguished inventor and pioneer of the modern steel industry
in America. He says: "When I was struggling along with the iron-ore
concentration, I went to see several blast-furnace men to sell the ore
at the market price. They saw I was very anxious to sell it, and they
would take advantage of my necessity. But I happened to go to Mr. John
Fritz, of the Bethlehem Steel Company, and told him what I was doing.
'Well,' he said to me, 'Edison, you are doing a good thing for the
Eastern furnaces. They ought to help you, for it will help us out. I am
willing to help you. I mix a little sentiment with business, and I will
give you an order for one hundred thousand tons.' And he sat right down
and gave me the order."

The Edison concentrating plant has been sketched in the briefest outline
with a view of affording merely a bare idea of the great work of its
projector. To tell the whole story in detail and show its logical
sequence, step by step, would take little less than a volume in itself,
for Edison's methods, always iconoclastic when progress is in sight,
were particularly so at the period in question. It has been said that
"Edison's scrap-heap contains the elements of a liberal education,"
and this was essentially true of the "discard" during the ore-milling
experience. Interesting as it might be to follow at length the numerous
phases of ingenious and resourceful development that took place during
those busy years, the limit of present space forbids their relation. It
would, however, be denying the justice that is Edison's due to omit all
mention of two hitherto unnamed items in particular that have added
to the world's store of useful devices. We refer first to the great
travelling hoisting-crane having a span of two hundred and fifteen feet,
and used for hoisting loads equal to ten tons, this being the largest
of the kind made up to that time, and afterward used as a model by many
others. The second item was the ingenious and varied forms of conveyor
belt, devised and used by Edison at the concentrating works, and
subsequently developed into a separate and extensive business by an
engineer to whom he gave permission to use his plans and patterns.

Edison's native shrewdness and knowledge of human nature was put to
practical use in the busy days of plant construction. It was found
impossible to keep mechanics on account of indifferent residential
accommodations afforded by the tiny village, remote from civilization,
among the central mountains of New Jersey. This puzzling question was
much discussed between him and his associate, Mr. W. S. Mallory, until
finally he said to the latter: "If we want to keep the men here we must
make it attractive for the women--so let us build some houses that will
have running water and electric lights, and rent at a low rate." He set
to work, and in a day finished a design for a type of house. Fifty were
quickly built and fully described in advertising for mechanics. Three
days' advertisements brought in over six hundred and fifty applications,
and afterward Edison had no trouble in obtaining all the first-class men
he required, as settlers in the artificial Yosemite he was creating.

We owe to Mr. Mallory a characteristic story of this period as to
an incidental unbending from toil, which in itself illustrates the
ever-present determination to conquer what is undertaken: "Along in
the latter part of the nineties, when the work on the problem of
concentrating iron ore was in progress, it became necessary when leaving
the plant at Edison to wait over at Lake Hopatcong one hour for a
connecting train. During some of these waits Mr. Edison had seen me play
billiards. At the particular time this incident happened, Mrs. Edison
and her family were away for the summer, and I was staying at the
Glenmont home on the Orange Mountains.

"One hot Saturday night, after Mr. Edison had looked over the evening
papers, he said to me: 'Do you want to play a game of billiards?'
Naturally this astonished me very much, as he is a man who cares
little or nothing for the ordinary games, with the single exception of
parcheesi, of which he is very fond. I said I would like to play, so we
went up into the billiard-room of the house. I took off the cloth, got
out the balls, picked out a cue for Mr. Edison, and when we banked for
the first shot I won and started the game. After making two or three
shots I missed, and a long carom shot was left for Mr. Edison, the cue
ball and object ball being within about twelve inches of each other, and
the other ball a distance of nearly the length of the table. Mr. Edison
attempted to make the shot, but missed it and said 'Put the balls back.'
So I put them back in the same position and he missed it the second
time. I continued at his request to put the balls back in the same
position for the next fifteen minutes, until he could make the shot
every time--then he said: 'I don't want to play any more.'"

Having taken a somewhat superficial survey of the great enterprise under
consideration; having had a cursory glance at the technical development
of the plant up to the point of its successful culmination in the making
of a marketable, commercial product as exemplified in the test at the
Crane Furnace, let us revert to that demonstration and note the events
that followed. The facts of this actual test are far more eloquent than
volumes of argument would be as a justification of Edison's assiduous
labors for over eight years, and of the expenditure of a fortune in
bringing his broad conception to a concrete possibility. In the patient
solving of tremendous problems he had toiled up the mountain-side of
success--scaling its topmost peak and obtaining a view of the boundless
prospect. But, alas! "The best laid plans o' mice and men gang aft
agley." The discovery of great deposits of rich Bessemer ore in the
Mesaba range of mountains in Minnesota a year or two previous to the
completion of his work had been followed by the opening up of those
deposits and the marketing of the ore. It was of such rich character
that, being cheaply mined by greatly improved and inexpensive methods,
the market price of crude ore of like iron units fell from about
$6.50 to $3.50 per ton at the time when Edison was ready to supply his
concentrated product. At the former price he could have supplied the
market and earned a liberal profit on his investment, but at $3.50 per
ton he was left without a reasonable chance of competition. Thus was
swept away the possibility of reaping the reward so richly earned by
years of incessant thought, labor, and care. This great and notable
plant, representing a very large outlay of money, brought to completion,
ready for business, and embracing some of the most brilliant and
remarkable of Edison's inventions and methods, must be abandoned by
force of circumstances over which he had no control, and with it must
die the high hopes that his progressive, conquering march to success had
legitimately engendered.

The financial aspect of these enterprises is often overlooked and
forgotten. In this instance it was of more than usual import and
seriousness, as Edison was virtually his own "backer," putting into the
company almost the whole of all the fortune his inventions had brought
him. There is a tendency to deny to the capital that thus takes
desperate chances its full reward if things go right, and to insist that
it shall have barely the legal rate of interest and far less than the
return of over-the-counter retail trade. It is an absolute fact that the
great electrical inventors and the men who stood behind them have had
little return for their foresight and courage. In this instance, when
the inventor was largely his own financier, the difficulties and perils
were redoubled. Let Mr. Mallory give an instance: "During the latter
part of the panic of 1893 there came a period when we were very hard
up for ready cash, due largely to the panicky conditions; and a large
pay-roll had been raised with considerable difficulty. A short time
before pay-day our treasurer called me up by telephone, and said: 'I
have just received the paid checks from the bank, and I am fearful
that my assistant, who has forged my name to some of the checks, has
absconded with about $3000.' I went immediately to Mr. Edison and
told him of the forgery and the amount of money taken, and in what an
embarrassing position we were for the next pay-roll. When I had finished
he said: 'It is too bad the money is gone, but I will tell you what to
do. Go and see the president of the bank which paid the forged checks.
Get him to admit the bank's liability, and then say to him that Mr.
Edison does not think the bank should suffer because he happened to have
a dishonest clerk in his employ. Also say to him that I shall not ask
them to make the amount good.' This was done; the bank admitting its
liability and being much pleased with this action. When I reported to
Mr. Edison he said: 'That's all right. We have made a friend of the
bank, and we may need friends later on.' And so it happened that some
time afterward, when we greatly needed help in the way of loans, the
bank willingly gave us the accommodations we required to tide us over a
critical period."

This iron-ore concentrating project had lain close to Edison's heart and
ambition--indeed, it had permeated his whole being to the exclusion
of almost all other investigations or inventions for a while. For five
years he had lived and worked steadily at Edison, leaving there only on
Saturday night to spend Sunday at his home in Orange, and returning to
the plant by an early train on Monday morning. Life at Edison was of the
simple kind--work, meals, and a few hours' sleep--day by day. The little
village, called into existence by the concentrating works, was of the
most primitive nature and offered nothing in the way of frivolity or
amusement. Even the scenery is austere. Hence Edison was enabled
to follow his natural bent in being surrounded day and night by his
responsible chosen associates, with whom he worked uninterrupted by
outsiders from early morning away into the late hours of the evening.
Those who were laboring with him, inspired by his unflagging enthusiasm,
followed his example and devoted all their long waking hours to the
furtherance of his plans with a zeal that ultimately bore fruit in the
practical success here recorded.

In view of its present status, this colossal enterprise at Edison may
well be likened to the prologue of a play that is to be subsequently
enacted for the benefit of future generations, but before ringing down
the curtain it is desirable to preserve the unities by quoting the
words of one of the principal actors, Mr. Mallory, who says: "The
Concentrating Works had been in operation, and we had produced a
considerable quantity of the briquettes, and had been able to sell
only a portion of them, the iron market being in such condition that
blast-furnaces were not making any new purchases of iron ore, and
were having difficulty to receive and consume the ores which had been
previously contracted for, so what sales we were able to make were at
extremely low prices, my recollection being that they were between $3.50
and $3.80 per ton, whereas when the works had started we had hoped to
obtain $6.00 to $6.50 per ton for the briquettes. We had also thoroughly
investigated the wonderful deposit at Mesaba, and it was with the
greatest possible reluctance that Mr. Edison was able to come finally to
the conclusion that, under existing conditions, the concentrating plant
could not then be made a commercial success. This decision was reached
only after the most careful investigations and calculations, as Mr.
Edison was just as full of fight and ambition to make it a success as
when he first started.

"When this decision was reached Mr. Edison and I took the Jersey Central
train from Edison, bound for Orange, and I did not look forward to the
immediate future with any degree of confidence, as the concentrating
plant was heavily in debt, without any early prospect of being able
to pay off its indebtedness. On the train the matter of the future was
discussed, and Mr. Edison said that, inasmuch as we had the knowledge
gained from our experience in the concentrating problem, we must, if
possible, apply it to some practical use, and at the same time we must
work out some other plans by which we could make enough money to pay
off the Concentrating Company's indebtedness, Mr. Edison stating most
positively that no company with which he had personally been actively
connected had ever failed to pay its debts, and he did not propose to
have the Concentrating Company any exception.

"In the discussion that followed he suggested several kinds of work
which he had in his mind, and which might prove profitable. We
figured carefully over the probabilities of financial returns from the
Phonograph Works and other enterprises, and after discussing many plans,
it was finally decided that we would apply the knowledge we had gained
in the concentrating plant by building a plant for manufacturing
Portland cement, and that Mr. Edison would devote his attention to the
developing of a storage battery which did not use lead and sulphuric
acid. So these two lines of work were taken up by Mr. Edison with just
as much enthusiasm and energy as is usual with him, the commercial
failure of the concentrating plant seeming not to affect his spirits
in any way. In fact, I have often been impressed strongly with the fact
that, during the dark days of the concentrating problem, Mr. Edison's
desire was very strong that the creditors of the Concentrating Works
should be paid in full; and only once did I hear him make any reference
to the financial loss which he himself made, and he then said: 'As
far as I am concerned, I can any time get a job at $75 per month as
a telegrapher, and that will amply take care of all my personal
requirements.' As already stated, however, he started in with the
maximum amount of enthusiasm and ambition, and in the course of about
three years we succeeded in paying off all the indebtedness of the
Concentrating Works, which amounted to several hundred thousand dollars.

"As to the state of Mr. Edison's mind when the final decision was
reached to close down, if he was specially disappointed, there was
nothing in his manner to indicate it, his every thought being for the
future, and as to what could be done to pull us out of the financial
situation in which we found ourselves, and to take advantage of the
knowledge which we had acquired at so great a cost."

It will have been gathered that the funds for this great experiment
were furnished largely by Edison. In fact, over two million dollars were
spent in the attempt. Edison's philosophic view of affairs is given in
the following anecdote from Mr. Mallory: "During the boom times of 1902,
when the old General Electric stock sold at its high-water mark of about
$330, Mr. Edison and I were on our way from the cement plant at New
Village, New Jersey, to his home at Orange. When we arrived at Dover,
New Jersey, we got a New York newspaper, and I called his attention to
the quotation of that day on General Electric. Mr. Edison then asked:
'If I hadn't sold any of mine, what would it be worth to-day?' and after
some figuring I replied: 'Over four million dollars.' When Mr. Edison
is thinking seriously over a problem he is in the habit of pulling his
right eyebrow, which he did now for fifteen or twenty seconds. Then his
face lighted up, and he said: 'Well, it's all gone, but we had a hell of
a good time spending it.'" With which revelation of an attitude worthy
of Mark Tapley himself, this chapter may well conclude.



CHAPTER XX

EDISON PORTLAND CEMENT

NEW developments in recent years have been more striking than the
general adoption of cement for structural purposes of all kinds in
the United States; or than the increase in its manufacture here. As
a material for the construction of office buildings, factories, and
dwellings, it has lately enjoyed an extraordinary vogue; yet every
indication is confirmatory of the belief that such use has barely begun.
Various reasons may be cited, such as the growing scarcity of wood, once
the favorite building material in many parts of the country, and the
increasing dearness of brick and stone. The fact remains, indisputable,
and demonstrated flatly by the statistics of production. In 1902 the
American output of cement was placed at about 21,000,000 barrels,
valued at over $17,000,000. In 1907 the production is given as nearly
49,000,000 barrels. Here then is an industry that doubled in five years.
The average rate of industrial growth in the United States is 10 per
cent. a year, or doubling every ten years. It is a singular fact that
electricity also so far exceeds the normal rate as to double in value
and quantity of output and investment every five years. There is perhaps
more than ordinary coincidence in the association of Edison with two
such active departments of progress.

As a purely manufacturing business the general cement industry is one
of even remote antiquity, and if Edison had entered into it merely as
a commercial enterprise by following paths already so well trodden, the
fact would hardly have been worthy of even passing notice. It is not in
his nature, however, to follow a beaten track except in regard to the
recognition of basic principles; so that while the manufacture of Edison
Portland cement embraces the main essentials and familiar processes of
cement-making, such as crushing, drying, mixing, roasting, and grinding,
his versatility and originality, as exemplified in the conception and
introduction of some bold and revolutionary methods and devices, have
resulted in raising his plant from the position of an outsider to the
rank of the fifth largest producer in the United States, in the short
space of five years after starting to manufacture.

Long before his advent in cement production, Edison had held very
pronounced views on the value of that material as the one which would
obtain largely for future building purposes on account of its stability.
More than twenty-five years ago one of the writers of this narrative
heard him remark during a discussion on ancient buildings: "Wood will
rot, stone will chip and crumble, bricks disintegrate, but a cement and
iron structure is apparently indestructible. Look at some of the old
Roman baths. They are as solid as when they were built." With such
convictions, and the vast fund of practical knowledge and experience he
had gained at Edison in the crushing and manipulation of large masses of
magnetic iron ore during the preceding nine years, it is not surprising
that on that homeward railway journey, mentioned at the close of the
preceding chapter, he should have decided to go into the manufacture
of cement, especially in view of the enormous growth of its use for
structural purposes during recent times.

The field being a new one to him, Edison followed his usual course of
reading up every page of authoritative literature on the subject, and
seeking information from all quarters. In the mean time, while he was
busy also with his new storage battery, Mr. Mallory, who had been hard
at work on the cement plan, announced that he had completed arrangements
for organizing a company with sufficient financial backing to carry on
the business; concluding with the remark that it was now time to engage
engineers to lay out the plant. Edison replied that he intended to
do that himself, and invited Mr. Mallory to go with him to one of the
draughting-rooms on an upper floor of the laboratory.

Here he placed a large sheet of paper on a draughting-table, and
immediately began to draw out a plan of the proposed works, continuing
all day and away into the evening, when he finished; thus completing
within the twenty-four hours the full lay-out of the entire plant as
it was subsequently installed, and as it has substantially remained
in practical use to this time. It will be granted that this was a
remarkable engineering feat, especially in view of the fact that Edison
was then a new-comer in the cement business, and also that if the
plant were to be rebuilt to-day, no vital change would be desirable
or necessary. In that one day's planning every part was considered and
provided for, from the crusher to the packing-house. From one end to the
other, the distance over which the plant stretches in length is about
half a mile, and through the various buildings spread over this space
there passes, automatically, in course of treatment, a vast quantity
of material resulting in the production of upward of two and a quarter
million pounds of finished cement every twenty-four hours, seven days in
the week.

In that one day's designing provision was made not only for all
important parts, but minor details, such, for instance, as the carrying
of all steam, water, and air pipes, and electrical conductors in a large
subway running from one end of the plant to the other; and, an oiling
system for the entire works. This latter deserves special mention, not
only because of its arrangement for thorough lubrication, but also on
account of the resultant economy affecting the cost of manufacture.

Edison has strong convictions on the liberal use of lubricants, but
argued that in the ordinary oiling of machinery there is great waste,
while much dirt is conveyed into the bearings. He therefore planned
a system by which the ten thousand bearings in the plant are oiled
automatically; requiring the services of only two men for the entire
work. This is accomplished by a central pumping and filtering plant
and the return of the oil from all parts of the works by gravity. Every
bearing is made dust-proof, and is provided with two interior pipes. One
is above and the other below the bearing. The oil flows in through the
upper pipe, and, after lubricating the shaft, flows out through the
lower pipe back to the pumping station, where any dirt is filtered out
and the oil returned to circulation. While this system of oiling is
not unique, it was the first instance of its adaptation on so large and
complete a scale, and illustrates the far-sightedness of his plans.

In connection with the adoption of this lubricating system there
occurred another instance of his knowledge of materials and intuitive
insight into the nature of things. He thought that too frequent
circulation of a comparatively small quantity of oil would, to some
extent, impair its lubricating qualities, and requested his assistants
to verify this opinion by consultation with competent authorities. On
making inquiry of the engineers of the Standard Oil Company, his theory
was fully sustained. Hence, provision was made for carrying a large
stock of oil, and for giving a certain period of rest to that already
used.

A keen appreciation of ultimate success in the production of a fine
quality of cement led Edison to provide very carefully in his original
scheme for those details that he foresaw would become requisite--such,
for instance, as ample stock capacity for raw materials and their
automatic delivery in the various stages of manufacture, as well
as mixing, weighing, and frequent sampling and analyzing during the
progress through the mills. This provision even included the details of
the packing-house, and his perspicacity in this case is well sustained
from the fact that nine years afterward, in anticipation of building an
additional packing-house, the company sent a representative to different
parts of the country to examine the systems used by manufacturers in
the packing of large quantities of various staple commodities involving
somewhat similar problems, and found that there was none better than
that devised before the cement plant was started. Hence, the order was
given to build the new packing-house on lines similar to those of the
old one.

Among the many innovations appearing in this plant are two that stand
out in bold relief as indicating the large scale by which Edison
measures his ideas. One of these consists of the crushing and grinding
machinery, and the other of the long kilns. In the preceding chapter
there has been given a description of the giant rolls, by means of which
great masses of rock, of which individual pieces may weigh eight or more
tons, are broken and reduced to about a fourteen-inch size. The economy
of this is apparent when it is considered that in other cement plants
the limit of crushing ability is "one-man size"--that is, pieces not too
large for one man to lift.

The story of the kiln, as told by Mr. Mallory, is illustrative of
Edison's tendency to upset tradition and make a radical departure from
generally accepted ideas. "When Mr. Edison first decided to go into
the cement business, it was on the basis of his crushing-rolls and air
separation, and he had every expectation of installing duplicates of the
kilns which were then in common use for burning cement. These kilns were
usually made of boiler iron, riveted, and were about sixty feet long and
six feet in diameter, and had a capacity of about two hundred barrels of
cement clinker in twenty-four hours.

"When the detail plans for our plant were being drawn, Mr. Edison and I
figured over the coal capacity and coal economy of the sixty-foot kiln,
and each time thought that both could he materially bettered. After
having gone over this matter several times, he said: 'I believe I
can make a kiln which will give an output of one thousand barrels in
twenty-four hours.' Although I had then been closely associated with him
for ten years and was accustomed to see him accomplish great things, I
could not help feeling the improbability of his being able to jump into
an old-established industry--as a novice--and start by improving the
'heart' of the production so as to increase its capacity 400 per
cent. When I pressed him for an explanation, he was unable to give any
definite reasons, except that he felt positive it could be done. In this
connection let me say that very many times I have heard Mr. Edison make
predictions as to what a certain mechanical device ought to do in the
way of output and costs, when his statements did not seem to be even
among the possibilities. Subsequently, after more or less experience,
these predictions have been verified, and I cannot help coming to the
conclusion that he has a faculty, not possessed by the average mortal,
of intuitively and correctly sizing up mechanical and commercial
possibilities.

"But, returning to the kiln, Mr. Edison went to work immediately and
very soon completed the design of a new type which was to be one hundred
and fifty feet long and nine feet in diameter, made up in ten-foot
sections of cast iron bolted together and arranged to be revolved
on fifteen bearings. He had a wooden model made and studied it
very carefully, through a series of experiments. These resulted so
satisfactorily that this form was finally decided upon, and ultimately
installed as part of the plant.

"Well, for a year or so the kiln problem was a nightmare to me. When we
started up the plant experimentally, and the long kiln was first put in
operation, an output of about four hundred barrels in twenty-four hours
was obtained. Mr. Edison was more than disappointed at this result. His
terse comment on my report was: 'Rotten. Try it again.' When we became a
little more familiar with the operation of the kiln we were able to
get the output up to about five hundred and fifty barrels, and a little
later to six hundred and fifty barrels per day. I would go down to
Orange and report with a great deal of satisfaction the increase in
output, but Mr. Edison would apparently be very much disappointed, and
often said to me that the trouble was not with the kiln, but with our
method of operating it; and he would reiterate his first statement that
it would make one thousand barrels in twenty-four hours.

"Each time I would return to the plant with the determination to
increase the output if possible, and we did increase it to seven
hundred and fifty, then to eight hundred and fifty barrels. Every time I
reported these increases Mr. Edison would still be disappointed. I said
to him several times that if he was so sure the kiln could turn out one
thousand barrels in twenty-four hours we would be very glad to have him
tell us how to do it, and that we would run it in any way he directed.
He replied that he did not know what it was that kept the output down,
but he was just as confident as ever that the kiln would make one
thousand barrels per day, and that if he had time to work with and watch
the kiln it would not take him long to find out the reasons why. He had
made a number of suggestions throughout these various trials, however,
and, as we continued to operate, we learned additional points in
handling, and were able to get the output up to nine hundred barrels,
then one thousand, and finally to over eleven hundred barrels per day,
thus more than realizing the prediction made by Mr. Edison before even
the plans were drawn. It is only fair to say, however, that prolonged
experience has led us to the conclusion that the maximum economy in
continuous operation of these kilns is obtained by working them at a
little less than their maximum capacity.

"It is interesting to note, in connection with the Edison type of kiln,
that when the older cement manufacturers first learned of it, they
ridiculed the idea universally, and were not slow to predict our early
'finish' as cement manufacturers. The ultimate success of the kiln,
however, proved their criticisms to be unwarranted. Once aware of
its possibility, some of the cement manufacturers proceeded to avail
themselves of the innovation (at first without Mr. Edison's consent),
and to-day more than one-half of the Portland cement produced in this
country is made in kilns of the Edison type. Old plants are lengthening
their kilns wherever practicable, and no wide-awake manufacturer
building a modern plant could afford to install other than these long
kilns. This invention of Mr. Edison has been recognized by the larger
cement manufacturers, and there is every prospect now that the entire
trade will take licenses under his kiln patents."

When he decided to go into the cement business, Edison was
thoroughly awake to the fact that he was proposing to "butt into" an
old-established industry, in which the principal manufacturers
were concerns of long standing. He appreciated fully its inherent
difficulties, not only in manufacture, but also in the marketing of the
product. These considerations, together with his long-settled principle
of striving always to make the best, induced him at the outset to study
methods of producing the highest quality of product. Thus he was led to
originate innovations in processes, some of which have been preserved
as trade secrets; but of the others there are two deserving special
notice--namely, the accuracy of mixing and the fineness of grinding.

In cement-making, generally speaking, cement rock and limestone in
the rough are mixed together in such relative quantities as may be
determined upon in advance by chemical analysis. In many plants this
mixture is made by barrow or load units, and may be more or less
accurate. Rule-of-thumb methods are never acceptable to Edison, and he
devised therefore a system of weighing each part of the mixture, so
that it would be correct to a pound, and, even at that, made the device
"fool-proof," for as he observed to one of his associates: "The man at
the scales might get to thinking of the other fellow's best girl, so
fifty or a hundred pounds of rock, more or less, wouldn't make much
difference to him." The Edison checking plan embraces two hoppers
suspended above two platform scales whose beams are electrically
connected with a hopper-closing device by means of needles dipping into
mercury cups. The scales are set according to the chemist's weighing
orders, and the material is fed into the scales from the hoppers. The
instant the beam tips, the connection is broken and the feed stops
instantly, thus rendering it impossible to introduce any more material
until the charge has been unloaded.

The fine grinding of cement clinker is distinctively Edisonian in
both origin and application. As has been already intimated, its author
followed a thorough course of reading on the subject long before
reaching the actual projection or installation of a plant, and he had
found all authorities to agree on one important point--namely, that the
value of cement depends upon the fineness to which it is ground. [16] He
also ascertained that in the trade the standard of fineness was that 75
per cent. of the whole mass would pass through a 200-mesh screen. Having
made some improvements in his grinding and screening apparatus, and
believing that in the future engineers, builders, and contractors
would eventually require a higher degree of fineness, he determined, in
advance of manufacturing, to raise the standard ten points, so that at
least 85 per cent. of his product should pass through a 200-mesh screen.
This was a bold step to be taken by a new-comer, but his judgment,
backed by a full confidence in ability to live up to this standard, has
been fully justified in its continued maintenance, despite the early
incredulity of older manufacturers as to the possibility of attaining
such a high degree of fineness.

     [Footnote 16: For a proper understanding and full
     appreciation of the importance of fine grinding, it may be
     explained that Portland cement (as manufactured in the
     Lehigh Valley) is made from what is commonly spoken of as
     "cement rock," with the addition of sufficient limestone to
     give the necessary amount of lime. The rock is broken down
     and then ground to a fineness of 80 to 90 per cent. through
     a 200-mesh screen. This ground material passes through kilns
     and comes out in "clinker." This is ground and that part of
     this finely ground clinker that will pass a 200-mesh screen
     is cement; the residue is still clinker. These coarse
     particles, or clinkers, absorb water very slowly, are
     practically inert, and have very feeble cementing
     properties. The residue on a 200-mesh screen is useless.]

If Edison measured his happiness, as men often do, by merely commercial
or pecuniary rewards of success, it would seem almost redundant to state
that he has continued to manifest an intense interest in the cement
plant. Ordinarily, his interest as an inventor wanes in proportion to
the approach to mere commercialism--in other words, the keenness of his
pleasure is in overcoming difficulties rather than the mere piling up of
a bank account. He is entirely sensible of the advantages arising from
a good balance at the banker's, but that has not been the goal of his
ambition. Hence, although his cement enterprise reached the commercial
stage a long time ago, he has been firmly convinced of his own ability
to devise still further improvements and economical processes of greater
or less fundamental importance, and has, therefore, made a constant
study of the problem as a whole and in all its parts. By means of
frequent reports, aided by his remarkable memory, he keeps in as close
touch with the plant as if he were there in person every day, and
is thus enabled to suggest improvement in any particular detail. The
engineering force has a great respect for the accuracy of his knowledge
of every part of the plant, for he remembers the dimensions and details
of each item of machinery, sometimes to the discomfiture of those who
are around it every day.

A noteworthy instance of Edison's memory occurred in connection with
this cement plant. Some years ago, as its installation was nearing
completion, he went up to look it over and satisfy himself as to what
needed to be done. On the arrival of the train at 10.40 in the morning,
he went to the mill, and, with Mr. Mason, the general superintendent,
started at the crusher at one end, and examined every detail all the way
through to the packing-house at the other end. He made neither notes nor
memoranda, but the examination required all the day, which happened to
be a Saturday. He took a train for home at 5.30 in the afternoon, and on
arriving at his residence at Orange, got out some note-books and began
to write entirely from memory each item consecutively. He continued
at this task all through Saturday night, and worked steadily on until
Sunday afternoon, when he completed a list of nearly six hundred items.
The nature of this feat is more appreciable from the fact that a large
number of changes included all the figures of new dimensions he had
decided upon for some of the machinery throughout the plant.

As the reader may have a natural curiosity to learn whether or not the
list so made was practical, it may be stated that it was copied and
sent up to the general superintendent with instructions to make the
modifications suggested, and report by numbers as they were attended to.
This was faithfully done, all the changes being made before the plant
was put into operation. Subsequent experience has amply proven the value
of Edison's prescience at this time.

Although Edison's achievements in the way of improved processes and
machinery have already made a deep impression in the cement industry,
it is probable that this impression will become still more profoundly
stamped upon it in the near future with the exploitation of his "Poured
Cement House." The broad problem which he set himself was to provide
handsome and practically indestructible detached houses, which could be
taken by wage-earners at very moderate monthly rentals. He turned
this question over in his mind for several years, and arrived at the
conclusion that a house cast in one piece would be the answer. To
produce such a house involved the overcoming of many engineering and
other technical difficulties. These he attacked vigorously and disposed
of patiently one by one.

In this connection a short anecdote may be quoted from Edison as
indicative of one of the influences turning his thoughts in this
direction. In the story of the ore-milling work, it has been noted that
the plant was shut down owing to the competition of the cheap ore
from the Mesaba Range. Edison says: "When I shut down, the insurance
companies cancelled my insurance. I asked the reason why. 'Oh,' they
said, 'this thing is a failure. The moral risk is too great.' 'All
right; I am glad to hear it. I will now construct buildings that won't
have any moral risk.' I determined to go into the Portland cement
business. I organized a company and started cement-works which have
now been running successfully for several years. I had so perfected the
machinery in trying to get my ore costs down that the making of cheap
cement was an easy matter to me. I built these works entirely of
concrete and steel, so that there is not a wagon-load of lumber in them;
and so that the insurance companies would not have any possibility of
having any 'moral risk.' Since that time I have put up numerous factory
buildings all of steel and concrete, without any combustible whatever
about them--to avoid this 'moral risk.' I am carrying further the
application of this idea in building private houses for poor people, in
which there will be no 'moral risk' at all--nothing whatever to burn,
not even by lightning."

As a casting necessitates a mold, together with a mixture sufficiently
fluid in its nature to fill all the interstices completely, Edison
devoted much attention to an extensive series of experiments for
producing a free-flowing combination of necessary materials. His
proposition was against all precedent. All expert testimony pointed to
the fact that a mixture of concrete (cement, sand, crushed stone, and
water) could not be made to flow freely to the smallest parts of an
intricate set of molds; that the heavy parts of the mixture could not
be held in suspension, but would separate out by gravity and make
an unevenly balanced structure; that the surface would be full of
imperfections, etc.

Undeterred by the unanimity of adverse opinions, however, he pursued his
investigations with the thorough minuteness that characterizes all his
laboratory work, and in due time produced a mixture which on elaborate
test overcame all objections and answered the complex requirements
perfectly, including the making of a surface smooth, even, and entirely
waterproof. All the other engineering problems have received study in
like manner, and have been overcome, until at the present writing the
whole question is practically solved and has been reduced to actual
practice. The Edison poured or cast cement house may be reckoned as a
reality.

The general scheme, briefly outlined, is to prepare a model and plans of
the house to be cast, and then to design a set of molds in sections of
convenient size. When all is ready, these molds, which are of cast iron
with smooth interior surfaces, are taken to the place where the house
is to be erected. Here there has been provided a solid concrete cellar
floor, technically called "footing." The molds are then locked together
so that they rest on this footing. Hundreds of pieces are necessary for
the complete set. When they have been completely assembled, there will
be a hollow space in the interior, representing the shape of the house.
Reinforcing rods are also placed in the molds, to be left behind in the
finished house.

Next comes the pouring of the concrete mixture into this form. Large
mechanical mixers are used, and, as it is made, the mixture is dumped
into tanks, from which it is conveyed to a distributing tank on the top,
or roof, of the form. From this tank a large number of open troughs or
pipes lead the mixture to various openings in the roof, whence it flows
down and fills all parts of the mold from the footing in the basement
until it overflows at the tip of the roof.

The pouring of the entire house is accomplished in about six hours,
and then the molds are left undisturbed for six days, in order that the
concrete may set and harden. After that time the work of taking away
the molds is begun. This requires three or four days. When the molds are
taken away an entire house is disclosed, cast in one piece, from cellar
to tip of roof, complete with floors, interior walls, stairways, bath
and laundry tubs, electric-wire conduits, gas, water, and heating pipes.
No plaster is used anywhere; but the exterior and interior walls
are smooth and may be painted or tinted, if desired. All that is
now necessary is to put in the windows, doors, heater, and lighting
fixtures, and to connect up the plumbing and heating arrangements, thus
making the house ready for occupancy.

As these iron molds are not ephemeral like the wooden framing now used
in cement construction, but of practically illimitable life, it is
obvious that they can be used a great number of times. A complete set
of molds will cost approximately $25,000, while the necessary plant
will cost about $15,000 more. It is proposed to work as a unit plant for
successful operation at least six sets of molds, to keep the men busy
and the machinery going. Any one, with a sheet of paper, can ascertain
the yearly interest on the investment as a fixed charge to be assessed
against each house, on the basis that one hundred and forty-four houses
can be built in a year with the battery of six sets of molds. Putting
the sum at $175,000, and the interest at 6 per cent. on the cost of the
molds and 4 per cent. for breakage, together with 6 per cent. interest
and 15 per cent. depreciation on machinery, the plant charge is
approximately $140 per house. It does not require a particularly acute
prophetic vision to see "Flower Towns" of "Poured Houses" going up in
whole suburbs outside all our chief centres of population.

Edison's conception of the workingman's ideal house has been a broad
one from the very start. He was not content merely to provide a roomy,
moderately priced house that should be fireproof, waterproof, and
vermin-proof, and practically indestructible, but has been solicitous
to get away from the idea of a plain "packing-box" type. He has also
provided for ornamentation of a high class in designing the details of
the structure. As he expressed it: "We will give the workingman and his
family ornamentation in their house. They deserve it, and besides, it
costs no more after the pattern is made to give decorative effects than
it would to make everything plain." The plans have provided for a type
of house that would cost not far from $30,000 if built of cut stone. He
gave to Messrs. Mann & McNaillie, architects, New York, his idea of
the type of house he wanted. On receiving these plans he changed them
considerably, and built a model. After making many more changes in this
while in the pattern shop, he produced a house satisfactory to himself.

This one-family house has a floor plan twenty-five by thirty feet, and
is three stories high. The first floor is divided off into two large
rooms--parlor and living-room--and the upper floors contain four large
bedrooms, a roomy bath-room, and wide halls. The front porch extends
eight feet, and the back porch three feet. A cellar seven and a half
feet high extends under the whole house, and will contain the boiler,
wash-tubs, and coal-bunker. It is intended that the house shall be built
on lots forty by sixty feet, giving a lawn and a small garden.

It is contemplated that these houses shall be built in industrial
communities, where they can be put up in groups of several hundred. If
erected in this manner, and by an operator buying his materials in large
quantities, Edison believes that these houses can be erected complete,
including heating apparatus and plumbing, for $1200 each. This figure
would also rest on the basis of using in the mixture the gravel
excavated on the site. Comment has been made by persons of artistic
taste on the monotony of a cluster of houses exactly alike in
appearance, but this criticism has been anticipated, and the molds are
so made as to be capable of permutations of arrangement. Thus it will
be possible to introduce almost endless changes in the style of house by
variation of the same set of molds.

For more than forty years Edison was avowedly an inventor for purely
commercial purposes; but within the last two years he decided to retire
from that field so far as new inventions were concerned, and to devote
himself to scientific research and experiment in the leisure hours
that might remain after continuing to improve his existing devices.
But although the poured cement house was planned during the commercial
period, the spirit in which it was conceived arose out of an earnest
desire to place within the reach of the wage-earner an opportunity to
better his physical, pecuniary, and mental conditions in so far as that
could be done through the medium of hygienic and beautiful homes at
moderate rentals. From the first Edison has declared that it was not
his intention to benefit pecuniarily through the exploitation of this
project. Having actually demonstrated the practicability and feasibility
of his plans, he will allow responsible concerns to carry them into
practice under such limitations as may be necessary to sustain the basic
object, but without any payment to him except for the actual expense
incurred. The hypercritical may cavil and say that, as a manufacturer of
cement, Edison will be benefited. True, but as ANY good Portland cement
can be used, and no restrictions as to source of supply are enforced,
he, or rather his company, will be merely one of many possible
purveyors.

This invention is practically a gift to the workingmen of the world
and their families. The net result will be that those who care to avail
themselves of the privilege may, sooner or later, forsake the
crowded apartment or tenement and be comfortably housed in sanitary,
substantial, and roomy homes fitted with modern conveniences, and
beautified by artistic decorations, with no outlay for insurance or
repairs; no dread of fire, and all at a rental which Edison believes
will be not more, but probably less than, $10 per month in any city
of the United States. While his achievement in its present status will
bring about substantial and immediate benefits to wage-earners, his
thoughts have already travelled some years ahead in the formulation of a
still further beneficial project looking toward the individual ownership
of these houses on a basis startling in its practical possibilities.



CHAPTER XXI

MOTION PICTURES

THE preceding chapters have treated of Edison in various aspects as an
inventor, some of which are familiar to the public, others of which are
believed to be in the nature of a novel revelation, simply because no
one had taken the trouble before to put the facts together. To those
who have perhaps grown weary of seeing Edison's name in articles of
a sensational character, it may sound strange to say that, after all,
justice has not been done to his versatile and many-sided nature; and
that the mere prosaic facts of his actual achievement outrun the wildest
flights of irrelevant journalistic imagination. Edison hates nothing
more than to be dubbed a genius or played up as a "wizard"; but this
fate has dogged him until he has come at last to resign himself to it
with a resentful indignation only to be appreciated when watching
him read the latest full-page Sunday "spread" that develops a casual
conversation into oracular verbosity, and gives to his shrewd surmise
the cast of inspired prophecy.

In other words, Edison's real work has seldom been seriously discussed.
Rather has it been taken as a point of departure into a realm of fancy
and romance, where as a relief from drudgery he is sometimes quite
willing to play the pipe if some one will dance to it. Indeed, the
stories woven around his casual suggestions are tame and vapid alongside
his own essays in fiction, probably never to be published, but which
show what a real inventor can do when he cuts loose to create a new
heaven and a new earth, unrestrained by any formal respect for existing
conditions of servitude to three dimensions and the standard elements.

The present chapter, essentially technical in its subject-matter, is
perhaps as significant as any in this biography, because it presents
Edison as the Master Impresario of his age, and maybe of many following
ages also. His phonographs and his motion pictures have more audiences
in a week than all the theatres in America in a year. The "Nickelodeon"
is the central fact in modern amusement, and Edison founded it. All that
millions know of music and drama he furnishes; and the whole study of
the theatrical managers thus reaching the masses is not to ascertain the
limitations of the new art, but to discover its boundless possibilities.
None of the exuberant versions of things Edison has not done could
endure for a moment with the simple narrative of what he has really done
as the world's new Purveyor of Pleasure. And yet it all depends on
the toilful conquest of a subtle and intricate art. The story of the
invention of the phonograph has been told. That of the evolution of
motion pictures follows. It is all one piece of sober, careful analysis,
and stubborn, successful attack on the problem.

The possibility of making a record of animate movement, and subsequently
reproducing it, was predicted long before the actual accomplishment.
This, as we have seen, was also the case with the phonograph, the
telephone, and the electric light. As to the phonograph, the prediction
went only so far as the RESULT; the apparent intricacy of the problem
being so great that the MEANS for accomplishing the desired end
were seemingly beyond the grasp of the imagination or the mastery of
invention.

With the electric light and the telephone the prediction included not
only the result to be accomplished, but, in a rough and general way,
the mechanism itself; that is to say, long before a single sound was
intelligibly transmitted it was recognized that such a thing might be
done by causing a diaphragm, vibrated by original sounds, to communicate
its movements to a distant diaphragm by a suitably controlled electric
current. In the case of the electric light, the heating of a conductor
to incandescence in a highly rarefied atmosphere was suggested as a
scheme of illumination long before its actual accomplishment, and
in fact before the production of a suitable generator for delivering
electric current in a satisfactory and economical manner.

It is a curious fact that while the modern art of motion pictures
depends essentially on the development of instantaneous photography,
the suggestion of the possibility of securing a reproduction of animate
motion, as well as, in a general way, of the mechanism for accomplishing
the result, was made many years before the instantaneous photograph
became possible. While the first motion picture was not actually
produced until the summer of 1889, its real birth was almost a century
earlier, when Plateau, in France, constructed an optical toy, to which
the impressive name of "Phenakistoscope" was applied, for producing an
illusion of motion. This toy in turn was the forerunner of the Zoetrope,
or so-called "Wheel of Life," which was introduced into this country
about the year 1845. These devices were essentially toys, depending for
their successful operation (as is the case with motion pictures) upon
a physiological phenomenon known as persistence of vision. If, for
instance, a bright light is moved rapidly in front of the eye in a dark
room, it appears not as an illuminated spark, but as a line of fire;
a so-called shooting star, or a flash of lightning produces the same
effect. This result is purely physiological, and is due to the fact
that the retina of the eye may be considered as practically a sensitized
plate of relatively slow speed, and an image impressed upon it remains,
before being effaced, for a period of from one-tenth to one-seventh of
a second, varying according to the idiosyncrasies of the individual and
the intensity of the light. When, therefore, it is said that we should
only believe things we actually see, we ought to remember that in almost
every instance we never see things as they are.

Bearing in mind the fact that when an image is impressed on the human
retina it persists for an appreciable period, varying as stated,
with the individual, and depending also upon the intensity of the
illumination, it will be seen that, if a number of pictures or
photographs are successively presented to the eye, they will appear as
a single, continuous photograph, provided the periods between them are
short enough to prevent one of the photographs from being effaced before
its successor is presented. If, for instance, a series of identical
portraits were rapidly presented to the eye, a single picture would
apparently be viewed, or if we presented to the eye the series
of photographs of a moving object, each one representing a minute
successive phase of the movement, the movements themselves would
apparently again take place.

With the Zoetrope and similar toys rough drawings were used for
depicting a few broadly outlined successive phases of movement, because
in their day instantaneous photography was unknown, and in addition
there were certain crudities of construction that seriously interfered
with the illumination of the pictures, rendering it necessary to make
them practically as silhouettes on a very conspicuous background.
Hence it will be obvious that these toys produced merely an ILLUSION of
THEORETICAL motion.

But with the knowledge of even an illusion of motion, and with the
philosophy of persistence of vision fully understood, it would
seem that, upon the development of instantaneous photography, the
reproduction of ACTUAL motion by means of pictures would have followed,
almost as a necessary consequence. Yet such was not the case, and
success was ultimately accomplished by Edison only after persistent
experimenting along lines that could not have been predicted, including
the construction of apparatus for the purpose, which, if it had not been
made, would undoubtedly be considered impossible. In fact, if it were
not for Edison's peculiar mentality, that refuses to recognize anything
as impossible until indubitably demonstrated to be so, the production of
motion pictures would certainly have been delayed for years, if not for
all time.

One of the earliest suggestions of the possibility of utilizing
photography for exhibiting the illusion of actual movement was made by
Ducos, who, as early as 1864, obtained a patent in France, in which
he said: "My invention consists in substituting rapidly and without
confusion to the eye not only of an individual, but when so desired of a
whole assemblage, the enlarged images of a great number of pictures when
taken instantaneously and successively at very short intervals....
The observer will believe that he sees only one image, which changes
gradually by reason of the successive changes of form and position of
the objects which occur from one picture to the other. Even supposing
that there be a slight interval of time during which the same object was
not shown, the persistence of the luminous impression upon the eye
will fill this gap. There will be as it were a living representation of
nature and . . . the same scene will be reproduced upon the screen with
the same degree of animation.... By means of my apparatus I am enabled
especially to reproduce the passing of a procession, a review of
military manoeuvres, the movements of a battle, a public fete, a
theatrical scene, the evolution or the dances of one or of several
persons, the changing expression of countenance, or, if one desires,
the grimaces of a human face; a marine view, the motion of waves,
the passage of clouds in a stormy sky, particularly in a mountainous
country, the eruption of a volcano," etc.

Other dreamers, contemporaries of Ducos, made similar suggestions; they
recognized the scientific possibility of the problem, but they were
irretrievably handicapped by the shortcomings of photography. Even when
substantially instantaneous photographs were evolved at a somewhat
later date they were limited to the use of wet plates, which have to be
prepared by the photographer and used immediately, and were therefore
quite out of the question for any practical commercial scheme. Besides
this, the use of plates would have been impracticable, because the
limitations of their weight and size would have prevented the taking
of a large number of pictures at a high rate of speed, even if the
sensitized surface had been sufficiently rapid.

Nothing ever came of Ducos' suggestions and those of the early dreamers
in this essentially practical and commercial art, and their ideas
have made no greater impress upon the final result than Jules Verne's
Nautilus of our boyhood days has developed the modern submarine. From
time to time further suggestions were made, some in patents, and others
in photographic and scientific publications, all dealing with the
fascinating thought of preserving and representing actual scenes and
events. The first serious attempt to secure an illusion of motion by
photography was made in 1878 by Edward Muybridge as a result of a
wager with the late Senator Leland Stanford, the California pioneer
and horse-lover, who had asserted, contrary to the usual belief, that
a trotting-horse at one point in its gait left the ground entirely. At
this time wet plates of very great rapidity were known, and by arranging
a series of cameras along the line of a track and causing the horse
in trotting past them, by striking wires or strings attached to the
shutters, to actuate the cameras at the right instant, a series of very
clear instantaneous photographs was obtained. From these negatives,
when developed, positive prints were made, which were later mounted on a
modified form of Zoetrope and projected upon a screen.

One of these early exhibitions is described in the Scientific American
of June 5, 1880: "While the separate photographs had shown the
successive positions of a trotting or running horse in making a single
stride, the Zoogyroscope threw upon the screen apparently the living
animal. Nothing was wanting but the clatter of hoofs upon the turf, and
an occasional breath of steam from the nostrils, to make the spectator
believe that he had before him genuine flesh-and-blood steeds. In the
views of hurdle-leaping, the simulation was still more admirable, even
to the motion of the tail as the animal gathered for the jump, the
raising of his head, all were there. Views of an ox trotting, a wild
bull on the charge, greyhounds and deer running and birds flying in
mid-air were shown, also athletes in various positions." It must not be
assumed from this statement that even as late as the work of Muybridge
anything like a true illusion of movement had been obtained, because
such was not the case. Muybridge secured only one cycle of movement,
because a separate camera had to be used for each photograph and
consequently each cycle was reproduced over and over again. To have made
photographs of a trotting-horse for one minute at the moderate rate of
twelve per second would have required, under the Muybridge scheme, seven
hundred and twenty separate cameras, whereas with the modern art only a
single camera is used. A further defect with the Muybridge pictures was
that since each photograph was secured when the moving object was in the
centre of the plate, the reproduction showed the object always centrally
on the screen with its arms or legs in violent movement, but not making
any progress, and with the scenery rushing wildly across the field of
view!

In the early 80's the dry plate was first introduced into general
use, and from that time onward its rapidity and quality were gradually
improved; so much so that after 1882 Prof. E. J. Marey, of the French
Academy, who in 1874 had published a well-known treatise on "Animal
Movement," was able by the use of dry plates to carry forward the
experiments of Muybridge on a greatly refined scale. Marey was, however,
handicapped by reason of the fact that glass plates were still used,
although he was able with a single camera to obtain twelve photographs
on successive plates in the space of one second. Marey, like Muybridge,
photographed only one cycle of the movements of a single object, which
was subsequently reproduced over and over again, and the camera was in
the form of a gun, which could follow the object so that the successive
pictures would be always located in the centre of the plates.

The review above given, as briefly as possible, comprises substantially
the sum of the world's knowledge at the time the problem of recording
and reproducing animate movement was first undertaken by Edison. The
most that could be said of the condition of the art when Edison
entered the field was that it had been recognized that if a series of
instantaneous photographs of a moving object could be secured at an
enormously high rate many times per second--they might be passed before
the eye either directly or by projection upon a screen, and thereby
result in a reproduction of the movements. Two very serious difficulties
lay in the way of actual accomplishment, however--first, the production
of a sensitive surface in such form and weight as to be capable of being
successively brought into position and exposed, at the necessarily high
rate; and, second, the production of a camera capable of so taking the
pictures. There were numerous other workers in the field, but they added
nothing to what had already been proposed. Edison himself knew nothing
of Ducos, or that the suggestions had advanced beyond the single
centrally located photographs of Muybridge and Marey. As a matter of
public policy, the law presumes that an inventor must be familiar with
all that has gone before in the field within which he is working, and
if a suggestion is limited to a patent granted in New South Wales, or
is described in a single publication in Brazil, an inventor in America,
engaged in the same field of thought, is by legal fiction presumed to
have knowledge not only of the existence of that patent or publication,
but of its contents. We say this not in the way of an apology for the
extent of Edison's contribution to the motion-picture art, because there
can be no question that he was as much the creator of that art as he
was of the phonographic art; but to show that in a practical sense the
suggestion of the art itself was original with him. He himself says: "In
the year 1887 the idea occurred to me that it was possible to devise an
instrument which should do for the eye what the phonograph does for the
ear, and that by a combination of the two, all motion and sound could
be recorded and reproduced simultaneously. This idea, the germ of which
came from the little toy called the Zoetrope and the work of Muybridge,
Marey, and others, has now been accomplished, so that every change
of facial expression can be recorded and reproduced life-size. The
kinetoscope is only a small model illustrating the present stage of the
progress, but with each succeeding month new possibilities are brought
into view. I believe that in coming years, by my own work and that
of Dickson, Muybridge, Marey, and others who will doubtless enter the
field, grand opera can be given at the Metropolitan Opera House at New
York without any material change from the original, and with artists and
musicians long since dead."

In the earliest experiments attempts were made to secure the
photographs, reduced microscopically, arranged spirally on a cylinder
about the size of a phonograph record, and coated with a highly
sensitized surface, the cylinder being given an intermittent movement,
so as to be at rest during each exposure. Reproductions were obtained in
the same way, positive prints being observed through a magnifying glass.
Various forms of apparatus following this general type were made,
but they were all open to the serious objection that the very rapid
emulsions employed were relatively coarse-grained and prevented the
securing of sharp pictures of microscopic size. On the other hand, the
enlarging of the apparatus to permit larger pictures to be obtained
would present too much weight to be stopped and started with the
requisite rapidity. In these early experiments, however, it was
recognized that, to secure proper results, a single camera should be
used, so that the objects might move across its field just as they
move across the field of the human eye; and the important fact was
also observed that the rate at which persistence of vision took place
represented the minimum speed at which the pictures should be obtained.
If, for instance, five pictures per second were taken (half of the time
being occupied in exposure and the other half in moving the exposed
portion of the film out of the field of the lens and bringing a new
portion into its place), and the same ratio is observed in exhibiting
the pictures, the interval of time between successive pictures would
be one-tenth of a second; and for a normal eye such an exhibition would
present a substantially continuous photograph. If the angular movement
of the object across the field is very slow, as, for instance, a distant
vessel, the successive positions of the object are so nearly coincident
that when reproduced before the eye an impression of smooth, continuous
movement is secured. If, however, the object is moving rapidly across
the field of view, one picture will be separated from its successor to a
marked extent, and the resulting impression will be jerky and unnatural.
Recognizing this fact, Edison always sought for a very high speed, so as
to give smooth and natural reproductions, and even with his experimental
apparatus obtained upward of forty-eight pictures per second, whereas,
in practice, at the present time, the accepted rate varies between
twenty and thirty per second. In the efforts of the present day
to economize space by using a minimum length of film, pictures are
frequently taken at too slow a rate, and the reproductions are therefore
often objectionable, by reason of more or less jerkiness.

During the experimental period and up to the early part of 1889, the
kodak film was being slowly developed by the Eastman Kodak Company.
Edison perceived in this product the solution of the problem on which he
had been working, because the film presented a very light body of tough
material on which relatively large photographs could be taken at rapid
intervals. The surface, however, was not at first sufficiently sensitive
to admit of sharply defined pictures being secured at the necessarily
high rates. It seemed apparent, therefore, that in order to obtain
the desired speed there would have to be sacrificed that fineness
of emulsion necessary for the securing of sharp pictures. But as was
subsequently seen, this sacrifice was in time rendered unnecessary. Much
credit is due the Eastman experts--stimulated and encouraged by Edison,
but independently of him--for the production at last of a highly
sensitized, fine-grained emulsion presenting the highly sensitized
surface that Edison sought.

Having at last obtained apparently the proper material upon which to
secure the photographs, the problem then remained to devise an apparatus
by means of which from twenty to forty pictures per second could be
taken; the film being stationary during the exposure and, upon the
closing of the shutter, being moved to present a fresh surface. In
connection with this problem it is interesting to note that this
question of high speed was apparently regarded by all Edison's
predecessors as the crucial point. Ducos, for example, expended a great
deal of useless ingenuity in devising a camera by means of which a
tape-line film could receive the photographs while being in continuous
movement, necessitating the use of a series of moving lenses. Another
experimenter, Dumont, made use of a single large plate and a great
number of lenses which were successively exposed. Muybridge, as we have
seen, used a series of cameras, one for each plate. Marey was limited to
a very few photographs, because the entire surface had to be stopped and
started in connection with each exposure.

After the accomplishment of the fact, it would seem to be the obvious
thing to use a single lens and move the sensitized film with respect to
it, intermittently bringing the surface to rest, then exposing it, then
cutting off the light and moving the surface to a fresh position; but
who, other than Edison, would assume that such a device could be made
to repeat these movements over and over again at the rate of twenty to
forty per second? Users of kodaks and other forms of film cameras will
appreciate perhaps better than others the difficulties of the problem,
because in their work, after an exposure, they have to advance the
film forward painfully to the extent of the next picture before another
exposure can take place, these operations permitting of speeds of but
a few pictures per minute at best. Edison's solution of the problem
involved the production of a kodak in which from twenty to forty
pictures should be taken IN EACH SECOND, and with such fineness of
adjustment that each should exactly coincide with its predecessors even
when subjected to the test of enlargement by projection. This, however,
was finally accomplished, and in the summer of 1889 the first modern
motion-picture camera was made. More than this, the mechanism for
operating the film was so constructed that the movement of the film took
place in one-tenth of the time required for the exposure, giving the
film an opportunity to come to rest prior to the opening of the shutter.
From that day to this the Edison camera has been the accepted standard
for securing pictures of objects in motion, and such changes as have
been made in it have been purely in the nature of detail mechanical
refinements.

The earliest form of exhibiting apparatus, known as the Kinetoscope, was
a machine in which a positive print from the negative obtained in the
camera was exhibited directly to the eye through a peep-hole; but in
1895 the films were applied to modified forms of magic lanterns, by
which the images are projected upon a screen. Since that date the
industry has developed very rapidly, and at the present time (1910) all
of the principal American manufacturers of motion pictures are paying a
royalty to Edison under his basic patents.

From the early days of pictures representing simple movements, such as
a man sneezing, or a skirt-dance, there has been a gradual evolution,
until now the pictures represent not only actual events in all their
palpitating instantaneity, but highly developed dramas and scenarios
enacted in large, well-equipped glass studios, and the result of
infinite pains and expense of production. These pictures are exhibited
in upward of eight thousand places of amusement in the United States,
and are witnessed by millions of people each year. They constitute a
cheap, clean form of amusement for many persons who cannot spare the
money to go to the ordinary theatres, or they may be exhibited in towns
that are too small to support a theatre. More than this, they offer
to the poor man an effective substitute for the saloon. Probably no
invention ever made has afforded more pleasure and entertainment than
the motion picture.

Aside from the development of the motion picture as a spectacle, there
has gone on an evolution in its use for educational purposes of wide
range, which must not be overlooked. In fact, this form of utilization
has been carried further in Europe than in this country as a means of
demonstration in the arts and sciences. One may study animal life, watch
a surgical operation, follow the movement of machinery, take lessons
in facial expression or in calisthenics. It seems a pity that in motion
pictures should at last have been found the only competition that the
ancient marionettes cannot withstand. But aside from the disappearance
of those entertaining puppets, all else is gain in the creation of this
new art.

The work at the Edison laboratory in the development of the motion
picture was as usual intense and concentrated, and, as might be
expected, many of the early experiments were quite primitive in
their character until command had been secured of relatively perfect
apparatus. The subjects registered jerkily by the films were crude and
amusing, such as of Fred Ott's sneeze, Carmencita dancing, Italians
and their performing bears, fencing, trapeze stunts, horsemanship,
blacksmithing--just simple movements without any attempt to portray the
silent drama. One curious incident of this early study occurred when
"Jim" Corbett was asked to box a few rounds in front of the camera, with
a "dark un" to be selected locally. This was agreed to, and a celebrated
bruiser was brought over from Newark. When this "sparring partner" came
to face Corbett in the imitation ring he was so paralyzed with terror
he could hardly move. It was just after Corbett had won one of his
big battles as a prize-fighter, and the dismay of his opponent was
excusable. The "boys" at the laboratory still laugh consumedly when they
tell about it.

The first motion-picture studio was dubbed by the staff the "Black
Maria." It was an unpretentious oblong wooden structure erected in the
laboratory yard, and had a movable roof in the central part. This roof
could be raised or lowered at will. The building was covered with black
roofing paper, and was also painted black inside. There was no scenery
to render gay this lugubrious environment, but the black interior served
as the common background for the performers, throwing all their actions
into high relief. The whole structure was set on a pivot so that it
could be swung around with the sun; and the movable roof was opened
so that the accentuating sunlight could stream in upon the actor whose
gesticulations were being caught by the camera. These beginnings and
crudities are very remote from the elaborate and expensive paraphernalia
and machinery with which the art is furnished to-day.

At the present time the studios in which motion pictures are taken are
expensive and pretentious affairs. An immense building of glass, with
all the properties and stage-settings of a regular theatre, is required.
The Bronx Park studio of the Edison company cost at least one hundred
thousand dollars, while the well-known house of Pathe Freres in
France--one of Edison's licensees--makes use of no fewer than seven of
these glass theatres. All of the larger producers of pictures in this
country and abroad employ regular stock companies of actors, men and
women selected especially for their skill in pantomime, although, as
most observers have perhaps suspected, in the actual taking of the
pictures the performers are required to carry on an animated and
prepared dialogue with the same spirit and animation as on the regular
stage. Before setting out on the preparation of a picture, the book is
first written--known in the business as a scenario--giving a complete
statement as to the scenery, drops and background, and the sequence of
events, divided into scenes as in an ordinary play. These are placed in
the hands of a "producer," corresponding to a stage-director, generally
an actor or theatrical man of experience, with a highly developed
dramatic instinct. The various actors are selected, parts are assigned,
and the scene-painters are set to work on the production of the
desired scenery. Before the photographing of a scene, a long series of
rehearsals takes place, the incidents being gone over and over again
until the actors are "letter perfect." So persistent are the producers
in the matter of rehearsals and the refining and elaboration of
details, that frequently a picture that may be actually photographed and
reproduced in fifteen minutes, may require two or three weeks for its
production. After the rehearsal of a scene has advanced sufficiently
to suit the critical requirements of the producer, the camera man is
in requisition, and he is consulted as to lighting so as to produce the
required photographic effect. Preferably, of course, sunlight is used
whenever possible, hence the glass studios; but on dark days, and when
night-work is necessary, artificial light of enormous candle-power
is used, either mercury arcs or ordinary arc lights of great size and
number.

Under all conditions the light is properly screened and diffused to suit
the critical eye of the camera man. All being in readiness, the actual
picture is taken, the actors going through their rehearsed parts, the
producer standing out of the range of the camera, and with a megaphone
to his lips yelling out his instructions, imprecations, and approval,
and the camera man grinding at the crank of the camera and securing the
pictures at the rate of twenty or more per second, making a faithful
and permanent record of every movement and every change of facial
expression. At the end of the scene the negative is developed in the
ordinary way, and is then ready for use in the printing of the positives
for sale. When a further scene in the play takes place in the same
setting, and without regard to its position in the plot, it is taken
up, rehearsed, and photographed in the same way, and afterward all
the scenes are cemented together in the proper sequence, and form
the complete negative. Frequently, therefore, in the production of
a motion-picture play, the first and the last scene may be taken
successively, the only thing necessary being, of course, that after all
is done the various scenes should be arranged in their proper order. The
frames, having served their purpose, now go back to the scene-painter
for further use. All pictures are not taken in studios, because when
light and weather permit and proper surroundings can be secured outside,
scenes can best be obtained with natural scenery--city streets, woods,
and fields. The great drawback to the taking of pictures out-of-doors,
however, is the inevitable crowd, attracted by the novelty of the
proceedings, which makes the camera man's life a torment by getting into
the field of his instrument. The crowds are patient, however, and in one
Edison picture involving the blowing up of a bridge by the villain
of the piece and the substitution of a pontoon bridge by a company
of engineers just in time to allow the heroine to pass over in her
automobile, more than a thousand people stood around for almost an
entire day waiting for the tedious rehearsals to end and the actual
performance to begin. Frequently large bodies of men are used in
pictures, such as troops of soldiers, and it is an open secret that for
weeks during the Boer War regularly equipped British and Boer armies
confronted each other on the peaceful hills of Orange, New Jersey, ready
to enact before the camera the stirring events told by the cable from
the seat of hostilities. These conflicts were essentially harmless,
except in one case during the battle of Spion Kopje, when "General
Cronje," in his efforts to fire a wooden cannon, inadvertently dropped
his fuse into a large glass bottle containing gunpowder. The effect was
certainly most dramatic, and created great enthusiasm among the many
audiences which viewed the completed production; but the unfortunate
general, who is still an employee, was taken to the hospital, and even
now, twelve years afterward, he says with a grin that whenever he has a
moment of leisure he takes the time to pick a few pieces of glass from
his person!

Edison's great contribution to the regular stage was the incandescent
electric lamp, which enabled the production of scenic effects
never before even dreamed of, but which we accept now with so much
complacency. Yet with the motion picture, effects are secured that
could not be reproduced to the slightest extent on the real stage. The
villain, overcome by a remorseful conscience, sees on the wall of the
room the very crime which he committed, with HIMSELF as the principal
actor; one of the easy effects of double exposure. The substantial and
ofttimes corpulent ghost or spirit of the real stage has been succeeded
by an intangible wraith, as transparent and unsubstantial as may be
demanded in the best book of fairy tales--more double exposure. A man
emerges from the water with a splash, ascends feet foremost ten yards or
more, makes a graceful curve and lands on a spring-board, runs down it
to the bank, and his clothes fly gently up from the ground and enclose
his person--all unthinkable in real life, but readily possible by
running the motion-picture film backward! The fairy prince commands the
princess to appear, consigns the bad brothers to instant annihilation,
turns the witch into a cat, confers life on inanimate things; and many
more startling and apparently incomprehensible effects are carried out
with actual reality, by stop-work photography. In one case, when the
command for the heroine to come forth is given, the camera is stopped,
the young woman walks to the desired spot, and the camera is again
started; the effect to the eye--not knowing of this little by-play--is
as if she had instantly appeared from space. The other effects are
perhaps obvious, and the field and opportunities are absolutely
unlimited. Other curious effects are secured by taking the pictures at a
different speed from that at which they are exhibited. If, for example,
a scene occupying thirty seconds is reproduced in ten seconds, the
movements will be three times as fast, and vice versa. Many scenes
familiar to the reader, showing automobiles tearing along the road and
rounding corners at an apparently reckless speed, are really pictures of
slow and dignified movements reproduced at a high speed.

Brief reference has been made to motion pictures of educational
subjects, and in this field there are very great opportunities for
development. The study of geography, scenes and incidents in foreign
countries, showing the lives and customs and surroundings of other
peoples, is obviously more entertaining to the child when actively
depicted on the screen than when merely described in words. The lives of
great men, the enacting of important historical events, the reproduction
of great works of literature, if visually presented to the child must
necessarily impress his mind with greater force than if shown by mere
words. We predict that the time is not far distant when, in many of
our public schools, two or three hours a week will be devoted to this
rational and effective form of education.

By applying microphotography to motion pictures an additional field
is opened up, one phase of which may be the study of germ life and
bacteria, so that our future medical students may become as familiar
with the habits and customs of the Anthrax bacillus, for example, as of
the domestic cat.

From whatever point of view the subject is approached, the fact remains
that in the motion picture, perhaps more than with any other invention,
Edison has created an art that must always make a special appeal to the
mind and emotions of men, and although so far it has not advanced much
beyond the field of amusement, it contains enormous possibilities for
serious development in the future. Let us not think too lightly of the
humble five-cent theatre with its gaping crowd following with breathless
interest the vicissitudes of the beautiful heroine. Before us lies an
undeveloped land of opportunity which is destined to play an important
part in the growth and welfare of the human race.



CHAPTER XXII

THE DEVELOPMENT OF THE EDISON STORAGE BATTERY

IT is more than a hundred years since the elementary principle of the
storage battery or "accumulator" was detected by a Frenchman named
Gautherot; it is just fifty years since another Frenchman, named Plante,
discovered that on taking two thin plates of sheet lead, immersing them
in dilute sulphuric acid, and passing an electric current through the
cell, the combination exhibited the ability to give back part of the
original charging current, owing to the chemical changes and reactions
set up. Plante coiled up his sheets into a very handy cell like a little
roll of carpet or pastry; but the trouble was that the battery took a
long time to "form." One sheet becoming coated with lead peroxide
and the other with finely divided or spongy metallic lead, they would
receive current, and then, even after a long period of inaction, furnish
or return an electromotive force of from 1.85 to 2.2 volts. This ability
to store up electrical energy produced by dynamos in hours otherwise
idle, whether driven by steam, wind, or water, was a distinct advance
in the art; but the sensational step was taken about 1880, when Faure in
France and Brush in America broke away from the slow and weary process
of "forming" the plates, and hit on clever methods of furnishing them
"ready made," so to speak, by dabbing red lead onto lead-grid plates,
just as butter is spread on a slice of home-made bread. This brought the
storage battery at once into use as a practical, manufactured piece of
apparatus; and the world was captivated with the idea. The great English
scientist, Sir William Thomson, went wild with enthusiasm when a
Faure "box of electricity" was brought over from Paris to him in 1881
containing a million foot-pounds of stored energy. His biographer, Dr.
Sylvanus P. Thompson, describes him as lying ill in bed with a wounded
leg, and watching results with an incandescent lamp fastened to his bed
curtain by a safety-pin, and lit up by current from the little Faure
cell. Said Sir William: "It is going to be a most valuable, practical
affair--as valuable as water-cisterns to people whether they had or had
not systems of water-pipes and water-supply." Indeed, in one outburst of
panegyric the shrewd physicist remarked that he saw in it "a realization
of the most ardently and increasingly felt scientific aspiration of his
life--an aspiration which he hardly dared to expect or to see realized."
A little later, however, Sir William, always cautious and canny,
began to discover the inherent defects of the primitive battery, as
to disintegration, inefficiency, costliness, etc., and though offered
tempting inducements, declined to lend his name to its financial
introduction. Nevertheless, he accepted the principle as valuable, and
put the battery to actual use.

For many years after this episode, the modern lead-lead type of battery
thus brought forward with so great a flourish of trumpets had a hard
time of it. Edison's attitude toward it, even as a useful supplement
to his lighting system, was always one of scepticism, and he remarked
contemptuously that the best storage battery he knew was a ton of coal.
The financial fortunes of the battery, on both sides of the Atlantic,
were as varied and as disastrous as its industrial; but it did at last
emerge, and "made good." By 1905, the production of lead-lead storage
batteries in the United States alone had reached a value for the year
of nearly $3,000,000, and it has increased greatly since that time.
The storage battery is now regarded as an important and indispensable
adjunct in nearly all modern electric-lighting and electric-railway
systems of any magnitude; and in 1909, in spite of its weight, it had
found adoption in over ten thousand automobiles of the truck, delivery
wagon, pleasure carriage, and runabout types in America.

Edison watched closely all this earlier development for about fifteen
years, not changing his mind as to what he regarded as the incurable
defects of the lead-lead type, but coming gradually to the conclusion
that if a storage battery of some other and better type could be brought
forward, it would fulfil all the early hopes, however extravagant, of
such men as Kelvin (Sir William Thomson), and would become as necessary
and as universal as the incandescent lamp or the electric motor.
The beginning of the present century found him at his point of new
departure.

Generally speaking, non-technical and uninitiated persons have a
tendency to regard an invention as being more or less the ultimate
result of some happy inspiration. And, indeed, there is no doubt that
such may be the fact in some instances; but in most cases the inventor
has intentionally set out to accomplish a definite and desired
result--mostly through the application of the known laws of the art in
which he happens to be working. It is rarely, however, that a man will
start out deliberately, as Edison did, to evolve a radically new type of
such an intricate device as the storage battery, with only a meagre clew
and a vague starting-point.

In view of the successful outcome of the problem which, in 1900, he
undertook to solve, it will be interesting to review his mental attitude
at that period. It has already been noted at the end of a previous
chapter that on closing the magnetic iron-ore concentrating plant
at Edison, New Jersey, he resolved to work on a new type of storage
battery. It was about this time that, in the course of a conversation
with Mr. R. H. Beach, then of the street-railway department of the
General Electric Company, he said: "Beach, I don't think Nature would be
so unkind as to withhold the secret of a GOOD storage battery if a real
earnest hunt for it is made. I'm going to hunt."

Frequently Edison has been asked what he considers the secret of
achievement. To this query he has invariably replied: "Hard work, based
on hard thinking." The laboratory records bear the fullest witness that
he has consistently followed out this prescription to the utmost. The
perfection of all his great inventions has been signalized by patient,
persistent, and incessant effort which, recognizing nothing short of
success, has resulted in the ultimate accomplishment of his ideas.
Optimistic and hopeful to a high degree, Edison has the happy faculty of
beginning the day as open-minded as a child--yesterday's disappointments
and failures discarded and discounted by the alluring possibilities of
to-morrow.

Of all his inventions, it is doubtful whether any one of them has
called forth more original thought, work, perseverance, ingenuity, and
monumental patience than the one we are now dealing with. One of his
associates who has been through the many years of the storage-battery
drudgery with him said: "If Edison's experiments, investigations, and
work on this storage battery were all that he had ever done, I should
say that he was not only a notable inventor, but also a great man. It is
almost impossible to appreciate the enormous difficulties that have been
overcome."

From a beginning which was made practically in the dark, it was not
until he had completed more than ten thousand experiments that he
obtained any positive preliminary results whatever. Through all
this vast amount of research there had been no previous signs of the
electrical action he was looking for. These experiments had extended
over many months of constant work by day and night, but there was no
breakdown of Edison's faith in ultimate success--no diminution of his
sanguine and confident expectations. The failure of an experiment simply
meant to him that he had found something else that would not work, thus
bringing the possible goal a little nearer by a process of painstaking
elimination.

Now, however, after these many months of arduous toil, in which he
had examined and tested practically all the known elements in numerous
chemical combinations, the electric action he sought for had been
obtained, thus affording him the first inkling of the secret that he
had industriously tried to wrest from Nature. It should be borne in
mind that from the very outset Edison had disdained any intention of
following in the only tracks then known by employing lead and sulphuric
acid as the components of a successful storage battery. Impressed with
what he considered the serious inherent defects of batteries made of
these materials, and the tremendously complex nature of the chemical
reactions taking place in all types of such cells, he determined boldly
at the start that he would devise a battery without lead, and one in
which an alkaline solution could be used--a form which would, he firmly
believed, be inherently less subject to decay and dissolution than the
standard type, which after many setbacks had finally won its way to an
annual production of many thousands of cells, worth millions of dollars.

Two or three thousand of the first experiments followed the line of his
well-known primary battery in the attempted employment of copper oxide
as an element in a new type of storage cell; but its use offered no
advantages, and the hunt was continued in other directions and pursued
until Edison satisfied himself by a vast number of experiments that
nickel and iron possessed the desirable qualifications he was in search
of.

This immense amount of investigation which had consumed so many months
of time, and which had culminated in the discovery of a series of
reactions between nickel and iron that bore great promise, brought
Edison merely within sight of a strange and hitherto unexplored
country. Slowly but surely the results of the last few thousands of his
preliminary experiments had pointed inevitably to a new and fruitful
region ahead. He had discovered the hidden passage and held the clew
which he had so industriously sought. And now, having outlined a
definite path, Edison was all afire to push ahead vigorously in order
that he might enter in and possess the land.

It is a trite saying that "history repeats itself," and certainly no
axiom carries more truth than this when applied to the history of each
of Edison's important inventions. The development of the storage battery
has been no exception; indeed, far from otherwise, for in the ten years
that have elapsed since the time he set himself and his mechanics,
chemists, machinists, and experimenters at work to develop a practical
commercial cell, the old story of incessant and persistent efforts so
manifest in the working out of other inventions was fully repeated.

Very soon after he had decided upon the use of nickel and iron as the
elemental metals for his storage battery, Edison established a
chemical plant at Silver Lake, New Jersey, a few miles from the Orange
laboratory, on land purchased some time previously. This place was the
scene of the further experiments to develop the various chemical forms
of nickel and iron, and to determine by tests what would be best adapted
for use in cells manufactured on a commercial scale. With a little
handful of selected experimenters gathered about him, Edison settled
down to one of his characteristic struggles for supremacy. To some
extent it was a revival of the old Menlo Park days (or, rather, nights).
Some of these who had worked on the preliminary experiments, with the
addition of a few new-comers, toiled together regardless of passing
time and often under most discouraging circumstances, but with that
remarkable esprit de corps that has ever marked Edison's relations with
his co-workers, and that has contributed so largely to the successful
carrying out of his ideas.

The group that took part in these early years of Edison's arduous labors
included his old-time assistant, Fred Ott, together with his chemist,
J. W. Aylsworth, as well as E. J. Ross, Jr., W. E. Holland, and Ralph
Arbogast, and a little later W. G. Bee, all of whom have grown up
with the battery and still devote their energies to its commercial
development. One of these workers, relating the strenuous experiences of
these few years, says: "It was hard work and long hours, but still
there were some things that made life pleasant. One of them was the
supper-hour we enjoyed when we worked nights. Mr. Edison would have
supper sent in about midnight, and we all sat down together, including
himself. Work was forgotten for the time, and all hands were ready for
fun. I have very pleasant recollections of Mr. Edison at these times. He
would always relax and help to make a good time, and on some occasions
I have seen him fairly overflow with animal spirits, just like a boy
let out from school. After the supper-hour was over, however, he again
became the serious, energetic inventor, deeply immersed in the work at
hand.

"He was very fond of telling and hearing stories, and always appreciated
a joke. I remember one that he liked to get off on us once in a while.
Our lighting plant was in duplicate, and about 12.30 or 1 o'clock in the
morning, at the close of the supper-hour, a change would be made from
one plant to the other, involving the gradual extinction of the electric
lights and their slowly coming up to candle-power again, the whole
change requiring probably about thirty seconds. Sometimes, as this was
taking place, Edison would fold his hands, compose himself as if he were
in sound sleep, and when the lights were full again would apparently
wake up, with the remark, 'Well, boys, we've had a fine rest; now let's
pitch into work again.'"

Another interesting and amusing reminiscence of this period of
activity has been gathered from another of the family of experimenters:
"Sometimes, when Mr. Edison had been working long hours, he would
want to have a short sleep. It was one of the funniest things I ever
witnessed to see him crawl into an ordinary roll-top desk and curl up
and take a nap. If there was a sight that was still more funny, it was
to see him turn over on his other side, all the time remaining in the
desk. He would use several volumes of Watts's Dictionary of Chemistry
for a pillow, and we fellows used to say that he absorbed the contents
during his sleep, judging from the flow of new ideas he had on waking."

Such incidents as these serve merely to illustrate the lighter moments
that stand out in relief against the more sombre background of the
strenuous years, for, of all the absorbingly busy periods of Edison's
inventive life, the first five years of the storage-battery era was
one of the very busiest of them all. It was not that there remained any
basic principle to be discovered or simplified, for that had already
been done; but it was in the effort to carry these principles into
practice that there arose the numerous difficulties that at times seemed
insurmountable. But, according to another co-worker, "Edison seemed
pleased when he used to run up against a serious difficulty. It would
seem to stiffen his backbone and make him more prolific of new ideas.
For a time I thought I was foolish to imagine such a thing, but I could
never get away from the impression that he really appeared happy when
he ran up against a serious snag. That was in my green days, and I soon
learned that the failure of an experiment never discourages him unless
it is by reason of the carelessness of the man making it. Then Edison
gets disgusted. If it fails on its merits, he doesn't worry or fret
about it, but, on the contrary, regards it as a useful fact learned;
remains cheerful and tries something else. I have known him to reverse
an unsuccessful experiment and come out all right."

To follow Edison's trail in detail through the innumerable twists and
turns of his experimentation and research on the storage battery, during
the past ten years, would not be in keeping with the scope of this
narrative, nor would it serve any useful purpose. Besides, such details
would fill a big volume. The narrative, however, would not be complete
without some mention of the general outline of his work, and reference
may be made briefly to a few of the chief items. And lest the reader
think that the word "innumerable" may have been carelessly or hastily
used above, we would quote the reply of one of the laboratory assistants
when asked how many experiments had been made on the Edison storage
battery since the year 1900: "Goodness only knows! We used to number our
experiments consecutively from 1 to 10,000, and when we got up to
10,000 we turned back to 1 and ran up to 10,000 again, and so on. We ran
through several series--I don't know how many, and have lost track of
them now, but it was not far from fifty thousand."

From the very first, Edison's broad idea of his storage battery was to
make perforated metallic containers having the active materials packed
therein; nickel hydrate for the positive and iron oxide for the negative
plate. This plan has been adhered to throughout, and has found its
consummation in the present form of the completed commercial cell, but
in the middle ground which stands between the early crude beginnings
and the perfected type of to-day there lies a world of original thought,
patient plodding, and achievement.

