Home
  By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | HTML | PDF ]

Look for this book on Amazon


We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: The Industries of Animals
Author: Houssay, Frédéric, 1860-1920
Language: English
As this book started as an ASCII text book there are no pictures available.


*** Start of this LibraryBlog Digital Book "The Industries of Animals" ***


_THE CONTEMPORARY SCIENCE SERIES._

EDITED BY HAVELOCK ELLIS.

THE INDUSTRIES OF ANIMALS.



THE INDUSTRIES OF ANIMALS.

BY

FRÉDÉRIC HOUSSAY.


WITH 44 ILLUSTRATIONS.


LONDON:
WALTER SCOTT, LTD.,
24 WARWICK LANE, PATERNOSTER ROW.


1893.



NOTE.


The English edition of this book has been revised throughout and
enlarged, with the author's co-operation. Numerous bibliographical
references have also been added. The illustrations, when not otherwise
stated, are in most cases adapted from Brehm's _Thierleben_.



CONTENTS.


CHAPTER I.

INTRODUCTION

The naturalists of yesterday and the naturalists of to-day--Natural
history and the natural sciences--The theory of Evolution--The chief
industries of Man--The chief industries of Animals--Intelligence and
instinct--Instinctive actions originate in reflective actions--The
plan of study of the various industries.


CHAPTER II.

HUNTING--FISHING--WARS AND EXPEDITIONS

The Carnivora more skilful hunters than the Herbivora--Different
methods of hunting--Hunting in ambush--The baited ambush--Hunting in
the dwelling or in the burrow--Coursing--Struggles that terminate the
hunt--Hunting with projectiles--Particular circumstances put to
profit--Methods for utilising the captured game--War and
brigandage--Expeditions to acquire slaves--Wars of the ants.


CHAPTER III.

METHODS OF DEFENCE

Flight--Feint--Resistance in common by social animals--Sentinels.


CHAPTER IV.

PROVISIONS AND DOMESTIC ANIMALS

Provisions laid up for a short period--Provisions laid up for a long
period--Animals who construct barns--Physiological reserves--Stages
between physiological reserves and provisions--Animals who submit food
to special treatment in order to facilitate transport--Care bestowed
on harvested provisions--Agricultural ants--Gardening ants--Domestic
animals of ants--Degrees of civilisation in the same species of
ants--Aphis-pens and paddocks--Slavery among ants.


CHAPTER V.

PROVISION FOR REARING THE YOUNG

The preservation of the individual and the preservation of the
species--Foods manufactured by the parents for their young--Species
which obtain for their larvæ foods manufactured by others--Carcasses
of animals stored up--Provision of paralysed living animals--The cause
of the paralysis--The sureness of instinct--Similar cases in which the
specific instinct is less powerful and individual initiative
greater--Genera less skilful in the art of paralysing victims.


CHAPTER VI.

DWELLINGS

Animals naturally provided with dwellings--Animals who increase their
natural protection by the addition of foreign bodies--Animals who
establish their home in the natural or artificial dwellings of
others--Classification of artificial shelters--Hollowed
dwellings--Rudimentary burrows--Carefully-disposed burrows--Burrows
with barns adjoined--Dwellings hollowed out in wood--Woven
dwellings--Rudiments of this industry--Dwellings formed of
coarsely-entangled materials--Dwellings woven of flexible
substances--Dwellings woven with greater art--The art of sewing among
birds--Modifications of dwellings according to season and climate--Built
dwellings--Paper nests--Gelatine nests--Constructions built of
earth--Solitary masons--Masons working in association--Individual
skill and reflection--Dwellings built of hard materials united by
mortar--The dams of beavers.


CHAPTER VII.

THE DEFENCE AND SANITATION OF DWELLINGS

General precautions against possible danger--Separation of females while
brooding--Hygienic measures of Bees--Prudence of Bees--Fortifications
of Bees--Precautions against inquisitiveness--Lighting up the nests.


CHAPTER VIII.

CONCLUSION

Degree of perfection in industry independent of zoological
superiority--Mental faculties of the lower animals of like nature to
Man's.


APPENDIX


INDEX



THE INDUSTRIES OF ANIMALS.



CHAPTER I.

INTRODUCTION.

    THE NATURALISTS OF YESTERDAY AND THE NATURALISTS OF
    TO-DAY--NATURAL HISTORY AND THE NATURAL SCIENCES--THE THEORY
    OF EVOLUTION--THE CHIEF INDUSTRIES OF MAN--THE CHIEF
    INDUSTRIES OF ANIMALS--INTELLIGENCE AND INSTINCT--INSTINCTIVE
    ACTIONS ORIGINATE IN REFLECTIVE ACTIONS--THE PLAN OF STUDY OF
    THE VARIOUS INDUSTRIES.


_The naturalists of yesterday and the naturalists of to-day._--The
study of animals, plants, rocks, and of natural objects generally, was
formerly called "natural history"; but this term is tending to
disappear from our vocabulary and to give place to the term "natural
sciences." What is the reason of this change, and to what does it
correspond? for it is rare for a word to be modified in so short a
time if the thing designated has not itself varied.

Exterior forms have certainly changed, and the naturalist of yesterday
makes upon us the impression of a legendary being. I refer to the
person described in George Sand's romances, marching vigorously over
hills and valleys in search of a rare insect, which he pricked with
delight, or of a plant difficult to reach, which he triumphantly dried
and fixed on a leaf of paper bearing the date of the discovery and the
name of the locality. A herbarium became a sort of journal, recalling
to its fortunate possessor all the wanderings of the happy chase, all
the delightful sounds and sights of the country. Every naturalist
concealed within him a lover of idylls or eclogues. Assuredly all the
preliminary studies which resulted from these excursions were
necessary; we owe gratitude to our predecessors, and we profit from
their labours, sometimes regretting the loss of the picturesque
fashion in which their researches were carried out.

The naturalist of to-day usually lives more in the laboratory than in
the country. Occasional expeditions to the coast or dredgings are the
only links that attach him to nature; the scalpel and the microtome
have replaced the collector's pins, and the magnifying glass gives
place to the microscope. When the observer begins to pursue his
studies in the laboratory he no longer cares to pass the threshold. He
has still so much to learn concerning the most common creatures that
it seems useless to him to waste his time in seeking those that are
rarer, unless he takes into account the unquestionable pleasure of
rambling through woods or along coasts;--but such a consideration does
not belong to the scientific domain.

A change of conditions of this nature does not suffice to create a
science. To take away from a study all that rendered it pleasant and
easy, and to make it the property of a small coterie, when it was
formerly accessible to all, is not sufficient to render it scientific.
It is a fatality rather than a triumph to have undergone such a
change. The change is an effect rather than a cause.

When little or nothing was known it was necessary to begin by
examining the phenomena which first met the eyes of the observer, such
as the customs of animals and the characters which distinguished them
from each other. Their differences and resemblances were studied; they
were formed into groups, classed and arranged in an order recalling as
much as possible their natural relations. In classifying it is
impossible to consider all the facts or the result would be chaos; it
is necessary to choose the characters and to give preponderance to
certain of them. This sorting of characters has been executed with the
sagacity of genius by the illustrious naturalists of the last century
and the beginning of the present. But the frames which they have
traced are fixed and rigid; nature with her infinite plasticity
escapes from them. We render a great homage to the classifiers when we
say that they have confined the facts as closely as it is possible to
do. The catalogues which they have prepared are of a utility which is
unquestionable, although their _rôle_ is to be useful only; we cannot
pretend to make them the expression, the symbol, the formula in which
all natural phenomena are to be enclosed. To confound classification
with science is to confound the lever with the effect which we expect
from it.

Curiosity, moreover, always impels towards that which is least known.
External appearances having been studied, the form and function of
internal organs were investigated. Physiology and comparative anatomy
were born and developed; researches abounded and observers abandoned
the field for the laboratory.

The difference in methods of research and the pushing of precision to
its extreme limits--an inevitable result of the different nature of
the observations to be made--did not however yet render legitimate the
claim for natural studies to be called "science."

_Natural history and the natural sciences._--A more important event
has taken place. The ancient naturalists, like their contemporaries,
had firm beliefs which they used as unquestionable principles for the
comprehension of all facts. The explanation of an observation was
ready in advance. The study of facts invariably brought to the pen of
the writer the same enthusiastic admiration of the marvellous part
played by Providence in nature.[1] The phenomena in which this action
was not strikingly apparent were merely described without any attempt
to relate them with each other, or with the other facts. A hypothesis
which left a great number of facts without explanation was necessarily
insufficient. The descriptions, in spite of all their individual
interest, did not constitute a homogeneous whole, a science. They were
merely a collection of more or less natural histories.

    [1] See, for example, Réaumur, _Mémoires pour l'histoire
        des Insectes_, t. i., pp. 23-25.


Science only begins on the day when we have found the simple theory
which binds together all the facts at that time known, without of
course prejudicing the future. As the number of acquired facts
increases, if the theory in question continues to explain the new as
it explained the old, the science becomes more firmly established. If
we can imagine a time arriving when all the possible phenomena are
known, and the existing hypothesis still explains them, nothing
henceforth can overturn it, the science is completed. That is the
simple case in which a theory has been victorious; but if it is
contradicted by a single well-authenticated fact it must fall or
become modified. The more things a theory explains in the present the
more chance it has of success in the future. It is still only a matter
of chances, for the theory is always at the mercy of unforeseen
observation, which may rudely overthrow it.

There is no theory which must not be modified constantly, at least in
its details. To render it more and more general by successive
improvements is the aim to be pursued. A collection of studies
constitutes a science when a hypothesis has arisen already
sufficiently strong to oblige us to refer to it all new acquisitions,
and to compel us to see if they fortify or oppose it.

It would indeed be a narrow conception if we were to consider as
scientific the partisans of the theory alone; more than anywhere else
discussion is fruitful in the natural sciences; and if it is necessary
to be constantly preoccupied with the general ideas of the day, it is
not at all necessary to adhere to them servilely. The naturalists of
to-day are in possession of a formula with which we must always
preoccupy ourselves; in other words, there are natural sciences.