The first necessity was naturally to obtain the best and purest
compounds for active materials. Edison found that comparatively little
was known by manufacturing chemists about nickel and iron oxides of the
high grade and purity he required. Hence it became necessary for him to
establish his own chemical works and put them in charge of men specially
trained by himself, with whom he worked. This was the plant at Silver
Lake, above referred to. Here, for several years, there was ceaseless
activity in the preparation of these chemical compounds by every
imaginable process and subsequent testing. Edison's chief chemist says:
"We left no stone unturned to find a way of making those chemicals so
that they would give the highest results. We carried on the experiments
with the two chemicals together. Sometimes the nickel would be ahead
in the tests, and then again it would fall behind. To stimulate us to
greater improvement, Edison hung up a card which showed the results
of tests in milliampere-hours given by the experimental elements as we
tried them with the various grades of nickel and iron we had made. This
stirred up a great deal of ambition among the boys to push the figures
up. Some of our earliest tests showed around 300, but as we improved
the material, they gradually crept up to over 500. Just about that time
Edison made a trip to Canada, and when he came back we had made such
good progress that the figures had crept up to about 1000. I well
remember how greatly he was pleased."

In speaking of the development of the negative element of the battery,
Mr. Aylsworth said: "In like manner the iron element had to be developed
and improved; and finally the iron, which had generally enjoyed
superiority in capacity over its companion, the nickel element, had to
go in training in order to retain its lead, which was imperative, in
order to produce a uniform and constant voltage curve. In talking
with me one day about the difficulties under which we were working and
contrasting them with the phonograph experimentation, Edison said: 'In
phonographic work we can use our ears and our eyes, aided with powerful
microscopes; but in the battery our difficulties cannot be seen or
heard, but must be observed by our mind's eye!' And by reason of the
employment of such vision in the past, Edison is now able to see quite
clearly through the forest of difficulties after eliminating them one by
one."

The size and shape of the containing pockets in the battery plates or
elements and the degree of their perforation were matters that received
many years of close study and experiment; indeed, there is still to-day
constant work expended on their perfection, although their present
general form was decided upon several years ago. The mechanical
construction of the battery, as a whole, in its present form, compels
instant admiration on account of its beauty and completeness. Mr. Edison
has spared neither thought, ingenuity, labor, nor money in the effort to
make it the most complete and efficient storage cell obtainable, and the
results show that his skill, judgment, and foresight have lost nothing
of the power that laid the foundation of, and built up, other great arts
at each earlier stage of his career.

Among the complex and numerous problems that presented themselves in
the evolution of the battery was the one concerning the internal
conductivity of the positive unit. The nickel hydrate was a poor
electrical conductor, and although a metallic nickel pocket might be
filled with it, there would not be the desired electrical action unless
a conducting substance were mixed with it, and so incorporated and
packed that there would be good electrical contact throughout.
This proved to be a most knotty and intricate puzzle--tricky and
evasive--always leading on and promising something, and at the last
slipping away leaving the work undone. Edison's remarkable patience and
persistence in dealing with this trying problem and in finally solving
it successfully won for him more than ordinary admiration from his
associates. One of them, in speaking of the seemingly interminable
experiments to overcome this trouble, said: "I guess that question of
conductivity of the positive pocket brought lots of gray hairs to his
head. I never dreamed a man could have such patience and perseverance.
Any other man than Edison would have given the whole thing up a thousand
times, but not he! Things looked awfully blue to the whole bunch of
us many a time, but he was always hopeful. I remember one time things
looked so dark to me that I had just about made up my mind to throw up
my job, but some good turn came just then and I didn't. Now I'm glad I
held on, for we've got a great future."

The difficulty of obtaining good electrical contact in the positive
element was indeed Edison's chief trouble for many years. After a great
amount of work and experimentation he decided upon a certain form
of graphite, which seemed to be suitable for the purpose, and then
proceeded to the commercial manufacture of the battery at a special
factory in Glen Ridge, New Jersey, installed for the purpose. There was
no lack of buyers, but, on the contrary, the factory was unable to turn
out batteries enough. The newspapers had previously published articles
showing the unusual capacity and performance of the battery, and public
interest had thus been greatly awakened.

Notwithstanding the establishment of a regular routine of manufacture
and sale, Edison did not cease to experiment for improvement. Although
the graphite apparently did the work desired of it, he was not
altogether satisfied with its performance and made extended trials
of other substances, but at that time found nothing that on the whole
served the purpose better. Continuous tests of the commercial cells were
carried on at the laboratory, as well as more practical and heavy tests
in automobiles, which were constantly kept running around the adjoining
country over all kinds of roads. All these tests were very closely
watched by Edison, who demanded rigorously that the various trials of
the battery should be carried on with all strenuousness so as to get the
utmost results and develop any possible weakness. So insistent was he on
this, that if any automobile should run several days without bursting a
tire or breaking some part of the machine, he would accuse the chauffeur
of picking out easy roads.

After these tests had been going on for some time, and some thousands
of cells had been sold and were giving satisfactory results to the
purchasers, the test sheets and experience gathered from various sources
pointed to the fact that occasionally a cell here and there would show
up as being short in capacity. Inasmuch as the factory processes were
very exact and carefully guarded, and every cell was made as uniform as
human skill and care could provide, there thus arose a serious problem.
Edison concentrated his powers on the investigation of this trouble, and
found that the chief cause lay in the graphite. Some other minor matters
also attracted his attention. What to do, was the important question
that confronted him. To shut down the factory meant great loss and
apparent failure. He realized this fully, but he also knew that to go
on would simply be to increase the number of defective batteries in
circulation, which would ultimately result in a permanent closure
and real failure. Hence he took the course which one would expect of
Edison's common sense and directness of action. He was not satisfied
that the battery was a complete success, so he shut down and went to
experimenting once more.

"And then," says one of the laboratory men, "we started on another
series of record-breaking experiments that lasted over five years.
I might almost say heart-breaking, too, for of all the elusive,
disappointing things one ever hunted for that was the worst. But secrets
have to be long-winded and roost high if they want to get away when the
'Old Man' goes hunting for them. He doesn't get mad when he misses them,
but just keeps on smiling and firing, and usually brings them into camp.
That's what he did on the battery, for after a whole lot of work he
perfected the nickel-flake idea and process, besides making the great
improvement of using tubes instead of flat pockets for the positive. He
also added a minor improvement here and there, and now we have a finer
battery than we ever expected."

In the interim, while the experimentation of these last five years was
in progress, many customers who had purchased batteries of the original
type came knocking at the door with orders in their hands for additional
outfits wherewith to equip more wagons and trucks. Edison expressed
his regrets, but said he was not satisfied with the old cells and was
engaged in improving them. To which the customers replied that THEY were
entirely satisfied and ready and willing to pay for more batteries of
the same kind; but Edison could not be moved from his determination,
although considerable pressure was at times brought to bear to sway his
decision.

Experiment was continued beyond the point of peradventure, and after
some new machinery had been built, the manufacture of the new type of
cell was begun in the early summer of 1909, and at the present writing
is being extended as fast as the necessary additional machinery can be
made. The product is shipped out as soon as it is completed.

The nickel flake, which is Edison's ingenious solution of the
conductivity problem, is of itself a most interesting product, intensely
practical in its application and fascinating in its manufacture. The
flake of nickel is obtained by electroplating upon a metallic cylinder
alternate layers of copper and nickel, one hundred of each, after which
the combined sheet is stripped from the cylinder. So thin are the layers
that this sheet is only about the thickness of a visiting-card, and yet
it is composed of two hundred layers of metal. The sheet is cut into
tiny squares, each about one-sixteenth of an inch, and these squares
are put into a bath where the copper is dissolved out. This releases
the layers of nickel, so that each of these small squares becomes one
hundred tiny sheets, or flakes, of pure metallic nickel, so thin that
when they are dried they will float in the air, like thistle-down.

In their application to the manufacture of batteries, the flakes are
used through the medium of a special machine, so arranged that small
charges of nickel hydrate and nickel flake are alternately fed into the
pockets intended for positives, and tamped down with a pressure equal
to about four tons per square inch. This insures complete and perfect
contact and consequent electrical conductivity throughout the entire
unit.

The development of the nickel flake contains in itself a history of
patient investigation, labor, and achievement, but we have not space for
it, nor for tracing the great work that has been done in developing
and perfecting the numerous other parts and adjuncts of this remarkable
battery. Suffice it to say that when Edison went boldly out into new
territory, after something entirely unknown, he was quite prepared for
hard work and exploration. He encountered both in unstinted measure, but
kept on going forward until, after long travel, he had found all that he
expected and accomplished something more beside. Nature DID respond to
his whole-hearted appeal, and, by the time the hunt was ended, revealed
a good storage battery of entirely new type. Edison not only recognized
and took advantage of the principles he had discovered, but in
adapting them for commercial use developed most ingenious processes
and mechanical appliances for carrying his discoveries into practical
effect. Indeed, it may be said that the invention of an enormous variety
of new machines and mechanical appliances rendered necessary by each
change during the various stages of development of the battery, from
first to last, stands as a lasting tribute to the range and versatility
of his powers.

It is not within the scope of this narrative to enter into any
description of the relative merits of the Edison storage battery, that
being the province of a commercial catalogue. It does, however, seem
entirely allowable to say that while at the present writing the tests
that have been made extend over a few years only, their results and the
intrinsic value of this characteristic Edison invention are of such a
substantial nature as to point to the inevitable growth of another
great industry arising from its manufacture, and to its wide-spread
application to many uses.

The principal use that Edison has had in mind for his battery is
transportation of freight and passengers by truck, automobile, and
street-car. The greatly increased capacity in proportion to weight of
the Edison cell makes it particularly adaptable for this class of work
on account of the much greater radius of travel that is possible by its
use. The latter point of advantage is the one that appeals most to the
automobilist, as he is thus enabled to travel, it is asserted, more than
three times farther than ever before on a single charge of the battery.

Edison believes that there are important advantages possible in the
employment of his storage battery for street-car propulsion. Under the
present system of operation, a plant furnishing the electric power for
street railways must be large enough to supply current for the maximum
load during "rush hours," although much of the machinery may be lying
idle and unproductive in the hours of minimum load. By the use of
storage-battery cars, this immense and uneconomical maximum investment
in plant can be cut down to proportions of true commercial economy, as
the charging of the batteries can be conducted at a uniform rate with a
reasonable expenditure for generating machinery. Not only this, but each
car becomes an independently moving unit, not subject to delay by reason
of a general breakdown of the power plant or of the line. In addition
to these advantages, the streets would be freed from their burden of
trolley wires or conduits. To put his ideas into practice, Edison built
a short railway line at the Orange works in the winter of 1909-10, and,
in co-operation with Mr. R. H. Beach, constructed a special type of
street-car, and equipped it with motor, storage battery, and other
necessary operating devices. This car was subsequently put upon the
street-car lines in New York City, and demonstrated its efficiency so
completely that it was purchased by one of the street-car companies,
which has since ordered additional cars for its lines. The demonstration
of this initial car has been watched with interest by many railroad
officials, and its performance has been of so successful a nature that
at the present writing (the summer of 1910) it has been necessary to
organize and equip a preliminary factory in which to construct
many other cars of a similar type that have been ordered by other
street-railway companies. This enterprise will be conducted by a
corporation which has been specially organized for the purpose. Thus,
there has been initiated the development of a new and important industry
whose possible ultimate proportions are beyond the range of present
calculation. Extensive as this industry may become, however, Edison is
firmly convinced that the greatest field for his storage battery lies
in its adaptation to commercial trucking and hauling, and to pleasure
vehicles, in comparison with which the street-car business even with its
great possibilities--will not amount to more than 1 per cent.

Edison has pithily summed up his work and his views in an article on
"The To-Morrows of Electricity and Invention" in Popular Electricity
for June, 1910, in which he says: "For years past I have been trying to
perfect a storage battery, and have now rendered it entirely suitable
to automobile and other work. There is absolutely no reason why horses
should be allowed within city limits; for between the gasoline and the
electric car, no room is left for them. They are not needed. The cow
and the pig have gone, and the horse is still more undesirable. A higher
public ideal of health and cleanliness is working toward such banishment
very swiftly; and then we shall have decent streets, instead of stables
made out of strips of cobblestones bordered by sidewalks. The worst
use of money is to make a fine thoroughfare, and then turn it over to
horses. Besides that, the change will put the humane societies out of
business. Many people now charge their own batteries because of lack of
facilities; but I believe central stations will find in this work very
soon the largest part of their load. The New York Edison Company, or
the Chicago Edison Company, should have as much current going out for
storage batteries as for power motors; and it will be so some near day."



CHAPTER XXIII

MISCELLANEOUS INVENTIONS

IT has been the endeavor in this narrative to group Edison's inventions
and patents so that his work in the different fields can be studied
independently and separately. The history of his career has therefore
fallen naturally into a series of chapters, each aiming to describe some
particular development or art; and, in a way, the plan has been helpful
to the writers while probably useful to the readers. It happens,
however, that the process has left a vast mass of discovery and
invention wholly untouched, and relegates to a concluding brief chapter
some of the most interesting episodes of a fruitful life. Any one who
will turn to the list of Edison patents at the end of the book will find
a large number of things of which not even casual mention has been made,
but which at the time occupied no small amount of the inventor's time
and attention, and many of which are now part and parcel of modern
civilization. Edison has, indeed, touched nothing that he did not in
some way improve. As Thoreau said: "The laws of the Universe are not
indifferent, but are forever on the side of the most sensitive," and
there never was any one more sensitive to the defects of every art and
appliance, nor any one more active in applying the law of evolution.
It is perhaps this many-sidedness of Edison that has impressed the
multitude, and that in the "popular vote" taken a couple of years ago
by the New York Herald placed his name at the head of the list of ten
greatest living Americans. It is curious and pertinent to note that a
similar plebiscite taken by a technical journal among its expert readers
had exactly the same result. Evidently the public does not agree with
the opinion expressed by the eccentric artist Blake in his "Marriage of
Heaven and Hell," when he said: "Improvement makes strange roads; but
the crooked roads without improvements are roads of Genius."

The product of Edison's brain may be divided into three classes. The
first embraces such arts and industries, or such apparatus, as have
already been treated. The second includes devices like the tasimeter,
phonomotor, odoroscope, etc., and others now to be noted. The third
embraces a number of projected inventions, partially completed
investigations, inventions in use but not patented, and a great many
caveats filed in the Patent Office at various times during the last
forty years for the purpose of protecting his ideas pending their
contemplated realization in practice. These caveats served their purpose
thoroughly in many instances, but there have remained a great variety of
projects upon which no definite action was ever taken. One ought to
add the contents of an unfinished piece of extraordinary fiction based
wholly on new inventions and devices utterly unknown to mankind. Some
day the novel may be finished, but Edison has no inclination to go
back to it, and says he cannot understand how any man is able to make a
speech or write a book, for he simply can't do it.

After what has been said in previous chapters, it will not seem so
strange that Edison should have hundreds of dormant inventions on his
hands. There are human limitations even for such a tireless worker as he
is. While the preparation of data for this chapter was going on, one of
the writers in discussing with him the vast array of unexploited things
said: "Don't you feel a sense of regret in being obliged to leave so
many things uncompleted?" To which he replied: "What's the use? One
lifetime is too short, and I am busy every day improving essential parts
of my established industries." It must suffice to speak briefly of a few
leading inventions that have been worked out, and to dismiss with
scant mention all the rest, taking just a few items, as typical and
suggestive, especially when Edison can himself be quoted as to them.
Incidentally it may be noted that things, not words, are referred to;
for Edison, in addition to inventing the apparatus, has often had to
coin the word to describe it. A large number of the words and phrases in
modern electrical parlance owe their origin to him. Even the "call-word"
of the telephone, "Hello!" sent tingling over the wire a few million
times daily was taken from Menlo Park by men installing telephones
in different parts of the world, men who had just learned it at
the laboratory, and thus made it a universal sesame for telephonic
conversation.

It is hard to determine where to begin with Edison's miscellaneous
inventions, but perhaps telegraphy has the "right of line," and Edison's
work in that field puts him abreast of the latest wireless developments
that fill the world with wonder. "I perfected a system of train
telegraphy between stations and trains in motion whereby messages could
be sent from the moving train to the central office; and this was the
forerunner of wireless telegraphy. This system was used for a number of
years on the Lehigh Valley Railroad on their construction trains. The
electric wave passed from a piece of metal on top of the car across
the air to the telegraph wires; and then proceeded to the despatcher's
office. In my first experiments with this system I tried it on the
Staten Island Railroad, and employed an operator named King to do the
experimenting. He reported results every day, and received instructions
by mail; but for some reason he could send messages all right when the
train went in one direction, but could not make it go in the contrary
direction. I made suggestions of every kind to get around this
phenomenon. Finally I telegraphed King to find out if he had any
suggestions himself; and I received a reply that the only way he could
propose to get around the difficulty was to put the island on a pivot
so it could be turned around! I found the trouble finally, and the
practical introduction on the Lehigh Valley road was the result. The
system was sold to a very wealthy man, and he would never sell any
rights or answer letters. He became a spiritualist subsequently, which
probably explains it." It is interesting to note that Edison became
greatly interested in the later developments by Marconi, and is an
admiring friend and adviser of that well-known inventor.

The earlier experiments with wireless telegraphy at Menlo Park were
made at a time when Edison was greatly occupied with his electric-light
interests, and it was not until the beginning of 1886 that he was
able to spare the time to make a public demonstration of the system
as applied to moving trains. Ezra T. Gilliland, of Boston, had become
associated with him in his experiments, and they took out several joint
patents subsequently. The first practical use of the system took place
on a thirteen-mile stretch of the Staten Island Railroad with the
results mentioned by Edison above.

A little later, Edison and Gilliland joined forces with Lucius J.
Phelps, another investigator, who had been experimenting along the same
lines and had taken out several patents. The various interests were
combined in a corporation under whose auspices the system was installed
on the Lehigh Valley Railroad, where it was used for several years. The
official demonstration trip on this road took place on October 6,
1887, on a six-car train running to Easton, Pennsylvania, a distance of
fifty-four miles. A great many telegrams were sent and received while
the train was at full speed, including a despatch to the "cable king,"
John Pender. London, England, and a reply from him. [17]

     [Footnote 17: Broadly described in outline, the system
     consisted of an induction circuit obtained by laying strips
     of tin along the top or roof of a railway car, and the
     installation of a special telegraph line running parallel
     with the track and strung on poles of only medium height.
     The train and also each signalling station were equipped
     with regulation telegraphic apparatus, such as battery, key,
     relay, and sounder, together with induction-coil and
     condenser. In addition, there was a transmitting device in
     the shape of a musical reed, or buzzer. In practice, this
     buzzer was continuously operated at high speed by a battery.
     Its vibrations were broken by means of a key into long and
     short periods, representing Morse characters, which were
     transmitted inductively from the train circuit to the pole
     line, or vice versa, and received by the operator at the
     other end through a high-resistance telephone receiver
     inserted in the secondary circuit of the induction-coil.]

Although the space between the cars and the pole line was probably not
more than about fifty feet, it is interesting to note that in Edison's
early experiments at Menlo Park he succeeded in transmitting messages
through the air at a distance of 580 feet. Speaking of this and of
his other experiments with induction telegraphy by means of kites,
communicating from one to the other and thus from the kites to
instruments on the earth, Edison said recently: "We only transmitted
about two and one-half miles through the kites. What has always puzzled
me since is that I did not think of using the results of my experiments
on 'etheric force' that I made in 1875. I have never been able to
understand how I came to overlook them. If I had made use of my own work
I should have had long-distance wireless telegraphy."

In one of the appendices to this book is given a brief technical account
of Edison's investigations of the phenomena which lie at the root of
modern wireless or "space" telegraphy, and the attention of the reader
is directed particularly to the description and quotations there from
the famous note-books of Edison's experiments in regard to what he
called "etheric force." It will be seen that as early as 1875 Edison
detected and studied certain phenomena--i.e., the production of
electrical effects in non-closed circuits, which for a time made him
think he was on the trail of a new force, as there was no plausible
explanation for them by the then known laws of electricity and
magnetism. Later came the magnificent work of Hertz identifying the
phenomena as "electromagnetic waves" in the ether, and developing a
new world of theory and science based upon them and their production by
disruptive discharges.

Edison's assertions were treated with scepticism by the scientific
world, which was not then ready for the discovery and not sufficiently
furnished with corroborative data. It is singular, to say the least,
to note how Edison's experiments paralleled and proved in advance those
that came later; and even his apparatus such as the "dark box" for
making the tiny sparks visible (as the waves impinged on the receiver)
bears close analogy with similar apparatus employed by Hertz. Indeed, as
Edison sent the dark-box apparatus to the Paris Exposition in 1881,
and let Batchelor repeat there the puzzling experiments, it seems by no
means unlikely that, either directly or on the report of some friend,
Hertz may thus have received from Edison a most valuable suggestion, the
inventor aiding the physicist in opening up a wonderful new realm.
In this connection, indeed, it is very interesting to quote two great
authorities. In May, 1889, at a meeting of the Institution of Electrical
Engineers in London, Dr. (now Sir) Oliver Lodge remarked in a discussion
on a paper of his own on lightning conductors, embracing the Hertzian
waves in its treatment: "Many of the effects I have shown--sparks in
unsuspected places and other things--have been observed before. Henry
observed things of the kind and Edison noticed some curious phenomena,
and said it was not electricity but 'etheric force' that caused these
sparks; and the matter was rather pooh-poohed. It was a small part of
THIS VERY THING; only the time was not ripe; theoretical knowledge was
not ready for it." Again in his "Signalling without Wires," in giving
the history of the coherer principle, Lodge remarks: "Sparks identical
in all respects with those discovered by Hertz had been seen in recent
times both by Edison and by Sylvanus Thompson, being styled 'etheric
force' by the former; but their theoretic significance had not been
perceived, and they were somewhat sceptically regarded." During the same
discussion in London, in 1889, Sir William Thomson (Lord Kelvin), after
citing some experiments by Faraday with his insulated cage at the Royal
Institution, said: "His (Faraday's) attention was not directed to look
for Hertz sparks, or probably he might have found them in the interior.
Edison seems to have noticed something of the kind in what he called
'etheric force.' His name 'etheric' may thirteen years ago have seemed
to many people absurd. But now we are all beginning to call these
inductive phenomena 'etheric.'" With which testimony from the great
Kelvin as to his priority in determining the vital fact, and with the
evidence that as early as 1875 he built apparatus that demonstrated the
fact, Edison is probably quite content.

It should perhaps be noted at this point that a curious effect observed
at the laboratory was shown in connection with Edison lamps at the
Philadelphia Exhibition of 1884. It became known in scientific parlance
as the "Edison effect," showing a curious current condition or discharge
in the vacuum of the bulb. It has since been employed by Fleming in
England and De Forest in this country, and others, as the basis for
wireless-telegraph apparatus. It is in reality a minute rectifier of
alternating current, and analogous to those which have since been made
on a large scale.

When Roentgen came forward with his discovery of the new "X"-ray in
1895, Edison was ready for it, and took up experimentation with it on
a large scale; some of his work being recorded in an article in the
Century Magazine of May, 1896, where a great deal of data may be found.
Edison says with regard to this work: "When the X-ray came up, I made
the first fluoroscope, using tungstate of calcium. I also found that
this tungstate could be put into a vacuum chamber of glass and fused
to the inner walls of the chamber; and if the X-ray electrodes were let
into the glass chamber and a proper vacuum was attained, you could get a
fluorescent lamp of several candle-power. I started in to make a number
of these lamps, but I soon found that the X-ray had affected poisonously
my assistant, Mr. Dally, so that his hair came out and his flesh
commenced to ulcerate. I then concluded it would not do, and that it
would not be a very popular kind of light; so I dropped it.

"At the time I selected tungstate of calcium because it was
so fluorescent, I set four men to making all kinds of chemical
combinations, and thus collected upward of 8000 different crystals of
various chemical combinations, discovering several hundred different
substances which would fluoresce to the X-ray. So far little had come
of X-ray work, but it added another letter to the scientific alphabet.
I don't know any thing about radium, and I have lots of company." The
Electrical Engineer of June 3, 1896, contains a photograph of Mr. Edison
taken by the light of one of his fluorescent lamps. The same journal
in its issue of April 1, 1896, shows an Edison fluoroscope in use by
an observer, in the now familiar and universal form somewhat like a
stereoscope. This apparatus as invented by Edison consists of a flaring
box, curved at one end to fit closely over the forehead and eyes, while
the other end of the box is closed by a paste-board cover. On the inside
of this is spread a layer of tungstate of calcium. By placing the
object to be observed, such as the hand, between the vacuum-tube and
the fluorescent screen, the "shadow" is formed on the screen and can be
observed at leisure. The apparatus has proved invaluable in surgery and
has become an accepted part of the equipment of modern surgery. In 1896,
at the Electrical Exhibition in the Grand Central Palace, New York City,
given under the auspices of the National Electric Light Association,
thousands and thousands of persons with the use of this apparatus in
Edison's personal exhibit were enabled to see their own bones; and the
resultant public sensation was great. Mr. Mallory tells a characteristic
story of Edison's own share in the memorable exhibit: "The exhibit
was announced for opening on Monday. On the preceding Friday all the
apparatus, which included a large induction-coil, was shipped from
Orange to New York, and on Saturday afternoon Edison, accompanied by
Fred Ott, one of his assistants, and myself, went over to install it so
as to have it ready for Monday morning. Had everything been normal, a
few hours would have sufficed for completion of the work, but on coming
to test the big coil, it was found to be absolutely out of commission,
having been so seriously injured as to necessitate its entire rewinding.
It being summer-time, all the machine shops were closed until Monday
morning, and there were several miles of wire to be wound on the coil.
Edison would not consider a postponement of the exhibition, so there was
nothing to do but go to work and wind it by hand. We managed to find
a lathe, but there was no power; so each of us, including Edison, took
turns revolving the lathe by pulling on the belt, while the other two
attended to the winding of the wire. We worked continuously all through
that Saturday night and all day Sunday until evening, when we finished
the job. I don't remember ever being conscious of more muscles in
my life. I guess Edison was tired also, but he took it very
philosophically." This was apparently the first public demonstration of
the X-ray to the American public.

Edison's ore-separation work has been already fully described, but the
story would hardly be complete without a reference to similar work
in gold extraction, dating back to the Menlo Park days: "I got up a
method," says Edison, "of separating placer gold by a dry process, in
which I could work economically ore as lean as five cents of gold to the
cubic yard. I had several car-loads of different placer sands sent to me
and proved I could do it. Some parties hearing I had succeeded in doing
such a thing went to work and got hold of what was known as the Ortiz
mine grant, twelve miles from Santa Fe, New Mexico. This mine, according
to the reports of several mining engineers made in the last forty years,
was considered one of the richest placer deposits in the United States,
and various schemes had been put forward to bring water from the
mountains forty miles away to work those immense beds. The reports
stated that the Mexicans had been panning gold for a hundred years out
of these deposits.

"These parties now made arrangements with the stockholders or owners of
the grant, and with me, to work the deposits by my process. As I had had
some previous experience with the statements of mining men, I concluded
I would just send down a small plant and prospect the field before
putting up a large one. This I did, and I sent two of my assistants,
whom I could trust, down to this place to erect the plant; and started
to sink shafts fifty feet deep all over the area. We soon learned that
the rich gravel, instead of being spread over an area of three by seven
miles, and rich from the grass roots down, was spread over a space of
about twenty-five acres, and that even this did not average more than
ten cents to the cubic yard. The whole placer would not give more than
one and one-quarter cents per cubic yard. As my business arrangements
had not been very perfectly made, I lost the usual amount."

Going to another extreme, we find Edison grappling with one of the
biggest problems known to the authorities of New York--the disposal of
its heavy snows. It is needless to say that witnessing the ordinary slow
and costly procedure would put Edison on his mettle. "One time when
they had a snow blockade in New York I started to build a machine with
Batchelor--a big truck with a steam-engine and compressor on it. We
would run along the street, gather all the snow up in front of us, pass
it into the compressor, and deliver little blocks of ice behind us
in the gutter, taking one-tenth the room of the snow, and not
inconveniencing anybody. We could thus take care of a snow-storm
by diminishing the bulk of material to be handled. The preliminary
experiment we made was dropped because we went into other things. The
machine would go as fast as a horse could walk."

Edison has always taken a keen interest in aerial flight, and has also
experimented with aeroplanes, his preference inclining to the helicopter
type, as noted in the newspapers and periodicals from time to time.
The following statement from him refers to a type of aeroplane of great
novelty and ingenuity: "James Gordon Bennett came to me and asked that
I try some primary experiments to see if aerial navigation was feasible
with 'heavier-than-air' machines. I got up a motor and put it on the
scales and tried a large number of different things and contrivances
connected to the motor, to see how it would lighten itself on the
scales. I got some data and made up my mind that what was needed was a
very powerful engine for its weight, in small compass. So I conceived of
an engine employing guncotton. I took a lot of ticker paper tape, turned
it into guncotton and got up an engine with an arrangement whereby I
could feed this gun-cotton strip into the cylinder and explode it inside
electrically. The feed took place between two copper rolls. The copper
kept the temperature down, so that it could only explode up to the point
where it was in contact with the feed rolls. It worked pretty well;
but once the feed roll didn't save it, and the flame went through and
exploded the whole roll and kicked up such a bad explosion I abandoned
it. But the idea might be made to work."

Turning from the air to the earth, it is interesting to note that the
introduction of the underground Edison system in New York made an appeal
to inventive ingenuity and that one of the difficulties was met as
follows: "When we first put the Pearl Street station in operation, in
New York, we had cast-iron junction-boxes at the intersections of all
the streets. One night, or about two o'clock in the morning, a policeman
came in and said that something had exploded at the corner of William
and Nassau streets. I happened to be in the station, and went out to see
what it was. I found that the cover of the manhole, weighing about 200
pounds, had entirely disappeared, but everything inside was intact. It
had even stripped some of the threads of the bolts, and we could never
find that cover. I concluded it was either leakage of gas into the
manhole, or else the acid used in pickling the casting had given off
hydrogen, and air had leaked in, making an explosive mixture. As this
was a pretty serious problem, and as we had a good many of the manholes,
it worried me very much for fear that it would be repeated and the
company might have to pay a lot of damages, especially in districts
like that around William and Nassau, where there are a good many people
about. If an explosion took place in the daytime it might lift a few of
them up. However, I got around the difficulty by putting a little bottle
of chloroform in each box, corked up, with a slight hole in the cork.
The chloroform being volatile and very heavy, settled in the box and
displaced all the air. I have never heard of an explosion in a manhole
where this chloroform had been used. Carbon tetrachloride, now made
electrically at Niagara Falls, is very cheap and would be ideal for the
purpose."

Edison has never paid much attention to warfare, and has in general
disdained to develop inventions for the destruction of life and
property. Some years ago, however, he became the joint inventor of
the Edison-Sims torpedo, with Mr. W. Scott Sims, who sought his
co-operation. This is a dirigible submarine torpedo operated by
electricity. In the torpedo proper, which is suspended from a long
float so as to be submerged a few feet under water, are placed the small
electric motor for propulsion and steering, and the explosive charge.
The torpedo is controlled from the shore or ship through an electric
cable which it pays out as it goes along, and all operations of varying
the speed, reversing, and steering are performed at the will of the
distant operator by means of currents sent through the cable. During the
Spanish-American War of 1898 Edison suggested to the Navy Department the
adoption of a compound of calcium carbide and calcium phosphite, which
when placed in a shell and fired from a gun would explode as soon as it
struck water and ignite, producing a blaze that would continue several
minutes and make the ships of the enemy visible for four or five miles
at sea. Moreover, the blaze could not be extinguished.

Edison has always been deeply interested in "conservation," and much
of his work has been directed toward the economy of fuel in obtaining
electrical energy directly from the consumption of coal. Indeed, it
will be noted that the example of his handwriting shown in these volumes
deals with the importance of obtaining available energy direct from the
combustible without the enormous loss in the intervening stages that
makes our best modern methods of steam generation and utilization so
barbarously extravagant and wasteful. Several years ago, experimenting
in this field, Edison devised and operated some ingenious pyromagnetic
motors and generators, based, as the name implies, on the direct
application of heat to the machines. The motor is founded upon the
principle discovered by the famous Dr. William Gilbert--court physician
to Queen Elizabeth, and the Father of modern electricity--that the
magnetic properties of iron diminish with heat. At a light-red heat,
iron becomes non-magnetic, so that a strong magnet exerts no influence
over it. Edison employed this peculiar property by constructing a small
machine in which a pivoted bar is alternately heated and cooled. It
is thus attracted toward an adjacent electromagnet when cold and is
uninfluenced when hot, and as the result motion is produced.

The pyromagnetic generator is based on the same phenomenon; its aim
being of course to generate electrical energy directly from the heat of
the combustible. The armature, or moving part of the machine, consists
in reality of eight separate armatures all constructed of corrugated
sheet iron covered with asbestos and wound with wire. These armatures
are held in place by two circular iron plates, through the centre of
which runs a shaft, carrying at its lower extremity a semicircular
shield of fire-clay, which covers the ends of four of the armatures.
The heat, of whatever origin, is applied from below, and the shaft being
revolved, four of the armatures lose their magnetism constantly, while
the other four gain it, so to speak. As the moving part revolves,
therefore, currents of electricity are set up in the wires of the
armatures and are collected by a commutator, as in an ordinary dynamo,
placed on the upper end of the central shaft.

A great variety of electrical instruments are included in Edison's
inventions, many of these in fundamental or earlier forms being devised
for his systems of light and power, as noted already. There are numerous
others, and it might be said with truth that Edison is hardly ever
without some new device of this kind in hand, as he is by no means
satisfied with the present status of electrical measurements. He holds
in general that the meters of to-day, whether for heavy or for feeble
currents, are too expensive, and that cheaper instruments are a
necessity of the times. These remarks apply more particularly to what
may be termed, in general, circuit meters. In other classes Edison
has devised an excellent form of magnetic bridge, being an ingenious
application of the principles of the familiar Wheatstone bridge, used
so extensively for measuring the electrical resistance of wires; the
testing of iron for magnetic qualities being determined by it in the
same way. Another special instrument is a "dead beat" galvanometer which
differs from the ordinary form of galvanometer in having no coils or
magnetic needle. It depends for its action upon the heating effect of
the current, which causes a fine platinum-iridium wire enclosed in a
glass tube to expand; thus allowing a coiled spring to act on a pivoted
shaft carrying a tiny mirror. The mirror as it moves throws a beam of
light upon a scale and the indications are read by the spot of
light. Most novel of all the apparatus of this measuring kind is the
odoroscope, which is like the tasimeter described in an earlier chapter,
except that a strip of gelatine takes the place of hard rubber, as
the sensitive member. Besides being affected by heat, this device is
exceedingly sensitive to moisture. A few drops of water or perfume
thrown on the floor of a room are sufficient to give a very decided
indication on the galvanometer in circuit with the instrument.
Barometers, hygrometers, and similar instruments of great delicacy can
be constructed on the principle of the odoroscope; and it may also be
used in determining the character or pressure of gases and vapors in
which it has been placed.

In the list of Edison's patents at the end of this work may be noted
many other of his miscellaneous inventions, covering items such as
preserving fruit in vacuo, making plate-glass, drawing wire, and
metallurgical processes for treatment of nickel, gold, and copper ores;
but to mention these inventions separately would trespass too much on
our limited space here. Hence, we shall leave the interested reader to
examine that list for himself.

From first to last Edison has filed in the United States Patent
Office--in addition to more than 1400 applications for patents--some
120 caveats embracing not less than 1500 inventions. A "caveat" is
essentially a notice filed by an inventor, entitling him to receive
warning from the Office of any application for a patent for an invention
that would "interfere" with his own, during the year, while he is
supposed to be perfecting his device. The old caveat system has now been
abolished, but it served to elicit from Edison a most astounding record
of ideas and possible inventions upon which he was working, and many
of which he of course reduced to practice. As an example of Edison's
fertility and the endless variety of subjects engaging his thoughts, the
following list of matters covered by ONE caveat is given. It is needless
to say that all the caveats are not quite so full of "plums," but this
is certainly a wonder.

Forty-one distinct inventions relating to the phonograph, covering
various forms of recorders, arrangement of parts, making of records,
shaving tool, adjustments, etc.

Eight forms of electric lamps using infusible earthy oxides and brought
to high incandescence in vacuo by high potential current of several
thousand volts; same character as impingement of X-rays on object in
bulb.

A loud-speaking telephone with quartz cylinder and beam of ultra-violet
light.

Four forms of arc light with special carbons.

A thermostatic motor.

A device for sealing together the inside part and bulb of an
incandescent lamp mechanically.

Regulators for dynamos and motors.

Three devices for utilizing vibrations beyond the ultra violet.

A great variety of methods for coating incandescent lamp filaments with
silicon, titanium, chromium, osmium, boron, etc.

Several methods of making porous filaments.

Several methods of making squirted filaments of a variety of materials,
of which about thirty are specified.

Seventeen different methods and devices for separating magnetic ores.

A continuously operative primary battery.

A musical instrument operating one of Helmholtz's artificial larynxes.

A siren worked by explosion of small quantities of oxygen and hydrogen
mixed.

Three other sirens made to give vocal sounds or articulate speech.

A device for projecting sound-waves to a distance without spreading and
in a straight line, on the principle of smoke rings.

A device for continuously indicating on a galvanometer the depths of the
ocean.

A method of preventing in a great measure friction of water against the
hull of a ship and incidentally preventing fouling by barnacles.

A telephone receiver whereby the vibrations of the diaphragm are
considerably amplified.

Two methods of "space" telegraphy at sea.

An improved and extended string telephone.

Devices and method of talking through water for considerable distances.

An audiphone for deaf people.

Sound-bridge for measuring resistance of tubes and other materials for
conveying sound.

A method of testing a magnet to ascertain the existence of flaws in the
iron or steel composing the same.

Method of distilling liquids by incandescent conductor immersed in the
liquid.

Method of obtaining electricity direct from coal.

An engine operated by steam produced by the hydration and dehydration of
metallic salts.

Device and method for telegraphing photographically.

Carbon crucible kept brilliantly incandescent by current in vacuo, for
obtaining reaction with refractory metals.

Device for examining combinations of odors and their changes by rotation
at different speeds.

From one of the preceding items it will be noted that even in the
eighties Edison perceived much advantage to be gained in the line of
economy by the use of lamp filaments employing refractory metals in
their construction. From another caveat, filed in 1889, we extract the
following, which shows that he realized the value of tungsten also for
this purpose. "Filaments of carbon placed in a combustion tube with a
little chloride ammonium. Chloride tungsten or titanium passed through
hot tube, depositing a film of metal on the carbon; or filaments of
zirconia oxide, or alumina or magnesia, thoria or other infusible oxides
mixed or separate, and obtained by moistening and squirting through a
die, are thus coated with above metals and used for incandescent lamps.
Osmium from a volatile compound of same thus deposited makes a filament
as good as carbon when in vacuo."

In 1888, long before there arose the actual necessity of duplicating
phonograph records so as to produce replicas in great numbers, Edison
described in one of his caveats a method and process much similar to
the one which was put into practice by him in later years. In the
same caveat he describes an invention whereby the power to indent on
a phonograph cylinder, instead of coming directly from the voice, is
caused by power derived from the rotation or movement of the phonogram
surface itself. He did not, however, follow up this invention and put it
into practice. Some twenty years later it was independently invented
and patented by another inventor. A further instance of this kind is
a method of telegraphy at sea by means of a diaphragm in a closed
port-hole flush with the side of the vessel, and actuated by a
steam-whistle which is controlled by a lever, similarly to a Morse key.
A receiving diaphragm is placed in another and near-by chamber, which is
provided with very sensitive stethoscopic ear-pieces, by which the
Morse characters sent from another vessel may be received. This was
also invented later by another inventor, and is in use to-day, but will
naturally be rivalled by wireless telegraphy. Still another instance
is seen in one of Edison's caveats, where he describes a method of
distilling liquids by means of internally applied heat through electric
conductors. Although Edison did not follow up the idea and take out a
patent, this system of distillation was later hit upon by others and is
in use at the present time.

In the foregoing pages of this chapter the authors have endeavored
to present very briefly a sketchy notion of the astounding range of
Edison's practical ideas, but they feel a sense of impotence in being
unable to deal adequately with the subject in the space that can be
devoted to it. To those who, like the authors, have had the privilege
of examining the voluminous records which show the flights of his
imagination, there comes a feeling of utter inadequacy to convey to
others the full extent of the story they reveal.

The few specific instances above related, although not representing a
tithe of Edison's work, will probably be sufficient to enable the reader
to appreciate to some extent his great wealth of ideas and fertility
of imagination, and also to realize that this imagination is not only
intensely practical, but that it works prophetically along lines of
natural progress.



CHAPTER XXIV

EDISON'S METHOD IN INVENTING

WHILE the world's progress depends largely upon their ingenuity,
inventors are not usually persons who have adopted invention as a
distinct profession, but, generally speaking, are otherwise engaged in
various walks of life. By reason of more or less inherent native genius
they either make improvements along lines of present occupation, or
else evolve new methods and means of accomplishing results in fields for
which they may have personal predilections.

Now and then, however, there arises a man so greatly endowed with
natural powers and originality that the creative faculty within him
is too strong to endure the humdrum routine of affairs, and manifests
itself in a life devoted entirely to the evolution of methods and
devices calculated to further the world's welfare. In other words, he
becomes an inventor by profession. Such a man is Edison. Notwithstanding
the fact that nearly forty years ago (not a great while after he had
emerged from the ranks of peripatetic telegraph operators) he was
the owner of a large and profitable business as a manufacturer of the
telegraphic apparatus invented by him, the call of his nature was too
strong to allow of profits being laid away in the bank to accumulate. As
he himself has said, he has "too sanguine a temperament to allow money
to stay in solitary confinement." Hence, all superfluous cash was
devoted to experimentation. In the course of years he grew more and
more impatient of the shackles that bound him to business routine, and,
realizing the powers within him, he drew away gradually from purely
manufacturing occupations, determining deliberately to devote his
life to inventive work, and to depend upon its results as a means of
subsistence.

All persons who make inventions will necessarily be more or less
original in character, but to the man who chooses to become an inventor
by profession must be conceded a mind more than ordinarily replete
with virility and originality. That these qualities in Edison are
superabundant is well known to all who have worked with him, and,
indeed, are apparent to every one from his multiplied achievements
within the period of one generation.

If one were allowed only two words with which to describe Edison, it
is doubtful whether a close examination of the entire dictionary would
disclose any others more suitable than "experimenter--inventor." These
would express the overruling characteristics of his eventful career. It
is as an "inventor" that he sets himself down in the membership list of
the American Institute of Electrical Engineers. To attempt the strict
placing of these words in relation to each other (except alphabetically)
would be equal to an endeavor to solve the old problem as to which came
first, the egg or the chicken; for although all his inventions have been
evolved through experiment, many of his notable experiments have
called forth the exercise of highly inventive faculties in their very
inception. Investigation and experiment have been a consuming passion,
an impelling force from within, as it were, from his petticoat days when
he collected goose-eggs and tried to hatch them out by sitting over
them himself. One might be inclined to dismiss this trivial incident
smilingly, as a mere childish, thoughtless prank, had not subsequent
development as a child, boy, and man revealed a born investigator with
original reasoning powers that, disdaining crooks and bends, always
aimed at the centre, and, like the flight of the bee, were accurate and
direct.

It is not surprising, therefore, that a man of this kind should
exhibit a ceaseless, absorbing desire for knowledge, and an apparently
uncontrollable tendency to experiment on every possible occasion,
even though his last cent were spent in thus satisfying the insatiate
cravings of an inquiring mind.

During Edison's immature years, when he was flitting about from place to
place as a telegraph operator, his experimentation was of a desultory,
hand-to-mouth character, although it was always notable for originality,
as expressed in a number of minor useful devices produced during this
period. Small wonder, then, that at the end of these wanderings, when
he had found a place to "rest the sole of his foot," he established a
laboratory in which to carry on his researches in a more methodical and
practical manner. In this was the beginning of the work which has since
made such a profound impression on contemporary life.

There is nothing of the helter-skelter, slap-dash style in Edison's
experiments. Although all the laboratory experimenters agree in the
opinion that he "tries everything," it is not merely the mixing of a
little of this, some of that, and a few drops of the other, in the HOPE
that SOMETHING will come of it. Nor is the spirit of the laboratory
work represented in the following dialogue overheard between two alleged
carpenters picked up at random to help on a hurry job.

"How near does she fit, Mike?"

"About an inch."

"Nail her!"

A most casual examination of any of the laboratory records will reveal
evidence of the minutest exactitude insisted on in the conduct of
experiments, irrespective of the length of time they occupied. Edison's
instructions, always clear cut and direct, followed by his keen
oversight, admit of nothing less than implicit observance in all
details, no matter where they may lead, and impel to the utmost
minuteness and accuracy.

To some extent there has been a popular notion that many of Edison's
successes have been due to mere dumb fool luck--to blind, fortuitous
"happenings." Nothing could be further from the truth, for, on the
contrary, it is owing almost entirely to the comprehensive scope of his
knowledge, the breadth of his conception, the daring originality of
his methods, and minuteness and extent of experiment, combined with
unwavering pertinacity, that new arts have been created and additions
made to others already in existence. Indeed, without this tireless
minutiae, and methodical, searching spirit, it would have been
practically impossible to have produced many of the most important of
these inventions.

Needless to say, mastery of its literature is regarded by him as a
most important preliminary in taking up any line of investigation. What
others may have done, bearing directly or collaterally on the subject,
in print, is carefully considered and sifted to the point of exhaustion.
Not that he takes it for granted that the conclusions are correct, for
he frequently obtains vastly different results by repeating in his own
way experiments made by others as detailed in books.

"Edison can travel along a well-used road and still find virgin soil,"
remarked recently one of his most practical experimenters, who had been
working along a certain line without attaining the desired result. "He
wanted to get a particular compound having definite qualities, and I had
tried in all sorts of ways to produce it but with only partial success.
He was confident that it could be done, and said he would try it
himself. In doing so he followed the same path in which I had travelled,
but, by making an undreamed-of change in one of the operations,
succeeded in producing a compound that virtually came up to his
specifications. It is not the only time I have known this sort of thing
to happen."

In speaking of Edison's method of experimenting, another of his
laboratory staff says: "He is never hindered by theory, but resorts to
actual experiment for proof. For instance, when he conceived the idea of
pouring a complete concrete house it was universally held that it would
be impossible because the pieces of stone in the mixture would not rise
to the level of the pouring-point, but would gravitate to a lower plane
in the soft cement. This, however, did not hinder him from making
a series of experiments which resulted in an invention that proved
conclusively the contrary."

Having conceived some new idea and read everything obtainable
relating to the subject in general, Edison's fertility of resource and
originality come into play. Taking one of the laboratory note-books,
he will write in it a memorandum of the experiments to be tried,
illustrated, if necessary, by sketches. This book is then passed on
to that member of the experimental staff whose special training and
experience are best adapted to the work. Here strenuousness is expected;
and an immediate commencement of investigation and prompt report are
required. Sometimes the subject may be such as to call for a long line
of frequent tests which necessitate patient and accurate attention to
minute details. Results must be reported often--daily, or possibly with
still greater frequency. Edison does not forget what is going on; but in
his daily tours through the laboratory keeps in touch with all the work
that is under the hands of his various assistants, showing by an instant
grasp of the present conditions of any experiment that he has a
full consciousness of its meaning and its reference to his original
conception.

The year 1869 saw the beginning of Edison's career as an acknowledged
inventor of commercial devices. From the outset, an innate recognition
of system dictated the desirability and wisdom of preserving records
of his experiments and inventions. The primitive records, covering the
earliest years, were mainly jotted down on loose sheets of paper covered
with sketches, notes, and data, pasted into large scrap-books, or
preserved in packages; but with the passing of years and enlargement of
his interests, it became the practice to make all original laboratory
notes in large, uniform books. This course was pursued until the Menlo
Park period, when he instituted a new regime that has been continued
down to the present day. A standard form of note-book, about eight and
a half by six inches, containing about two hundred pages, was adopted.
A number of these books were (and are now) always to be found scattered
around in the different sections of the laboratory, and in them have
been noted by Edison all his ideas, sketches, and memoranda. Details
of the various experiments concerning them have been set down by his
assistants from time to time.

These later laboratory note-books, of which there are now over one
thousand in the series, are eloquent in the history they reveal of the
strenuous labors of Edison and his assistants and the vast fields
of research he has covered during the last thirty years. They are
overwhelmingly rich in biographic material, but analysis would be
a prohibitive task for one person, and perhaps interesting only to
technical readers. Their pages cover practically every department
of science. The countless thousands of separate experiments recorded
exhibit the operations of a master mind seeking to surprise Nature into
a betrayal of her secrets by asking her the same question in a hundred
different ways. For instance, when Edison was investigating a certain
problem of importance many years ago, the note-books show that on this
point alone about fifteen thousand experiments and tests were made by
one of his assistants.

A most casual glance over these note-books will illustrate the following
remark, which was made to one of the writers not long ago by a member of
the laboratory staff who has been experimenting there for twenty years:
"Edison can think of more ways of doing a thing than any man I ever saw
or heard of. He tries everything and never lets up, even though failure
is apparently staring him in the face. He only stops when he simply
can't go any further on that particular line. When he decides on any
mode of procedure he gives his notes to the experimenter and lets him
alone, only stepping in from time to time to look at the operations and
receive reports of progress."

The history of the development of the telephone transmitter, phonograph,
incandescent lamp, dynamo, electrical distributing systems from central
stations, electric railway, ore-milling, cement, motion pictures, and
a host of minor inventions may be found embedded in the laboratory
note-books. A passing glance at a few pages of these written records
will serve to illustrate, though only to a limited extent, the
thoroughness of Edison's method. It is to be observed that these
references can be but of the most meagre kind, and must be regarded as
merely throwing a side-light on the subject itself. For instance, the
complex problem of a practical telephone transmitter gave rise to a
series of most exhaustive experiments. Combinations in almost infinite
variety, including gums, chemical compounds, oils, minerals, and metals
were suggested by Edison; and his assistants were given long lists
of materials to try with reference to predetermined standards of
articulation, degrees of loudness, and perfection of hissing sounds. The
note-books contain hundreds of pages showing that a great many thousands
of experiments were tried and passed upon. Such remarks as "N. G.";
"Pretty good"; "Whistling good, but no articulation"; "Rattly";
"Articulation, whispering, and whistling good"; "Best to-night so far";
and others are noted opposite the various combinations as they were
tried. Thus, one may follow the investigation through a maze of
experiments which led up to the successful invention of the carbon
button transmitter, the vital device to give the telephone its needed
articulation and perfection.

The two hundred and odd note-books, covering the strenuous period during
which Edison was carrying on his electric-light experiments, tell on
their forty thousand pages or more a fascinating story of the evolution
of a new art in its entirety. From the crude beginnings, through all
the varied phases of this evolution, the operations of a master mind
are apparent from the contents of these pages, in which are recorded the
innumerable experiments, calculations, and tests that ultimately brought
light out of darkness.

The early work on a metallic conductor for lamps gave rise to some very
thorough research on melting and alloying metals, the preparation of
metallic oxides, the coating of fine wires by immersing them in a great
variety of chemical solutions. Following his usual custom, Edison would
indicate the lines of experiment to be followed, which were carried
out and recorded in the note-books. He himself, in January, 1879, made
personally a most minute and searching investigation into the properties
and behavior of plating-iridium, boron, rutile, zircon, chromium,
molybdenum, and nickel, under varying degrees of current strength, on
which there may be found in the notes about forty pages of detailed
experiments and deductions in his own handwriting, concluding with the
remark (about nickel): "This is a great discovery for electric light in
the way of economy."

This period of research on nickel, etc., was evidently a trying one, for
after nearly a month's close application he writes, on January 27, 1879:
"Owing to the enormous power of the light my eyes commenced to pain
after seven hours' work, and I had to quit." On the next day appears
the following entry: "Suffered the pains of hell with my eyes last night
from 10 P.M. till 4 A.M., when got to sleep with a big dose of morphine.
Eyes getting better, and do not pain much at 4 P.M.; but I lose to-day."

The "try everything" spirit of Edison's method is well illustrated in
this early period by a series of about sixteen hundred resistance tests
of various ores, minerals, earths, etc., occupying over fifty pages of
one of the note-books relating to the metallic filament for his lamps.

But, as the reader has already learned, the metallic filament was soon
laid aside in favor of carbon, and we find in the laboratory notes an
amazing record of research and experiment conducted in the minute
and searching manner peculiar to Edison's method. His inquiries were
directed along all the various roads leading to the desired goal,
for long before he had completed the invention of a practical lamp he
realized broadly the fundamental requirements of a successful system of
electrical distribution, and had given instructions for the making of
a great variety of calculations which, although far in advance of
the time, were clearly foreseen by him to be vitally important in the
ultimate solution of the complicated problem. Thus we find many hundreds
of pages of the note-books covered with computations and calculations
by Mr. Upton, not only on the numerous ramifications of the projected
system and comparisons with gas, but also on proposed forms of dynamos
and the proposed station in New York. A mere recital by titles of
the vast number of experiments and tests on carbons, lamps, dynamos,
armatures, commutators, windings, systems, regulators, sockets,
vacuum-pumps, and the thousand and one details relating to the subject
in general, originated by Edison, and methodically and systematically
carried on under his general direction, would fill a great many pages
here, and even then would serve only to convey a confused impression of
ceaseless probing.

It is possible only to a broad, comprehensive mind well stored with
knowledge, and backed with resistless, boundless energy, that such a
diversified series of experiments and investigations could be carried
on simultaneously and assimilated, even though they should relate to a
class of phenomena already understood and well defined. But if we pause
to consider that the commercial subdivision of the electric current
(which was virtually an invention made to order) involved the solution
of problems so unprecedented that even they themselves had to be
created, we cannot but conclude that the afflatus of innate genius
played an important part in the unique methods of investigation
instituted by Edison at that and other times.

The idea of attributing great successes to "genius" has always been
repudiated by Edison, as evidenced by his historic remark that "Genius
is 1 per cent. inspiration and 99 per cent. perspiration." Again, in a
conversation many years ago at the laboratory between Edison, Batchelor,
and E. H. Johnson, the latter made allusion to Edison's genius as
evidenced by some of his achievements, when Edison replied:

"Stuff! I tell you genius is hard work, stick-to-it-iveness, and common
sense."

"Yes," said Johnson, "I admit there is all that to it, but there's still
more. Batch and I have those qualifications, but although we knew quite
a lot about telephones, and worked hard, we couldn't invent a brand-new
non-infringing telephone receiver as you did when Gouraud cabled for
one. Then, how about the subdivision of the electric light?"

"Electric current," corrected Edison.

"True," continued Johnson; "you were the one to make that very
distinction. The scientific world had been working hard on subdivision
for years, using what appeared to be common sense. Results worse than
nil. Then you come along, and about the first thing you do, after
looking the ground over, is to start off in the opposite direction,
which subsequently proves to be the only possible way to reach the goal.
It seems to me that this is pretty close to the dictionary definition of
genius."

It is said that Edison replied rather incoherently and changed the topic
of conversation.

This innate modesty, however, does not prevent Edison from recognizing
and classifying his own methods of investigation. In a conversation with
two old associates recently (April, 1909), he remarked: "It has been
said of me that my methods are empirical. That is true only so far
as chemistry is concerned. Did you ever realize that practically all
industrial chemistry is colloidal in its nature? Hard rubber, celluloid,
glass, soap, paper, and lots of others, all have to deal with amorphous
substances, as to which comparatively little has been really settled.
My methods are similar to those followed by Luther Burbank. He plants an
acre, and when this is in bloom he inspects it. He has a sharp eye, and
can pick out of thousands a single plant that has promise of what he
wants. From this he gets the seed, and uses his skill and knowledge in
producing from it a number of new plants which, on development, furnish
the means of propagating an improved variety in large quantity. So, when
I am after a chemical result that I have in mind, I may make hundreds
or thousands of experiments out of which there may be one that promises
results in the right direction. This I follow up to its legitimate
conclusion, discarding the others, and usually get what I am after.
There is no doubt about this being empirical; but when it comes to
problems of a mechanical nature, I want to tell you that all I've
ever tackled and solved have been done by hard, logical thinking." The
intense earnestness and emphasis with which this was said were very
impressive to the auditors. This empirical method may perhaps be better
illustrated by a specific example. During the latter part of the storage
battery investigations, after the form of positive element had been
determined upon, it became necessary to ascertain what definite
proportions and what quality of nickel hydrate and nickel flake would
give the best results. A series of positive tubes were filled with the
two materials in different proportions--say, nine parts hydrate to one
of flake; eight parts hydrate to two of flake; seven parts hydrate to
three of flake, and so on through varying proportions. Three sets of
each of these positives were made, and all put into separate test tubes
with a uniform type of negative element. These were carried through a
long series of charges and discharges under strict test conditions. From
the tabulated results of hundreds of tests there were selected
three that showed the best results. These, however, showed only the
superiority of certain PROPORTIONS of the materials. The next step
would be to find out the best QUALITY. Now, as there are several hundred
variations in the quality of nickel flake, and perhaps a thousand ways
to make the hydrate, it will be realized that Edison's methods led to
stupendous detail, for these tests embraced a trial of all the qualities
of both materials in the three proportions found to be most suitable.
Among these many thousands of experiments any that showed extraordinary
results were again elaborated by still further series of tests, until
Edison was satisfied that he had obtained the best result in that
particular line.

The laboratory note-books do not always tell the whole story or meaning
of an experiment that may be briefly outlined on one of their pages. For
example, the early filament made of a mixture of lampblack and tar is
merely a suggestion in the notes, but its making afforded an example
of Edison's pertinacity. These materials, when mixed, became a friable
mass, which he had found could be brought into such a cohesive,
putty-like state by manipulation, as to be capable of being rolled out
into filaments as fine as seven-thousandths of an inch in cross-section.
One of the laboratory assistants was told to make some of this mixture,
knead it, and roll some filaments. After a time he brought the mass to
Edison, and said:

"There's something wrong about this, for it crumbles even after
manipulating it with my fingers."

"How long did you knead it?" said Edison.

"Oh! more than an hour," replied the assistant.

"Well, just keep on for a few hours more and it will come out all
right," was the rejoinder. And this proved to be correct, for, after
a prolonged kneading and rolling, the mass changed into a cohesive,
stringy, homogeneous putty. It was from a mixture of this kind that
spiral filaments were made and used in some of the earliest forms
of successful incandescent lamps; indeed, they are described and
illustrated in Edison's fundamental lamp patent (No. 223,898).

The present narrative would assume the proportions of a history of
the incandescent lamp, should the authors attempt to follow Edison's
investigations through the thousands of pages of note-books away back in
the eighties and early nineties. Improvement of the lamp was constantly
in his mind all those years, and besides the vast amount of detail
experimental work he laid out for his assistants, he carried on a great
deal of research personally. Sometimes whole books are filled in his
own handwriting with records of experiments showing every conceivable
variation of some particular line of inquiry; each trial bearing some
terse comment expressive of results. In one book appear the details of
one of these experiments on September 3, 1891, at 4.30 A.M., with the
comment: "Brought up lamp higher than a 16-c.p. 240 was ever brought
before--Hurrah!" Notwithstanding the late hour, he turns over to the
next page and goes on to write his deductions from this result as
compared with those previously obtained. Proceeding day by day, as
appears by this same book, he follows up another line of investigation
on lamps, apparently full of difficulty, for after one hundred and
thirty-two other recorded experiments we find this note: "Saturday 3.30
went home disgusted with incandescent lamps." This feeling was evidently
evanescent, for on the succeeding Monday the work was continued and
carried on by him as keenly as before, as shown by the next batch of
notes.

This is the only instance showing any indication of impatience that the
authors have found in looking through the enormous mass of laboratory
notes. All his assistants agree that Edison is the most patient,
tireless experimenter that could be conceived of. Failures do not
distress him; indeed, he regards them as always useful, as may be
gathered from the following, related by Dr. E. G. Acheson, formerly one
of his staff: "I once made an experiment in Edison's laboratory at Menlo
Park during the latter part of 1880, and the results were not as looked
for. I considered the experiment a perfect failure, and while bemoaning
the results of this apparent failure Mr. Edison entered, and, after
learning the facts of the case, cheerfully remarked that I should not
look upon it as a failure, for he considered every experiment a success,
as in all cases it cleared up the atmosphere, and even though it failed
to accomplish the results sought for, it should prove a valuable lesson
for guidance in future work. I believe that Mr. Edison's success as
an experimenter was, to a large extent, due to this happy view of all
experiments."

Edison has frequently remarked that out of a hundred experiments he
does not expect more than one to be successful, and as to that one he
is always suspicious until frequent repetition has verified the original
results.

This patient, optimistic view of the outcome of experiments has remained
part of his character down to this day, just as his painstaking, minute,
incisive methods are still unchanged. But to the careless, stupid, or
lazy person he is a terror for the short time they remain around him.
Honest mistakes may be tolerated, but not carelessness, incompetence,
or lack of attention to business. In such cases Edison is apt to express
himself freely and forcibly, as when he was asked why he had parted with
a certain man, he said: "Oh, he was so slow that it would take him half
an hour to get out of the field of a microscope." Another instance will
be illustrative. Soon after the Brockton (Massachusetts) central station
was started in operation many years ago, he wrote a note to Mr. W. S.
Andrews, containing suggestions as to future stations, part of which
related to the various employees and their duties. After outlining the
duties of the meter man, Edison says: "I should not take too young a man
for this, say, a man from twenty-three to thirty years old, bright and
businesslike. Don't want any one who yearns to enter a laboratory and
experiment. We have a bad case of that at Brockton; he neglects business
to potter. What we want is a good lamp average and no unprofitable
customer. You should have these men on probation and subject to passing
an examination by me. This will wake them up."

Edison's examinations are no joke, according to Mr. J. H. Vail, formerly
one of the Menlo Park staff. "I wanted a job," he said, "and was
ambitious to take charge of the dynamo-room. Mr. Edison led me to a heap
of junk in a corner and said: 'Put that together and let me know
when it's running.' I didn't know what it was, but received a liberal
education in finding out. It proved to be a dynamo, which I finally
succeeded in assembling and running. I got the job." Another man who
succeeded in winning a place as assistant was Mr. John F. Ott, who has
remained in his employ for over forty years. In 1869, when Edison was
occupying his first manufacturing shop (the third floor of a small
building in Newark), he wanted a first-class mechanician, and Mr. Ott
was sent to him. "He was then an ordinary-looking young fellow," says
Mr. Ott, "dirty as any of the other workmen, unkempt, and not much
better dressed than a tramp, but I immediately felt that there was a
great deal in him." This is the conversation that ensued, led by Mr.
Edison's question:

"What do you want?"

"Work."

"Can you make this machine work?" (exhibiting it and explaining its
details).

"Yes."

"Are you sure?"

"Well, you needn't pay me if I don't."

And thus Mr. Ott went to work and succeeded in accomplishing the results
desired. Two weeks afterward Mr. Edison put him in charge of the shop.

Edison's life fairly teems with instances of unruffled patience in the
pursuit of experiments. When he feels thoroughly impressed with the
possibility of accomplishing a certain thing, he will settle down
composedly to investigate it to the end.

This is well illustrated in a story relating to his invention of the
type of storage battery bearing his name. Mr. W. S. Mallory, one of his
closest associates for many years, is the authority for the following:
"When Mr. Edison decided to shut down the ore-milling plant at Edison,
New Jersey, in which I had been associated with him, it became a
problem as to what he could profitably take up next, and we had several
discussions about it. He finally thought that a good storage battery
was a great requisite, and decided to try and devise a new type, for he
declared emphatically he would make no battery requiring sulphuric acid.
After a little thought he conceived the nickel-iron idea, and started to
work at once with characteristic energy. About 7 or 7.30 A.M. he would
go down to the laboratory and experiment, only stopping for a short time
at noon to eat a lunch sent down from the house. About 6 o'clock the
carriage would call to take him to dinner, from which he would return by
7.30 or 8 o'clock to resume work. The carriage came again at midnight
to take him home, but frequently had to wait until 2 or 3 o'clock, and
sometimes return without him, as he had decided to continue all night.

"This had been going on more than five months, seven days a week, when
I was called down to the laboratory to see him. I found him at a bench
about three feet wide and twelve to fifteen feet long, on which there
were hundreds of little test cells that had been made up by his corps
of chemists and experimenters. He was seated at this bench testing,
figuring, and planning. I then learned that he had thus made over
nine thousand experiments in trying to devise this new type of storage
battery, but had not produced a single thing that promised to solve
the question. In view of this immense amount of thought and labor, my
sympathy got the better of my judgment, and I said: 'Isn't it a shame
that with the tremendous amount of work you have done you haven't been
able to get any results?' Edison turned on me like a flash, and with
a smile replied: 'Results! Why, man, I have gotten a lot of results! I
know several thousand things that won't work.'

"At that time he sent me out West on a special mission. On my return, a
few weeks later, his experiments had run up to over ten thousand, but
he had discovered the missing link in the combination sought for. Of
course, we all remember how the battery was completed and put on the
market. Then, because he was dissatisfied with it, he stopped the sales
and commenced a new line of investigation, which has recently culminated
successfully. I shouldn't wonder if his experiments on the battery ran
up pretty near to fifty thousand, for they fill more than one hundred
and fifty of the note-books, to say nothing of some thousands of tests
in curve sheets."

Although Edison has an absolute disregard for the total outlay of money
in investigation, he is particular to keep down the cost of individual
experiments to a minimum, for, as he observed to one of his assistants:
"A good many inventors try to develop things life-size, and thus spend
all their money, instead of first experimenting more freely on a small
scale." To Edison life is not only a grand opportunity to find out
things by experiment, but, when found, to improve them by further
experiment. One night, after receiving a satisfactory report of progress
from Mr. Mason, superintendent of the cement plant, he said: "The only
way to keep ahead of the procession is to experiment. If you don't, the
other fellow will. When there's no experimenting there's no progress.
Stop experimenting and you go backward. If anything goes wrong,
experiment until you get to the very bottom of the trouble."

It is easy to realize, therefore, that a character so thoroughly
permeated with these ideas is not apt to stop and figure out expense
when in hot pursuit of some desired object. When that object has been
attained, however, and it passes from the experimental to the commercial
stage, Edison's monetary views again come into strong play, but they
take a diametrically opposite position, for he then begins immediately
to plan the extreme of economy in the production of the article. A
thousand and one instances could be quoted in illustration; but as
they would tend to change the form of this narrative into a history of
economy in manufacture, it will suffice to mention but one, and that a
recent occurrence, which serves to illustrate how closely he keeps in
touch with everything, and also how the inventive faculty and instinct
of commercial economy run close together. It was during Edison's winter
stay in Florida, in March, 1909. He had reports sent to him daily
from various places, and studied them carefully, for he would write
frequently with comments, instructions, and suggestions; and in one
case, commenting on the oiling system at the cement plant, he wrote:
"Your oil losses are now getting lower, I see." Then, after suggesting
some changes to reduce them still further, he went on to say: "Here is a
chance to save a mill per barrel based on your regular daily output."

This thorough consideration of the smallest detail is essentially
characteristic of Edison, not only in economy of manufacture, but in
all his work, no matter of what kind, whether it be experimenting,
investigating, testing, or engineering. To follow him through the
labyrinthine paths of investigation contained in the great array of
laboratory note-books is to become involved in a mass of minutely
detailed searches which seek to penetrate the inmost recesses of nature
by an ultimate analysis of an infinite variety of parts. As the reader
will obtain a fuller comprehension of this idea, and of Edison's
methods, by concrete illustration rather than by generalization, the
authors have thought it well to select at random two typical instances
of specific investigations out of the thousands that are scattered
through the notebooks. These will be found in the following extracts
from one of the note-books, and consist of Edison's instructions to be
carried out in detail by his experimenters:


"Take, say, 25 lbs. hard Cuban asphalt and separate all the different
hydrocarbons, etc., as far as possible by means of solvents. It will be
necessary first to dissolve everything out by, say, hot turpentine, then
successively treat the residue with bisulphide carbon, benzol, ether,
chloroform, naphtha, toluol, alcohol, and other probable solvents.
After you can go no further, distil off all the solvents so the asphalt
material has a tar-like consistency. Be sure all the ash is out of the
turpentine portion; now, after distilling the turpentine off, act on the
residue with all the solvents that were used on the residue, using for
the first the solvent which is least likely to dissolve a great part
of it. By thus manipulating the various solvents you will be
enabled probably to separate the crude asphalt into several distinct
hydrocarbons. Put each in a bottle after it has been dried, and label
the bottle with the process, etc., so we may be able to duplicate it;
also give bottle a number and describe everything fully in note-book."

"Destructively distil the following substances down to a point just
short of carbonization, so that the residuum can be taken out of the
retort, powdered, and acted on by all the solvents just as the asphalt
in previous page. The distillation should be carried to, say, 600
degrees or 700 degrees Fahr., but not continued long enough to wholly
reduce mass to charcoal, but always run to blackness. Separate the
residuum in as many definite parts as possible, bottle and label, and
keep accurate records as to process, weights, etc., so a reproduction of
the experiment can at any time be made: Gelatine, 4 lbs.; asphalt, hard
Cuban, 10 lbs.; coal-tar or pitch, 10 lbs.; wood-pitch, 10 lbs.;
Syrian asphalt, 10 lbs.; bituminous coal, 10 lbs.; cane-sugar, 10 lbs.;
glucose, 10 lbs.; dextrine, 10 lbs.; glycerine, 10 lbs.; tartaric acid,
5 lbs.; gum guiac, 5 lbs.; gum amber, 3 lbs.; gum tragacanth, 3 Lbs.;
aniline red, 1 lb.; aniline oil, 1 lb.; crude anthracene, 5 lbs.;
petroleum pitch, 10 lbs.; albumen from eggs, 2 lbs.; tar from passing
chlorine through aniline oil, 2 lbs.; citric acid, 5 lbs.; sawdust of
boxwood, 3 lbs.; starch, 5 lbs.; shellac, 3 lbs.; gum Arabic, 5 lbs.;
castor oil, 5 lbs."

The empirical nature of his method will be apparent from an examination
of the above items; but in pursuing it he leaves all uncertainty
behind and, trusting nothing to theory, he acquires absolute knowledge.
Whatever may be the mental processes by which he arrives at the
starting-point of any specific line of research, the final results
almost invariably prove that he does not plunge in at random; indeed,
as an old associate remarked: "When Edison takes up any proposition
in natural science, his perceptions seem to be elementally broad and
analytical, that is to say, in addition to the knowledge he has acquired
from books and observation, he appears to have an intuitive apprehension
of the general order of things, as they might be supposed to exist in
natural relation to each other. It has always seemed to me that he goes
to the core of things at once."

Although nothing less than results from actual experiments are
acceptable to him as established facts, this view of Edison may
also account for his peculiar and somewhat weird ability to "guess"
correctly, a faculty which has frequently enabled him to take short
cuts to lines of investigation whose outcome has verified in a most
remarkable degree statements apparently made offhand and without
calculation. Mr. Upton says: "One of the main impressions left upon me,
after knowing Mr. Edison for many years, is the marvellous accuracy of
his guesses. He will see the general nature of a result long before it
can be reached by mathematical calculation." This was supplemented by
one of his engineering staff, who remarked: "Mr. Edison can guess better
than a good many men can figure, and so far as my experience goes, I
have found that he is almost invariably correct. His guess is more than
a mere starting-point, and often turns out to be the final solution of
a problem. I can only account for it by his remarkable insight and
wonderful natural sense of the proportion of things, in addition to
which he seems to carry in his head determining factors of all
kinds, and has the ability to apply them instantly in considering any
mechanical problem."

While this mysterious intuitive power has been of the greatest advantage
in connection with the vast number of technical problems that have
entered into his life-work, there have been many remarkable instances
in which it has seemed little less than prophecy, and it is deemed worth
while to digress to the extent of relating two of them. One day in
the summer of 1881, when the incandescent lamp-industry was still
in swaddling clothes, Edison was seated in the room of Major Eaton,
vice-president of the Edison Electric Light Company, talking over
business matters, when Mr. Upton came in from the lamp factory at
Menlo Park, and said: "Well, Mr. Edison, we completed a thousand
lamps to-day." Edison looked up and said "Good," then relapsed into
a thoughtful mood. In about two minutes he raised his head, and said:
"Upton, in fifteen years you will be making forty thousand lamps a day."
None of those present ventured to make any remark on this assertion,
although all felt that it was merely a random guess, based on the
sanguine dream of an inventor. The business had not then really made a
start, and being entirely new was without precedent upon which to base
any such statement, but, as a matter of fact, the records of the lamp
factory show that in 1896 its daily output of lamps was actually about
forty thousand.

The other instance referred to occurred shortly after the Edison Machine
Works was moved up to Schenectady, in 1886. One day, when he was at the
works, Edison sat down and wrote on a sheet of paper fifteen separate
predictions of the growth and future of the electrical business.
Notwithstanding the fact that the industry was then in an immature
state, and that the great boom did not set in until a few years
afterward, twelve of these predictions have been fully verified by the
enormous growth and development in all branches of the art.

What the explanation of this gift, power, or intuition may be, is
perhaps better left to the psychologist to speculate upon. If one were
to ask Edison, he would probably say, "Hard work, not too much sleep,
and free use of the imagination." Whether or not it would be possible
for the average mortal to arrive at such perfection of "guessing" by
faithfully following this formula, even reinforced by the Edison
recipe for stimulating a slow imagination with pastry, is open for
demonstration.

Somewhat allied to this curious faculty is another no less remarkable,
and that is, the ability to point out instantly an error in a mass of
reported experimental results. While many instances could be definitely
named, a typical one, related by Mr. J. D. Flack, formerly master
mechanic at the lamp factory, may be quoted: "During the many years
of lamp experimentation, batches of lamps were sent to the photometer
department for test, and Edison would examine the tabulated test sheets.
He ran over every item of the tabulations rapidly, and, apparently
without any calculation whatever, would check off errors as fast as he
came to them, saying: 'You have made a mistake; try this one over.'
In every case the second test proved that he was right. This wonderful
aptitude for infallibly locating an error without an instant's
hesitation for mental calculation, has always appealed to me very
forcibly."

The ability to detect errors quickly in a series of experiments is one
of the things that has enabled Edison to accomplish such a vast amount
of work as the records show. Examples of the minuteness of detail into
which his researches extend have already been mentioned, and as
there are always a number of such investigations in progress at the
laboratory, this ability stands Edison in good stead, for he is thus
enabled to follow, and, if necessary, correct each one step by step.
In this he is aided by the great powers of a mind that is able to free
itself from absorbed concentration on the details of one problem, and
instantly to shift over and become deeply and intelligently concentrated
in another and entirely different one. For instance, he may have been
busy for hours on chemical experiments, and be called upon suddenly to
determine some mechanical questions. The complete and easy transition
is the constant wonder of his associates, for there is no confusion
of ideas resulting from these quick changes, no hesitation or apparent
effort, but a plunge into the midst of the new subject, and an instant
acquaintance with all its details, as if he had been studying it for
hours.

A good stiff difficulty--one which may, perhaps, appear to be an
unsurmountable obstacle--only serves to make Edison cheerful, and brings
out variations of his methods in experimenting. Such an occurrence will
start him thinking, which soon gives rise to a line of suggestions for
approaching the trouble from various sides; or he will sit down and
write out a series of eliminations, additions, or changes to be worked
out and reported upon, with such variations as may suggest themselves
during their progress. It is at such times as these that his unfailing
patience and tremendous resourcefulness are in evidence. Ideas and
expedients are poured forth in a torrent, and although some of them have
temporarily appeared to the staff to be ridiculous or irrelevant, they
have frequently turned out to be the ones leading to a correct solution
of the trouble.

Edison's inexhaustible resourcefulness and fertility of ideas have
contributed largely to his great success, and have ever been a cause of
amazement to those around him. Frequently, when it would seem to others
that the extreme end of an apparently blind alley had been reached, and
that it was impossible to proceed further, he has shown that there were
several ways out of it. Examples without number could be quoted, but
one must suffice by way of illustration. During the progress of the
ore-milling work at Edison, it became desirable to carry on a certain
operation by some special machinery. He requested the proper person on
his engineering staff to think this matter up and submit a few sketches
of what he would propose to do. He brought three drawings to Edison, who
examined them and said none of them would answer. The engineer remarked
that it was too bad, for there was no other way to do it. Mr. Edison
turned to him quickly, and said: "Do you mean to say that these drawings
represent the only way to do this work?" To which he received the reply:
"I certainly do." Edison said nothing. This happened on a Saturday. He
followed his usual custom of spending Sunday at home in Orange. When he
returned to the works on Monday morning, he took with him sketches he
had made, showing FORTY-EIGHT other ways of accomplishing the desired
operation, and laid them on the engineer's desk without a word.
Subsequently one of these ideas, with modifications suggested by some of
the others, was put into successful practice.

Difficulties seem to have a peculiar charm for Edison, whether they
relate to large or small things; and although the larger matters have
contributed most to the history of the arts, the same carefulness of
thought has often been the means of leading to improvements of permanent
advantage even in minor details. For instance, in the very earliest days
of electric lighting, the safe insulation of two bare wires fastened
together was a serious problem that was solved by him. An iron pot over
a fire, some insulating material melted therein, and narrow strips of
linen drawn through it by means of a wooden clamp, furnished a readily
applied and adhesive insulation, which was just as perfect for the
purpose as the regular and now well-known insulating tape, of which it
was the forerunner.

Dubious results are not tolerated for a moment in Edison's experimental
work. Rather than pass upon an uncertainty, the experiment will be
dissected and checked minutely in order to obtain absolute knowledge,
pro and con. This searching method is followed not only in chemical or
other investigations, into which complexities might naturally enter,
but also in more mechanical questions, where simplicity of construction
might naturally seem to preclude possibilities of uncertainty. For
instance, at the time when he was making strenuous endeavors to obtain
copper wire of high conductivity, strict laboratory tests were made of
samples sent by manufacturers. One of these samples tested out poorer
than a previous lot furnished from the same factory. A report of this to
Edison brought the following note: "Perhaps the ---- wire had a bad spot
in it. Please cut it up into lengths and test each one and send results
to me immediately." Possibly the electrical fraternity does not realize
that this earnest work of Edison, twenty-eight years ago, resulted in
the establishment of the high quality of copper wire that has been
the recognized standard since that time. Says Edison on this point:
"I furnished the expert and apparatus to the Ansonia Brass and Copper
Company in 1883, and he is there yet. It was this expert and this
company who pioneered high-conductivity copper for the electrical
trade."

Nor is it generally appreciated in the industry that the adoption of
what is now regarded as a most obvious proposition--the high-economy
incandescent lamp--was the result of that characteristic foresight which
there has been occasion to mention frequently in the course of this
narrative, together with the courage and "horse-sense" which have
always been displayed by the inventor in his persistent pushing out
with far-reaching ideas, in the face of pessimistic opinions. As is
well known, the lamps of the first ten or twelve years of incandescent
lighting were of low economy, but had long life. Edison's study of the
subject had led him to the conviction that the greatest growth of
the electric-lighting industry would be favored by a lamp taking less
current, but having shorter, though commercially economical life;
and after gradually making improvements along this line he developed,
finally, a type of high-economy lamp which would introduce a most
radical change in existing conditions, and lead ultimately to highly
advantageous results. His start on this lamp, and an expressed desire to
have it manufactured for regular use, filled even some of his business
associates with dismay, for they could see nothing but disaster ahead
in forcing such a lamp on the market. His persistence and profound
conviction of the ultimate results were so strong and his arguments so
sound, however, that the campaign was entered upon. Although it took two
or three years to convince the public of the correctness of his views,
the idea gradually took strong root, and has now become an integral
principle of the business.

In this connection it may be noted that with remarkable prescience
Edison saw the coming of the modern lamps of to-day, which, by reason of
their small consumption of energy to produce a given candle-power, have
dismayed central-station managers. A few years ago a consumption of 3.1
watts per candle-power might safely be assumed as an excellent average,
and many stations fixed their rates and business on such a basis. The
results on income when the consumption, as in the new metallic-filament
lamps, drops to 1.25 watts per candle can readily be imagined. Edison
has insisted that central stations are selling light and not current;
and he points to the predicament now confronting them as truth of his
assertion that when selling light they share in all the benefits of
improvement, but that when they sell current the consumer gets all
those benefits without division. The dilemma is encountered by central
stations in a bewildered way, as a novel and unexpected experience; but
Edison foresaw the situation and warned against it long ago. It is one
of the greatest gifts of statesmanship to see new social problems years
before they arise and solve them in advance. It is one of the greatest
attributes of invention to foresee and meet its own problems in exactly
the same way.



CHAPTER XXV

THE LABORATORY AT ORANGE AND THE STAFF

A LIVING interrogation-point and a born investigator from childhood,
Edison has never been without a laboratory of some kind for upward of
half a century.

In youthful years, as already described in this book, he became ardently
interested in chemistry, and even at the early age of twelve felt the
necessity for a special nook of his own, where he could satisfy his
unconvinced mind of the correctness or inaccuracy of statements and
experiments contained in the few technical books then at his command.

Ordinarily he was like other normal lads of his age--full of boyish,
hearty enjoyments--but withal possessed of an unquenchable spirit of
inquiry and an insatiable desire for knowledge. Being blessed with a
wise and discerning mother, his aspirations were encouraged; and he was
allowed a corner in her cellar. It is fair to offer tribute here to her
bravery as well as to her wisdom, for at times she was in mortal terror
lest the precocious experimenter below should, in his inexperience, make
some awful combination that would explode and bring down the house in
ruins on himself and the rest of the family.

Fortunately no such catastrophe happened, but young Edison worked
away in his embryonic laboratory, satisfying his soul and incidentally
depleting his limited pocket-money to the vanishing-point. It was,
indeed, owing to this latter circumstance that in a year or two his
aspirations necessitated an increase of revenue; and a consequent
determination to earn some money for himself led to his first real
commercial enterprise as "candy butcher" on the Grand Trunk Railroad,
already mentioned in a previous chapter. It has also been related how
his precious laboratory was transferred to the train; how he and it were
subsequently expelled; and how it was re-established in his home, where
he continued studies and experiments until the beginning of his career
as a telegraph operator.

The nomadic life of the next few years did not lessen his devotion to
study; but it stood seriously in the way of satisfying the ever-present
craving for a laboratory. The lack of such a place never prevented
experimentation, however, as long as he had a dollar in his pocket
and some available "hole in the wall." With the turning of the tide of
fortune that suddenly carried him, in New York in 1869, from poverty
to the opulence of $300 a month, he drew nearer to a realization of his
cherished ambition in having money, place, and some time (stolen from
sleep) for more serious experimenting. Thus matters continued until,
at about the age of twenty-two, Edison's inventions had brought him a
relatively large sum of money, and he became a very busy manufacturer,
and lessee of a large shop in Newark, New Jersey.

Now, for the first time since leaving that boyish laboratory in the old
home at Port Huron, Edison had a place of his own to work in, to think
in; but no one in any way acquainted with Newark as a swarming centre
of miscellaneous and multitudinous industries would recommend it as a
cloistered retreat for brooding reverie and introspection, favorable to
creative effort. Some people revel in surroundings of hustle and bustle,
and find therein no hindrance to great accomplishment. The electrical
genius of Newark is Edward Weston, who has thriven amid its turmoil
and there has developed his beautiful instruments of precision; just
as Brush worked out his arc-lighting system in Cleveland; or even as
Faraday, surrounded by the din and roar of London, laid the intellectual
foundations of the whole modern science of dynamic electricity. But
Edison, though deaf, could not make too hurried a retreat from Newark to
Menlo Park, where, as if to justify his change of base, vital inventions
soon came thick and fast, year after year. The story of Menlo has been
told in another chapter, but the point was not emphasized that Edison
then, as later, tried hard to drop manufacturing. He would infinitely
rather be philosopher than producer; but somehow the necessity of
manufacturing is constantly thrust back upon him by a profound--perhaps
finical--sense of dissatisfaction with what other people make for him.
The world never saw a man more deeply and desperately convinced that
nothing in it approaches perfection. Edison is the doctrine of evolution
incarnate, applied to mechanics. As to the removal from Newark, he may
be allowed to tell his own story: "I had a shop at Newark in which I
manufactured stock tickers and such things. When I moved to Menlo Park
I took out only the machinery that would be necessary for experimental
purposes and left the manufacturing machinery in the place. It consisted
of many milling machines and other tools for duplicating. I rented this
to a man who had formerly been my bookkeeper, and who thought he could
make money out of manufacturing. There was about $10,000 worth of
machinery. He was to pay me $2000 a year for the rent of the machinery
and keep it in good order. After I moved to Menlo Park, I was very
busy with the telephone and phonograph, and I paid no attention to this
little arrangement. About three years afterward, it occurred to me that
I had not heard at all from the man who had rented this machinery, so I
thought I would go over to Newark and see how things were going. When I
got there, I found that instead of being a machine shop it was a hotel!
I have since been utterly unable to find out what became of the man
or the machinery." Such incidents tend to justify Edison in his rather
cynical remark that he has always been able to improve machinery much
quicker than men. All the way up he has had discouraging experiences.
"One day while I was carrying on my work in Newark, a Wall Street broker
came from the city and said he was tired of the 'Street,' and wanted to
go into something real. He said he had plenty of money. He wanted some
kind of a job to keep his mind off Wall Street. So we gave him a job
as a 'mucker' in chemical experiments. The second night he was there
he could not stand the long hours and fell asleep on a sofa. One of the
boys took a bottle of bromine and opened it under the sofa. It floated
up and produced a violent effect on the mucous membrane. The broker was
taken with such a fit of coughing he burst a blood-vessel, and the
man who let the bromine out got away and never came back. I suppose he
thought there was going to be a death. But the broker lived, and left
the next day; and I have never seen him since, either." Edison tells
also of another foolhardy laboratory trick of the same kind: "Some of my
assistants in those days were very green in the business, as I did not
care whether they had had any experience or not. I generally tried to
turn them loose. One day I got a new man, and told him to conduct a
certain experiment. He got a quart of ether and started to boil it over
a naked flame. Of course it caught fire. The flame was about four
feet in diameter and eleven feet high. We had to call out the fire
department; and they came down and put a stream through the window. That
let all the fumes and chemicals out and overcame the firemen; and there
was the devil to pay. Another time we experimented with a tub full of
soapy water, and put hydrogen into it to make large bubbles. One of the
boys, who was washing bottles in the place, had read in some book that
hydrogen was explosive, so he proceeded to blow the tub up. There was
about four inches of soap in the bottom of the tub, fourteen inches
high; and he filled it with soap bubbles up to the brim. Then he took a
bamboo fish-pole, put a piece of paper at the end, and touched it off.
It blew every window out of the place."

Always a shrewd, observant, and kindly critic of character, Edison tells
many anecdotes of the men who gathered around him in various capacities
at that quiet corner of New Jersey--Menlo Park--and later at Orange, in
the Llewellyn Park laboratory; and these serve to supplement the main
narrative by throwing vivid side-lights on the whole scene. Here, for
example, is a picture drawn by Edison of a laboratory interlude--just
a bit Rabelaisian: "When experimenting at Menlo Park we had all the way
from forty to fifty men. They worked all the time. Each man was allowed
from four to six hours' sleep. We had a man who kept tally, and when the
time came for one to sleep, he was notified. At midnight we had lunch
brought in and served at a long table at which the experimenters
sat down. I also had an organ which I procured from Hilbourne
Roosevelt--uncle of the ex-President--and we had a man play this
organ while we ate our lunch. During the summertime, after we had made
something which was successful, I used to engage a brick-sloop at Perth
Amboy and take the whole crowd down to the fishing-banks on the Atlantic
for two days. On one occasion we got outside Sandy Hook on the banks and
anchored. A breeze came up, the sea became rough, and a large number of
the men were sick. There was straw in the bottom of the boat, which we
all slept on. Most of the men adjourned to this straw very sick. Those
who were not got a piece of rancid salt pork from the skipper, and cut a
large, thick slice out of it. This was put on the end of a fish-hook
and drawn across the men's faces. The smell was terrific, and the effect
added to the hilarity of the excursion.

"I went down once with my father and two assistants for a little fishing
inside Sandy Hook. For some reason or other the fishing was very poor.
We anchored, and I started in to fish. After fishing for several hours
there was not a single bite. The others wanted to pull up anchor, but
I fished two days and two nights without a bite, until they pulled up
anchor and went away. I would not give up. I was going to catch that
fish if it took a week."

This is general. Let us quote one or two piquant personal observations
of a more specific nature as to the odd characters Edison drew around
him in his experimenting. "Down at Menlo Park a man came in one day and
wanted a job. He was a sailor. I hadn't any particular work to give him,
but I had a number of small induction coils, and to give him something
to do I told him to fix them up and sell them among his sailor friends.
They were fixed up, and he went over to New York and sold them all. He
was an extraordinary fellow. His name was Adams. One day I asked him how
long it was since he had been to sea, and he replied two or three years.
I asked him how he had made a living in the mean time, before he came
to Menlo Park. He said he made a pretty good living by going around to
different clinics and getting $10 at each clinic, because of having the
worst case of heart-disease on record. I told him if that was the case
he would have to be very careful around the laboratory. I had him there
to help in experimenting, and the heart-disease did not seem to bother
him at all.

"It appeared that he had once been a slaver; and altogether he was a
tough character. Having no other man I could spare at that time, I sent
him over with my carbon transmitter telephone to exhibit it in England.
It was exhibited before the Post-Office authorities. Professor Hughes
spent an afternoon in examining the apparatus, and in about a month came
out with his microphone, which was absolutely nothing more nor less
than my exact invention. But no mention was made of the fact that, just
previously, he had seen the whole of my apparatus. Adams stayed over in
Europe connected with the telephone for several years, and finally died
of too much whiskey--but not of heart-disease. This shows how whiskey
is the more dangerous of the two.

"Adams said that at one time he was aboard a coffee-ship in the harbor
of Santos, Brazil. He fell down a hatchway and broke his arm. They took
him up to the hospital--a Portuguese one--where he could not speak the
language, and they did not understand English. They treated him for two
weeks for yellow fever! He was certainly the most profane man we ever
had around the laboratory. He stood high in his class."

And there were others of a different stripe. "We had a man with us at
Menlo called Segredor. He was a queer kind of fellow. The men got in the
habit of plaguing him; and, finally, one day he said to the assembled
experimenters in the top room of the laboratory: 'The next man that does
it, I will kill him.' They paid no attention to this, and next day one
of them made some sarcastic remark to him. Segredor made a start for
his boarding-house, and when they saw him coming back up the hill with
a gun, they knew there would be trouble, so they all made for the woods.
One of the men went back and mollified him. He returned to his work;
but he was not teased any more. At last, when I sent men out hunting for
bamboo, I dispatched Segredor to Cuba. He arrived in Havana on Tuesday,
and on the Friday following he was buried, having died of the black
vomit. On the receipt of the news of his death, half a dozen of the men
wanted his job, but my searcher in the Astor Library reported that the
chances of finding the right kind of bamboo for lamps in Cuba were very
small; so I did not send a substitute."

Another thumb-nail sketch made of one of his associates is this: "When
experimenting with vacuum-pumps to exhaust the incandescent lamps, I
required some very delicate and close manipulation of glass, and hired
a German glass-blower who was said to be the most expert man of his
kind in the United States. He was the only one who could make clinical
thermometers. He was the most extraordinarily conceited man I have ever
come across. His conceit was so enormous, life was made a burden to him
by all the boys around the laboratory. He once said that he was educated
in a university where all the students belonged to families of the
aristocracy; and the highest class in the university all wore little red
caps. He said HE wore one."

Of somewhat different caliber was "honest" John Kruesi, who first made
his mark at Menlo Park, and of whom Edison says: "One of the workmen
I had at Menlo Park was John Kruesi, who afterward became, from his
experience, engineer of the lighting station, and subsequently engineer
of the Edison General Electric Works at Schenectady. Kruesi was very
exact in his expressions. At the time we were promoting and putting
up electric-light stations in Pennsylvania, New York, and New England,
there would be delegations of different people who proposed to pay for
these stations. They would come to our office in New York, at '65,' to
talk over the specifications, the cost, and other things. At first, Mr.
Kruesi was brought in, but whenever a statement was made which he could
not understand or did not believe could be substantiated, he would blurt
right out among these prospects that he didn't believe it. Finally it
disturbed these committees so much, and raised so many doubts in their
minds, that one of my chief associates said: 'Here, Kruesi, we don't
want you to come to these meetings any longer. You are too painfully
honest.' I said to him: 'We always tell the truth. It may be deferred
truth, but it is the truth.' He could not understand that."

Various reasons conspired to cause the departure from Menlo Park midway
in the eighties. For Edison, in spite of the achievement with which its
name will forever be connected, it had lost all its attractions and all
its possibilities. It had been outgrown in many ways, and strange as the
remark may seem, it was not until he had left it behind and had settled
in Orange, New Jersey, that he can be said to have given definite shape
to his life. He was only forty in 1887, and all that he had done up to
that time, tremendous as much of it was, had worn a haphazard, Bohemian
air, with all the inconsequential freedom and crudeness somehow
attaching to pioneer life. The development of the new laboratory in West
Orange, just at the foot of Llewellyn Park, on the Orange Mountains,
not only marked the happy beginning of a period of perfect domestic and
family life, but saw in the planning and equipment of a model laboratory
plant the consummation of youthful dreams, and of the keen desire to
enjoy resources adequate at any moment to whatever strain the fierce
fervor of research might put upon them. Curiously enough, while
hitherto Edison had sought to dissociate his experimenting from his
manufacturing, here he determined to develop a large industry to which
a thoroughly practical laboratory would be a central feature, and ever a
source of suggestion and inspiration. Edison's standpoint to-day is that
an evil to be dreaded in manufacture is that of over-standardization,
and that as soon as an article is perfect that is the time to begin
improving it. But he who would improve must experiment.

The Orange laboratory, as originally planned, consisted of a main
building two hundred and fifty feet long and three stories in height,
together with four other structures, each one hundred by twenty-five
feet, and only one story in height. All these were substantially built
of brick. The main building was divided into five chief divisions--the
library, office, machine shops, experimental and chemical rooms,
and stock-room. The use of the smaller buildings will be presently
indicated.

Surrounding the whole was erected a high picket fence with a gate placed
on Valley Road. At this point a gate-house was provided and put in
charge of a keeper, for then, as at the present time, Edison was greatly
sought after; and, in order to accomplish any work at all, he was
obliged to deny himself to all but the most important callers. The
keeper of the gate was usually chosen with reference to his capacity
for stony-hearted implacability and adherence to instructions; and this
choice was admirably made in one instance when a new gateman, not yet
thoroughly initiated, refused admittance to Edison himself. It was of no
use to try and explain. To the gateman EVERY ONE was persona non grata
without proper credentials, and Edison had to wait outside until he
could get some one to identify him.

On entering the main building the first doorway from the ample passage
leads the visitor into a handsome library finished throughout in yellow
pine, occupying the entire width of the building, and almost as broad
as long. The centre of this spacious room is an open rectangular space
about forty by twenty-five feet, rising clear about forty feet from the
main floor to a panelled ceiling. Around the sides of the room, bounding
this open space, run two tiers of gallery, divided, as is the main floor
beneath them; into alcoves of liberal dimensions. These alcoves are
formed by racks extending from floor to ceiling, fitted with shelves,
except on two sides of both galleries, where they are formed by a series
of glass-fronted cabinets containing extensive collections of curious
and beautiful mineralogical and geological specimens, among which is
the notable Tiffany-Kunz collection of minerals acquired by Edison some
years ago. Here and there in these cabinets may also be found a
few models which he has used at times in his studies of anatomy and
physiology.

The shelves on the remainder of the upper gallery and part of those on
the first gallery are filled with countless thousands of specimens of
ores and minerals of every conceivable kind gathered from all parts of
the world, and all tagged and numbered. The remaining shelves of the
first gallery are filled with current numbers (and some back numbers) of
the numerous periodicals to which Edison subscribes. Here may be
found the popular magazines, together with those of a technical nature
relating to electricity, chemistry, engineering, mechanics, building,
cement, building materials, drugs, water and gas, power, automobiles,
railroads, aeronautics, philosophy, hygiene, physics, telegraphy,
mining, metallurgy, metals, music, and others; also theatrical weeklies,
as well as the proceedings and transactions of various learned and
technical societies.

The first impression received as one enters on the main floor of the
library and looks around is that of noble proportions and symmetry as a
whole. The open central space of liberal dimensions and height, flanked
by the galleries and relieved by four handsome electric-lighting
fixtures suspended from the ceiling by long chains, conveys an idea of
lofty spaciousness; while the huge open fireplace, surmounted by a great
clock built into the wall, at one end of the room, the large rugs, the
arm-chairs scattered around, the tables and chairs in the alcoves, give
a general air of comfort combined with utility. In one of the larger
alcoves, at the sunny end of the main hall, is Edison's own desk, where
he may usually be seen for a while in the early morning hours looking
over his mail or otherwise busily working on matters requiring his
attention.

At the opposite end of the room, not far from the open fireplace, is a
long table surrounded by swivel desk-chairs. It is here that directors'
meetings are sometimes held, and also where weighty matters are often
discussed by Edison at conference with his closer associates. It
has been the privilege of the writers to be present at some of these
conferences, not only as participants, but in some cases as lookers-on
while awaiting their turn. On such occasions an interesting opportunity
is offered to study Edison in his intense and constructive moods.
Apparently oblivious to everything else, he will listen with
concentrated mind and close attention, and then pour forth a perfect
torrent of ideas and plans, and, if the occasion calls for it, will turn
around to the table, seize a writing-pad and make sketch after sketch
with lightning-like rapidity, tearing off each sheet as filled and
tossing it aside to the floor. It is an ordinary indication that
there has been an interesting meeting when the caretaker about fills a
waste-basket with these discarded sketches.

Directly opposite the main door is a beautiful marble statue purchased
by Edison at the Paris Exposition in 1889, on the occasion of his visit
there. The statue, mounted on a base three feet high, is an allegorical
representation of the supremacy of electric light over all other forms
of illumination, carried out by the life-size figure of a youth with
half-spread wings seated upon the ruins of a street gas-lamp, holding
triumphantly high above his head an electric incandescent lamp. Grouped
about his feet are a gear-wheel, voltaic pile, telegraph key, and
telephone. This work of art was executed by A. Bordiga, of Rome, held
a prominent place in the department devoted to Italian art at the Paris
Exposition, and naturally appealed to Edison as soon as he saw it.

In the middle distance, between the entrance door and this statue, has
long stood a magnificent palm, but at the present writing it has been
set aside to give place to a fine model of the first type of the Edison
poured cement house, which stands in a miniature artificial lawn upon
a special table prepared for it; while on the floor at the foot of the
table are specimens of the full-size molds in which the house will be
cast.

The balustrades of the galleries and all other available places are
filled with portraits of great scientists and men of achievement, as
well as with pictures of historic and scientific interest. Over the
fireplace hangs a large photograph showing the Edison cement plant
in its entire length, flanked on one end of the mantel by a bust of
Humboldt, and on the other by a statuette of Sandow, the latter having
been presented to Edison by the celebrated athlete after the visit he
made to Orange to pose for the motion pictures in the earliest days of
their development. On looking up under the second gallery at this end
is seen a great roll resting in sockets placed on each side of the room.
This is a huge screen or curtain which may be drawn down to the floor to
provide a means of projection for lantern slides or motion pictures, for
the entertainment or instruction of Edison and his guests. In one of
the larger alcoves is a large terrestrial globe pivoted in its special
stand, together with a relief map of the United States; and here and
there are handsomely mounted specimens of underground conductors and
electric welds that were made at the Edison Machine Works at Schenectady
before it was merged into the General Electric Company. On two
pedestals stand, respectively, two other mementoes of the works, one
a fifteen-light dynamo of the Edison type, and the other an elaborate
electric fan--both of them gifts from associates or employees.

In noting these various objects of interest one must not lose sight
of the fact that this part of the building is primarily a library,
if indeed that fact did not at once impress itself by a glance at the
well-filled unglazed book-shelves in the alcoves of the main floor. Here
Edison's catholic taste in reading becomes apparent as one scans the
titles of thousands of volumes ranged upon the shelves, for they include
astronomy, botany, chemistry, dynamics, electricity, engineering,
forestry, geology, geography, mechanics, mining, medicine, metallurgy,
magnetism, philosophy, psychology, physics, steam, steam-engines,
telegraphy, telephony, and many others. Besides these there are the
journals and proceedings of numerous technical societies; encyclopaedias
of various kinds; bound series of important technical magazines; a
collection of United States and foreign patents, embracing some hundreds
of volumes, together with an extensive assortment of miscellaneous books
of special and general interest. There is another big library up in
the house on the hill--in fact, there are books upon books all over the
home. And wherever they are, those books are read.

As one is about to pass out of the library attention is arrested by an
incongruity in the form of a cot, which stands in an alcove near the
door. Here Edison, throwing himself down, sometimes seeks a short rest
during specially long working tours. Sleep is practically instantaneous
and profound, and he awakes in immediate and full possession of his
faculties, arising from the cot and going directly "back to the job"
without a moment's hesitation, just as a person wide awake would arise
from a chair and proceed to attend to something previously determined
upon.

Immediately outside the library is the famous stock-room, about which
much has been written and invented. Its fame arose from the fact that
Edison planned it to be a repository of some quantity, great or small,
of every known and possibly useful substance not readily perishable,
together with the most complete assortment of chemicals and drugs
that experience and knowledge could suggest. Always strenuous in his
experimentation, and the living embodiment of the spirit of the song, I
Want What I Want When I Want It, Edison had known for years what it
was to be obliged to wait, and sometimes lack, for some substance or
chemical that he thought necessary to the success of an experiment.
Naturally impatient at any delay which interposed in his insistent
and searching methods, and realizing the necessity of maintaining the
inspiration attending his work at any time, he determined to have within
his immediate reach the natural resources of the world.

Hence it is not surprising to find the stock-room not only a museum,
but a sample-room of nature, as well as a supply department. To a
casual visitor the first view of this heterogeneous collection is quite
bewildering, but on more mature examination it resolves itself into a
natural classification--as, for instance, objects pertaining to various
animals, birds, and fishes, such as skins, hides, hair, fur, feathers,
wool, quills, down, bristles, teeth, bones, hoofs, horns, tusks, shells;
natural products, such as woods, barks, roots, leaves, nuts, seeds,
herbs, gums, grains, flours, meals, bran; also minerals in great
assortment; mineral and vegetable oils, clay, mica, ozokerite, etc. In
the line of textiles, cotton and silk threads in great variety, with
woven goods of all kinds from cheese-cloth to silk plush. As for paper,
there is everything in white and colored, from thinnest tissue up to the
heaviest asbestos, even a few newspapers being always on hand. Twines
of all sizes, inks, waxes, cork, tar, resin, pitch, turpentine, asphalt,
plumbago, glass in sheets and tubes; and a host of miscellaneous
articles revealed on looking around the shelves, as well as an
interminable collection of chemicals, including acids, alkalies,
salts, reagents, every conceivable essential oil and all the thinkable
extracts. It may be remarked that this collection includes the eighteen
hundred or more fluorescent salts made by Edison during his experimental
search for the best material for a fluoroscope in the initial X-ray
period. All known metals in form of sheet, rod and tube, and of great
variety in thickness, are here found also, together with a most complete
assortment of tools and accessories for machine shop and laboratory
work.

The list is confined to the merest general mention of the scope of this
remarkable and interesting collection, as specific details would
stretch out into a catalogue of no small proportions. When it is stated,
however, that a stock clerk is kept exceedingly busy all day answering
the numerous and various demands upon him, the reader will appreciate
that this comprehensive assortment is not merely a fad of Edison's,
but stands rather as a substantial tribute to his wide-angled view of
possible requirements as his various investigations take him far afield.
It has no counterpart in the world!

Beyond the stock-room, and occupying about half the building on the same
floor, lie a machine shop, engine-room, and boiler-room. This machine
shop is well equipped, and in it is constantly employed a large force
of mechanics whose time is occupied in constructing the heavier class of
models and mechanical devices called for by the varied experiments and
inventions always going on.

Immediately above, on the second floor, is found another machine shop in
which is maintained a corps of expert mechanics who are called upon to
do work of greater precision and fineness, in the construction of tools
and experimental models. This is the realm presided over lovingly by
John F. Ott, who has been Edison's designer of mechanical devices for
over forty years. He still continues to ply his craft with unabated
skill and oversees the work of the mechanics as his productions are
wrought into concrete shape.

In one of the many experimental-rooms lining the sides of the second
floor may usually be seen his younger brother, Fred Ott, whose skill as
a dexterous manipulator and ingenious mechanic has found ample scope
for exercise during the thirty-two years of his service with Edison, not
only at the regular laboratories, but also at that connected with the
inventor's winter home in Florida. Still another of the Ott family, the
son of John F., for some years past has been on the experimental staff
of the Orange laboratory. Although possessing in no small degree the
mechanical and manipulative skill of the family, he has chosen chemistry
as his special domain, and may be found with the other chemists in one
of the chemical-rooms.

On this same floor is the vacuum-pump room with a glass-blowers' room
adjoining, both of them historic by reason of the strenuous work done
on incandescent lamps and X-ray tubes within their walls. The tools and
appliances are kept intact, for Edison calls occasionally for their use
in some of his later experiments, and there is a suspicion among the
laboratory staff that some day he may resume work on incandescent lamps.
Adjacent to these rooms are several others devoted to physical and
mechanical experiments, together with a draughting-room.

Last to be mentioned, but the first in order as one leaves the head of
the stairs leading up to this floor, is No. 12, Edison's favorite room,
where he will frequently be found. Plain of aspect, being merely a space
boarded off with tongued-and-grooved planks--as all the other rooms
are--without ornament or floor covering, and containing only a few
articles of cheap furniture, this room seems to exercise a nameless
charm for him. The door is always open, and often he can be seen seated
at a plain table in the centre of the room, deeply intent on some of the
numerous problems in which he is interested. The table is usually pretty
well filled with specimens or data of experimental results which have
been put there for his examination. At the time of this writing these
specimens consist largely of sections of positive elements of the
storage battery, together with many samples of nickel hydrate, to which
Edison devotes deep study. Close at hand is a microscope which is
in frequent use by him in these investigations. Around the room, on
shelves, are hundreds of bottles each containing a small quantity
of nickel hydrate made in as many different ways, each labelled
correspondingly. Always at hand will be found one or two of the
laboratory note-books, with frequent entries or comments in the
handwriting which once seen is never forgotten.

No. 12 is at times a chemical, a physical, or a mechanical
room--occasionally a combination of all, while sometimes it might be
called a consultation-room or clinic--for often Edison may be seen there
in animated conference with a group of his assistants; but its chief
distinction lies in its being one of his favorite haunts, and in the
fact that within its walls have been settled many of the perplexing
problems and momentous questions that have brought about great changes
in electrical and engineering arts during the twenty-odd years that have
elapsed since the Orange laboratory was built.

Passing now to the top floor the visitor finds himself at the head of a
broad hall running almost the entire length of the building, and
lined mostly with glass-fronted cabinets containing a multitude of
experimental incandescent lamps and an immense variety of models of
phonographs, motors, telegraph and telephone apparatus, meters, and a
host of other inventions upon which Edison's energies have at one time
and another been bent. Here also are other cabinets containing old
papers and records, while further along the wall are piled up boxes
of historical models and instruments. In fact, this hallway, with its
conglomerate contents, may well be considered a scientific attic. It is
to be hoped that at no distant day these Edisoniana will be assembled
and arranged in a fireproof museum for the benefit of posterity.

In the front end of the building, and extending over the library, is
a large room intended originally and used for a time as the phonograph
music-hall for record-making, but now used only as an experimental-room
for phonograph work, as the growth of the industry has necessitated a
very much larger and more central place where records can be made on a
commercial scale. Even the experimental work imposes no slight burden on
it. On each side of the hallway above mentioned, rooms are partitioned
off and used for experimental work of various kinds, mostly
phonographic, although on this floor are also located the
storage-battery testing-room, a chemical and physical room and Edison's
private office, where all his personal correspondence and business
affairs are conducted by his personal secretary, Mr. H. F. Miller. A
visitor to this upper floor of the laboratory building cannot but be
impressed with a consciousness of the incessant efforts that are being
made to improve the reproducing qualities of the phonograph, as he hears
from all sides the sounds of vocal and instrumental music constantly
varying in volume and timbre, due to changes in the experimental devices
under trial.

The traditions of the laboratory include cots placed in many of the
rooms of these upper floors, but that was in the earlier years when the
strenuous scenes of Menlo Park were repeated in the new quarters. Edison
and his closest associates were accustomed to carry their labors far
into the wee sma' hours, and when physical nature demanded a respite
from work, a short rest would be obtained by going to bed on a cot.
One would naturally think that the wear and tear of this intense
application, day after day and night after night, would have tended to
induce a heaviness and gravity of demeanor in these busy men; but on
the contrary, the old spirit of good-humor and prankishness was ever
present, as its frequent outbursts manifested from time to time. One
instance will serve as an illustration. One morning, about 2.30, the
late Charles Batchelor announced that he was tired and would go to bed.
Leaving Edison and the others busily working, he went out and returned
quietly in slippered feet, with his nightgown on, the handle of a
feather duster stuck down his back with the feathers waving over his
head, and his face marked. With unearthly howls and shrieks, a l'Indien,
he pranced about the room, incidentally giving Edison a scare that made
him jump up from his work. He saw the joke quickly, however, and joined
in the general merriment caused by this prank.

Leaving the main building with its corps of busy experimenters, and
coming out into the spacious yard, one notes the four long single-story
brick structures mentioned above. The one nearest the Valley Road is
called the galvanometer-room, and was originally intended by Edison to
be used for the most delicate and minute electrical measurements. In
order to provide rigid resting-places for the numerous and elaborate
instruments he had purchased for this purpose, the building was equipped
along three-quarters of its length with solid pillars, or tables, of
brick set deep in the earth. These were built up to a height of about
two and a half feet, and each was surmounted with a single heavy slab of
black marble. A cement floor was laid, and every precaution was taken to
render the building free from all magnetic influences, so that it would
be suitable for electrical work of the utmost accuracy and precision.
Hence, iron and steel were entirely eliminated in its construction,
copper being used for fixtures for steam and water piping, and, indeed,
for all other purposes where metal was employed.

This room was for many years the headquarters of Edison's able
assistant, Dr. A. E. Kennelly, now professor of electrical engineering
in Harvard University to whose energetic and capable management were
intrusted many scientific investigations during his long sojourn at
the laboratory. Unfortunately, however, for the continued success of
Edison's elaborate plans, he had not been many years established in the
laboratory before a trolley road through West Orange was projected and
built, the line passing in front of the plant and within seventy-five
feet of the galvanometer-room, thus making it practically impossible to
use it for the delicate purposes for which it was originally intended.

For some time past it has been used for photography and some special
experiments on motion pictures as well as for demonstrations connected
with physical research; but some reminders of its old-time glory still
remain in evidence. In lofty and capacious glass-enclosed cabinets, in
company with numerous models of Edison's inventions, repose many of
the costly and elaborate instruments rendered useless by the ubiquitous
trolley. Instruments are all about, on walls, tables, and shelves, the
photometer is covered up; induction coils of various capacities,
with other electrical paraphernalia, lie around, almost as if the
experimenter were absent for a few days but would soon return and resume
his work.

In numbering the group of buildings, the galvanometer-room is No. 1,
while the other single-story structures are numbered respectively 2, 3,
and 4. On passing out of No. 1 and proceeding to the succeeding building
is noticed, between the two, a garage of ample dimensions and a smaller
structure, at the door of which stands a concrete-mixer. In this small
building Edison has made some of his most important experiments in the
process of working out his plans for the poured house. It is in this
little place that there was developed the remarkable mixture which is to
play so vital a part in the successful construction of these everlasting
homes for living millions.

Drawing near to building No. 2, olfactory evidence presents itself of
the immediate vicinity of a chemical laboratory. This is confirmed as
one enters the door and finds that the entire building is devoted to
chemistry. Long rows of shelves and cabinets filled with chemicals line
the room; a profusion of retorts, alembics, filters, and other chemical
apparatus on numerous tables and stands, greet the eye, while a corps
of experimenters may be seen busy in the preparation of various
combinations, some of which are boiling or otherwise cooking under their
dexterous manipulation.

It would not require many visits to discover that in this room, also,
Edison has a favorite nook. Down at the far end in a corner are a plain
little table and chair, and here he is often to be found deeply immersed
in a study of the many experiments that are being conducted. Not
infrequently he is actively engaged in the manipulation of some compound
of special intricacy, whose results might be illuminative of obscure
facts not patent to others than himself. Here, too, is a select little
library of chemical literature.

The next building, No. 3, has a double mission--the farther half being
partitioned off for a pattern-making shop, while the other half is used
as a store-room for chemicals in quantity and for chemical apparatus
and utensils. A grimly humorous incident, as related by one of the
laboratory staff, attaches to No. 3. It seems that some time ago one of
the helpers in the chemical department, an excitable foreigner,
became dissatisfied with his wages, and after making an unsuccessful
application for an increase, rushed in desperation to Edison, and said
"Eef I not get more money I go to take ze cyanide potassia." Edison gave
him one quick, searching glance and, detecting a bluff, replied in an
offhand manner: "There's a five-pound bottle in No. 3," and turned to
his work again. The foreigner did not go to get the cyanide, but gave up
his job.

The last of these original buildings, No. 4, was used for many years
in Edison's ore-concentrating experiments, and also for rough-and-ready
operations of other kinds, such as furnace work and the like. At the
present writing it is used as a general stock-room.

In the foregoing details, the reader has been afforded but a passing
glance at the great practical working equipment which constitutes the
theatre of Edison's activities, for, in taking a general view of such a
unique and comprehensive laboratory plant, its salient features only can
be touched upon to advantage. It would be but repetition to enumerate
here the practical results of the laboratory work during the past two
decades, as they appear on other pages of this work. Nor can one assume
for a moment that the history of Edison's laboratory is a closed book.
On the contrary, its territorial boundaries have been increasing step by
step with the enlargement of its labors, until now it has been obliged
to go outside its own proper domains to occupy some space in and about
the great Edison industrial buildings and space immediately adjacent. It
must be borne in mind that the laboratory is only the core of a group of
buildings devoted to production on a huge scale by hundreds of artisans.

Incidental mention has already been made of the laboratory at Edison's
winter residence in Florida, where he goes annually to spend a month or
six weeks. This is a miniature copy of the Orange laboratory, with its
machine shop, chemical-room, and general experimental department. While
it is only in use during his sojourn there, and carries no extensive
corps of assistants, the work done in it is not of a perfunctory nature,
but is a continuation of his regular activities, and serves to keep him
in touch with the progress of experiments at Orange, and enables him to
give instructions for their variation and continuance as their scope
is expanded by his own investigations made while enjoying what he calls
"vacation." What Edison in Florida speaks of as "loafing" would be for
most of us extreme and healthy activity in the cooler Far North.

A word or two may be devoted to the visitors received at the laboratory,
and to the correspondence. It might be injudicious to gauge the
greatness of a man by the number of his callers or his letters; but
they are at least an indication of the degree to which he interests
the world. In both respects, for these forty years, Edison has been a
striking example of the manner in which the sentiment of hero-worship
can manifest itself, and of the deep desire of curiosity to get
satisfaction by personal observation or contact. Edison's mail, like
that of most well-known men, is extremely large, but composed in no
small degree of letters--thousands of them yearly--that concern only the
writers, and might well go to the waste-paper basket without prolonged
consideration. The serious and important part of the mail, some personal
and some business, occupies the attention of several men; all such
letters finding their way promptly into the proper channels, often with
a pithy endorsement by Edison scribbled on the margin. What to do with
a host of others it is often difficult to decide, even when written by
"cranks," who imagine themselves subject to strange electrical ailments
from which Edison alone can relieve them. Many people write asking his
opinion as to a certain invention, or offering him an interest in it
if he will work it out. Other people abroad ask help in locating lost
relatives; and many want advice as to what they shall do with their
sons, frequently budding geniuses whose ability to wire a bell has
demonstrated unusual qualities. A great many persons want autographs,
and some would like photographs. The amazing thing about it all is
that this flood of miscellaneous letters flows on in one steady,
uninterrupted stream, year in and year out; always a curious
psychological study in its variety and volume; and ever a proof of the
fact that once a man has become established as a personality in the
public eye and mind, nothing can stop the tide of correspondence that
will deluge him.

It is generally, in the nature of things, easier to write a letter than
to make a call; and the semi-retirement of Edison at a distance of
an hour by train from New York stands as a means of protection to him
against those who would certainly present their respects in person, if
he could be got at without trouble. But it may be seriously questioned
whether in the aggregate Edison's visitors are less numerous or
less time-consuming than his epistolary besiegers. It is the common
experience of any visitor to the laboratory that there are usually
several persons ahead of him, no matter what the hour of the day, and
some whose business has been sufficiently vital to get them inside
the porter's gate, or even into the big library and lounging-room.
Celebrities of all kinds and distinguished foreigners are
numerous--princes, noblemen, ambassadors, artists, litterateurs,
scientists, financiers, women. A very large part of the visiting is done
by scientific bodies and societies; and then the whole place will be
turned over to hundreds of eager, well-dressed men and women, anxious
to see everything and to be photographed in the big courtyard around
the central hero. Nor are these groups and delegations limited to this
country, for even large parties of English, Dutch, Italian, or Japanese
visitors come from time to time, and are greeted with the same ready
hospitality, although Edison, it is easy to see, is torn between the
conflicting emotions of a desire to be courteous, and an anxiety to
guard the precious hours of work, or watch the critical stage of a new
experiment.

One distinct group of visitors has always been constituted by the
"newspaper men." Hardly a day goes by that the journals do not contain
some reference to Edison's work or remarks; and the items are generally
based on an interview. The reporters are never away from the laboratory
very long; for if they have no actual mission of inquiry, there is
always the chance of a good story being secured offhand; and the easy,
inveterate good-nature of Edison toward reporters is proverbial in
the craft. Indeed, it must be stated here that once in a while this
confidence has been abused; that stories have been published utterly
without foundation; that interviews have been printed which never took
place; that articles with Edison's name as author have been widely
circulated, although he never saw them; and that in such ways he has
suffered directly. But such occasional incidents tend in no wise to
lessen Edison's warm admiration of the press or his readiness to avail
himself of it whenever a representative goes over to Orange to get the
truth or the real facts in regard to any matter of public importance. As
for the newspaper clippings containing such articles, or others in which
Edison's name appears--they are literally like sands of the sea-shore
for number; and the archives of the laboratory that preserve only a very
minute percentage of them are a further demonstration of what publicity
means, where a figure like Edison is concerned.



CHAPTER XXVI

EDISON IN COMMERCE AND MANUFACTURE

AN applicant for membership in the Engineers' Club of Philadelphia is
required to give a brief statement of the professional work he has
done. Some years ago a certain application was made, and contained the
following terse and modest sentence:


"I have designed a concentrating plant and built a machine shop, etc.,
etc. THOMAS A. EDISON."


Although in the foregoing pages the reader has been made acquainted
with the tremendous import of the actualities lying behind those "etc.,
etc.," the narrative up to this point has revealed Edison chiefly in the
light of inventor, experimenter, and investigator. There have been
some side glimpses of the industries he has set on foot, and of their
financial aspects, and a later chapter will endeavor to sum up the
intrinsic value of Edison's work to the world. But there are some other
interesting points that may be touched on now in regard to a few of
Edison's financial and commercial ventures not generally known or
appreciated.

It is a popular idea founded on experience that an inventor is not
usually a business man. One of the exceptions proving the rule may
perhaps be met in Edison, though all depends on the point of view. All
his life he has had a great deal to do with finance and commerce, and
as one looks at the magnitude of the vast industries he has helped to
create, it would not be at all unreasonable to expect him to be among
the multi-millionaires. That he is not is due to the absence of certain
qualities, the lack of which Edison is himself the first to admit.
Those qualities may not be amiable, but great wealth is hardly ever
accumulated without them. If he had not been so intent on inventing he
would have made more of his great opportunities for getting rich. If
this utter detachment from any love of money for its own sake has not
already been illustrated in some of the incidents narrated, one or two
stories are available to emphasize the point. They do not involve any
want of the higher business acumen that goes to the proper conduct of
affairs. It was said of Gladstone that he was the greatest Chancellor of
the Exchequer England ever saw, but that as a retail merchant he would
soon have ruined himself by his bookkeeping.

Edison confesses that he has never made a cent out of his patents in
electric light and power--in fact, that they have been an expense
to him, and thus a free gift to the world. [18] This was true of the
European patents as well as the American. "I endeavored to sell my
lighting patents in different countries of Europe, and made a contract
with a couple of men. On account of their poor business capacity and
lack of practicality, they conveyed under the patents all rights to
different corporations but in such a way and with such confused wording
of the contracts that I never got a cent. One of the companies
started was the German Edison, now the great Allgemeine Elektricitaets
Gesellschaft. The English company I never got anything for, because a
lawyer had originally advised Drexel, Morgan & Co. as to the signing of
a certain document, and said it was all right for me to sign. I signed,
and I never got a cent because there was a clause in it which prevented
me from ever getting anything." A certain easy-going belief in human
nature, and even a certain carelessness of attitude toward business
affairs, are here revealed. We have already pointed out two instances
where in his dealings with the Western Union Company he stipulated that
payments of $6000 per year for seventeen years were to be made instead
of $100,000 in cash, evidently forgetful of the fact that the annual sum
so received was nothing more than legal interest, which could have been
earned indefinitely if the capital had been only insisted upon. In later
life Edison has been more circumspect, but throughout his early career
he was constantly getting into some kind of scrape. Of one experience he
says:

     [Footnote 18: Edison received some stock from the parent
     lighting company, but as the capital stock of that company
     was increased from time to time, his proportion grew
     smaller, and he ultimately used it to obtain ready money
     with which to create and finance the various "shops" in
     which were manufactured the various items of electric-
     lighting apparatus necessary to exploit his system. Besides,
     he was obliged to raise additional large sums of money from
     other sources for this purpose. He thus became a
     manufacturer with capital raised by himself, and the stock
     that he received later, on the formation of the General
     Electric Company, was not for his electric-light patents,
     but was in payment for his manufacturing establishments,
     which had then grown to be of great commercial importance.]

"In the early days I was experimenting with metallic filaments for the
incandescent light, and sent a certain man out to California in search
of platinum. He found a considerable quantity in the sluice-boxes of
the Cherokee Valley Mining Company; but just then he found also that
fruit-gardening was the thing, and dropped the subject. He then came to
me and said that if he could raise $4000 he could go into some kind of
orchard arrangement out there, and would give me half the profits. I
was unwilling to do it, not having very much money just then, but his
persistence was such that I raised the money and gave it to him. He went
back to California, and got into mining claims and into fruit-growing,
and became one of the politicians of the Coast, and, I believe, was on
the staff of the Governor of the State. A couple of years ago he wounded
his daughter and shot himself because he had become ruined financially.
I never heard from him after he got the money."

Edison tells of another similar episode. "I had two men working for
me--one a German, the other a Jew. They wanted me to put up a little
money and start them in a shop in New York to make repairs, etc. I
put up $800, and was to get half of the profits, and each of them
one-quarter. I never got anything for it. A few years afterward I went
to see them, and asked what they were doing, and said I would like
to sell my interest. They said: 'Sell out what?' 'Why,' I said, 'my
interest in the machinery.' They said: 'You don't own this machinery.
This is our machinery. You have no papers to show anything. You had
better get out.' I am inclined to think that the percentage of crooked
people was smaller when I was young. It has been steadily rising, and
has got up to a very respectable figure now. I hope it will never reach
par." To which lugubrious episode so provocative of cynicism, Edison
adds: "When I was a young fellow the first thing I did when I went to
a town was to put something into the savings-bank and start an account.
When I came to New York I put $30 into a savings-bank under the New York
Sun office. After the money had been in about two weeks the bank busted.
That was in 1870. In 1909 I got back $6.40, with a charge for $1.75 for
law expenses. That shows the beauty of New York receiverships."

It is hardly to be wondered at that Edison is rather frank and unsparing
in some of his criticisms of shady modern business methods, and the
mention of the following incident always provokes him to a fine scorn.
"I had an interview with one of the wealthiest men in New York. He
wanted me to sell out my associates in the electric lighting business,
and offered me all I was going to get and $100,000 besides. Of course I
would not do it. I found out that the reason for this offer was that he
had had trouble with Mr. Morgan, and wanted to get even with him." Wall
Street is, in fact, a frequent object of rather sarcastic reference,
applying even to its regular and probably correct methods of banking.
"When I was running my ore-mine," he says, "and got up to the point of
making shipments to John Fritz, I didn't have capital enough to carry
the ore, so I went to J. P. Morgan & Co. and said I wanted them to give
me a letter to the City Bank. I wanted to raise some money. I got a
letter to Mr. Stillman; and went over and told him I wanted to open an
account and get some loans and discounts. He turned me down, and would
not do it. 'Well,' I said, 'isn't it banking to help a man in this way?'
He said: 'What you want is a partner.' I felt very much crestfallen.
I went over to a bank in Newark--the Merchants'--and told them what
I wanted. They said: 'Certainly, you can have the money.' I made my
deposit, and they pulled me through all right. My idea of Wall Street
banking has been very poor since that time. Merchant banking seems to be
different."

As a general thing, Edison has had no trouble in raising money when he
needed it, the reason being that people have faith in him as soon
as they come to know him. A little incident bears on this point. "In
operating the Schenectady works Mr. Insull and I had a terrible burden.
We had enormous orders and little money, and had great difficulty to
meet our payrolls and buy supplies. At one time we had so many orders on
hand we wanted $200,000 worth of copper, and didn't have a cent to buy
it. We went down to the Ansonia Brass and Copper Company, and told Mr.
Cowles just how we stood. He said: 'I will see what I can do. Will you
let my bookkeeper look at your books?' We said: 'Come right up and look
them over.' He sent his man up and found we had the orders and were all
right, although we didn't have the money. He said: 'I will let you have
the copper.' And for years he trusted us for all the copper we wanted,
even if we didn't have the money to pay for it."

It is not generally known that Edison, in addition to being a newsboy
and a contributor to the technical press, has also been a backer and
an "angel" for various publications. This is perhaps the right place at
which to refer to the matter, as it belongs in the list of his financial
or commercial enterprises. Edison sums up this chapter of his life very
pithily. "I was interested, as a telegrapher, in journalism, and started
the Telegraph Journal, and got out about a dozen numbers when it was
taken over by W. J. Johnston, who afterward founded the Electrical World
on it as an offshoot from the Operator. I also started Science, and ran
it for a year and a half. It cost me too much money to maintain, and I
sold it to Gardiner Hubbard, the father-in-law of Alexander Graham
Bell. He carried it along for years." Both these papers are still
in prosperous existence, particularly the Electrical World, as the
recognized exponent of electrical development in America, where now
the public spends as much annually for electricity as it does for daily
bread.

From all that has been said above it will be understood that Edison's
real and remarkable capacity for business does not lie in ability to
"take care of himself," nor in the direction of routine office practice,
nor even in ordinary administrative affairs. In short, he would and does
regard it as a foolish waste of his time to give attention to the mere
occupancy of a desk.

His commercial strength manifests itself rather in the outlining of
matters relating to organization and broad policy with a sagacity
arising from a shrewd perception and appreciation of general business
requirements and conditions, to which should be added his intensely
comprehensive grasp of manufacturing possibilities and details, and
an unceasing vigilance in devising means of improving the quality of
products and increasing the economy of their manufacture.

Like other successful commanders, Edison also possesses the happy
faculty of choosing suitable lieutenants to carry out his policies and
to manage the industries he has created, such, for instance, as those
with which this chapter has to deal--namely, the phonograph, motion
picture, primary battery, and storage battery enterprises.

The Portland cement business has already been dealt with separately, and
although the above remarks are appropriate to it also, Edison being
its head and informing spirit, the following pages are intended to be
devoted to those industries that are grouped around the laboratory at
Orange, and that may be taken as typical of Edison's methods on the
manufacturing side.

Within a few months after establishing himself at the present
laboratory, in 1887, Edison entered upon one of those intensely active
periods of work that have been so characteristic of his methods in
commercializing his other inventions. In this case his labors were
directed toward improving the phonograph so as to put it into thoroughly
practicable form, capable of ordinary use by the public at large. The
net result of this work was the general type of machine of which the
well-known phonograph of today is a refinement evolved through many
years of sustained experiment and improvement.

After a considerable period of strenuous activity in the eighties, the
phonograph and its wax records were developed to a sufficient degree of
perfection to warrant him in making arrangements for their manufacture
and commercial introduction. At this time the surroundings of the Orange
laboratory were distinctly rural in character. Immediately adjacent
to the main building and the four smaller structures, constituting
the laboratory plant, were grass meadows that stretched away for some
considerable distance in all directions, and at its back door, so to
speak, ducks paddled around and quacked in a pond undisturbed. Being now
ready for manufacturing, but requiring more facilities, Edison increased
his real-estate holdings by purchasing a large tract of land lying
contiguous to what he already owned. At one end of the newly acquired
land two unpretentious brick structures were erected, equipped
with first-class machinery, and put into commission as shops for
manufacturing phonographs and their record blanks; while the capacious
hall forming the third story of the laboratory, over the library, was
fitted up and used as a music-room where records were made.

Thus the modern Edison phonograph made its modest debut in 1888, in what
was then called the "Improved" form to distinguish it from the original
style of machine he invented in 1877, in which the record was made on a
sheet of tin-foil held in place upon a metallic cylinder. The "Improved"
form is the general type so well known for many years and sold at the
present day--viz., the spring or electric motor-driven machine with the
cylindrical wax record--in fact, the regulation Edison phonograph.

It did not take a long time to find a market for the products of the
newly established factory, for a world-wide public interest in the
machine had been created by the appearance of newspaper articles from
time to time, announcing the approaching completion by Edison of his
improved phonograph. The original (tin-foil) machine had been sufficient
to illustrate the fact that the human voice and other sounds could
be recorded and reproduced, but such a type of machine had sharp
limitations in general use; hence the coming into being of a type that
any ordinary person could handle was sufficient of itself to insure a
market. Thus the demand for the new machines and wax records grew apace
as the corporations organized to handle the business extended their
lines. An examination of the newspaper files of the years 1888, 1889,
and 1890 will reveal the great excitement caused by the bringing out of
the new phonograph, and how frequently and successfully it was employed
in public entertainments, either for the whole or part of an evening.
In this and other ways it became popularized to a still further extent.
This led to the demand for a nickel-in-the-slot machine, which, when
established, became immensely popular over the whole country. In its
earlier forms the "Improved" phonograph was not capable of such
general non-expert handling as is the machine of the present day, and
consequently there was a constant endeavor on Edison's part to
simplify the construction of the machine and its manner of operation.
Experimentation was incessantly going on with this in view, and in the
processes of evolution changes were made here and there that resulted in
a still greater measure of perfection.

In various ways there was a continual slow and steady growth of the
industry thus created, necessitating the erection of many additional
buildings as the years passed by. During part of the last decade there
was a lull, caused mostly from the failure of corporate interests to
carry out their contract relations with Edison, and he was thereby
compelled to resort to legal proceedings, at the end of which he
bought in the outstanding contracts and assumed command of the business
personally.

Being thus freed from many irksome restrictions that had hung heavily
upon him, Edison now proceeded to push the phonograph business under a
broader policy than that which obtained under his previous contractual
relations. With the ever-increasing simplification and efficiency of the
machine and a broadening of its application, the results of this policy
were manifested in a still more rapid growth of the business that
necessitated further additions to the manufacturing plant. And thus
matters went on until the early part of the present decade, when the
factory facilities were becoming so rapidly outgrown as to render
radical changes necessary. It was in these circumstances that Edison's
sagacity and breadth of business capacity came to the front. With
characteristic boldness and foresight he planned the erection of the
series of magnificent concrete buildings that now stand adjacent to
and around the laboratory, and in which the manufacturing plant is at
present housed.

There was no narrowness in his views in designing these buildings, but,
on the contrary, great faith in the future, for his plans included
not only the phonograph industry, but provided also for the coming
development of motion pictures and of the primary and storage battery
enterprises.

In the aggregate there are twelve structures (including the
administration building), of which six are of imposing dimensions,
running from 200 feet long by 50 feet wide to 440 feet in length by
115 feet in width, all these larger buildings, except one, being five
stories in height. They are constructed entirely of reinforced concrete
with Edison cement, including walls, floors, and stairways, thus
eliminating fire hazard to the utmost extent, and insuring a high degree
of protection, cleanliness, and sanitation. As fully three-fourths of
the area of their exterior framework consists of windows, an abundance
of daylight is secured. These many advantages, combined with lofty
ceilings on every floor, provide ideal conditions for the thousands of
working people engaged in this immense plant.

In addition to these twelve concrete structures there are a few smaller
brick and wooden buildings on the grounds, in which some special
operations are conducted. These, however, are few in number, and at
some future time will be concentrated in one or more additional concrete
buildings. It will afford a clearer idea of the extent of the industries
clustered immediately around the laboratory when it is stated that the
combined floor space which is occupied by them in all these buildings is
equivalent in the aggregate to over fourteen acres.

It would be instructive, but scarcely within the scope of the narrative,
to conduct the reader through this extensive plant and see its many
interesting operations in detail. It must suffice, however, to note
its complete and ample equipment with modern machinery of every kind
applicable to the work; its numerous (and some of them wonderfully
ingenious) methods, processes, machines, and tools specially designed
or invented for the manufacture of special parts and supplemental
appliances for the phonograph or other Edison products; and also to
note the interesting variety of trades represented in the different
departments, in which are included chemists, electricians, electrical
mechanicians, machinists, mechanics, pattern-makers, carpenters,
cabinet-makers, varnishers, japanners, tool-makers, lapidaries,
wax experts, photographic developers and printers, opticians,
electroplaters, furnacemen, and others, together with factory
experimenters and a host of general employees, who by careful training
have become specialists and experts in numerous branches of these
industries.

Edison's plans for this manufacturing plant were sufficiently well
outlined to provide ample capacity for the natural growth of the
business; and although that capacity (so far as phonographs is
concerned) has actually reached an output of over 6000 complete
phonographs PER WEEK, and upward of 130,000 molded records PER DAY--with
a pay-roll embracing over 3500 employees, including office force--and
amounting to about $45,000 per week--the limits of production have not
yet been reached.

The constant outpouring of products in such large quantities bespeaks
the unremitting activities of an extensive and busy selling organization
to provide for their marketing and distribution. This important
department (the National Phonograph Company), in all its branches, from
president to office-boy, includes about two hundred employees on its
office pay-roll, and makes its headquarters in the administration
building, which is one of the large concrete structures above referred
to. The policy of the company is to dispose of its wares through regular
trade channels rather than to deal direct with the public, trusting
to local activity as stimulated by a liberal policy of national
advertising. Thus, there has been gradually built up a very extensive
business until at the present time an enormous output of phonographs
and records is distributed to retail customers in the United States and
Canada through the medium of about one hundred and fifty jobbers and
over thirteen thousand dealers. The Edison phonograph industry thus
organized is helped by frequent conventions of this large commercial
force.

Besides this, the National Phonograph Company maintains a special staff
for carrying on the business with foreign countries. While the aggregate
transactions of this department are not as extensive as those for
the United States and Canada, they are of considerable volume, as the
foreign office distributes in bulk a very large number of phonographs
and records to selling companies and agencies in Europe, Asia,
Australia, Japan, and, indeed, to all the countries of the civilized
world. [19] Like England's drumbeat, the voice of the Edison phonograph
is heard around the world in undying strains throughout the twenty-four
hours.

     [Footnote 19: It may be of interest to the reader to note
     some parts of the globe to which shipments of phonographs
     and records are made:

     Samoan Islands Falkland Islands Siam Corea Crete Island
     Paraguay Chile Canary Islands Egypt British East Africa Cape
     Colony Portuguese East Africa Liberia Java Straits
     Settlements Madagascar Fanning Islands New Zealand French
     Indo-China Morocco Ecuador Brazil Madeira South Africa
     Azores Manchuria Ceylon Sierra Leone]

In addition to the main manufacturing plant at Orange, another important
adjunct must not be forgotten, and that is, the Recording Department
in New York City, where the master records are made under the
superintendence of experts who have studied the intricacies of the art
with Edison himself. This department occupies an upper story in a lofty
building, and in its various rooms may be seen and heard many prominent
musicians, vocalists, speakers, and vaudeville artists studiously and
busily engaged in making the original records, which are afterward sent
to Orange, and which, if approved by the expert committee, are passed on
to the proper department for reproduction in large quantities.

When we consider the subject of motion pictures we find a similarity in
general business methods, for while the projecting machines and copies
of picture films are made in quantity at the Orange works (just as
phonographs and duplicate records are so made), the original picture,
or film, like the master record, is made elsewhere. There is this
difference, however: that, from the particular nature of the work,
practically ALL master records are made at one convenient place, while
the essential interest in SOME motion pictures lies in the fact that
they are taken in various parts of the world, often under exceptional
circumstances. The "silent drama," however, calls also for many
representations which employ conventional acting, staging, and the
varied appliances of stagecraft. Hence, Edison saw early the necessity
of providing a place especially devised and arranged for the production
of dramatic performances in pantomime.

It is a far cry from the crude structure of early days--the "Black
Maria" of 1891, swung around on its pivot in the Orange laboratory
yard--to the well-appointed Edison theatres, or pantomime studios, in
New York City. The largest of these is located in the suburban Borough
of the Bronx, and consists of a three-story-and-basement building of
reinforced concrete, in which are the offices, dressing-rooms, wardrobe
and property-rooms, library and developing department. Contiguous to
this building, and connected with it, is the theatre proper, a large and
lofty structure whose sides and roof are of glass, and whose floor space
is sufficiently ample for six different sets of scenery at one time,
with plenty of room left for a profusion of accessories, such as tables,
chairs, pianos, bunch-lights, search-lights, cameras, and a host of
varied paraphernalia pertaining to stage effects.

The second Edison theatre, or studio, is located not far from the
shopping district in New York City. In all essential features, except
size and capacity, it is a duplicate of the one in the Bronx, of which
it is a supplement.

To a visitor coming on the floor of such a theatre for the first time
there is a sense of confusion in beholding the heterogeneous "sets"
of scenery and the motley assemblage of characters represented in the
various plays in the process of "taking," or rehearsal. While each set
constitutes virtually a separate stage, they are all on the same floor,
without wings or proscenium-arches, and separated only by a few feet.
Thus, for instance, a Japanese house interior may be seen cheek by jowl
with an ordinary prison cell, flanked by a mining-camp, which in turn
stands next to a drawing-room set, and in each a set of appropriate
characters in pantomimic motion. The action is incessant, for in any
dramatic representation intended for the motion-picture film every
second counts.

The production of several completed plays per week necessitates the
employment of a considerable staff of people of miscellaneous trades and
abilities. At each of these two studios there is employed a number
of stage-directors, scene-painters, carpenters, property-men,
photographers, costumers, electricians, clerks, and general assistants,
besides a capable stock company of actors and actresses, whose generous
numbers are frequently augmented by the addition of a special star,
or by a number of extra performers, such as Rough Riders or other
specialists. It may be, occasionally, that the exigencies of the
occasion require the work of a performing horse, dog, or other animal.
No matter what the object required may be, whether animate or inanimate,
if it is necessary for the play it is found and pressed into service.

These two studios, while separated from the main plant, are under the
same general management, and their original negative films are forwarded
as made to the Orange works, where the large copying department is
located in one of the concrete buildings. Here, after the film has been
passed upon by a committee, a considerable number of positive copies are
made by ingenious processes, and after each one is separately tested, or
"run off," in one or other of the three motion-picture theatres in the
building, they are shipped out to film exchanges in every part of the
country. How extensive this business has become may be appreciated when
it is stated that at the Orange plant there are produced at this time
over eight million feet of motion-picture film per year. And Edison's
company is only one of many producers.

Another of the industries at the Orange works is the manufacture of
projecting kinetoscopes, by means of which the motion pictures are
shown. While this of itself is also a business of considerable magnitude
in its aggregate yearly transactions, it calls for no special comment
in regard to commercial production, except to note that a corps of
experimenters is constantly employed refining and perfecting details
of the machine. Its basic features of operation as conceived by Edison
remain unchanged.

On coming to consider the Edison battery enterprises, we must perforce
extend the territorial view to include a special chemical-manufacturing
plant, which is in reality a branch of the laboratory and the Orange
works, although actually situated about three miles away.

Both the primary and the storage battery employ certain chemical
products as essential parts of their elements, and indeed owe their very
existence to the peculiar preparation and quality of such products, as
exemplified by Edison's years of experimentation and research. Hence the
establishment of his own chemical works at Silver Lake, where, under his
personal supervision, the manufacture of these products is carried on
in charge of specially trained experts. At the present writing the
plant covers about seven acres of ground; but there is ample room for
expansion, as Edison, with wise forethought, secured over forty acres of
land, so as to be prepared for developments.

Not only is the Silver Lake works used for the manufacture of the
chemical substances employed in the batteries, but it is the plant at
which the Edison primary battery is wholly assembled and made up for
distribution to customers. This in itself is a business of no small
magnitude, having grown steadily on its merits year by year until it
has now arrived at a point where its sales run into the hundreds of
thousands of cells per annum, furnished largely to the steam railroads
of the country for their signal service.

As to the storage battery, the plant at Silver Lake is responsible only
for the production of the chemical compounds, nickel-hydrate and iron
oxide, which enter into its construction. All the mechanical parts,
the nickel plating, the manufacture of nickel flake, the assembling and
testing, are carried on at the Orange works in two of the large concrete
buildings above referred to. A visit to this part of the plant reveals
an amazing fertility of resourcefulness and ingenuity in the devising
of the special machines and appliances employed in constructing the
mechanical parts of these cells, for it is practically impossible to
fashion them by means of machinery and tools to be found in the open
market, notwithstanding the immense variety that may be there obtained.

Since Edison completed his final series of investigations on his
storage battery and brought it to its present state of perfection, the
commercial values have increased by leaps and bounds. The battery, as
it was originally put out some years ago, made for itself an enviable
reputation; but with its improved form there has come a vast increase
of business. Although the largest of the concrete buildings where
its manufacture is carried on is over four hundred feet long and four
stories in height, it has already become necessary to plan extensions
and enlargements of the plant in order to provide for the production of
batteries to fill the present demands. It was not until the summer
of 1909 that Edison was willing to pronounce the final verdict of
satisfaction with regard to this improved form of storage battery; but
subsequent commercial results have justified his judgment, and it is
not too much to predict that in all probability the business will assume
gigantic proportions within a very few years. At the present time (1910)
the Edison storage-battery enterprise is in its early stages of growth,
and its status may be compared with that of the electric-light system
about the year 1881.

There is one more industry, though of comparatively small extent,
that is included in the activities of the Orange works, namely,
the manufacture and sale of the Bates numbering machine. This is a
well-known article of commerce, used in mercantile establishments for
the stamping of consecutive, duplicate, and manifold numbers on
checks and other documents. It is not an invention of Edison, but the
organization owning it, together with the patent rights, were acquired
by him some years ago, and he has since continued and enlarged the
business both in scope and volume, besides, of course, improving and
perfecting the apparatus itself. These machines are known everywhere
throughout the country, and while the annual sales are of comparatively
moderate amount in comparison with the totals of the other Edison
industries at Orange, they represent in the aggregate a comfortable and
encouraging business.

In this brief outline review of the flourishing and extensive commercial
enterprises centred around the Orange laboratory, the facts, it is
believed, contain a complete refutation of the idea that an inventor
cannot be a business man. They also bear abundant evidence of the
compatibility of these two widely divergent gifts existing, even to a
high degree, in the same person. A striking example of the correctness
of this proposition is afforded in the present case, when it is borne in
mind that these various industries above described (whose annual sales
run into many millions of dollars) owe not only their very creation
(except the Bates machine) and existence to Edison's inventive
originality and commercial initiative, but also their continued growth
and prosperity to his incessant activities in dealing with their
multifarious business problems. In publishing a portrait of Edison this
year, one of the popular magazines placed under it this caption: "Were
the Age called upon to pay Thomas A. Edison all it owes to him, the Age
would have to make an assignment." The present chapter will have
thrown some light on the idiosyncrasies of Edison as financier and as
manufacturer, and will have shown that while the claim thus suggested
may be quite good, it will certainly never be pressed or collected.



CHAPTER XXVII

THE VALUE OF EDISON'S INVENTIONS TO THE WORLD

IF the world were to take an account of stock, so to speak, and proceed
in orderly fashion to marshal its tangible assets in relation to
dollars and cents, the natural resources of our globe, from centre to
circumference, would head the list. Next would come inventors, whose
value to the world as an asset could be readily estimated from an
increase of its wealth resulting from the actual transformations of
these resources into items of convenience and comfort through the
exercise of their inventive ingenuity.

Inventors of practical devices may be broadly divided into two
classes--first, those who may be said to have made two blades of grass
grow where only one grew before; and, second, great inventors, who have
made grass grow plentifully on hitherto unproductive ground. The vast
majority of practical inventors belong to and remain in the first of
these divisions, but there have been, and probably always will be, a
less number who, by reason of their greater achievements, are entitled
to be included in both classes. Of these latter, Thomas Alva Edison is
one, but in the pages of history he stands conspicuously pre-eminent--a
commanding towering figure, even among giants.

The activities of Edison have been of such great range, and his
conquests in the domains of practical arts so extensive and varied, that
it is somewhat difficult to estimate with any satisfactory degree of
accuracy the money value of his inventions to the world of to-day, even
after making due allowance for the work of other great inventors and
the propulsive effect of large amounts of capital thrown into the
enterprises which took root, wholly or in part, through the productions
of his genius and energies. This difficulty will be apparent, for
instance, when we consider his telegraph and telephone inventions. These
were absorbed in enterprises already existing, and were the means of
assisting their rapid growth and expansion, particularly the telephone
industry. Again, in considering the fact that Edison was one of the
first in the field to design and perfect a practical and operative
electric railway, the main features of which are used in all electric
roads of to-day, we are confronted with the problem as to what
proportion of their colossal investment and earnings should be ascribed
to him.

Difficulties are multiplied when we pause for a moment to think of
Edison's influence on collateral branches of business. In the public
mind he is credited with the invention of the incandescent electric
light, the phonograph, and other widely known devices; but how few
realize his actual influence on other trades that are not generally
thought of in connection with these things. For instance, let us note
what a prominent engine builder, the late Gardiner C. Sims, has said:
"Watt, Corliss, and Porter brought forward steam-engines to a high
state of proficiency, yet it remained for Mr. Edison to force better
proportions, workmanship, designs, use of metals, regulation, the
solving of the complex problems of high speed and endurance, and the
successful development of the shaft governor. Mr. Edison is preeminent
in the realm of engineering."

The phenomenal growth of the copper industry was due to a rapid and
ever-increasing demand, owing to the exploitation of the telephone,
electric light, electric motor, and electric railway industries. Without
these there might never have been the romance of "Coppers" and the rise
and fall of countless fortunes. And although one cannot estimate in
definite figures the extent of Edison's influence in the enormous
increase of copper production, it is to be remembered that his basic
inventions constitute a most important factor in the demand for the
metal. Besides, one must also give him the credit, as already noted,
for having recognized the necessity for a pure quality of copper for
electric conductors, and for his persistence in having compelled the
manufacturers of that period to introduce new and additional methods
of refinement so as to bring about that result, which is now a sine qua
non.

Still considering his influence on other staples and collateral trades,
let us enumerate briefly and in a general manner some of the more
important and additional ones that have been not merely stimulated, but
in many cases the business and sales have been directly increased and
new arts established through the inventions of this one man--namely,
iron, steel, brass, zinc, nickel, platinum ($5 per ounce in 1878, now
$26 an ounce), rubber, oils, wax, bitumen, various chemical compounds,
belting, boilers, injectors, structural steel, iron tubing, glass,
silk, cotton, porcelain, fine woods, slate, marble, electrical measuring
instruments, miscellaneous machinery, coal, wire, paper, building
materials, sapphires, and many others.

The question before us is, To what extent has Edison added to the wealth
of the world by his inventions and his energy and perseverance? It will
be noted from the foregoing that no categorical answer can be offered
to such a question, but sufficient material can be gathered from a
statistical review of the commercial arts directly influenced to afford
an approximate idea of the increase in national wealth that has been
affected by or has come into being through the practical application of
his ideas.

First of all, as to inventions capable of fairly definite estimate, let
us mention the incandescent electric light and systems of distribution
of electric light, heat, and power, which may justly be considered as
the crowning inventions of Edison's life. Until October 21, 1879, there
was nothing in existence resembling our modern incandescent lamp.
On that date, as we have seen in a previous chapter, Edison's labors
culminated in his invention of a practical incandescent electric lamp
embodying absolutely all the essentials of the lamp of to-day, thus
opening to the world the doors of a new art and industry. To-day there
are in the United States more than 41,000,000 of these lamps, connected
to existing central-station circuits in active operation.

Such circuits necessarily imply the existence of central stations with
their equipment. Until the beginning of 1882 there were only a few
arc-lighting stations in existence for the limited distribution of
current. At the present time there are over 6000 central stations in
this country for the distribution of electric current for light,
heat, and power, with capital obligations amounting to not less than
$1,000,000,000. Besides the above-named 41,000,000 incandescent lamps
connected to their mains, there are about 500,000 arc lamps and 150,000
motors, using 750,000 horse-power, besides countless fan motors and
electric heating and cooking appliances.

When it is stated that the gross earnings of these central stations
approximate the sum of $225,000,000 yearly, the significant import of
these statistics of an art that came so largely from Edison's laboratory
about thirty years ago will undoubtedly be apparent.

But the above are not by any means all the facts relating to
incandescent electric lighting in the United States, for in addition to
central stations there are upward of 100,000 isolated or private plants
in mills, factories, steamships, hotels, theatres, etc., owned by
the persons or concerns who operate them. These plants represent an
approximate investment of $500,000,000, and the connection of not less
than 25,000,000 incandescent lamps or their equivalent.

Then there are the factories where these incandescent lamps are made,
about forty in number, representing a total investment that may be
approximated at $25,000,000. It is true that many of these factories
are operated by other than the interests which came into control of
the Edison patents (General Electric Company), but the 150,000,000
incandescent electric lamps now annually made are broadly covered in
principle by Edison's fundamental ideas and patents.

It will be noted that these figures are all in round numbers, but they
are believed to be well within the mark, being primarily founded upon
the special reports of the Census Bureau issued in 1902 and 1907, with
the natural increase from that time computed by experts who are in
position to obtain the facts. It would be manifestly impossible to give
exact figures of such a gigantic and swiftly moving industry, whose
totals increase from week to week.

The reader will naturally be disposed to ask whether it is intended to
claim that Edison has brought about all this magnificent growth of the
electric-lighting art. The answer to this is decidedly in the negative,
for the fact is that he laid some of the foundation and erected a
building thereon, and in the natural progressive order of things other
inventors of more or less fame have laid substructures or added a wing
here and a story there until the resultant great structure has attained
such proportions as to evoke the admiration of the beholder; but the old
foundation and the fundamental building still remain to support other
parts. In other words, Edison created the incandescent electric lamp,
and invented certain broad and fundamental systems of distribution
of current, with all the essential devices of detail necessary for
successful operation. These formed a foundation. He also spent great
sums of money and devoted several years of patient labor in the early
practical exploitation of the dynamo and central station and isolated
plants, often under, adverse and depressing circumstances, with a dogged
determination that outlived an opposition steadily threatening defeat.
These efforts resulted in the firm commercial establishment of modern
electric lighting. It is true that many important inventions of others
have a distinguished place in the art as it is exploited today, but the
fact remains that the broad essentials, such as the incandescent lamp,
systems of distribution, and some important details, are not only
universally used, but are as necessary to-day for successful commercial
practice as they were when Edison invented them many years ago.

The electric railway next claims our consideration, but we are
immediately confronted by a difficulty which seems insurmountable when
we attempt to formulate any definite estimate of the value and influence
of Edison's pioneer work and inventions. There is one incontrovertible
fact--namely, that he was the first man to devise, construct, and
operate from a central station a practicable, life-size electric
railroad, which was capable of transporting and did transport passengers
and freight at variable speeds over varying grades, and under complete
control of the operator. These are the essential elements in all
electric railroading of the present day; but while Edison's original
broad ideas are embodied in present practice, the perfection of the
modern electric railway is greatly due to the labors and inventions of
a large number of other well-known inventors. There was no reason
why Edison could not have continued the commercial development of the
electric railway after he had helped to show its practicability in 1880,
1881, and 1882, just as he had completed his lighting system, had it
not been that his financial allies of the period lacked faith in the
possibilities of electric railroads, and therefore declined to furnish
the money necessary for the purpose of carrying on the work.

With these facts in mind, we shall ask the reader to assign to Edison a
due proportion of credit for his pioneer and basic work in relation to
the prodigious development of electric railroading that has since taken
place. The statistics of 1908 for American street and elevated railways
show that within twenty-five years the electric-railway industry has
grown to embrace 38,812 miles of track on streets and for elevated
railways, operated under the ownership of 1238 separate companies, whose
total capitalization amounted to the enormous sum of $4,123,834,598.
In the equipments owned by such companies there are included 68,636
electric cars and 17,568 trailers and others, making a total of 86,204
of such vehicles. These cars and equipments earned over $425,000,000
in 1907, in giving the public transportation, at a cost, including
transfers, of a little over three cents per passenger, for whom a
fifteen-mile ride would be possible. It is the cheapest transportation
in the world.

Some mention should also be made of the great electrical works of the
country, in which the dynamos, motors, and other varied paraphernalia
are made for electric lighting, electric railway, and other purposes.
The largest of these works is undoubtedly that of the General
Electric Company at Schenectady, New York, a continuation and enormous
enlargement of the shops which Edison established there in 1886. This
plant at the present time embraces over 275 acres, of which sixty acres
are covered by fifty large and over one hundred small buildings; besides
which the company also owns other large plants elsewhere, representing
a total investment approximating the sum of $34,850,000 up to 1908. The
productions of the General Electric Company alone average annual
sales of nearly $75,000,000, but they do not comprise the total of the
country's manufactures in these lines.