_The theory of Evolution._--This hypothesis which comes before all
others is the theory of evolution. This is not the place to expound
it, to go over the proofs which have been amassed to build it up, nor
the criticisms which have been directed against it. It has to-day come
out of the struggle victoriously. A prodigious quantity of facts, of
comparative anatomy and of embryology, inexplicable without it, emerge
from the chaos and constitute a whole, truly and marvellously
homogeneous. Issued from the natural sciences, the doctrine of
evolution now overflows them and tends to embrace everything that
concerns man: history, sociology, political economy, psychology. The
moralists seek, and will surely find, compromises permitting ethical
laws to endure the rule of this overwhelming hypothesis.

Without going too far back into history, let us look towards the end
of the last century and the beginning of this. Cuvier, Lamarck,[2] and
Geoffroy Saint-Hilaire,[3] all preoccupied with general ideas, were
each trying to build up a doctrine. The theory of evolution was born
beneath the pen of Lamarck, but immediately fell under the attacks of
Cuvier.[4] It is to Darwin that the honour belongs of having rescued
it from oblivion and of having initiated the movement which to-day
rules the natural sciences. Studies in embryology and anatomy are
rising without number beneath this impulse; and perhaps it may be said
that these new sciences, so fruitful in results, absorb a little too
much attention and leave in the shade subjects longer known, but
which, however, gain new interest by the way they fit into present
scientific theories.

    [2] _Philosophie zoologique_, 2e édition, Paris, 1830;
        _Histoire des Animaux sans Vertèbres_, Introduction, 1835.

    [3] _Philosophie anatomique_, 1818; _Zoologie générale_, 1841.

    [4] _Le Règne Animal_, 1829; _Leçons d'Anatomie comparée_,
        2e édition, 1835-46.

I wish to speak of the manners of animals; the facts regarding them
are of sufficient interest if we consider them one by one, and they
become much more interesting when we attempt to show the close way in
which they are bound together. Volumes would not suffice to exhaust
the subject; but if the entire task is too considerable, I may at
least hope to accomplish a part of it by treating of those facts which
may be brought together under the common title of Animal Industries.
Taken separately, they may be reproached with a certain anecdotal
character, but we cannot fail to agree that taken altogether they
constitute an important chapter in the sciences of life.

_The chief industries of Man._--Let us first throw a rapid glance at
the various stages which the civilisation and industry of Man have
gone through before arriving at their present condition. To make clear
these phases we might either follow the state of civilisation in any
given country by tracing back the course of centuries, or else at a
given epoch find out in different parts of the earth all the stages of
human evolution. The savage men of to-day are not further advanced in
their evolution than our own ancestors who have now gone to fossil.
However it may be, Man, at first frugivorous, as his dentition shows
as well as his zoological affinities, in consequence of a famine of
fruit or from whatever other cause, gradually began to nourish himself
with the flesh of other animals. To search for this fleeing prey
developed in him the art of hunting and fishing. His intelligence,
still feeble, was entirely concentrated on this one point: to seize on
an animal and to feed on it, although neither his nails nor his teeth
nor his muscles make it natural to him. To hunt, to fish, to defend
his territory against the wild beasts who attacked it and himself, to
drive back tribes of his fellows who would diminish his provisions,
these were the first rudiments of the industry of Man. Having become
more skilful, he obtained in an expedition more game than he could
consume at once; he then kept near him living beasts in order to
sacrifice them when hunger came. His reserve of animals increased;
they became accustomed to live near him; and he took care of his
larder. A flock was gradually constituted, and the owner learnt to
profit from all the resources which it offered him, from milk to wool.
Henceforth he became economical with his beasts, and moved about in
order to procure for them abundance of grass and water. He was still
always hunting and fighting; but there were now accessory industries,
and he was especially occupied in the domestication of animals. Then
it happened that he acquired a taste for a graminaceous grain--corn.
To seek the blades one by one is not a very fruitful labour, and
decidedly troublesome. Man collected a supply of them, cultivated
them, possessed fields which he sowed and harvested. He was henceforth
obliged to renounce his herds, which had become immense; for he could
not leave the soil where his corn was ripening, if he wished to gather
it himself, and his cattle were lacking pasture. The number of beasts
diminished; bread had killed milk. Man only kept near him a small
flock capable of feeding on a moderate territory. He abandoned his
temporary shelters, tents of skin or of woven wool, and since he must
henceforth live on the same piece of land, he constructed there a
fixed dwelling. Such is, taken altogether, the genesis of the industry
of the dwelling connected with the culture of the soil; to earlier
periods corresponded the natural or hollowed cave and the woven tent.

_The chief industries of Animals._--In a more or less perfect degree
we find the same industries among animals generally. In order to make
just comparisons, we ought especially to consider the methods of those
who are not endowed with specially appropriated organs, for in this
case their task is rendered too simple. To take an example. The Lion
is certainly an incomparable hunter; but his whole organisation tends
to facilitate the capture of living prey. His agility and the strength
of his muscles enable him to seize it at the first leap before it can
escape. With his sharp claws he holds it; his teeth are so keen and
his jaw so strong that he kills it immediately; with such natural
advantages what need has he of ingenuity? But in the case of the Wolf
or the Fox it is quite another matter; they hunt with a veritable art
which Man himself has not disdained, since he has taken as his
associate their relative, the Dog. It is the same with the Eagle and
the Crow. The latter, in order to seize the prey which he desires,
needs much more varied resources than the great bird of rapine for
whom nature has done everything.

We find among animals not only hunting and fishing but the art of
storing in barns, of domesticating various species, of harvesting and
reaping--the rudiments of the chief human industries. Certain animals
in order to shelter themselves take advantage of natural caverns in
the same way as many races of primitive men. Others, like the Fox and
the Rodents, dig out dwellings in the earth; even to-day there are
regions where Man does not act otherwise, preparing himself a lodging
by excavations in the chalk or the tufa. Woven dwellings, constructed
with materials entangled in one another, like the nests of birds,
proceed from the same method of manufacture as the woollen stuffs of
which nomad tribes make their tents. The Termites who construct vast
dwellings of clay, the Beavers who build huts of wood and of mud, have
in this industry reached the same point as Man. They do not build so
well, no doubt, nor in so complex a fashion as modern architects and
engineers, but they work in the same way. All these ingenious artisans
operate without organs specially adapted to accomplish the effect
which they reach. It is with such genuine industries that we have to
deal, for the most part neglecting other productions, more marvellous
in certain ways, which are formed by particular organs, or are
elaborated within the organism, and are not the result of the
intelligent effort of the individual. To this category belong the
threads which the Spider stretches, and the cocoon with which the
Caterpillar surrounds himself to shelter his metamorphosis.

_Intelligence and instinct._--By attentive observation it is possible
to find in animals all the intermediate stages between a deliberate
reflective action and an act that has become instinctive and so
inveterate to the species that it has re-acted on its body, and thus
profoundly modified it so as to produce a new organ in such a way that
the phenomena are accomplished as a simple function of vegetative
life, in the same way as respiration or digestion.

If an individual is led to reproduce often the same series of actions
it contracts a _habit_; the repetition may be so frequent that the
animal comes to accomplish it without knowing it; the brain no longer
intervenes; the spinal cord or the chain of ganglia alone govern this
order of acts, to which has been given the name of _reflex actions_. A
reflex may be so powerful as to be transmitted by heredity to the
descendants; it then becomes an _instinct_.

Thus by its nature instinct does not differ from intelligence, but is
intimately connected with it by a chain of which all the links may be
counted. The most intelligent of beings, Man, performs actions that
are purely mechanical; many indeed can with justice be called
instinctive; and, on the other hand, an animal for whom an innate
hereditary instinct is sufficient in ordinary life will give proof of
intelligence and reflection if circumstances in which his instinct is
generally efficacious become modified so that he can no longer profit
by them. Among other ingenious experiments to show the supposed
difference between instinctive and reflective acts, Fabre brings
forward the following[5]:--The _Chalicodoma_, a hymenopterous relative
of the Bees, constructs nests composed of cells formed of mud
agglutinated with saliva. The cell once constructed, the insect begins
to fill it with honey before laying an egg there. He returns with his
booty and wishes to disburse himself in the nest, finds the cellule
which he has to fill, and proceeds always in the same order: first, he
plunges his head in the cell and disgorges the honey which fills his
crop; secondly, he emerges from the cell, turns round, and lets fall
the pollen which remains attached to his legs. Suppose that an insect
has just disgorged his honey, the observer touches his belly with a
straw; the little animal, disturbed in his operation, returns to it
having only the second act to perform. But he re-commences the whole
of his operations though having nothing more to disgorge; he again
plunges his head into the cell and goes through a pretence of
disgorging, then turns round and frees himself from the pollen.
Although touched twice, thrice, or more frequently, he always repeats
the first action before executing the second. It is, says Fabre,
almost like the movement of a machine of which the wheelwork will not
act until one has begun to turn the wheel which directs it.

    [5] J. H. Fabre, _Souvenirs entomologiques_, Paris, 1879,
        pp. 275 _et seq._

It is incontestable; but I would add, as this conscientious observer
does not, that that does not prove that the intelligence of the insect
differs essentially from ours; it is a simple question of degree. Look
at a boy who is going to jump over a ditch: he begins by spitting into
his hands and rubbing them one against the other before taking his
spring. In what has this served him? It is not more intelligent than
the gesture of the bee who first plunges his head in the cell before
freeing his claws, although the first gesture is useless.[6]

    [6] It should perhaps be added that while the boy's action
        is not consciously intelligent, it is by no means
        purposeless, and is therefore not quite parallel with the
        insect's. By vigorously irritating the sensory nerves of the
        hand the boy imparts a stimulus to his muscular system. His
        act belongs to a large group which has been especially
        studied by Féré. See his _Sensation et Mouvement_ (1887),
        and _Pathologie des Emotions_ (1892).

And, from another side, if nothing is more instinctive than the manner
in which domestic Bees construct their cells of wax with geometric
regularity, there are other circumstances in which these same insects
give proof of remarkable reflection, sagacity, and intelligence in
co-ordinating their actions in the presence of an event to which they
are not accustomed, and in attaining an end which has presented itself
by accident. Such are, for example, the arrangements which they make
to defend their honey against the attacks of a great nocturnal Moth,
the Death's Head. I shall have to revert to these facts.

We must not then regard instinct, as has often been done, as a
rudiment of intelligence, susceptible or not of development; but much
rather as a series of intelligent acts at first reasoned, then by
their frequent repetition become habitual, reflex, and at last, by
heredity, instinctive.

What the individual loses in individuality and in personal initiative,
heredity restores to him in the form of instinct which is, as it were,
the condensed and accumulated intelligence of his ancestors. He
himself no longer needs to take thought either to preserve his life or
to assure the perpetuation of his race. The qualities which he
received at birth render reflection less necessary; thus species
endowed with some powerful instinct seem not to be intelligent when
they live sheltered from unforeseen events.

From one point of view instinct appears to be a degradation rather
than a perfecting of intelligence, because the acts which proceed from
it are neither so spontaneous nor so personal; but from another point
of view they are much better executed, with less hesitation, with a
slighter expenditure of cerebral force and a minimum of muscular
effort. A habitual act costs us much less to execute than a deliberate
and reflective act. It is thus that the constructions of bees are more
perfect than those of ants; the former act by instinct, the latter
reason their acts at each step.

_Instinctive actions originate in reflective actions._--No doubt it
may be said: It is a pure hypothesis thus to consider instinct as
derived from intelligence; why not admit as well that instinctive acts
have been such from the beginning--in other words, that species have
been created such as we see them to-day? The preceding explanation,
however, has the advantage of being in harmony with the general theory
of evolution, which, whether true or not, so well explains the most
complicated facts that for the present it must be accepted. For the
rest, if it is not possible to appraise the psychic faculties
possessed by the ancestors of existing animals we may at least observe
certain facts which put us on the road of explanation.

An interesting member of the Hymenoptera, the _Sphex_, assures food
for the early days of the life of its larvæ in a curious way.[7]
Before laying its eggs it seizes a cricket, paralyses it with two
strokes of its sting--one at the articulation of the head and the
neck, the other at the articulation of the first ring of the thorax
with the second--each stab traversing and poisoning a nervous
ganglion. The cricket is paralysed without being killed; its flesh
does not putrefy, and yet it makes no movement. The _Sphex_ places an
egg on this motionless prey, and the larva which emerges from it
devours the cricket. Here assuredly is a marvellous and certain
instinct. One cannot even object that the strokes of the sting are
inevitably directed to these points because the chitinous envelope of
the victim offers too much resistance in other spots for the dart to
penetrate, because here is the _Ammophila_, a near relative of the
_Sphex_, which chooses for its prey a caterpillar. It is free to
introduce its sting into any part of the body, and yet with extreme
certainty it strikes the two ganglions already mentioned.[8]

    [7] "Étude sur l'Instinct et les Metamorphoses des
        Sphégiens," _Ann. Sc. Nat._, iv. Série, t. 6, 1856.

    [8] P. Marchal, "Observations sur _l'Ammophila affinis_,"
        _Arch. de Zool. expér. et génér._, ii. Série, t. 10, 1892.

We cannot suppose that the insect has anatomical and physiological
knowledge to inform it of what it is doing. The act is distinctly
instinctive, and seems imprinted by a fatality involving no possible
connection with intelligence. But let us suppose that the ancestors of
these Hymenoptera have thus attacked crickets and killed (not
paralysed) them with one or more wounds at any point. By chance some
of these insects, either in consequence of their manner of attacking
the prey or from any other cause, happen to deliver their blows at the
points in question. Their larvæ on this account are placed in more
favourable conditions than those of their relatives whom chance has
less well served; they will prosper and develop sooner. They inherit
this habit, which gradually becomes through the ages that which we
know. It is possible; but why, it may be asked, this hypothesis,
apparently gratuitous, of strokes of the sting given at random? Are
there any facts which render this explanation plausible? Assuredly.
Thus the _Bembex_, which especially attacks Diptera to make them the
prey of its larvæ, throws itself suddenly on them and kills them with
one blow in any part of the body. It is unable in this way to amass in
advance sufficient provision for its larvæ; the corpses would putrefy.
It is obliged to return from time to time bearing new pasture.[9]
Again, M. Paul Marchal, taking up the study of instinct in the
_Cerceris ornata_,[10] has shown that in this species at least of
_Sphegidæ_ the stings have not so considerable an effect. This insect
attacks a wild bee, the _Halictus_. He strikes his victim with two or
three strokes of the sting beneath the thorax, but the paralysis is
not definite, perhaps on account of the nature of the venom, which is
not identical in all species. The tortured creature may regain life at
the end of some hours. Thus the _Cerceris_ is obliged to destroy the
upper part of the neck by repeated malaxation of that part for several
minutes at a time. The effect of this second act, by injuring the
cerebroid ganglia, is to render impossible the return of action;
moreover, it permits the aggressor to satisfy personal gluttony, and
to feed on the liquids of the organism of the vanquished, which is
easy, because the dorsal blood-vessel passes at this level. It can
thus satisfy a personal need while thinking of the future of the race.

    [9] J. H. Fabre, _Souvenirs entomologiques_, pp. 225 _et seq._

   [10] "Étude sur l'Instinct du _Cerceris ornata_," _Archives
        de Zoologie expérimentale_, ii. Série, t. 5, 1887.

It has been said in this connection that in such cases the sure
instinct with which these species were originally endowed has been
distorted, but that is to admit some degree of variation; the
hypothesis of degeneration is as gratuitous as the other, and if we go
so far as to risk a hypothesis, it would be better to use it to
explain facts and not to entangle them.

_Plan of study of the various industries._--The different industries
carried on by animals may be divided into a certain number of groups.
In the case of each of these categories I propose to arrange the facts
in such a way as to bring forward first those animals which, having no
special organs, are obliged to exercise the greatest ingenuity, and
then to indicate the facts which show how variations have arisen which
enable other species to accomplish these acts with marvellous ease.

We will first examine the simplest industries: hunting and fishing,
those industries of which the object is the immediate search for prey;
and to these may be added those which are related to them as re-action
is to action--that is to say, the industries of which the effect is to
provide for the immediate safety of the individual.

Then in an exposition parallel to the march of progress followed by
human civilisations, we shall study among animals the art of
collecting provisions, of domesticating and exploiting flocks, of
reducing their fellows to slavery.

Finally, we shall investigate the series of modifications which the
dwelling undergoes, and we shall see how certain species, after having
constructed admirably-arranged houses, know how to make them healthy,
and how to defend them against attacks from without.



CHAPTER II.

HUNTING--FISHING--WARS AND EXPEDITIONS.

    THE CARNIVORA MORE SKILFUL HUNTERS THAN THE
    HERBIVORA--DIFFERENT METHODS OF HUNTING--HUNTING IN
    AMBUSH--THE BAITED AMBUSH--HUNTING IN THE DWELLING OR IN THE
    BURROW--COURSING--STRUGGLES THAT TERMINATE THE HUNT--HUNTING
    WITH PROJECTILES--PARTICULAR CIRCUMSTANCES PUT TO
    PROFIT--METHODS FOR UTILISING THE CAPTURED GAME--WAR AND
    BRIGANDAGE--EXPEDITIONS TO ACQUIRE SLAVES--WARS OF THE ANTS.


_The Carnivora more skilful hunters than the Herbivora._--The search
for food has necessarily been the cause of the earliest industries
among animals. It is easy to understand that the herbivora need little
ingenuity in seeking nourishment; they are so superior to their prey
that they can obtain it and feed on it by the sole fact of an
organisation adapted to its assimilation. They are, it is true, at the
mercy of circumstances over which they have no control, and which lead
to famine. The carnivora also may have to suffer from the absence of
prey, but even in the most favourable seasons, and in the regions
where the animals on which they live abound, it is necessary to them
to develop a special activity to obtain possession of beings who are
suspicious, prompt in flight, and as fleet as themselves. Thus it is
among these that we expect to find the art of hunting most cultivated;
especially if we put aside the more grossly carnivorous of them, whose
whole organisation is adapted for rapid and effective results.

_Different methods of hunting._--Like Man, some animals hunt in ambush
or by coursing; others know how to overturn the desired victim by
throwing some object at it. These profit by all the exterior
circumstances which are capable of frightening the game, of stunning
it, and of rendering capture easy. But it is by studying each separate
feature that we shall best be able to observe the close way in which
these industries are related to our own. It is impossible to bring
forward all the facts relating to the search for prey among animals;
we can only take a few as signposts which mark the road.

_Hunting in ambush._--The most rudimentary method of hunting in ambush
is simply to take advantage of some favourable external circumstance
to obtain concealment, and then to await the approach of the prey.
Some animals place themselves behind a tuft of grass, others thrust
themselves into a thicket, or hang on to the branch of a tree in order
to fall suddenly on the victim who innocently approaches the
perfidious ambush. The Crocodile, as described by Sir Samuel Baker,
conceals himself by his skill in plunging noiselessly. On the bank a
group of birds have alighted. They search the mud for insects or
worms, or simply to approach the stream to drink or bathe. In spite of
his great size and robust appetite the Crocodile does not disdain this
slight dish; but the least noise, the least wrinkle on the surface of
the water would cause the future repast to vanish. The reptile
plunges, the birds continue without suspicion to come and go. Suddenly
there emerges before them the huge open jaw armed with formidable
teeth. In the moment of stupor and immobility which this unforeseen
apparition produces a few imprudent birds have disappeared within the
reptile's mouth, while the others fly away. In the same sly and brutal
manner he snaps up dogs, horses, oxen, and even men who come to the
river to drink.

One of the most dangerous ambushes which can be met on the road by
animals who resort to a spring is that prepared by the Python. This
gigantic snake hangs by his tail to the branch of a tree and lets
himself droop down like a long creeper. The victim who comes within
his reach is seized, enrolled, pounded in the knots which the snake
forms around him. It is not necessary to multiply examples of this
simple and widespread method of hunting.

Not content with utilising the natural arrangements they meet with,
there are animals which construct genuine ambushes, acting thus like
Man, who builds in the middle or on the edge of ponds, cabins in which
to await wild ducks, or who digs in the path of a lion a hole covered
with trunks of trees, at the bottom of which he may kill the beast
without danger. Certain insects practise this method of hunting. The
Fox, for instance, so skilful a hunter in many respects, constructs an
ambush when hunting hares.[11]

   [11] C. St. John, _Wild Sports, etc._, chap. xx.