Turning our attention now to the telephone, we again meet a condition
that calls for thoughtful consideration before we can properly
appreciate how much the growth of this industry owes to Edison's
inventive genius. In another place there has already been told the story
of the telephone, from which we have seen that to Alexander Graham
Bell is due the broad idea of transmission of speech by means of an
electrical circuit; also that he invented appropriate instruments and
devices through which he accomplished this result, although not to that
extent which gave promise of any great commercial practicability for
the telephone as it then existed. While the art was in this inefficient
condition, Edison went to work on the subject, and in due time, as we
have already learned, invented and brought out the carbon transmitter,
which is universally acknowledged to have been the needed device that
gave to the telephone the element of commercial practicability, and
has since led to its phenomenally rapid adoption and world-wide use. It
matters not that others were working in the same direction, Edison was
legally adjudicated to have been the first to succeed in point of
time, and his inventions were put into actual use, and may be found in
principle in every one of the 7,000,000 telephones which are estimated
to be employed in the country at the present day. Basing the statements
upon facts shown by the Census reports of 1902 and 1907, and adding
thereto the growth of the industry since that time, we find on a
conservative estimate that at this writing the investment has been not
less than $800,000,000 in now existing telephone systems, while no fewer
than 10,500,000,000 talks went over the lines during the year 1908.
These figures relate only to telephone systems, and do not include any
details regarding the great manufacturing establishments engaged in
the construction of telephone apparatus, of which there is a production
amounting to at least $15,000,000 per annum.

Leaving the telephone, let us now turn our attention to the telegraph,
and endeavor to show as best we can some idea of the measure to which it
has been affected by Edison's inventions. Although, as we have seen in
a previous part of this book, his earliest fame arose from his great
practical work in telegraphic inventions and improvements, there is no
way in which any definite computation can be made of the value of his
contributions in the art except, perhaps, in the case of his quadruplex,
through which alone it is estimated that there has been saved from
$15,000,000 to $20,000,000 in the cost of line construction in this
country. If this were the only thing that he had ever accomplished,
it would entitle him to consideration as an inventor of note. The
quadruplex, however, has other material advantages, but how far they and
the natural growth of the business have contributed to the investment
and earnings of the telegraph companies, is beyond practicable
computation.

It would, perhaps, be interesting to speculate upon what might have been
the growth of the telegraph and the resultant benefit to the community
had Edison's automatic telegraph inventions been allowed to take their
legitimate place in the art, but we shall not allow ourselves to
indulge in flights of fancy, as the value of this chapter rests not upon
conjecture, but only upon actual fact. Nor shall we attempt to offer any
statistics regarding Edison's numerous inventions relating to telegraphs
and kindred devices, such as stock tickers, relays, magnets, rheotomes,
repeaters, printing telegraphs, messenger calls, etc., on which he was
so busily occupied as an inventor and manufacturer during the ten years
that began with January, 1869. The principles of many of these devices
are still used in the arts, but have become so incorporated in other
devices as to be inseparable, and cannot now be dealt with separately.
To show what they mean, however, it might be noted that New York City
alone has 3000 stock "tickers," consuming 50,000 miles of record tape
every year.

Turning now to other important arts and industries which have been
created by Edison's inventions, and in which he is at this time taking
an active personal interest, let us visit Orange, New Jersey. When his
present laboratory was nearing completion in 1887, he wrote to Mr. J.
Hood Wright, a partner in the firm of Drexel, Morgan & Co.: "My ambition
is to build up a great industrial works in the Orange Valley, starting
in a small way and gradually working up."

In this plant, which represents an investment approximating the sum
of $4,000,000, are grouped a number of industrial enterprises of which
Edison is either the sole or controlling owner and the guiding spirit.
These enterprises are the National Phonograph Company, the Edison
Business Phonograph Company, the Edison Phonograph Works, the Edison
Manufacturing Company, the Edison Storage Battery Company, and the
Bates Manufacturing Company. The importance of these industries will be
apparent when it is stated that at this plant the maximum pay-roll shows
the employment of over 4200 persons, with annual earnings in salaries
and wages of more than $2,750,000.

In considering the phonograph in its commercial aspect, and endeavoring
to arrive at some idea of the world's estimate of the value of this
invention, we feel the ground more firm under our feet, for Edison
has in later years controlled its manufacture and sale. It will be
remembered that the phonograph lay dormant, commercially speaking,
for about ten years after it came into being, and then later invention
reduced it to a device capable of more popular utility. A few years
of rather unsatisfactory commercial experience brought about a
reorganization, through which Edison resumed possession of the business.
It has since been continued under his general direction and ownership,
and he has made a great many additional inventions tending to improve
the machine in all its parts.

The uses made of the phonograph up to this time have been of four kinds,
generally speaking--first, and principally, for amusement; second,
for instruction in languages; third, for business, in the dictation of
correspondence; and fourth, for sentimental reasons in preserving the
voices of friends. No separate figures are available to show the extent
of its employment in the second and fourth classes, as they are probably
included in machines coming under the first subdivision. Under this head
we find that there have been upward of 1,310,000 phonographs sold during
the last twenty years, with and for which there have been made and
sold no fewer than 97,845,000 records of a musical or other character.
Phonographic records are now being manufactured at Orange at the rate
of 75,000 a day, the annual sale of phonographs and records being
approximately $7,000,000, including business phonographs. This does not
include blank records, of which large numbers have also been supplied to
the public.

The adoption of the business phonograph has not been characterized
by the unanimity that obtained in the case of the one used merely for
amusement, as its use involves some changes in methods that business
men are slow to adopt until they realize the resulting convenience and
economy. Although it is only a few years since the business phonograph
has begun to make some headway, it is not difficult to appreciate that
Edison's prediction in 1878 as to the value of such an appliance is
being realized, when we find that up to this time the sales run up to
12,695 in number. At the present time the annual sales of the business
phonographs and supplies, cylinders, etc., are not less than $350,000.

We must not forget that the basic patent of Edison on the phonograph has
long since expired, thus throwing open to the world the wonderful art
of reproducing human speech and other sounds. The world was not slow to
take advantage of the fact, hence there are in the field numerous other
concerns in the same business. It is conservatively estimated by those
who know the trade and are in position to form an opinion, that the
figures above given represent only about one-half of the entire business
of the country in phonographs, records, cylinders, and supplies.

Taking next his inventions that pertain to a more recently established
but rapidly expanding branch of business that provides for the amusement
of the public, popularly known as "motion pictures," we also find a
general recognition of value created. Referring the reader to a previous
chapter for a discussion of Edison's standing as a pioneer inventor in
this art, let us glance at the commercial proportions of this young but
lusty business, whose ramifications extend to all but the most remote
and primitive hamlets of our country.

The manufacture of the projecting machines and accessories, together
with the reproduction of films, is carried on at the Orange Valley
plant, and from the inception of the motion-picture business to the
present time there have been made upward of 16,000 projecting machines
and many million feet of films carrying small photographs of moving
objects. Although the motion-picture business, as a commercial
enterprise, is still in its youth, it is of sufficient moment to call
for the annual production of thousands of machines and many million
feet of films in Edison's shops, having a sale value of not less than
$750,000. To produce the originals from which these Edison films are
made, there have been established two "studios," the largest of which is
in the Bronx, New York City.

In this, as well as in the phonograph business, there are many other
manufacturers in the field. Indeed, the annual product of the Edison
Manufacturing Company in this line is only a fractional part of the
total that is absorbed by the 8000 or more motion-picture theatres and
exhibitions that are in operation in the United States at the present
time, and which represent an investment of some $45,000,000. Licensees
under Edison patents in this country alone produce upward of 60,000,000
feet of films annually, containing more than a billion and a half
separate photographs. To what extent the motion-picture business may
grow in the not remote future it is impossible to conjecture, for it has
taken a place in the front rank of rapidly increasing enterprises.

The manufacture and sale of the Edison-Lalande primary battery,
conducted by the Edison Manufacturing Company at the Orange Valley
plant, is a business of no mean importance. Beginning about twenty
years ago with a battery that, without polarizing, would furnish large
currents specially adapted for gas-engine ignition and other important
purposes, the business has steadily grown in magnitude until the present
output amounts to about 125,000 cells annually; the total number of
cells put into the hands of the public up to date being approximately
1,500,000. It will be readily conceded that to most men this alone would
be an enterprise of a lifetime, and sufficient in itself to satisfy a
moderate ambition. But, although it has yielded a considerable profit to
Edison and gives employment to many people, it is only one of the many
smaller enterprises that owe an existence to his inventive ability and
commercial activity.

So it also is in regard to the mimeograph, whose forerunner, the
electric pen, was born of Edison's brain in 1877. He had been long
impressed by the desirability of the rapid production of copies of
written documents, and, as we have seen by a previous chapter, he
invented the electric pen for this purpose, only to improve upon it
later with a more desirable device which he called the mimeograph, that
is in use, in various forms, at this time. Although the electric pen had
a large sale and use in its time, the statistics relating to it are not
available. The mimeograph, however, is, and has been for many years,
a standard office appliance, and is entitled to consideration, as the
total number put into use up to this time is approximately 180,000,
valued at $3,500,000, while the annual output is in the neighborhood
of 9000 machines, sold for about $150,000, besides the vast quantity of
special paper and supplies which its use entails in the production of
the many millions of facsimile letters and documents. The extent of
production and sale of supplies for the mimeograph may be appreciated
when it is stated that they bring annually an equivalent of three times
the amount realized from sales of machines. The manufacture and sale
of the mimeograph does not come within the enterprises conducted under
Edison's personal direction, as he sold out the whole thing some years
ago to Mr. A. B. Dick, of Chicago.

In making a somewhat radical change of subject, from duplicating
machines to cement, we find ourselves in a field in which Edison has
made a most decided impression. The reader has already learned that his
entry into this field was, in a manner, accidental, although logically
in line with pronounced convictions of many years' standing, and
following up the fund of knowledge gained in the magnetic ore-milling
business. From being a new-comer in the cement business, his corporation
in five years has grown to be the fifth largest producer in the United
States, with a still increasing capacity. From the inception of this
business there has been a steady and rapid development, resulting in the
production of a grand total of over 7,300,000 barrels of cement up
to the present date, having a value of about $6,000,000, exclusive of
package. At the time of this writing, the rate of production is over
8000 barrels of cement per day, or, say, 2,500,000 barrels per year,
having an approximate selling value of a little less than $2,000,000,
with prospects of increasing in the near future to a daily output of
10,000 barrels. This enterprise is carried on by a corporation called
the Edison Portland Cement Company, in which he is very largely
interested, and of which he is the active head and guiding spirit.

Had not Edison suspended the manufacture and sale of his storage battery
a few years ago because he was not satisfied with it, there might have
been given here some noteworthy figures of an extensive business, for
the company's books show an astonishing number of orders that were
received during the time of the shut-down. He was implored for
batteries, but in spite of the fact that good results had been obtained
from the 18,000 or 20,000 cells sold some years ago, he adhered firmly
to his determination to perfect them to a still higher standard before
resuming and continuing their manufacture as a regular commodity. As we
have noted in a previous chapter, however, deliveries of the perfected
type were begun in the summer of 1909, and since that time the
business has continued to grow in the measure indicated by the earlier
experience.

Thus far we have concerned ourselves chiefly with those figures which
exhibit the extent of investment and production, but there is another
and humanly important side that presents itself for consideration
namely, the employment of a vast industrial army of men and women,
who earn a living through their connection with some of the arts and
industries to which our narrative has direct reference. To this the
reader's attention will now be drawn.

The following figures are based upon the Special Reports of the Census
Bureau, 1902 and 1907, with additions computed upon the increase that
has subsequently taken place. In the totals following is included the
compensation paid to salaried officials and clerks. Details relating to
telegraph systems are omitted.

Taking the electric light into consideration first, we find that in the
central stations of the United States there are not less than an average
of 50,000 persons employed, requiring an aggregate yearly payroll of
over $40,000,000. This does not include the 100,000 or more isolated
electric-light plants scattered throughout the land. Many of these
are quite large, and at least one-third of them require one additional
helper, thus adding, say, 33,000 employees to the number already
mentioned. If we assume as low a wage as $10 per week for each of
these helpers, we must add to the foregoing an additional sum of over
$17,000,000 paid annually for wages, almost entirely in the isolated
incandescent electric lighting field.

Central stations and isolated plants consume over 100,000,000
incandescent electric lamps annually, and in the production of these
there are engaged about forty factories, on whose pay-rolls appear
an average of 14,000 employees, earning an aggregate yearly sum of
$8,000,000.

Following the incandescent lamp we must not forget an industry
exclusively arising from it and absolutely dependent upon it--namely,
that of making fixtures for such lamps, the manufacture of which gives
employment to upward of 6000 persons, who annually receive at least
$3,750,000 in compensation.

The detail devices of the incandescent electric lighting system also
contribute a large quota to the country's wealth in the millions of
dollars paid out in salaries and wages to many thousands of persons who
are engaged in their manufacture.

The electric railways of our country show even larger figures than the
lighting stations and plants, as they employ on the average over
250,000 persons, whose annual compensation amounts to not less than
$155,000,000.

In the manufacture of about $50,000,000 worth of dynamos and motors
annually, for central-station equipment, isolated plants, electric
railways, and other purposes, the manufacturers of the country employ an
average of not less than 30,000 people, whose yearly pay-roll amounts to
no less a sum than $20,000,000.

The growth of the telephone systems of the United States also furnishes
us with statistics of an analogous nature, for we find that the average
number of employees engaged in this industry is at least 140,000, whose
annual earnings aggregate a minimum of $75,000,000; besides which the
manufacturers of telephone apparatus employ over 12,000 persons, to whom
is paid annually about $5,500,000.

No attempt is made to include figures of collateral industries,
such, for instance, as copper, which is very closely allied with the
electrical arts, and the great bulk of which is refined electrically.

The 8000 or so motion-picture theatres of the country employ no fewer
than 40,000 people, whose aggregate annual income amounts to not less
than $37,000,000.

Coming now to the Orange Valley plant, we take a drop from these figures
to the comparatively modest ones which give us an average of 3600
employees and calling for an annual pay-roll of about $2,250,000. It
must be remembered, however, that the sums mentioned above represent
industries operated by great aggregations of capital, while the Orange
Valley plant, as well as the Edison Portland Cement Company, with an
average daily number of 530 employees and over $400,000 annual pay-roll,
represent in a large measure industries that are more in the nature
of closely held enterprises and practically under the direction of one
mind.

The table herewith given summarizes the figures that have just been
presented, and affords an idea of the totals affected by the genius
of this one man. It is well known that many other men and many other
inventions have been needed for the perfection of these arts; but it
is equally true that, as already noted, some of these industries are
directly the creation of Edison, while in every one of the rest his
impress has been deep and significant. Before he began inventing, only
two of them were known at all as arts--telegraphy and the manufacture
of cement. Moreover, these figures deal only with the United States, and
take no account of the development of many of the Edison inventions
in Europe or of their adoption throughout the world at large. Let it
suffice

  STATISTICAL RESUME (APPROXIMATE) OF SOME OF THE INDUSTRIES
  IN THE UNITED STATES DIRECTLY FOUNDED UPON OR
  AFFECTED BY INVENTIONS OF THOMAS A. EDISON


                                              Annual
                                            Gross Rev-     Number     Annual
  Class of Industry           Investment     enue or      of Em-     Pay-Rolls
                                              sales
  Central station lighting
   and power              $1,000,000,000    $125,000,000   50,000   $40,000,000
  Isolated incandescent
   lighting                  500,000,000         --        33,000    17,000 000
  Incandescent lamps          25,000,000      20,000,000   14,000     8,000 000
  Electric fixtures            8,000,000       5,000,000    6,000     3,750,000
  Dynamos and motors          60,000,000      50,000,000   30,000    20,000,000
  Electric railways        4,000,000,000     430,000,000  250,000   155,000,000
  Telephone systems          800,000,000     175,000,000  140,000    75,000,000
  Telephone apparatus         30,000,000      15,000,000   12,000     5,500,000
  Phonograph and motion
   pictures                   10,000,000      15,000,000    5,000     6,000,000
  Motion picture theatres     40,000,000      80,000,000   40,000    37,000,000
  Edison Portland cement       4,000,000       2,000,000      530       400,000
  Telegraphy                 250,000,000      60,000,000   100,000   30,000,000
  --------------------------------------------------------------------------Totals
                           6,727,000,000   1,077,000,000   680,530   397,650,000

that in America alone the work of Edison has been one of the most potent
factors in bringing into existence new industries now capitalized at
nearly $ 7,000,000,000, earning annually over $1,000,000,000, and giving
employment to an army of more than six hundred thousand people.

A single diamond, prismatically flashing from its many facets
the beauties of reflected light, comes well within the limits of
comprehension of the human mind and appeals to appreciation by the
finer sensibilities; but in viewing an exhibition of thousands of
these beautiful gems, the eye and brain are simply bewildered with the
richness of a display which tends to confuse the intellect until
the function of analysis comes into play and leads to more adequate
apprehension.

So, in presenting the mass of statistics contained in this chapter, we
fear that the result may have been the bewilderment of the reader to
some extent. Nevertheless, in writing a biography of Edison, the
main object is to present the facts as they are, and leave it to the
intelligent reader to classify, apply, and analyze them in such manner
as appeals most forcibly to his intellectual processes. If in the
foregoing pages there has appeared to be a tendency to attribute to
Edison the entire credit for the growth to which many of the above-named
great enterprises have in these latter days attained, we must especially
disclaim any intention of giving rise to such a deduction. No one who
has carefully followed the course of this narrative can deny, however,
that Edison is the father of some of the arts and industries that have
been mentioned, and that as to some of the others it was the magic of
his touch that helped make them practicable. Not only to his work and
ingenuity is due the present magnitude of these arts and industries, but
it is attributable also to the splendid work and numerous contributions
of other great inventors, such as Brush, Bell, Elihu Thomson, Weston,
Sprague, and many others, as well as to the financiers and investors who
in the past thirty years have furnished the vast sums of money that were
necessary to exploit and push forward these enterprises.

The reader may have noticed in a perusal of this chapter the lack of
autobiographical quotations, such as have appeared in other parts of
this narrative. Edison's modesty has allowed us but one remark on the
subject. This was made by him to one of the writers a short time ago,
when, after an interesting indulgence in reminiscences of old times and
early inventions, he leaned back in his chair, and with a broad smile on
his face, said, reflectively: "Say, I HAVE been mixed up in a whole lot
of things, haven't I?"



CHAPTER XXVIII

THE BLACK FLAG

THROUGHOUT the forty-odd years of his creative life, Edison has realized
by costly experience the truth of the cynical proverb that "A patent
is merely a title to a lawsuit." It is not intended, however, by this
statement to lead to any inference on the part of the reader that HE
stands peculiarly alone in any such experience, for it has been and
still is the common lot of every successful inventor, sooner or later.

To attribute dishonesty or cupidity as the root of the defence in all
patent litigation would be aiming very wide of the mark, for in no
class of suits that come before the courts are there any that present
a greater variety of complex, finely shaded questions, or that
require more delicacy of interpretation, than those that involve the
construction of patents, particularly those relating to electrical
devices. Indeed, a careful study of legal procedure of this character
could not be carried far without discovery of the fact that in numerous
instances the differences of opinion between litigants were marked by
the utmost bona fides.

On the other hand, such study would reveal many cases of undoubted
fraudulent intent, as well as many bold attempts to deprive the inventor
of the fruits of his endeavors by those who have sought to evade,
through subtle technicalities of the law, the penalty justly due them
for trickery, evasion, or open contempt of the rights of others.

In the history of science and of the arts to which the world has
owed its continued progress from year to year there is disclosed one
remarkable fact, and that is, that whenever any important discovery or
invention has been made and announced by one man, it has almost always
been disclosed later that other men--possibly widely separated and
knowing nothing of the other's work--have been following up the same
general lines of investigation, independently, with the same object in
mind. Their respective methods might be dissimilar while tending to the
same end, but it does not necessarily follow that any one of these other
experimenters might ever have achieved the result aimed at, although,
after the proclamation of success by one, it is easy to believe that
each of the other independent investigators might readily persuade
himself that he would ultimately have reached the goal in just that same
way.

This peculiar coincidence of simultaneous but separate work not only
comes to light on the bringing out of great and important discoveries
or inventions, but becomes more apparent if a new art is disclosed, for
then the imagination of previous experimenters is stimulated through
wide dissemination of the tidings, sometimes resulting in more or less
effort to enter the newly opened field with devices or methods that
resemble closely the original and fundamental ones in principle and
application. In this and other ways there arises constantly in the
United States Patent Office a large number of contested cases, called
"Interferences," where applications for patents covering the invention
of a similar device have been independently filed by two or even more
persons. In such cases only one patent can be issued, and that to
the inventor who on the taking of testimony shows priority in date of
invention. [20]

     [Footnote 20: A most remarkable instance of contemporaneous
     invention and without a parallel in the annals of the United
     States Patent Office, occurred when, on the same day,
     February 15, 1876, two separate descriptions were filed in
     that office, one a complete application and the other a
     caveat, but each covering an invention for "transmitting
     vocal sounds telegraphically." The application was made by
     Alexander Graham Bell, of Salem, Massachusetts, and the
     caveat by Elisha Gray, of Chicago, Illinois. On examination
     of the two papers it was found that both of them covered
     practically the same ground, hence, as only one patent could
     be granted, it became necessary to ascertain the precise
     hour at which the documents were respectively filed, and put
     the parties in interference. This was done, with the result
     that the patent was ultimately awarded to Bell.]

In the opening up and development of any new art based upon a
fundamental discovery or invention, there ensues naturally an era of
supplemental or collateral inventive activity--the legitimate outcome
of the basic original ideas. Part of this development may be due to
the inventive skill and knowledge of the original inventor and his
associates, who, by reason of prior investigation, would be in better
position to follow up the art in its earliest details than others,
who might be regarded as mere outsiders. Thus a new enterprise may be
presented before the world by its promoters in the belief that they are
strongly fortified by patent rights which will protect them in a degree
commensurate with the risks they have assumed.

Supplemental inventions, however, in any art, new or old, are not
limited to those which emanate from the original workers, for the
ingenuity of man, influenced by the spirit of the times, seizes upon any
novel line of action and seeks to improve or enlarge upon it, or, at
any rate, to produce more or less variation of its phases. Consequently,
there is a constant endeavor on the part of a countless host of men
possessing some degree of technical skill and inventive ability, to win
fame and money by entering into the already opened fields of endeavor
with devices and methods of their own, for which subsidiary patents may
be obtainable. Some of such patents may prove to be valuable, while
it is quite certain that in the natural order of things others will
be commercially worthless, but none may be entirely disregarded in the
history and development of the art.

It will be quite obvious, therefore, that the advent of any useful
invention or discovery, great or small, is followed by a clashing of
many interests which become complex in their interpretation by reason of
the many conflicting claims that cluster around the main principle. Nor
is the confusion less confounded through efforts made on the part of
dishonest persons, who, like vultures, follow closely on the trail
of successful inventors and (sometimes through information derived
by underhand methods) obtain patents on alleged inventions, closely
approximating the real ones, solely for the purpose of harassing the
original patentee until they are bought up, or else, with the intent
of competing boldly in the new business, trust in the delays of legal
proceedings to obtain a sure foothold in their questionable enterprise.

Then again there are still others who, having no patent rights, but
waving aside all compunction and in downright fraud, simply enter the
commercial field against the whole world, using ruthlessly whatever
inventive skill and knowledge the original patentee may have disclosed,
and trusting to the power of money, rapid movement, and mendacious
advertising to build up a business which shall presently assume such
formidable proportions as to force a compromise, or stave off an
injunction until the patent has expired. In nine cases out of ten such
a course can be followed with relative impunity; and guided by skilful
experts who may suggest really trivial changes here and there over the
patented structure, and with the aid of keen and able counsel, hardly a
patent exists that could not be invaded by such infringers. Such is
the condition of our laws and practice that the patentee in seeking to
enforce his rights labors under a terrible handicap.

And, finally, in this recital of perplexing conditions confronting the
inventor, there must not be forgotten the commercial "shark," whose
predatory instincts are ever keenly alert for tender victims. In the
wake of every newly developed art of world-wide importance there is
sure to follow a number of unscrupulous adventurers, who hasten to take
advantage of general public ignorance of the true inwardness of affairs.
Basing their operations on this lack of knowledge, and upon the tendency
of human nature to give credence to widely advertised and high-sounding
descriptions and specious promises of vast profits, these men find
little difficulty in conjuring money out of the pockets of the
unsophisticated and gullible, who rush to become stockholders in
concerns that have "airy nothings" for a foundation, and that collapse
quickly when the bubble is pricked. [21]

     [Footnote 21: A notable instance of the fleecing of
     unsuspecting and credulous persons occurred in the early
     eighties, during the furor occasioned by the introduction of
     Mr. Edison's electric-light system. A corporation claiming
     to have a self-generating dynamo (practically perpetual
     motion) advertised its preposterous claims extensively, and
     actually succeeded in selling a large amount of stock,
     which, of course, proved to be absolutely worthless.]

To one who is unacquainted with the trying circumstances attending
the introduction and marketing of patented devices, it might seem
unnecessary that an inventor and his business associates should be
obliged to take into account the unlawful or ostensible competition of
pirates or schemers, who, in the absence of legal decision, may run a
free course for a long time. Nevertheless, as public patronage is the
element vitally requisite for commercial success, and as the public is
not usually in full possession of all the facts and therefore cannot
discriminate between the genuine and the false, the legitimate inventor
must avail himself of every possible means of proclaiming and asserting
his rights if he desires to derive any benefit from the results of his
skill and labor. Not only must he be prepared to fight in the Patent
Office and pursue a regular course of patent litigation against those
who may honestly deem themselves to be protected by other inventions
or patents of similar character, and also proceed against more palpable
infringers who are openly, defiantly, and illegitimately engaged in
competitive business operations, but he must, as well, endeavor to
protect himself against the assaults of impudent fraud by educating the
public mind to a point of intelligent apprehension of the true status of
his invention and the conflicting claims involved.

When the nature of a patent right is considered it is difficult to see
why this should be so. The inventor creates a new thing--an invention of
utility--and the people, represented by the Federal Government, say to
him in effect: "Disclose your invention to us in a patent so that we may
know how to practice it, and we will agree to give you a monopoly for
seventeen years, after which we shall be free to use it. If the right
thus granted is invaded, apply to a Federal Court and the infringer will
be enjoined and required to settle in damages." Fair and false promise!
Is it generally realized that no matter how flagrant the infringement
nor how barefaced and impudent the infringer, no Federal Court will
grant an injunction UNTIL THE PATENT SHALL HAVE BEEN FIRST LITIGATED TO
FINAL HEARING AND SUSTAINED? A procedure, it may be stated, requiring
years of time and thousands of dollars, during which other infringers
have generally entered the field, and all have grown fat.

Thus Edison and his business associates have been forced into a
veritable maelstrom of litigation during the major part of the last
forty years, in the effort to procure for themselves a small measure
of protection for their interests under the numerous inventions of note
that he has made at various times in that period. The earlier years of
his inventive activity, while productive of many important contributions
to electrical industries, such as stock tickers and printers, duplex,
quadruplex, and automatic telegraphs, were not marked by the turmoil
of interminable legal conflicts that arose after the beginning of the
telephone and electric-light epochs. In fact, his inventions; up to
and including his telephone improvements (which entered into already
existing arts), had been mostly purchased by the Western Union and other
companies, and while there was more or less contesting of his claims
(especially in respect of the telephone), the extent of such litigation
was not so conspicuously great as that which centred subsequently around
his patents covering incandescent electric lighting and power systems.

Through these inventions there came into being an entirely new art,
complete in its practicability evolved by Edison after protracted
experiments founded upon most patient, thorough, and original methods
of investigation extending over several years. Long before attaining
the goal, he had realized with characteristic insight the underlying
principles of the great and comprehensive problem he had started out
to solve, and plodded steadily along the path that he had marked out,
ignoring the almost universal scientific disbelief in his ultimate
success. "Dreamer," "fool," "boaster" were among the appellations
bestowed upon him by unbelieving critics. Ridicule was heaped upon
him in the public prints, and mathematics were called into service
by learned men to settle the point forever that he was attempting the
utterly impossible.

But, presto! no sooner had he accomplished the task and shown concrete
results to the world than he found himself in the anomalous position
of being at once surrounded by the conditions which inevitably confront
every inventor. The path through the trackless forest had been blazed,
and now every one could find the way. At the end of the road was a rich
prize belonging rightfully to the man who had opened a way to it, but
the struggles of others to reach it by more or less honest methods now
began and continued for many years. If, as a former commissioner once
said, "Edison was the man who kept the path to the Patent Office
hot with his footsteps," there were other great inventors abreast or
immediately on his heels, some, to be sure, with legitimate, original
methods and vital improvements representing independent work; while
there were also those who did not trouble to invent, but simply helped
themselves to whatever ideas were available, and coming from any source.

Possibly events might have happened differently had Edison been able to
prevent the announcement of his electric-light inventions until he
was entirely prepared to bring out the system as a whole, ready for
commercial exploitation, but the news of his production of a practical
and successful incandescent lamp became known and spread like wild-fire
to all corners of the globe. It took more than a year after the
evolution of the lamp for Edison to get into position to do actual
business, and during that time his laboratory was the natural Mecca of
every inquiring person. Small wonder, then, that when he was prepared to
market his invention he should find others entering that market, at
home and abroad, at the same time, and with substantially similar
merchandise.

Edison narrates two incidents that may be taken as characteristic of
a good deal that had to be contended with, coming in the shape of
nefarious attack. "In the early days of my electric light," he says,
"curiosity and interest brought a great many people to Menlo Park to see
it. Some of them did not come with the best of intentions. I remember
the visit of one expert, a well-known electrician, a graduate of Johns
Hopkins University, and who then represented a Baltimore gas company. We
had the lamps exhibited in a large room, and so arranged on a table as
to illustrate the regular layout of circuits for houses and streets.
Sixty of the men employed at the laboratory were used as watchers, each
to keep an eye on a certain section of the exhibit, and see there was
no monkeying with it. This man had a length of insulated No. 10 wire
passing through his sleeves and around his back, so that his hands would
conceal the ends and no one would know he had it. His idea, of course,
was to put this wire across the ends of the supplying circuits, and
short-circuit the whole thing--put it all out of business without being
detected. Then he could report how easily the electric light went out,
and a false impression would be conveyed to the public. He did not know
that we had already worked out the safety-fuse, and that every group
of lights was thus protected independently. He put this jumper slyly in
contact with the wires--and just four lamps went out on the section he
tampered with. The watchers saw him do it, however, and got hold of him
and just led him out of the place with language that made the recording
angels jump for their typewriters."

The other incident is as follows: "Soon after I had got out the
incandescent light I had an interference in the Patent Office with a man
from Wisconsin. He filed an application for a patent and entered into a
conspiracy to 'swear back' of the date of my invention, so as to
deprive me of it. Detectives were put on the case, and we found he was a
'faker,' and we took means to break the thing up. Eugene Lewis, of Eaton
& Lewis, had this in hand for me. Several years later this same man
attempted to defraud a leading firm of manufacturing chemists in New
York, and was sent to State prison. A short time after that a syndicate
took up a man named Goebel and tried to do the same thing, but again our
detective-work was too much for them. This was along the same line as
the attempt of Drawbaugh to deprive Bell of his telephone. Whenever
an invention of large prospective value comes out, these cases always
occur. The lamp patent was sustained in the New York Federal Court. I
thought that was final and would end the matter, but another Federal
judge out in St. Louis did not sustain it. The result is I have never
enjoyed any benefits from my lamp patents, although I fought for many
years." The Goebel case will be referred to later in this chapter.

The original owner of the patents and inventions covering his
electric-lighting system, the Edison Electric Light Company (in which
Edison was largely interested as a stockholder), thus found at the
outset that its commercial position was imperilled by the activity of
competitors who had sprung up like mushrooms. It became necessary to
take proper preliminary legal steps to protect the interests which had
been acquired at the cost of so much money and such incessant toil and
experiment. During the first few years in which the business of the
introduction of the light was carried on with such strenuous and
concentrated effort, the attention of Edison and his original associates
was constantly focused upon the commercial exploitation and the
further development of the system at home and abroad. The difficult
and perplexing situation at that time is thus described by Major S. B.
Eaton:

"The reason for the delay in beginning and pushing suits for
infringements of the lamp patent has never been generally understood. In
my official position as president of the Edison Electric Light Company
I became the target, along with Mr. Edison, for censure from the
stockholders and others on account of this delay, and I well remember
how deep the feeling was. In view of the facts that a final injunction
on the lamp patent was not obtained until the life of the patent was
near its end, and, next, that no damages in money were ever paid by
the guilty infringers, it has been generally believed that Mr. Edison
sacrificed the interest of his stockholders selfishly when he delayed
the prosecution of patent suits and gave all his time and energies to
manufacturing. This belief was the stronger because the manufacturing
enterprises belonged personally to Mr. Edison and not to his company.
But the facts render it easy to dispel this false belief. The Edison
inventions were not only a lamp; they comprised also an entire system of
central stations. Such a thing was new to the world, and the apparatus,
as well as the manufacture thereof, was equally new. Boilers,
engines, dynamos, motors, distribution mains, meters, house-wiring,
safety-devices, lamps, and lamp-fixtures--all were vital parts of the
whole system. Most of them were utterly novel and unknown to the arts,
and all of them required quick, and, I may say, revolutionary thought
and invention. The firm of Babcock & Wilcox gave aid on the boilers,
Armington & Sims undertook the engines, but everything else was
abnormal. No factories in the land would take up the manufacture. I
remember, for instance, our interviews with Messrs. Mitchell, Vance &
Co., the leading manufacturers of house gas-lighting fixtures, such as
brackets and chandeliers. They had no faith in electric lighting, and
rejected all our overtures to induce them to take up the new business
of making electric-light fixtures. As regards other parts of the Edison
system, notably the Edison dynamo, no such machines had ever existed;
there was no factory in the world equipped to make them, and,
most discouraging of all, the very scientific principles of their
construction were still vague and experimental.

"What was to be done? Mr. Edison has never been greater than when he met
and solved this crisis. 'If there are no factories,' he said, 'to make
my inventions, I will build the factories myself. Since capital is
timid, I will raise and supply it. The issue is factories or death.' Mr.
Edison invited the cooperation of his leading stockholders. They lacked
confidence or did not care to increase their investments. He was forced
to go on alone. The chain of Edison shops was then created. By far the
most perplexing of these new manufacturing problems was the lamp. Not
only was it a new industry, one without shadow of prototype, but the
mechanical devices for making the lamps, and to some extent the very
machines to make those devices, were to be invented. All of this was
done by the courage, capital, and invincible energy and genius of the
great inventor. But Mr. Edison could not create these great and diverse
industries and at the same time give requisite attention to litigation.
He could not start and develop the new and hard business of electric
lighting and yet spare one hour to pursue infringers. One thing or the
other must wait. All agreed that it must be the litigation. And right
there a lasting blow was given to the prestige of the Edison patents.
The delay was translated as meaning lack of confidence; and the alert
infringer grew strong in courage and capital. Moreover, and what was the
heaviest blow of all, he had time, thus unmolested, to get a good start.

"In looking back on those days and scrutinizing them through the years,
I am impressed by the greatness, the solitary greatness I may say, of
Mr. Edison. We all felt then that we were of importance, and that our
contribution of effort and zeal were vital. I can see now, however, that
the best of us was nothing but the fly on the wheel. Suppose anything
had happened to Edison? All would have been chaos and ruin.. To him,
therefore, be the glory, if not the profit."

The foregoing remarks of Major Eaton show authoritatively how the
much-discussed delay in litigating the Edison patents was so greatly
misunderstood at the time, and also how imperatively necessary it was
for Edison and his associates to devote their entire time and energies
to the commercial development of the art. As the lighting business
increased, however, and a great number of additional men were initiated
into its mysteries, Edison and his experts were able to spare some
time to legal matters, and an era of active patent litigation against
infringers was opened about the year 1885 by the Edison company, and
thereafter continued for many years.

While the history of this vast array of legal proceedings possesses a
fascinating interest for those involved, as well as for professional
men, legal and scientific, it could not be expected that it would
excite any such feeling on the part of a casual reader. Hence, it is
not proposed to encumber this narrative with any detailed record of the
numerous suits that were brought and conducted through their complicated
ramifications by eminent counsel. Suffice it to say that within about
sixteen years after the commencement of active patent litigation, there
had been spent by the owners of the Edison lighting patents upward
of two million dollars in prosecuting more than two hundred lawsuits
brought against persons who were infringing many of the patents of
Edison on the incandescent electric lamp and component parts of his
system. Over fifty separate patents were involved in these suits,
including the basic one on the lamp (ordinarily called the "Filament"
patent), other detail lamp patents, as well as those on sockets,
switches, dynamos, motors, and distributing systems.

The principal, or "test," suit on the "Filament" patent was that brought
against "The United States Electric Lighting Company," which became a
cause celebre in the annals of American jurisprudence. Edison's claims
were strenuously and stubbornly contested throughout a series of intense
legal conflicts that raged in the courts for a great many years. Both
sides of the controversy were represented by legal talent of the
highest order, under whose examination and cross-examination volumes
of testimony were taken, until the printed record (including exhibits)
amounted to more than six thousand pages. Scientific and technical
literature and records in all parts of the civilized world were
subjected to the most minute scrutiny of opposing experts in the
endeavor to prove Edison to be merely an adapter of methods and devices
already projected or suggested by others. The world was ransacked for
anything that might be claimed as an anticipation of what he had done.
Every conceivable phase of ingenuity that could be devised by
technical experts was exercised in the attempt to show that Edison
had accomplished nothing new. Everything that legal acumen could
suggest--every subtle technicality of the law--all the complicated
variations of phraseology that the novel nomenclature of a young
art would allow--all were pressed into service and availed of by the
contestors of the Edison invention in their desperate effort to defeat
his claims. It was all in vain, however, for the decision of the court
was in favor of Edison, and his lamp patent was sustained not only by
the tribunal of the first resort, but also by the Appellate Court some
time afterward.

The first trial was had before Judge Wallace in the United States
Circuit Court for the Southern District of New York, and the appeal was
heard by Judges Lacombe and Shipman, of the United States Circuit Court
of Appeals. Before both tribunals the cause had been fully represented
by counsel chosen from among the most eminent representatives of the
bar at that time, those representing the Edison interests being the
late Clarence A. Seward and Grosvenor P. Lowrey, together with Sherburne
Blake Eaton, Albert H. Walker, and Richard N. Dyer. The presentation of
the case to the courts had in both instances been marked by masterly and
able arguments, elucidated by experiments and demonstrations to educate
the judges on technical points. Some appreciation of the magnitude of
this case may be gained from the fact that the argument on its first
trial employed a great many days, and the minutes covered hundreds
of pages of closely typewritten matter, while the argument on appeal
required eight days, and was set forth in eight hundred and fifty pages
of typewriting. Eliminating all purely forensic eloquence and exparte
statements, the addresses of counsel in this celebrated suit are worthy
of deep study by an earnest student, for, taken together, they comprise
the most concise, authentic, and complete history of the prior state of
the art and the development of the incandescent lamp that had been made
up to that time. [22]

     [22] The argument on appeal was conducted with the dignity
     and decorum that characterize such a proceeding in that
     court. There is usually little that savors of humor in the
     ordinary conduct of a case of this kind, but in the present
     instance a pertinent story was related by Mr. Lowrey, and it
     is now reproduced. In the course of his address to the
     court, Mr. Lowrey said:

     "I have to mention the name of one expert whose testimony
     will, I believe, be found as accurate, as sincere, as
     straightforward as if it were the preaching of the gospel. I
     do it with great pleasure, and I ask you to read the
     testimony of Charles L. Clarke along with that of Thomas A.
     Edison. He had rather a hard row to hoe. He is a young
     gentleman; he is a very well-instructed man in his
     profession; he is not what I have called in the argument
     below an expert in the art of testifying, like some of the
     others, he has not yet become expert; what he may descend to
     later cannot be known; he entered upon his first experience,
     I think, with my brother Duncan, who is no trifler when he
     comes to deal with these questions, and for several months
     Mr. Clarke was pursued up and down, over a range of
     suggestions of what he would have thought if he had thought
     something else had been said at some time when something
     else was not said."

     Mr. Duncan--"I got three pages a day out of him, too."

     Mr. Lowrey--"Well, it was a good result. It always recalled
     to me what I venture now, since my friend breaks in upon me
     in this rude manner, to tell the court as well illustrative
     of what happened there. It is the story of the pickerel and
     the roach. My friend, Professor Von Reisenberg, of the
     University of Ghent, pursued a series of investigations into
     the capacity of various animals to receive ideas. Among the
     rest he put a pickerel into a tank containing water, and
     separated across its middle by a transparent glass plate,
     and on the other side he put a red roach. Now your Honors
     both know how a pickerel loves a red roach, and I have no
     doubt you will remember that he is a fish of a very low
     forehead and an unlimited appetite. When this pickerel saw
     the red roach through the glass, he made one of those awful
     dashes which is usually the ruin of whatever stands in its
     way; but he didn't reach the red roach. He received an
     impression, doubtless. It was not sufficient, however, to
     discourage him, and he immediately tried again, and he
     continued to try for three-quarters of an hour. At the end
     of three-quarters of an hour he seemed a little shaken and
     discouraged, and stopped, and the red roach was taken out
     for that day and the pickerel left. On the succeeding day
     the red roach was restored, and the pickerel had forgotten
     the impressions of the first day, and he repeated this
     again. At the end of the second day the roach was taken out.
     This was continued, not through so long a period as the
     effort to take my friend Clarke and devour him, but for a
     period of about three weeks. At the end of the three weeks,
     the time during which the pickerel persisted each day had
     been shortened and shortened, until it was at last
     discovered that he didn't try at all. The plate glass was
     then removed, and the pickerel and the red roach sailed
     around together in perfect peace ever afterward. The
     pickerel doubtless attributed to the roach all this shaking,
     the rebuff which he had received. And that is about the
     condition in which my brother Duncan and my friend Clarke
     were at the end of this examination."

     Mr. Duncan--"I notice on the redirect that Mr. Clarke
     changed his color."

     Mr. Lowrey--"Well, perhaps he was a different kind of a
     roach then; but you didn't succeed in taking him.

     "I beg your Honors to read the testimony of Mr. Clarke in
     the light of the anecdote of the pickerel and the roach."

Owing to long-protracted delays incident to the taking of testimony and
preparation for trial, the argument before the United States Circuit
Court of Appeals was not had until the late spring of 1892, and its
decision in favor of the Edison Lamp patent was filed on October 4,
1892, MORE THAN TWELVE YEARS AFTER THE ISSUANCE OF THE PATENT ITSELF.

As the term of the patent had been limited under the law, because
certain foreign patents had been issued to Edison before that in this
country, there was now but a short time left for enjoyment of the
exclusive rights contemplated by the statute and granted to Edison and
his assigns by the terms of the patent itself. A vigorous and aggressive
legal campaign was therefore inaugurated by the Edison Electric Light
Company against the numerous infringing companies and individuals that
had sprung up while the main suit was pending. Old suits were revived
and new ones instituted. Injunctions were obtained against many old
offenders, and it seemed as though the Edison interests were about to
come into their own for the brief unexpired term of the fundamental
patent, when a new bombshell was dropped into the Edison camp in the
shape of an alleged anticipation of the invention forty years previously
by one Henry Goebel. Thus, in 1893, the litigation was reopened, and a
protracted series of stubbornly contested conflicts was fought in the
courts.

Goebel's claims were not unknown to the Edison Company, for as far back
as 1882 they had been officially brought to its notice coupled with an
offer of sale for a few thousand dollars. A very brief examination into
their merits, however, sufficed to demonstrate most emphatically that
Goebel had never made a practical incandescent lamp, nor had he ever
contributed a single idea or device bearing, remotely or directly, on
the development of the art. Edison and his company, therefore, rejected
the offer unconditionally and declined to enter into any arrangements
whatever with Goebel. During the prosecution of the suits in 1893 it
transpired that the Goebel claims had also been investigated by the
counsel of the defendant company in the principal litigation already
related, but although every conceivable defence and anticipation had
been dragged into the case during the many years of its progress, the
alleged Goebel anticipation was not even touched upon therein. From
this fact it is quite apparent that they placed no credence on its bona
fides.

But desperate cases call for desperate remedies. Some of the infringing
lamp-manufacturing concerns, which during the long litigation had grown
strong and lusty, and thus far had not been enjoined by the court, now
saw injunctions staring them in the face, and in desperation set up the
Goebel so-called anticipation as a defence in the suits brought against
them.

This German watchmaker, Goebel, located in the East Side of New York
City, had undoubtedly been interested, in a desultory kind of way, in
simple physical phenomena, and a few trifling experiments made by him
some forty or forty-five years previously were magnified and distorted
into brilliant and all-comprehensive discoveries and inventions.
Avalanches of affidavits of himself, "his sisters and his cousins and
his aunts," practically all persons in ordinary walks of life, and of
old friends, contributed a host of recollections that seemed little
short of miraculous in their detailed accounts of events of a scientific
nature that were said to have occurred so many years before. According
to affidavits of Goebel himself and some of his family, nothing that
would anticipate Edison's claim had been omitted from his work, for he
(Goebel) claimed to have employed the all-glass globe, into which were
sealed platinum wires carrying a tenuous carbon filament, from which the
occluded gases had been liberated during the process of high exhaustion.
He had even determined upon bamboo as the best material for filaments.
On the face of it he was seemingly gifted with more than human
prescience, for in at least one of his exhibit lamps, said to have been
made twenty years previously, he claimed to have employed processes
which Edison and his associates had only developed by several years of
experience in making thousands of lamps!

The Goebel story was told by the affidavits in an ingenuous manner, with
a wealth of simple homely detail that carried on its face an appearance
of truth calculated to deceive the elect, had not the elect been
somewhat prepared by their investigation made some eleven years before.

The story was met by the Edison interests with counter-affidavits,
showing its utter improbabilities and absurdities from the standpoint of
men of science and others versed in the history and practice of the art;
also affidavits of other acquaintances and neighbors of Goebel flatly
denying the exhibitions he claimed to have made. The issue thus being
joined, the legal battle raged over different sections of the country. A
number of contumeliously defiant infringers in various cities based fond
hopes of immunity upon the success of this Goebel evidence, but were
defeated. The attitude of the courts is well represented in the opinion
of Judge Colt, rendered in a motion for injunction against the Beacon
Vacuum Pump and Electrical Company. The defence alleged the Goebel
anticipation, in support of which it offered in evidence four lamps,
Nos. 1, 2, and 3 purporting to have been made before 1854, and No. 4
before 1872. After a very full review of the facts in the case, and
a fair consideration of the defendants' affidavits, Judge Colt in his
opinion goes on to say:


"It is extremely improbable that Henry Goebel constructed a practical
incandescent lamp in 1854. This is manifest from the history of the art
for the past fifty years, the electrical laws which since that time have
been discovered as applicable to the incandescent lamp, the imperfect
means which then existed for obtaining a vacuum, the high degree of
skill necessary in the construction of all its parts, and the crude
instruments with which Goebel worked.

"Whether Goebel made the fiddle-bow lamps, 1, 2, and 3, is not necessary
to determine. The weight of evidence on this motion is in the direction
that he made these lamp or lamps similar in general appearance, though
it is manifest that few, if any, of the many witnesses who saw the
Goebel lamp could form an accurate judgment of the size of the filament
or burner. But assuming they were made, they do not anticipate the
invention of Edison. At most they were experimental toys used to
advertise his telescope, or to flash a light upon his clock, or to
attract customers to his shop. They were crudely constructed, and their
life was brief. They could not be used for domestic purposes. They
were in no proper sense the practical commercial lamp of Edison. The
literature of the art is full of better lamps, all of which are held not
to anticipate the Edison patent.

"As for Lamp No. 4, I cannot but view it with suspicion. It presents
a new appearance. The reason given for not introducing it before the
hearing is unsatisfactory. This lamp, to my mind, envelops with a cloud
of distrust the whole Goebel story. It is simply impossible under the
circumstances to believe that a lamp so constructed could have been
made by Goebel before 1872. Nothing in the evidence warrants such a
supposition, and other things show it to be untrue. This lamp has a
carbon filament, platinum leading-in wires, a good vacuum, and is well
sealed and highly finished. It is said that this lamp shows no traces of
mercury in the bulb because the mercury was distilled, but Goebel says
nothing about distilled mercury in his first affidavit, and twice
he speaks of the particles of mercury clinging to the inside of the
chamber, and for that reason he constructed a Geissler pump after he
moved to 468 Grand Street, which was in 1877. Again, if this lamp has
been in his possession since before 1872, as he and his son swear, why
was it not shown to Mr. Crosby, of the American Company, when he visited
his shop in 1881 and was much interested in his lamps? Why was it not
shown to Mr. Curtis, the leading counsel for the defendants in the New
York cases, when he was asked to produce a lamp and promised to do so?
Why did not his son take this lamp to Mr. Bull's office in 1892, when
he took the old fiddle-bow lamps, 1, 2, and 3? Why did not his son take
this lamp to Mr. Eaton's office in 1882, when he tried to negotiate
the sale of his father's inventions to the Edison Company? A lamp so
constructed and made before 1872 was worth a large sum of money to those
interested in defeating the Edison patent like the American Company, and
Goebel was not a rich man. Both he and one of his sons were employed in
1881 by the American Company. Why did he not show this lamp to McMahon
when he called in the interest of the American Company and talked over
the electrical matters? When Mr. Dreyer tried to organize a company in
1882, and procured an option from him of all his inventions relating to
electric lighting for which $925 was paid, and when an old lamp of this
kind was of vital consequence and would have insured a fortune, why was
it not forthcoming? Mr. Dreyer asked Goebel to produce an old lamp, and
was especially anxious to find one pending his negotiations with the
Edison Company for the sale of Goebel's inventions. Why did he not
produce this lamp in his interviews with Bohm, of the American Company,
or Moses, of the Edison Company, when it was for his interest to do so?
The value of such an anticipation of the Edison lamp was made known to
him. He was desirous of realizing upon his inventions. He was proud of
his incandescent lamps, and was pleased to talk about them with anybody
who would listen. Is it conceivable under all these circumstances, that
he should have had this all-important lamp in his possession from 1872
to 1893, and yet no one have heard of it or seen it except his son? It
cannot be said that ignorance of the English language offers an excuse.
He knew English very well although Bohm and Dreyer conversed with him
in German. His children spoke English. Neither his ignorance nor his
simplicity prevented him from taking out three patents: the first
in 1865 for a sewing-machine hemmer, and the last in 1882 for an
improvement in incandescent lamps. If he made Lamp No. 4 previous to
1872, why was it not also patented?

"There are other circumstances which throw doubt on this alleged Goebel
anticipation. The suit against the United States Electric Lighting
Company was brought in the Southern District of New York in 1885. Large
interests were at stake, and the main defence to the Edison patent was
based on prior inventions. This Goebel claim was then investigated by
the leading counsel for the defence, Mr. Curtis. It was further inquired
into in 1892, in the case against the Sawyer-Man Company. It was brought
to the attention and considered by the Edison Company in 1882. It was
at that time known to the American Company, who hoped by this means to
defeat the monopoly under the Edison patent. Dreyer tried to organize
a company for its purchase. Young Goebel tried to sell it. It must have
been known to hundreds of people. And now when the Edison Company after
years of litigation, leaving but a short time for the patent to run,
have obtained a final adjudication establishing its validity, this
claim is again resurrected to defeat the operation of the judgment
so obtained. A court in equity should not look with favor on such
a defence. Upon the evidence here presented, I agree with the first
impression of Mr. Curtis and with the opinion of Mr. Dickerson that
whatever Goebel did must be considered as an abandoned experiment.

"It has often been laid down that a meritorious invention is not to be
defeated by something which rests in speculation or experiment, or which
is rudimentary or incomplete.

"The law requires not conjecture, but certainty. It is easy after an
important invention has gone into public use for persons to come forward
with claims that they invented the same thing years before, and to
endeavor to establish this by the recollection of witnesses as to events
long past. Such evidence is to be received with great caution, and the
presumption of novelty arising from the grant of the patent is not to be
overcome except upon clear and convincing proof.

"When the defendant company entered upon the manufacture of incandescent
lamps in May, 1891, it well knew the consequences which must follow a
favorable decision for the Edison Company in the New York case."


The injunction was granted.

Other courts took practically the same view of the Goebel story as was
taken by Judge Colt, and the injunctions asked in behalf of the Edison
interests were granted on all applications except one in St. Louis,
Missouri, in proceedings instituted against a strong local concern of
that city.

Thus, at the eleventh hour in the life of this important patent, after
a long period of costly litigation, Edison and his associates were
compelled to assume the defensive against a claimant whose utterly
baseless pretensions had already been thoroughly investigated and
rejected years before by every interested party, and ultimately, on
examination by the courts, pronounced legally untenable, if not indeed
actually fraudulent. Irritating as it was to be forced into the
position of combating a proposition so well known to be preposterous and
insincere, there was nothing else to do but to fight this fabrication
with all the strenuous and deadly earnestness that would have been
brought to bear on a really meritorious defence. Not only did this
Goebel episode divert for a long time the energies of the Edison
interests from activities in other directions, but the cost of
overcoming the extravagantly absurd claims ran up into hundreds of
thousands of dollars.

Another quotation from Major Eaton is of interest in this connection:

"Now a word about the Goebel case. I took personal charge of running
down this man and his pretensions in the section of the city where
he lived and among his old neighbors. They were a typical East Side
lot--ignorant, generally stupid, incapable of long memory, but ready to
oblige a neighbor and to turn an easy dollar by putting a cross-mark at
the bottom of a forthcoming friendly affidavit. I can say in all truth
and justice that their testimony was utterly false, and that the lawyers
who took it must have known it.

"The Goebel case emphasizes two defects in the court procedure in patent
cases. One is that they may be spun out almost interminably, even,
possibly, to the end of the life of the patent; the other is that the
judge who decides the case does not see the witnesses. That adverse
decision at St. Louis would never have been made if the court could
have seen the men who swore for Goebel. When I met Mr. F. P. Fish on
his return from St. Louis, after he had argued the Edison side, he felt
keenly that disadvantage, to say nothing of the hopeless difficulty of
educating the court."

In the earliest days of the art, when it was apparent that incandescent
lighting had come to stay, the Edison Company was a shining mark at
which the shafts of the dishonest were aimed. Many there were who
stood ready to furnish affidavits that they or some one else whom they
controlled had really invented the lamp, but would obligingly withdraw
and leave Edison in possession of the field on payment of money.
Investigation of these cases, however, revealed invariably the purely
fraudulent nature of all such offers, which were uniformly declined.

As the incandescent light began to advance rapidly in public favor, the
immense proportions of the future market became sufficiently obvious to
tempt unauthorized persons to enter the field and become manufacturers.
When the lamp became a thoroughly established article it was not a
difficult matter to copy it, especially when there were employees to be
hired away at increased pay, and their knowledge utilized by the more
unscrupulous of these new competitors. This is not conjecture but known
to be a fact, and the practice continued many years, during which new
lamp companies sprang up on every side. Hence, it is not surprising
that, on the whole, the Edison lamp litigation was not less remarkable
for quantity than quality. Between eighty and ninety separate suits upon
Edison's fundamental lamp and detail patents were brought in the courts
of the United States and prosecuted to completion.

In passing it may be mentioned that in England France, and Germany also
the Edison fundamental lamp patent was stubbornly fought in the judicial
arena, and his claim to be the first inventor of practical incandescent
lighting was uniformly sustained in all those countries.

Infringement was not, however, confined to the lamp alone, but, in
America, extended all along the line of Edison's patents relating to
the production and distribution of electric light, including those on
dynamos, motors, distributing systems, sockets, switches, and other
details which he had from time to time invented. Consequently, in order
to protect its interests at all points, the Edison Company had found it
necessary to pursue a vigorous policy of instituting legal proceedings
against the infringers of these various patents, and, in addition to the
large number of suits on the lamp alone, not less than one hundred and
twenty-five other separate actions, involving some fifty or more of
Edison's principal electric-lighting patents, were brought against
concerns which were wrongfully appropriating his ideas and actively
competing with his companies in the market.

The ramifications of this litigation became so extensive and complex
as to render it necessary to institute a special bureau, or department,
through which the immense detail could be systematically sifted,
analyzed, and arranged in collaboration with the numerous experts
and counsel responsible for the conduct of the various cases. This
department was organized in 1889 by Major Eaton, who was at this time
and for some years afterward its general counsel.

In the selection of the head of this department a man of methodical and
analytical habit of mind was necessary, capable of clear reasoning, and
at the same time one who had gained a thoroughly practical experience
in electric light and power fields, and the choice fell upon Mr. W.
J. Jenks, the manager of the Edison central station at Brockton,
Massachusetts. He had resigned that position in 1885, and had spent
the intervening period in exploiting the Edison municipal system of
lighting, as well as taking an active part in various other branches of
the Edison enterprises.

Thus, throughout the life of Edison's patents on electric light, power,
and distribution, the interminable legal strife has continued from
day to day, from year to year. Other inventors, some of them great and
notable, have been coming into the field since the foundation of the
art, patents have multiplied exceedingly, improvement has succeeded
improvement, great companies have grown greater, new concerns have come
into existence, coalitions and mergers have taken place, all tending
to produce changes in methods, but not much in diminution of patent
litigation. While Edison has not for a long time past interested himself
particularly in electric light and power inventions, the bureau which
was initiated under the old regime in 1889 still continues, enlarged
in scope, directed by its original chief, but now conducted under the
auspices of several allied companies whose great volumes of combined
patents (including those of Edison) cover a very wide range of the
electrical field.

As the general conception and theory of a lawsuit is the recovery of
some material benefit, the lay mind is apt to conceive of great sums of
money being awarded to a complainant by way of damages upon a favorable
decision in an important patent case. It might, therefore, be natural to
ask how far Edison or his companies have benefited pecuniarily by reason
of the many belated victories they have scored in the courts. To this
question a strict regard for truth compels the answer that they have not
been benefited at all, not to the extent of a single dollar, so far as
cash damages are concerned.

It is not to be denied, however, that substantial advantages have
accrued to them more or less directly through the numerous favorable
decisions obtained by them as a result of the enormous amount of
litigation, in the prosecution of which so great a sum of money has been
spent and so concentrated an amount of effort and time lavished. Indeed,
it would be strange and unaccountable were the results otherwise. While
the benefits derived were not directly pecuniary in their nature, they
were such as tended to strengthen commercially the position of the
rightful owners of the patents. Many irresponsible and purely piratical
concerns were closed altogether; others were compelled to take out
royalty licenses; consolidations of large interests were brought about;
the public was gradually educated to a more correct view of the true
merits of conflicting claims, and, generally speaking, the business has
been greatly unified and brought within well-defined and controllable
lines.

Not only in relation to his electric light and power inventions has the
progress of Edison and his associates been attended by legal controversy
all through the years of their exploitation, but also in respect to
other inventions, notably those relating to the phonograph and to motion
pictures.

The increasing endeavors of infringers to divert into their own pockets
some of the proceeds arising from the marketing of the devices
covered by Edison's inventions on these latter lines, necessitated the
institution by him, some years ago, of a legal department which, as in
the case of the light inventions, was designed to consolidate all law
and expert work and place it under the management of a general counsel.
The department is of considerable extent, including a number of resident
and other associate counsel, and a general office staff, all of whom are
constantly engaged from day to day in patent litigation and other legal
work necessary to protect the Edison interests. Through their labors the
old story is reiterated in the contesting of approximate but conflicting
claims, the never-ending effort to suppress infringement, and the
destruction as far as possible of the commercial pirates who set sail
upon the seas of all successful enterprises. The details, circumstances,
and technical questions are, of course, different from those relating
to other classes of inventions, and although there has been no cause
celebre concerning the phonograph and motion-picture patents, the
contention is as sharp and strenuous as it was in the cases relating to
electric lighting and heavy current technics.

Mr. Edison's storage battery and the poured cement house have not yet
reached the stage of great commercial enterprises, and therefore have
not yet risen to the dignity of patent litigation. If, however, the
experience of past years is any criterion, there will probably come a
time in the future when, despite present widely expressed incredulity
and contemptuous sniffs of unbelief in the practicability of his ideas
in these directions, ultimate success will give rise to a series of
hotly contested legal conflicts such as have signalized the practical
outcome of his past efforts in other lines.

When it is considered what Edison has done, what the sum and substance
of his contributions to human comfort and happiness have been, the
results, as measured by legal success, have been pitiable. With the
exception of the favorable decision on the incandescent lamp filament
patent, coming so late, however, that but little practical good was
accomplished, the reader may search the law-books in vain for a single
decision squarely and fairly sustaining a single patent of first order.
There never was a monopoly in incandescent electric lighting, and even
from the earliest days competitors and infringers were in the field
reaping the benefits, and though defeated in the end, paying not a cent
of tribute. The market was practically as free and open as if no patent
existed. There never was a monopoly in the phonograph; practically all
of the vital inventions were deliberately appropriated by others, and
the inventor was laughed at for his pains. Even so beautiful a process
as that for the duplication of phonograph records was solemnly held by
a Federal judge as lacking invention--as being obvious to any one. The
mere fact that Edison spent years of his life in developing that process
counted for nothing.

The invention of the three-wire system, which, when it was first
announced as saving over 60 per cent. of copper in the circuits, was
regarded as an utter impossibility--this patent was likewise held by
a Federal judge to be lacking in invention. In the motion-picture art,
infringements began with its very birth, and before the inevitable
litigation could be terminated no less than ten competitors were in the
field, with whom compromises had to be made.

In a foreign country, Edison would have undoubtedly received signal
honors; in his own country he has won the respect and admiration of
millions; but in his chosen field as an inventor and as a patentee his
reward has been empty. The courts abroad have considered his patents in
a liberal spirit and given him his due; the decisions in this country
have fallen wide of the mark. We make no criticism of our Federal
judges; as a body they are fair, able, and hard-working; but they
operate under a system of procedure that stifles absolutely the
development of inventive genius.

Until that system is changed and an opportunity offered for a final,
swift, and economical adjudication of patent rights, American inventors
may well hesitate before openly disclosing their inventions to the
public, and may seriously consider the advisability of retaining them as
"trade secrets."



CHAPTER XXIX

THE SOCIAL SIDE OF EDISON

THE title of this chapter might imply that there is an unsocial side
to Edison. In a sense this is true, for no one is more impatient
or intolerant of interruption when deeply engaged in some line of
experiment. Then the caller, no matter how important or what his
mission, is likely to realize his utter insignificance and be sent away
without accomplishing his object. But, generally speaking, Edison is
easy tolerance itself, with a peculiar weakness toward those who have
the least right to make any demands on his time. Man is a social animal,
and that describes Edison; but it does not describe accurately the
inventor asking to be let alone.

Edison never sought Society; but "Society" has never ceased to seek
him, and to-day, as ever, the pressure upon him to give up his work and
receive honors, meet distinguished people, or attend public functions,
is intense. Only two or three years ago, a flattering invitation came
from one of the great English universities to receive a degree, but at
that moment he was deep in experiments on his new storage battery, and
nothing could budge him. He would not drop the work, and while highly
appreciative of the proposed honor, let it go by rather than quit for
a week or two the stern drudgery of probing for the fact and the truth.
Whether one approves or not, it is at least admirable stoicism, of which
the world has too little. A similar instance is that of a visit paid to
the laboratory by some one bringing a gold medal from a foreign society.
It was a very hot day in summer, the visitor was in full social regalia
of silk hat and frock-coat, and insisted that he could deliver the medal
only into Edison's hands. At that moment Edison, stripped pretty nearly
down to the buff, was at the very crisis of an important experiment, and
refused absolutely to be interrupted. He had neither sought nor expected
the medal; and if the delegate didn't care to leave it he could take it
away. At last Edison was overpersuaded, and, all dirty and perspiring as
he was, received the medal rather than cause the visitor to come again.
On one occasion, receiving a medal in New York, Edison forgot it on
the ferry-boat and left it behind him. A few years ago, when Edison
had received the Albert medal of the Royal Society of Arts, one of the
present authors called at the laboratory to see it. Nobody knew where
it was; hours passed before it could be found; and when at last the
accompanying letter was produced, it had an office date stamp right over
the signature of the royal president. A visitor to the laboratory with
one of these medallic awards asked Edison if he had any others. "Oh
yes," he said, "I have a couple of quarts more up at the house!" All
this sounds like lack of appreciation, but it is anything else than
that. While in Paris, in 1889, he wore the decoration of the Legion
of Honor whenever occasion required, but at all other times turned the
badge under his lapel "because he hated to have fellow-Americans think
he was showing off." And any one who knows Edison will bear testimony to
his utter absence of ostentation. It may be added that, in addition
to the two quarts of medals up at the house, there will be found at
Glenmont many other signal tokens of esteem and good-will--a beautiful
cigar-case from the late Tsar of Russia, bronzes from the Government of
Japan, steel trophies from Krupp, and a host of other mementos, to one
of which he thus refers: "When the experiments with the light were going
on at Menlo Park, Sarah Bernhardt came to America. One evening, Robert
L. Cutting, of New York, brought her out to see the light. She was a
terrific 'rubberneck.' She jumped all over the machinery, and I had one
man especially to guard her dress. She wanted to know everything. She
would speak in French, and Cutting would translate into English. She
stayed there about an hour and a half. Bernhardt gave me two pictures,
painted by herself, which she sent me from Paris."

Reference has already been made to the callers upon Edison; and to give
simply the names of persons of distinction would fill many pages of this
record. Some were mere consumers of time; others were gladly welcomed,
like Lord Kelvin, the greatest physicist of the last century, with whom
Edison was always in friendly communication. "The first time I saw Lord
Kelvin, he came to my laboratory at Menlo Park in 1876." (He
reported most favorably on Edison's automatic telegraph system at the
Philadelphia Exposition of 1876.) "I was then experimenting with sending
eight messages simultaneously over a wire by means of synchronizing
tuning-forks. I would take a wire with similar apparatus at both ends,
and would throw it over on one set of instruments, take it away, and get
it back so quickly that you would not miss it, thereby taking advantage
of the rapidity of electricity to perform operations. On my local wire
I got it to work very nicely. When Sir William Thomson (Kelvin) came in
the room, he was introduced to me, and had a number of friends with him.
He said: 'What have you here?' I told him briefly what it was. He then
turned around, and to my great surprise explained the whole thing to
his friends. Quite a different exhibition was given two weeks later by
another well-known Englishman, also an electrician, who came in with
his friends, and I was trying for two hours to explain it to him and
failed."

After the introduction of the electric light, Edison was more than ever
in demand socially, but he shunned functions like the plague, not
only because of the serious interference with work, but because of his
deafness. Some dinners he had to attend, but a man who ate little and
heard less could derive practically no pleasure from them. "George
Washington Childs was very anxious I should go down to Philadelphia to
dine with him. I seldom went to dinners. He insisted I should go--that
a special car would leave New York. It was for me to meet Mr. Joseph
Chamberlain. We had the private car of Mr. Roberts, President of the
Pennsylvania Railroad. We had one of those celebrated dinners that only
Mr. Childs could give, and I heard speeches from Charles Francis Adams
and different people. When I came back to the depot, Mr. Roberts
was there, and insisted on carrying my satchel for me. I never could
understand that."

Among the more distinguished visitors of the electric-lighting period
was President Diaz, with whom Edison became quite intimate. "President
Diaz, of Mexico, visited this country with Mrs. Diaz, a highly educated
and beautiful woman. She spoke very good English. They both took a deep
interest in all they saw. I don't know how it ever came about, as it is
not in my line, but I seemed to be delegated to show them around. I took
them to railroad buildings, electric-light plants, fire departments, and
showed them a great variety of things. It lasted two days." Of another
visit Edison says: "Sitting Bull and fifteen Sioux Indians came to
Washington to see the Great Father, and then to New York, and went
to the Goerck Street works. We could make some very good pyrotechnics
there, so we determined to give the Indians a scare. But it didn't work.
We had an arc there of a most terrifying character, but they never moved
a muscle." Another episode at Goerck Street did not find the visitors
quite so stoical. "In testing dynamos at Goerck Street we had a long
flat belt running parallel with the floor, about four inches above it,
and travelling four thousand feet a minute. One day one of the
directors brought in three or four ladies to the works to see the new
electric-light system. One of the ladies had a little poodle led by a
string. The belt was running so smoothly and evenly, the poodle did not
notice the difference between it and the floor, and got into the belt
before we could do anything. The dog was whirled around forty or fifty
times, and a little flat piece of leather came out--and the ladies
fainted."

A very interesting period, on the social side, was the visit paid by
Edison and his family to Europe in 1889, when he had made a splendid
exhibit of his inventions and apparatus at the great Paris Centennial
Exposition of that year, to the extreme delight of the French,
who welcomed him with open arms. The political sentiments that the
Exposition celebrated were not such as to find general sympathy in
monarchical Europe, so that the "crowned heads" were conspicuous by
their absence. It was not, of course, by way of theatrical antithesis
that Edison appeared in Paris at such a time. But the contrast was none
the less striking and effective. It was felt that, after all, that which
the great exposition exemplified at its best--the triumph of genius
over matter, over ignorance, over superstition--met with its due
recognition when Edison came to participate, and to felicitate a noble
nation that could show so much in the victories of civilization and the
arts, despite its long trials and its long struggle for liberty. It is
no exaggeration to say that Edison was greeted with the enthusiastic
homage of the whole French people. They could find no praise warm enough
for the man who had "organized the echoes" and "tamed the lightning,"
and whose career was so picturesque with eventful and romantic
development. In fact, for weeks together it seemed as though no Parisian
paper was considered complete and up to date without an article on
Edison. The exuberant wit and fancy of the feuilletonists seized
upon his various inventions evolving from them others of the most
extraordinary nature with which to bedazzle and bewilder the reader. At
the close of the Exposition Edison was created a Commander of the Legion
of Honor. His own exhibit, made at a personal expense of over $100,000,
covered several thousand square feet in the vast Machinery Hall, and was
centred around a huge Edison lamp built of myriads of smaller lamps of
the ordinary size. The great attraction, however, was the display of the
perfected phonograph. Several instruments were provided, and every day,
all day long, while the Exposition lasted, queues of eager visitors from
every quarter of the globe were waiting to hear the little machine
talk and sing and reproduce their own voices. Never before was such
a collection of the languages of the world made. It was the first
linguistic concourse since Babel times. We must let Edison tell the
story of some of his experiences:

"At the Universal Exposition at Paris, in 1889, I made a personal
exhibit covering about an acre. As I had no intention of offering to
sell anything I was showing, and was pushing no companies, the whole
exhibition was made for honor, and without any hope of profit. But the
Paris newspapers came around and wanted pay for notices of it, which we
promptly refused; whereupon there was rather a stormy time for a while,
but nothing was published about it.

"While at the Exposition I visited the Opera-House. The President of
France lent me his private box. The Opera-House was one of the first
to be lighted by the incandescent lamp, and the managers took great
pleasure in showing me down through the labyrinth containing the
wiring, dynamos, etc. When I came into the box, the orchestra played the
'Star-Spangled Banner,' and all the people in the house arose; whereupon
I was very much embarrassed. After I had been an hour at the play, the
manager came around and asked me to go underneath the stage, as they
were putting on a ballet of 300 girls, the finest ballet in Europe. It
seems there is a little hole on the stage with a hood over it, in which
the prompter sits when opera is given. In this instance it was not
occupied, and I was given the position in the prompter's seat, and saw
the whole ballet at close range.

"The city of Paris gave me a dinner at the new Hotel de Ville, which was
also lighted with the Edison system. They had a very fine installation
of machinery. As I could not understand or speak a word of French,
I went to see our minister, Mr. Whitelaw Reid, and got him to send a
deputy to answer for me, which he did, with my grateful thanks. Then the
telephone company gave me a dinner, and the engineers of France; and
I attended the dinner celebrating the fiftieth anniversary of the
discovery of photography. Then they sent to Reid my decoration, and they
tried to put a sash on me, but I could not stand for that. My wife had
me wear the little red button, but when I saw Americans coming I would
slip it out of my lapel, as I thought they would jolly me for wearing
it."

Nor was this all. Edison naturally met many of the celebrities of
France: "I visited the Eiffel Tower at the invitation of Eiffel. We went
to the top, where there was an extension and a small place in which was
Eiffel's private office. In this was a piano. When my wife and I arrived
at the top, we found that Gounod, the composer, was there. We stayed a
couple of hours, and Gounod sang and played for us. We spent a day at
Meudon, an old palace given by the government to Jansen, the astronomer.
He occupied three rooms, and there were 300. He had the grand
dining-room for his laboratory. He showed me a gyroscope he had got
up which made the incredible number of 4000 revolutions in a second. A
modification of this was afterward used on the French Atlantic lines for
making an artificial horizon to take observations for position at
sea. In connection with this a gentleman came to me a number of years
afterward, and I got out a part of some plans for him. He wanted to make
a gigantic gyroscope weighing several tons, to be run by an electric
motor and put on a sailing ship. He wanted this gyroscope to keep a
platform perfectly horizontal, no matter how rough the sea was. Upon
this platform he was going to mount a telescope to observe an eclipse
off the Gold Coast of Africa. But for some reason it was never
completed.

"Pasteur invited me to come down to the Institute, and I went and had
quite a chat with him. I saw a large number of persons being inoculated,
and also the whole modus operandi, which was very interesting. I saw one
beautiful boy about ten, the son of an English lord. His father was with
him. He had been bitten in the face, and was taking the treatment. I
said to Pasteur, 'Will he live?' 'No,' said he, 'the boy will be dead in
six days. He was bitten too near the top of the spinal column, and came
too late!'"

Edison has no opinion to offer as an expert on art, but has his own
standard of taste: "Of course I visited the Louvre and saw the Old
Masters, which I could not enjoy. And I attended the Luxembourg, with
modern masters, which I enjoyed greatly. To my mind, the Old Masters
are not art, and I suspect that many others are of the same opinion;
and that their value is in their scarcity and in the variety of men with
lots of money." Somewhat akin to this is a shrewd comment on one feature
of the Exposition: "I spent several days in the Exposition at Paris. I
remember going to the exhibit of the Kimberley diamond mines, and they
kindly permitted me to take diamonds from some of the blue earth which
they were washing by machinery to exhibit the mine operations. I found
several beautiful diamonds, but they seemed a little light weight to me
when I was picking them out. They were diamonds for exhibition purposes
--probably glass."

This did not altogether complete the European trip of 1889, for Edison
wished to see Helmholtz. "After leaving Paris we went to Berlin. The
French papers then came out and attacked me because I went to Germany;
and said I was now going over to the enemy. I visited all the things of
interest in Berlin; and then on my way home I went with Helmholtz
and Siemens in a private compartment to the meeting of the German
Association of Science at Heidelberg, and spent two days there. When
I started from Berlin on the trip, I began to tell American stories.
Siemens was very fond of these stories and would laugh immensely at
them, and could see the points and the humor, by his imagination; but
Helmholtz could not see one of them. Siemens would quickly, in
German, explain the point, but Helmholtz could not see it, although he
understood English, which Siemens could speak. Still the explanations
were made in German. I always wished I could have understood Siemens's
explanations of the points of those stories. At Heidelberg, my
assistant, Mr. Wangemann, an accomplished German-American, showed the
phonograph before the Association."

Then came the trip from the Continent to England, of which this will
certainly pass as a graphic picture: "When I crossed over to England
I had heard a good deal about the terrors of the English Channel as
regards seasickness. I had been over the ocean three times and did not
know what seasickness was, so far as I was concerned myself. I was told
that while a man might not get seasick on the ocean, if he met a good
storm on the Channel it would do for him. When we arrived at Calais
to cross over, everybody made for the restaurant. I did not care about
eating, and did not go to the restaurant, but my family did. I walked
out and tried to find the boat. Going along the dock I saw two small
smokestacks sticking up, and looking down saw a little boat. 'Where is
the steamer that goes across the Channel?' 'This is the boat.' There had
been a storm in the North Sea that had carried away some of the boats on
the German steamer, and it certainly looked awful tough outside. I said
to the man: 'Will that boat live in that sea?' 'Oh yes,' he said, 'but
we've had a bad storm.' So I made up my mind that perhaps I would get
sick this time. The managing director of the English railroad owning
this line was Forbes, who heard I was coming over, and placed the
private saloon at my disposal. The moment my family got in the room with
the French lady's maid and the rest, they commenced to get sick, so I
felt pretty sure I was in for it. We started out of the little inlet
and got into the Channel, and that boat went in seventeen directions
simultaneously. I waited awhile to see what was going to occur, and then
went into the smoking-compartment. Nobody was there. By-and-by the fun
began. Sounds of all kinds and varieties were heard in every direction.
They were all sick. There must have been 100 people aboard. I didn't
see a single exception except the waiters and myself. I asked one of the
waiters concerning the boat itself, and was taken to see the engineer,
and went down to look at the engines, and saw the captain. But I kept
mostly in the smoking-room. I was smoking a big cigar, and when a man
looked in I would give a big puff, and every time they saw that they
would go away and begin again. The English Channel is a holy terror, all
right, but it didn't affect me. I must be out of balance."

While in Paris, Edison had met Sir John Pender, the English "cable
king," and had received an invitation from him to make a visit to his
country residence: "Sir John Pender, the master of the cable system of
the world at that time, I met in Paris. I think he must have lived among
a lot of people who were very solemn, because I went out riding with
him in the Bois de Boulogne and started in to tell him American stories.
Although he was a Scotchman he laughed immoderately. He had the faculty
of understanding and quickly seeing the point of the stories; and
for three days after I could not get rid of him. Finally I made him
a promise that I would go to his country house at Foot's Cray, near
London. So I went there, and spent two or three days telling him
stories.

"While at Foot's Cray, I met some of the backers of Ferranti, then
putting up a gigantic alternating-current dynamo near London to send
ten or fifteen thousand volts up into the main district of the city for
electric lighting. I think Pender was interested. At any rate the people
invited to dinner were very much interested, and they questioned me as
to what I thought of the proposition. I said I hadn't any thought about
it, and could not give any opinion until I saw it. So I was taken up
to London to see the dynamo in course of construction and the methods
employed; and they insisted I should give them some expression of my
views. While I gave them my opinion, it was reluctantly; I did not want
to do so. I thought that commercially the thing was too ambitious, that
Ferranti's ideas were too big, just then; that he ought to have started
a little smaller until he was sure. I understand that this installation
was not commercially successful, as there were a great many troubles.
But Ferranti had good ideas, and he was no small man."

Incidentally it may be noted here that during the same year (1889) the
various manufacturing Edison lighting interests in America were brought
together, under the leadership of Mr. Henry Villard, and consolidated
in the Edison General Electric Company with a capital of no less than
$12,000,000 on an eight-per-cent.-dividend basis. The numerous Edison
central stations all over the country represented much more than that
sum, and made a splendid outlet for the product of the factories. A few
years later came the consolidation with the Thomson-Houston interests
in the General Electric Company, which under the brilliant and vigorous
management of President C. A. Coffin has become one of the greatest
manufacturing institutions of the country, with an output of apparatus
reaching toward $75,000,000 annually. The net result of both financial
operations was, however, to detach Edison from the special field of
invention to which he had given so many of his most fruitful years; and
to close very definitely that chapter of his life, leaving him free to
develop other ideas and interests as set forth in these volumes.

It might appear strange on the surface, but one of the reasons that most
influenced Edison to regrets in connection with the "big trade" of 1889
was that it separated him from his old friend and ally, Bergmann, who,
on selling out, saw a great future for himself in Germany, went
there, and realized it. Edison has always had an amused admiration for
Bergmann, and his "social side" is often made evident by his love of
telling stories about those days of struggle. Some of the stories were
told for this volume. "Bergmann came to work for me as a boy," says
Edison. "He started in on stock-quotation printers. As he was a rapid
workman and paid no attention to the clock, I took a fancy to him, and
gave him piece-work. He contrived so many little tools to cheapen the
work that he made lots of money. I even helped him get up tools until
it occurred to me that this was too rapid a process of getting rid of
my money, as I hadn't the heart to cut the price when it was originally
fair. After a year or so, Bergmann got enough money to start a small
shop in Wooster Street, New York, and it was at this shop that the
first phonographs were made for sale. Then came the carbon telephone
transmitter, a large number of which were made by Bergmann for the
Western Union. Finally came the electric light. A dynamo was installed
in Bergmann's shop to permit him to test the various small devices which
he was then making for the system. He rented power from a Jew who owned
the building. Power was supplied from a fifty-horse-power engine to
other tenants on the several floors. Soon after the introduction of the
big dynamo machine, the landlord appeared in the shop and insisted that
Bergmann was using more power than he was paying for, and said that
lately the belt on the engine was slipping and squealing. Bergmann
maintained that he must be mistaken. The landlord kept going among his
tenants and finally discovered the dynamo. 'Oh! Mr. Bergmann, now I know
where my power goes to,' pointing to the dynamo. Bergmann gave him a
withering look of scorn, and said, 'Come here and I will show you.'
Throwing off the belt and disconnecting the wires, he spun the armature
around by hand. 'There,' said Bergmann, 'you see it's not here that you
must look for your loss.' This satisfied the landlord, and he started
off to his other tenants. He did not know that that machine, when the
wires were connected, could stop his engine.

"Soon after, the business had grown so large that E. H. Johnson and I
went in as partners, and Bergmann rented an immense factory building
at the corner of Avenue B and East Seventeenth Street, New York, six
stories high and covering a quarter of a block. Here were made all the
small things used on the electric-lighting system, such as sockets,
chandeliers, switches, meters, etc. In addition, stock tickers,
telephones, telephone switchboards, and typewriters were made the
Hammond typewriters were perfected and made there. Over 1500 men were
finally employed. This shop was very successful both scientifically and
financially. Bergmann was a man of great executive ability and carried
economy of manufacture to the limit. Among all the men I have had
associated with me, he had the commercial instinct most highly
developed."

One need not wonder at Edison's reminiscent remark that, "In any trade
any of my 'boys' made with Bergmann he always got the best of them,
no matter what it was. One time there was to be a convention of the
managers of Edison illuminating companies at Chicago. There were a lot
of representatives from the East, and a private car was hired. At Jersey
City a poker game was started by one of the delegates. Bergmann was
induced to enter the game. This was played right through to Chicago
without any sleep, but the boys didn't mind that. I had gotten them
immune to it. Bergmann had won all the money, and when the porter came
in and said 'Chicago,' Bergmann jumped up and said: 'What! Chicago! I
thought it was only Philadelphia!'"

But perhaps this further story is a better indication of developed humor
and shrewdness: "A man by the name of Epstein had been in the habit
of buying brass chips and trimmings from the lathes, and in some way
Bergmann found out that he had been cheated. This hurt his pride, and
he determined to get even. One day Epstein appeared and said:
'Good-morning, Mr. Bergmann, have you any chips to-day?' 'No,' said
Bergmann, 'I have none.' 'That's strange, Mr. Bergmann; won't you
look?' No, he wouldn't look; he knew he had none. Finally Epstein was so
persistent that Bergmann called an assistant and told him to go and
see if he had any chips. He returned and said they had the largest and
finest lot they ever had. Epstein went up to several boxes piled full of
chips, and so heavy that he could not lift even one end of a box. 'Now,
Mr. Bergmann,' said Epstein, 'how much for the lot?' 'Epstein,' said
Bergmann, 'you have cheated me, and I will no longer sell by the lot,
but will sell only by the pound.' No amount of argument would apparently
change Bergmann's determination to sell by the pound, but finally
Epstein got up to $250 for the lot, and Bergmann, appearing as if
disgusted, accepted and made him count out the money. Then he said:
'Well, Epstein, good-bye, I've got to go down to Wall Street.' Epstein
and his assistant then attempted to lift the boxes to carry them out,
but couldn't; and then discovered that calculations as to quantity had
been thrown out because the boxes had all been screwed down to the floor
and mostly filled with boards with a veneer of brass chips. He made such
a scene that he had to be removed by the police. I met him several days
afterward and he said he had forgiven Mr. Bergmann, as he was such a
smart business man, and the scheme was so ingenious.

"One day as a joke I filled three or four sheets of foolscap paper with
a jumble of figures and told Bergmann they were calculations showing the
great loss of power from blowing the factory whistle. Bergmann thought
it real, and never after that would he permit the whistle to blow."

Another glimpse of the "social side" is afforded in the following little
series of pen-pictures of the same place and time: "I had my laboratory
at the top of the Bergmann works, after moving from Menlo Park. The
building was six stories high. My father came there when he was eighty
years of age. The old man had powerful lungs. In fact, when I was
examined by the Mutual Life Insurance Company, in 1873, my lung
expansion was taken by the doctor, and the old gentleman was there
at the time. He said to the doctor: 'I wish you would take my lung
expansion, too.' The doctor took it, and his surprise was very great,
as it was one of the largest on record. I think it was five and one-half
inches. There were only three or four could beat it. Little Bergmann
hadn't much lung power. The old man said to him, one day: 'Let's run
up-stairs.' Bergmann agreed and ran up. When they got there Bergmann
was all done up, but my father never showed a sign of it. There was an
elevator there, and each day while it was travelling up I held the stem
of my Waterbury watch up against the column in the elevator shaft and
it finished the winding by the time I got up the six stories." This
original method of reducing the amount of physical labor involved in
watch-winding brings to mind another instance of shrewdness mentioned by
Edison, with regard to his newsboy days. Being asked whether he did not
get imposed upon with bad bank-bills, he replied that he subscribed to a
bank-note detector and consulted it closely whenever a note of any size
fell into his hands. He was then less than fourteen years old.

The conversations with Edison that elicited these stories brought out
some details as to peril that attends experimentation. He has confronted
many a serious physical risk, and counts himself lucky to have come
through without a scratch or scar. Four instances of personal danger
may be noted in his own language: "When I started at Menlo, I had an
electric furnace for welding rare metals that I did not know about
very clearly. I was in the dark-room, where I had a lot of chloride of
sulphur, a very corrosive liquid. I did not know that it would decompose
by water. I poured in a beakerful of water, and the whole thing exploded
and threw a lot of it into my eyes. I ran to the hydrant, leaned over
backward, opened my eyes, and ran the hydrant water right into them. But
it was two weeks before I could see.

"The next time we just saved ourselves. I was making some stuff to
squirt into filaments for the incandescent lamp. I made about a pound of
it. I had used ammonia and bromine. I did not know it at the time, but
I had made bromide of nitrogen. I put the large bulk of it in three
filters, and after it had been washed and all the water had come through
the filter, I opened the three filters and laid them on a hot steam
plate to dry with the stuff. While I and Mr. Sadler, one of my
assistants, were working near it, there was a sudden flash of light,
and a very smart explosion. I said to Sadler: 'What is that?' 'I don't
know,' he said, and we paid no attention. In about half a minute there
was a sharp concussion, and Sadler said: 'See, it is that stuff on the
steam plate.' I grabbed the whole thing and threw it in the sink, and
poured water on it. I saved a little of it and found it was a terrific
explosive. The reason why those little preliminary explosions took place
was that a little had spattered out on the edge of the filter paper,
and had dried first and exploded. Had the main body exploded there would
have been nothing left of the laboratory I was working in.

"At another time, I had a briquetting machine for briquetting iron ore.
I had a lever held down by a powerful spring, and a rod one inch in
diameter and four feet long. While I was experimenting with it, and
standing beside it, a washer broke, and that spring threw the rod right
up to the ceiling with a blast; and it came down again just within
an inch of my nose, and went clear through a two-inch plank. That was
'within an inch of your life,' as they say.

"In my experimental plant for concentrating iron ore in the northern
part of New Jersey, we had a vertical drier, a column about nine feet
square and eighty feet high. At the bottom there was a space where two
men could go through a hole; and then all the rest of the column was
filled with baffle plates. One day this drier got blocked, and the ore
would not run down. So I and the vice-president of the company, Mr.
Mallory, crowded through the manhole to see why the ore would not come
down. After we got in, the ore did come down and there were fourteen
tons of it above us. The men outside knew we were in there, and they had
a great time digging us out and getting air to us."

Such incidents brought out in narration the fact that many of the men
working with him had been less fortunate, particularly those who had
experimented with the Roentgen X-ray, whose ravages, like those of
leprosy, were responsible for the mutilation and death of at least one
expert assistant. In the early days of work on the incandescent lamp,
also, there was considerable trouble with mercury. "I had a series of
vacuum-pumps worked by mercury and used for exhausting experimental
incandescent lamps. The main pipe, which was full of mercury, was about
seven and one-half feet from the floor. Along the length of the pipe
were outlets to which thick rubber tubing was connected, each tube to a
pump. One day, while experimenting with the mercury pump, my assistant,
an awkward country lad from a farm on Staten Island, who had adenoids in
his nose and breathed through his mouth, which was always wide open,
was looking up at this pipe, at a small leak of mercury, when the rubber
tube came off and probably two pounds of mercury went into his mouth and
down his throat, and got through his system somehow. In a short time he
became salivated, and his teeth got loose. He went home, and shortly his
mother appeared at the laboratory with a horsewhip, which she proposed
to use on the proprietor. I was fortunately absent, and she was
mollified somehow by my other assistants. I had given the boy
considerable iodide of potassium to prevent salivation, but it did no
good in this case.

"When the first lamp-works were started at Menlo Park, one of my
experiments seemed to show that hot mercury gave a better vacuum in the
lamp than cold mercury. I thereupon started to heat it. Soon all the men
got salivated, and things looked serious; but I found that in the mirror
factories, where mercury was used extensively, the French Government
made the giving of iodide of potassium compulsory to prevent salivation.
I carried out this idea, and made every man take a dose every day, but
there was great opposition, and hot mercury was finally abandoned."

It will have been gathered that Edison has owed his special immunity
from "occupational diseases" not only to luck but to unusual powers of
endurance, and a strong physique, inherited, no doubt, from his father.
Mr. Mallory mentions a little fact that bears on this exceptional
quality of bodily powers. "I have often been surprised at Edison's
wonderful capacity for the instant visual perception of differences in
materials that were invisible to others until he would patiently point
them out. This had puzzled me for years, but one day I was unexpectedly
let into part of the secret. For some little time past Mr. Edison had
noticed that he was bothered somewhat in reading print, and I asked him
to have an oculist give him reading-glasses. He partially promised, but
never took time to attend to it. One day he and I were in the city, and
as Mrs. Edison had spoken to me about it, and as we happened to have
an hour to spare, I persuaded him to go to an oculist with me. Using
no names, I asked the latter to examine the gentleman's eyes. He did so
very conscientiously, and it was an interesting experience, for he was
kept busy answering Mr. Edison's numerous questions. When the oculist
finished, he turned to me and said: 'I have been many years in
the business, but have never seen an optic nerve like that of this
gentleman. An ordinary optic nerve is about the thickness of a thread,
but his is like a cord. He must be a remarkable man in some walk of
life. Who is he?'"

It has certainly required great bodily vigor and physical capacity to
sustain such fatigue as Edison has all his life imposed upon himself,
to the extent on one occasion of going five days without sleep. In a
conversation during 1909, he remarked, as though it were nothing out of
the way, that up to seven years previously his average of daily working
hours was nineteen and one-half, but that since then he figured it
at eighteen. He said he stood it easily, because he was interested in
everything, and was reading and studying all the time. For instance,
he had gone to bed the night before exactly at twelve and had arisen at
4.30 A. M. to read some New York law reports. It was suggested that the
secret of it might be that he did not live in the past, but was always
looking forward to a greater future, to which he replied: "Yes, that's
it. I don't live with the past; I am living for to-day and to-morrow. I
am interested in every department of science, arts, and manufacture.
I read all the time on astronomy, chemistry, biology, physics,
music, metaphysics, mechanics, and other branches--political economy,
electricity, and, in fact, all things that are making for progress in
the world. I get all the proceedings of the scientific societies, the
principal scientific and trade journals, and read them. I also read The
Clipper, The Police Gazette, The Billboard, The Dramatic Mirror, and
a lot of similar publications, for I like to know what is going on. In
this way I keep up to date, and live in a great moving world of my own,
and, what's more, I enjoy every minute of it." Referring to some event
of the past, he said: "Spilt milk doesn't interest me. I have spilt lots
of it, and while I have always felt it for a few days, it is quickly
forgotten, and I turn again to the future." During another talk on
kindred affairs it was suggested to Edison that, as he had worked so
hard all his life, it was about time for him to think somewhat of the
pleasures of travel and the social side of life. To which he replied
laughingly: "I already have a schedule worked out. From now until I am
seventy-five years of age, I expect to keep more or less busy with my
regular work, not, however, working as many hours or as hard as I have
in the past. At seventy five I expect to wear loud waistcoats with
fancy buttons; also gaiter tops; at eighty I expect to learn how to play
bridge whist and talk foolishly to the ladies. At eighty-five I expect
to wear a full-dress suit every evening at dinner, and at ninety--well,
I never plan more than thirty years ahead."

The reference to clothes is interesting, as it is one of the few
subjects in which Edison has no interest. It rather bores him. His dress
is always of the plainest; in fact, so plain that, at the Bergmann shops
in New York, the children attending a parochial Catholic school were
wont to salute him with the finger to the head, every time he went by.
Upon inquiring, he found that they took him for a priest, with his dark
garb, smooth-shaven face, and serious expression. Edison says: "I get
a suit that fits me; then I compel the tailors to use that as a jig or
pattern or blue-print to make others by. For many years a suit was used
as a measurement; once or twice they took fresh measurements, but these
didn't fit and they had to go back. I eat to keep my weight constant,
hence I need never change measurements." In regard to this, Mr. Mallory
furnishes a bit of chat as follows: "In a lawsuit in which I was a
witness, I went out to lunch with the lawyers on both sides, and the
lawyer who had been cross-examining me stated that he had for a client
a Fifth Avenue tailor, who had told him that he had made all of Mr.
Edison's clothes for the last twenty years, and that he had never seen
him. He said that some twenty years ago a suit was sent to him from
Orange, and measurements were made from it, and that every suit since
had been made from these measurements. I may add, from my own personal
observation, that in Mr. Edison's clothes there is no evidence but that
every new suit that he has worn in that time looks as if he had been
specially measured for it, which shows how very little he has changed
physically in the last twenty years."

Edison has never had any taste for amusements, although he will indulge
in the game of "Parchesi" and has a billiard-table in his house. The
coming of the automobile was a great boon to him, because it gave him
a form of outdoor sport in which he could indulge in a spirit of
observation, without the guilty feeling that he was wasting valuable
time. In his automobile he has made long tours, and with his family has
particularly indulged his taste for botany. That he has had the usual
experience in running machines will be evidenced by the following little
story from Mr. Mallory: "About three years ago I had a motor-car of
a make of which Mr. Edison had already two cars; and when the car was
received I made inquiry as to whether any repair parts were carried
by any of the various garages in Easton, Pennsylvania, near our cement
works. I learned that this particular car was the only one in Easton.
Knowing that Mr. Edison had had an experience lasting two or three
years with this particular make of car, I determined to ask him for
information relative to repair parts; so the next time I was at the
laboratory I told him I was unable to get any repair parts in Easton,
and that I wished to order some of the most necessary, so that, in case
of breakdowns, I would not be compelled to lose the use of the car for
several days until the parts came from the automobile factory. I asked
his advice as to what I should order, to which he replied: 'I don't
think it will be necessary to order an extra top.'" Since that episode,
which will probably be appreciated by most automobilists, Edison
has taken up the electric automobile, and is now using it as well as
developing it. One of the cars equipped with his battery is the Bailey,
and Mr. Bee tells the following story in regard to it: "One day Colonel
Bailey, of Amesbury, Massachusetts, who was visiting the Automobile Show
in New York, came out to the laboratory to see Mr. Edison, as the
latter had expressed a desire to talk with him on his next visit to the
metropolis. When he arrived at the laboratory, Mr. Edison, who had been
up all night experimenting, was asleep on the cot in the library. As
a rule we never wake Mr. Edison from sleep, but as he wanted to see
Colonel Bailey, who had to go, I felt that an exception should be made,
so I went and tapped him on the shoulder. He awoke at once, smiling,
jumped up, was instantly himself as usual, and advanced and greeted the
visitor. His very first question was: 'Well, Colonel, how did you come
out on that experiment?'--referring to some suggestions he had made at
their last meeting a year before. For a minute Colonel Bailey did not
recall what was referred to; but a few words from Mr. Edison brought it
back to his remembrance, and he reported that the results had justified
Mr. Edison's expectations."

It might be expected that Edison would have extreme and even radical
ideas on the subject of education--and he has, as well as a perfect
readiness to express them, because he considers that time is wasted on
things that are not essential: "What we need," he has said, "are men
capable of doing work. I wouldn't give a penny for the ordinary college
graduate, except those from the institutes of technology. Those coming
up from the ranks are a darned sight better than the others. They aren't
filled up with Latin, philosophy, and the rest of that ninny stuff." A
further remark of his is: "What the country needs now is the practical
skilled engineer, who is capable of doing everything. In three or four
centuries, when the country is settled, and commercialism is diminished,
there will be time for the literary men. At present we want engineers,
industrial men, good business-like managers, and railroad men." It is
hardly to be marvelled at that such views should elicit warm protest,
summed up in the comment: "Mr. Edison and many like him see in reverse
the course of human progress. Invention does not smooth the way for the
practical men and make them possible. There is always too much danger
of neglecting thoughts for things, ideas for machinery. No theory
of education that aggravates this danger is consistent with national
well-being."

Edison is slow to discuss the great mysteries of life, but is of
reverential attitude of mind, and ever tolerant of others' beliefs. He
is not a religious man in the sense of turning to forms and creeds, but,
as might be expected, is inclined as an inventor and creator to argue
from the basis of "design" and thence to infer a designer. "After years
of watching the processes of nature," he says, "I can no more doubt the
existence of an Intelligence that is running things than I do of the
existence of myself. Take, for example, the substance water that forms
the crystals known as ice. Now, there are hundreds of combinations that
form crystals, and every one of them, save ice, sinks in water. Ice, I
say, doesn't, and it is rather lucky for us mortals, for if it had done
so, we would all be dead. Why? Simply because if ice sank to the bottoms
of rivers, lakes, and oceans as fast as it froze, those places would be
frozen up and there would be no water left. That is only one example
out of thousands that to me prove beyond the possibility of a doubt that
some vast Intelligence is governing this and other planets."

A few words as to the domestic and personal side of Edison's life, to
which many incidental references have already been made in these pages.
He was married in 1873 to Miss Mary Stillwell, who died in 1884, leaving
three children--Thomas Alva, William Leslie, and Marion Estelle.

Mr. Edison was married again in 1886 to Miss Mina Miller, daughter of
Mr. Lewis Miller, a distinguished pioneer inventor and manufacturer in
the field of agricultural machinery, and equally entitled to fame as the
father of the "Chautauqua idea," and the founder with Bishop Vincent
of the original Chautauqua, which now has so many replicas all over the
country, and which started in motion one of the great modern educational
and moral forces in America. By this marriage there are three
children--Charles, Madeline, and Theodore.

For over a score of years, dating from his marriage to Miss Miller,
Edison's happy and perfect domestic life has been spent at Glenmont,
a beautiful property acquired at that time in Llewellyn Park, on the
higher slopes of Orange Mountain, New Jersey, within easy walking
distance of the laboratory at the foot of the hill in West Orange. As
noted already, the latter part of each winter is spent at Fort Myers,
Florida, where Edison has, on the banks of the Calahoutchie River, a
plantation home that is in many ways a miniature copy of the home and
laboratory up North. Glenmont is a rather elaborate and florid building
in Queen Anne English style, of brick, stone, and wooden beams showing
on the exterior, with an abundance of gables and balconies. It is set in
an environment of woods and sweeps of lawn, flanked by unusually large
conservatories, and always bright in summer with glowing flower beds. It
would be difficult to imagine Edison in a stiffly formal house, and this
big, cozy, three-story, rambling mansion has an easy freedom about it,
without and within, quite in keeping with the genius of the inventor,
but revealing at every turn traces of feminine taste and culture. The
ground floor, consisting chiefly of broad drawing-rooms, parlors, and
dining-hall, is chiefly noteworthy for the "den," or lounging-room, at
the end of the main axis, where the family and friends are likely to
be found in the evening hours, unless the party has withdrawn for more
intimate social intercourse to the interesting and fascinating private
library on the floor above. The lounging-room on the ground floor is
more or less of an Edison museum, for it is littered with souvenirs from
great people, and with mementos of travel, all related to some event
or episode. A large cabinet contains awards, decorations, and medals
presented to Edison, accumulating in the course of a long career,
some of which may be seen in the illustration opposite. Near by may be
noticed a bronze replica of the Edison gold medal which was founded in
the American Institute of Electrical Engineers, the first award of which
was made to Elihu Thomson during the present year (1910). There are
statues of serpentine marble, gifts of the late Tsar of Russia, whose
admiration is also represented by a gorgeous inlaid and enamelled
cigar-case.

There are typical bronze vases from the Society of Engineers of Japan,
and a striking desk-set of writing apparatus from Krupp, all the pieces
being made out of tiny but massive guns and shells of Krupp steel. In
addition to such bric-a-brac and bibelots of all kinds are many pictures
and photographs, including the original sketches of the reception given
to Edison in 1889 by the Paris Figaro, and a letter from Madame Carnot,
placing the Presidential opera-box at the disposal of Mr. and Mrs.
Edison. One of the most conspicuous features of the room is a phonograph
equipment on which the latest and best productions by the greatest
singers and musicians can always be heard, but which Edison himself is
everlastingly experimenting with, under the incurable delusion that this
domestic retreat is but an extension of his laboratory.

The big library--semi-boudoir--up-stairs is also very expressive of the
home life of Edison, but again typical of his nature and disposition,
for it is difficult to overlay his many technical books and scientific
periodicals with a sufficiently thick crust of popular magazines or
current literature to prevent their outcropping into evidence. In like
manner the chat and conversation here, however lightly it may begin,
turns invariably to large questions and deep problems, especially in the
fields of discovery and invention; and Edison, in an easy-chair, will
sit through the long evenings till one or two in the morning, pulling
meditatively at his eyebrows, quoting something he has just read
pertinent to the discussion, hearing and telling new stories with gusto,
offering all kinds of ingenious suggestions, and without fail getting
hold of pads and sheets of paper on which to make illustrative sketches.
He is wonderfully handy with the pencil, and will sometimes amuse
himself, while chatting, with making all kinds of fancy bits of
penmanship, twisting his signature into circles and squares, but always
writing straight lines--so straight they could not be ruled truer. Many
a night it is a question of getting Edison to bed, for he would much
rather probe a problem than eat or sleep; but at whatever hour the
visitor retires or gets up, he is sure to find the master of the house
on hand, serene and reposeful, and just as brisk at dawn as when he
allowed the conversation to break up at midnight. The ordinary routine
of daily family life is of course often interrupted by receptions and
parties, visits to the billiard-room, the entertainment of visitors, the
departure to and return from college, at vacation periods, of the young
people, and matters relating to the many social and philanthropic causes
in which Mrs. Edison is actively interested; but, as a matter of fact,
Edison's round of toil and relaxation is singularly uniform and free
from agitation, and that is the way he would rather have it.

Edison at sixty-three has a fine physique, and being free from serious
ailments of any kind, should carry on the traditions of his long-lived
ancestors as to a vigorous old age. His hair has whitened, but is still
thick and abundant, and though he uses glasses for certain work, his
gray-blue eyes are as keen and bright and deeply lustrous as ever, with
the direct, searching look in them that they have ever worn. He
stands five feet nine and one-half inches high, weighs one hundred and
seventy-five pounds, and has not varied as to weight in a quarter of a
century, although as a young man he was slim to gauntness. He is very
abstemious, hardly ever touching alcohol, caring little for meat, but
fond of fruit, and never averse to a strong cup of coffee or a good
cigar. He takes extremely little exercise, although his good color and
quickness of step would suggest to those who do not know better that he
is in the best of training, and one who lives in the open air.

His simplicity as to clothes has already been described. One would be
startled to see him with a bright tie, a loud checked suit, or a fancy
waistcoat, and yet there is a curious sense of fastidiousness about
the plain things he delights in. Perhaps he is not wholly responsible
personally for this state of affairs. In conversation Edison is direct,
courteous, ready to discuss a topic with anybody worth talking to, and,
in spite of his sore deafness, an excellent listener. No one ever goes
away from Edison in doubt as to what he thinks or means, but he is ever
shy and diffident to a degree if the talk turns on himself rather than
on his work.

If the authors were asked, after having written the foregoing pages,
to explain here the reason for Edison's success, based upon their
observations so far made, they would first answer that he combines with
a vigorous and normal physical structure a mind capable of clear and
logical thinking, and an imagination of unusual activity. But this would
by no means offer a complete explanation. There are many men of
equal bodily and mental vigor who have not achieved a tithe of
his accomplishment. What other factors are there to be taken into
consideration to explain this phenomenon? First, a stolid, almost
phlegmatic, nervous system which takes absolutely no notice of ennui--a
system like that of a Chinese ivory-carver who works day after day and
month after month on a piece of material no larger than your hand. No
better illustration of this characteristic can be found than in the
development of the nickel pocket for the storage battery, an element the
size of a short lead-pencil, on which upward of five years were spent
in experiments, costing over a million dollars, day after day, always
apparently with the same tubes but with small variations carefully
tabulated in the note-books. To an ordinary person the mere sight of
such a tube would have been as distasteful, certainly after a week or
so, as the smell of a quail to a man striving to eat one every day for a
month, near the end of his gastronomic ordeal. But to Edison these small
perforated steel tubes held out as much of a fascination at the end of
five years as when the search was first begun, and every morning found
him as eager to begin the investigation anew as if the battery was an
absolutely novel problem to which his thoughts had just been directed.

Another and second characteristic of Edison's personality contributing
so strongly to his achievements is an intense, not to say courageous,
optimism in which no thought of failure can enter, an optimism born of
self-confidence, and becoming--after forty or fifty years of experience
more and more a sense of certainty in the accomplishment of success. In
the overcoming of difficulties he has the same intellectual pleasure
as the chess-master when confronted with a problem requiring all the
efforts of his skill and experience to solve. To advance along smooth
and pleasant paths, to encounter no obstacles, to wrestle with no
difficulties and hardships--such has absolutely no fascination to him.
He meets obstruction with the keen delight of a strong man battling with
the waves and opposing them in sheer enjoyment, and the greater and more
apparently overwhelming the forces that may tend to sweep him back, the
more vigorous his own efforts to forge through them. At the conclusion
of the ore-milling experiments, when practically his entire fortune was
sunk in an enterprise that had to be considered an impossibility, when
at the age of fifty he looked back upon five or six years of intense
activity expended apparently for naught, when everything seemed most
black and the financial clouds were quickly gathering on the horizon,
not the slightest idea of repining entered his mind. The main experiment
had succeeded--he had accomplished what he sought for. Nature at another
point had outstripped him, yet he had broadened his own sum of knowledge
to a prodigious extent. It was only during the past summer (1910) that
one of the writers spent a Sunday with him riding over the beautiful
New Jersey roads in an automobile, Edison in the highest spirits and
pointing out with the keenest enjoyment the many beautiful views of
valley and wood. The wanderings led to the old ore-milling plant at
Edison, now practically a mass of deserted buildings all going to decay.
It was a depressing sight, marking such titanic but futile struggles
with nature. To Edison, however, no trace of sentiment or regret
occurred, and the whole ruins were apparently as much a matter of
unconcern as if he were viewing the remains of Pompeii. Sitting on the
porch of the White House, where he lived during that period, in the
light of the setting sun, his fine face in repose, he looked as placidly
over the scene as a happy farmer over a field of ripening corn. All that
he said was: "I never felt better in my life than during the five years
I worked here. Hard work, nothing to divert my thought, clear air and
simple food made my life very pleasant. We learned a great deal. It will
be of benefit to some one some time." Similarly, in connection with the
storage battery, after having experimented continuously for three years,
it was found to fall below his expectations, and its manufacture had
to be stopped. Hundreds of thousands of dollars had been spent on the
experiments, and, largely without Edison's consent, the battery had been
very generally exploited in the press. To stop meant not only to pocket
a great loss already incurred, facing a dark and uncertain future, but
to most men animated by ordinary human feelings, it meant more than
anything else, an injury to personal pride. Pride? Pooh! that had
nothing to do with the really serious practical problem, and the writers
can testify that at the moment when his decision was reached, work
stopped and the long vista ahead was peered into, Edison was as little
concerned as if he had concluded that, after all, perhaps peach-pie
might be better for present diet than apple-pie. He has often said that
time meant very little to him, that he had but a small realization
of its passage, and that ten or twenty years were as nothing when
considering the development of a vital invention.

These references to personal pride recall another characteristic of
Edison wherein he differs from most men. There are many individuals
who derive an intense and not improper pleasure in regalia or military
garments, with plenty of gold braid and brass buttons, and thus arrayed,
in appearing before their friends and neighbors. Putting at the head of
the procession the man who makes his appeal to public attention solely
because of the brilliancy of his plumage, and passing down the ranks
through the multitudes having a gradually decreasing sense of vanity in
their personal accomplishment, Edison would be placed at the very end.
Reference herein has been made to the fact that one of the two great
English universities wished to confer a degree upon him, but that he
was unable to leave his work for the brief time necessary to accept the
honor. At that occasion it was pointed out to him that he should make
every possible sacrifice to go, that the compliment was great, and that
but few Americans had been so recognized. It was hopeless--an
appeal based on sentiment. Before him was something real--work to be
accomplished--a problem to be solved. Beyond, was a prize as intangible
as the button of the Legion of Honor, which he concealed from his
friends that they might not feel he was "showing off." The fact is that
Edison cares little for the approval of the world, but that he cares
everything for the approval of himself. Difficult as it may be--perhaps
impossible--to trace its origin, Edison possesses what he would probably
call a well-developed case of New England conscience, for whose approval
he is incessantly occupied.

These, then, may be taken as the characteristics of Edison that have
enabled him to accomplish more than most men--a strong body, a clear
and active mind, a developed imagination, a capacity of great mental and
physical concentration, an iron-clad nervous system that knows no ennui,
intense optimism, and courageous self-confidence. Any one having these
capacities developed to the same extent, with the same opportunities for
use, would probably accomplish as much. And yet there is a peculiarity
about him that so far as is known has never been referred to before in
print. He seems to be conscientiously afraid of appearing indolent,
and in consequence subjects himself regularly to unnecessary hardship.
Working all night is seldom necessary, or until two or three o'clock in
the morning, yet even now he persists in such tests upon his strength.
Recently one of the writers had occasion to present to him a long
typewritten document of upward of thirty pages for his approval. It
was taken home to Glenmont. Edison had a few minor corrections to make,
probably not more than a dozen all told. They could have been embodied
by interlineations and marginal notes in the ordinary way, and certainly
would not have required more than ten or fifteen minutes of his time.
Yet what did he do? HE COPIED OUT PAINSTAKINGLY THE ENTIRE PAPER IN
LONG HAND, embodying the corrections as he went along, and presented the
result of his work the following morning. At the very least such a task
must have occupied several hours. How can such a trait--and scores of
similar experiences could be given--be explained except by the fact
that, evidently, he felt the need of special schooling in industry--that
under no circumstances must he allow a thought of indolence to enter his
mind?

Undoubtedly in the days to come Edison will not only be recognized as an
intellectual prodigy, but as a prodigy of industry--of hard work. In his
field as inventor and man of science he stands as clear-cut and secure
as the lighthouse on a rock, and as indifferent to the tumult around.
But as the "old man"--and before he was thirty years old he was
affectionately so called by his laboratory associates--he is a normal,
fun-loving, typical American. His sense of humor is intense, but not
of the hothouse, overdeveloped variety. One of his favorite jokes is to
enter the legal department with an air of great humility and apply for a
job as an inventor! Never is he so preoccupied or fretted with cares as
not to drop all thought of his work for a few moments to listen to a new
story, with a ready smile all the while, and a hearty, boyish laugh at
the end. His laugh, in fact, is sometimes almost aboriginal; slapping
his hands delightedly on his knees, he rocks back and forth and fairly
shouts his pleasure. Recently a daily report of one of his companies
that had just been started contained a large order amounting to several
thousand dollars, and was returned by him with a miniature sketch of a
small individual viewing that particular item through a telescope! His
facility in making hasty but intensely graphic sketches is proverbial.
He takes great delight in imitating the lingo of the New York street
gamin. A dignified person named James may be greeted with: "Hully Gee!
Chimmy, when did youse blow in?" He likes to mimic and imitate types,
generally, that are distasteful to him. The sanctimonious hypocrite, the
sleek speculator, and others whom he has probably encountered in life
are done "to the queen's taste."

One very cold winter's day he entered the laboratory library in fine
spirits, "doing" the decayed dandy, with imaginary cane under his
arm, struggling to put on a pair of tattered imaginary gloves, with
a self-satisfied smirk and leer that would have done credit to a real
comedian. This particular bit of acting was heightened by the fact that
even in the coldest weather he wears thin summer clothes, generally
acid-worn and more or less disreputable. For protection he varies the
number of his suits of underclothing, sometimes wearing three or four
sets, according to the thermometer.

If one could divorce Edison from the idea of work, and could regard
him separate and apart from his embodiment as an inventor and man of
science, it might truly be asserted that his temperament is essentially
mercurial. Often he is in the highest spirits, with all the spontaneity
of youth, and again he is depressed, moody, and violently angry. Anger
with him, however, is a good deal like the story attributed to Napoleon:

"Sire, how is it that your judgment is not affected by your great rage?"
asked one of his courtiers.

"Because," said the Emperor, "I never allow it to rise above this line,"
drawing his hand across his throat. Edison has been seen sometimes
almost beside himself with anger at a stupid mistake or inexcusable
oversight on the part of an assistant, his voice raised to a high pitch,
sneeringly expressing his feelings of contempt for the offender; and yet
when the culprit, like a bad school-boy, has left the room, Edison has
immediately returned to his normal poise, and the incident is a thing
of the past. At other times the unsettled condition persists, and his
spleen is vented not only on the original instigator but upon others who
may have occasion to see him, sometimes hours afterward. When such a
fit is on him the word is quickly passed around, and but few of his
associates find it necessary to consult with him at the time. The
genuine anger can generally be distinguished from the imitation article
by those who know him intimately by the fact that when really enraged
his forehead between the eyes partakes of a curious rotary movement that
cannot be adequately described in words. It is as if the storm-clouds
within are moving like a whirling cyclone. As a general rule, Edison
does not get genuinely angry at mistakes and other human weaknesses of
his subordinates; at best he merely simulates anger. But woe betide the
one who has committed an act of bad faith, treachery, dishonesty, or
ingratitude; THEN Edison can show what it is for a strong man to get
downright mad. But in this respect he is singularly free, and his
spells of anger are really few. In fact, those who know him best are
continually surprised at his moderation and patience, often when there
has been great provocation. People who come in contact with him and who
may have occasion to oppose his views, may leave with the impression
that he is hot-tempered; nothing could be further from the truth. He
argues his point with great vehemence, pounds on the table to emphasize
his views, and illustrates his theme with a wealth of apt similes; but,
on account of his deafness, it is difficult to make the argument really
two-sided. Before the visitor can fully explain his side of the matter
some point is brought up that starts Edison off again, and new arguments
from his viewpoint are poured forth. This constant interruption is taken
by many to mean that Edison has a small opinion of any arguments that
oppose him; but he is only intensely in earnest in presenting his own
side. If the visitor persists until Edison has seen both sides of the
controversy, he is always willing to frankly admit that his own views
may be unsound and that his opponent is right. In fact, after such a
controversy, both parties going after each other hammer and tongs, the
arguments TO HIM being carried on at the very top of one's voice to
enable him to hear, and FROM HIM being equally loud in the excitement
of the discussion, he has often said: "I see now that my position was
absolutely rotten."

Obviously, however, all of these personal characteristics have nothing
to do with Edison's position in the world of affairs. They show him
to be a plain, easy-going, placid American, with no sense of
self-importance, and ready at all times to have his mind turned into a
lighter channel. In private life they show him to be a good citizen, a
good family man, absolutely moral, temperate in all things, and of great
charitableness to all mankind. But what of his position in the age
in which he lives? Where does he rank in the mountain range of great
Americans?

It is believed that from the other chapters of this book the reader can
formulate his own answer to the question.



INTRODUCTION TO THE APPENDIX

THE reader who has followed the foregoing narrative may feel that
inasmuch as it is intended to be an historical document, an appropriate
addendum thereto would be a digest of all the inventions of Edison. The
desirability of such a digest is not to be denied, but as there are some
twenty-five hundred or more inventions to be considered (including those
covered by caveats), the task of its preparation would be stupendous.
Besides, the resultant data would extend this book into several
additional volumes, thereby rendering it of value chiefly to the
technical student, but taking it beyond the bounds of biography.

We should, however, deem our presentation of Mr. Edison's work to
be imperfectly executed if we neglected to include an intelligible
exposition of the broader theoretical principles of his more important
inventions. In the following Appendix we have therefore endeavored
to present a few brief statements regarding Mr. Edison's principal
inventions, classified as to subject-matter and explained in language
as free from technicalities as is possible. No attempt has been made to
conform with strictly scientific terminology, but, for the benefit of
the general reader, well-understood conventional expressions, such as
"flow of current," etc., have been employed. It should be borne in mind
that each of the following items has been treated as a whole or class,
generally speaking, and not as a digest of all the individual patents
relating to it. Any one who is sufficiently interested can obtain copies
of any of the patents referred to for five cents each by addressing the
Commissioner of Patents, Washington, D. C.



APPENDIX



I. THE STOCK PRINTER

IN these modern days, when the Stock Ticker is in universal use, one
seldom, if ever, hears the name of Edison coupled with the little
instrument whose chatterings have such tremendous import to the whole
world. It is of much interest, however, to remember the fact that it
was by reason of his notable work in connection with this device that he
first became known as an inventor. Indeed, it was through the intrinsic
merits of his improvements in stock tickers that he made his real entree
into commercial life.

The idea of the ticker did not originate with Edison, as we have already
seen in Chapter VII of the preceding narrative, but at the time of his
employment with the Western Union, in Boston, in 1868, the crudities of
the earlier forms made an impression on his practical mind, and he got
out an improved instrument of his own, which he introduced in
Boston through the aid of a professional promoter. Edison, then only
twenty-one, had less business experience than the promoter, through
whose manipulation he soon lost his financial interest in this early
ticker enterprise. The narrative tells of his coming to New York in
1869, and immediately plunging into the business of gold and stock
reporting. It was at this period that his real work on stock printers
commenced, first individually, and later as a co-worker with F. L. Pope.
This inventive period extended over a number of years, during which time
he took out forty-six patents on stock-printing instruments and devices,
two of such patents being issued to Edison and Pope as joint inventors.
These various inventions were mostly in the line of development of the
art as it progressed during those early years, but out of it all came
the Edison universal printer, which entered into very extensive use,
and which is still used throughout the United States and in some foreign
countries to a considerable extent at this very day.

Edison's inventive work on stock printers has left its mark upon the art
as it exists at the present time. In his earlier work he directed his
attention to the employment of a single-circuit system, in which only
one wire was required, the two operations of setting the type-wheels
and of printing being controlled by separate electromagnets which were
actuated through polarized relays, as occasion required, one polarity
energizing the electromagnet controlling the type-wheels, and the
opposite polarity energizing the electromagnet controlling the printing.
Later on, however, he changed over to a two-wire circuit, such as
shown in Fig. 2 of this article in connection with the universal stock
printer. In the earliest days of the stock printer, Edison realized
the vital commercial importance of having all instruments recording
precisely alike at the same moment, and it was he who first devised (in
1869) the "unison stop," by means of which all connected instruments
could at any moment be brought to zero from the central transmitting
station, and thus be made to work in correspondence with the central
instrument and with one another. He also originated the idea of using
only one inking-pad and shifting it from side to side to ink the
type-wheels. It was also in Edison's stock printer that the principle of
shifting type-wheels was first employed. Hence it will be seen that,
as in many other arts, he made a lasting impression in this one by the
intrinsic merits of the improvements resulting from his work therein.

We shall not attempt to digest the forty-six patents above named, nor to
follow Edison through the progressive steps which led to the completion
of his universal printer, but shall simply present a sketch of the
instrument itself, and follow with a very brief and general explanation
of its theory. The Edison universal printer, as it virtually appears
in practice, is illustrated in Fig. 1 below, from which it will be seen
that the most prominent parts are the two type-wheels, the inking-pad,
and the paper tape feeding from the reel, all appropriately placed in a
substantial framework.

The electromagnets and other actuating mechanism cannot be seen plainly
in this figure, but are produced diagrammatically in Fig. 2, and
somewhat enlarged for convenience of explanation.

It will be seen that there are two electromagnets, one of which, TM, is
known as the "type-magnet," and the other, PM, as the "press-magnet,"
the former having to do with the operation of the type-wheels, and the
latter with the pressing of the paper tape against them. As will be seen
from the diagram, the armature, A, of the type-magnet has an extension
arm, on the end of which is an escapement engaging with a toothed wheel
placed at the extremity of the shaft carrying the type-wheels. This
extension arm is pivoted at B. Hence, as the armature is alternately
attracted when current passes around its electromagnet, and drawn up by
the spring on cessation of current, it moves up and down, thus actuating
the escapement and causing a rotation of the toothed wheel in the
direction of the arrow. This, in turn, brings any desired letters
or figures on the type-wheels to a central point, where they may be
impressed upon the paper tape. One type-wheel carries letters, and the
other one figures. These two wheels are mounted rigidly on a sleeve
carried by the wheel-shaft. As it is desired to print from only one
type-wheel at a time, it becomes necessary to shift them back and forth
from time to time, in order to bring the desired characters in line
with the paper tape. This is accomplished through the movements of a
three-arm rocking-lever attached to the wheel-sleeve at the end of
the shaft. This lever is actuated through the agency of two small pins
carried by an arm projecting from the press-lever, PL. As the latter
moves up and down the pins play upon the under side of the lower arm of
the rocking-lever, thus canting it and pushing the type-wheels to
the right or left, as the case may be. The operation of shifting the
type-wheels will be given further on.

The press-lever is actuated by the press-magnet. From the diagram
it will be seen that the armature of the latter has a long, pivoted
extension arm, or platen, trough-like in shape, in which the paper tape
runs. It has already been noted that the object of the press-lever is
to press this tape against that character of the type-wheel centrally
located above it at the moment. It will at once be perceived that this
action takes place when current flows through the electromagnet and its
armature is attracted downward, the platen again dropping away from the
type-wheel as the armature is released upon cessation of current. The
paper "feed" is shown at the end of the press-lever, and consists of
a push "dog," or pawl, which operates to urge the paper forward as the
press-lever descends.

The worm-gear which appears in the diagram on the shaft, near the
toothed wheel, forms part of the unison stop above referred to, but this
device is not shown in full, in order to avoid unnecessary complications
of the drawing.

At the right-hand side of the diagram (Fig. 2) is shown a portion of
the transmitting apparatus at a central office. Generally speaking,
this consists of a motor-driven cylinder having metallic pins placed
at intervals, and arranged spirally, around its periphery. These pins
correspond in number to the characters on the type-wheels. A keyboard
(not shown) is arranged above the cylinder, having keys lettered and
numbered corresponding to the letters and figures on the type-wheels.
Upon depressing any one of these keys the motion of the cylinder is
arrested when one of its pins is caught and held by the depressed key.
When the key is released the cylinder continues in motion. Hence, it is
evident that the revolution of the cylinder may be interrupted as often
as desired by manipulation of the various keys in transmitting the
letters and figures which are to be recorded by the printing instrument.
The method of transmission will presently appear.

In the sketch (Fig. 2) there will be seen, mounted upon the cylinder
shaft, two wheels made up of metallic segments insulated from each
other, and upon the hubs of these wheels are two brushes which connect
with the main battery. Resting upon the periphery of these two segmental
wheels there are two brushes to which are connected the wires which
carry the battery current to the type-magnet and press-magnet,
respectively, as the brushes make circuit by coming in contact with the
metallic segments. It will be remembered that upon the cylinder there
are as many pins as there are characters on the type-wheels of the
ticker, and one of the segmental wheels, W, has a like number of
metallic segments, while upon the other wheel, W', there are only
one-half that number. The wheel W controls the supply of current to
the press-magnet, and the wheel W' to the type-magnet. The type-magnet
advances the letter and figure wheels one step when the magnet is
energized, and a succeeding step when the circuit is broken. Hence, the
metallic contact surfaces on wheel W' are, as stated, only half as many
as on the wheel W, which controls the press-magnet.

It should be borne in mind, however, that the contact surfaces and
insulated surfaces on wheel W' are together equal in number to the
characters on the type-wheels, but the retractile spring of TM does half
the work of operating the escapement. On the other hand, the wheel W
has the full number of contact surfaces, because it must provide for the
operative closure of the press-magnet circuit whether the brush B' is in
engagement with a metallic segment or an insulated segment of the wheel
W'. As the cylinder revolves, the wheels are carried around with its
shaft and current impulses flow through the wires to the magnets as the
brushes make contact with the metallic segments of these wheels.

One example will be sufficient to convey to the reader an idea of the
operation of the apparatus. Assuming, for instance, that it is desired
to send out the letters AM to the printer, let us suppose that the pin
corresponding to the letter A is at one end of the cylinder and near the
upper part of its periphery, and that the letter M is about the centre
of the cylinder and near the lower part of its periphery. The operator
at the keyboard would depress the letter A, whereupon the cylinder would
in its revolution bring the first-named pin against the key. During
the rotation of the cylinder a current would pass through wheel W' and
actuate TM, drawing down the armature and operating the escapement,
which would bring the type-wheel to a point where the letter A would
be central as regards the paper tape When the cylinder came to rest,
current would flow through the brush of wheel W to PM, and its armature
would be attracted, causing the platen to be lifted and thus bringing
the paper tape in contact with the type-wheel and printing the letter A.
The operator next sends the letter M by depressing the appropriate key.
On account of the position of the corresponding pin, the cylinder would
make nearly half a revolution before bringing the pin to the key. During
this half revolution the segmental wheels have also been turning, and
the brushes have transmitted a number of current impulses to TM, which
have caused it to operate the escapement a corresponding number of
times, thus turning the type-wheels around to the letter M. When the
cylinder stops, current once more goes to the press-magnet, and the
operation of lifting and printing is repeated. As a matter of fact,
current flows over both circuits as the cylinder is rotated, but the
press-magnet is purposely made to be comparatively "sluggish" and the
narrowness of the segments on wheel W tends to diminish the flow of
current in the press circuit until the cylinder comes to rest, when the
current continuously flows over that circuit without interruption and
fully energizes the press-magnet. The shifting of the type-wheels is
brought about as follows: On the keyboard of the transmitter there are
two characters known as "dots"--namely, the letter dot and the figure
dot. If the operator presses one of these dot keys, it is engaged by an
appropriate pin on the revolving cylinder. Meanwhile the type-wheels are
rotating, carrying with them the rocking-lever, and current is pulsating
over both circuits. When the type-wheels have arrived at the proper
point the rocking-lever has been carried to a position where its lower
arm is directly over one of the pins on the arm extending from the
platen of the press-lever. The cylinder stops, and current operates
the sluggish press-magnet, causing its armature to be attracted, thus
lifting the platen and its projecting arm. As the arm lifts upward, the
pin moves along the under side of the lower arm of the rocking-lever,
thus causing it to cant and shift the type-wheels to the right or left,
as desired. The principles of operation of this apparatus have been
confined to a very brief and general description, but it is believed to
be sufficient for the scope of this article.

NOTE.--The illustrations in this article are reproduced from American
Telegraphy and Encyclopedia of the Telegraph, by William Maver, Jr., by
permission of Maver Publishing Company, New York.



II. THE QUADRUPLEX AND PHONOPLEX

EDISON'S work in stock printers and telegraphy had marked him as a
rising man in the electrical art of the period but his invention of
quadruplex telegraphy in 1874 was what brought him very prominently
before the notice of the public. Duplex telegraphy, or the sending of
two separate messages in opposite directions at the same time over
one line was known and practiced previous to this time, but quadruplex
telegraphy, or the simultaneous sending of four separate messages,
two in each direction, over a single line had not been successfully
accomplished, although it had been the subject of many an inventor's
dream and the object of anxious efforts for many long years.

In the early part of 1873, and for some time afterward, the system
invented by Joseph Stearns was the duplex in practical use. In April of
that year, however, Edison took up the study of the subject and filed
two applications for patents. One of these applications [23] embraced
an invention by which two messages could be sent not only duplex, or
in opposite directions as above explained, but could also be sent
"diplex"--that is to say, in one direction, simultaneously, as separate
and distinct messages, over the one line. Thus there was introduced a
new feature into the art of multiplex telegraphy, for, whereas duplexing
(accomplished by varying the strength of the current) permitted messages
to be sent simultaneously from opposite stations, diplexing (achieved
by also varying the direction of the current) permitted the simultaneous
transmission of two messages from the same station and their separate
reception at the distant station.

     [Footnote 23: Afterward issued as Patent No. 162,633, April
     27, 1875.]

The quadruplex was the tempting goal toward which Edison now constantly
turned, and after more than a year's strenuous work he filed a number of
applications for patents in the late summer of 1874. Among them was one
which was issued some years afterward as Patent No. 480,567, covering
his well-known quadruplex. He had improved his own diplex, combined it
with the Stearns duplex and thereby produced a system by means of which
four messages could be sent over a single line at the same time, two in
each direction.

As the reader will probably be interested to learn something of the
theoretical principles of this fascinating invention, we shall endeavor
to offer a brief and condensed explanation thereof with as little
technicality as the subject will permit. This explanation will
necessarily be of somewhat elementary character for the benefit of the
lay reader, whose indulgence is asked for an occasional reiteration
introduced for the sake of clearness of comprehension. While the
apparatus and the circuits are seemingly very intricate, the principles
are really quite simple, and the difficulty of comprehension is more
apparent than real if the underlying phenomena are studied attentively.

At the root of all systems of telegraphy, including multiplex systems,
there lies the single basic principle upon which their performance
depends--namely, the obtaining of a slight mechanical movement at the
more or less distant end of a telegraph line. This is accomplished
through the utilization of the phenomena of electromagnetism. These
phenomena are easy of comprehension and demonstration. If a rod of soft
iron be wound around with a number of turns of insulated wire, and
a current of electricity be sent through the wire, the rod will be
instantly magnetized and will remain a magnet as long as the current
flows; but when the current is cut off the magnetic effect instantly
ceases. This device is known as an electromagnet, and the charging and
discharging of such a magnet may, of course, be repeated indefinitely.
Inasmuch as a magnet has the power of attracting to itself pieces of
iron or steel, the basic importance of an electromagnet in telegraphy
will be at once apparent when we consider the sounder, whose clicks
are familiar to every ear. This instrument consists essentially of an
electro-magnet of horseshoe form with its two poles close together, and
with its armature, a bar of iron, maintained in close proximity to the
poles, but kept normally in a retracted position by a spring. When
the distant operator presses down his key the circuit is closed and a
current passes along the line and through the (generally two) coils of
the electromagnet, thus magnetizing the iron core. Its attractive power
draws the armature toward the poles. When the operator releases the
pressure on his key the circuit is broken, current does not flow, the
magnetic effect ceases, and the armature is drawn back by its spring.
These movements give rise to the clicking sounds which represent the
dots and dashes of the Morse or other alphabet as transmitted by the
operator. Similar movements, produced in like manner, are availed of
in another instrument known as the relay, whose office is to act
practically as an automatic transmitter key, repeating the messages
received in its coils, and sending them on to the next section of the
line, equipped with its own battery; or, when the message is intended
for its own station, sending the message to an adjacent sounder included
in a local battery circuit. With a simple circuit, therefore, between
two stations and where an intermediate battery is not necessary, a relay
is not used.

Passing on to the consideration of another phase of the phenomena of
electromagnetism, the reader's attention is called to Fig. 1, in which
will be seen on the left a simple form of electromagnet consisting of
a bar of soft iron wound around with insulated wire, through which a
current is flowing from a battery. The arrows indicate the direction of
flow.

All magnets have two poles, north and south. A permanent magnet (made of
steel, which, as distinguished from soft iron, retains its magnetism for
long periods) is so called because it is permanently magnetized and its
polarity remains fixed. In an electromagnet the magnetism exists only
as long as current is flowing through the wire, and the polarity of the
soft-iron bar is determined by the DIRECTION of flow of current around
it for the time being. If the direction is reversed, the polarity will
also be reversed. Assuming, for instance, the bar to be end-on toward
the observer, that end will be a south pole if the current is flowing
from left to right, clockwise, around the bar; or a north pole if
flowing in the other direction, as illustrated at the right of the
figure. It is immaterial which way the wire is wound around the bar, the
determining factor of polarity being the DIRECTION of the current. It
will be clear, therefore, that if two EQUAL currents be passed around
a bar in opposite directions (Fig. 3) they will tend to produce exactly
opposite polarities and thus neutralize each other. Hence, the bar would
remain non-magnetic.

As the path to the quadruplex passes through the duplex, let us consider
the Stearns system, after noting one other principle--namely, that
if more than one path is presented in which an electric current may
complete its circuit, it divides in proportion to the resistance of each
path. Hence, if we connect one pole of a battery with the earth, and
from the other pole run to the earth two wires of equal resistance as
illustrated in Fig. 2, equal currents will traverse the wires.

The above principles were employed in the Stearns differential duplex
system in the following manner: Referring to Fig. 3, suppose a wire, A,
is led from a battery around a bar of soft iron from left to right, and
another wire of equal resistance and equal number of turns, B, around
from right to left. The flow of current will cause two equal opposing
actions to be set up in the bar; one will exactly offset the other, and
no magnetic effect will be produced. A relay thus wound is known as a
differential relay--more generally called a neutral relay.

The non-technical reader may wonder what use can possibly be made of an
apparently non-operative piece of apparatus. It must be borne in mind,
however, in considering a duplex system, that a differential relay is
used AT EACH END of the line and forms part of the circuit; and that
while each relay must be absolutely unresponsive to the signals SENT
OUT FROM ITS HOME OFFICE, it must respond to signals transmitted by
a DISTANT OFFICE. Hence, the next figure (4), with its accompanying
explanation, will probably make the matter clear. If another battery,
D, be introduced at the distant end of the wire A the differential or
neutral relay becomes actively operative as follows: Battery C supplies
wires A and B with an equal current, but battery D doubles the strength
of the current traversing wire A. This is sufficient to not only
neutralize the magnetism which the current in wire B would tend to set
up, but also--by reason of the excess of current in wire A--to make the
bar a magnet whose polarity would be determined by the direction of the
flow of current around it.

In the arrangement shown in Fig. 4 the batteries are so connected that
current flow is in the same direction, thus doubling the amount of
current flowing through wire A. But suppose the batteries were
so connected that the current from each set flowed in an opposite
direction? The result would be that these currents would oppose and
neutralize each other, and, therefore, none would flow in wire A.
Inasmuch, however, as there is nothing to hinder, current would
flow from battery C through wire B, and the bar would therefore be
magnetized. Hence, assuming that the relay is to be actuated from
the distant end, D, it is in a sense immaterial whether the batteries
connected with wire A assist or oppose each other, as, in either case,
the bar would be magnetized only through the operation of the distant
key.

A slight elaboration of Fig. 4 will further illustrate the principle of
the differential duplex. In Fig. 5 are two stations, A the home end,
and B the distant station to which a message is to be sent. The relay at
each end has two coils, 1 and 2, No. 1 in each case being known as the
"main-line coil" and 2 as the "artificial-line coil." The latter, in
each case, has in its circuit a resistance, R, to compensate for the
resistance of the main line, so that there shall be no inequalities
in the circuits. The artificial line, as well as that to which the two
coils are joined, are connected to earth. There is a battery, C, and a
key, K. When the key is depressed, current flows through the relay
coils at A, but no magnetism is produced, as they oppose each other. The
current, however, flows out through the main-line coil over the line and
through the main-line coil 1 at B, completing its circuit to earth
and magnetizing the bar of the relay, thus causing its armature to be
attracted. On releasing the key the circuit is broken and magnetism
instantly ceases.

It will be evident, therefore, that the operator at A may cause the
relay at B to act without affecting his own relay. Similar effects would
be produced from B to A if the battery and key were placed at the B end.

If, therefore, like instruments are placed at each end of the line, as
in Fig. 6, we have a differential duplex arrangement by means of which
two operators may actuate relays at the ends distant from them, without
causing the operation of the relays at their home ends. In practice
this is done by means of a special instrument known as a continuity
preserving transmitter, or, usually, as a transmitter. This consists
of an electromagnet, T, operated by a key, K, and separate battery. The
armature lever, L, is long, pivoted in the centre, and is bent over
at the end. At a point a little beyond its centre is a small piece of
insulating material to which is screwed a strip of spring metal, S.
Conveniently placed with reference to the end of the lever is a bent
metallic piece, P, having a contact screw in its upper horizontal arm,
and attached to the lower end of this bent piece is a post, or standard,
to which the main battery is electrically connected. The relay coils
are connected by wire to the spring piece, S, and the armature lever is
connected to earth. If the key is depressed, the armature is attracted
and its bent end is moved upward, depressing the spring which makes
contact with the upper screw, which places the battery to the line, and
simultaneously breaks the ground connection between the spring and
the upturned end of the lever, as shown at the left. When the key is
released the battery is again connected to earth. The compensating
resistances and condensers necessary for a duplex arrangement are shown
in the diagram.

In Fig. 6 one transmitter is shown as closed, at A, while the other one
is open. From our previous illustrations and explanations it will be
readily seen that, with the transmitter closed at station A, current
flows via post P, through S, and to both relay coils at A, thence over
the main line to main-line coil at B, and down to earth through S and
the armature lever with its grounded wire. The relay at A would be
unresponsive, but the core of the relay at B would be magnetized and its
armature respond to signals from A. In like manner, if the transmitter
at B be closed, current would flow through similar parts and thus
cause the relay at A to respond. If both transmitters be closed
simultaneously, both batteries will be placed to the line, which would
practically result in doubling the current in each of the main-line
coils, in consequence of which both relays are energized and their
armatures attracted through the operation of the keys at the distant
ends. Hence, two messages can be sent in opposite directions over the
same line simultaneously.

The reader will undoubtedly see quite clearly from the above system,
which rests upon varying the STRENGTH of the current, that two messages
could not be sent in the same direction over the one line at the same
time. To accomplish this object Edison introduced another and distinct
feature--namely, the using of the same current, but ALSO varying its
DIRECTION of flow; that is to say, alternately reversing the POLARITY
of the batteries as applied to the line and thus producing corresponding
changes in the polarity of another specially constructed type of relay,
called a polarized relay. To afford the reader a clear conception of
such a relay we would refer again to Fig. 1 and its explanation, from
which it appears that the polarity of a soft-iron bar is determined not
by the strength of the current flowing around it but by the direction
thereof.

With this idea clearly in mind, the theory of the polarized relay,
generally called "polar" relay, as presented in the diagram (Fig. 7),
will be readily understood.

A is a bar of soft iron, bent as shown, and wound around with insulated
copper wire, the ends of which are connected with a battery, B, thus
forming an electromagnet. An essential part of this relay consists of
a swinging PERMANENT magnet, C, whose polarity remains fixed, that end
between the terminals of the electromagnet being a north pole. Inasmuch
as unlike poles of magnets are attracted to each other and like poles
repelled, it follows that this north pole will be repelled by the north
pole of the electromagnet, but will swing over and be attracted by
its south pole. If the direction of flow of current be reversed, by
reversing the battery, the electromagnetic polarity also reverses and
the end of the permanent magnet swings over to the other side. This
is shown in the two figures of Fig. 7. This device being a relay, its
purpose is to repeat transmitted signals into a local circuit, as before
explained. For this purpose there are provided at D and E a contact and
a back stop, the former of which is opened and closed by the swinging
permanent magnet, thus opening and closing the local circuit.

Manifestly there must be provided some convenient way for rapidly
transposing the direction of the current flow if such a device as the
polar relay is to be used for the reception of telegraph messages, and
this is accomplished by means of an instrument called a pole-changer,
which consists essentially of a movable contact piece connected
permanently to the earth, or grounded, and arranged to connect one or
the other pole of a battery to the line and simultaneously ground the
other pole. This action of the pole-changer is effected by movements of
the armature of an electromagnet through the manipulation of an ordinary
telegraph key by an operator at the home station, as in the operation of
the "transmitter," above referred to.

By a combination of the neutral relay and the polar relay two
operators, by manipulating two telegraph keys in the ordinary way, can
simultaneously send two messages over one line in the SAME direction
with the SAME current, one operator varying its strength and the other
operator varying its polarity or direction of flow. This principle was
covered by Edison's Patent No. 162,633, and was known as the "diplex"
system, although, in the patent referred to, Edison showed and claimed
the adaptation of the principle to duplex telegraphy. Indeed, as
a matter of fact, it was found that by winding the polar relay
differentially and arranging the circuits and collateral appliances
appropriately, the polar duplex system was more highly efficient than
the neutral system, and it is extensively used to the present day.

Thus far we have referred to two systems, one the neutral or
differential duplex, and the other the combination of the neutral and
polar relays, making a diplex system. By one of these two systems
a single wire could be used for sending two messages in opposite
directions, and by the other in the same direction or in opposite
directions. Edison followed up his work on the diplex and combined the
two systems into the quadruplex, by means of which FOUR messages could
be sent and received simultaneously over the one wire, two in each
direction, thus employing eight operators--four at each end--two sending
and two receiving. The general principles of quadruplex telegraphy are
based upon the phenomena which we have briefly outlined in connection
with the neutral relay and the polar relay. The equipment of such
a system at each end of the line consists of these two instruments,
together with the special form of transmitter and the pole-changer and
their keys for actuating the neutral and polar relays at the other, or
distant, end. Besides these there are the compensating resistances and
condensers. All of these will be seen in the diagram (Fig. 8). It
will be understood, of course, that the polar relay, as used in the
quadruplex system, is wound differentially, and therefore its operation
is somewhat similar in principle to that of the differentially wound
neutral relay, in that it does not respond to the operation of the key
at the home office, but only operates in response to the movements of
the distant key.

Our explanation has merely aimed to show the underlying phenomena and
principles in broad outline without entering into more detail than was
deemed absolutely necessary. It should be stated, however, that between
the outline and the filling in of the details there was an enormous
amount of hard work, study, patient plodding, and endless experiments
before Edison finally perfected his quadruplex system in the year 1874.

If it were attempted to offer here a detailed explanation of the varied
and numerous operations of the quadruplex, this article would assume the
proportions of a treatise. An idea of their complexity may be gathered
from the following, which is quoted from American Telegraphy and
Encyclopedia of the Telegraph, by William Maver, Jr.:


"It may well be doubted whether in the whole range of applied
electricity there occur such beautiful combinations, so quickly made,
broken up, and others reformed, as in the operation of the Edison
quadruplex. For example, it is quite demonstrable that during the making
of a simple dash of the Morse alphabet by the neutral relay at the home
station the distant pole-changer may reverse its battery several times;
the home pole-changer may do likewise, and the home transmitter may
increase and decrease the electromotive force of the home battery
repeatedly. Simultaneously, and, of course, as a consequence of the
foregoing actions, the home neutral relay itself may have had its
magnetism reversed several times, and the SIGNAL, that is, the dash,
will have been made, partly by the home battery, partly by the distant
and home batteries combined, partly by current on the main line, partly
by current on the artificial line, partly by the main-line 'static'
current, partly by the condenser static current, and yet, on a
well-adjusted circuit the dash will have been produced on the quadruplex
sounder as clearly as any dash on an ordinary single-wire sounder."

We present a diagrammatic illustration of the Edison quadruplex, battery
key system, in Fig. 8, and refer the reader to the above or other
text-books if he desires to make a close study of its intricate
operations. Before finally dismissing the quadruplex, and for the
benefit of the inquiring reader who may vainly puzzle over the
intricacies of the circuits shown in Fig. 8, a hint as to an essential
difference between the neutral relay, as used in the duplex and as used
in the quadruplex, may be given. With the duplex, as we have seen, the
current on the main line is changed in strength only when both keys at
OPPOSITE stations are closed together, so that a current due to both
batteries flows over the main line. When a single message is sent from
one station to the other, or when both stations are sending messages
that do not conflict, only one battery or the other is connected to the
main line; but with the quadruplex, suppose one of the operators, in New
York for instance, is sending reversals of current to Chicago; we can
readily see how these changes in polarity will operate the polar relay
at the distant station, but why will they not also operate the neutral
relay at the distant station as well? This difficulty was solved by
dividing the battery at each station into two unequal parts, the smaller
battery being always in circuit with the pole-changer ready to have its
polarity reversed on the main line to operate the distant polar relay,
but the spring retracting the armature of the neutral relay is made so
stiff as to resist these weak currents. If, however, the transmitter is
operated at the same end, the entire battery is connected to the main
line, and the strength of this current is sufficient to operate the
neutral relay. Whether the part or all the battery is alternately
connected to or disconnected from the main line by the transmitter, the
current so varied in strength is subject to reversal of polarity by the
pole-changer; but the variations in strength have no effect upon the
distant polar relay, because that relay being responsive to changes
in polarity of a weak current is obviously responsive to corresponding
changes in polarity of a powerful current. With this distinction before
him, the reader will have no difficulty in following the circuits
of Fig. 8, bearing always in mind that by reason of the differential
winding of the polar and neutral relays, neither of the relays at one
station will respond to the home battery, and can only respond to the
distant battery--the polar relay responding when the polarity of the
current is reversed, whether the current be strong or weak, and the
neutral relay responding when the line-current is increased, regardless
of its polarity. It should be added that besides the system illustrated
in Fig. 8, which is known as the differential principle, the quadruplex
was also arranged to operate on the Wheatstone bridge principle; but
it is not deemed necessary to enter into its details. The underlying
phenomena were similar, the difference consisting largely in the
arrangement of the circuits and apparatus. [24]

     [Footnote 24: Many of the illustrations in this article are
     reproduced from American Telegraphy and Encyclopedia of the
     Telegraph, by William Maver, Jr., by permission of Maver
     Publishing Company, New York.]

Edison made another notable contribution to multiplex telegraphy
some years later in the Phonoplex. The name suggests the use of the
telephone, and such indeed is the case. The necessity for this invention
arose out of the problem of increasing the capacity of telegraph lines
employed in "through" and "way" service, such as upon railroads. In a
railroad system there are usually two terminal stations and a number of
way stations. There is naturally much intercommunication, which would
be greatly curtailed by a system having the capacity of only a single
message at a time. The duplexes above described could not be used on
a railroad telegraph system, because of the necessity of electrically
balancing the line, which, while entirely feasible on a through line,
would not be practicable between a number of intercommunicating points.
Edison's phonoplex normally doubled the capacity of telegraph lines,
whether employed on way business or through traffic, but in actual
practice made it possible to obtain more than double service. It has
been in practical use for many years on some of the leading railroads of
the United States.

The system is a combination of telegraphic apparatus and telephone
receiver, although in this case the latter instrument is not used in the
generally understood manner. It is well known that the diaphragm of a
telephone vibrates with the fluctuations of the current energizing the
magnet beneath it. If the make and break of the magnetizing current
be rapid, the vibrations being within the limits of the human ear, the
diaphragm will produce an audible sound; but if the make and break be as
slow as with ordinary Morse transmission, the diaphragm will be merely
flexed and return to its original form without producing a sound. If,
therefore, there be placed in the same circuit a regular telegraph relay
and a special telephone, an operator may, by manipulating a key, operate
the relay (and its sounder) without producing a sound in the telephone,
as the makes and breaks of the key are far below the limit of
audibility. But if through the same circuit, by means of another key
suitably connected there is sent the rapid changes in current from an
induction-coil, it will cause a series of loud clicks in the telephone,
corresponding to the signals transmitted; but this current is too weak
to affect the telegraph relay. It will be seen, therefore, that this
method of duplexing is practiced, not by varying the strength or
polarity, but by sending TWO KINDS OF CURRENT over the wire. Thus, two
sets of Morse signals can be transmitted by two operators over one
line at the same time without interfering with each other, and not only
between terminal offices, but also between a terminal office and any
intermediate office, or between two intermediate offices alone.



III

AUTOMATIC TELEGRAPHY

FROM the year 1848, when a Scotchman, Alexander Bain, first devised a
scheme for rapid telegraphy by automatic methods, down to the beginning
of the seventies, many other inventors had also applied themselves to
the solution of this difficult problem, with only indifferent success.
"Cheap telegraphy" being the slogan of the time, Edison became arduously
interested in the subject, and at the end of three years of hard work
produced an entirely successful system, a public test of which was made
on December 11, 1873 when about twelve thousand (12,000) words
were transmitted over a single wire from Washington to New York. in
twenty-two and one-half minutes. Edison's system was commercially
exploited for several years by the Automatic Telegraph Company, as
related in the preceding narrative.

As a premise to an explanation of the principles involved it should be
noted that the transmission of telegraph messages by hand at a rate of
fifty words per minute is considered a good average speed; hence, the
availability of a telegraph line, as thus operated, is limited to this
capacity except as it may be multiplied by two with the use of
the duplex, or by four, with the quadruplex. Increased rapidity of
transmission may, however, be accomplished by automatic methods, by
means of which, through the employment of suitable devices, messages may
be stamped in or upon a paper tape, transmitted through automatically
acting instruments, and be received at distant points in visible
characters, upon a similar tape, at a rate twenty or more times
greater--a speed far beyond the possibilities of the human hand to
transmit or the ear to receive.

In Edison's system of automatic telegraphy a paper tape was perforated
with a series of round holes, so arranged and spaced as to represent
Morse characters, forming the words of the message to be transmitted.
This was done in a special machine of Edison's invention, called a
perforator, consisting of a series of punches operated by a bank of
keys--typewriter fashion. The paper tape passed over a cylinder, and
was kept in regular motion so as to receive the perforations in proper
sequence.

The perforated tape was then placed in the transmitting instrument,
the essential parts of which were a metallic drum and a projecting arm
carrying two small wheels, which, by means of a spring, were maintained
in constant pressure on the drum. The wheels and drum were electrically
connected in the line over which the message was to be sent. current
being supplied by batteries in the ordinary manner.

When the transmitting instrument was in operation, the perforated tape
was passed over the drum in continuous, progressive motion. Thus, the
paper passed between the drum and the two small wheels, and, as dry
paper is a non-conductor, current was prevented from passing until a
perforation was reached. As the paper passed along, the wheels dropped
into the perforations, making momentary contacts with the drum beneath
and causing momentary impulses of current to be transmitted over the
line in the same way that they would be produced by the manipulation
of the telegraph key, but with much greater rapidity. The perforations
being so arranged as to regulate the length of the contact, the result
would be the transmission of long and short impulses corresponding with
the dots and dashes of the Morse alphabet.

The receiving instrument at the other end of the line was constructed
upon much the same general lines as the transmitter, consisting of a
metallic drum and reels for the paper tape. Instead of the two small
contact wheels, however, a projecting arm carried an iron pin or stylus,
so arranged that its point would normally impinge upon the periphery of
the drum. The iron pin and the drum were respectively connected so as to
be in circuit with the transmission line and batteries. As the principle
involved in the receiving operation was electrochemical decomposition,
the paper tape upon which the incoming message was to be received was
moistened with a chemical solution readily decomposable by the electric
current. This paper, while still in a damp condition, was passed
between the drum and stylus in continuous, progressive motion. When an
electrical impulse came over the line from the transmitting end, current
passed through the moistened paper from the iron pin, causing chemical
decomposition, by reason of which the iron would be attacked and would
mark a line on the paper. Such a line would be long or short, according
to the duration of the electric impulse. Inasmuch as a succession of
such impulses coming over the line owed their origin to the perforations
in the transmitting tape, it followed that the resulting marks upon the
receiving tape would correspond thereto in their respective lengths.
Hence, the transmitted message was received on the tape in visible dots
and dashes representing characters of the Morse alphabet.

The system will, perhaps, be better understood by reference to the
following diagrammatic sketch of its general principles:

Some idea of the rapidity of automatic telegraphy may be obtained when
we consider the fact that with the use of Edison's system in the early
seventies it was common practice to transmit and receive from three to
four thousand words a minute over a single line between New York and
Philadelphia. This system was exploited through the use of a moderately
paid clerical force.

In practice, there was employed such a number of perforating machines
as the exigencies of business demanded. Each machine was operated by
a clerk, who translated the message into telegraphic characters and
prepared the transmitting tape by punching the necessary perforations
therein. An expert clerk could perforate such a tape at the rate of
fifty to sixty words per minute. At the receiving end the tape was taken
by other clerks who translated the Morse characters into ordinary words,
which were written on message blanks for delivery to persons for whom
the messages were intended.

This latter operation--"copying." as it was called--was not consistent
with truly economical business practice. Edison therefore undertook the
task of devising an improved system whereby the message when received
would not require translation and rewriting, but would automatically
appear on the tape in plain letters and words, ready for instant
delivery.

The result was his automatic Roman letter system, the basis for which
included the above-named general principles of perforated transmission
tape and electrochemical decomposition. Instead of punching Morse
characters in the transmission tape however, it was perforated with
a series of small round holes forming Roman letters. The verticals
of these letters were originally five holes high. The transmitting
instrument had five small wheels or rollers, instead of two, for making
contacts through the perforations and causing short electric impulses
to pass over the lines. At first five lines were used to carry these
impulses to the receiving instrument, where there were five iron pins
impinging on the drum. By means of these pins the chemically prepared
tape was marked with dots corresponding to the impulses as received,
leaving upon it a legible record of the letters and words transmitted.

For purposes of economy in investment and maintenance, Edison devised
subsequently a plan by which the number of conducting lines was reduced
to two, instead of five. The verticals of the letters were perforated
only four holes high, and the four rollers were arranged in pairs, one
pair being slightly in advance of the other. There were, of course,
only four pins at the receiving instrument. Two were of iron and two of
tellurium, it being the gist of Edison's plan to effect the marking
of the chemical paper by one metal with a positive current, and by the
other metal with a negative current. In the following diagram, which
shows the theory of this arrangement, it will be seen that both the
transmitting rollers and the receiving pins are arranged in pairs,
one pair in each case being slightly in advance of the other. Of these
receiving pins, one pair--1 and 3--are of iron, and the other pair--2
and 4--of tellurium. Pins 1-2 and 3-4 are electrically connected
together in other pairs, and then each of these pairs is connected with
one of the main lines that run respectively to the middle of two groups
of batteries at the transmitting end. The terminals of these groups of
batteries are connected respectively to the four rollers which impinge
upon the transmitting drum, the negatives being connected to 5 and 7,
and the positives to 6 and 8, as denoted by the letters N and P. The
transmitting and receiving drums are respectively connected to earth.

In operation the perforated tape is placed on the transmission drum, and
the chemically prepared tape on the receiving drum. As the perforated
tape passes over the transmission drum the advanced rollers 6 or 8
first close the circuit through the perforations, and a positive current
passes from the batteries through the drum and down to the ground;
thence through the earth at the receiving end up to the other drum and
back to the batteries via the tellurium pins 2 or 4 and the line wire.
With this positive current the tellurium pins make marks upon the
paper tape, but the iron pins make no mark. In the merest fraction of a
second, as the perforated paper continues to pass over the transmission
drum, the rollers 5 or 7 close the circuit through other perforations
and t e current passes in the opposite direction, over the line wire,
through pins 1 or 3, and returns through the earth. In this case the
iron pins mark the paper tape, but the tellurium pins make no mark. It
will be obvious, therefore, that as the rollers are set so as to allow
of currents of opposite polarity to be alternately and rapidly sent
by means of the perforations, the marks upon the tape at the receiving
station will occupy their proper relative positions, and the aggregate
result will be letters corresponding to those perforated in the
transmission tape.