The larva of the Tiger Beetle (_Cicindela campestris_) constructs a
hole about the size of a feather quill, disposed vertically, and of a
depth, enormous for its size, of forty centimetres. It maintains
itself in this tube by arching its supple body along the walls at a
height sufficient for the top of its head to be level with the surface
of the soil, and to close the opening of the hole. (Fig. 1.) A little
insect--an ant, a young beetle, or something similar--passes. As soon
as it begins to walk on the head of the larva, the latter letting go
its hold of the wall allows itself to fall to the bottom of the trap,
dragging its victim with it. In this narrow prison it is easily able
to obtain the mastery over its prey, and to suck out the liquid
parts.[12]

   [12] Lamarck, _Histoire des Animaux sans Vertèbres_, 2e
        édition, 1835, p. 676.

[Illustration: FIG. 1.]

The _Staphilinus Cæsareus_ acts with still greater shrewdness; not
only is his pit more perfect, but he takes care to remove all traces
of preceding repasts which might render the place obviously one of
carnage. He chooses a stone, beneath which he hollows a
cylindro-conical hole with extremely smooth walls. This hole is not to
serve as a trap, that is to say that the proprietor has no intention
of causing any pedestrian to roll to the bottom. It is simply a place
of concealment in which he awaits the propitious moment. No creature
is more patient than this insect, and no delay discourages him. As
soon as some small animal approaches his hiding-place he throws
himself on it impetuously, kills it, and devours it. Near his ditch he
has hollowed a second of a much coarser character, the walls of which
have not been smoothed with the same care. One here sees elytra and
claws piled up; they are the hard and horny parts which he has not
been able to eat. The heap in this ditch is not then an alimentary
store. It is the _oubliette_ in which the _Staphilinus_ buries the
remains of his victims. If he allowed them to accumulate around his
hole all pedestrians would come to fear this spot and to avoid it. It
would be like the dwelling of a Polypus, which is marked by the
numerous carapaces of crabs and shells which strew the neighbourhood.

The ambuscade of the Ant-lion is classic; it does not differ greatly
from the others. He excavates a conical pitfall, in which he conceals
himself, and seizes the unfortunate ants and other insects whom
ill-chance causes to roll into it.[13]

   [13] See _e.g._ Tennent, _Ceylon_, vol. i. p. 252. Also
        Réaumur, _Mémoires pour d'histoire des Insectes_, t. i. p.
        14, and t. vi. p. 333.

_The baited ambush._--A variety of ambush which brings this method of
hunting to considerable perfection lies in inciting the prey to
approach the hiding-place instead of trusting to chance to bring it
there. In such circumstances Man places some allurement in the
neighbourhood--that is to say, one of the foods preferred by the
desired victim, or at least some object which recalls the form of that
food, as, for example, an artificial fly to obtain possession of
certain fishes.

It is curious to find that fish themselves utilise this system; it is
the method adopted by the Angler and the _Uranoscopus_.[14] The
_Uranoscopus scaber_ lives in the Mediterranean. At the end of his
lower jaw there is developed a mobile and supple filament which he is
able to use with the greatest dexterity. Concealed in the mud, without
moving and only allowing the end of his head to emerge, he agitates
and vibrates his filament. The little fishes who prowl in the
neighbourhood, delighted with the sight of this apparent worm,
regarding it as a destined prey, throw themselves on to it, but before
they are able to bite and recognise their error they have disappeared
in the mouth of the proprietor of the bait.

   [14] Lacepède, _Histoire des Poissons_, 1798-1803.

The Angler (_Lophius piscatorius_) has not usurped his rather
paradoxical name. He retires to the midst of the sea-weed and algæ. On
his body and all round his head he bears fringed appendages which, by
their resemblance to the leaves of marine plants, aid the animal to
conceal himself. The colour of his body also does not contrast with
neighbouring objects. From his head arise three movable filaments
formed by three spines detached from the upper fin. He makes use of
the anterior one, which is the longest and most supple. Working in the
same way as the _Uranoscopus_, the Angler agitates his three
filaments, giving them as much as possible the appearance of worms,
and thus attracting the little fish on which he feeds.

In these two examples we see a special organ utilised for a particular
function; it is one of the intermediate cases, already referred to,
between the true industries involving ingenuity and the simple
phenomena due to adaptations and modifications of the body.

_Hunting in the dwelling or in the burrow._--All these methods of
hunting or of fishing by surprise are for the most part practised by
the less agile species which cannot obtain their prey by superior
fleetness. Midway between these two methods may be placed that which
consists in surprising game when some circumstance has rendered it
motionless. Sometimes it is sleep which places it at the mercy of the
hunter, whose art in this case consists in seeking out its dwelling.
Sometimes he profits by the youth of the victim, like all
bird-nesters, whose aim is to eat the eggs or to devour the young
while still incapable of flying. The animals who eat birds' eggs are
numerous both among mammals and reptiles, as well as among birds
themselves.

The Alligator of Florida and of Louisiana delights in this chase. He
seeks in particular the Great Boat-Tail (_Quiscalus major_) which
nests in the reeds at the edge of marshes and ponds. When the young
have come out and are expecting from their parents the food which the
chances of the hunt may delay, they do not cease chirping and calling
by their cries. But the parents are not alone in hearing these
appeals. They may also strike the ears of the alligator, who furtively
approaches the imprudent singers. With a sudden stroke of his tail he
strikes the reeds and throws into the water one or more of the hungry
young ones, who are then at his mercy. (Audubon.)

The animals who feed on species living in societies either seize on
their prey when isolated or when all the members of the colony are
united in their city. A search for the nest is necessary in the case
of creatures who are very small in comparison with the hunter, as in
the case of ants and the Ant-eater. But the ant-eater possesses a very
long and sticky tongue, which renders the capture of these insects
extremely easy; when he finds a frequented passage it is enough to
stretch out his tongue; all the ants come of their own accord and
place themselves on it, and when it is sufficiently charged he
withdraws it and devours them. The African _Orycteropus_ (Fig. 2), who
is also a great eater of ants and especially of termites, is equally
aided by a very developed tongue; but he has less patience than the
ant-eater, and he adds to this resource other proceedings which render
the hunt more fruitful and enable him to obtain a very large number of
insects at one time. Thanks to his keenness of scent he soon discovers
an ant-path bearing the special and characteristic odour which these
Hymenoptera leave behind them, and he follows the track which leads to
their nest. On arriving there, without troubling himself about the
scattered insects that prowl in the neighbourhood, he sets himself to
penetrate into the midst of the dwelling, and with his strong claws
hollows out a passage which enables him to gain access. On the way he
pierces walls, breaks down floors, gathering here and there some
fugitives, and arrives at last at the centre, in which millions of
animals swarm. He then swallows them in large mouthfuls and retires,
leaving behind him a desert and a ruin in the spot before occupied by
a veritable palace, full of prodigious activity.

[Illustration: FIG. 2.]

The colonies are not only exposed to the devastations of those who
feed on their members; they have other enemies in the animals who
covet their stores of food. The most inveterate robber of bees is the
nocturnal Death's Head Moth. When he has succeeded in penetrating the
hive the stings of the proprietors who throw themselves on him do not
trouble him, thanks to his thick fleece of long hairs which the sting
cannot penetrate; he makes his way to the cells, rips them open,
gorges himself with honey, and causes such havoc that in Switzerland,
in certain years when these butterflies were abundant, numbers of
hives have been found absolutely empty.[15] Many other marauders and
of larger size, such as the Bear, also spread terror among these
laborious insects and empty their barns. No animal is more crafty than
the Raven, and the fabulist who wished to make him a dupe was obliged
to oppose to him the very cunning Fox in order to render the tale
fairly life-like. A great number of stories are told concerning the
Raven's cleverness, and many of them are undoubtedly true. There is no
bolder robber of nests. He swallows the eggs and eats the little ones
of the species who cannot defend themselves against him; he even seeks
the eggs of Sea-gulls on the coast; but in this case he must use
cunning, for if he is discovered it means a serious battle. On the
coast also the Raven seeks to obtain possession of the Hermit-crab.
This Crustacean dwells in the empty shells of Gasteropods. At the
least alarm he retires within this shell and becomes invisible, but
the bird advances with so much precaution that he is often able to
seize the crab before he has time to hide himself. If the raven fails
he turns the shell over and over until the impatient crustacean allows
a claw to emerge; he is then seized and immediately devoured.

   [15] Huber, _Nouvelles Observations sur les Abeilles_,
        t. ii. p. 291.

If there is a question of hunting larger game like a Hare, the Raven
prefers to take an ally. They start him at his burrow and pursue him
flying. In spite of his proverbial rapidity the hare is scarcely able
to flee more than two hundred yards. He succumbs beneath vigorous
blows on his skull from the beaks of his assailants. During winter, in
the high regions of the Alps, when the soil is covered with snow, this
chase is particularly fruitful for ravens. The story is told of that
unfortunate hare who had hollowed out in the snow a burrow with two
entrances. Two of these birds having recognised his presence, one
entered one hole in order to dislodge the hare, the other awaited him
at the other opening to batter his head with blows from his beak and
kill him before he had time to gain presence of mind.[16]

   [16] F. von Tschüdi, _Les Alpes_, Berne and Paris, 1859.

Rooks sometimes hunt in burrows by ingeniously-concerted operations.
Mr. Bernard[17] has described the interesting way in which the Rook
hunts voles or field-mice in Thuringia. His curiosity was excited by
the way in which numerous rooks stood about a field cawing loudly. In
a few days this was explained: the field was covered with rooks; the
original assemblage had been calling together a mouse-hunt, which
could only be successfully carried out by a large number of birds
acting in conjunction. By diligently probing the ground and blocking
up the network of runs, the voles, one or more at a time, were
gradually driven into a corner. The hunt was very successful, and no
more voles were seen in that field during the winter.

   [17] _Zoologist_, October 1892.

_Coursing._--Other animals are not easily discouraged by the swiftness
of their prey; they count on their own resistance in order to tire the
game; some of them also manage their pursuit in the most intelligent
way, so as to preserve their own strength while the tracked animal's
strength goes on diminishing until exhaustion and fatigue place him at
their mercy.