Edison subsequently made still further improvements in this direction,
by which he reduced the number of conducting wires to one, but the
principles involved were analogous to the one just described.

This Roman letter system was in use for several years on lines between
New York, Philadelphia, and Washington, and was so efficient that a
speed of three thousand words a minute was attained on the line between
the two first-named cities.

Inasmuch as there were several proposed systems of rapid automatic
telegraphy in existence at the time Edison entered the field, but none
of them in practical commercial use, it becomes a matter of interest to
inquire wherein they were deficient, and what constituted the elements
of Edison's success.

The chief difficulties in the transmission of Morse characters had been
two in number, the most serious of which was that on the receiving tape
the characters would be prolonged and run into one another, forming a
draggled line and thus rendering the message unintelligible. This arose
from the fact that, on account of the rapid succession of the electric
impulses, there was not sufficient time between them for the electric
action to cease entirely. Consequently the line could not clear itself,
and became surcharged, as it were; the effect being an attenuated
prolongation of each impulse as manifested in a weaker continuation of
the mark on the tape, thus making the whole message indistinct. These
secondary marks were called "tailings."

For many years electricians had tried in vain to overcome this
difficulty. Edison devoted a great deal of thought and energy to the
question, in the course of which he experimented through one hundred
and twenty consecutive nights, in the year 1873, on the line between
New York and Washington. His solution of the problem was simple but
effectual. It involved the principle of inductive compensation. In
a shunt circuit with the receiving instrument he introduced
electromagnets. The pulsations of current passed through the helices of
these magnets, producing an augmented marking effect upon the receiving
tape, but upon the breaking of the current, the magnet, in discharging
itself of the induced magnetism, would set up momentarily a
counter-current of opposite polarity. This neutralized the "tailing"
effect by clearing the line between pulsations, thus allowing the
telegraphic characters to be clearly and distinctly outlined upon the
tape. Further elaboration of this method was made later by the addition
of rheostats, condensers, and local opposition batteries on long lines.

The other difficulty above referred to was one that had also occupied
considerable thought and attention of many workers in the field, and
related to the perforating of the dash in the transmission tape. It
involved mechanical complications that seemed to be insurmountable, and
up to the time Edison invented his perforating machine no really good
method was available. He abandoned the attempt to cut dashes as such, in
the paper tape, but instead punched three round holes so arranged as
to form a triangle. A concrete example is presented in the illustration
below, which shows a piece of tape with perforations representing the
word "same."

The philosophy of this will be at once perceived when it is remembered
that the two little wheels running upon the drum of the transmitting
instrument were situated side by side, corresponding in distance to the
two rows of holes. When a triangle of three holes, intended to form the
dash, reached the wheels, one of them dropped into a lower hole. Before
it could get out, the other wheel dropped into the hole at the apex of
the triangle, thus continuing the connection, which was still further
prolonged by the first wheel dropping into the third hole. Thus, an
extended contact was made, which, by transmitting a long impulse,
resulted in the marking of a dash upon the receiving tape.

This method was in successful commercial use for some time in the early
seventies, giving a speed of from three to four thousand words a minute
over a single line, but later on was superseded by Edison's Roman letter
system, above referred to.

The subject of automatic telegraphy received a vast amount of attention
from inventors at the time it was in vogue. None was more earnest
or indefatigable than Edison, who, during the progress of his
investigations, took out thirty-eight patents on various inventions
relating thereto, some of them covering chemical solutions for the
receiving paper. This of itself was a subject of much importance and
a vast amount of research and labor was expended upon it. In the
laboratory note-books there are recorded thousands of experiments
showing that Edison's investigations not only included an enormous
number of chemical salts and compounds, but also an exhaustive variety
of plants, flowers, roots, herbs, and barks.

It seems inexplicable at first view that a system of telegraphy
sufficiently rapid and economical to be practically available for
important business correspondence should have fallen into disuse. This,
however, is made clear--so far as concerns Edison's invention at any
rate--in Chapter VIII of the preceding narrative.



IV. WIRELESS TELEGRAPHY


ALTHOUGH Mr. Edison has taken no active part in the development of
the more modern wireless telegraphy, and his name has not occurred in
connection therewith, the underlying phenomena had been noted by him
many years in advance of the art, as will presently be explained. The
authors believe that this explanation will reveal a status of Edison in
relation to the subject that has thus far been unknown to the public.

While the term "wireless telegraphy," as now applied to the modern
method of electrical communication between distant points without
intervening conductors, is self-explanatory, it was also applicable,
strictly speaking, to the previous art of telegraphing to and from
moving trains, and between points not greatly remote from each other,
and not connected together with wires.

The latter system (described in Chapter XXIII and in a succeeding
article of this Appendix) was based upon the phenomena of
electromagnetic or electrostatic induction between conductors separated
by more or less space, whereby electric impulses of relatively low
potential and low frequency set up in. one conductor were transmitted
inductively across the air to another conductor, and there received
through the medium of appropriate instruments connected therewith.

As distinguished from this system, however, modern wireless
telegraphy--so called--has its basis in the utilization of electric
or ether waves in free space, such waves being set up by electric
oscillations, or surgings, of comparatively high potential and high
frequency, produced by the operation of suitable electrical apparatus.
Broadly speaking, these oscillations arise from disruptive discharges of
an induction coil, or other form of oscillator, across an air-gap, and
their character is controlled by the manipulation of a special type of
circuit-breaking key, by means of which long and short discharges are
produced. The electric or etheric waves thereby set up are detected
and received by another special form of apparatus more or less distant,
without any intervening wires or conductors.

In November, 1875, Edison, while experimenting in his Newark laboratory,
discovered a new manifestation of electricity through mysterious sparks
which could be produced under conditions unknown up to that time.
Recognizing at once the absolutely unique character of the phenomena, he
continued his investigations enthusiastically over two mouths, finally
arriving at a correct conclusion as to the oscillatory nature of the
hitherto unknown manifestations. Strange to say, however, the true
import and practical applicability of these phenomena did not occur to
his mind. Indeed, it was not until more than TWELVE YEARS AFTERWARD, in
1887, upon the publication of the notable work of Prof. H. Hertz proving
the existence of electric waves in free space, that Edison realized the
fact that the fundamental principle of aerial telegraphy had been within
his grasp in the winter of 1875; for although the work of Hertz was more
profound and mathematical than that of Edison, the principle involved
and the phenomena observed were practically identical--in fact, it may
be remarked that some of the methods and experimental apparatus were
quite similar, especially the "dark box" with micrometer adjustment,
used by both in observing the spark. [25]

     [Footnote 25: During the period in which Edison exhibited
     his lighting system at the Paris Exposition in 1881, his
     representative, Mr. Charles Batchelor, repeated Edison's
     remarkable experiments of the winter of 1875 for the benefit
     of a great number of European savants, using with other
     apparatus the original "dark box" with micrometer
     adjustment.]

There is not the slightest intention on the part of the authors to
detract in the least degree from the brilliant work of Hertz, but, on
the contrary, to ascribe to him the honor that is his due in having
given mathematical direction and certainty to so important a discovery.
The adaptation of the principles thus elucidated and the subsequent
development of the present wonderful art by Marconi, Branly, Lodge,
Slaby, and others are now too well known to call for further remark at
this place.

Strange to say, that although Edison's early experiments in "etheric
force" called forth extensive comment and discussion in the public
prints of the period, they seemed to have been generally overlooked
when the work of Hertz was published. At a meeting of the Institution of
Electrical Engineers, held in London on May 16, 1889, at which there
was a discussion on the celebrated paper of Prof. (Sir) Oliver Lodge on
"Lightning Conductors," however; the chairman, Sir William Thomson (Lord
Kelvin), made the following remarks:

"We all know how Faraday made himself a cage six feet in diameter, hung
it up in mid-air in the theatre of the Royal Institution, went into it,
and, as he said, lived in it and made experiments. It was a cage with
tin-foil hanging all round it; it was not a complete metallic enclosing
shell. Faraday had a powerful machine working in the neighborhood,
giving all varieties of gradual working-up and discharges by 'impulsive
rush'; and whether it was a sudden discharge of ordinary insulated
conductors, or of Leyden jars in the neighborhood outside the cage, or
electrification and discharge of the cage itself, he saw no effects on
his most delicate gold-leaf electroscopes in the interior. His attention
was not directed to look for Hertz sparks, or probably he might have
found them in the interior. Edison seems to have noticed something of
the kind in what he called the etheric force. His name 'etheric' may,
thirteen years ago, have seemed to many people absurd. But now we are
all beginning to call these inductive phenomena 'etheric.'"

With these preliminary observations, let us now glance briefly at
Edison's laboratory experiments, of which mention has been made.

Oh the first manifestation of the unusual phenomena in November, 1875,
Edison's keenness of perception led him at once to believe that he had
discovered a new force. Indeed, the earliest entry of this discovery in
the laboratory note-book bore that caption. After a few days of further
experiment and observation, however, he changed it to "Etheric Force,"
and the further records thereof (all in Mr. Batchelor's handwriting)
were under that heading.

The publication of Edison's discovery created considerable attention at
the time, calling forth a storm of general ridicule and incredulity.
But a few scientific men of the period, whose experimental methods were
careful and exact, corroborated his deductions after obtaining similar
phenomena by repeating his experiments with intelligent precision. Among
these was the late Dr. George M. Beard, a noted physicist, who entered
enthusiastically into the investigation, and, in addition to a great
deal of independent experiment, spent much time with Edison at his
laboratory. Doctor Beard wrote a treatise of some length on the subject,
in which he concurred with Edison's deduction that the phenomena
were the manifestation of oscillations, or rapidly reversing waves
of electricity, which did not respond to the usual tests. Edison
had observed the tendency of this force to diffuse itself in various
directions through the air and through matter, hence the name "Etheric"
that he had provisionally applied to it.

Edison's laboratory notes on this striking investigation are fascinating
and voluminous, but cannot be reproduced in full for lack of space.
In view of the later practical application of the principles involved,
however, the reader will probably be interested in perusing a few
extracts therefrom as illustrated by facsimiles of the original sketches
from the laboratory note-book.

As the full significance of the experiments shown by these extracts
may not be apparent to a lay reader, it may be stated by way of premise
that, ordinarily, a current only follows a closed circuit. An electric
bell or electric light is a familiar instance of this rule. There is in
each case an open (wire) circuit which is closed by pressing the button
or turning the switch, thus making a complete and uninterrupted path in
which the current may travel and do its work. Until the time of Edison's
investigations of 1875, now under consideration, electricity had never
been known to manifest itself except through a closed circuit. But, as
the reader will see from the following excerpts, Edison discovered a
hitherto unknown phenomenon--namely, that under certain conditions the
rule would be reversed and electricity would pass through space and
through matter entirely unconnected with its point of origin. In other
words, he had found the forerunner of wireless telegraphy. Had he then
realized the full import of his discovery, all he needed was to increase
the strength of the waves and to provide a very sensitive detector, like
the coherer, in order to have anticipated the principal developments
that came many years afterward. With these explanatory observations, we
will now turn to the excerpts referred to, which are as follows:

"November 22, 1875. New Force.--In experimenting with a vibrator magnet
consisting of a bar of Stubb's steel fastened at one end and made to
vibrate by means of a magnet, we noticed a spark coming from the cores
of the magnet. This we have noticed often in relays, in stock-printers,
when there were a little iron filings between the armature and core,
and more often in our new electric pen, and we have always come to the
conclusion that it was caused by strong induction. But when we noticed
it on this vibrator it seemed so strong that it struck us forcibly there
might be something more than induction. We now found that if we touched
any metallic part of the vibrator or magnet we got the spark. The larger
the body of iron touched to the vibrator the larger the spark. We now
connected a wire to X, the end of the vibrating rod, and we found we
could get a spark from it by touching a piece of iron to it, and one of
the most curious phenomena is that if you turn the wire around on itself
and let the point of the wire touch any other portion of itself you
get a spark. By connecting X to the gas-pipe we drew sparks from the
gas-pipes in any part of the room by drawing an iron wire over the brass
jet of the cock. This is simply wonderful, and a good proof that the
cause of the spark is a TRUE UNKNOWN FORCE."

"November 23, 1815. New Force.--The following very curious result was
obtained with it. The vibrator shown in Fig. 1 and battery were placed
on insulated stands; and a wire connected to X (tried both copper and
iron) carried over to the stove about twenty feet distant. When the end
of the wire was rubbed on the stove it gave out splendid sparks. When
permanently connected to the stove, sparks could be drawn from the stove
by a piece of wire held in the hand. The point X of vibrator was now
connected to the gas-pipe and still the sparks could be drawn from the
stove."

. . . . . . . . .


"Put a coil of wire over the end of rod X and passed the ends of spool
through galvanometer without affecting it in any way. Tried a 6-ohm
spool add a 200-ohm. We now tried all the metals, touching each one in
turn to the point X." [Here follows a list of metals and the character
of spark obtained with each.]

. . . . . . . . .


"By increasing the battery from eight to twelve cells we get a spark
when the vibrating magnet is shunted with 3 ohms. Cannot taste the least
shock at B, yet between carbon points the spark is very vivid. As will
be seen, X has no connection with anything. With a glass rod four feet
long, well rubbed with a piece of silk over a hot stove, with a piece
of battery carbon secured to one end, we received vivid sparks into the
carbon when the other end was held in the hand with the handkerchief,
yet the galvanometer, chemical paper, the sense of shock in the tongue,
and a gold-leaf electroscope which would diverge at two feet from a
half-inch spark plate-glass machine were not affected in the least by
it.

"A piece of coal held to the wire showed faint sparks.

"We had a box made thus: whereby two points could be brought together
within a dark box provided with an eyepiece. The points were iron, and
we found the sparks were very irregular. After testing some time two
lead-pencils found more regular and very much more vivid. We then
substituted the graphite points instead of iron." [26]


     [Footnote 26: The dark box had micrometer screws for
     delicate adjustment of the carbon points, and was thereafter
     largely used in this series of investigations for better
     study of the spark. When Mr. Edison's experiments were
     repeated by Mr. Batchelor, who represented him at the Paris
     Exposition of 1881, the dark box was employed for a similar
     purpose.]


. . . . . . . . .


After recording a considerable number of other experiments, the
laboratory notes go on to state:


"November 30, 1875. Etheric Force.--We found the addition of battery to
the Stubb's wire vibrator greatly increased the volume of spark. Several
persons could obtain sparks from the gas-pipes at once, each spark being
equal in volume and brilliancy to the spark drawn by a single person....
Edison now grasped the (gas) pipe, and with the other hand holding a
piece of metal, he touched several other metallic substances, obtained
sparks, showing that the force passed through his body."

. . . . . . . . .


"December 3, 1875. Etheric Force.--Charley Edison hung to the gas-pipe
with feet above the floor, and with a knife got a spark from the pipe he
was hanging on. We now took the wire from the vibrator in one hand
and stood on a block of paraffin eighteen inches square and six inches
thick; holding a knife in the other hand, we drew sparks from the
stove-pipe. We now tried the crucial test of passing the etheric current
through the sciatic nerve of a frog just killed. Previous to trying, we
tested its sensibility by the current from a single Bunsen cell. We
put in resistance up to 500,000 ohms, and the twitching was still
perceptible. We tried the induced current from our induction coil having
one cell on primary,, the spark jumping about one-fiftieth of an inch,
the terminal of the secondary connected to the frog and it straightened
out with violence. We arranged frog's legs to pass etheric force
through. We placed legs on an inverted beaker, and held the two ends
of the wires on glass rods eight inches long. On connecting one to the
sciatic nerve and the other to the fleshy part of the leg no movement
could be discerned, although brilliant sparks could be obtained on the
graphite points when the frog was in circuit. Doctor Beard was present
when this was tried."

. . . . . . . . .


"December 5, 1875. Etheric Force.--Three persons grasping hands and
standing upon blocks of paraffin twelve inches square and six thick drew
sparks from the adjoining stove when another person touched the sounder
with any piece of metal.... A galvanoscopic frog giving contractions
with one cell through two water rheostats was then placed in circuit.
When the wires from the vibrator and the gas-pipe were connected, slight
contractions were noted, sometimes very plain and marked, showing the
apparent presence of electricity, which from the high insulation seemed
improbable. Doctor Beard, who was present, inferred from the way the
leg contracted that it moved on both opening and closing the circuit.
To test this we disconnected the wire between the frog and battery, and
placed, instead of a vibrating sounder, a simple Morse key and a sounder
taking the 'etheric' from armature. The spark was now tested in dark box
and found to be very strong. It was then connected to the nerves of the
frog, BUT NO MOVEMENT OF ANY KIND COULD BE DETECTED UPON WORKING THE
KEY, although the brilliancy and power of the spark were undiminished.
The thought then occurred to Edison that the movement of the frog was
due to mechanical vibrations from the vibrator (which gives probably two
hundred and fifty vibrations per second), passing through the wires
and irritating the sensitive nerves of the frog. Upon disconnecting
the battery wires and holding a tuning-fork giving three hundred
and twenty-six vibrations per second to the base of the sounder, the
vibrations over the wire made the frog contract nearly every time....
The contraction of the frog's legs may with considerable safety be said
to be caused by these mechanical vibrations being transmitted through
the conducting wires."

Edison thought that the longitudinal vibrations caused by the sounder
produced a more marked effect, and proceeded to try out his theory. The
very next entry in the laboratory note-book bears the same date as the
above (December 5, 1875), and is entitled "Longitudinal Vibrations," and
reads as follows:


"We took a long iron wire one-sixteenth of an inch in diameter and
rubbed it lengthways with a piece of leather with resin on for about
three feet, backward and forward. About ten feet away we applied the
wire to the back of the neck and it gives a horrible sensation, showing
the vibrations conducted through the wire."

. . . . . . . . .

The following experiment illustrates notably the movement of the
electric waves through free space:


"December 26, 1875. Etheric Force.--An experiment tried to-night gives a
curious result. A is a vibrator, B, C, D, E are sheets of tin-foil hung
on insulating stands. The sheets are about twelve by eight inches. B and
C are twenty-six inches apart, C and D forty-eight inches and D and E
twenty-six inches. B is connected to the vibrator and E to point in
dark box, the other point to ground. We received sparks at intervals,
although insulated by such space."


With the above our extracts must close, although we have given but a few
of the interesting experiments tried at the time. It will be noticed,
however, that these records show much progression in a little over a
month. Just after the item last above extracted, the Edison shop became
greatly rushed on telegraphic inventions, and not many months afterward
came the removal to Menlo Park; hence the etheric-force investigations
were side-tracked for other matters deemed to be more important at that
time.

Doctor Beard in his previously mentioned treatise refers, on page 27, to
the views of others who have repeated Edison's experiments and observed
the phenomena, and in a foot-note says:


"Professor Houston, of Philadelphia, among others, has repeated some of
these physical experiments, has adopted in full and after but a partial
study of the subject, the hypothesis of rapidly reversed electricity
as suggested in my letter to the Tribune of December 8th, and further
claims priority of discovery, because he observed the spark of this when
experimenting with a Ruhmkorff coil four years ago. To this claim, if
it be seriously entertained, the obvious reply is that thousands of
persons, probably, had seen this spark before it was DISCOVERED by Mr.
Edison; it had been seen by Professor Nipher, who supposed, and still
supposes, it is the spark of the extra current; it has been seen by
my friend, Prof. J. E. Smith, who assumed, as he tells me, without
examination, that it was inductive electricity breaking through bad
insulation; it had been seen, as has been stated, by Mr. Edison many
times before he thought it worthy of study, it was undoubtedly seen by
Professor Houston, who, like so many others, failed to even suspect
its meaning and thus missed an important discovery. The honor of a
scientific discovery belongs, not to him who first sees a thing, but
to him who first sees it with expert eyes; not to him even who drops
an original suggestion, but to him who first makes, that suggestion
fruitful of results. If to see with the eyes a phenomenon is to discover
the law of which that phenomenon is a part, then every schoolboy who,
before the time of Newton, ever saw an apple fall, was a discoverer of
the law of gravitation...."


Edison took out only one patent on long-distance telegraphy without
wires. While the principle involved therein (induction) was not
precisely analogous to the above, or to the present system of wireless
telegraphy, it was a step forward in the progress of the art. The
application was filed May 23, 1885, at the time he was working on
induction telegraphy (two years before the publication of the work of
Hertz), but the patent (No. 465,971) was not issued until December
29, 1891. In 1903 it was purchased from him by the Marconi Wireless
Telegraph Company. Edison has always had a great admiration for Marconi
and his work, and a warm friendship exists between the two men. During
the formative period of the Marconi Company attempts were made to
influence Edison to sell this patent to an opposing concern, but his
regard for Marconi and belief in the fundamental nature of his work were
so strong that he refused flatly, because in the hands of an enemy the
patent might be used inimically to Marconi's interests.

Edison's ideas, as expressed in the specifications of this patent, show
very clearly the close analogy of his system to that now in vogue.
As they were filed in the Patent Office several years before the
possibility of wireless telegraphy was suspected, it will undoubtedly be
of interest to give the following extract therefrom:


"I have discovered that if sufficient elevation be obtained to overcome
the curvature of the earth's surface and to reduce to the minimum the
earth's absorption, electric telegraphing or signalling between
distant points can be carried on by induction without the use of wires
connecting such distant points. This discovery is especially applicable
to telegraphing across bodies of water, thus avoiding the use of
submarine cables, or for communicating between vessels at sea, or
between vessels at sea and points on land, but it is also applicable
to electric communication between distant points on land, it being
necessary, however, on land (with the exception of communication over
open prairie) to increase the elevation in order to reduce to the
minimum the induction-absorbing effect of houses, trees, and elevations
in the land itself. At sea from an elevation of one hundred feet I can
communicate electrically a great distance, and since this elevation
or one sufficiently high can be had by utilizing the masts of ships,
signals can be sent and received between ships separated a considerable
distance, and by repeating the signals from ship to ship communication
can be established between points at any distance apart or across the
largest seas and even oceans. The collision of ships in fogs can be
prevented by this character of signalling, by the use of which, also,
the safety of a ship in approaching a dangerous coast in foggy weather
can be assured. In communicating between points on land, poles of great
height can be used, or captive balloons. At these elevated points,
whether upon the masts of ships, upon poles or balloons, condensing
surfaces of metal or other conductor of electricity are located. Each
condensing surface is connected with earth by an electrical conducting
wire. On land this earth connection would be one of usual character in
telegraphy. At sea the wire would run to one or more metal plates on the
bottom of the vessel, where the earth connection would be made with the
water. The high-resistance secondary circuit of an induction coil is
located in circuit between the condensing surface and the ground. The
primary circuit of the induction coil includes a battery and a device
for transmitting signals, which may be a revolving circuit-breaker
operated continually by a motor of any suitable kind, either electrical
or mechanical, and a key normally short-circuiting the circuit-breaker
or secondary coil. For receiving signals I locate in said circuit
between the condensing surface and the ground a diaphragm sounder, which
is preferably one of my electromotograph telephone receivers. The key
normally short-circuiting the revolving circuit-breaker, no impulses are
produced in the induction coil until the key is depressed, when a large
number of impulses are produced in the primary, and by means of the
secondary corresponding impulses or variations in tension are produced
at the elevated condensing surface, producing thereat electrostatic
impulses. These electrostatic impulses are transmitted inductively
to the elevated condensing surface at the distant point, and are made
audible by the electromotograph connected in the ground circuit with
such distant condensing surface."


The accompanying illustrations are reduced facsimiles of the drawings
attached to the above patent, No. 465,971.



V. THE ELECTROMOTOGRAPH

IN solving a problem that at the time was thought to be insurmountable,
and in the adaptability of its principles to the successful overcoming
of apparently insuperable difficulties subsequently arising in other
lines of work, this invention is one of the most remarkable of the many
that Edison has made in his long career as an inventor.

The object primarily sought to be accomplished was the repeating of
telegraphic signals from a distance without the aid of a galvanometer
or an electromagnetic relay, to overcome the claims of the Page patent
referred to in the preceding narrative. This object was achieved in the
device described in Edison's basic patent No. 158,787, issued January
19, 1875, by the substitution of friction and anti-friction for the
presence and absence of magnetism in a regulation relay.

It may be observed, parenthetically, for the benefit of the lay
reader, that in telegraphy the device known as the relay is a receiving
instrument containing an electromagnet adapted to respond to the weak
line-current. Its armature moves in accordance with electrical impulses,
or signals, transmitted from a distance, and, in so responding, operates
mechanically to alternately close and open a separate local circuit
in which there is a sounder and a powerful battery. When used for true
relaying purposes the signals received from a distance are in turn
repeated over the next section of the line, the powerful local battery
furnishing current for this purpose. As this causes a loud repetition
of the original signals, it will be seen that relaying is an economic
method of extending a telegraph circuit beyond the natural limits of its
battery power.

At the time of Edison's invention, as related in Chapter IX of the
preceding narrative, there existed no other known method than the one
just described for the repetition of transmitted signals, thus limiting
the application of telegraphy to the pleasure of those who might own any
patent controlling the relay, except on simple circuits where a single
battery was sufficient. Edison's previous discovery of differential
friction of surfaces through electrochemical decomposition was now
adapted by him to produce motion at the end of a circuit without
the intervention of an electromagnet. In other words, he invented a
telegraph instrument having a vibrator controlled by electrochemical
decomposition, to take the place of a vibrating armature operated by an
electromagnet, and thus opened an entirely new and unsuspected avenue in
the art.

Edison's electromotograph comprised an ingeniously arranged apparatus in
which two surfaces, normally in contact with each other, were caused
to alternately adhere by friction or slip by reason of electrochemical
decomposition. One of these surfaces consisted of a small drum or
cylinder of chalk, which was kept in a moistened condition with a
suitable chemical solution, and adapted to revolve continuously by
clockwork. The other surface consisted of a small pad which rested with
frictional pressure on the periphery of the drum. This pad was carried
on the end of a vibrating arm whose lateral movement was limited between
two adjustable points. Normally, the frictional pressure between the
drum and pad would carry the latter with the former as it revolved, but
if the friction were removed a spring on the end of the vibrator arm
would draw it back to its starting-place.

In practice, the chalk drum was electrically connected with one pole of
an incoming telegraph circuit, and the vibrating arm and pad with the
other pole. When the drum rotated, the friction of the pad carried the
vibrating arm forward, but an electrical impulse coming over the line
would decompose the chemical solution with which the drum was moistened,
causing an effect similar to lubrication, and thus allowing the pad to
slip backward freely in response to the pull of its retractile spring.
The frictional movements of the pad with the drum were comparatively
long or short, and corresponded with the length of the impulses sent in
over the line. Thus, the transmission of Morse dots and dashes by the
distant operator resulted in movements of corresponding length by the
frictional pad and vibrating arm.

This brings us to the gist of the ingenious way in which Edison
substituted the action of electrochemical decomposition for that of the
electromagnet to operate a relay. The actual relaying was accomplished
through the medium of two contacts making connection with the local
or relay circuit. One of these contacts was fixed, while the other was
carried by the vibrating arm; and, as the latter made its forward and
backward movements, these contacts were alternately brought together or
separated, thus throwing in and out of circuit the battery and sounder
in the local circuit and causing a repetition of the incoming signals.
The other side of the local circuit was permanently connected to an
insulated block on the vibrator. This device not only worked with great
rapidity, but was extremely sensitive, and would respond to currents
too weak to affect the most delicate electromagnetic relay. It should
be stated that Edison did not confine himself to the working of the
electromotograph by the slipping of surfaces through the action of
incoming current, but by varying the character of the surfaces in
contact the frictional effect might be intensified by the electrical
current. In such a case the movements would be the reverse of
those above indicated, but the end sought--namely, the relaying of
messages--would be attained with the same certainty.

While the principal object of this invention was to accomplish the
repetition of signals without the aid of an electromagnetic relay, the
instrument devised by Edison was capable of use as a recorder also, by
employing a small wheel inked by a fountain wheel and attached to the
vibrating arm through suitable mechanism. By means of this adjunct the
dashes and dots of the transmitted impulses could be recorded upon a
paper ribbon passing continuously over the drum.

The electromotograph is shown diagrammatically in Figs. 1 and 2, in plan
and vertical section respectively. The reference letters in each case
indicate identical parts: A being the chalk drum, B the paper tape, C
the auxiliary cylinder, D the vibrating arm, E the frictional pad, F the
spring, G and H the two contacts, I and J the two wires leading to local
circuit, K a battery, and L an ordinary telegraph key. The two last
named, K and L, are shown to make the sketch complete but in practice
would be at the transmitting end, which might be hundreds of miles
away. It will be understood, of course, that the electromotograph is a
receiving and relaying instrument.

Another notable use of the electromotograph principle was in its
adaptation to the receiver in Edison's loud-speaking telephone, on which
United States Patent No. 221,957 was issued November 25, 1879. A chalk
cylinder moistened with a chemical solution was revolved by hand or
a small motor. Resting on the cylinder was a palladium-faced pen or
spring, which was attached to a mica diaphragm in a resonator. The
current passed from the main line through the pen to the chalk and to
the battery. The sound-waves impinging upon the distant transmitter
varied the resistance of the carbon button therein, thus causing
corresponding variations in the strength of the battery current. These
variations, passing through the chalk cylinder produced more or less
electrochemical decomposition, which in turn caused differences of
adhesion between the pen and cylinder and hence gave rise to mechanical
vibrations of the diaphragm by reason of which the speaker's words were
reproduced. Telephones so operated repeated speaking and singing in
very loud tones. In one instance, spoken words and the singing of songs
originating at a distance were heard perfectly by an audience of over
five thousand people.

The loud-speaking telephone is shown in section, diagrammatically,
in the sketch (Fig. 3), in which A is the chalk cylinder mounted on
a shaft, B. The palladium-faced pen or spring, C, is connected to
diaphragm D. The instrument in its commercial form is shown in Fig. 4.



VI. THE TELEPHONE

ON April 27, 1877, Edison filed in the United States Patent Office an
application for a patent on a telephone, and on May 3, 1892, more
than fifteen years afterward, Patent No. 474,230 was granted thereon.
Numerous other patents have been issued to him for improvements in
telephones, but the one above specified may be considered as the
most important of them, since it is the one that first discloses the
principle of the carbon transmitter.

This patent embodies but two claims, which are as follows:


"1. In a speaking-telegraph transmitter, the combination of a metallic
diaphragm and disk of plumbago or equivalent material, the contiguous
faces of said disk and diaphragm being in contact, substantially as
described.

"2. As a means for effecting a varying surface contact in the circuit of
a speaking-telegraph transmitter, the combination of two electrodes,
one of plumbago or similar material, and both having broad surfaces in
vibratory contact with each other, substantially as described."


The advance that was brought about by Edison's carbon transmitter will
be more apparent if we glance first at the state of the art of telephony
prior to his invention.

Bell was undoubtedly the first inventor of the art of transmitting
speech over an electric circuit, but, with his particular form of
telephone, the field was circumscribed. Bell's telephone is shown in the
diagrammatic sectional sketch (Fig. 1).

In the drawing M is a bar magnet contained in the rubber case, L. A
bobbin, or coil of wire, B, surrounds one end of the magnet. A diaphragm
of soft iron is shown at D, and E is the mouthpiece. The wire terminals
of the coil, B, connect with the binding screws, C C.

The next illustration shows a pair of such telephones connected for use,
the working parts only being designated by the above reference letters.

It will be noted that the wire terminals are here put to their proper
uses, two being joined together to form a line of communication, and the
other two being respectively connected to "ground."

Now, if we imagine a person at each one of the instruments (Fig. 2) we
shall find that when one of them speaks the sound vibrations impinge
upon the diaphragm and cause it to act as a vibrating armature. By
reason of its vibrations, this diaphragm induces very weak electric
impulses in the magnetic coil. These impulses, according to Bell's
theory, correspond in form to the sound-waves, and, passing over the
line, energize the magnet coil at the receiving end, thus giving rise to
corresponding variations in magnetism by reason of which the receiving
diaphragm is similarly vibrated so as to reproduce the sounds. A single
apparatus at each end is therefore sufficient, performing the double
function of transmitter and receiver. It will be noticed that in this
arrangement no battery is used The strength of the impulses transmitted
is therefore limited to that of the necessarily weak induction currents
generated by the original sounds minus any loss arising by reason of
resistance in the line.

Edison's carbon transmitter overcame this vital or limiting weakness
by providing for independent power on the transmission circuit, and by
introducing the principle of varying the resistance of that circuit with
changes in the pressure. With Edison's telephone there is used a closed
circuit on which a battery current constantly flows, and in that
circuit is a pair of electrodes, one or both of which is carbon. These
electrodes are always in contact with a certain initial pressure,
so that current will be always flowing over the circuit. One of the
electrodes is connected with the diaphragm on which the sound-waves
impinge, and the vibrations of this diaphragm cause corresponding
variations in pressure between the electrodes, and thereby effect
similar variations in the current which is passing over the line to the
receiving end. This current, flowing around the receiving magnet, causes
corresponding impulses therein, which, acting upon its diaphragm, effect
a reproduction of the original vibrations and hence of the original
sounds.

In other words, the essential difference is that with Bell's telephone
the sound-waves themselves generate the electric impulses, which are
therefore extremely faint. With Edison's telephone the sound-waves
simply actuate an electric valve, so to speak, and permit variations in
a current of any desired strength.

A second distinction between the two telephones is this: With the Bell
apparatus the very weak electric impulses generated by the vibration of
the transmitting diaphragm pass over the entire line to the receiving
end, and, in consequence, the possible length of line is limited to
a few miles, even under ideal conditions. With Edison's telephone the
battery current does not flow on the main line, but passes through
the primary circuit of an induction-coil, from the secondary of which
corresponding impulses of enormously higher potential are sent out on
the main line to the receiving end. In consequence, the line may be
hundreds of miles in length. No modern telephone system is in use to-day
that does not use these characteristic features: the varying resistance
and the induction-coil. The system inaugurated by Edison is shown by the
diagram (Fig. 3), in which the carbon transmitter, the induction-coil,
the line, and the distant receiver are respectively indicated.

In Fig. 4 an early form of the Edison carbon transmitter is represented
in sectional view.

The carbon disk is represented by the black portion, E, near the
diaphragm, A, placed between two platinum plates D and G, which are
connected in the battery circuit, as shown by the lines. A small
piece of rubber tubing, B, is attached to the centre of the metallic
diaphragm, and presses lightly against an ivory piece, F, which is
placed directly over one of the platinum plates. Whenever, therefore,
any motion is given to the diaphragm, it is immediately followed by a
corresponding pressure upon the carbon, and by a change of resistance in
the latter, as described above.

It is interesting to note the position which Edison occupies in
the telephone art from a legal standpoint. To this end the reader's
attention is called to a few extracts from a decision of Judge Brown
in two suits brought in the United States Circuit Court, District
of Massachusetts, by the American Bell Telephone Company against the
National Telephone Manufacturing Company, et al., and Century Telephone
Company, et al., reported in Federal Reporter, 109, page 976, et seq.
These suits were brought on the Berliner patent, which, it was claimed,
covered broadly the electrical transmission of speech by variations of
pressure between opposing electrodes in constant contact. The Berliner
patent was declared invalid, and in the course of a long and exhaustive
opinion, in which the state of art and the work of Bell, Edison,
Berliner, and others was fully discussed, the learned Judge made the
following remarks: "The carbon electrode was the invention of Edison....
Edison preceded Berliner in the transmission of speech.... The carbon
transmitter was an experimental invention of a very high order of
merit.... Edison, by countless experiments, succeeded in advancing the
art. . . . That Edison did produce speech with solid electrodes before
Berliner is clearly proven.... The use of carbon in a transmitter is,
beyond controversy, the invention of Edison. Edison was the first to
make apparatus in which carbon was used as one of the electrodes....
The carbon transmitter displaced Bell's magnetic transmitter, and,
under several forms of construction, remains the only commercial
instrument.... The advance in the art was due to the carbon electrode of
Edison.... It is conceded that the Edison transmitter as apparatus is a
very important invention.... An immense amount of painstaking and highly
ingenious experiment preceded Edison's successful result. The discovery
of the availability of carbon was unquestionably invention, and it
resulted in the 'first practical success in the art.'"



VII. EDISON'S TASIMETER

THIS interesting and remarkable device is one of Edison's many
inventions not generally known to the public at large, chiefly because
the range of its application has been limited to the higher branches of
science. He never applied for a patent on the instrument, but dedicated
it to the public.

The device was primarily intended for use in detecting and measuring
infinitesimal degrees of temperature, however remote, and its conception
followed Edison's researches on the carbon telephone transmitter. Its
principle depends upon the variable resistance of carbon in accordance
with the degree of pressure to which it is subjected. By means of
this instrument, pressures that are otherwise inappreciable and
undiscoverable may be observed and indicated.

The detection of small variations of temperatures is brought about
through the changes which heat or cold will produce in a sensitive
material placed in contact with a carbon button, which is put in circuit
with a battery and delicate galvanometer. In the sketch (Fig. 1) there
is illustrated, partly in section, the form of tasimeter which Edison
took with him to Rawlins, Wyoming, in July, 1878, on the expedition to
observe the total eclipse of the sun.

The substance on whose expansion the working of the instrument depends
is a strip of some material extremely sensitive to heat, such as
vulcanite. shown at A, and firmly clamped at B. Its lower end fits into
a slot in a metal plate, C, which in turn rests upon a carbon button.
This latter and the metal plate are connected in an electric circuit
which includes a battery and a sensitive galvanometer. A vulcanite or
other strip is easily affected by differences of temperature,
expanding and contracting by reason of the minutest changes. Thus, an
infinitesimal variation in its length through expansion or contraction
changes the pressure on the carbon and affects the resistance of the
circuit to a corresponding degree, thereby causing a deflection of
the galvanometer; a movement of the needle in one direction denoting
expansion, and in the other contraction. The strip, A, is first put
under a slight pressure, deflecting the needle a few degrees from zero.
Any subsequent expansion or contraction of the strip may readily
be noted by further movements of the needle. In practice, and for
measurements of a very delicate nature, the tasimeter is inserted in one
arm of a Wheatstone bridge, as shown at A in the diagram (Fig. 2). The
galvanometer is shown at B in the bridge wire, and at C, D, and E there
are shown the resistances in the other arms of the bridge, which are
adjusted to equal the resistance of the tasimeter circuit. The battery
is shown at F. This arrangement tends to obviate any misleading
deflections that might arise through changes in the battery.

The dial on the front of the instrument is intended to indicate the
exact amount of physical expansion or contraction of the strip. This is
ascertained by means of a micrometer screw, S, which moves a needle, T,
in front of the dial. This screw engages with a second and similar screw
which is so arranged as to move the strip of vulcanite up or down. After
a galvanometer deflection has been obtained through the expansion or
contraction of the strip by reason of a change of temperature, a similar
deflection is obtained mechanically by turning the screw, S, one way or
the other. This causes the vulcanite strip to press more or less
upon the carbon button, and thus produces the desired change in the
resistance of the circuit. When the galvanometer shows the desired
deflection, the needle, T, will indicate upon the dial, in decimal
fractions of an inch, the exact distance through which the strip has
been moved.

With such an instrument as the above, Edison demonstrated the existence
of heat in the corona at the above-mentioned total eclipse of the sun,
but exact determinations could not be made at that time, because the
tasimeter adjustment was too delicate, and at the best the galvanometer
deflections were so marked that they could not be kept within the
limits of the scale. The sensitiveness of the instrument may be easily
comprehended when it is stated that the heat of the hand thirty feet
away from the cone-like funnel of the tasimeter will so affect the
galvanometer as to cause the spot of light to leave the scale.

This instrument can also be used to indicate minute changes of
moisture in the air by substituting a strip of gelatine in place of the
vulcanite. When so arranged a moistened piece of paper held several feet
away will cause a minute expansion of the gelatine strip, which
effects a pressure on the carbon, and causes a variation in the circuit
sufficient to throw the spot of light from the galvanometer mirror off
the scale.

The tasimeter has been used to demonstrate heat from remote stars
(suns), such as Arcturus.



VIII. THE EDISON PHONOGRAPH

THE first patent that was ever granted on a device for permanently
recording the human voice and other sounds, and for reproducing the same
audibly at any future time, was United States Patent No. 200,251, issued
to Thomas A. Edison on February 19, 1878, the application having
been filed December 24, 1877. It is worthy of note that no references
whatever were cited against the application while under examination in
the Patent Office. This invention therefore, marked the very beginning
of an entirely new art, which, with the new industries attendant upon
its development, has since grown to occupy a position of worldwide
reputation.

That the invention was of a truly fundamental character is also evident
from the fact that although all "talking-machines" of to-day differ very
widely in refinement from the first crude but successful phonograph of
Edison, their performance is absolutely dependent upon the employment of
the principles stated by him in his Patent No. 200,251. Quoting from the
specification attached to this patent, we find that Edison said:

"The invention consists in arranging a plate, diaphragm or other
flexible body capable of being vibrated by the human voice or other
sounds, in conjunction with a material capable of registering the
movements of such vibrating body by embossing or indenting or altering
such material, in such a manner that such register marks will be
sufficient to cause a second vibrating plate or body to be set in motion
by them, and thus reproduce the motions of the first vibrating body."

It will be at once obvious that these words describe perfectly the
basic principle of every modern phonograph or other talking-machine,
irrespective of its manufacture or trade name.

Edison's first model of the phonograph is shown in the following
illustration.

It consisted of a metallic cylinder having a helical indenting groove
cut upon it from end to end. This cylinder was mounted on a shaft
supported on two standards. This shaft at one end was fitted with a
handle, by means of which the cylinder was rotated. There were two
diaphragms, one on each side of the cylinder, one being for recording
and the other for reproducing speech or other sounds. Each diaphragm
had attached to it a needle. By means of the needle attached to the
recording diaphragm, indentations were made in a sheet of tin-foil
stretched over the peripheral surface of the cylinder when the diaphragm
was vibrated by reason of speech or other sounds. The needle on
the other diaphragm subsequently followed these indentations, thus
reproducing the original sounds.

Crude as this first model appears in comparison with machines of later
development and refinement, it embodied their fundamental essentials,
and was in fact a complete, practical phonograph from the first moment
of its operation.

The next step toward the evolution of the improved phonograph of to-day
was another form of tin-foil machine, as seen in the illustration.

It will be noted that this was merely an elaborated form of the first
model, and embodied several mechanical modifications, among which was
the employment of only one diaphragm for recording and reproducing.
Such was the general type of phonograph used for exhibition purposes
in America and other countries in the three or four years immediately
succeeding the date of this invention.

In operating the machine the recording diaphragm was advanced nearly
to the cylinder, so that as the diaphragm was vibrated by the voice the
needle would prick or indent a wave-like record in the tin-foil that
was on the cylinder. The cylinder was constantly turned during the
recording, and in turning, was simultaneously moved forward. Thus the
record would be formed on the tin-foil in a continuous spiral line.
To reproduce this record it was only necessary to again start at the
beginning and cause the needle to retrace its path in the spiral line.
The needle, in passing rapidly in contact with the recorded waves, was
vibrated up and down, causing corresponding vibrations of the diaphragm.
In this way sound-waves similar to those caused by the original sounds
would be set up in the air, thus reproducing the original speech.

The modern phonograph operates in a precisely similar way, the only
difference being in details of refinement. Instead of tin-foil, a wax
cylinder is employed, the record being cut thereon by a cutting-tool
attached to a diaphragm, while the reproduction is effected by means of
a blunt stylus similarly attached.

The cutting-tool and stylus are devices made of sapphire, a gem next in
hardness to a diamond, and they have to be cut and formed to an exact
nicety by means of diamond dust, most of the work being performed under
high-powered microscopes. The minute proportions of these devices will
be apparent by a glance at the accompanying illustrations, in which the
object on the left represents a common pin, and the objects on the right
the cutting-tool and reproducing stylus, all actual sizes.

In the next illustration (Fig. 4) there is shown in the upper sketch,
greatly magnified, the cutting or recording tool in the act of forming
the record, being vibrated rapidly by the diaphragm; and in the lower
sketch, similarly enlarged, a representation of the stylus travelling
over the record thus made, in the act of effecting a reproduction.

From the late summer of 1878 and to the fall of 1887 Edison was
intensely busy on the electric light, electric railway, and other
problems, and virtually gave no attention to the phonograph. Hence,
just prior to the latter-named period the instrument was still in its
tin-foil age; but he then began to devote serious attention to the
development of an improved type that should be of greater commercial
importance. The practical results are too well known to call for further
comment. That his efforts were not limited in extent may be inferred
from the fact that since the fall of 1887 to the present writing he has
been granted in the United States one hundred and four patents relating
to the phonograph and its accessories.

Interesting as the numerous inventions are, it would be a work of
supererogation to digest all these patents in the present pages, as they
represent not only the inception but also the gradual development and
growth of the wax-record type of phonograph from its infancy to the
present perfected machine and records now so widely known all over the
world. From among these many inventions, however, we will select two
or three as examples of ingenuity and importance in their bearing upon
present perfection of results.

One of the difficulties of reproduction for many years was the trouble
experienced in keeping the stylus in perfect engagement with the
wave-like record, so that every minute vibration would be reproduced. It
should be remembered that the deepest cut of the recording tool is only
about one-third the thickness of tissue-paper. Hence, it will be quite
apparent that the slightest inequality in the surface of the wax would
be sufficient to cause false vibration, and thus give rise to distorted
effects in such music or other sounds as were being reproduced. To
remedy this, Edison added an attachment which is called a "floating
weight," and is shown at A in the illustration above.

The function of the floating weight is to automatically keep the
stylus in close engagement with the record, thus insuring accuracy of
reproduction. The weight presses the stylus to its work, but because
of its mass it cannot respond to the extremely rapid vibrations of the
stylus. They are therefore communicated to the diaphragm.

Some of Edison's most remarkable inventions are revealed in a number of
interesting patents relating to the duplication of phonograph records.
It would be obviously impossible, from a commercial standpoint, to
obtain a musical record from a high-class artist and sell such an
original to the public, as its cost might be from one hundred to several
thousand dollars. Consequently, it is necessary to provide some way by
which duplicates may be made cheaply enough to permit their purchase by
the public at a reasonable price.

The making of a perfect original musical or other record is a matter
of no small difficulty, as it requires special technical knowledge and
skill gathered from many years of actual experience; but in the exact
copying, or duplication, of such a record, with its many millions
of microscopic waves and sub-waves, the difficulties are enormously
increased. The duplicates must be microscopically identical with the
original, they must be free from false vibrations or other defects,
although both original and duplicates are of such easily defacable
material as wax; and the process must be cheap and commercial not a
scientific laboratory possibility.

For making duplicates it was obviously necessary to first secure a mold
carrying the record in negative or reversed form. From this could be
molded, or cast, positive copies which would be identical with the
original. While the art of electroplating would naturally suggest
itself as the means of making such a mold, an apparently insurmountable
obstacle appeared on the very threshold. Wax, being a non-conductor,
cannot be electroplated unless a conducting surface be first applied.
The coatings ordinarily used in electro-deposition were entirely out of
the question on account of coarseness, the deepest waves of the record
being less than one-thousandth of an inch in depth, and many of them
probably ten to one hundred times as shallow. Edison finally decided
to apply a preliminary metallic coating of infinitesimal thinness, and
accomplished this object by a remarkable process known as the vacuous
deposit. With this he applied to the original record a film of gold
probably no thicker than one three-hundred-thousandth of an inch, or
several hundred times less than the depth of an average wave. Three
hundred such layers placed one on top of the other would make a sheet no
thicker than tissue-paper.

The process consists in placing in a vacuum two leaves, or electrodes,
of gold, and between them the original record. A constant discharge of
electricity of high tension between the electrodes is effected by means
of an induction-coil. The metal is vaporized by this discharge, and is
carried by it directly toward and deposited upon the original record,
thus forming the minute film of gold above mentioned. The record is
constantly rotated until its entire surface is coated. A sectional
diagram of the apparatus (Fig. 6.) will aid to a clearer understanding
of this ingenious process.

After the gold film is formed in the manner described above, a heavy
backing of baser metal is electroplated upon it, thus forming a
substantial mold, from which the original record is extracted by
breakage or shrinkage.

Duplicate records in any quantity may now be made from this mold by
surrounding it with a cold-water jacket and dipping it in a molten
wax-like material. This congeals on the record surface just as melted
butter would collect on a cold knife, and when the mold is removed the
surplus wax falls out, leaving a heavy deposit of the material which
forms the duplicate record. Numerous ingenious inventions have been made
by Edison providing for a variety of rapid and economical methods
of duplication, including methods of shrinking a newly made copy to
facilitate its quick removal from the mold; methods of reaming, of
forming ribs on the interior, and for many other important and essential
details, which limits of space will not permit of elaboration. Those
mentioned above are but fair examples of the persistent and effective
work he has done to bring the phonograph to its present state of
perfection.

In perusing Chapter X of the foregoing narrative, the reader undoubtedly
noted Edison's clear apprehension of the practical uses of the
phonograph, as evidenced by his prophetic utterances in the article
written by him for the North American Review in June, 1878. In view of
the crudity of the instrument at that time, it must be acknowledged that
Edison's foresight, as vindicated by later events was most remarkable.
No less remarkable was his intensely practical grasp of mechanical
possibilities of future types of the machine, for we find in one of his
early English patents (No. 1644 of 1878) the disk form of phonograph
which, some ten to fifteen years later, was supposed to be a new
development in the art. This disk form was also covered by Edison's
application for a United States patent, filed in 1879. This application
met with some merely minor technical objections in the Patent Office,
and seems to have passed into the "abandoned" class for want of
prosecution, probably because of being overlooked in the tremendous
pressure arising from his development of his electric-lighting system.



IX. THE INCANDESCENT LAMP


ALTHOUGH Edison's contributions to human comfort and progress are
extensive in number and extraordinarily vast and comprehensive in
scope and variety, the universal verdict of the world points to his
incandescent lamp and system of distribution of electrical current as
the central and crowning achievements of his life up to this time. This
view would seem entirely justifiable when we consider the wonderful
changes in the conditions of modern life that have been brought about
by the wide-spread employment of these inventions, and the gigantic
industries that have grown up and been nourished by their world-wide
application. That he was in this instance a true pioneer and creator
is evident as we consider the subject, for the United States Patent No.
223,898, issued to Edison on January 27, 1880, for an incandescent lamp,
was of such fundamental character that it opened up an entirely new and
tremendously important art--the art of incandescent electric lighting.
This statement cannot be successfully controverted, for it has been
abundantly verified after many years of costly litigation. If further
proof were desired, it is only necessary to point to the fact that,
after thirty years of most strenuous and practical application in the
art by the keenest intellects of the world, every incandescent lamp
that has ever since been made, including those of modern days, is
still dependent upon the employment of the essentials disclosed in the
above-named patent--namely, a filament of high resistance enclosed in
a sealed glass globe exhausted of air, with conducting wires passing
through the glass.

An incandescent lamp is such a simple-appearing article--merely a
filament sealed into a glass globe--that its intrinsic relation to the
art of electric lighting is far from being apparent at sight. To the lay
mind it would seem that this must have been THE obvious device to make
in order to obtain electric light by incandescence of carbon or
other material. But the reader has already learned from the preceding
narrative that prior to its invention by Edison such a device was NOT
obvious, even to the most highly trained experts of the world at that
period; indeed, it was so far from being obvious that, for some time
after he had completed practical lamps and was actually lighting them up
twenty-four hours a day, such a device and such a result were declared
by these same experts to be an utter impossibility. For a short while
the world outside of Menlo Park held Edison's claims in derision.
His lamp was pronounced a fake, a myth, possibly a momentary success
magnified to the dignity of a permanent device by an overenthusiastic
inventor.

Such criticism, however, did not disturb Edison. He KNEW that he had
reached the goal. Long ago, by a close process of reasoning, he had
clearly seen that the only road to it was through the path he had
travelled, and which was now embodied in the philosophy of his
incandescent lamp--namely, a filament, or carbon, of high resistance and
small radiating surface, sealed into a glass globe exhausted of air to a
high degree of vacuum. In originally committing himself to this line
of investigation he was well aware that he was going in a direction
diametrically opposite to that followed by previous investigators. Their
efforts had been confined to low-resistance burners of large radiating
surface for their lamps, but he realized the utter futility of such
devices. The tremendous problems of heat and the prohibitive quantities
of copper that would be required for conductors for such lamps would be
absolutely out of the question in commercial practice.

He was convinced from the first that the true solution of the
problem lay in a lamp which should have as its illuminating body
a strip of material which would offer such a resistance to
the flow of electric current that it could be raised to a high
temperature--incandescence--and be of such small cross-section that it
would radiate but little heat. At the same time such a lamp must require
a relatively small amount of current, in order that comparatively small
conductors could be used, and its burner must be capable of withstanding
the necessarily high temperatures without disintegration.

It is interesting to note that these conceptions were in Edison's mind
at an early period of his investigations, when the best expert opinion
was that the subdivision of the electric current was an ignis fatuus.
Hence we quote the following notes he made, November 15, 1878, in one of
the laboratory note-books:


"A given straight wire having 1 ohm resistance and certain length is
brought to a given degree of temperature by given battery. If the same
wire be coiled in such a manner that but one-quarter of its surface
radiates, its temperature will be increased four times with the
same battery, or, one-quarter of this battery will bring it to the
temperature of straight wire. Or the same given battery will bring
a wire whose total resistance is 4 ohms to the same temperature as
straight wire.

"This was actually determined by trial.

"The amount of heat lost by a body is in proportion to the radiating
surface of that body. If one square inch of platina be heated to 100
degrees it will fall to, say, zero in one second, whereas, if it was at
200 degrees it would require two seconds.

"Hence, in the case of incandescent conductors, if the radiating surface
be twelve inches and the temperature on each inch be 100, or 1200 for
all, if it is so coiled or arranged that there is but one-quarter, or
three inches, of radiating surface, then the temperature on each inch
will be 400. If reduced to three-quarters of an inch it will have on
that three-quarters of an inch 1600 degrees Fahr., notwithstanding
the original total amount was but 1200, because the radiation has
been reduced to three-quarters, or 75 units; hence, the effect of the
lessening of the radiation is to raise the temperature of each remaining
inch not radiating to 125 degrees. If the radiating surface should be
reduced to three-thirty-seconds of an inch, the temperature would reach
6400 degrees Fahr. To carry out this law to the best advantage in regard
to platina, etc., then with a given length of wire to quadruple the heat
we must lessen the radiating surface to one-quarter, and to do this in a
spiral, three-quarters must be within the spiral and one-quarter outside
for radiating; hence, a square wire or other means, such as a spiral
within a spiral, must be used. These results account for the enormous
temperature of the Electric Arc with one horse-power; as, for instance,
if one horse-power will heat twelve inches of wire to 1000 degrees
Fahr., and this is concentrated to have one-quarter of the radiating
surface, it would reach a temperature of 4000 degrees or sufficient
to melt it; but, supposing it infusible, the further concentration to
one-eighth its surface, it would reach a temperature of 16,000 degrees,
and to one-thirty-second its surface, which would be about the radiating
surface of the Electric Arc, it would reach 64,000 degrees Fahr. Of
course, when Light is radiated in great quantities not quite these
temperatures would be reached.

"Another curious law is this: It will require a greater initial battery
to bring an iron wire of the same size and resistance to a given
temperature than it will a platina wire in proportion to their specific
heats, and in the case of Carbon, a piece of Carbon three inches long
and one-eighth diameter, with a resistance of 1 ohm, will require a
greater battery power to bring it to a given temperature than a cylinder
of thin platina foil of the same length, diameter, and resistance,
because the specific heat of Carbon is many times greater; besides, if
I am not mistaken, the radiation of a roughened body for heat is greater
than a polished one like platina."

Proceeding logically upon these lines of thought and following them
out through many ramifications, we have seen how he at length made a
filament of carbon of high resistance and small radiating surface, and
through a concurrent investigation of the phenomena of high vacua and
occluded gases was able to produce a true incandescent lamp. Not only
was it a lamp as a mere article--a device to give light--but it was also
an integral part of his great and complete system of lighting, to every
part of which it bore a fixed and definite ratio, and in relation to
which it was the keystone that held the structure firmly in place.

The work of Edison on incandescent lamps did not stop at this
fundamental invention, but extended through more than eighteen years
of a most intense portion of his busy life. During that period he was
granted one hundred and forty-nine other patents on the lamp and its
manufacture. Although very many of these inventions were of the utmost
importance and value, we cannot attempt to offer a detailed exposition
of them in this necessarily brief article, but must refer the reader,
if interested, to the patents themselves, a full list being given at
the end of this Appendix. The outline sketch will indicate the principal
patents covering the basic features of the lamp.

The litigation on the Edison lamp patents was one of the most determined
and stubbornly fought contests in the history of modern jurisprudence.
Vast interests were at stake. All of the technical, expert, and
professional skill and knowledge that money could procure or experience
devise were availed of in the bitter fights that raged in the courts for
many years. And although the Edison interests had spent from first to
last nearly $2,000,000, and had only about three years left in the
life of the fundamental patent, Edison was thoroughly sustained as to
priority by the decisions in the various suits. We shall offer a few
brief extracts from some of these decisions.

In a suit against the United States Electric Lighting Company, United
States Circuit Court for the Southern District of New York, July 14,
1891, Judge Wallace said, in his opinion: "The futility of hoping to
maintain a burner in vacuo with any permanency had discouraged prior
inventors, and Mr. Edison is entitled to the credit of obviating the
mechanical difficulties which disheartened them.... He was the first
to make a carbon of materials, and by a process which was especially
designed to impart high specific resistance to it; the first to make a
carbon in the special form for the special purpose of imparting to it
high total resistance; and the first to combine such a burner with the
necessary adjuncts of lamp construction to prevent its disintegration
and give it sufficiently long life. By doing these things he made a lamp
which was practically operative and successful, the embryo of the best
lamps now in commercial use, and but for which the subdivision of the
electric light by incandescence would still be nothing but the ignis
fatuus which it was proclaimed to be in 1879 by some of the reamed
experts who are now witnesses to belittle his achievement and show that
it did not rise to the dignity of an invention.... It is impossible to
resist the conclusion that the invention of the slender thread of carbon
as a substitute for the burners previously employed opened the path to
the practical subdivision of the electric light."

An appeal was taken in the above suit to the United States Circuit Court
of Appeals, and on October 4, 1892, the decree of the lower court was
affirmed. The judges (Lacombe and Shipman), in a long opinion reviewed
the facts and the art, and said, inter alia: "Edison's invention was
practically made when he ascertained the theretofore unknown fact that
carbon would stand high temperature, even when very attenuated, if
operated in a high vacuum, without the phenomenon of disintegration.
This fact he utilized by the means which he has described, a lamp having
a filamentary carbon burner in a nearly perfect vacuum."

In a suit against the Boston Incandescent Lamp Company et al., in the
United States Circuit Court for the District of Massachusetts, decided
in favor of Edison on June 11, 1894, Judge Colt, in his opinion, said,
among other things: "Edison made an important invention; he produced the
first practical incandescent electric lamp; the patent is a pioneer in
the sense of the patent law; it may be said that his invention created
the art of incandescent electric lighting."

Opinions of other courts, similar in tenor to the foregoing, might be
cited, but it would be merely in the nature of reiteration. The above
are sufficient to illustrate the direct clearness of judicial decision
on Edison's position as the founder of the art of electric lighting by
incandescence.



X. EDISON'S DYNAMO WORK

AT the present writing, when, after the phenomenally rapid electrical
development of thirty years, we find on the market a great variety of
modern forms of efficient current generators advertised under the names
of different inventors (none, however, bearing the name of Edison), a
young electrical engineer of the present generation might well inquire
whether the great inventor had ever contributed anything to the art
beyond a mere TYPE of machine formerly made and bearing his name, but
not now marketed except second hand.

For adequate information he might search in vain the books usually
regarded as authorities on the subject of dynamo-electric machinery,
for with slight exceptions there has been a singular unanimity in
the omission of writers to give Edison credit for his great and basic
contributions to heavy-current technics, although they have been
universally acknowledged by scientific and practical men to have laid
the foundation for the efficiency of, and to be embodied in all modern
generators of current.

It might naturally be expected that the essential facts of Edison's
work would appear on the face of his numerous patents on dynamo-electric
machinery, but such is not necessarily the case, unless they are
carefully studied in the light of the state of the art as it existed
at the time. While some of these patents (especially the earlier ones)
cover specific devices embodying fundamental principles that not only
survive to the present day, but actually lie at the foundation of
the art as it now exists, there is no revelation therein of Edison's
preceding studies of magnets, which extended over many years, nor of his
later systematic investigations and deductions.

Dynamo-electric machines of a primitive kind had been invented and were
in use to a very limited extent for arc lighting and electroplating for
some years prior to the summer of 1819, when Edison, with an embryonic
lighting SYSTEM in mind, cast about for a type of machine technically
and commercially suitable for the successful carrying out of his plans.
He found absolutely none. On the contrary, all of the few types then
obtainable were uneconomical, indeed wasteful, in regard to efficiency.
The art, if indeed there can be said to have been an art at that time,
was in chaotic confusion, and only because of Edison's many years' study
of the magnet was he enabled to conclude that insufficiency in quantity
of iron in the magnets of such machines, together with poor surface
contacts, rendered the cost of magnetization abnormally high. The
heating of solid armatures, the only kind then known, and poor
insulation in the commutators, also gave rise to serious losses. But
perhaps the most serious drawback lay in the high-resistance armature,
based upon the highest scientific dictum of the time that in order
to obtain the maximum amount of work from a machine, the internal
resistance of the armature must equal the resistance of the exterior
circuit, although the application of this principle entailed the useless
expenditure of at least 50 per cent. of the applied energy.

It seems almost incredible that only a little over thirty years ago the
sum of scientific knowledge in regard to dynamo-electric machines was so
meagre that the experts of the period should settle upon such a dictum
as this, but such was the fact, as will presently appear. Mechanical
generators of electricity were comparatively new at that time; their
theory and practice were very imperfectly understood; indeed, it is
quite within the bounds of truth to say that the correct principles were
befogged by reason of the lack of practical knowledge of their actual
use. Electricians and scientists of the period had been accustomed for
many years past to look to the chemical battery as the source from which
to obtain electrical energy; and in the practical application of such
energy to telegraphy and kindred uses, much thought and ingenuity had
been expended in studying combinations of connecting such cells so as to
get the best results. In the text-books of the period it was stated as a
settled principle that, in order to obtain the maximum work out of a
set of batteries, the internal resistance must approximately equal the
resistance of the exterior circuit. This principle and its application
in practice were quite correct as regards chemical batteries, but not as
regards dynamo machines. Both were generators of electrical current, but
so different in construction and operation, that rules applicable to the
practical use of the one did not apply with proper commercial efficiency
to the other. At the period under consideration, which may be said to
have been just before dawn of the day of electric light, the philosophy
of the dynamo was seen only in mysterious, hazy outlines--just emerging
from the darkness of departing night. Perhaps it is not surprising,
then, that the dynamo was loosely regarded by electricians as
the practical equivalent of a chemical battery; that many of the
characteristics of performance of the chemical cell were also attributed
to it, and that if the maximum work could be gotten out of a set of
batteries when the internal and external resistances were equal (and
this was commercially the best thing to do), so must it be also with a
dynamo.

It was by no miracle that Edison was far and away ahead of his time
when he undertook to improve the dynamo. He was possessed of absolute
KNOWLEDGE far beyond that of his contemporaries. This he ad acquired by
the hardest kind of work and incessant experiment with magnets of all
kinds during several years preceding, particularly in connection
with his study of automatic telegraphy. His knowledge of magnets was
tremendous. He had studied and experimented with electromagnets in
enormous variety, and knew their peculiarities in charge and discharge,
lag, self-induction, static effects, condenser effects, and the various
other phenomena connected therewith. He had also made collateral studies
of iron, steel, and copper, insulation, winding, etc. Hence, by reason
of this extensive work and knowledge, Edison was naturally in a position
to realize the utter commercial impossibility of the then best dynamo
machine in existence, which had an efficiency of only about 40 per
cent., and was constructed on the "cut-and-try" principle.

He was also naturally in a position to assume the task he set out to
accomplish, of undertaking to plan and-build an improved type of machine
that should be commercial in having an efficiency of at least 90 per
cent. Truly a prodigious undertaking in those dark days, when from the
standpoint of Edison's large experience the most practical and correct
electrical treatise was contained in the Encyclopaedia Britannica, and
in a German publication which Mr. Upton had brought with him after he
had finished his studies with the illustrious Helmholtz. It was at this
period that Mr. Upton commenced his association with Edison, bringing
to the great work the very latest scientific views and the assistance
of the higher mathematics, to which he had devoted his attention for
several years previously.

As some account of Edison's investigations in this connection has
already been given in Chapter XII of the narrative, we shall not enlarge
upon them here, but quote from An Historical Review, by Charles L.
Clarke, Laboratory Assistant at Menlo Park, 1880-81; Chief Engineer of
the Edison Electric Light Company, 1881-84:


"In June, 1879, was published the account of the Edison dynamo-electric
machine that survived in the art. This machine went into extensive
commercial use, and was notable for its very massive and powerful
field-magnets and armature of extremely low resistance as compared with
the combined external resistance of the supply-mains and lamps. By means
of the large masses of iron in the field-magnets, and closely fitted
joints between the several parts thereof, the magnetic resistance
(reluctance) of the iron parts of the magnetic circuit was reduced to
a minimum, and the required magnetization effected with the maximum
economy. At the same time Mr. Edison announced the commercial necessity
of having the armature of the dynamo of low resistance, as compared
with the external resistance, in order that a large percentage of the
electrical energy developed should be utilized in the lamps, and only a
small percentage lost in the armature, albeit this procedure reduced the
total generating capacity of the machine. He also proposed to make the
resistance of the supply-mains small, as compared with the combined
resistance of the lamps in multiple arc, in order to still further
increase the percentage of energy utilized in the lamps. And likewise to
this end the combined resistance of the generator armatures in multiple
arc was kept relatively small by adjusting the number of generators
operating in multiple at any time to the number of lamps then in use.
The field-magnet circuits of the dynamos were connected in multiple with
a separate energizing source; and the field-current; and strength of
field, were regulated to maintain the required amount of electromotive
force upon the supply-mains under all conditions of load from the
maximum to the minimum number of lamps in use, and to keep the
electromotive force of all machines alike."


Among the earliest of Edison's dynamo experiments were those relating to
the core of the armature. He realized at once that the heat generated in
a solid core was a prolific source of loss. He experimented with
bundles of iron wires variously insulated, also with sheet-iron rolled
cylindrically and covered with iron wire wound concentrically. These
experiments and many others were tried in a great variety of ways,
until, as the result of all this work, Edison arrived at the principle
which has remained in the art to this day. He split up the iron core of
the armature into thin laminations, separated by paper, thus practically
suppressing Foucault currents therein and resulting heating effect.
It was in his machine also that mica was used for the first time as an
insulating medium in a commutator. [27]

     [Footnote 27: The commercial manufacture of built-up sheets
     of mica for electrical purposes was first established at the
     Edison Machine Works, Goerck Street, New York, in 1881.]

Elementary as these principles will appear to the modern student or
engineer, they were denounced as nothing short of absurdity at the time
of their promulgation--especially so with regard to Edison's proposal
to upset the then settled dictum that the armature resistance should
be equal to the external resistance. His proposition was derided in
the technical press of the period, both at home and abroad. As public
opinion can be best illustrated by actual quotation, we shall present a
characteristic instance.


In the Scientific American of October 18, 1879, there appeared an
illustrated article by Mr. Upton on Edison's dynamo machine, in which
Edison's views and claims were set forth. A subsequent issue contained a
somewhat acrimonious letter of criticism by a well-known maker of dynamo
machines. At the risk of being lengthy, we must quote nearly all this
letter: "I can scarcely conceive it as possible that the article on the
above subject '(Edison's Electric Generator)' in last week's Scientific
American could have been written from statements derived from Mr. Edison
himself, inasmuch as so many of the advantages claimed for the machine
described and statements of the results obtained are so manifestly
absurd as to indicate on the part of both writer and prompter a positive
want of knowledge of the electric circuit and the principles governing
the construction and operation of electric machines.

"It is not my intention to criticise the design or construction of the
machine (not because they are not open to criticism), as I am now
and have been for many years engaged in the manufacture of electric
machines, but rather to call attention to the impossibility of
obtaining the described results without destroying the doctrine of the
conservation and correlation of forces.

. . . . .

"It is stated that 'the internal resistance of the armature' of this
machine 'is only 1/2 ohm.' On this fact and the disproportion between
this resistance and that of the external circuit, the theory of the
alleged efficiency of the machine is stated to be based, for we are
informed that, 'while this generator in general principle is the same
as in the best well-known forms, still there is an all-important
difference, which is that it will convert and deliver for useful work
nearly double the number of foot-pounds that any other machine will
under like conditions.'" The writer of this critical letter then
proceeds to quote Mr. Upton's statement of this efficiency: "'Now the
energy converted is distributed over the whole resistance, hence if the
resistance of the machine be represented by 1 and the exterior circuit
by 9, then of the total energy converted nine-tenths will be useful, as
it is outside of the machine, and one-tenth is lost in the resistance of
the machine.'"

After this the critic goes on to say:

"How any one acquainted with the laws of the electric circuit can make
such statements is what I cannot understand. The statement last quoted
is mathematically absurd. It implies either that the machine is
CAPABLE OF INCREASING ITS OWN ELECTROMOTIVE FORCE NINE TIMES WITHOUT
AN INCREASED EXPENDITURE OF POWER, or that external resistance is NOT
resistance to the current induced in the Edison machine.

"Does Mr. Edison, or any one for him, mean to say that r/n enables him
to obtain nE, and that C IS NOT = E / (r/n + R)? If so Mr. Edison has
discovered something MORE than perpetual motion, and Mr. Keely had
better retire from the field.

"Further on the writer (Mr. Upton) gives us another example of this mode
of reasoning when, emboldened and satisfied with the absurd theory above
exposed, he endeavors to prove the cause of the inefficiency of the
Siemens and other machines. Couldn't the writer of the article see that
since C = E/(r + R) that by R/n or by making R = r, the machine would,
according to his theory, have returned more useful current to the
circuit than could be due to the power employed (and in the ratio
indicated), so that there would actually be a creation of force! . . . .

"In conclusion allow me to say that if Mr Edison thinks he has
accomplished so much by the REDUCTION OF THE INTERNAL RESISTANCE of
his machine, that he has much more to do in this direction before his
machine will equal IN THIS RESPECT others already in the market."

Another participant in the controversy on Edison's generator was a
scientific gentleman, who in a long article published in the Scientific
American, in November, 1879, gravely undertook to instruct Edison in
the A B C of electrical principles, and then proceeded to demonstrate
mathematically the IMPOSSIBILITY of doing WHAT EDISON HAD ACTUALLY DONE.
This critic concludes with a gentle rebuke to the inventor for ill-timed
jesting, and a suggestion to furnish AUTHENTIC information!

In the light of facts, as they were and are, this article is so full of
humor that we shall indulge in a few quotations It commences in A B
C fashion as follows: "Electric machines convert mechanical into
electrical energy.... The ratio of yield to consumption is the
expression of the efficiency of the machine.... How many foot-pounds
of electricity can be got out of 100 foot-pounds of mechanical energy?
Certainly not more than 100: certainly less.... The facts and laws
of physics, with the assistance of mathematical logic, never fail to
furnish precious answers to such questions."

The would-be critic then goes on to tabulate tests of certain other
dynamo machines by a committee of the Franklin Institute in 1879, the
results of which showed that these machines returned about 50 per cent.
of the applied mechanical energy, ingenuously remarking: "Why is it that
when we have produced the electricity, half of it must slip away? Some
persons will be content if they are told simply that it is a way which
electricity has of behaving. But there is a satisfactory rational
explanation which I believe can be made plain to persons of ordinary
intelligence. It ought to be known to all those who are making or using
machines. I am grieved to observe that many persons who talk and write
glibly about electricity do not understand it; some even ignore or deny
the fact to be explained."

Here follows HIS explanation, after which he goes on to say: "At this
point plausibly comes in a suggestion that the internal part of the
circuit be made very small and the external part very large. Why
not (say) make the internal part 1 and the external 9, thus saving
nine-tenths and losing only one-tenth? Unfortunately, the suggestion is
not practical; a fallacy is concealed in it."

He then goes on to prove his case mathematically, to his own
satisfaction, following it sadly by condoling with and a warning to
Edison: "But about Edison's electric generator! . . . No one capable of
making the improvements in the telegraph and telephone, for which we are
indebted to Mr. Edison, could be other than an accomplished electrician.
His reputation as a scientist, indeed, is smirched by the newspaper
exaggerations, and no doubt he will be more careful in future. But there
is a danger nearer home, indeed, among his own friends and in his very
household.

". . . The writer of page 242" (the original article) "is probably a
friend of Mr. Edison, but possibly, alas! a wicked partner. Why does
he say such things as these? 'Mr. Edison claims that he realizes 90
per cent. of the power applied to this machine in external work.' . . .
Perhaps the writer is a humorist, and had in his mind Colonel Sellers,
etc., which he could not keep out of a serious discussion; but such
jests are not good.

"Mr. Edison has built a very interesting machine, and he has the
opportunity of making a valuable contribution to the electrical arts by
furnishing authentic accounts of its capabilities."

The foregoing extracts are unavoidably lengthy, but, viewed in the light
of facts, serve to illustrate most clearly that Edison's conceptions and
work were far and away ahead of the comprehension of his contemporaries
in the art, and that his achievements in the line of efficient dynamo
design and construction were indeed truly fundamental and revolutionary
in character. Much more of similar nature to the above could be quoted
from other articles published elsewhere, but the foregoing will serve as
instances generally representing all. In the controversy which
appeared in the columns of the Scientific American, Mr. Upton, Edison's
mathematician, took up the question on his side, and answered the
critics by further elucidations of the principles on which Edison had
founded such remarkable and radical improvements in the art. The type
of Edison's first dynamo-electric machine, the description of which gave
rise to the above controversy, is shown in Fig. 1.

Any account of Edison's work on the dynamo would be incomplete did
it omit to relate his conception and construction of the great
direct-connected steam-driven generator that was the prototype of the
colossal units which are used throughout the world to-day.

In the demonstrating plant installed and operated by him at Menlo
Park in 1880 ten dynamos of eight horse-power each were driven by a
slow-speed engine through a complicated system of counter-shafting,
and, to quote from Mr. Clarke's Historical Review, "it was found that
a considerable percentage of the power of the engine was necessarily
wasted in friction by this method of driving, and to prevent this waste
and thus increase the economy of his system, Mr. Edison conceived
the idea of substituting a single large dynamo for the several small
dynamos, and directly coupling it with the driving engine, and at the
same time preserve the requisite high armature speed by using an engine
of the high-speed type. He also expected to realize still further gains
in economy from the use of a large dynamo in place of several small
machines by a more than correspondingly lower armature resistance, less
energy for magnetizing the field, and for other minor reasons. To the
same end, he intended to supply steam to the engine under a much higher
boiler pressure than was customary in stationary-engine driving at that
time."

The construction of the first one of these large machines was commenced
late in the year 1880. Early in 1881 it was completed and tested, but
some radical defects in armature construction were developed, and it was
also demonstrated that a rate of engine speed too high for continuously
safe and economical operation had been chosen. The machine was laid
aside. An accurate illustration of this machine, as it stood in the
engine-room at Menlo Park, is given in Van Nostrand's Engineering
Magazine, Vol. XXV, opposite page 439, and a brief description is given
on page 450.

With the experience thus gained, Edison began, in the spring of 1881, at
the Edison Machine Works, Goerck Street, New York City, the construction
of the first successful machine of this type. This was the great machine
known as "Jumbo No. 1," which is referred to in the narrative as having
been exhibited at the Paris International Electrical Exposition, where
it was regarded as the wonder of the electrical world. An intimation of
some of the tremendous difficulties encountered in the construction of
this machine has already been given in preceding pages, hence we shall
not now enlarge on the subject, except to note in passing that the
terribly destructive effects of the spark of self-induction and the
arcing following it were first manifested in this powerful machine, but
were finally overcome by Edison after a strenuous application of his
powers to the solution of the problem.

It may be of interest, however, to mention some of its dimensions
and electrical characteristics, quoting again from Mr. Clarke: "The
field-magnet had eight solid cylindrical cores, 8 inches in diameter
and 57 inches long, upon each of which was wound an exciting-coil of 3.2
ohms resistance, consisting of 2184 turns of No. 10 B. W. G. insulated
copper wire, disposed in six layers. The laminated iron core of the
armature, formed of thin iron disks, was 33 3/4 inches long, and had an
internal diameter of 12 1/2 inches, and an external diameter of 26 7/16
inches. It was mounted on a 6-inch shaft. The field-poles were 33 3/4
inches long, and 27 1/2 inches inside diameter The armature winding
consisted of 146 copper bars on the face of the core, connected into a
closed-coil winding by means of 73 copper disks at each end of the core.
The cross-sectional area of each bar was 0.2 square inch their average
length was 42.7 inches, and the copper end-disks were 0.065 inch thick.
The commutator had 73 sections. The armature resistance was 0.0092
ohm, [28] of which 0.0055 ohm was in the armature bars and 0.0037 ohm in
the end-disks." An illustration of the next latest type of this machine
is presented in Fig. 2.