Mammals especially, such as Dogs, Wolves, and Foxes, exercise this
kind of chase; it is, exactly, the coursing which Man has merely had
to direct for his own benefit. Wild dogs pursue their prey united in
immense packs. They excite each other by barking while they frighten
the game and half paralyse his efforts. No animal is agile and strong
enough to be sure of escaping. They surround him and cut off his
retreat in a most skilful manner; Gazelles and Antelopes, in spite of
their extreme nimbleness and speed, are caught at last; Boars are
rapidly driven into a corner; their vigorous defence may cost the life
of some of the assailants, but they nevertheless become the prey of
the band who rush on to the quarry. In Asia wild dogs do not fear even
to attack the tiger. Many no doubt are crushed by a blow of the
animal's paw or strangled in his jaws, but the death of comrades does
not destroy either the courage or the greediness of the surviving
aggressors. Their number also is such that the great beast, covered by
agile enemies who cling to him and wound him in every part, must at
last succumb.

Wolves hunt also in considerable bands. Their audacity, especially
when pressed by hunger in the bad season, is well known. In time of
war they follow armies, to attack stragglers and to devour the dead.
In Siberia they pursue sledges on the snow with terrible perseverance,
and the pack is not delayed by the massacre of those who are shot. A
few stop to devour at once their fallen comrades, while the others
continue the pursuit.

Besides these brutal chases wolves seem able to exercise a genuine
feint. Sometimes it is a couple who hunt in concert. If they meet a
flock, as they are well aware that the dog will bravely defend the
animals entrusted to him, that he is vigilant, and that his keen scent
will bring him on them much sooner than the shepherd, it is with him
that they first occupy themselves. The two wolves approach secretly;
then suddenly one of them unmasks and attracts the attention of the
dog, who rushes after him with such ardour that he fails to perceive
that in the meantime the second thief has seized the sheep and dragged
it into the wood. The dog finally renounces his pursuit of the
fugitive and returns to his flock. Then the two confederates join each
other and share the prey. In other circumstances it is a wolf who
hunts with his female. When they wish to obtain possession of a deer,
whose robust flight may last a long time, one of the couple, the male
for example, pursues him and directs his chase in such a way that the
game must pass by a place where the female wolf is concealed. She then
takes up the chase while the male reposes. It is an organised system
of relays. The strength of the deer becomes necessarily exhausted; he
cannot resist the animation shown by his active foe, and is seized and
killed. Then the other wolf calmly approaches the place of the feast
to share his part of the booty.

The small but bold Hawk called the Merlin also courses in relays in
exactly the same manner. These birds pursue a Lark or a Swallow in the
most systematic manner. First one Merlin chases the bird for a short
time, while his companion hovers quietly at hand; then the latter
relieves his fellow-hunter, who rests in his turn. The victim is soon
tired out and caught in mid-air by one of the Merlins, who flies away
with him, leaving his companion to hunt alone, while he feeds the
young brood.[18]

   [18] C. St. John, _Wild Sports and Natural History of the
        Highlands_, chap. xi.

The Fox also successfully uses this method of coursing with relays.
There are indeed few animals who possess so many tricks of all kinds
to gain possession of their prey. Constantly prowling about the
fields, he neglects no propitious circumstance, and profits by all the
advantages furnished by the situation of places or the habits of the
game he is seeking. He pursues tired or wounded animals whom he meets,
and easily masters them. If he finds a burrow, he quickly hollows a
hole and brings to light the young rabbits who thought themselves in
safety in the bowels of the earth; he robs nests placed in the
thickets, and devours the young birds. Beehives are not protected
against his greediness by the stings of the swarms; he rolls on the
earth, crushes his assailants, and finally triumphs over the
discouraged insects and gorges himself with honey.

[Illustration: FIG. 3.]

Birds of prey also invent ingenious combinations to reach a good
flier. Most of the great rapacious birds of rapid flight or with
powerful talons are so well organised for the chase that they have no
need of cunning. To see the prey, to seize it and devour it, are acts
accomplished in a moment by the single fact of their natural
organisation. It is rather among those who are less well endowed that
one finds real art and frequent ruses. The Goshawk (_Astur
palumbarius_, Fig. 3) is sufficiently strong and flies sufficiently
well to seize small birds; but in order to obtain a copious repast at
one snatch he prefers to attack pigeons. Generally the strength of
their wings promptly places them in safety. He therefore hides himself
in the neighbourhood of the pigeon-house, ready to fall on those
pigeons who pick up food around. But the pigeons are suspicious, and
if they recognise his presence they remain hidden in their dwellings.
In this case it has sometimes been found that the Goshawk has quietly
flown up to their house and alighted on its summit; there, by
violently beating his wings, he gives a succession of sudden blows to
the roof. Startled and frightened by this unaccustomed noise, the
inhabitants dart out, and the bird of prey can then profit by their
alarm to seize one or two.[19]

   [19] Wodzicki, "Ornithologische Miscell.," _Journ. f.
        Ornithol._, 1856.

The _Pseudaetus_ is also obliged to have recourse to a subterfuge in
order to gain birds that fly well. He easily destroys fowls, and hunts
them so successfully that in Spain, in certain isolated farms, it has
been necessary to give up rearing fowls in consequence of these
numerous depredations. But to seize pigeons is not so easy a matter.
Generally, according to Jerdon, two birds unite to attack a band. One
of the aggressors pretends to wish to seize them from below. This is a
very unusual method, for birds of prey always rise above the game in
order to throw themselves down on it. This puts out the pigeons, and
they fear the manoeuvre all the more because they are unaccustomed to
it. During this instant of confusion the second assailant passes
unperceived above them, plunges into the midst and seizes a pigeon;
there is a new panic, by which the first aggressor profits in order to
rise rapidly in his turn and seize a second victim.

_Struggles that terminate the hunt._--It is not always sufficient for
the hunter to find game and to reach it. If the game is of large size
it may be able to hold its own, and the pursuit may end in a violent
struggle, in which both skill and cunning are necessary to obtain
conquest.

The Bald Eagle of North America (_Haliäetus leucocephalus_) hides
himself on a rock by the edge of a stream and awaits the passing of a
swan. This eagle is brave and strong, but the palmiped is vigorous,
and though inferior in the air, he has an advantage on the water, and
may escape death by plunging. The eagle knows this advantage, so he
compels the swan to remain in the air by attacking him from below and
repeatedly striking his belly. Weakened by the flow of blood, and
obliged to fly, not being able to reach the water without finding the
sharp beak which strikes him, the swan succumbs in this unequal
combat, which has been vividly described by Audubon.

[Illustration: FIG. 4.]

The bird who displays the most remarkable qualities in this struggle
which terminates the chase, exhibiting indeed a real fencing match, is
the Secretary Bird (_Gypogeranus reptilivorus_. Fig. 4.) He is the
more interested in striking without being himself struck since the
fangs with which his prey, the snake, is generally armed might at the
first blow give him a mortal wound. In South Africa he pursues every
snake, even the most venomous. Warned by instinct of the terrible
enemy he has met, the reptile at first seeks safety in flight; the
Secretary follows him on foot, and the ardour of the chase does not
prevent him from being constantly on guard. This is because the snake,
finding himself nearly overtaken, suddenly turns round, ready to use
his defensive weapons. The bird stops, and turns in one of his wings
to protect the lower parts of his body. A real duel then begins. The
snake throws himself on his enemy, who at each stroke parries with the
end of his wing; the fangs are buried in the great feathers which
terminate it, and there leave their poison without producing any
effect. All this time with the other wing the Secretary repeatedly
strikes the reptile, who is at last stunned, and rolls over on the
earth. The conqueror rapidly thrusts his beak into his skull, throws
his victim into the air, and swallows him.[20]

   [20] The combat was minutely described by Le Vaillant
        (_Hist. Nat. des Oiseaux d'Afrique_, Paris, 1798, t. i. p.
        177), whose account has been confirmed by many subsequent
        observers.

[Illustration: FIG. 5.]

_Hunting with projectiles._--It has often been repeated that Man is
the only creature sufficiently intelligent to utilise as weapons
exterior objects like a stone or a stick; in a much greater degree,
therefore, it was said, was he the only creature capable of striking
from afar with a projectile. Nevertheless creatures so inferior as
fish exhibit extreme skill in the art of reaching their prey at a
distance. Several act in this way. There is first the _Toxotes
jaculator_, who lives in the rivers of India. His principal food is
formed by the insects who wander over the leaves of aquatic plants. To
wait until they fell into the water would naturally result in but
meagre fare. To leap at them with one bound is difficult, not to
mention that the noise would cause them to flee. The _Toxotes_ knows a
better trick than that. He draws in some drops of water, and,
contracting his mouth, projects them with so much force and certainty
that they rarely fail to reach the chosen aim, and to bring into the
water all the insects he desires.[21] (Fig. 5.) Other animals also
squirt various liquids, sometimes in attack, but more especially in
defence. The Cephalopods, for example, emit their ink, which darkens
the water and allows them to flee. Certain insects exude bitter or
foetid liquids; but in all these cases, and in others that are similar,
the animal finds in his own organism a secretion which happens to be
more or less useful to his conservation. The method of the _Toxotes_
is different. It is a foreign body which he takes up, and it is an
intended victim at which he takes aim and which he strikes; his
movements are admirably co-ordinated to obtain a precise effect.

   [21] Cuvier et Valenciennes, _Hist. Nat. des Poissons_,
        Paris, 1831, t. vii. p. 231.

Another fish, the _Chelinous_ of Java, also acts in this manner. He
generally lives in estuaries. It is therefore a brackish water which
he takes up and projects by closing his gills and contracting his
mouth; he can thus strike a fly at a distance of several feet. Usually
he aims sufficiently well to strike it at the first blow, but
sometimes he fails. Then he begins again until he has succeeded, which
shows that his movements are not those of a machine. He knows what he
is doing, what effect ought to be produced, and whether this desired
result has happened, and he perseveres until the insect has fallen.
These facts are unquestioned; the Chinese preserve these curious fish
in jars, and amuse themselves by making them carry on this little
exercise. Many observers have witnessed and described it.