     [Footnote 28: Had Edison in Upton's Scientific American
     article in 1879 proposed such an exceedingly low armature
     resistance for this immense generator (although its ratio
     was proportionate to the original machine), his critics
     might probably have been sufficiently indignant as to be
     unable to express themselves coherently.]

The student may find it interesting to look up Edison's United States
Patents Nos. 242,898, 263,133, 263,146, and 246,647, bearing upon the
construction of the "Jumbo"; also illustrated articles in the technical
journals of the time, among which may be mentioned: Scientific American,
Vol. XLV, page 367; Engineering, London, Vol. XXXII, pages 409 and 419,
The Telegraphic Journal and Electrical Review, London, Vol. IX, pages
431-433, 436-446; La Nature, Paris, 9th year, Part II, pages 408-409;
Zeitschrift fur Angewandte Elektricitaatslehre, Munich and Leipsic, Vol.
IV, pages 4-14; and Dredge's Electric Illumination, 1882, Vol. I, page
261.

The further development of these great machines later on, and their
extensive practical use, are well known and need no further comment,
except in passing it may be noted that subsequent machines had each
a capacity of 1200 lamps of 16 candle-power, and that the armature
resistance was still further reduced to 0.0039 ohm.

Edison's clear insight into the future, as illustrated by his persistent
advocacy of large direct-connected generating units, is abundantly
vindicated by present-day practice. His Jumbo machines, of 175
horse-power, so enormous for their time, have served as prototypes, and
have been succeeded by generators which have constantly grown in size
and capacity until at this time (1910) it is not uncommon to employ
such generating units of a capacity of 14,000 kilowatts, or about 18,666
horse-power.

We have not entered into specific descriptions of the many other forms
of dynamo machines invented by Edison, such as the multipolar, the
disk dynamo, and the armature with two windings, for sub-station
distribution; indeed, it is not possible within our limited space to
present even a brief digest of Edison's great and comprehensive work on
the dynamo-electric machine, as embodied in his extensive experiments
and in over one hundred patents granted to him. We have, therefore,
confined ourselves to the indication of a few salient and basic
features, leaving it to the interested student to examine the patents
and the technical literature of the long period of time over which
Edison's labors were extended.

Although he has not given any attention to the subject of generators for
many years, an interesting instance of his incisive method of overcoming
minor difficulties occurred while the present volumes were under
preparation (1909). Carbon for commutator brushes has been superseded
by graphite in some cases, the latter material being found much more
advantageous, electrically. Trouble developed, however, for the reason
that while carbon was hard and would wear away the mica insulation
simultaneously with the copper, graphite, being softer, would wear
away only the copper, leaving ridges of mica and thus causing sparking
through unequal contact. At this point Edison was asked to diagnose the
trouble and provide a remedy. He suggested the cutting out of the mica
pieces almost to the bottom, leaving the commutator bars separated by
air-spaces. This scheme was objected to on the ground that particles
of graphite would fill these air-spaces and cause a short-circuit. His
answer was that the air-spaces constituted the value of his plan, as
the particles of graphite falling into them would be thrown out by the
action of centrifugal force as the commutator revolved. And thus it
occurred as a matter of fact, and the trouble was remedied. This idea
was subsequently adopted by a great manufacturer of generators.



XI. THE EDISON FEEDER SYSTEM

TO quote from the preamble of the specifications of United States
Patent No. 264,642, issued to Thomas A. Edison September 19, 1882: "This
invention relates to a method of equalizing the tension or 'pressure'
of the current through an entire system of electric lighting or other
translation of electric force, preventing what is ordinarily known as a
'drop' in those portions of the system the more remote from the central
station...."

The problem which was solved by the Edison feeder system was that
relating to the equal distribution of current on a large scale over
extended areas, in order that a constant and uniform electrical pressure
could be maintained in every part of the distribution area without
prohibitory expenditure for copper for mains and conductors.

This problem had a twofold aspect, although each side was inseparably
bound up in the other. On the one hand it was obviously necessary in a
lighting system that each lamp should be of standard candle-power, and
capable of interchangeable use on any part of the system, giving the
same degree of illumination at every point, whether near to or remote
from the source of electrical energy. On the other hand, this must be
accomplished by means of a system of conductors so devised and arranged
that while they would insure the equal pressure thus demanded, their
mass and consequent cost would not exceed the bounds of practical and
commercially economical investment.

The great importance of this invention can be better understood and
appreciated by a brief glance at the state of the art in 1878-79,
when Edison was conducting the final series of investigations which
culminated in his invention of the incandescent lamp and SYSTEM of
lighting. At this time, and for some years previously, the scientific
world had been working on the "subdivision of the electric light," as
it was then termed. Some leading authorities pronounced it absolutely
impossible of achievement on any extended scale, while a very few
others, of more optimistic mind, could see no gleam of light through the
darkness, but confidently hoped for future developments by such workers
as Edison.

The earlier investigators, including those up to the period above named,
thought of the problem as involving the subdivision of a FIXED UNIT
of current, which, being sufficient to cause illumination by one large
lamp, might be divided into a number of small units whose aggregate
light would equal the candle-power of this large lamp. It was found,
however, in their experiments that the contrary effect was produced,
for with every additional lamp introduced in the circuit the total
candle-power decreased instead of increasing. If they were placed in
series the light varied inversely as the SQUARE of the number of lamps
in circuit; while if they were inserted in multiple arc, the light
diminished as the CUBE of the number in circuit. [29] The idea of
maintaining a constant potential and of PROPORTIONING THE CURRENT to
the number of lamps in circuit did not occur to most of these
early investigators as a feasible method of overcoming the supposed
difficulty.

     [Footnote 29: M. Fontaine, in his book on Electric Lighting
     (1877), showed that with the current of a battery composed
     of sixteen elements, one lamp gave an illumination equal to
     54 burners; whereas two similar lamps, if introduced in
     parallel or multiple arc, gave the light of only 6 1/2
     burners in all; three lamps of only 2 burners in all; four
     lamps of only 3/4 of one burner, and five lamps of 1/4 of a
     burner.]

It would also seem that although the general method of placing
experimental lamps in multiple arc was known at this period, the idea
of "drop" of electrical pressure was imperfectly understood, if, indeed,
realized at all, as a most important item to be considered in attempting
the solution of the problem. As a matter of fact, the investigators
preceding Edison do not seem to have conceived the idea of a "system" at
all; hence it is not surprising to find them far astray from the correct
theory of subdivision of the electric current. It may easily be
believed that the term "subdivision" was a misleading one to these early
experimenters. For a very short time Edison also was thus misled, but
as soon as he perceived that the problem was one involving the
MULTIPLICATION OF CURRENT UNITS, his broad conception of a "system" was
born.

Generally speaking, all conductors of electricity offer more or less
resistance to the passage of current through them and in the technical
terminology of electrical science the word "drop" (when used in
reference to a system of distribution) is used to indicate a fall or
loss of initial electrical pressure arising from the resistance offered
by the copper conductors leading from the source of energy to the lamps.
The result of this resistance is to convert or translate a portion of
the electrical energy into another form--namely, heat, which in the
conductors is USELESS and wasteful and to some extent inevitable in
practice, but is to be avoided and remedied as far as possible.

It is true that in an electric-lighting system there is also a fall or
loss of electrical pressure which occurs in overcoming the much greater
resistance of the filament in an incandescent lamp. In this case there
is also a translation of the energy, but here it accomplishes a USEFUL
purpose, as the energy is converted into the form of light through the
incandescence of the filament. Such a conversion is called "work"
as distinguished from "drop," although a fall of initial electrical
pressure is involved in each case.

The percentage of "drop" varies according to the quantity of copper
used in conductors, both as to cross-section and length. The smaller the
cross-sectional area, the greater the percentage of drop. The practical
effect of this drop would be a loss of illumination in the lamps as we
go farther away from the source of energy. This may be illustrated by
a simple diagram in which G is a generator, or source of energy,
furnishing current at a potential or electrical pressure of 110 volts;
1 and 2 are main conductors, from which 110-volt lamps, L, are taken in
derived circuits. It will be understood that the circuits represented in
Fig. 1 are theoretically supposed to extend over a large area. The main
conductors are sufficiently large in cross-section to offer but little
resistance in those parts which are comparatively near the generator,
but as the current traverses their extended length there is a gradual
increase of resistance to overcome, and consequently the drop increases,
as shown by the figures. The result of the drop in such a case would
be that while the two lamps, or groups, nearest the generator would be
burning at their proper degree of illumination, those beyond would give
lower and lower candle-power, successively, until the last lamp, or
group, would be giving only about two-thirds the light of the first two.
In other words, a very slight drop in voltage means a disproportionately
great loss in illumination. Hence, by using a primitive system of
distribution, such as that shown by Fig. 1, the initial voltage would
have to be so high, in order to obtain the proper candle-power at
the end of the circuit, that the lamps nearest the generator would be
dangerously overheated. It might be suggested as a solution of this
problem that lamps of different voltages could be used. But, as we are
considering systems of extended distribution employing vast numbers of
lamps (as in New York City, where millions are in use), it will be seen
that such a method would lead to inextricable confusion, and therefore
be absolutely out of the question. Inasmuch as the percentage of
drop decreases in proportion to the increased cross-section of the
conductors, the only feasible plan would seem to be to increase their
size to such dimensions as to eliminate the drop altogether, beginning
with conductors of large cross-section and tapering off as necessary.
This would, indeed, obviate the trouble, but, on the other hand, would
give rise to a much more serious difficulty--namely, the enormous
outlay for copper; an outlay so great as to be absolutely prohibitory in
considering the electric lighting of large districts, as now practiced.

Another diagram will probably make this more clear. The reference
figures are used as before, except that the horizontal lines extending
from square marked G represent the main conductors. As each lamp
requires and takes its own proportion of the total current generated,
it is obvious that the size of the conductors to carry the current for
a number of lamps must be as large as the sum of ALL the separate
conductors which would be required to carry the necessary amount of
current to each lamp separately. Hence, in a primitive multiple-arc
system, it was found that the system must have conductors of a size
equal to the aggregate of the individual conductors necessary for every
lamp. Such conductors might either be separate, as shown above (Fig.
2), or be bunched together, or made into a solid tapering conductor, as
shown in the following figure:

The enormous mass of copper needed in such a system can be better
appreciated by a concrete example. Some years ago Mr. W. J. Jenks made
a comparative calculation which showed that such a system of conductors
(known as the "Tree" system), to supply 8640 lamps in a territory
extending over so small an area as nine city blocks, would require
803,250 pounds of copper, which at the then price of 25 cents per pound
would cost $200,812.50!

Such, in brief, was the state of the art, generally speaking, at the
period above named (1878-79). As early in the art as the latter end of
the year 1878, Edison had developed his ideas sufficiently to determine
that the problem of electric illumination by small units could be solved
by using incandescent lamps of high resistance and small radiating
surface, and by distributing currents of constant potential thereto in
multiple arc by means of a ramification of conductors, starting from a
central source and branching therefrom in every direction. This was
an equivalent of the method illustrated in Fig. 3, known as the "Tree"
system, and was, in fact, the system used by Edison in the first
and famous exhibition of his electric light at Menlo Park around the
Christmas period of 1879. He realized, however, that the enormous
investment for copper would militate against the commercial adoption of
electric lighting on an extended scale. His next inventive step
covered the division of a large city district into a number of small
sub-stations supplying current through an interconnected network of
conductors, thus reducing expenditure for copper to some extent, because
each distribution unit was small and limited the drop.

His next development was the radical advancement of the state of the art
to the feeder system, covered by the patent now under discussion.
This invention swept away the tree and other systems, and at one bound
brought into being the possibility of effectively distributing large
currents over extended areas with a commercially reasonable investment
for copper.

The fundamental principles of this invention were, first, to sever
entirely any direct connection of the main conductors with the source of
energy; and, second, to feed current at a constant potential to central
points in such main conductors by means of other conductors, called
"feeders," which were to be connected directly with the source of energy
at the central station. This idea will be made more clear by reference
to the following simple diagram, in which the same letters are used as
before, with additions:

In further elucidation of the diagram, it may be considered that the
mains are laid in the street along a city block, more or less distant
from the station, while the feeders are connected at one end with the
source of energy at the station, their other extremities being connected
to the mains at central points of distribution. Of course, this system
was intended to be applied in every part of a district to be supplied
with current, separate sets of feeders running out from the station to
the various centres. The distribution mains were to be of sufficiently
large size that between their most extreme points the loss would not
be more than 3 volts. Such a slight difference would not make an
appreciable variation in the candle-power of the lamps.

By the application of these principles, the inevitable but useless loss,
or "drop," required by economy might be incurred, but was LOCALIZED IN
THE FEEDERS, where it would not affect the uniformity of illumination
of the lamps in any of the circuits, whether near to or remote from the
station, because any variations of loss in the feeders would not give
rise to similar fluctuations in any lamp circuit. The feeders might be
operated at any desired percentage of loss that would realize economy in
copper, so long as they delivered current to the main conductors at the
potential represented by the average voltage of the lamps.

Thus the feeders could be made comparatively small in cross-section. It
will be at once appreciated that, inasmuch as the mains required to be
laid ONLY along the blocks to be lighted, and were not required to be
run all the way to the central station (which might be half a mile or
more away), the saving of copper by Edison's feeder system was enormous.
Indeed, the comparative calculation of Mr. Jenks, above referred to,
shows that to operate the same number of lights in the same extended
area of territory, the feeder system would require only 128,739 pounds
of copper, which, at the then price of 25 cents per pound, would cost
only $39,185, or A SAVING of $168,627.50 for copper in this very small
district of only nine blocks.

An additional illustration, appealing to the eye, is presented in the
following sketch, in which the comparative masses of copper of the tree
and feeder systems for carrying the same current are shown side by side:



XII. THE THREE-WIRE SYSTEM

THIS invention is covered by United States Patent No. 274,290, issued to
Edison on March 20, 1883. The object of the invention was to provide
for increased economy in the quantity of copper employed for the main
conductors in electric light and power installations of considerable
extent at the same time preserving separate and independent control
of each lamp, motor, or other translating device, upon any one of the
various distribution circuits.

Immediately prior to this invention the highest state of the art of
electrical distribution was represented by Edison's feeder system, which
has already been described as a straight parallel or multiple-arc
system wherein economy of copper was obtained by using separate sets
of conductors--minus load--feeding current at standard potential or
electrical pressure into the mains at centres of distribution.

It should be borne in mind that the incandescent lamp which was accepted
at the time as a standard (and has so remained to the present day) was
a lamp of 110 volts or thereabouts. In using the word "standard,"
therefore, it is intended that the same shall apply to lamps of about
that voltage, as well as to electrical circuits of the approximate
potential to operate them.

Briefly stated, the principle involved in the three-wire system is to
provide main circuits of double the standard potential, so as to operate
standard lamps, or other translating devices, in multiple series of two
to each series; and for the purpose of securing independent, individual
control of each unit, to divide each main circuit into any desired
number of derived circuits of standard potential (properly balanced)
by means of a central compensating conductor which would be normally
neutral, but designed to carry any minor excess of current that might
flow by reason of any temporary unbalancing of either side of the main
circuit.

Reference to the following diagrams will elucidate this principle more
clearly than words alone can do. For the purpose of increased lucidity
we will first show a plain multiple-series system.

In this diagram G<1S> and G<2S> represent two generators, each producing
current at a potential of 110 volts. By connecting them in series this
potential is doubled, thus providing a main circuit (P and N) of 220
volts. The figures marked L represent eight lamps of 110 volts each, in
multiple series of two, in four derived circuits. The arrows indicate
the flow of current. By this method each pair of lamps takes, together,
only the same quantity or volume of current required by a single lamp in
a simple multiple-arc system; and, as the cross-section of a conductor
depends upon the quantity of current carried, such an arrangement as
the above would allow the use of conductors of only one-fourth the
cross-section that would be otherwise required. From the standpoint of
economy of investment such an arrangement would be highly desirable,
but considered commercially it is impracticable because the principle of
independent control of each unit would be lost, as the turning out of a
lamp in any series would mean the extinguishment of its companion also.
By referring to the diagram it will be seen that each series of two
forms one continuous path between the main conductors, and if this path
be broken at any one point current will immediately cease to flow in
that particular series.

Edison, by his invention of the three-wire system, overcame this
difficulty entirely, and at the same time conserved approximately, the
saving of copper, as will be apparent from the following illustration of
that system, in its simplest form.

The reference figures are similar to those in the preceding diagram,
and all conditions are also alike except that a central compensating, or
balancing, conductor, PN, is here introduced. This is technically termed
the "neutral" wire, and in the discharge of its functions lies the
solution of the problem of economical distribution. Theoretically, a
three-wire installation is evenly balanced by wiring for an equal number
of lamps on both sides. If all these lamps were always lighted, burned,
and extinguished simultaneously the central conductor would, in fact,
remain neutral, as there would be no current passing through it, except
from lamp to lamp. In practice, however, no such perfect conditions can
obtain, hence the necessity of the provision for balancing in order to
maintain the principle of independent control of each unit.

It will be apparent that the arrangement shown in Fig. 2 comprises
practically two circuits combined in one system, in which the central
conductor, PN, in case of emergency, serves in two capacities--namely,
as negative to generator G<1S> or as positive to generator G<2S>,
although normally neutral. There are two sides to the system, the
positive side being represented by the conductors P and PN, and the
negative side by the conductors PN and N. Each side, if considered
separately, has a potential of about 110 volts, yet the potential of the
two outside conductors, P and N, is 220 volts. The lamps are 110 volts.

In practical use the operation of the system is as follows: If all the
lamps were lighted the current would flow along P and through each pair
of lamps to N, and so back to the source of energy. In this case the
balance is preserved and the central wire remains neutral, as no return
current flows through it to the source of energy. But let us suppose
that one lamp on the positive side is extinguished. None of the other
lamps is affected thereby, but the system is immediately thrown out of
balance, and on the positive side there is an excess of current to this
extent which flows along or through the central conductor and returns to
the generator, the central conductor thus becoming the negative of that
side of the system for the time being. If the lamp extinguished had been
one of those on the negative side of the system results of a similar
nature would obtain, except that the central conductor would for the
time being become the positive of that side, and the excess of current
would flow through the negative, N, back to the source of energy. Thus
it will be seen that a three-wire system, considered as a whole, is
elastic in that it may operate as one when in balance and as two when
unbalanced, but in either event giving independent control of each unit.

For simplicity of illustration a limited number of circuits, shown in
Fig. 2, has been employed. In practice, however, where great numbers
of lamps are in use (as, for instance, in New York City, where about
7,000,000 lamps are operated from various central stations), there is
constantly occurring more or less change in the balance of many circuits
extending over considerable distances, but of course there is a net
result which is always on one side of the system or the other for the
time being, and this is met by proper adjustment at the appropriate
generator in the station.

In order to make the explanation complete, there is presented another
diagram showing a three-wire system unbalanced:

The reference figures are used as before, but in this case the vertical
lines represent branches taken from the main conductors into buildings
or other spaces to be lighted, and the loops between these branch wires
represent lamps in operation. It will be seen from this sketch that
there are ten lamps on the positive side and twelve on the negative
side. Hence, the net result is an excess of current equal to that
required by two lamps flowing through the central or compensating
conductor, which is now acting as positive to generator G<2S> The arrows
show the assumed direction of flow of current throughout the system,
and the small figures at the arrow-heads the volume of that current
expressed in the number of lamps which it supplies.

The commercial value of this invention may be appreciated from the fact
that by the application of its principles there is effected a saving
of 62 1/2 per cent. of the amount of copper over that which would
be required for conductors in any previously devised two-wire system
carrying the same load. This arises from the fact that by the doubling
of potential the two outside mains are reduced to one-quarter the
cross-section otherwise necessary. A saving of 75 per cent. would thus
be assured, but the addition of a third, or compensating, conductor of
the same cross-section as one of the outside mains reduces the total
saving to 62 1/2 per cent.

The three-wire system is in universal use throughout the world at the
present day.



XIII. EDISON'S ELECTRIC RAILWAY

AS narrated in Chapter XVIII, there were two electric railroads
installed by Edison at Menlo Park--one in 1880, originally a third of a
mile long, but subsequently increased to about a mile in length, and the
other in 1882, about three miles long. As the 1880 road was built very
soon after Edison's notable improvements in dynamo machines, and as the
art of operating them to the best advantage was then being developed,
this early road was somewhat crude as compared with the railroad of
1882; but both were practicable and serviceable for the purpose of
hauling passengers and freight. The scope of the present article will
be confined to a description of the technical details of these two
installations.

The illustration opposite page 454 of the preceding narrative shows the
first Edison locomotive and train of 1880 at Menlo Park.

For the locomotive a four-wheel iron truck was used, and upon it
was mounted one of the long "Z" type 110-volt Edison dynamos, with a
capacity of 75 amperes, which was to be used as a motor. This machine
was laid on its side, its armature being horizontal and located toward
the front of the locomotive.

We now quote from an article by Mr. E. W. Hammer, published in the
Electrical World, New York, June 10, 1899, and afterward elaborated and
reprinted in a volume entitled Edisonia, compiled and published under
the auspices of a committee of the Association of Edison Illuminating
Companies, in 1904: "The gearing originally employed consisted of a
friction-pulley upon the armature shaft, another friction-pulley upon
the driven axle, and a third friction-pulley which could be brought
in contact with the other two by a suitable lever. Each wheel of the
locomotive was made with metallic rim and a centre portion made of wood
or papier-mache. A three-legged spider connected the metal rim of each
front wheel to a brass hub, upon which rested a collecting brush.
The other wheels were subsequently so equipped. It was the intention,
therefore, that the current should enter the locomotive wheels at one
side, and after passing through the metal spiders, collecting brushes
and motor, would pass out through the corresponding brushes, spiders,
and wheels to the other rail."

As to the road: "The rails were light and were spiked to ordinary
sleepers, with a gauge of about three and one-half feet. The sleepers
were laid upon the natural grade, and there was comparatively no effort
made to ballast the road. . . . No special precautions were taken to
insulate the rails from the earth or from each other."

The road started about fifty feet away from the generating station,
which in this case was the machine shop. Two of the "Z" type dynamos
were used for generating the current, which was conveyed to the two
rails of the road by underground conductors.

On Thursday, May 13, 1880, at 4 o'clock in the afternoon, this historic
locomotive made its first trip, packed with as many of the "boys" as
could possibly find a place to hang on. "Everything worked to a charm,
until, in starting up at one end of the road, the friction gearing
was brought into action too suddenly and it was wrecked. This accident
demonstrated that some other method of connecting the armature with the
driven axle should be arranged.

"As thus originally operated, the motor had its field circuit in
permanent connection as a shunt across the rails, and this field circuit
was protected by a safety-catch made by turning up two bare ends of the
wire in its circuit and winding a piece of fine copper wire across from
one bare end to the other. The armature circuit had a switch in it which
permitted the locomotive to be reversed by reversing the direction of
current flow through the armature.

"After some consideration of the gearing question, it was decided to
employ belts instead of the friction-pulleys." Accordingly, Edison
installed on the locomotive a system of belting, including an
idler-pulley which was used by means of a lever to tighten the main
driving-belt, and thus power was applied to the driven axle. This
involved some slipping and consequent burning of belts; also, if the
belt were prematurely tightened, the burning-out of the armature.
This latter event happened a number of times, "and proved to be such
a serious annoyance that resistance-boxes were brought out from the
laboratory and placed upon the locomotive in series with the armature.
This solved the difficulty. The locomotive would be started with these
resistance-boxes in circuit, and after reaching full speed the operator
could plug the various boxes out of circuit, and in that way increase
the speed." To stop, the armature circuit was opened by the main switch
and the brake applied.

This arrangement was generally satisfactory, but the resistance-boxes
scattered about the platform and foot-rests being in the way, Edison
directed that some No. 8 B. & S. copper wire be wound on the lower leg
of the motor field-magnet. "By doing this the resistance was put
where it would take up the least room, and where it would serve as an
additional field-coil when starting the motor, and it replaced all the
resistance-boxes which had heretofore been in plain sight. The boxes
under the seat were still retained in service. The coil of coarse wire
was in series with the armature, just as the resistance-boxes had been,
and could be plugged in or out of circuit at the will of the locomotive
driver. The general arrangement thus secured was operated as long as
this road was in commission."

On this short stretch of road there were many sharp curves and steep
grades, and in consequence of the high speed attained (as high as
forty-two miles an hour) several derailments took place, but fortunately
without serious results. Three cars were in service during the entire
time of operating this 1880 railroad: one a flat-car for freight; one an
open car with two benches placed back to back; and the third a box-car,
familiarly known as the "Pullman." This latter car had an interesting
adjunct in an electric braking system (covered by Edison's Patent No.
248,430). "Each car axle had a large iron disk mounted on and revolving
with it between the poles of a powerful horseshoe electromagnet. The
pole-pieces of the magnet were movable, and would be attracted to the
revolving disk when the magnet was energized, grasping the same and
acting to retard the revolution of the car axle."

Interesting articles on Edison's first electric railroad were published
in the technical and other papers, among which may be mentioned the New
York Herald, May 15 and July 23, 1880; the New York Graphic, July 27,
1880; and the Scientific American, June 6, 1880.

Edison's second electric railroad of 1882 was more pretentious as
regards length, construction, and equipment. It was about three miles
long, of nearly standard gauge, and substantially constructed. Curves
were modified, and grades eliminated where possible by the erection
of numerous trestles. This road also had some features of conventional
railroads, such as sidings, turn-tables, freight platform, and
car-house. "Current was supplied to the road by underground feeder
cables from the dynamo-room of the laboratory. The rails were insulated
from the ties by giving them two coats of japan, baking them in the
oven, and then placing them on pads of tar-impregnated muslin laid
on the ties. The ends of the rails were not japanned, but were
electroplated, to give good contact surfaces for fish-plates and copper
bonds."

The following notes of Mr. Frederick A. Scheffler, who designed the
passenger locomotive for the 1882 road, throw an interesting light on
its technical details:


"In May, 1881, I was engaged by Mr. M. F. Moore, who was the first
General Manager of the Edison Company for Isolated Lighting, as a
draftsman to undertake the work of designing and building Edison's
electric locomotive No. 2.

"Previous to that time I had been employed in the engineering department
of Grant Locomotive Works, Paterson, New Jersey, and the Rhode Island
Locomotive Works, Providence, Rhode Island....

"It was Mr. Edison's idea, as I understood it at that time, to build a
locomotive along the general lines of steam locomotives (at least,
in outward appearance), and to combine in that respect the framework,
truck, and other parts known to be satisfactory in steam locomotives at
the same time.

"This naturally required the services of a draftsman accustomed to
steam-locomotive practice.... Mr. Moore was a man of great railroad and
locomotive experience, and his knowledge in that direction was of great
assistance in the designing and building of this locomotive.

"At that time I had no knowledge of electricity.... One could count
so-called electrical engineers on his fingers then, and have some
fingers left over.

"Consequently, the ELECTRICAL equipment was designed by Mr. Edison and
his assistants. The data and parts, such as motor, rheostat, switches,
etc., were given to me, and my work was to design the supporting frame,
axles, countershafts, driving mechanism, speed control, wheels and
boxes, cab, running board, pilot (or 'cow-catcher'), buffers, and
even supports for the headlight. I believe I also designed a bell and
supports. From this it will be seen that the locomotive had all the
essential paraphernalia to make it LOOK like a steam locomotive.

"The principal part of the outfit was the electric motor. At that
time motors were curiosities. There were no electric motors even for
stationary purposes, except freaks built for experimental uses. This
motor was made from the parts--such as fields, armature, commutator,
shaft and bearings, etc., of an Edison 'Z,' or 60-light dynamo. It was
the only size of dynamo that the Edison Company had marketed at that
time.... As a motor, it was wound to run at maximum speed to develop
a torque equal to about fifteen horse-power with 220 volts. At the
generating station at Menlo Park four Z dynamos of 110 volts were used,
connected two in series, in multiple arc, giving a line voltage of 220.

"The motor was located in the front part of the locomotive, on its side,
with the armature shaft across the frames, or parallel with the driving
axles.

"On account of the high speed of the armature shaft it was not possible
to connect with driving-axles direct, but this was an advantage in one
way, as by introducing an intermediate counter-shaft (corresponding to
the well-known type of double-reduction motor used on trolley-cars since
1885), a fairly good arrangement was obtained to regulate the speed of
the locomotive, exclusive of resistance in the electric circuit.

"Endless leather belting was used to transmit the power from the motor
to the counter-shaft, and from the latter to the driving-wheels, which
were the front pair. A vertical idler-pulley was mounted in a frame over
the belt from motor to counter-shaft, terminating in a vertical screw
and hand-wheel for tightening the belt to increase speed, or the reverse
to lower speed. This hand-wheel was located in the cab, where it was
easily accessible....

"The rough outline sketched below shows the location of motor in
relation to counter-shaft, belting, driving-wheels, idler, etc.:

"On account of both rails being used for circuits, . . . the
driving-wheels had to be split circumferentially and completely
insulated from the axles. This was accomplished by means of heavy wood
blocks well shellacked or otherwise treated to make them water and
weather proof, placed radially on the inside of the wheels, and then
substantially bolted to the hubs and rims of the latter.

"The weight of the locomotive was distributed over the driving-wheels in
the usual locomotive practice by means of springs and equalizers.

"The current was taken from the rims of the driving-wheels by a
three-pronged collector of brass, against which flexible copper brushes
were pressed--a simple manner of overcoming any inequalities of the
road-bed.

"The late Mr. Charles T. Hughes was in charge of the track construction
at Menlo Park.... His work was excellent throughout, and the results
were highly satisfactory so far as they could possibly be with the
arrangement originally planned by Mr. Edison and his assistants.

"Mr. Charles L. Clarke, one of the earliest electrical engineers
employed by Mr. Edison, made a number of tests on this 1882 railroad. I
believe that the engine driving the four Z generators at the power-house
indicated as high as seventy horse-power at the time the locomotive was
actually in service."


The electrical features of the 1882 locomotive were very similar
to those of the earlier one, already described. Shunt and series
field-windings were added to the motor, and the series windings could
be plugged in and out of circuit as desired. The series winding was
supplemented by resistance-boxes, also capable of being plugged in or
out of circuit. These various electrical features are diagrammatically
shown in Fig. 2, which also illustrates the connection with the
generating plant.

We quote again from Mr. Hammer, who says: "The freight-locomotive had
single reduction gears, as is the modern practice, but the power was
applied through a friction-clutch The passenger-locomotive was very
speedy, and ninety passengers have been carried at a time by it; the
freight-locomotive was not so fast, but could pull heavy trains at a
good speed. Many thousand people were carried on this road during 1882."
The general appearance of Edison's electric locomotive of 1882 is shown
in the illustration opposite page 462 of the preceding narrative. In the
picture Mr. Edison may be seen in the cab, and Mr. Insull on the front
platform of the passenger-car.



XIV. TRAIN TELEGRAPHY

WHILE the one-time art of telegraphing to and from moving trains was
essentially a wireless system, and allied in some of its principles to
the art of modern wireless telegraphy through space, the two systems
cannot, strictly speaking be regarded as identical, as the practice of
the former was based entirely on the phenomenon of induction.

Briefly described in outline, the train telegraph system consisted of
an induction circuit obtained by laying strips of metal along the top or
roof of a railway-car, and the installation of a special telegraph
line running parallel with the track and strung on poles of only medium
height. The train, and also each signalling station, was equipped
with regulation telegraph apparatus, such as battery, key, relay, and
sounder, together with induction-coil and condenser. In addition, there
was a special transmitting device in the shape of a musical reed, or
"buzzer." In practice, this buzzer was continuously operated at a speed
of about five hundred vibrations per second by an auxiliary battery. Its
vibrations were broken by means of a telegraph key into long and
short periods, representing Morse characters, which were transmitted
inductively from the train circuit to the pole line or vice versa, and
received by the operator at the other end through a high-resistance
telephone receiver inserted in the secondary circuit of the
induction-coil.

The accompanying diagrammatic sketch of a simple form of the system, as
installed on a car, will probably serve to make this more clear.

An insulated wire runs from the metallic layers on the roof of the car
to switch S, which is shown open in the sketch. When a message is to be
received on the car from a station more or less remote, the switch
is thrown to the left to connect with a wire running to the telephone
receiver, T. The other wire from this receiver is run down to one of
the axles and there permanently connected, thus making a ground. The
operator puts the receiver to his ear and listens for the message, which
the telephone renders audible in the Morse characters.

If a message is to be transmitted from the car to a receiving station,
near or distant, the switch, S, is thrown to the other side, thus
connecting with a wire leading to one end of the secondary of
induction-coil C. The other end of the secondary is connected with the
grounding wire. The primary of the induction-coil is connected as shown,
one end going to key K and the other to the buzzer circuit. The other
side of the key is connected to the transmitting battery, while the
opposite pole of this battery is connected in the buzzer circuit. The
buzzer, R, is maintained in rapid vibration by its independent auxiliary
battery, B<1S>.

When the key is pressed down the circuit is closed, and current from
the transmitting battery, B, passes through primary of the coil, C, and
induces a current of greatly increased potential in the secondary.
The current as it passes into the primary, being broken up into short
impulses by the tremendously rapid vibrations of the buzzer, induces
similarly rapid waves of high potential in the secondary, and these
in turn pass to the roof and thence through the intervening air by
induction to the telegraph wire. By a continued lifting and depression
of the key in the regular manner, these waves are broken up into long
and short periods, and are thus transmitted to the station, via the
wire, in Morse characters, dots and dashes.

The receiving stations along the line of the railway were similarly
equipped as to apparatus, and, generally speaking the operations of
sending and receiving messages were substantially the same as above
described.

The equipment of an operator on a car was quite simple consisting merely
of a small lap-board, on which were mounted the key, coil, and buzzer,
leaving room for telegraph blanks. To this board were also attached
flexible conductors having spring clips, by means of which connections
could be made quickly with conveniently placed terminals of the ground,
roof, and battery wires. The telephone receiver was held on the head
with a spring, the flexible connecting wire being attached to the lap
board, thus leaving the operator with both hands free.

The system, as shown in the sketch and elucidated by the text,
represents the operation of train telegraphy in a simple form, but
combining the main essentials of the art as it was successfully and
commercially practiced for a number of years after Edison and Gilliland
entered the field. They elaborated the system in various ways, making it
more complete; but it has not been deemed necessary to enlarge further
upon the technical minutiae of the art for the purpose of this work.



XV. KINETOGRAPH AND PROJECTING KINETOSCOPE


ALTHOUGH many of the arts in which Edison has been a pioneer have been
enriched by his numerous inventions and patents, which were subsequent
to those of a fundamental nature, the (so-called) motion-picture art
is an exception, as the following, together with three other additional
patents [30] comprise all that he has taken out on this subject: United
States Patent No. 589,168, issued August 31, 1897, reissued in two
parts--namely, No. 12,037, under date of September 30,1902, and No.
12,192, under date of January 12, 1904. Application filed August 24,
1891.

     [Footnote 30: Not 491,993, issued February 21, 1893; No.
     493,426, issued March 14, 1893; No. 772,647, issued October
     18, 1904.]

There is nothing surprising in this, however, as the possibility of
photographing and reproducing actual scenes of animate life are so
thoroughly exemplified and rendered practicable by the apparatus
and methods disclosed in the patents above cited, that these basic
inventions in themselves practically constitute the art--its development
proceeding mainly along the line of manufacturing details. That such
a view of his work is correct, the highest criterion--commercial
expediency--bears witness; for in spite of the fact that the courts have
somewhat narrowed the broad claims of Edison's patents by reason of the
investigations of earlier experimenters, practically all the immense
amount of commercial work that is done in the motion-picture field
to-day is accomplished through the use of apparatus and methods licensed
under the Edison patents.

The philosophy of this invention having already been described in
Chapter XXI, it will be unnecessary to repeat it here. Suffice it to say
by way of reminder that it is founded upon the physiological phenomenon
known as the persistence of vision, through which a series of sequential
photographic pictures of animate motion projected upon a screen in rapid
succession will reproduce to the eye all the appearance of the original
movements.

Edison's work in this direction comprised the invention not only of a
special form of camera for making original photographic exposures from a
single point of view with very great rapidity, and of a machine adapted
to effect the reproduction of such pictures in somewhat similar manner
but also of the conception and invention of a continuous uniform, and
evenly spaced tape-like film, so absolutely essential for both the above
objects.

The mechanism of such a camera, as now used, consists of many
parts assembled in such contiguous proximity to each other that an
illustration from an actual machine would not help to clearness of
explanation to the general reader. Hence a diagram showing a sectional
view of a simple form of such a camera is presented below.

In this diagram, A represents an outer light-tight box containing a
lens, C, and the other necessary mechanism for making the photographic
exposures, H<1S> and H<2S> being cases for holding reels of film before
and after exposure, F the long, tape-like film, G a sprocket whose teeth
engage in perforations on the edges of the film, such sprocket being
adapted to be revolved with an intermittent or step-by-step movement
by hand or by motor, and B a revolving shutter having an opening and
connected by gears with G, and arranged to expose the film during the
periods of rest. A full view of this shutter is also represented, with
its opening, D, in the small illustration to the right.

In practice, the operation would be somewhat as follows, generally
speaking: The lens would first be focussed on the animate scene to be
photographed. On turning the main shaft of the camera the sprocket, G,
is moved intermittently, and its teeth, catching in the holes in the
sensitized film, draws it downward, bringing a new portion of its length
in front of the lens, the film then remaining stationary for an instant.
In the mean time, through gearing connecting the main shaft with the
shutter, the latter is rotated, bringing its opening, D, coincident with
the lens, and therefore exposing the film while it is stationary, after
which the film again moves forward. So long as the action is continued
these movements are repeated, resulting in a succession of enormously
rapid exposures upon the film during its progress from reel H<1S> to its
automatic rewinding on reel H<2S>. While the film is passing through the
various parts of the machine it is guided and kept straight by various
sets of rollers between which it runs, as indicated in the diagram.

By an ingenious arrangement of the mechanism, the film moves
intermittently so that it may have a much longer period of rest than
of motion. As in practice the pictures are taken at a rate of twenty or
more per second, it will be quite obvious that each period of rest is
infinitesimally brief, being generally one-thirtieth of a second or
less. Still it is sufficient to bring the film to a momentary condition
of complete rest, and to allow for a maximum time of exposure,
comparatively speaking, thus providing means for taking clearly defined
pictures. The negatives so obtained are developed in the regular
way, and the positive prints subsequently made from them are used for
reproduction.

The reproducing machine, or, as it is called in practice, the Projecting
Kinetoscope, is quite similar so far as its general operations in
handling the film are concerned. In appearance it is somewhat different;
indeed, it is in two parts, the one containing the lighting arrangements
and condensing lens, and the other embracing the mechanism and objective
lens. The "taking" camera must have its parts enclosed in a light-tight
box, because of the undeveloped, sensitized film, but the projecting
kinetoscope, using only a fully developed positive film, may, and,
for purposes of convenient operation, must be accessibly open. The
illustration (Fig. 2) will show the projecting apparatus as used in
practice.

The philosophy of reproduction is very simple, and is illustrated
diagrammatically in Fig. 3, reference letters being the same as in Fig.
1. As to the additional reference letters, I is a condenser J the source
of light, and K a reflector.

The positive film is moved intermittently but swiftly throughout its
length between the objective lens and a beam of light coming through the
condenser, being exposed by the shutter during the periods of rest. This
results in a projection of the photographs upon a screen in such rapid
succession as to present an apparently continuous photograph of the
successive positions of the moving objects, which, therefore, appear to
the human eye to be in motion.

The first claim of Reissue Patent No. 12,192 describes the film. It
reads as follows:


"An unbroken transparent or translucent tape-like photographic film
having thereon uniform, sharply defined, equidistant photographs of
successive positions of an object in motion as observed from a single
point of view at rapidly recurring intervals of time, such photographs
being arranged in a continuous straight-line sequence, unlimited in
number save by the length of the film, and sufficient in number to
represent the movements of the object throughout an extended period of
time."



XVI. EDISON'S ORE-MILLING INVENTIONS

THE wide range of Edison's activities in this department of the arts is
well represented in the diversity of the numerous patents that have been
issued to him from time to time. These patents are between fifty and
sixty in number, and include magnetic ore separators of ten distinct
types; also breaking, crushing, and grinding rolls, conveyors,
dust-proof bearings, screens, driers, mixers, bricking apparatus and
machines, ovens, and processes of various kinds.

A description of the many devices in each of these divisions would
require more space than is available; hence, we shall confine ourselves
to a few items of predominating importance, already referred to in the
narrative, commencing with the fundamental magnetic ore separator, which
was covered by United States Patent No. 228,329, issued June 1, 1880.

The illustration here presented is copied from the drawing forming part
of this patent. A hopper with adjustable feed is supported several feet
above a bin having a central partition. Almost midway between the hopper
and the bin is placed an electromagnet whose polar extension is so
arranged as to be a little to one side of a stream of material falling
from the hopper. Normally, a stream of finely divided ore falling from
the hopper would fall into that portion of the bin lying to the left
of the partition. If, however, the magnet is energized from a source of
current, the magnetic particles in the falling stream are attracted
by and move toward the magnet, which is so placed with relation to
the falling material that the magnetic particles cannot be attracted
entirely to the magnet before gravity has carried them past. Hence,
their trajectory is altered, and they fall on the right-hand side of
the partition in the bin, while the non-magnetic portion of the stream
continues in a straight line and falls on the other side, thus effecting
a complete separation.

This simple but effective principle was the one employed by Edison
in his great concentrating plant already described. In practice, the
numerous hoppers, magnets, and bins were many feet in length; and they
were arranged in batteries of varied magnetic strength, in order
that the intermingled mass of crushed rock and iron ore might be
more thoroughly separated by being passed through magnetic fields of
successively increasing degrees of attracting power. Altogether there
were about four hundred and eighty of these immense magnets in the
plant, distributed in various buildings in batteries as above mentioned,
the crushed rock containing the iron ore being delivered to them by
conveyors, and the gangue and ore being taken away after separation by
two other conveyors and delivered elsewhere. The magnetic separators at
first used by Edison at this plant were of the same generality as the
ones employed some years previously in the separation of sea-shore sand,
but greatly enlarged and improved. The varied experiences gained in
the concentration of vast quantities of ore led naturally to a greater
development, and several new types and arrangements of magnetic
separators were evolved and elaborated by him from first to last, during
the progress of the work at the concentrating plant.

The magnetic separation of iron from its ore being the foundation idea
of the inventions now under discussion, a consideration of the separator
has naturally taken precedence over those of collateral but inseparable
interest. The ore-bearing rock, however, must first be ground to powder
before it can be separated; hence, we will now begin at the root of
this operation and consider the "giant rolls," which Edison devised
for breaking huge masses of rock. In his application for United States
Patent No. 672,616, issued April 23, 1901, applied for on July 16, 1897,
he says: "The object of my invention is to produce a method for the
breaking of rock which will be simple and effective, will not require
the hand-sledging or blasting of the rock down to pieces of moderate
size, and will involve the consumption of a small amount of power."

While this quotation refers to the method as "simple," the patent under
consideration covers one of the most bold and daring projects that
Edison has ever evolved. He proposed to eliminate the slow and expensive
method of breaking large boulders manually, and to substitute therefor
momentum and kinetic energy applied through the medium of massive
machinery, which, in a few seconds, would break into small pieces a rock
as big as an ordinary upright cottage piano, and weighing as much as six
tons. Engineers to whom Edison communicated his ideas were unanimous
in declaring the thing an impossibility; it was like driving two
express-trains into each other at full speed to crack a great rock
placed between them; that no practical machinery could be built to
stand the terrific impact and strains. Edison's convictions were
strong, however, and he persisted. The experiments were of heroic size,
physically and financially, but after a struggle of several years and
an expenditure of about $100,000, he realized the correctness and
practicability of his plans in the success of the giant rolls, which
were the outcome of his labors.

The giant rolls consist of a pair of iron cylinders of massive size and
weight, with removable wearing plates having irregular surfaces formed
by projecting knobs. These rolls are mounted side by side in a very
heavy frame (leaving a gap of about fourteen inches between them), and
are so belted up with the source of power that they run in opposite
directions. The giant rolls described by Edison in the above-named
patent as having been built and operated by him had a combined weight of
167,000 pounds, including all moving parts, which of themselves weighed
about seventy tons, each roll being six feet in diameter and five feet
long. A top view of the rolls is shown in the sketch, one roll and one
of its bearings being shown in section.

In Fig. 2 the rolls are illustrated diagrammatically. As a sketch of
this nature, even if given with a definite scale, does not always carry
an adequate idea of relative dimensions to a non-technical reader,
we present in Fig. 3 a perspective illustration of the giant rolls as
installed in the concentrating plant.

In practice, a small amount of power is applied to run the giant rolls
gradually up to a surface speed of several thousand feet a minute. When
this high speed is attained, masses of rock weighing several tons in one
or more pieces are dumped into a hopper which guides them into the gap
between the rapidly revolving rolls. The effect is to partially arrest
the swift motion of the rolls instantaneously, and thereby develop and
expend an enormous amount of kinetic energy, which with pile-driver
effect cracks the rocks and breaks them into pieces small enough to
pass through the fourteen-inch gap. As the power is applied to the rolls
through slipping friction-clutches, the speed of the driving-pulleys is
not materially reduced; hence the rolls may again be quickly speeded up
to their highest velocity while another load of rock is being hoisted
in position to be dumped into the hopper. It will be obvious from the
foregoing that if it were attempted to supply the great energy necessary
for this operation by direct application of steam-power, an engine of
enormous horse-power would be required, and even then it is doubtful
if one could be constructed of sufficient strength to withstand the
terrific strains that would ensue. But the work is done by the great
momentum and kinetic energy obtained by speeding up these tremendous
masses of metal, and then suddenly opposing their progress, the
engine being relieved of all strain through the medium of the slipping
friction-clutches. Thus, this cyclopean operation may be continuously
conducted with an amount of power prodigiously inferior, in proportion,
to the results accomplished.

The sketch (Fig. 4) showing a large boulder being dumped into the
hopper, or roll-pit, will serve to illustrate the method of feeding
these great masses of rock to the rolls, and will also enable the reader
to form an idea of the rapidity of the breaking operation, when it is
stated that a boulder of the size represented would be reduced by
the giant rolls to pieces a trifle larger than a man's head in a few
seconds.

After leaving the giant rolls the broken rock passed on through other
crushing-rolls of somewhat similar construction. These also were
invented by Edison, but antedated those previously described; being
covered by Patent No. 567,187, issued September 8, 1896. These rolls
were intended for the reducing of "one-man-size" rocks to small pieces,
which at the time of their original inception was about the standard
size of similar machines. At the Edison concentrating plant the broken
rock, after passing through these rolls, was further reduced in size by
other rolls, and was then ready to be crushed to a fine powder through
the medium of another remarkable machine devised by Edison to meet his
ever-recurring and well-defined ideas of the utmost economy and
efficiency.

NOTE.--Figs. 3 and 4 are reproduced from similar sketches on pages 84
and 85 of McClure's Magazine for November, 1897, by permission of S. S.
McClure Co.

The best fine grinding-machines that it was then possible to obtain were
so inefficient as to involve a loss of 82 per cent. of the power
applied. The thought of such an enormous loss was unbearable, and he did
not rest until he had invented and put into use an entirely new
grinding-machine, which was called the "three-high" rolls. The device
was covered by a patent issued to him on November 21, 1899, No. 637,327.
It was a most noteworthy invention, for it brought into the art not only
a greater efficiency of grinding than had ever been dreamed of before,
but also a tremendous economy by the saving of power; for whereas the
previous efficiency had been 18 per cent. and the loss 82 per cent.,
Edison reversed these figures, and in his three-high rolls produced a
working efficiency of 84 per cent., thus reducing the loss of power by
friction to 16 per cent. A diagrammatic sketch of this remarkable
machine is shown in Fig. 5, which shows a front elevation with the
casings, hopper, etc., removed, and also shows above the rolls the rope
and pulleys, the supports for which are also removed for the sake of
clearness in the illustration.

For the convenience of the reader, in referring to Fig. 5, we will
repeat the description of the three-high rolls, which is given on pages
487 and 488 of the preceding narrative.

In the two end-pieces of a heavy iron frame were set three rolls, or
cylinders--one in the centre, another below, and the other above--all
three being in a vertical line. These rolls were about three feet in
diameter, made of cast-iron, and had face-plates of chilled-iron. [31]
The lowest roll was set in a fixed bearing at the bottom of the frame,
and, therefore, could only turn around on its axis. The middle and top
rolls were free to move up or down from and toward the lower roll, and
the shafts of the middle and upper rolls were set in a loose bearing
which could slip up and down in the iron frame. It will be apparent,
therefore, that any material which passed in between the top and the
middle rolls, and the middle and bottom rolls, could be ground as fine
as might be desired, depending entirely upon the amount of pressure
applied to the loose rolls. In operation the material passed first
through the upper and middle rolls, and then between the middle and
lowest rolls.


     [Footnote 31: The faces of these rolls were smooth, but as
     three-high rolls came into use later in Edison's Portland
     cement operations the faces were corrugated so as to fit
     into each other, gear-fashion, to provide for a high rate of
     feed]


This pressure was applied in a most ingenious manner. On the ends of the
shafts of the bottom and top rolls there were cylindrical sleeves, or
bearings, having seven sheaves in which was run a half-inch endless wire
rope. This rope was wound seven times over the sheaves as above, and led
upward and over a single-groove sheave, which was operated by the piston
of an air-cylinder, and in this manner the pressure was applied to the
rolls. It will be seen, therefore that the system consisted in a single
rope passed over sheaves and so arranged that it could be varied
in length, thus providing for elasticity in exerting pressure and
regulating it as desired. The efficiency of this system was incomparably
greater than that of any other known crusher or grinder, for while a
pressure of one hundred and twenty-five thousand pounds could be exerted
by these rolls, friction was almost entirely eliminated, because the
upper and lower roll bearings turned with the rolls and revolved in the
wire rope, which constituted the bearing proper.

Several other important patents have been issued to Edison for crushing
and grinding rolls, some of them being for elaborations and improvements
of those above described but all covering methods of greater economy and
effectiveness in rock-grinding.

Edison's work on conveyors during the period of his ore-concentrating
labors was distinctively original, ingenious and far in advance of
the times. His conception of the concentrating problem was broad and
embraced an entire system, of which a principal item was the continuous
transfer of enormous quantities of material from place to place at
the lowest possible cost. As he contemplated the concentration of six
thousand tons daily, the expense of manual labor to move such an immense
quantity of rock, sand, and ore would be absolutely prohibitive. Hence,
it became necessary to invent a system of conveyors that would be
capable of transferring this mass of material from one place to another.
And not only must these conveyors be capable of carrying the material,
but they must also be devised so that they would automatically receive
and discharge their respective loads at appointed places. Edison's
ingenuity, engineering ability, and inventive skill were equal to the
task, however, and were displayed in a system and variety of conveyors
that in practice seemed to act with almost human discrimination. When
fully installed throughout the plant, they automatically transferred
daily a mass of material equal to about one hundred thousand cubic feet,
from mill to mill, covering about a mile in the transit. Up and down,
winding in and out, turning corners, delivering material from one to
another, making a number of loops in the drying-oven, filling up bins
and passing on to the next when they were full, these conveyors in
automatic action seemingly played their part with human intelligence,
which was in reality the reflection of the intelligence and ingenuity
that had originally devised them and set them in motion.

Six of Edison's patents on conveyors include a variety of devices that
have since came into broad general use for similar work, and have been
the means of effecting great economies in numerous industries of widely
varying kinds. Interesting as they are, however, we shall not attempt to
describe them in detail, as the space required would be too great. They
are specified in the list of patents following this Appendix, and may be
examined in detail by any interested student.

In the same list will also be found a large number of Edison's patents
on apparatus and methods of screening, drying, mixing, and briquetting,
as well as for dust-proof bearings, and various types and groupings
of separators, all of which were called forth by the exigencies and
magnitude of his great undertaking, and without which he could not
possibly have attained the successful physical results that crowned his
labors. Edison's persistence in reducing the cost of his operations is
noteworthy in connection with his screening and drying inventions, in
which the utmost advantage is taken of the law of gravitation. With
its assistance, which cost nothing, these operations were performed
perfectly. It was only necessary to deliver the material at the top of
the chambers, and during its natural descent it was screened or dried as
the case might be.

All these inventions and devices, as well as those described in detail
above (except magnetic separators and mixing and briquetting machines),
are being used by him to-day in the manufacture of Portland cement, as
that industry presents many of the identical problems which presented
themselves in relation to the concentration of iron ore.



XVII. THE LONG CEMENT KILN

IN this remarkable invention, which has brought about a striking
innovation in a long-established business, we see another characteristic
instance of Edison's incisive reasoning and boldness of conception
carried into practical effect in face of universal opinions to the
contrary.

For the information of those unacquainted with the process of
manufacturing Portland cement, it may be stated that the material
consists preliminarily of an intimate mixture of cement rock and
limestone, ground to a very fine powder. This powder is technically
known in the trade as "chalk," and is fed into rotary kilns and
"burned"; that is to say, it is subjected to a high degree of heat
obtained by the combustion of pulverized coal, which is injected
into the interior of the kiln. This combustion effects a chemical
decomposition of the chalk, and causes it to assume a plastic
consistency and to collect together in the form of small spherical
balls, which are known as "clinker." Kilns are usually arranged with
a slight incline, at the upper end of which the chalk is fed in and
gradually works its way down to the interior flame of burning fuel at
the other end. When it arrives at the lower end, the material has been
"burned," and the clinker drops out into a receiving chamber below. The
operation is continuous, a constant supply of chalk passing in at one
end of the kiln and a continuous dribble of clinker-balls dropping
out at the other. After cooling, the clinker is ground into very fine
powder, which is the Portland cement of commerce.

It is self-evident that an ideal kiln would be one that produced the
maximum quantity of thoroughly clinkered material with a minimum amount
of fuel, labor, and investment. When Edison was preparing to go into
the cement business, he looked the ground over thoroughly, and, after
considerable investigation and experiment, came to the conclusion that
prevailing conditions as to kilns were far from ideal.

The standard kilns then in use were about sixty feet in length, with an
internal diameter of about five feet. In all rotary kilns for burning
cement, the true clinkering operation takes place only within a limited
portion of their total length, where the heat is greatest; hence the
interior of the kiln may be considered as being divided longitudinally
into two parts or zones--namely, the combustion, or clinkering, zone,
and the zone of oncoming raw material. In the sixty-foot kiln the length
of the combustion zone was about ten feet, extending from a point six or
eight feet from the lower, or discharge, end to a point about eighteen
feet from that end. Consequently, beyond that point there was a zone of
only about forty feet, through which the heated gases passed and came
in contact with the oncoming material, which was in movement down toward
the clinkering zone. Since the bulk of oncoming material was small,
the gases were not called upon to part with much of their heat, and
therefore passed on up the stack at very high temperatures, ranging from
1500 degrees to 1800 degrees Fahr. Obviously, this heat was entirely
lost.

An additional loss of efficiency arose from the fact that the material
moved so rapidly toward the combustion zone that it had not given up
all its carbon dioxide on reaching there; and by the giving off of
large quantities of that gas within the combustion zone, perfect and
economical combustion of coal could not be effected.

The comparatively short length of the sixty-foot kiln not only limited
the amount of material that could be fed into it, but the limitation in
length of the combustion zone militated against a thorough clinkering of
the material, this operation being one in which the elements of time and
proper heat are prime considerations. Thus the quantity of good clinker
obtainable was unfavorably affected. By reason of these and other
limitations and losses, it had been possible, in practice, to obtain
only about two hundred and fifty barrels of clinker per day of
twenty-four hours; and that with an expenditure for coal proportionately
equal to about 29 to 33 per cent. of the quantity of clinker produced,
even assuming that all the clinker was of good quality.

Edison realized that the secret of greater commercial efficiency and
improvement of quality lay in the ability to handle larger quantities
of material within a given time, and to produce a more perfect product
without increasing cost or investment in proportion. His reasoning led
him to the conclusion that this result could only be obtained through
the use of a kiln of comparatively great length, and his investigations
and experiments enabled him to decide upon a length of one hundred and
fifty feet, but with an increase in diameter of only six inches to a
foot over that of the sixty-foot kiln.

The principal considerations that influenced Edison in making this
radical innovation may be briefly stated as follows:

First. The ability to maintain in the kiln a load from five to seven
times greater than ordinarily employed, thereby tending to a more
economical output.

Second. The combustion of a vastly increased bulk of pulverized coal
and a greatly enlarged combustion zone, extending about forty feet
longitudinally into the kiln--thus providing an area within which
the material might be maintained in a clinkering temperature for a
sufficiently long period to insure its being thoroughly clinkered from
periphery to centre.

Third. By reason of such a greatly extended length of the zone of
oncoming material (and consequently much greater bulk), the gases and
other products of combustion would be cooled sufficiently between the
combustion zone and the stack so as to leave the kiln at a comparatively
low temperature. Besides, the oncoming material would thus be gradually
raised in temperature instead of being heated abruptly, as in the
shorter kilns.

Fourth. The material having thus been greatly raised in temperature
before reaching the combustion zone would have parted with substantially
all its carbon dioxide, and therefore would not introduce into the
combustion zone sufficient of that gas to disturb the perfect character
of the combustion.

Fifth. On account of the great weight of the heavy load in a long kiln,
there would result the formation of a continuous plastic coating on that
portion of the inner surface of the kiln where temperatures are
highest. This would effectively protect the fire-brick lining from the
destructive effects of the heat.

Such, in brief, were the essential principles upon which Edison based
his conception and invention of the long kiln, which has since become so
well known in the cement business.

Many other considerations of a minor and mechanical nature, but which
were important factors in his solution of this difficult problem, are
worthy of study by those intimately associated with or interested in the
art. Not the least of the mechanical questions was settled by Edison's
decision to make this tremendously long kiln in sections of cast-iron,
with flanges, bolted together, and supported on rollers rotated by
electric motors. Longitudinal expansion and thrust were also important
factors to be provided for, as well as special devices to prevent the
packing of the mass of material as it passed in and out of the kiln.
Special provision was also made for injecting streams of pulverized coal
in such manner as to create the largely extended zone of combustion. As
to the details of these and many other ingenious devices, we must refer
the curious reader to the patents, as it is merely intended in these
pages to indicate in a brief manner the main principles of Edison's
notable inventions. The principal United States patent on the long kiln
was issued October 24, 1905, No. 802,631.

That his reasonings and deductions were correct in this case have been
indubitably proven by some years of experience with the long kiln in its
ability to produce from eight hundred to one thousand barrels of
good clinker every twenty-four hours, with an expenditure for coal
proportionately equal to about only 20 per cent. of the quantity of
clinker produced.

To illustrate the long cement kiln by diagram would convey but little
to the lay mind, and we therefore present an illustration (Fig. 1) of
actual kilns in perspective, from which sense of their proportions may
be gathered.



XVIII. EDISON'S NEW STORAGE BATTERY

GENERICALLY considered, a "battery" is a device which generates electric
current. There are two distinct species of battery, one being known as
"primary," and the other as "storage," although the latter is sometimes
referred to as a "secondary battery" or "accumulator." Every type of
each of these two species is essentially alike in its general make-up;
that is to say, every cell of battery of any kind contains at least
two elements of different nature immersed in a more or less liquid
electrolyte of chemical character. On closing the circuit of a primary
battery an electric current is generated by reason of the chemical
action which is set up between the electrolyte and the elements.
This involves a gradual consumption of one of the elements and a
corresponding exhaustion of the active properties of the electrolyte. By
reason of this, both the element and the electrolyte that have been used
up must be renewed from time to time, in order to obtain a continued
supply of electric current.

The storage battery also generates electric current through chemical
action, but without involving the constant repriming with active
materials to replace those consumed and exhausted as above mentioned.
The term "storage," as applied to this species of battery, is,
however, a misnomer, and has been the cause of much misunderstanding
to nontechnical persons. To the lay mind a "storage" battery presents
itself in the aspect of a device in which electric energy is STORED,
just as compressed air is stored or accumulated in a tank. This view,
however, is not in accordance with facts. It is exactly like the primary
battery in the fundamental circumstance that its ability for generating
electric current depends upon chemical action. In strict terminology it
is a "reversible" battery, as will be quite obvious if we glance briefly
at its philosophy. When a storage battery is "charged," by having an
electric current passed through it, the electric energy produces a
chemical effect, adding oxygen to the positive plate, and taking oxygen
away from the negative plate. Thus, the positive plate becomes oxidized,
and the negative plate reduced. After the charging operation is
concluded the battery is ready for use, and upon its circuit being
closed through a translating device, such as a lamp or motor, a
reversion ("discharge") takes place, the positive plate giving up its
oxygen, and the negative plate being oxidized. These chemical actions
result in the generation of an electric current as in a primary battery.
As a matter of fact, the chemical actions and reactions in a storage
battery are much more complex, but the above will serve to afford the
lay reader a rather simple idea of the general result arrived at through
the chemical activity referred to.

The storage battery, as a commercial article, was introduced into the
market in the year 1881. At that time, and all through the succeeding
years, until about 1905, there was only one type that was recognized as
commercially practicable--namely, that known as the lead-sulphuric-acid
cell, consisting of lead plates immersed in an electrolyte of dilute
sulphuric acid. In the year last named Edison first brought out his new
form of nickel-iron cell with alkaline electrolyte, as we have related
in the preceding narrative. Early in the eighties, at Menlo Park, he had
given much thought to the lead type of storage battery, and during the
course of three years had made a prodigious number of experiments in the
direction of improving it, probably performing more experiments in that
time than the aggregate of those of all other investigators. Even
in those early days he arrived at the conclusion that the
lead-sulphuric-acid combination was intrinsically wrong, and did not
embrace the elements of a permanent commercial device. He did not at
that time, however, engage in a serious search for another form of
storage battery, being tremendously occupied with his lighting system
and other matters.

It may here be noted, for the information of the lay reader, that the
lead-acid type of storage battery consists of two or more lead plates
immersed in dilute sulphuric acid and contained in a receptacle of
glass, hard rubber, or other special material not acted upon by acid.
The plates are prepared and "formed" in various ways, and the chemical
actions are similar to those above stated, the positive plate being
oxidized and the negative reduced during "charge," and reversed during
"discharge." This type of cell, however, has many serious disadvantages
inherent to its very nature. We will name a few of them briefly.
Constant dropping of fine particles of active material often causes
short-circuiting of the plates, and always necessitates occasional
washing out of cells; deterioration through "sulphation" if discharge
is continued too far or if recharging is not commenced quickly enough;
destruction of adjacent metalwork by the corrosive fumes given out
during charge and discharge; the tendency of lead plates to "buckle"
under certain conditions; the limitation to the use of glass, hard
rubber, or similar containers on account of the action of the acid; and
the immense weight for electrical capacity. The tremendously complex
nature of the chemical reactions which take place in the lead-acid
storage battery also renders it an easy prey to many troublesome
diseases.

In the year 1900, when Edison undertook to invent a storage battery, he
declared it should be a new type into which neither sulphuric nor
any other acid should enter. He said that the intimate and continued
companionship of an acid and a metal was unnatural, and incompatible
with the idea of durability and simplicity. He furthermore stated that
lead was an unmechanical metal for a battery, being heavy and lacking
stability and elasticity, and that as most metals were unaffected by
alkaline solutions, he was going to experiment in that direction. The
soundness of his reasoning is amply justified by the perfection of
results obtained in the new type of storage battery bearing his name,
and now to be described.

The essential technical details of this battery are fully described
in an article written by one of Edison's laboratory staff, Walter
E. Holland, who for many years has been closely identified with the
inventor's work on this cell The article was published in the Electrical
World, New York, April 28, 1910; and the following extracts therefrom
will afford an intelligent comprehension of this invention:

"The 'A' type Edison cell is the outcome of nine years of costly
experimentation and persistent toil on the part of its inventor and his
associates....

"The Edison invention involves the use of an entirely new
voltaic combination in an alkaline electrolyte, in place of the
lead-lead-peroxide combination and acid electrolyte, characteristic of
all other commercial storage batteries. Experience has proven that
this not only secures durability and greater output per unit-weight of
battery, but in addition there is eliminated a long list of troubles and
diseases inherent in the lead-acid combination....

"The principle on which the action of this new battery is based is
the oxidation and reduction of metals in an electrolyte which does not
combine with, and will not dissolve, either the metals or their oxides;
and an electrolyte, furthermore, which, although decomposed by the
action of the battery, is immediately re-formed in equal quantity; and
therefore in effect is a CONSTANT element, not changing in density or in
conductivity.

"A battery embodying this basic principle will have features of great
value where lightness and durability are desiderata. For instance, the
electrolyte, being a constant factor, as explained, is not required in
any fixed and large amount, as is the case with sulphuric acid in the
lead battery; thus the cell may be designed with minimum distancing of
plates and with the greatest economy of space that is consistent with
safe insulation and good mechanical design. Again, the active materials
of the electrodes being insoluble in, and absolutely unaffected by, the
electrolyte, are not liable to any sort of chemical deterioration by
action of the electrolyte--no matter how long continued....

"The electrolyte of the Edison battery is a 21 per cent. solution of
potassium hydrate having, in addition, a small amount of lithium
hydrate. The active metals of the electrodes--which will oxidize and
reduce in this electrolyte without dissolution or chemical
deterioration--are nickel and iron. These active elements are not put in
the plates AS METALS; but one, nickel, in the form of a hydrate, and the
other, iron, as an oxide.

"The containing cases of both kinds of active material (Fig. 1), and
their supporting grids (Fig. 2), as well as the bolts, washers, and nuts
used in assembling (Fig. 3), and even the retaining can and its cover
(Fig. 4), are all made of nickel-plated steel--a material in which
lightness, durability and mechanical strength are most happily
combined, and a material beyond suspicion as to corrosion in an alkaline
electrolyte....

"An essential part of Edison's discovery of active masetials for
an alkaline storage battery was the PREPARATION of these materials.
Metallic powder of iron and nickel, or even oxides of these metals,
prepared in the ordinary way, are not chemically active in a sufficient
degree to work in a battery. It is only when specially prepared iron
oxide of exceeding fineness, and nickel hydrate conforming to certain
physical, as well as chemical, standards can be made that the alkaline
battery is practicable. Needless to say, the working out of the
conditions and processes of manufacture of the materials has involved
great ingenuity and endless experimentation."


The article then treats of Edison's investigations into means for
supporting and making electrical connection with the active materials,
showing some of the difficulties encountered and the various discoveries
made in developing the perfected cell, after which the writer continues
his description of the "A" type cell, as follows:


"It will be seen at once that the construction of the two kinds of plate
is radically different. The negative or iron plate (Fig. 5) has the
familiar flat-pocket construction. Each negative contains twenty-four
pockets--a pocket being 1/2 inch wide by 3 inches long, and having a
maximum thickness of a little more than 1/8 inch. The positive or nickel
plate (Fig. 6) is seen to consist of two rows of round rods or pencils,
thirty in number, held in a vertical position by a steel support-frame.
The pencils have flat flanges at the ends (formed by closing in the
metal case), by which they are supported and electrical connection is
made. The frame is slit at the inner horizontal edges, and then folded
in such a way as to make individual clamping-jaws for each end-flange.
The clamping-in is done at great pressure, and the resultant plate has
great rigidity and strength.

"The perforated tubes into which the nickel active material is loaded
are made of nickel-plated steel of high quality. They are put together
with a double-lapped spiral seam to give expansion-resisting qualities,
and as an additional precaution small metal rings are slipped on the
outside. Each tube is 1/4 inch in diameter by 4 1/8 inches long, add has
eight of the reinforcing rings.

"It will be seen that the 'A' positive plate has been given the
theoretically best design to prevent expansion and overcome trouble from
that cause. Actual tests, long continued under very severe conditions,
have shown that the construction is right, and fulfils the most sanguine
expectations."


Mr. Holland in his article then goes on to explain the development of
the nickel flakes as the conducting factor in the positive element, but
as this has already been described in Chapter XXII, we shall pass on to
a later point, where he says:


"An idea of the conditions inside a loaded tube can best be had by
microscopic examination. Fig. 7 shows a magnified section of a regularly
loaded tube which has been sawed lengthwise. The vertical bounding walls
are edges of the perforated metal containing tube; the dark horizontal
lines are layers of nickel flake, while the light-colored thicker layers
represent the nickel hydrate. It should be noted that the layers of
flake nickel extend practically unbroken across the tube and make
contact with the metal wall at both sides. These metal layers conduct
current to or from the active nickel hydrate in all parts of the tube
very efficiently. There are about three hundred and fifty layers of
each kind of material in a 4 1/8-inch tube, each layer of nickel hydrate
being about 0.01 inch thick; so it will be seen that the current does
not have to penetrate very far into the nickel hydrate--one-half a
layer's thickness being the maximum distance. The perforations of
the containing tube, through which the electrolyte reaches the active
material, are also shown in Fig. 7."


In conclusion, the article enumerates the chief characteristics of the
Edison storage battery which fit it preeminently for transportation
service, as follows: 1. No loss of active material, hence no
sediment short-circuits. 2. No jar breakage. 3. Possibility of quick
disconnection or replacement of any cell without employment of skilled
labor. 4. Impossibility of "buckling" and harmlessness of a dead
short-circuit. 5. Simplicity of care required. 6. Durability of
materials and construction. 7. Impossibility of "sulphation." 8. Entire
absence of corrosive fumes. 9. Commercial advantages of light weight.
10. Duration on account of its dependability. 11. Its high practical
efficiency.



XIX. EDISON'S POURED CEMENT HOUSE

THE inventions that have been thus far described fall into two
classes--first, those that were fundamental in the great arts and
industries which have been founded and established upon them, and,
second, those that have entered into and enlarged other arts that were
previously in existence. On coming to consider the subject now under
discussion, however, we find ourselves, at this writing, on the
threshold of an entirely new and undeveloped art of such boundless
possibilities that its ultimate extent can only be a matter of
conjecture.

Edison's concrete house, however, involves two main considerations,
first of which was the conception or creation of the IDEA--vast and
comprehensive--of providing imperishable and sanitary homes for
the wage-earner by molding an entire house in one piece in a single
operation, so to speak, and so simply that extensive groups of such
dwellings could be constructed rapidly and at very reasonable cost. With
this idea suggested, one might suppose that it would be a simple matter
to make molds and pour in a concrete mixture. Not so, however. And here
the second consideration presents itself. An ordinary cement mixture is
composed of crushed stone, sand, cement, and water. If such a mixture
be poured into deep molds the heavy stone and sand settle to the bottom.
Should the mixture be poured into a horizontal mold, like the floor of
a house, the stone and sand settle, forming an ununiform mass. It was
at this point that invention commenced, in order to produce a concrete
mixture which would overcome this crucial difficulty. Edison, with
characteristic thoroughness, took up a line of investigation, and after
a prolonged series of experiments succeeded in inventing a mixture that
upon hardening remained uniform throughout its mass. In the beginning
of his experimentation he had made the conditions of test very severe by
the construction of forms similar to that shown in the sketch below.

This consisted of a hollow wooden form of the dimensions indicated.
The mixture was to be poured into the hopper until the entire form was
filled, such mixture flowing down and along the horizontal legs and up
the vertical members. It was to be left until the mixture was hard, and
the requirement of the test was that there should be absolute uniformity
of mixture and mass throughout. This was finally accomplished, and
further invention then proceeded along engineering lines looking toward
the devising of a system of molds with which practicable dwellings might
be cast.

Edison's boldness and breadth of conception are well illustrated in his
idea of a poured house, in which he displays his accustomed tendency
to reverse accepted methods. In fact, it is this very reversal of usual
procedure that renders it difficult for the average mind to instantly
grasp the full significance of the principles involved and the results
attained.

Up to this time we have been accustomed to see the erection of a house
begun at the foundation and built up slowly, piece by piece, of solid
materials: first the outer frame, then the floors and inner walls,
followed by the stairways, and so on up to the putting on of the roof.
Hence, it requires a complete rearrangement of mental conceptions to
appreciate Edison's proposal to build a house FROM THE TOP DOWNWARD, in
a few hours, with a freely flowing material poured into molds, and in
a few days to take away the molds and find a complete indestructible
sanitary house, including foundation, frame, floors, walls, stairways,
chimneys, sanitary arrangements, and roof, with artistic ornamentation
inside and out, all in one solid piece, as if it were graven or bored
out of a rock.

To bring about the accomplishment of a project so extraordinarily broad
involves engineering and mechanical conceptions of a high order, and, as
we have seen, these have been brought to bear on the subject by Edison,
together with an intimate knowledge of compounded materials.

The main features of this invention are easily comprehensible with the
aid of the following diagrammatic sectional sketch:

It should be first understood that the above sketch is in broad outline,
without elaboration, merely to illustrate the working principle; and
while the upright structure on the right is intended to represent a
set of molds in position to form a three-story house, with cellar, no
regular details of such a building (such as windows, doors, stairways,
etc.) are here shown, as they would only tend to complicate an
explanation.

It will be noted that there are really two sets of molds, an inside and
an outside set, leaving a space between them throughout. Although not
shown in the sketch, there is in practice a number of bolts passing
through these two sets of molds at various places to hold them together
in their relative positions. In the open space between the molds there
are placed steel rods for the purpose of reinforcement; while all
through the entire structure provision is made for water and steam
pipes, gas-pipes and electric-light wires being placed in appropriate
positions as the molds are assembled.

At the centre of the roof there will be noted a funnel-shaped opening.
Into this there is delivered by the endless chain of buckets shown on
the left a continuous stream of a special free-flowing concrete mixture.
This mixture descends by gravity, and gradually fills the entire
space between the two sets of molds. The delivery of the material--or
"pouring," as it is called--is continued until every part of the
space is filled and the mixture is even with the tip of the roof,
thus completing the pouring, or casting, of the house. In a few days
afterward the concrete will have hardened sufficiently to allow the
molds to be taken away leaving an entire house, from cellar floor to the
peak of the roof, complete in all its parts, even to mantels and picture
molding, and requiring only windows and doors, plumbing, heating, and
lighting fixtures to make it ready for habitation.

In the above sketch the concrete mixers, A, B, are driven by the
electric motor, C. As the material is mixed it descends into the tank,
D, and flows through a trough into a lower tank, E, in which it is
constantly stirred, and from which it is taken by the endless chain
of buckets and dumped into the funnel-shaped opening at the top of the
molds, as above described.

The molds are made of cast-iron in sections of such size and weight as
will be most convenient for handling, mostly in pieces not exceeding two
by four feet in rectangular dimensions. The subjoined sketch shows
an exterior view of several of these molds as they appear when bolted
together, the intersecting central portions representing ribs, which are
included as part of the casting for purposes of strength and rigidity.

The molds represented above are those for straight work, such as walls
and floors. Those intended for stairways, eaves, cornices, windows,
doorways, etc., are much more complicated in design, although the same
general principles are employed in their construction.

While the philosophy of pouring or casting a complete house in its
entirety is apparently quite simple, the development of the engineering
and mechanical questions involves the solution of a vast number of most
intricate and complicated problems covering not only the building as
a whole, but its numerous parts, down to the minutest detail. Safety,
convenience, duration, and the practical impossibility of altering
a one-piece solid dwelling are questions that must be met before its
construction, and therefore Edison has proceeded calmly on his way
toward the goal he has ever had clearly in mind, with utter indifference
to the criticisms and jeers of those who, as "experts," have professed
positive knowledge of the impossibility of his carrying out this daring
scheme.