_Particular circumstances put to profit._--In the various kinds of
hunting which we have been passing in review, it is certain that the
animals in question generally exercise them nearly always in the same
manner. If an animal has carried out a ruse successfully he does not
abandon it, but reproduces it as often as it is efficacious. When,
however, conditions happen to change, animals are prompt to profit by
them, and one sees how all these acts are derived from reflection.
This is the clearer the more the favourable circumstance is accidental
and unforeseen, when it is not possible to consider the animals as
accustomed to profit by it.

In the wild regions of Africa it happens that from some reason or
another, perhaps from the effect of lightning on immense forests,
dense thickets or plains covered by tall plants become the prey of
gigantic fires which spread as long as they find food on their road.
The heat as of a furnace arises above and around; an acrid smoke veils
everything, and the frightened animals flee before the scourge.
Travellers who have witnessed these magnificent scenes often insist on
the panics thus produced, and describe the inoffensive lion fleeing in
the midst of a herd of gazelles. All are seized by the same fear,
because all are exposed to the same danger. But birds, whose wings can
carry them at will afar from the furnace, preserve greater presence of
mind, and profit by the public calamity and general anxiety to make a
successful hunt and copious feasts. One may see the birds of prey
flying in front of the fire and seizing easy victims. Certain birds of
Africa are the most furious hunters during a fire. Legions of insects
flee far from the tall dried plants, and clouds of birds arrive to
throw themselves on them. They pursue them with incredible audacity
through the smoke close to the flames and always retire in time to
avoid singeing. A member of the Crow family who inhabits India,
_Anomalocorax splendens_, enjoys a deserved reputation of astuteness
and allows no opportunity to escape without seizing it by the
forelock. In ordinary times his food is composed of very varied
substances--crabs, insects, worms, etc.; but if he perceives afar an
ascending cloud he immediately abandons his small researches, knowing
there is something better to be done over there. He is not selfish,
and he calls a few comrades and they all put themselves into position
to await events. They know very well the relation that exists between
this smoke and the prey they covet. The fire indicated by the smoke
can have no other reason in this hot country than the cooking of food.
A Hindoo family are in fact installed and preparing their repast. The
birds see all this and observe. The Hindoos are accustomed to throw
outside the remains of their meals, and the _Anomalocorax_, who have
come together from afar to await patiently this result, then throw
themselves on the quarry. (Jerdon.)

Tennent narrates a singular trick which was twice, to his knowledge,
played on a dog by two of these small glossy crows of Ceylon. The dog
was gnawing a bone and would not be disturbed from the pure delight of
sucking the marrow of which he was the legitimate proprietor. A crow
approached the scene of the feast, and conceived the design of taking
possession of it; he began by hopping around the dog, going and
coming, trying to attract the animal's attention and ready to profit
by the first distraction. His gambols remaining without result, he
understood that he would not succeed and he flew away; but it was only
to return accompanied by a friend possessing as little respect as
himself for the property of others. The associate perched on a branch
a few steps away, while the first crow renewed his attempts by flying
around the bone and the dog; but the latter remained impassive. Then
the second personage, whose part had hitherto been to remain
contemplative, flew off his branch, threw himself on the dog and gave
him a formidable blow on the spine. Seized with indignation, the dog
turned round to punish the author of this unjustifiable aggression;
but the bird was already far away, and in the meanwhile from the other
side the first _Anomalocorax_ seized the long-coveted bone and also
took flight. The feelings of the sheepish dog who saw both his
vengeance and his repast flying away in the air may be better imagined
than described.[22]

   [22] Tennent, _Ceylon_, vol. i. p. 171.

All the birds, indeed, of this family know how to reach their ends. I
have already spoken of certain hunts of the Raven; it is even said
that in Iceland he knows when a ewe is going to give birth to young,
and awaits this moment with immense patience. As soon as the lamb
appears the Raven alights on him, digs out his eyes, and devours them.

The Quelelis or Guadaloupe Caracara (_Polyborus lutosus_), a
Californian bird of prey, is a cruel enemy to animals like the goat
when they are about to bring forth their young. No sooner is one kid
born, and while the mother is yet in labour with the second, than the
birds pounce upon it, and should the mother be able to interfere, she
is assaulted also. If there are a number of young kids together, the
birds unite their forces and with great noise and flapping of wings
succeed in separating the weakest and killing it.[23]

   [23] Bendire, _Life Histories of North American Birds_,
        1892, p. 319.

Dr. J. Lowe has recently called attention to a very curious method of
attracting prey adopted by the Blackcap (_Sylvia atricapilla_) at
Orotava, Teneriffe.[24] This bird has discovered that the juice exuded
by certain flowers (_Hibiscus Rosa sinensis_ and _Abutilon frondosum_)
is attractive to the insects upon which he preys; he therefore
punctures the petals of these flowers in order to promote the
exudation of this viscid secretion.

   [24] Linnæan Society, 1st June 1893.

Many of us in our schooldays have admired the intelligence of Jackdaws
having their nests in some old tower or belfry. They are able to
distinguish according to the hour the significance of the various
school bells. Most of these clangs do not move them, and they continue
to attend to their affairs without paying attention. Their attention
is only attracted by the ringing which marks the beginning and the end
of recreation time. At the sound of the first they all flee and
abandon the courts before even a single pupil has yet appeared. The
bell, on the contrary, which marks the end of recreation time invites
them to descend in a band to collect the crumbs of lunch. They arrive
in a hurry, so as to be the first to profit by the repast, not waiting
even until the place is abandoned; they know very well that the young
people still there are not to be feared, having no time now to be
occupied with them.

In this class of facts, there are a certain number which may be
considered as more marked by custom and perhaps less marked by
spontaneous reflection. Such, for example, is the custom of Sharks and
Seagulls to follow ships.

In the seas where Dog-fish are abundant, one or more of them become
attached to a ship, and quit it neither night nor day. One may believe
sometimes that they are not there; but if any object is thrown into
the sea, the fin of one of these monsters appears at the surface;
everything which is thrown overboard disappears in their large
jaws--kitchen refuse, bottles, etc. When a dead body is thrown into
the sea it is soon seized by the shark, while living men who fall into
the water have great difficulty in escaping, and are often drawn up
horribly mutilated and half dead.

Sea-gulls also follow vessels when they approach the coast. It is a
pleasant sight to see the noisy band animating the monotonous
splendour of the ocean; they arrive as soon as a vessel is one or two
days' journey from land. Henceforth they do not leave her, flying
behind and plunging in her wake; they profit by the disturbance
produced by the gigantic machine to capture the stunned fishes.

On land exactly the same kind of chase is carried on by Rooks, Crows,
and Magpies, who follow the plough to seize the worms which the
ploughshare turns up in the open earth. In autumn they cover the
fields, animated and active, pilfering as the furrow is hollowed out.

Certain rapacious birds who are awkward in hunting, especially Kites,
make up for their lack of skill by audacious impudence. Constantly on
the watch for better hunters like the Falcon, they throw themselves on
him as soon as he has seized his prey. The proud bird, though much
more courageous, stronger, and more skilful than these thieves,
usually abandons the prey either because the burden embarrasses him in
the struggle, or else because he knows that he can easily find
another. These highway robbers of the air often unite to gain
possession of a prey already taken and killed, and ready to be eaten.
A handsome Falcon of the Southern States of North America, the
Caracara Eagle (_Polyborus cheriway_), frequently steals fish from the
Brown Pelicans on the coast of Texas. When the Pelicans are returning
from their expeditions with pouches filled with fish, the Caracaras
attack them until they disgorge, and then alight to devour the stolen
prey. They do not attack the outgoing birds, but only the incoming
ones, and they wait until they reach the land (so that the contents of
the pouches may not fall into the water) before pouncing on them.[25]

   [25] Bendire, _Life Histories of North American Birds_,
        p. 315.

Among other animals a habit has been formed from some special
circumstance. As an extreme case in this group we meet with parasites
of whom some cannot live outside a particular nest, and are even
absolutely transformed by this kind of life. But between these and
independent hunters there are an extreme number of intermediate
stages, of which it is sufficient to mention a few.[26]

   [26] For a discussion of this subject, see P. van Beneden,
        _Commensaux et Parasites_, Paris, 1875.

The _Fierasfer_, a little fish of the Mediterranean, installs himself
in the respiratory cavity of a Holothurian; he does not live at the
expense of his host's flesh, but contents himself with levying a tax
on the foods which enter the cavity. It is a case of commensalism of
which there are very numerous examples. Other cases may be mentioned
which are still further removed from parasitism. Among these may be
mentioned the birds who relieve large mammals of their vermin.

One of them, the Red-beaked Buffalo bird (_Buphaga erythrorhyncha_),
lives in Abyssinia. This bird is insectivorous. He has remarked that
the ruminants constitute baits for flies; therefore he never leaves
these animals, hops about on their backs and delivers them from
annoying parasites; the buffaloes, who recognise this service, allow
the bird to wander quietly over their hide. The _Buphaga_, who gives
himself up entirely to this kind of chase, is often called the
Beef-eater. He is only found in the society of flocks, of camels,
buffaloes, or oxen. He settles on the back, legs, and snouts of these
living baits. They remain passive even when he opens the skin in order
to draw out the flies' larva; they know the benefit of this little
operation. The patience of the oxen is certainly due to custom, for it
is observed that herds which are not used to this bird manifest great
terror when he prepares to alight on them, so that they even take
flight from this small aggressor.

Sometimes it is not easy to understand the advantages derived by the
animal from the conditions in which he is usually found. Thus, for
example, there is a fish, the _Polyprion cernium_, which accompanies
driftwood on which Barnacles have fixed themselves. Yet the remains of
these Crustaceans are never found in his stomach, and it is known on
the contrary that he lives exclusively on other small fish. It is
possible that these find their food in fragments of wood at the
expense of the barnacles, and that therefore the _Polyprion_ which
hunts them is always near driftwood thus garnished.

_Methods of utilising the captured game._--Frequently it is not enough
for the animal to obtain possession of his prey. Before making his
meal it is still necessary to find a method of making use of it,
either because the eatable parts are buried in a thick shell which he
is unable to break, or because he has captured a creature which rolls
itself into a ball and bristles its plumes. Here are some of the more
curious practices followed in such cases.