LIST OF UNITED STATES PATENTS

List of United States patents granted to Thomas A. Edison, arranged
according to dates of execution of applications for such patents. This
list shows the inventions as Mr. Edison has worked upon them from year
to year

   1868

   NO.         TITLE OF PATENT DATE EXECUTED                    DATE EXECUTED
   90,646,     Electrographic Vote Recorder . . . . .Oct. 13, 1868

   1869

   91,527      Printing Telegraph (reissued October
               25, 1870, numbered 4166, and August
               5, 1873, numbered 5519). . . . . . . .Jan. 25, 1869
   96,567      Apparatus for Printing Telegraph (reissued
               February 1, 1870, numbered
               3820). . . . . . . . . . . . . . . . .Aug. 17, 1869
   96,681      Electrical Switch for Telegraph Apparatus Aug. 27, 1869
   102,320     Printing Telegraph--Pope and Edison
               (reissued April 17, 1877, numbered
               7621, and December 9, 1884, numbered
               10,542). . . . . . . . . . . . . . . Sept. 16, 1869
   103,924     Printing Telegraphs--Pope and Edison
               (reissued August 5, 1873)

   1870

   103,035     Electromotor Escapement. . . . . . . . Feb. 5, 1870
   128,608     Printing Telegraph Instruments . . . . .May 4, 1870
   114,656     Telegraph Transmitting Instruments . .June 22, 1870
   114,658     Electro Magnets for Telegraph
               Instruments. . . . . . . . . . . . . .June 22, 1870
   114,657     Relay Magnets for Telegraph
               Instruments. . . . . . . . . . . . . .Sept. 6, 1870
   111,112     Electric Motor Governors . . . . . . .June 29, 1870
   113,033     Printing Telegraph Apparatus . . . . .Nov. 17, 1870

   1871

   113,034     Printing Telegraph Apparatus . . . . .Jan. 10, 1871
   123,005     Telegraph Apparatus. . . . . . . . . .July 26, 1871
   123,006     Printing Telegraph . . . . . . . . . .July 26, 1871
   123,984     Telegraph Apparatus. . . . . . . . . .July 26, 1871
   124,800     Telegraphic Recording Instruments. . .Aug. 12, 1871
   121,601     Machinery for Perforating Paper for
               Telegraph Purposes . . . . . . . . . .Aug. 16, 1871
   126,535     Printing Telegraphs. . . . . . . . . .Nov. 13, 1871
   133,841     Typewriting Machine. . . . . . . . . .Nov. 13, 1871

   1872
   126,532     Printing Telegraphs. . . . . . . . . . .Jan. 3 1872
   126,531     Printing Telegraphs. . . . . . . . . .Jan. 17, 1872
   126,534     Printing Telegraphs. . . . . . . . . .Jan. 17, 1872
   126,528     Type Wheels for Printing Telegraphs. .Jan. 23, 1872
   126,529     Type Wheels for Printing Telegraphs. .Jan. 23, 1872
   126,530     Printing Telegraphs. . . . . . . . . .Feb. 14, 1872
   126,533     Printing Telegraphs. . . . . . . . . .Feb. 14, 1872
   132,456     Apparatus for Perforating Paper for
               Telegraphic Use. . . . . . . . . . . March 15, 1872
   132,455     Improvement in Paper for Chemical
               Telegraphs . . . . . . . . . . . . . April 10, 1872
   133,019     Electrical Printing Machine. . . . . April 18, 1872
   128,131     Printing Telegraphs. . . . . . . . . April 26, 1872
   128,604     Printing Telegraphs. . . . . . . . . April 26, 1872
   128,605     Printing Telegraphs. . . . . . . . . April 26, 1872
   128,606     Printing Telegraphs. . . . . . . . . April 26, 1872
   128,607     Printing Telegraphs. . . . . . . . . April 26, 1872
   131,334     Rheotomes or Circuit Directors . . . . .May 6, 1872
   134,867     Automatic Telegraph Instruments. . . . .May 8, 1872
   134,868     Electro Magnetic Adjusters . . . . . . .May 8, 1872
   130,795     Electro Magnets. . . . . . . . . . . . .May 9, 1872
   131,342     Printing Telegraphs. . . . . . . . . . .May 9, 1872
   131,341     Printing Telegraphs. . . . . . . . . . May 28, 1872
   131,337     Printing Telegraphs. . . . . . . . . .June 10, 1872
   131,340     Printing Telegraphs. . . . . . . . . .June 10, 1872
   131,343     Transmitters and Circuits for Printing
               Telegraph. . . . . . . . . . . . . . .June 10, 1872
   131,335     Printing Telegraphs. . . . . . . . . .June 15, 1872
   131,336     Printing Telegraphs. . . . . . . . . .June 15, 1872
   131,338     Printing Telegraphs. . . . . . . . . .June 29, 1872
   131,339     Printing Telegraphs. . . . . . . . . .June 29, 1872
   131,344     Unison Stops for Printing Telegraphs .June 29, 1872
   134,866     Printing and Telegraph Instruments . .Oct. 16, 1872
   138,869     Printing Telegraphs. . . . . . . . . .Oct. 16, 1872
   142,999     Galvanic Batteries . . . . . . . . . .Oct. 31, 1872
   141,772     Automatic or Chemical Telegraphs . . . Nov. 5, 1872
   135,531     Circuits for Chemical Telegraphs . . . Nov. 9, 1872
   146,812     Telegraph Signal Boxes . . . . . . . .Nov. 26, 1872
   141,773     Circuits for Automatic Telegraphs. . .Dec. 12, 1872
   141,776     Circuits for Automatic Telegraphs. . .Dec. 12, 1872
   150,848     Chemical or Automatic Telegraphs . . .Dec. 12, 1872


   1873

   139,128     Printing Telegraphs. . . . . . . . . .Jan. 21, 1873
   139,129     Printing Telegraphs. . . . . . . . . .Feb. 13, 1873
   140,487     Printing Telegraphs. . . . . . . . . .Feb. 13, 1873
   140,489     Printing Telegraphs. . . . . . . . . .Feb. 13, 1873
   138,870     Printing Telegraphs. . . . . . . . . .March 7, 1873
   141,774     Chemical Telegraphs. . . . . . . . . .March 7, 1873
   141,775     Perforator for Automatic Telegraphs. .March 7, 1873
   141,777     Relay Magnets. . . . . . . . . . . . .March 7, 1873
   142,688     Electric Regulators for Transmitting
              Instruments . . . . . . . . . . . . . .March 7, 1873
   156,843     Duplex Chemical Telegraphs . . . . . .March 7, 1873
   147,312     Perforators for Automatic Telegraphy March 24, 1873
   147,314     Circuits for Chemical Telegraphs . . March 24, 1873
   150,847     Receiving Instruments for Chemical
               Telegraphs . . . . . . . . . . . . . March 24, 1873
   140,488     Printing Telegraphs. . . . . . . . . April 23, 1873
   147,311     Electric Telegraphs. . . . . . . . . April 23, 1873
   147,313     Chemical Telegraphs. . . . . . . . . April 23, 1873
   147,917     Duplex Telegraphs. . . . . . . . . . April 23, 1873
   150,846     Telegraph Relays . . . . . . . . . . April 23, 1873
   160,405     Adjustable Electro Magnets for
               Relays, etc. . . . . . . . . . . . . April 23, 1873
   162,633     Duplex Telegraphs. . . . . . . . . . April 22, 1873
   151,209     Automatic Telegraphy and Perforators
               Therefor . . . . . . . . . . . . . . .Aug. 25, 1873
   160,402     Solutions for Chemical Telegraph PaperSept. 29, 1873
   160,404     Solutions for Chemical Telegraph PaperSept. 29, 1873
   160,580     Solutions for Chemical Telegraph PaperOct. 14, 1873
   160,403     Solutions for Chemical Telegraph PaperOct. 29, 1873

   1874


   154,788     District Telegraph Signal Box. . . . .April 2, 1874
   168,004     Printing Telegraph . . . . . . . . . . May 22, 1874
   166,859     Chemical Telegraphy. . . . . . . . . . June 1, 1874
   166,860     Chemical Telegraphy. . . . . . . . . . June 1, 1874
   166,861     Chemical Telegraphy. . . . . . . . . . June 1, 1874
   158,787     Telegraph Apparatus. . . . . . . . . . Aug. 7, 1874
   172,305     Automatic Roman Character
               Telegraph. . . . . . . . . . . . . . . Aug. 7, 1874
   173,718     Automatic Telegraphy . . . . . . . . . Aug. 7, 1874
   178,221     Duplex Telegraphs. . . . . . . .      Aug. 19, 1874
   178,222     Duplex Telegraphs. . . . . . . . . . .Aug. 19, 1874
   178,223     Duplex Telegraphs. . . . . . . . . . .Aug. 19, 1874
   180,858     Duplex Telegraphs. . . . . . . . . . .Aug. 19, 1874
   207,723     Duplex Telegraphs. . . . . . . . . . .Aug. 19, 1874
   480,567     Duplex Telegraphs. . . . . . . . . . .Aug. 19, 1874
   207,724     Duplex Telegraphs. . . . . . . . . . .Dec. 14, 1874


   1875

   168,242     Transmitter and Receiver for Automatic
               Telegraph. . . . . . . . . . . . . . .Jan. 18, 1875
   168,243     Automatic Telegraphs . . . . . . . . .Jan. 18, 1875
   168,385     Duplex Telegraphs. . . . . . . . . . .Jan. 18, 1875
   168,466     Solution for Chemical Telegraphs . . .Jan. 18, 1875
   168,467     Recording Point for Chemical Telegraph Jan. 18, 1875
   195,751     Automatic Telegraphs . . . . . . . . . Jan. 18 1875
   195,752     Automatic Telegraphs . . . . . . . . .Jan. 19, 1875
   171,273     Telegraph Apparatus. . . . . . . . . . Feb 11, 1875
   169,972     Electric Signalling Instrument . . . . Feb 24, 1875
   209,241     Quadruplex Telegraph Repeaters (reissued
               September 23, 1879, numbered
               8906). . . . . . . . . . . . . . . . . Feb 24, 1875

   1876

   180,857     Autographic Printing . . . . . . . . .March 7, 1876
   198,088     Telephonic Telegraphs. . . . . . . . .April 3, 1876
   198,089     Telephonic or Electro Harmonic
               Telegraphs . . . . . . . . . . . . . .April 3, 1876
   182,996     Acoustic Telegraphs. . . . . . . . . . .May 9, 1876
   186,330     Acoustic Electric Telegraphs . . . . . .May 9, 1876
   186,548     Telegraph Alarm and Signal Apparatus . .May 9, 1876
   198,087     Telephonic Telegraphs. . . . . . . . . .May 9, 1876
   185,507     Electro Harmonic Multiplex Telegraph .Aug. 16, 1876
   200,993     Acoustic Telegraph . . . . . . . . . .Aug. 26, 1876
   235,142     Acoustic Telegraph . . . . . . . . . .Aug. 26, 1876
   200,032     Synchronous Movements for Electric
               Telegraphs . . . . . . . . . . . . . .Oct. 30, 1876
   200,994     Automatic Telegraph Perforator and
               Transmitter. . . . . . . . . . . . . .Oct. 30, 1876

   1877
   205,370     Pneumatic Stencil Pens . . . . . . . . Feb. 3, 1877
   213,554     Automatic Telegraphs . . . . . . . . . Feb. 3, 1877
   196,747     Stencil Pens . . . . . . . . . . . . April 18, 1877
   203,329     Perforating Pens . . . . . . . . . . April 18, 1877
   474,230     Speaking Telegraph . . . . . . . . . April 18, 1877
   217,781     Sextuplex Telegraph. . . . . . . . . . .May 8, 1877
   230,621     Addressing Machine . . . . . . . . . . .May 8, 1877
   377,374     Telegraphy . . . . . . . . . . . . . . .May 8, 1877
   453,601     Sextuplex Telegraph. . . . . . . . . . May 31, 1877
   452,913     Sextuplex Telegraph. . . . . . . . . . May 31, 1877
   512,872     Sextuplex Telegraph. . . . . . . . . . May 31, 1877
   474,231     Speaking Telegraph . . . . . . . . . . July 9, 1877
   203,014     Speaking Telegraph . . . . . . . . . .July 16, 1877
   208,299     Speaking Telegraph . . . . . . . . . .July 16, 1877
   203,015     Speaking Telegraph . . . . . . . . . .Aug. 16, 1877
   420,594     Quadruplex Telegraph . . . . . . . . .Aug. 16, 1877
   492,789     Speaking Telegraph . . . . . . . . . .Aug. 31, 1877
   203,013     Speaking Telegraph . . . . . . . . . . Dec. 8, 1877
   203 018     Telephone or Speaking Telegraph. . . . Dec. 8, 1877
   200 521     Phonograph or Speaking Machine . . . .Dec. 15, 1877

   1878

   203,019     Circuit for Acoustic or Telephonic
               Telegraphs . . . . . . . . . . . . . .Feb. 13, 1878
   201,760     Speaking Machines. . . . . . . . . . .Feb. 28, 1878
   203,016     Speaking Machines. . . . . . . . . . .Feb. 28, 1878
   203,017     Telephone Call Signals . . . . . . . .Feb. 28, 1878
   214,636     Electric Lights. . . . . . . . . . . . Oct. 5, 1878
   222,390     Carbon Telephones. . . . . . . . . . . Nov. 8, 1878
   217,782     Duplex Telegraphs. . . . . . . . . . .Nov. 11, 1878
   214,637     Thermal Regulator for Electric Lights.Nov. 14, 1878
   210,767     Vocal Engines. . . . . . . . . . . . .Aug. 31, 1878
   218,166     Magneto Electric Machines. . . . . . . Dec. 3, 1878
   218,866     Electric Lighting Apparatus. . . . . . Dec. 3, 1878
   219,628     Electric Lights. . . . . . . . . . . . Dec. 3, 1878
   295,990     Typewriter . . . . . . . . . . . . . . Dec. 4, 1878
   218,167     Electric Lights. . . . . . . . . . . .Dec. 31, 1878

   1879

   224,329     Electric Lighting Apparatus. . . . . .Jan. 23, 1879
   227,229     Electric Lights. . . . . . . . . . . .Jan. 28, 1879
   227,227     Electric Lights. . . . . . . . . . . . Feb. 6, 1879
   224.665     Autographic Stencils for Printing. . March 10, 1879
   227.679     Phonograph . . . . . . . . . . . . . March 19, 1879
   221,957     Telephone. . . . . . . . . . . . . . March 24, 1879
   227,229     Electric Lights. . . . . . . . . . . April 12, 1879
   264,643     Magneto Electric Machines. . . . . . April 21, 1879
   219,393     Dynamo Electric Machines . . . . . . . July 7, 1879
   231,704     Electro Chemical Receiving Telephone .July 17, 1879
   266,022     Telephone. . . . . . . . . . . . . . . Aug. 1, 1879
   252,442     Telephone. . . . . . . . . . . . . . . Aug. 4, 1879
   222,881     Magneto Electric Machines. . . . . . .Sept. 4, 1879
   223,898     Electric Lamp. . . . . . . . . . . . . Nov. 1, 1879

   1880

   230,255     Electric Lamps . . . . . . . . . . . .Jan. 28, 1880
   248,425     Apparatus for Producing High Vacuums Jan.28 1880
   265,311     Electric Lamp and Holder for Same. . . Jan. 28 1880
   369,280     System of Electrical Distribution. . .Jan. 28, 1880
   227,226     Safety Conductor for Electric Lights .March 10,1880
   228,617     Brake for Electro Magnetic Motors. . March 10, 1880
   251,545     Electric Meter . . . . . . . . . . . March 10, 1880
   525,888     Manufacture of Carbons for Electric
               Lamps. . . . . . . . . . . . . . . . March 10, 1880
   264,649     Dynamo or Magneto Electric Machines. March 11,
   1880
   228,329     Magnetic Ore Separator . . . . . . . .April 3, 1880
   238,868     Manufacture of Carbons for Incandescent
               Electric Lamps . . . . . . . . . . . April 25, 1880
   237,732     Electric Light . . . . . . . . . . . .June 15, 1880
   248,417     Manufacturing Carbons for Electric
               Lights . . . . . . . . . . . . . . . .June 15, 1880
   298,679     Treating Carbons for Electric Lights .June 15, 1880
   248,430     Electro Magnetic Brake . . . . . . . . July 2, 1880
   265,778     Electro Magnetic Railway Engine. . . . July 3, 1880
   248,432     Magnetic Separator . . . . . . . . . .July 26, 1880
   239,150     Electric Lamp. . . . . . . . . . . . .July 27, 1880
   239,372     Testing Electric Light Carbons--Edison
               and Batchelor. . . . . . . . . . . . .July 28, 1880
   251,540     Carbon Electric Lamps. . . . . . . . .July 28, 1880
   263,139     Manufacture of Carbons for Electric
               Lamps. . . . . . . . . . . . . . . . .July 28, 1880
   434,585     Telegraph Relay. . . . . . . . . . . .July 29, 1880
   248 423     Carbonizer . . . . . . . . . . . . . .July 30, 1880
   263 140     Dynamo Electric Machines . . . . . . .July 30, 1880
   248,434     Governor for Electric Engines. . . . .July 31, 1880
   239,147     System of Electric Lighting. . . . . .July 31, 1880
   264,642     Electric Distribution and Translation
               System . . . . . . . . . . . . . . . . Aug. 4, 1880
   293,433     Insulation of Railroad Tracks used for
               Electric Circuits. . . . . . . . . . . Aug. 6, 1880
   239,373     Electric Lamp. . . . . . . . . . . . . Aug. 7, 1880
   239,745     Electric Lamp. . . . . . . . . . . . . Aug. 7, 1880
   263,135     Electric Lamp. . . . . . . . . . . . . Aug. 7, 1880
   251,546     Electric Lamp. . . . . . . . . . . . .Aug. 10, 1880
   239,153     Electric Lamp. . . . . . . . . . . . .Aug. 11, 1880
   351,855     Electric Lamp. . . . . . . . . . . . .Aug. 11, 1880
   248,435     Utilizing Electricity as Motive Power.Aug. 12, 1880
   263,132     Electro Magnetic Roller. . . . . . . .Aug. 14, 1880
   264,645     System of Conductors for the Distribution
               of Electricity . . . . . . . . . . . .Sept. 1, 1880
   240,678     Webermeter . . . . . . . . . . . . . Sept. 22, 1880
   239,152     System of Electric Lighting. . . . . .Oct. 14, 1880
   239,148     Treating Carbons for Electric Lights .Oct. 15, 1880
   238,098     Magneto Signalling Apparatus--Edison
               and Johnson. . . . . . . . . . . . . .Oct. 21, 1880
   242,900     Manufacturing Carbons for Electric
               Lamps. . . . . . . . . . . . . . . . .Oct. 21, 1880
   251,556     Regulator for Magneto or Dynamo
               Electric Machines. . . . . . . . . . .Oct. 21, 1880
   248,426     Apparatus for Treating Carbons for
               Electric Lamps . . . . . . . . . . . . Nov. 5, 1880
   239,151     Forming Enlarged Ends on Carbon
               Filaments. . . . . . . . . . . . . . .Nov. 19, 1880
   12,631      Design Patent--Incandescent Electric
               Lamp . . . . . . . . . . . . . . . . .Nov. 23, 1880
   239,149     Incandescing Electric Lamp . . . . . . Dec. 3, 1880
   242,896     Incandescent Electric Lamp . . . . . . Dec. 3, 1880
   242,897     Incandescent Electric Lamp . . . . . . Dec. 3, 1880
   248,565     Webermeter . . . . . . . . . . . . . . Dec. 3, 1880
   263,878     Electric Lamp. . . . . . . . . . . . . Dec. 3, 1880
   239,154     Relay for Telegraphs . . . . . . . . .Dec. 11, 1880
   242,898     Dynamo Electric Machine. . . . . . . .Dec. 11, 1880
   248,431     Preserving Fruit . . . . . . . . . . .Dec. 11, 1880
   265,777     Treating Carbons for Electric Lamps. .Dec. 11, 1880
   239,374     Regulating the Generation of Electric
               Currents . . . . . . . . . . . . . . .Dec. 16, 1880
   248,428     Manufacture of Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . .Dec. 16, 1880
   248,427     Apparatus for Treating Carbons for
               Electric Lamps . . . . . . . . . . . .Dec. 21, 1880
   248,437     Apparatus for Treating Carbons for
               Electric Lamps . . . . . . . . . . . .Dec. 21, 1880
   248,416     Manufacture of Carbons for Electric
               Lights . . . . . . . . . . . . . . . .Dec. 30, 1880

   1881

   242,899     Electric Lighting. . . . . . . . . . .Jan. 19, 1881
   248,418     Electric Lamp. . . . . . . . . . . . . Jan. 19 1881
   248,433     Vacuum Apparatus . . . . . . . . . . . Jan. 19 1881
   251,548     Incandescent Electric Lamps. . . . . .Jan. 19, 1881
   406,824     Electric Meter . . . . . . . . . . . .Jan. 19, 1881
   248,422     System of Electric Lighting. . . . . .Jan. 20, 1881
   431,018     Dynamo or Magneto Electric Machine . . Feb. 3, 1881
   242,901     Electric Motor . . . . . . . . . . . .Feb. 24, 1881
   248,429     Electric Motor . . . . . . . . . . . .Feb. 24, 1881
   248,421     Current Regulator for Dynamo Electric
               Machine. . . . . . . . . . . . . . . .Feb. 25, 1881
   251,550     Magneto or Dynamo Electric Machines. .Feb. 26, 1881
   251,555     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Feb. 26, 1881
   482,549     Means for Controlling Electric
               Generation . . . . . . . . . . . . . .March 2, 1881
   248,420     Fixture and Attachment for Electric
               Lamps. . . . . . . . . . . . . . . . .March 7, 1881
   251,553     Electric Chandeliers . . . . . . . . .March 7, 1881
   251,554     Electric Lamp and Socket or Holder . .March 7, 1881
   248,424     Fitting and Fixtures for Electric
               Lamps. . . . . . . . . . . . . . . . .March 8, 1881
   248,419     Electric Lamp. . . . . . . . . . . . March 30, 1881
   251,542     System of Electric Light . . . . . . April 19, 1881
   263,145     Making Incandescents . . . . . . . . April 19, 1881
   266,447     Electric Incandescent Lamp . . . . . April 21, 1881
   251,552     Underground Conductors . . . . . . . April 22, 1881
   476,531     Electric Lighting System . . . . . . April 22, 1881
   248,436     Depositing Cell for Plating the Connections
               of Electric Lamps. . . . . . . . . . . May 17, 1881
   251,539     Electric Lamp. . . . . . . . . . . . . May 17, 1881
   263,136     Regulator for Dynamo or Magneto
               Electric Machine . . . . . . . . . . . May 17, 1881
   251,557     Webermeter . . . . . . . . . . . . . . May 19, 1881
   263,134     Regulator for Magneto Electric
               Machine. . . . . . . . . . . . . . . . May 19, 1881
   251,541     Electro Magnetic Motor . . . . . . . . May 20, 1881
   251,544     Manufacture of Electric Lamps. . . . . May 20, 1881
   251,549     Electric Lamp and the Manufacture
               thereof. . . . . . . . . . . . . . . . May 20, 1881
   251,558     Webermeter . . . . . . . . . . . . . . May 20, 1881
   341,644     Incandescent Electric Lamp . . . . . . May 20, 1881
   251,551     System of Electric Lighting. . . . . . May 21, 1881
   263,137     Electric Chandelier. . . . . . . . . . May 21, 1881
   263,141     Straightening Carbons for Incandescent
               Lamps. . . . . . . . . . . . . . . . . May 21, 1881
   264,657     Incandescent Electric Lamps. . . . . . May 21, 1881
   251,543     Electric Lamp. . . . . . . . . . . . . May 24, 1881
   251,538     Electric Light . . . . . . . . . . . . May 27, 1881
   425,760     Measurement of Electricity in Distribution
               System . . . . . . . . . . . . . . . .May 3 1, 1881
   251,547     Electrical Governor. . . . . . . . . . June 2, 1881
   263,150     Magneto or Dynamo Electric Machines. June 3, 1881
   263,131     Magnetic Ore Separator . . . . . . . . June 4, 1881
   435,687     Means for Charging and Using Secondary
               Batteries. . . . . . . . . . . . . . .June 21, 1881
   263,143     Magneto or Dynamo Electric Machines. .June 24, 1881
   251,537     Dynamo Electric Machine. . . . . . . .June 25, 1881
   263,147     Vacuum Apparatus . . . . . . . . . . .July 1, 188 1
   439,389     Electric Lighting System . . . . . . . July 1, 1881
   263,149     Commutator for Dynamo or Magneto
               Electric Machines. . . . . . . . . . .July 22, 1881
   479,184     Facsimile Telegraph--Edison and Kenny.July 26, 1881
   400,317     Ore Separator. . . . . . . . . . . . .Aug. 11, 1881
   425,763     Commutator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Aug. 20, 1881
   263,133     Dynamo or Magneto Electric Machine . .Aug. 24, 1881
   263,142     Electrical Distribution System . . . .Aug. 24, 1881
   264,647     Dynamo or Magneto Electric Machines. .Aug. 24, 1881
   404,902     Electrical Distribution System . . . .Aug. 24, 1881
   257,677     Telephone. . . . . . . . . . . . . . .Sept. 7, 1881
   266,021     Telephone. . . . . . . . . . . . . . .Sept. 7, 1881
   263,144     Mold for Carbonizing Incandescents . Sept. 19, 1881
   265,774     Maintaining Temperatures in
               Webermeters. . . . . . . . . . . . . Sept. 21, 1881
   264,648     Dynamo or Magneto Electric Machines. Sept. 23, 1881
   265,776     Electric Lighting System . . . . . . Sept. 27, 1881
   524,136     Regulator for Dynamo Electrical
               Machines . . . . . . . . . . . . . . Sept. 27, 1881
   273,715     Malleableizing Iron. . . . . . . . . . Oct. 4, 1881
   281,352     Webermeter . . . . . . . . . . . . . . Oct. 5, 1881
   446,667     Locomotives for Electric Railways. . .Oct. 11, 1881
   288,318     Regulator for Dynamo or Magneto
               Electric Machines. . . . . . . . . . .Oct. 17, 1881
   263,148     Dynamo or Magneto Electric Machines. Oct. 25, 1881
   264,646     Dynamo or Magneto Electric Machines. Oct. 25, 1881
   251,559     Electrical Drop Light. . . . . . . . .Oct. 25, 1881
   266,793     Electric Distribution System . . . . .Oct. 25, 1881
   358,599     Incandescent Electric Lamp . . . . . .Oct. 29, 1881
   264,673     Regulator for Dynamo Electric Machine. Nov. 3, 1881
   263,138     Electric Arc Light . . . . . . . . . . Nov. 7, 1881
   265,775     Electric Arc Light . . . . . . . . . . .Nov. 7 1881
   297,580     Electric Arc Light . . . . . . . . . . .Nov. 7 1881
   263,146     Dynamo Magneto Electric Machines . . .Nov. 22, 1881
   266,588     Vacuum Apparatus . . . . . . . . . . .Nov. 25, 1881
   251,536     Vacuum Pump. . . . . . . . . . . . . . Dec. 5, 1881
   264,650     Manufacturing Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . . Dec. 5, 1881
   264,660     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . . Dec. 5, 1881
   379,770     Incandescent Electric Lamp . . . . . . Dec. 5, 1881
   293,434     Incandescent Electric Lamp . . . . . . Dec. 5, 1881
   439,391     Junction Box for Electric Wires. . . . Dec. 5, 1881
   454,558     Incandescent Electric Lamp . . . . . . Dec. 5, 1881
   264,653     Incandescent Electric Lamp . . . . . .Dec. 13, 1881
   358,600     Incandescing Electric Lamp . . . . . .Dec. 13, 1881
   264,652     Incandescent Electric Lamp . . . . . .Dec. 15, 1881
   278,419     Dynamo Electric Machines . . . . . . .Dec. 15, 1881

   1882

   265,779     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Jan. 17, 1882
   264,654     Incandescent Electric Lamps. . . . . .Feb. 10, 1882
   264,661     Regulator for Dynamo Electric Machines Feb. 10, 1882
   264,664     Regulator for Dynamo Electric Machines Feb. 10, 1882
   264,668     Regulator for Dynamo Electric Machines Feb. 10, 1882
   264,669     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Feb. 10, 1882
   264,671     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Feb. 10, 1882
   275,613     Incandescing Electric Lamp . . . . . .Feb. 10, 1882
   401,646     Incandescing Electric Lamp . . . . . .Feb. 10, 1882
   264,658     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Feb. 28, 1882
   264,659     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Feb. 28, 1882
   265,780     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Feb. 28, 1882
   265,781     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Feb. 28, 1882
   278,416     Manufacture of Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . .Feb. 28, 1882
   379,771     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Feb. 28, 1882
   272,034     Telephone. . . . . . . . . . . . . . March 30, 1882
   274,576     Transmitting Telephone . . . . . . . March 30, 1882
   274,577     Telephone. . . . . . . . . . . . . . March 30, 1882
   264,662     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . . .May 1, 1882
   264,663     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . . .May 1, 1882
   264,665     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . . .May 1, 1882
   264,666     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . . .May 1, 1882
   268,205     Dynamo or Magneto Electric
               Machine. . . . . . . . . . . . . . . . .May 1, 1882
   273,488     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . . .May 1, 1882
   273,492     Secondary Battery. . . . . . . . . . . May 19, 1882
   460,122     Process of and Apparatus for
               Generating Electricity . . . . . . . . May 19, 1882
   466,460     Electrolytic Decomposition . . . . . .May 19,. 1882
   264,672     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . . May 22, 1882
   264,667     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . . May 22, 1882
   265,786     Apparatus for Electrical Transmission
               of Power . . . . . . . . . . . . . . . May 22, 1882
   273,828 System of Underground Conductors of
               Electric Distribution. . . . . . . . . May 22, 1882
   379,772     System of Electrical Distribution. . . May 22, 1882
   274,292     Secondary Battery. . . . . . . . . . . June 3, 1882
   281,353     Dynamo or Magneto Electric Machine . . June 3, 1882
   287,523     Dynamo or Magneto Electric Machine . . June 3, 1882
   365,509     Filament for Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . . .June 3 1882
   446,668     Electric Are Light . . . . . . . . . . .June 3 1882
   543,985     Incandescent Conductor for Electric
               Lamps. . . . . . . . . . . . . . . . . June 3, 1882
   264,651     Incandescent Electric Lamps. . . . . . June 9, 1882
   264,655     Incandescing Electric Lamps. . . . . . June 9, 1882
   264,670     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . . June 9, 1882
   273,489     Turn-Table for Electric Railway. . . . June 9, 1882
   273,490     Electro Magnetic Railway System. . . . June 9, 1882
   401,486     System of Electric Lighting. . . . . .June 12, 1882
   476,527     System of Electric Lighting. . . . . .June 12, 1882
   439,390     Electric Lighting System . . . . . . .June 19, 1882
   446,666     System of Electric Lighting. . . . . .June 19, 1882
   464,822     System of Distributing Electricity . .June 19, 1882
   304,082     Electrical Meter . . . . . . . . . . .June 24, 1882
   274,296     Manufacture of Incandescents . . . . . July 5, 1882
   264,656     Incandescent Electric Lamp . . . . . . July 7, 1882
   265,782     Regulator for Dynamo Electric Machines July 7, 1882
   265,783     Regulator for Dynamo Electric Machines July 7, 1882
   265,784     Regulator for Dynamo Electric Machines July 7, 1882
   265,785     Dynamo Electric Machine. . . . . . . . July 7, 1882
   273,494     Electrical Railroad. . . . . . . . . . July 7, 1882
   278,418     Translating Electric Currents from High
               to Low Tension . . . . . . . . . . . . July 7, 1882
   293,435     Electrical Meter . . . . . . . . . . . July 7, 1882
   334,853     Mold for Carbonizing . . . . . . . . . July 7, 1882
   339,278     Electric Railway . . . . . . . . . . . July 7, 1882
   273,714     Magnetic Electric Signalling
               Apparatus. . . . . . . . . . . . . . . Aug. 5, 1882
   282,287     Magnetic Electric Signalling
               Apparatus. . . . . . . . . . . . . . . Aug. 5, 1882
   448,778     Electric Railway . . . . . . . . . . . Aug. 5, 1882
   439,392     Electric Lighting System . . . . . . .Aug. 12, 1882
   271,613     Manufacture of Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . .Aug. 25, 1882
   287,518     Manufacture of Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . .Aug. 25, 1882
   406,825     Electric Meter . . . . . . . . . . . .Aug. 25, 1882
   439,393     Carbonizing Chamber. . . . . . . . . .Aug. 25, 1882
   273,487     Regulator for Dynamo Electric Machines Sept. 12, 1882
   297,581     Incandescent Electric Lamp . . . . . Sept. 12, 1882
   395,962     Manufacturing Electric Lamps . . . . Sept. 16, 1882
   287,525     Regulator for Systems of Electrical
               Distribution--Edison and C. L.
               Clarke . . . . . . . . . . . . . . . . Oct. 4, 1882
   365,465     Valve Gear . . . . . . . . . . . . . . Oct. 5, 1882
   317,631     Incandescent Electric Lamp . . . . . . Oct. 7, 1882
   307,029     Filament for Incandescent Lamp . . . . Oct. 9, 1882
   268,206     Incandescing Electric Lamp . . . . . .Oct. 10, 1882
   273,486     Incandescing Electric Lamp . . . . . .Oct. 12, 1882
   274,293     Electric Lamp. . . . . . . . . . . . .Oct. 14, 1882
   275,612     Manufacture of Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . .Oct. 14, 1882
   430,932     Manufacture of Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . .Oct. 14, 1882
   271,616     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Oct. 16, 1882
   543,986     Process for Treating Products Derived
               from Vegetable Fibres. . . . . . . . .Oct. 17, 1882
   543,987     Filament for Incandescent Lamps. . . .Oct. 17, 1882
   271,614     Shafting . . . . . . . . . . . . . . .Oct. 19, 1882
   271,615     Governor for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Oct. 19, 1882
   273,491     Regulator for Driving Engines of
               Electrical Generators. . . . . . . . .Oct. 19, 1882
   273,493     Valve Gear for Electrical Generator
               Engines. . . . . . . . . . . . . . . .Oct. 19, 1882
   411,016     Manufacturing Carbon Filaments . . . .Oct. 19, 1882
   492,150     Coating Conductors for Incandescent
               Lamps. . . . . . . . . . . . . . . . .Oct. 19, 1882
   273,485     Incandescent Electric Lamps. . . . . .Oct. 26, 1882
   317,632     Incandescent Electric Lamps. . . . . .Oct. 26, 1882
   317,633     Incandescent Electric Lamps. . . . . .Oct. 26, 1882
   287,520     Incandescing Conductor for Electric
               Lamps. . . . . . . . . . . . . . . . . Nov. 3, 1882
   353,783     Incandescent Electric Lamp . . . . . . Nov. 3, 1882
   430,933     Filament for Incandescent Lamps. . . . Nov. 3, 1882
   274,294     Incandescent Electric Lamp . . . . . .Nov. 13, 1882
   281,350     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Nov. 13, 1882
   274,295     Incandescent Electric Lamp . . . . . .Nov. 14, 1882
   276,233     Electrical Generator and Motor . . . .Nov. 14, 1882
   274,290     System of Electrical Distribution. . .Nov. 20, 1882
   274,291     Mold for Carbonizer. . . . . . . . . .Nov. 28, 1882
   278,413     Regulator for Dynamo Electric MachinesNov. 28, 1882
   278,414     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Nov. 28, 1882
   287,519     Manufacturing Incandescing Electric
               Lamps. . . . . . . . . . . . . . . . .Nov. 28, 1882
   287,524     Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Nov. 28, 1882
   438,298     Manufacture of Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . .Nov. 28, 1882
   276,232     Operating and Regulating Electrical
               Generators . . . . . . . . . . . . . .Dec. 20, 1882

   1883

   278,415     Manufacture of Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . .Jan. 13, 1883
   278,417     Manufacture of Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . .Jan. 13, 1883
   281,349 Regulator for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Jan. 13, 1883
   283,985     System of Electrical Distribution. . . Jan. 13 1883
   283,986     System o' Electrical Distribution. . . Jan. 13 1883
   459,835     Manufacture of Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . .Jan. 13, 1883
   13,940      Design Patent--Incandescing Electric
               Lamp . . . . . . . . . . . . . . . . . Feb. 13 1883
   280,727     System of Electrical Distribution. . . Feb. 13 1883
   395,123     Circuit Controller for Dynamo Machine.Feb. 13, 1883
   287,521     Dynamo or Magneto Electric Machine . .Feb. 17, 1883
   287,522     Molds for Carbonizing. . . . . . . . .Feb. 17, 1883
   438,299     Manufacture of Carbon Filaments. . . .Feb. 17, 1883
   446,669     Manufacture of Filaments for Incandescent
               Electric Lamps . . . . . . . . . . . .Feb. 17, 1883
   476,528     Incandescent Electric Lamp . . . . . .Feb. 17, 1883
   281,351     Electrical Generator . . . . . . . . .March 5, 1883
   283,984     System of Electrical Distribution. . .March 5, 1883
   287,517     System of Electrical Distribution. . .March 14,1883
   283,983     System of Electrical Distribution. . .April 5, 1883
   354,310     Manufacture of Carbon Conductors . . .April 6, 1883
   370,123     Electric Meter . . . . . . . . . . . .April 6, 1883
   411,017     Carbonizing Flask. . . . . . . . . . .April 6, 1883
   370,124     Manufacture of Filament for Incandescing
               Electric Lamp. . . . . . . . . . . . April 12, 1883
   287,516     System of Electrical Distribution. . . .May 8, 1883
   341,839     Incandescent Electric Lamp . . . . . . .May 8, 1883
   398,774     Incandescent Electric Lamp . . . . . . .May 8, 1883
   370,125     Electrical Transmission of Power . . . June 1, 1883
   370,126     Electrical Transmission of Power . . . June 1, 1883
   370,127     Electrical Transmission of Power . . . June 1, 1883
   370,128     Electrical Transmission of Power . . . June 1, 1883
   370,129     Electrical Transmission of Power . . . June 1, 1883
   370,130     Electrical Transmission of Power . . . June 1, 1883
   370,131     Electrical Transmission of Power . . . June 1, 1883
   438,300     Gauge for Testing Fibres for
               Incandescent Lamp Carbons. . . . . . . June 1, 1883
   287,511     Electric Regulator . . . . . . . . . .June 25, 1883
   287,512     Dynamo Electric Machine. . . . . . . .June 25, 1883
   287,513     Dynamo Electric Machine. . . . . . . .June 25, 1883
   287,514     Dynamo Electric Machine. . . . . . . .June 25, 1883
   287,515     System of Electrical Distribution. . .June 25, 1883
   297,582     Dynamo Electric Machine. . . . . . . .June 25, 1883
   328,572     Commutator for Dynamo Electric Machines June 25, 1883
   430,934     Electric Lighting System . . . . . . .June 25, 1883
   438,301     System of Electric Lighting. . . . . .June 25, 1883
   297,583     Dynamo Electric Machines . . . . . . .July 27, 1883
   304,083     Dynamo Electric Machines . . . . . . .July 27; 1883
   304,084     Device for Protecting Electric Light
               Systems from Lightning . . . . . . . .July 27, 1883
   438,302     Commutator for Dynamo Electric
               Machine. . . . . . . . . . . . . . . .July 27, 1883
   476,529     System of Electrical Distribution. . .July 27, 1883
   297,584     Dynamo Electric Machine. . . . . . . . Aug. 8, 1883
   307,030     Electrical Meter . . . . . . . . . . . Aug. 8, 1883
   297,585     Incandescing Conductor for Electric
               Lamps. . . . . . . . . . . . . . . . Sept. 14, 1883
   297,586     Electrical Conductor . . . . . . . . Sept. 14, 1883
   435,688     Process and Apparatus for Generating
               Electricity. . . . . . . . . . . . . Sept. 14, 1883
   470,922     Manufacture of Filaments for
               Incandescent Lamps . . . . . . . . . Sept. 14, 1883
   490,953     Generating Electricity . . . . . . . . Oct. 9, 1883
   293,432     Electrical Generator or Motor. . . . .Oct. 17, 1883
   307,031     Electrical Indicator . . . . . . . . . Nov. 2, 1883
   337,254     Telephone--Edison and Bergmann . . . .Nov. 10, 1883
   297,587     Dynamo Electric Machine. . . . . . . .Nov. 16, 1883
   298,954     Dynamo Electric Machine. . . . . . . .Nov. 15, 1883
   298,955     Dynamo Electric Machine. . . . . . . .Nov. 15, 1883
   304,085     System of Electrical Distribution. . .Nov. 15, 1883
   509,517     System of Electrical Distribution. . .Nov. 15, 1883
   425,761     Incandescent Lamp. . . . . . . . . . .Nov. 20, 1883
   304,086     Incandescent Electric Lamp . . . . . .Dec. 15, 1883

   1884

   298,956     Operating Dynamo Electric Machine. . . Jan. 5, 1884
   304,087     Electrical Conductor . . . . . . . . .Jan. 12, 1884
   395,963     Incandescent Lamp Filament . . . . . .Jan. 22, 1884
   526,147     Plating One Material with Another. . .Jan. 22, 1884
   339,279     System of Electrical Distribution. . . Feb. 8, 1884
   314,115     Chemical Stock Quotation Telegraph--
               Edison and Kenny . . . . . . . . . . . Feb. 9, 1884
   436,968     Method and Apparatus for Drawing
               Wire . . . . . . . . . . . . . . . . . June 2, 1884
   436,969     Apparatus for Drawing Wire . . . . . . June 2, 1884
   438,303     Arc Lamp . . . . . . . . . . . . . . . June 2, 1884
   343,017     System of Electrical Distribution. . .June 27, 1884
   391,595     System of Electric Lighting. . . . . .July 16, 1884
   328,573     System of Electric Lighting. . . . . Sept. 12, 1884
   328,574     System of Electric Lighting. . . . . Sept. 12, 1884
   328,575     System of Electric Lighting. . . . . Sept. 12, 1884
   391,596     Incandescent Electric Lamp . . . . . Sept. 24, 1884
   438,304     Electric Signalling Apparatus. . . . Sept. 24, 1884
   422,577     Apparatus for Speaking Telephones--
               Edison and Gilliland . . . . . . . . .Oct. 21, 1884
   329,030     Telephone. . . . . . . . . . . . . . . Dec. 3, 1884
   422,578     Telephone Repeater . . . . . . . . . . Dec. 9, 1884
   422,579     Telephone Repeater . . . . . . . . . . Dec. 9, 1884
   340,707     Telephonic Repeater. . . . . . . . . . Dec. 9, 1884
   340,708     Electrical Signalling Apparatus. . . .Dec. 19, 1884
   347,097     Electrical Signalling Apparatus. . . .Dec. 19, 1884
   478,743     Telephone Repeater . . . . . . . . . .Dec. 31, 1884

   1885

   340,709     Telephone Circuit--Edison and
               Gilliland. . . . . . . . . . . . . . . Jan. 2, 1885
   378,044     Telephone Transmitter. . . . . . . . . Jan. 9, 1885
   348,114     Electrode for Telephone Transmitters .Jan. 12, 1885
   438,305     Fuse Block . . . . . . . . . . . . . .Jan. 14, 1885
   350,234     System of Railway Signalling--Edison
               and Gilliland. . . . . . . . . . . . .March 27,1885
   486,634     System of Railway Signalling--Edison
               and Gilliland. . . . . . . . . . . . .March 27,1885
   333,289     Telegraphy . . . . . . . . . . . . . April 27, 1885
   333,290     Duplex Telegraphy. . . . . . . . . . April 30, 1885
   333,291     Way Station Quadruplex Telegraph . . . .May 6, 1885
   465,971     Means for Transmitting Signals Electrically May 14, 1885
   422 072     Telegraphy . . . . . . . . . . . . . . Oct. 7, 1885
   437 422     Telegraphy . . . . . . . . . . . . . . Oct. 7, 1885
   422,073     Telegraphy . . . . . . . . . . . . . Nov. I 2, 1885
   422,074     Telegraphy . . . . . . . . . . . . . .Nov. 24, 1885
   435,689     Telegraphy . . . . . . . . . . . . . .Nov. 30, 1885
   438,306     Telephone - Edison and Gilliland . . .Dec. 22, 1885
   350,235     Railway Telegraphy--Edison and
               Gilliland. . . . . . . . . . . . . . .Dec. 28, 1885

   1886

   406,567     Telephone. . . . . . . . . . . . . . .Jan. 28, 1886
   474,232     Speaking Telegraph . . . . . . . . . .Feb. 17, 1886
   370 132     Telegraphy . . . . . . . . . . . . . . May 11, 1886
   411,018     Manufacture of Incandescent Lamps. . .July 15, 1886
   438,307     Manufacture of Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . July I 5, 1886
   448,779     Telegraph. . . . . . . . . . . . . . .July IS, 1886
   411,019     Manufacture of Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . .July 20, 1886
   406,130     Manufacture of Incandescent Electric
               Lamps. . . . . . . . . . . . . . . . . Aug. 6, 1886
   351,856     Incandescent Electric Lamp . . . . . Sept. 30, 1886
   454,262     Incandescent Lamp Filaments. . . . . .Oct. 26, 1886
   466,400     Cut-Out for Incandescent Lamps--Edison
               and J. F. Ott. . . . . . . . . . . . .Oct. 26, 1886
   484,184     Manufacture of Carbon Filaments. . . .Oct. 26, 1886
   490,954     Manufacture of Carbon Filaments for
               Electric Lamps . . . . . . . . . . . . Nov. 2, 1886
   438,308     System of Electrical Distribution. . . Nov. 9, 1886
   524,378     System of Electrical Distribution. . . Nov. 9, 1886
   365,978     System of Electrical Distribution. . .Nov. 22, 1886
   369 439     System of Electrical Distribution. . .Nov. 22, 1886
   384 830     Railway Signalling--Edison and Gilliland Nov. 24, 1886
   379,944     Commutator for Dynamo Electric MachinesNov. 26, 1886
   411,020     Manufacture of Carbon Filaments. . . .Nov. 26, 1886
   485,616     Manufacture of Carbon Filaments. . . . .Dec 6, 1886
   485,615     Manufacture of Carbon Filaments. . . . .Dec 6, 1886
   525,007     Manufacture of Carbon Filaments. . . . Dec. 6, 1886
   369,441     System of Electrical Distribution. . .Dec. 10, 1886
   369,442     System of Electrical Distribution. . .Dec. 16, 1886
   369,443     System of Electrical Distribution. . .Dec. 16, 1886
   484,185     Manufacture of Carbon Filaments. . . .Dec. 20, 1886
   534,207     Manufacture of Carbon Filaments. . . .Dec. 20, 1886
   373,584     Dynamo Electric Machine. . . . . . . .Dec. 21, 1886

   1887

   468,949     Converter System for Electric
               Railways . . . . . . . . . . . . . . . Feb. 7, 1887
   380,100     Pyromagnetic Motor . . . . . . . . . . May 24, 1887
   476,983     Pyromagnetic Generator . . . . . . . . .May 24 1887
   476,530     Incandescent Electric Lamp . . . . . . June 1, 1887
   377,518     Magnetic Separator . . . . . . . . . .June 30, 1887
   470,923     Railway Signalling . . . . . . . . . . Aug. 9, 1887
   545,405     System of Electrical Distribution. . .Aug. 26, 1887
   380,101     System of Electrical Distribution. . .Sept. 13 1887
   380,102     System of Electrical Distribution. . .Sept. 14 1887
   470,924     Electric Conductor . . . . . . . . . Sept. 26, 1887
   563,462     Method of and Apparatus for Drawing
               Wire . . . . . . . . . . . . . . . . .Oct. 17, 1887
   385,173     System of Electrical Distribution. . . Nov. 5, 1887
   506,215     Making Plate Glass . . . . . . . . . . Nov. 9, 1887
   382,414     Burnishing Attachments for PhonographsNov. 22, 1887
   386,974     Phonograph . . . . . . . . . . . . . .Nov. 22, 1887
   430,570     Phonogram Blank. . . . . . . . . . . .Nov. 22, 1887
   382,416     Feed and Return Mechanism for PhonographsNov. 29, 1887
   382,415     System of Electrical Distribution. . . Dec. 4, 1887
   382,462     Phonogram Blanks . . . . . . . . . . . Dec. 5, 1887

   1888

   484,582     Duplicating Phonograms . . . . . . . .Jan. 17, 1888
   434,586     Electric Generator . . . . . . . . . .Jan. 21, 1888
   434,587     Thermo Electric Battery. . . . . . . .Jan. 21, 1888
   382,417     Making Phonogram Blanks. . . . . . . .Jan. 30, 1888
   389,369     Incandescing Electric Lamp . . . . . . Feb. 2, 1888
   382,418     Phonogram Blank. . . . . . . . . . . .Feb. 20, 1888
   390,462     Making Carbon Filaments. . . . . . . .Feb. 20, 1888
   394,105     Phonograph Recorder. . . . . . . . . .Feb. 20, 1888
   394,106     Phonograph Reproducer. . . . . . . . .Feb. 20, 1888
   382,419     Duplicating Phonograms . . . . . . . .March 3, 1888
   425,762     Cut-Out for Incandescent Lamps . . . .March 3, 1888
   396,356     Magnetic Separator . . . . . . . . . .March 19,1888
   393,462     Making Phonogram Blanks. . . . . . . April 28, 1888
   393,463     Machine for Making Phonogram Blanks. April 28, 1888
   393,464     Machine for Making Phonogram Blanks. April 28, 1888
   534,208     Induction Converter. . . . . . . . . . .May 7, 1888
   476,991     Method of and Apparatus for Separating
               Ores . . . . . . . . . . . . . . . . . .May 9, 1888
   400,646     Phonograph Recorder and Reproducer . . May 22, 1888
   488,190     Phonograph Reproducer. . . . . . . . . May 22, 1888
   488,189     Phonograph . . . . . . . . . . . . . . May 26, 1888
   470,925     Manufacture of Filaments for Incandescent
               Electric Lamps . . . . . . . . . . . .June 21, 1888
   393,465     Preparing Phonograph Recording Surfaces June 30, 1888
   400,647     Phonograph . . . . . . . . . . . . . .June 30, 1888
   448,780     Device for Turning Off Phonogram Blanks June 30, 1888
   393,466     Phonograph Recorder. . . . . . . . . .July 14, 1888
   393,966     Recording and Reproducing Sounds . . .July 14, 1888
   393,967     Recording and Reproducing Sounds . . .July 14, 1888
   430,274     Phonogram Blank. . . . . . . . . . . .July 14, 1888
   437,423     Phonograph . . . . . . . . . . . . . .July 14, 1888
   450,740     Phonograph Recorder. . . . . . . . . .July 14, 1888
   485,617     Incandescent Lamp Filament . . . . . .July 14, 1888
   448,781     Turning-Off Device for Phonographs . .July 16, 1888
   400,648     Phonogram Blank. . . . . . . . . . . .July 27, 1888
   499,879     Phonograph . . . . . . . . . . . . . .July 27, 1888
   397,705     Winding Field Magnets. . . . . . . . .Aug. 31, 1888
   435,690     Making Armatures for Dynamo Electric
               Machines . . . . . . . . . . . . . . .Aug. 31, 1888
   430,275     Magnetic Separator . . . . . . . . . Sept. 12, 1888
   474,591     Extracting Gold from Sulphide Ores . Sept. 12, 1888
   397,280     Phonograph Recorder and Reproducer . Sept. 19, 1888
   397,706     Phonograph . . . . . . . . . . . . . Sept. 29, 1888
   400,649     Making Phonogram Blanks. . . . . . . Sept. 29, 1888
   400,650     Making Phonogram Blanks. . . . . . . .Oct. 15, 1888
   406,568     Phonograph . . . . . . . . . . . . . .Oct. 15, 1888
   437,424     Phonograph . . . . . . . . . . . . . .Oct. 15, 1888
   393,968     Phonograph Recorder. . . . . . . . . .Oct. 31, 1888

   1889

   406,569     Phonogram Blank. . . . . . . . . . . .Jan. 10, 1889
   488,191     Phonogram Blank. . . . . . . . . . . .Jan. 10, 1889
   430,276     Phonograph . . . . . . . . . . . . . .Jan. 12, 1889
   406,570     Phonograph . . . . . . . . . . . . . . Feb. 1, 1889
   406,571     Treating Phonogram Blanks. . . . . . . Feb. 1, 1889
   406,572     Automatic Determining Device for
               Phonographs. . . . . . . . . . . . . . Feb. 1, 1889
   406,573     Automatic Determining Device for
               Phonographs. . . . . . . . . . . . . . Feb. 1, 1889
   406,574     Automatic Determining Device for
               Phonographs. . . . . . . . . . . . . . Feb. 1, 1889
   406,575     Automatic Determining Device for
               Phonographs. . . . . . . . . . . . . . Feb. 1, 1889
   406,576     Phonogram Blank. . . . . . . . . . . . Feb. 1, 1889
   430,277     Automatic Determining Device for
               Phonographs. . . . . . . . . . . . . . Feb. 1, 1889
   437,425     Phonograph Recorder. . . . . . . . . . Feb. 1, 1889
   414,759     Phonogram Blanks . . . . . . . . . . March 22, 1889
   414,760     Phonograph . . . . . . . . . . . . . March 22, 1889
   462,540     Incandescent Electric Lamps. . . . . March 22, 1889
   430,278     Phonograph . . . . . . . . . . . . . .April 8, 1889
   438,309     Insulating Electrical Conductors . . April 25, 1889
   423,039     Phonograph Doll or Other Toys. . . . .June 15, 1889
   426,527     Automatic Determining Device for
               Phonographs. . . . . . . . . . . . . .June 15, 1889
   430,279     Voltaic Battery. . . . . . . . . . . .June 15, 1889
   506,216     Apparatus for Making Glass . . . . . .June 29, 1889
   414,761     Phonogram Blanks . . . . . . . . . . .July 16, 1889
   430,280     Magnetic Separator . . . . . . . . . .July 20, 1889
   437,426     Phonograph . . . . . . . . . . . . . .July 20, 1889
   465,972     Phonograph . . . . . . . . . . . . . .Nov. 14, 1889
   443,507     Phonograph . . . . . . . . . . . . . . Dec. 11 1889
   513,095     Phonograph . . . . . . . . . . . . . . Dec. 11 1889

   1890

   434,588     Magnetic Ore Separator--Edison and
               W. K. L. Dickson . . . . . . . . . . .Jan. 16, 1890
   437,427     Making Phonogram Blanks. . . . . . . . Feb. 8, 1890
   465,250     Extracting Copper Pyrites. . . . . . . Feb. 8, 1890
   434,589     Propelling Mechanism for Electric Vehicles Feb. 14, 1890
   438,310     Lamp Base. . . . . . . . . . . . . . April 25, 1890
   437,428     Propelling Device for Electric Cars. April 29, 1890
   437,429     Phonogram Blank. . . . . . . . . . . April 29, 1890
   454,941     Phonograph Recorder and Reproducer . . .May 6, 1890
   436,127     Electric Motor . . . . . . . . . . . . May 17, 1890
   484,583     Phonograph Cutting Tool. . . . . . . . May 24, 1890
   484,584     Phonograph Reproducer. . . . . . . . . May 24, 1890
   436,970     Apparatus for Transmitting Power . . . June 2, 1890
   453,741     Phonograph . . . . . . . . . . . . . . July 5, 1890
   454,942     Phonograph . . . . . . . . . . . . . . July 5, 1890
   456,301     Phonograph Doll. . . . . . . . . . . . July 5, 1890
   484,585     Phonograph . . . . . . . . . . . . . . July 5, 1890
   456,302     Phonograph . . . . . . . . . . . . . . Aug. 4, 1890
   476,984     Expansible Pulley. . . . . . . . . . . Aug. 9, 1890
   493,858     Transmission of Power. . . . . . . . . Aug. 9, 1890
   457,343     Magnetic Belting . . . . . . . . . . .Sept. 6, 1890
   444,530     Leading-in Wires for Incandescent Electric
               Lamps (reissued October 10, 1905,
               No. 12,393). . . . . . . . . . . . . Sept. 12, 1890
   534 209     Incandescent Electric Lamp . . . . . Sept. 13, 1890
   476 985     Trolley for Electric Railways. . . . .Oct. 27, 1890
   500,280     Phonograph . . . . . . . . . . . . . .Oct. 27, 1890
   541,923     Phonograph . . . . . . . . . . . . . .Oct. 27, 1890
   457,344     Smoothing Tool for Phonogram
               Blanks . . . . . . . . . . . . . . . .Nov. 17, 1890
   460,123     Phonogram Blank Carrier. . . . . . . .Nov. 17, 1890
   500,281     Phonograph . . . . . . . . . . . . . .Nov. 17, 1890
   541,924     Phonograph . . . . . . . . . . . . . .Nov. 17, 1890
   500,282     Phonograph . . . . . . . . . . . . . . Dec. 1, 1890
   575,151     Phonograph . . . . . . . . . . . . . . Dec. 1, 1890
   605,667     Phonograph . . . . . . . . . . . . . . Dec. 1, 1890
   610,706     Phonograph . . . . . . . . . . . . . . Dec. 1, 1890
   622,843     Phonograph . . . . . . . . . . . . . . Dec. 1, 1890
   609,268     Phonograph . . . . . . . . . . . . . . Dec. 6, 1890
   493,425     Electric Locomotive. . . . . . . . . .Dec. 20, 1890

   1891

   476,992     Incandescent Electric Lamp . . . . . .Jan. 20, 1891
   470,926     Dynamo Electric Machine or Motor . . . Feb. 4, 1891
   496,191     Phonograph . . . . . . . . . . . . . . Feb. 4, 1891
   476,986     Means for Propelling Electric Cars . .Feb. 24, 1891
   476,987     Electric Locomotive. . . . . . . . . .Feb. 24, 1891
   465,973     Armatures for Dynamos or Motors. . . .March 4, 1891
   470,927     Driving Mechanism for Cars . . . . . .March 4, 1891
   465,970     Armature Connection for Motors or
               Generators . . . . . . . . . . . . . March 20, 1891
   468,950     Commutator Brush for Electric Motors
               and Dynamos. . . . . . . . . . . . . March 20, 1891
   475,491     Electric Locomotive. . . . . . . . . . June 3, 1891
   475,492     Electric Locomotive. . . . . . . . . . June 3, 1891
   475,493     Electric Locomotive. . . . . . . . . . June 3, 1891
   475,494     Electric Railway . . . . . . . . . . . June 3, 1891
   463,251     Bricking Fine Ores . . . . . . . . . .July 31, 1891
   470,928     Alternating Current Generator. . . . .July 31, 1891
   476,988     Lightning Arrester . . . . . . . . . .July 31, 1891
   476,989     Conductor for Electric Railways. . . .July 31, 1891
   476,990     Electric Meter . . . . . . . . . . . .July 31, 1891
   476,993     Electric Arc . . . . . . . . . . . . .July 31, 1891
   484,183     Electrical Depositing Meter. . . . . .July 31, 1891
   485,840     Bricking Fine Iron Ores. . . . . . . .July 31, 1891
   493,426     Apparatus for Exhibiting Photographs
               of Moving Objects. . . . . . . . . . .July 31, 1891
   509,518     Electric Railway . . . . . . . . . . .July 31, 1891
   589,168     Kinetographic Camera (reissued September
               30, 1902, numbered 12,037
               and 12,038, and January 12, 1904,
               numbered 12,192) . . . . . . . . . . .July 31, 1891
   470,929     Magnetic Separator . . . . . . . . . .Aug. 28, 1891
   471,268     Ore Conveyor and Method of Arranging
               Ore Thereon. . . . . . . . . . . . . .Aug. 28, 1891
   472,288     Dust-Proof Bearings for Shafts . . . .Aug. 28, 1891
   472,752     Dust-Proof Journal Bearings. . . . . .Aug. 28, 1891
   472,753     Ore-Screening Apparatus. . . . . . . .Aug. 28, 1891
   474,592     Ore-Conveying Apparatus. . . . . . . .Aug. 28, 1891
   474,593     Dust-Proof Swivel Shaft Bearing. . . .Aug. 28, 1891
   498,385     Rollers for Ore-Crushing or Other
               Material . . . . . . . . . . . . . . .Aug. 28, 1891
   470,930     Dynamo Electric Machine. . . . . . . . .Oct 8, 1891
   476,532     Ore-Screening Apparatus. . . . . . . . .Oct 8, 1891
   491,992     Cut-Out for Incandescent Electric Lamps Nov. 10, 1891

   1892

   491,993     Stop Device. . . . . . . . . . . . . . April 5 1892
   564,423     Separating Ores. . . . . . . . . . . .June 2;, 1892
   485,842     Magnetic Ore Separation. . . . . . . . July 9, 1892
   485,841     Mechanically Separating Ores . . . . . July 9, 1892
   513,096     Method of and Apparatus for Mixing
               Materials. . . . . . . . . . . . . . .Aug. 24, 1892

   1893

   509,428     Composition Brick and Making Same. . March 15, 1893
   513,097     Phonograph . . . . . . . . . . . . . . May 22, 1893
   567,187     Crushing Rolls . . . . . . . . . . . .Dec. 13, 1893
   602 064     Conveyor . . . . . . . . . . . . . . .Dec. 13, 1893
   534 206     Filament for Incandescent Lamps. . . .Dec. 15, 1893

   1896

   865,367     Fluorescent Electric Lamp. . . . . . . May 16, 1896

   1897

   604.740     Governor for Motors. . . . . . . . . .Jan. 25, 1897
   607,588     Phonograph . . . . . . . . . . . . . .Jan. 25, 1897
   637,327     Rolls. . . . . . . . . . . . . . . . . May 14, 1897
   672,616     Breaking Rock. . . . . . . . . . . . . May 14, 1897
   675,056     Magnetic Separator . . . . . . . . . . May 14, 1897
   676,618     Magnetic Separator . . . . . . . . . . May 14, 1897
   605,475     Drying Apparatus . . . . . . . . . . .June 10, 1897
   605,668     Mixer. . . . . . . . . . . . . . . . .June 10, 1897
   667,201     Flight Conveyor. . . . . . . . . . . .June 10, 1897
   671,314     Lubricating Journal Bearings . . . . .June 10, 1897
   671,315     Conveyor . . . . . . . . . . . . . . .June 10, 1897
   675,057     Screening Pulverized Material. . . . .June 10, 1897

   1898

   713,209     Duplicating Phonograms . . . . . . . .Feb. 21, 1898
   703,774     Reproducer for Phonographs . . . . . March 21, 1898
   626,460     Filament for Incandescent Lamps and
               Manufacturing Same . . . . . . . . . .March 29,1898
   648,933     Dryer. . . . . . . . . . . . . . . . April 11, 1898
   661,238     Machine for Forming Pulverized
               Material in Briquettes . . . . . . . April 11, 1898
   674,057     Crushing Rolls . . . . . . . . . . . April 11, 1898
   703,562     Apparatus for Bricking Pulverized Material April 11, 1898
   704,010     Apparatus for Concentrating Magnetic
               Iron Ores. . . . . . . . . . . . . . April 11, 1898
   659,389     Electric Meter . . . . . . . . . . . Sept. 19, 1898

   1899

   648,934     Screening or Sizing Very Fine Materials Feb. 6, 1899
   663,015     Electric Meter . . . . . . . . . . . . Feb. 6, 1899
   688,610     Phonographic Recording Apparatus . . .Feb. 10, 1899
   643,764     Reheating Compressed Air for
               Industrial Purposes. . . . . . . . . .Feb. 24, 1899
   660,293     Electric Meter . . . . . . . . . . . .March 23,1899
   641,281     Expanding Pulley--Edison and Johnson .March 28,1899
   727,116     Grinding Rolls . . . . . . . . . . . .June 15, 1899
   652,457     Phonograph (reissued September 25,
               1900, numbered 11,857) . . . . . . . Sept. 12, 1899
   648,935     Apparatus for Duplicating Phonograph
               Records. . . . . . . . . . . . . . . .Oct. 27, 1899
   685,911     Apparatus for Reheating Compressed
               Air for Industrial Purposes. . . . . .Nov. 24, 1899
   657,922     Apparatus for Reheating Compressed
               Air for Industrial Purposes. . . . . . Dec. 9, 1899

   1900

   676,840     Magnetic Separating Apparatus. . . . . Jan. 3, 1900
   660,845     Apparatus for Sampling, Averaging,
               Mixing, and Storing Materials in Bulk Jan. 9, 1900
   662,063     Process of Sampling, Averaging, Mixing,
               and Storing Materials in Bulk. . . . . Jan. 9, 1900
   679,500     Apparatus for Screening Fine Materials Jan. 24, 1900
   671,316     Apparatus for Screening Fine Materials  Feb. 23, 1900
   671,317     Apparatus for Screening Fine Materials March 28, 1900
   759,356     Burning Portland Cement Clinker, etc April 10, 1900
   759,357     Apparatus for Burning Portland Cement
               Clinker, etc . . . . . . . . . . . . .April 10 1900
   655,480     Phonographic Reproducing Device. . . .April 30 1900
   657,527     Making Metallic Phonograph Records . April 30, 1900
   667,202     Duplicating Phonograph Records . . . April 30, 1900
   667,662     Duplicating Phonograph Records . . . April 30, 1900
   713,863     Coating Phonograph Records . . . . . . May IS, 1900
   676,841     Magnetic Separating Apparatus. . . . . June 11 1900
   759,358     Magnetic Separating Apparatus. . . . . June 11 1900
   680,520     Phonograph Records . . . . . . . . . .July 23, 1900
   672,617     Apparatus for Breaking Rock. . . . . . Aug. 1, 1900
   676,225     Phonographic Recording Apparatus . . .Aug. 10, 1900
   703,051     Electric Meter . . . . . . . . . . . Sept. 28, 1900
   684,204     Reversible Galvanic Battery. . . . . . Oct. IS 1900
   871,214     Reversible Galvanic Battery. . . . . . Oct. IS 1900
   704,303     Reversible Galvanic Battery. . . . . .Dec. 22, 1900

   1901

   700,136     Reversible Galvanic Battery. . . . . . Feb. 18 1901
   700,137     Reversible Galvanic Battery. . . . . . Feb. 23 1901
   704,304     Reversible Galvanic Battery. . . . . .Feb. 23, 1901
   704,305     Reversible Galvanic Battery. . . . . . May 10, 1901
   678,722     Reversible Galvanic Battery. . . . . .June 17, 1901
   684,205     Reversible Galvanic Battery. . . . . .June 17, 1901
   692,507     Reversible Galvanic Battery. . . . . .June 17, 1901
   701,804     Reversible Galvanic Battery. . . . . .June 17, 1901
   704,306     Reversible Galvanic Battery. . . . . .June 17, 1901
   705,829     Reproducer for Sound Records . . . . .Oct. 24, 1901
   831,606     Sound Recording Apparatus. . . . . . .Oct. 24, 1901
   827,089     Calcining Furnaces . . . . . . . . . .Dec. 24, 1901


   1902

   734,522     Process of Nickel-Plating. . . . . . .Feb. 11, 1902
   727,117     Reversible Galvanic Battery. . . . . Sept. 29, 1902

   727,118     Manufacturing Electrolytically Active
               Finely Divided Iron. . . . . . . . . .Oct. 13, 1902
   721,682     Reversible Galvanic Battery. . . . . .Nov. 13, 1902
   721,870     Funnel for Filling Storage Battery Jars Nov. 13, 1902
   723,449     Electrode for Storage Batteries. . . .Nov. 13, 1902
   723,450     Reversible Galvanic Battery. . . . . .Nov. 13, 1902
   754,755     Compressing Dies . . . . . . . . . . .Nov. 13, 1902
   754,858     Storage Battery Tray . . . . . . . . .Nov. 13, 1902
   754,859     Reversible Galvanic Battery. . . . . .Nov. 13, 1902
   764,183     Separating Mechanically Entrained
               Globules from Gases. . . . . . . . . .Nov. 13, 1902
   802,631     Apparatus for Burning Portland Cement
               Clinker. . . . . . . . . . . . . . . .Nov. 13, 1902
   852,424     Secondary Batteries. . . . . . . . . .Nov. 13, 1902
   722,502     Handling Cable Drawn Cars on Inclines. Dec. 18,
   1902
   724,089     Operating Motors in Dust Laden
               Atmospheres. . . . . . . . . . . . . .Dec. 18, 1902
   750,102     Electrical Automobile. . . . . . . . .Dec. 18, 1902
   758,432     Stock House Conveyor . . . . . . . . .Dec. 18, 1902
   873,219     Feed Regulators for Grinding Machines. Dec. 18,
   1902
   832,046     Automatic Weighing and Mixing Apparatus Dec. 18, 1902

   1903

   772,647     Photographic Film for Moving Picture
               Machine. . . . . . . . . . . . . . . .Jan. 13, 1903
   841,677     Apparatus for Separating and Grinding
               Fine Materials . . . . . . . . . . . .Jan. 22, 1903
   790,351     Duplicating Phonograph Records . . . .Jan. 30. 1903
   831,269     Storage Battery Electrode Plate. . . .Jan. 30, 1903
   775,965     Dry Separator. . . . . . . . . . . . April 27, 1903
   754,756     Process of Treating Ores from Magnetic
               Gangue . . . . . . . . . . . . . . . . May 25, 1903
   775,600     Rotary Cement Kilns. . . . . . . . . .July 20, 1903
   767,216     Apparatus for Vacuously Depositing
               Metals . . . . . . . . . . . . . . . . July 30 1903
   796,629     Lamp Guard . . . . . . . . . . . . . . July 30 1903
   772,648     Vehicle Wheel. . . . . . . . . . . . .Aug. 25, 1903
   850,912     Making Articles by Electro-Plating . . .Oct 3, 1903
   857,041     Can or Receptacle for Storage Batteries.Oct 3, 1903
   766,815     Primary Battery. . . . . . . . . . . .Nov. 16, 1903
   943,664     Sound Recording Apparatus. . . . . . .Nov. 16, 1903
   873,220     Reversible Galvanic Battery. . . . . .Nov. 20, 1903
   898,633     Filling Apparatus for Storage Battery
               Jars . . . . . . . . . . . . . . . . . Dec. 8, 1903

   1904

   767,554     Rendering Storage Battery Gases Non-
               Explosive. . . . . . . . . . . . . . . June 8, 1904
   861,241     Portland Cement and Manufacturing Same June 20, 1904
   800,800     Phonograph Records and Making Same . .June 24, 1904
   821,622     Cleaning Metallic Surfaces . . . . . .June 24, 1904
   879,612     Alkaline Storage Batteries . . . . . .June 24, 1904
   880,484     Process of Producing Very Thin Sheet
               Metal. . . . . . . . . . . . . . . . .June 24, 1904
   827,297     Alkaline Batteries . . . . . . . . . .July 12, 1904
   797,845     Sheet Metal for Perforated Pockets of
               Storage Batteries. . . . . . . . . . .July 12, 1904
   847,746     Electrical Welding Apparatus . . . . .July 12, 1904
   821,032     Storage Battery. . . . . . . . . . . . Aug 10, 1904
   861,242     Can or Receptacle for Storage Battery. Aug 10, 1904
   970,615     Methods and Apparatus for Making
               Sound Records. . . . . . . . . . . . .Aug. 23, 1904
   817,162     Treating Alkaline Storage Batteries. Sept. 26, 1904
   948,542     Method of Treating Cans of Alkaline
               Storage Batteries. . . . . . . . . . Sept. 28, 1904
   813,490     Cement Kiln. . . . . . . . . . . . . . Oct 29, 1904
   821,625     Treating Alkaline Storage Batteries. . Oct 29, 1904
   821,623     Storage Battery Filling Apparatus. . . Nov. 1, 1904
   821,624     Gas Separator for Storage Battery. . .Oct. 29, 1904

   1905

   879,859     Apparatus for Producing Very Thin
               Sheet Metal. . . . . . . . . . . . . .Feb. 16, 1905
   804,799     Apparatus for Perforating Sheet Metal March 17, 1905
   870,024     Apparatus for Producing Perforated
               Strips . . . . . . . . . . . . . . . March 23, 1905
   882,144     Secondary Battery Electrodes . . . . March 29, 1905
   821,626     Process of Making Metallic Films or
               Flakes . . . . . . . . . . . . . . . .March 29,1905
   821,627     Making Metallic Flakes or Scales . . .March 29,1905
   827,717     Making Composite Metal . . . . . . . .March 29,1905
   839,371     Coating Active Material with Flake-like
               Conducting Material. . . . . . . . . .March 29,1905
   854,200     Making Storage Battery Electrodes. . .March 29,1905
   857,929     Storage Battery Electrodes . . . . . March 29, 1905
   860,195     Storage Battery Electrodes . . . . . April 26, 1905
   862,145     Process of Making Seamless Tubular
               Pockets or Receptacles for Storage
               Battery Electrodes . . . . . . . . . April 26, 1905
   839,372     Phonograph Records or Blanks . . . . April 28, 1905
   813,491     Pocket Filling Machine . . . . . . . . May 15, 1905
   821,628     Making Conducting Films. . . . . . . . May 20, 1905
   943,663     Horns for Talking Machines . . . . . . May 20, 1905
   950 226     Phonograph Recording Apparatus . . . . May 20, 1905
   785 297     Gas Separator for Storage Batteries. .July 18, 1905
   950,227     Apparatus for Making Metallic Films
               or Flakes. . . . . . . . . . . . . . .Oct. 10, 1905
   936,433     Tube Filling and Tamping Machine . . .Oct. 12, 1905
   967,178     Tube Forming Machines--Edison and
               John F. Ott. . . . . . . . . . . . . .Oct. 16, 1905
   880,978     Electrode Elements for Storage
               Batteries. . . . . . . . . . . . . . .Oct. 31, 1905
   880,979     Method of Making Storage Battery
               Electrodes . . . . . . . . . . . . . .Oct. 31, 1905
   850,913     Secondary Batteries. . . . . . . . . . Dec. 6, 1905
   914,342     Storage Battery. . . . . . . . . . . . Dec. 6, 1905

   1906

   858,862     Primary and Secondary Batteries. . . . Jan. 9, 1906
   850,881     Composite Metal. . . . . . . . . . . .Jan. 19, 1906
   964,096     Processes of Electro-Plating . . . . .Feb. 24, 1906
   914,372     Making Thin Metallic Flakes. . . . . .July 13, 1906
   962,822     Crushing Rolls . . . . . . . . . . . .Sept. 4, 1906
   923,633     Shaft Coupling . . . . . . . . . . . Sept. 11, 1906
   962,823     Crushing Rolls . . . . . . . . . . . Sept. 11, 1906
   930,946     Apparatus for Burning Portland Cement. Oct. 22,1906
   898 404     Making Articles by Electro-Plating . . Nov. 2, 1906
   930,948     Apparatus for Burning Portland Cement.Nov. 16, 1906
   930,949     Apparatus for Burning Portland Cement. Nov. 26 1906
   890,625     Apparatus for Grinding Coal. . . . . . Nov, 33 1906
   948,558     Storage Battery Electrodes . . . . . .Nov. 28, 1906
   964,221     Sound Records. . . . . . . . . . . . .Dec. 28, 1906

   1907

   865,688     Making Metallic Films or Flakes. . . .Jan. 11, 1907
   936,267     Feed Mechanism for Phonographs and
               Other Machines . . . . . . . . . . . .Jan. 11, 1907
   936,525     Making Metallic Films or Flakes. . . .Jan. 17, 1907
   865,687     Making Nickel Films. . . . . . . . . .Jan. 18, 1907
   939,817     Cement Kiln. . . . . . . . . . . . . . Feb. 8, 1907
   855,562     Diaphragm for Talking Machines . . . .Feb. 23, 1907
   939,992     Phonographic Recording and Reproducing
               Machine. . . . . . . . . . . . . . . .Feb. 25, 1907
   941,630     Process and Apparatus for Artificially
               Aging or Seasoning Portland Cement . .Feb. 25, 1907
   876,445     Electrolyte for Alkaline Storage Batteries May 8, 1907
   914,343     Making Storage Battery Electrodes. . . May 15, 1907
   861,819     Discharging Apparatus for Belt Conveyors June 11, 1907
   954,789     Sprocket Chain Drives. . . . . . . . .June 11, 1907
   909,877     Telegraphy . . . . . . . . . . . . . .June 18, 1907

   1908

   896,811     Metallic Film for Use with Storage Batteries
               and Process. . . . . . . . . . . . . . Feb. 4, 1908
   940,635     Electrode Element for Storage Batteries Feb. 4,
   1908
   909,167     Water-Proofing Paint for Portland
               Cement Buildings . . . . . . . . . . . Feb. 4, 1908
   896,812     Storage Batteries. . . . . . . . . . March 13, 1908
   944,481     Processes and Apparatus for Artificially
               Aging or Seasoning Portland Cement. March 13,1908
   947,806     Automobiles. . . . . . . . . . . . . March 13,-1908
   909,168     Water-Proofing Fibres and Fabrics. . . May 27, 1908
   909,169     Water-Proofing Paint for Portland
               Cement Structures. . . . . . . . . . . May 27, 1908
   970,616     Flying Machines. . . . . . . . . . . .Aug. 20, 1908

   1909
   930,947     Gas Purifier . . . . . . . . . . . . .Feb. 15, 1909
   40,527     Design Patent for Phonograph Cabinet. Sept. 13, 1909


   FOREIGN PATENTS


   In addition to the United States patents issued to Edison, as above
   enumerated, there have been granted to him (up to October, 1910) by
   foreign governments 1239 patents, as follows:

   Argentine. . . . . . . . . . . . . . . . .1
   Australia. . . . . . . . . . . . . . . . .6
   Austria. . . . . . . . . . . . . . . . .101
   Belgium. . . . . . . . . . . . . . . . . 88
   Brazil . . . . . . . . . . . . . . . . . .1
   Canada . . . . . . . . . . . . . . . . .129
   Cape of Good Hope. . . . . . . . . . . . .5
   Ceylon . . . . . . . . . . . . . . . . . .4
   Cuba . . . . . . . . . . . . . . . . . . 12
   Denmark. . . . . . . . . . . . . . . . . .9
   France . . . . . . . . . . . . . . . . .111
   Germany. . . . . . . . . . . . . . . . .130
   Great Britain. . . . . . . . . . . . . .131
   Hungary. . . . . . . . . . . . . . . . . 30
   India. . . . . . . . . . . . . . . . . . 44
   Italy. . . . . . . . . . . . . . . . . . 83
   Japan. . . . . . . . . . . . . . . . . . .5
   Mexico . . . . . . . . . . . . . . . . . 14
   Natal. . . . . . . . . . . . . . . . . . .5
   New South Wales. . . . . . . . . . . . . 38
   New Zealand. . . . . . . . . . . . . . . 31
   Norway . . . . . . . . . . . . . . . . . 16
   Orange Free State. . . . . . . . . . . . .2
   Portugal . . . . . . . . . . . . . . . . 10
   Queensland . . . . . . . . . . . . . . . 29
   Russia . . . . . . . . . . . . . . . . . 17
   South African Republic . . . . . . . . . .4
   South Australia. . . . . . . . . . . . . .1
   Spain. . . . . . . . . . . . . . . . . . 54
   Sweden . . . . . . . . . . . . . . . . . 61
   Switzerland. . . . . . . . . . . . . . . 13
   Tasmania . . . . . . . . . . . . . . . . .8
   Victoria . . . . . . . . . . . . . . . . 42
   West Australia . . . . . . . . . . . . . .4

   Total of Edison's Foreign Patents. . . 1239





*** End of this LibraryBlog Digital Book "Edison, His Life and Inventions" ***

Copyright 2023 LibraryBlog. All rights reserved.



Home