Sometimes it is a question of carrying off a round fruit which offers
no prominence to take hold of. The Red-headed Melanerpes (_Melanerpes
erythrocephalus_) of North America is very greedy with regard to
apples, and feeds on them as well as on cherries. It takes him a
considerable time to consume an apple, and as he is well aware of the
danger he runs by prolonging his stay in an orchard, he wishes to
carry away his booty to a safe and sheltered spot. He vigorously
plunges his open beak into the apple; the two mandibles enter
separately, and the fruit is well fixed; he detaches it and flies away
to the chosen retreat. Apes are very skilful in utilising their booty.
Cocoa-nuts are rather hard to open, but Apes do not lose any part of
them; they first tear off the fibrous envelope with their teeth, then
they enlarge the natural holes with their fingers, and drink the milk.
Finally, in order to reach the kernel they strike the nut on some hard
object exactly as Man would do. The Baboons (_Cynocephali_), whose
courage is prodigious, since they will fight in a band against a pack
of dogs or even against a leopard, are also very prudent and very
skilful. They know that courage is no use against the sting of a
venomous snake, and that the best thing is to avoid being bitten. The
scorpion, whose dart is perfidious, also inspires their distrust, but
as they like eating him they endeavour to catch him. This is not
indeed very difficult if one carefully observes his movements, and it
is possible to seize him suddenly by the tail, as I have often done,
without being stung. Apes employ this method, pull out his sting, and
crunch the now inoffensive Arachnid. They also like ants, but fear
being bitten by them; when they wish to enjoy them, they place an open
hand on an ant-hill and remain motionless until it is covered by
insects. They can then absorb them at one stroke without fear.

One would not think that an animal so well defended as the Hedgehog
need fear becoming the prey of the Fox. Rolled in a ball, bristling
with hard prickles which cruelly wound an assailant's mouth, nothing
will induce him to unroll so long as he supposes the enemy still in
the neighbourhood. It is vain to strike him or to rub him on the
earth; he remains on the armed defensive. Only one circumstance
disturbs him to the point of making him quit his prudent posture; it
is to feel himself in the water, or even simply to be moist. The fox
is acquainted with this weakness, therefore as soon as he has captured
a hedgehog he rolls him in the nearest marsh to strangle him as soon
as his head appears. It may happen that there is no puddle in the
neighbourhood suitable for this bath; it is said that in this case the
fox is not embarrassed for so small a matter, and provides from his
own body the wherewithal to moisten the hedgehog.

The combination is complicated, and approaches more nearly the methods
employed by Man when the animal makes use of a foreign body, as a tool
or as a fulcrum, to achieve his objects. A snake is very embarrassed
when he has swallowed an entire egg with the shell; he cannot digest
it in that condition, and the muscles of his stomach are not strong
enough to break it. The snake often finds himself in this condition,
and is then accustomed either to strike his body against hard objects
or to coil himself around them until he has broken the envelope of the
eggs he contains.

The Snake himself is treated in this way in South America. The Sulphur
Tyrant-bird picks up a young snake by the tail, and, flying to a
branch or stone, uses it like a flail until its life is battered
out.[27]

   [27] W. H. Hudson, _Naturalist in La Plata_, p. 73.

It would be a paradox to attribute great intelligence to Batrachians;
yet certain facts are recorded which show them to be capable of
reflection. Among others the case is quoted of a green frog who
obtained possession of a small red frog, and who proposed to swallow
him. The other was naturally opposed to the realisation of this scheme
and struggled with energy. Seeing that he would not succeed, the green
frog went towards the trunk of a tree and, still holding his victim,
struck him many times vigorously against it. At last the red frog was
stunned, and could then be swallowed at leisure.

Gasteropods are not always protected by their calcareous shells any
more than tortoises are by their carapaces; for certain birds know
very well how to break them. Ravens drop snails from a height, and
thus get possession of the contents of the shell.

The most celebrated breaker of shells is the Bearded Vulture or
Lammergeyer (_Gypäetos barbatus_). This rapacious bird is very common
in Greece, where he does not usually live on large prey. If he
sometimes carries away a fowl, it is exceptional; he prefers to live
on carrion or bones, the remains of the feasts of man or of the true
vulture. He rises very high carrying these bones in his talons and
allows them to fall on a stone, swallowing the fragments after having
sucked out the marrow. He is also greedy of tortoises, and uses the
same method to break their carapaces, eating the soft parts. These
facts have been many times observed by Brehm and other trustworthy
naturalists. It is even said that in Greece every Lammergeyer chooses
a rock on which he always comes to execute the tortoises he has
captured. It was no doubt beneath one of these birds so occupied that,
according to the story, mischance conducted Æschylus.

Neither the beak nor the claws of the Shrike or Butcher-bird (_Lanius
excubitor_) are strong enough to enable him to tear his prey easily.
When he is not too driven by hunger he installs himself in a
comfortable fashion for this carving process, places on a thorn or on
a pointed branch the victim he has made, and when it is thus fixed
easily devours it in threads.

The _Lanius collurio_, an allied bird, uses this method still more
frequently. He even prepares a small larder before feasting. One may
thus see on a thorny branch spitted side by side Coleoptera, crickets,
grasshoppers, frogs, and even young birds, which he has seized when
they were in flight.[28] (Fig. 6.)

   [28] Naumann, _Naturgeschichte der Vögel Deutschlands,
        etc._, Stuttgart, 1846-53.

[Illustration: FIG. 6.]

Of all these well-attested facts that which perhaps best shows how
animals in certain circumstances may take advantage of a foreign body
to utilise the product of the chase, is the following, the observation
of which is due to Parseval-Deschênes.[29] He followed during several
hours an ant bearing a heavy burden. On arriving at the foot of a
little hillock the animal was unable to mount with his load, and
abandoned it--a very extraordinary fact for one who knows the
inconceivable tenacity of insects. The abandonment therefore left hope
of return. The ant at last met one of his companions, who was also
carrying a burden. They stopped, took counsel for an instant, bringing
their antennæ together, and started for the hillock. The second ant
then left his burden, and both together then seized a twig and
introduced its end beneath the first load which had been abandoned
because of its weight. By acting on the free extremity of the twig
they were able to use it exactly as a lever, and succeeded almost
without trouble in passing their booty on to the other side of the
little hillock. It seems to me that these ants who invented the lever
are worthy of admiration, and that their ingenuity does not yield to
our own.

   [29] Gratien de Semur, _Traité des erreurs et des
        préjugés_, Paris, 1848, p. 70.

I will, finally, give an example of the methods of surmounting a
difficulty of another order in utilising captured prey. It is not
enough to capture prey, or even to possess the means of utilising the
prey when captured. It is sometimes also necessary to prevent the
booty being taken possession of by some other member of the same
species as the hunter. Spiders are specially liable to this danger,
because their victims are noisy when caught. Hudson has described an
ingenious device made use of by a species of _Pholcus_--a quiet
inoffensive Spider found in Buenos Ayres--to escape this risk. This
spider, though large, is a weak creature, and possesses little venom
to despatch a fly quickly. The task of killing it is therefore long
and laborious, and the loud outcries of the victim may be heard for a
long time, sometimes for ten or twelve minutes. The other spiders in
the vicinity are naturally excited by this noise, and hurry out from
their webs to the scene of conflict, and the strongest or most daring
sometimes succeeds in carrying away the fly from its rightful captor.
Where, however, a large colony have been long in undisturbed
possession of a ceiling, when one has caught a fly he rapidly throws a
covering of web over it, cuts it away, and drops it down to hang
suspended by a line at a distance of two or three feet from the
ceiling. The other spiders arrive on the scene, but not finding the
cause of the disturbance retire to their own webs again. When the
coast is thus clear, our spider proceeds to draw up the captive fly,
now exhausted by its struggles.[30]

   [30] W. H. Hudson, _Naturalist in La Plata_, 1892, p. 189.

_War and brigandage._--When Man attacks animals of another species,
either to kill them and feed on their flesh, or to steal the
provisions which they have amassed for themselves or their young, this
is called "hunting," and is considered as perfectly legitimate. When
men turn to beings of their own species either to kill them or to rob
them, several different cases are distinguished. If the assailants are
few in number, it is called "brigandage," and is altogether
reprehensible; but if both assailant and assailed are considerable in
number, the action is called "war," and receives no reprobation.

There are hunters among animals as well as among ourselves, and we
have seen their various methods of procedure; but there are also
brigands and warriors, and our superiority even in this department is
not so absolute as might be imagined.

Independently of ordinary brigandage, which is a brutal and simple
form of the struggle for life, manifested every time the animals find
themselves before a single repast, there are interesting facts to be
noted concerning robbers who act in a manner that Man himself would
not disavow. It is worthy of remark that it is the most sociable
animals who furnish us with the most characteristic examples.

Bees have a just renown as honest and laborious insects; there are,
however, some who depart from the right road, and they do not do it by
halves.[31] Among Hymenoptera the lazy profess the theory that pollen
belongs to all bees, and that stored-up honey does not constitute
private property. Therefore, to protest against work and economy, sly
methods are employed by a few to utilise as their own private property
the resources which Nature has made for all; they adopt the plan of
plundering the working insects, and carrying away for themselves the
pollen which the others had had the audacity to seek among the
flowers.

   [31] L. Büchner, _Aus d. Geistesleben d. Thiere_, Berlin, 1879.

To arrive at these ends these clever Hymenoptera employ cunning, and
endeavour to pose as workers. They place themselves at the approaches
to a hive, and when a worker arrives laden with its burden they
advance towards it, caress it with their antennæ, take possession of
its pollen as if to relieve it of a burden, and then fly away to their
own hive.

Others adopt less diplomatic proceedings. Some unite to intrude in a
badly-guarded hive, and gorge themselves with the honey to which they
have no right. Following up this success, they bring accomplices; a
veritable band of brigands is organised, who have no other industry
than to seize honey already manufactured in order to fill their own
cells. Their audacious enterprises are not always crowned with
success; they are repulsed in populous and well-organised hives, but
they are successful in the weaker ones. Sometimes they act with
violence, and to reduce a swarm they first fall on the queen and kill
her with their stings. Disconcerted by her death, the bees allow the
pillage of their dwelling, and the cells are robbed from top to
bottom. In some cases the deprived proprietors, in their turn carried
away by this insanity of rapine, even go over themselves to the
assailing party, and carry their own honey to the house of the
bandits. Henceforth they unite their fortune to that of the others,
and share in their easy and adventurous life.[32]

   [32] P. Huber, _Recherches sur les Moeurs des Fourmis
        indigènes_, Paris and Genève, 1810, chap. ix.

Bates has given a vivid description of the armies of the South
American Foraging Ants (_Eciton_). They are carnivorous hunters who
march in large armies, and are found on the banks of the Amazon,
especially in the open campos of Santarem. The _Eciton legionis_
chiefly carry off the mangled larvæ and pupæ of other ants. They will
attack the nests of a bulky species of the genus _Formica_; they lift
out the bodies of these ants and tear them in pieces, as they are too
large for a single _Eciton_ to carry off, a number of carriers seizing
each fragment. They seem to divide into parties, one party excavating
and the other carrying away the grains of earth to a distance from the
hole just sufficient to prevent them rolling back into it. There is,
however, no rigid distribution of labour, the miners sometimes
becoming carriers, and then again assuming the office of carrying off
the prey. In marching off they form a broad and compact column, sixty
or seventy yards in length, those who may be empty-handed assisting
heavily-laden comrades. The _Eciton drepanophora_ attacks and carries
off all kinds of insects, especially wingless species, such as
maggots, caterpillars, larvæ of cockroaches, etc. An eyeless
species,[33] the _Eciton erratica_, rapidly forms covered passages
under which to advance, and shows great skill in fitting the keystone
to these convex arcades.[34]

   [33] Belt points out that blindness is an advantage in the
        particular mode of hunting adopted by these ants, enabling
        them to keep together. Those species of _Eciton_ which hunt
        singly have very well developed eyes.

   [34] Bates, _Naturalist on the Amazons_ (edition of 1892),
        pp. 355-363.

Belt has also made some extremely interesting observations on the
_Ecitons_, whom for intelligence he places first among the ants of
Central America, and as such at the head of the Articulata.[35]

   [35] See _Naturalist in Nicaragua_, 1888, pp. 17-29.

_Expeditions to acquire slaves._--In order to reduce one's own species
to slavery, it seems at first that an intelligence is required as
developed as that of Man. It is necessary in fact to attack beings
nearly equally well endowed from an intellectual and physical point of
view. The enterprise evidently presents every possible difficulty; but
in case of success, the result more than compensates for the effort.
The master in future need not trouble to work, for he possesses a tool
capable of doing everything as well as himself, since by means of
language he can easily impress his will on the acts of the other; a
domestic animal is only an auxiliary, the slave entirely replaces his
owner in every labour.

Several species of ants thus obtain slaves. The best known of these is
the _Polyergus rufescens_. We shall see in another chapter in what way
they take advantage of slaves, and what relations they have with them.
At present it is only necessary to say how the slaves are obtained.
The expeditions organised for this purpose are simply a perfected
chase, both by the way in which they are conducted, and by the result
to which they are to lead. It is not a question of brutally seizing a
prey to be devoured immediately. The captured animal must be carefully
managed, carried away alive and in such a condition that it has not
yet known a free life, and can accustom itself to new conditions. When
the _Polyergus_ or Amazon ants desire to increase their band of
slaves, one first remarks extreme excitement in the neighbourhood of
the nest. They all come out helter-skelter, but this disorder lasts
only for a short time; they soon form in line, and a regular serried
column is formed, longer or shorter according to the swarm; it has
been found to measure more than five metres long by fifteen
centimetres broad. The Amazons advance, often changing their direction
like a dog who is seeking a scent: this is exactly what they are
doing, they smell the ground with their antennæ in order to recognise
traces of the _Formica fusca_. In this march the eminently republican
instinct of the ants comes out. The band has no chief; those who are
at the head go forward smelling the ground; this slackens their pace,
so that they are passed by those in the ranks behind. Little by little
they fall into single file, and this continuing during the whole
course of the march, a particular ant may sometimes be at the head of
the column, sometimes in the middle, sometimes in the rear. At the end
of a longer or shorter period the expedition discovers a scent, which
it follows up to the nest of the _Formica fusca_. The alarm is
immediately given in the threatened ant-hill; the approach is
announced of a band of slavers, and they all rush out, some to face
their terrible adversaries while the others take up the nymphs and
eggs in their mandibles and flee in all directions to save as many as
possible of their offspring. The small ants endeavour with their
burdens to climb to the summits of blades of grass; those who succeed
are in safety with the eggs that they carry, for the Amazons do not
climb. In the meanwhile a fierce battle is going on in the
neighbourhood of the nest between the _Formica fusca_, who have made a
sortie, and the slavers. It is an unequal struggle, because the latter
are armed with formidable jaws, strong and sharp, borne by a large
head with powerful muscles. The defenders of the nest are seized and
placed _hors de combat_. They flee discouraged, and the assailants
force the entry of the dwelling. They then take possession of the
larvæ and nymphs and come out again holding them in their mandibles.
The _Polyergus_ thus laden flee as fast as possible, escaping as well
as they can from the bereaved parents, who endeavour to save their
offspring. The band returns to the nest by the same road that it came,
although not the shortest, for these insects seem to lack the sense of
direction and are guided by smell, so that they have to retrace all
the windings of the road. The march is slackened by the weight of the
booty (Fig. 7), and each travels according to his fancy, without
following the regular order of the departure. At last the ants regain
their household. The slaves, warned of the return of the victorious
army, rush out to meet it and relieve the arrivals of their burdens,
some in their zeal even carrying at the same time both the master and
his burden. The nymphs transported into the ant-hill are henceforth
cared for by their fellow-slaves; the _Polyergus_ do not trouble
themselves further.

[Illustration: FIG. 7.]

[Illustration: FIG. 8.]

_Wars of the ants._--As sociable as man, the manners of ants present
more than one resemblance to his. Slave-hunting expeditions are among
these; the wars that these insects undertake also resemble human wars.
The causes of the quarrel are of various nature, most often they
result from the close proximity of two ant swarms. The rival colonies
are always meeting in the same regions and seeking the same material;
their mutual rivalry strains their relations. A moment comes when one
of them is decidedly in the way of the other. At such a period, which
is almost a diplomatic crisis, great excitement is observed in the two
camps; there is a continual coming and going. One fine day, as the
result of some unknown act,--some mysterious _casus belli_ or
declaration of war,--two armies place themselves on the march against
each other. They advance in serried ranks. All ants do not follow the
same tactics; some throw themselves out in a thicker line, while
others form in squares. But as soon as action commences the individual
regains his rights. It is a series of duels, of fierce hand-to-hand
struggles. Legs are torn away, heads are cut off by strokes of the
jaws, abdomens are disembowelled; a terrible fury animates the
combatants, and nothing will disturb them from the battle. (Fig. 8.)
By-and-by victory remains with the fiercest or the strongest; the
vanquished draw in, carrying away as far as possible their wounded and
their dead. Nothing more is seen on the field of carnage but separated
limbs or heads which strew the ground like a multitude of small black
points. Often the enmity is not extinguished after a battle, and
several defeats are necessary before the weaker swarm is destroyed or
forced to emigrate.[36]

   [36] P. Huber, _Moeurs des Fourmis indigènes_, chap. ix.
        Many of the chief observations--given in the words of the
        original observers--as well as a summary of the facts known
        regarding the social activities of ants generally, will be
        found in the useful volume by Romanes in the International
        Scientific Series, _Animal Intelligence_, 1882.



CHAPTER III.

METHODS OF DEFENCE.

    FLIGHT--FEINT--RESISTANCE IN COMMON BY SOCIAL
    ANIMALS--SENTINELS.


Studying the animal kingdom in the manner here adopted, that is to say
by passing in review the various manifestations of zoological life, we
are necessarily led to find certain industries which are opposed to
others. We have seen the various methods of hunting; but attack calls
forth defence. In the struggle for life we find the action of beings
on other beings, and the re-action of these latter; the final result
is the expression of the difference between the two according as one
or the other is stronger.

_Flight._--Just as the most rudimentary method of attack is simple
pursuit, so the most simple and natural method of defence is flight;
but if very fleet animals like hares, gazelles, and deer can escape by
simply exerting their maximum rapidity, it is not always thus, and
certain species exercise in flight perfected methods appropriate to
circumstances, and so raise this method of defence to an art.

Of all animals the Ape most skilfully directs his flight. There is no
question that in his intelligence we may find every rudiment of our
own; but of all his qualities none more nearly approximates him to us
than his courage. There are no animals, not even the great beasts of
prey, who are so brave as Man and the Ape, and who are capable of so
much presence of mind. It is perhaps this bravery which, joined to his
sociability, has most contributed to assure the supremacy of the one.
As to the other, the road has been barred to him by his better-endowed
cousin; he is disappearing before Man, and not before nature or other
animals. In thinly-inhabited regions he is still the king. It is
generally considered that the Lion is the incarnation of courage, but
he is the strongest and the best armed; there is none before whom he
need tremble. In captivity he allows himself to be struck by the
tamer, which the most miserable ape would never suffer. The Lion will
struggle with extreme energy without calculating the difference of
strength between his opponent and himself, and will resist as long as
he is able to move. The Ape directs all his courage and presence of
mind to order his flight when he has recognised a danger that is
insurmountable. He does not act like those infatuated beasts who lose
their head and rush away trembling, in their precipitation paralysing
a great part of their resources. A band of apes in flight utilises all
obstacles that can be interposed between themselves and the pursuer;
they retire without excessive haste and take advantage of the first
shelter met with; a female never abandons her young, and if a young
one remains behind, and is in danger of being taken, the old males of
the troop go back boldly to save it at the peril of their lives. In
this connection many heroic facts have been narrated. This animal has
too frequently been judged by comparison with ourselves; he has been
regarded as a human caricature and covered with ridicule. We obtain a
very much higher idea of him if we compare him with other animals.
Always and everywhere there has been a prejudiced insistence on his
defects; we perceive them so easily because they are an exaggeration
of our own; but he also possesses qualities of the first order.

As an example of flight arranged with intelligence, we have already
seen how the _Formica fusca_ profits by the difficulty experienced by
the _Polyergus_ in climbing. It hastily gains the summit of a blade of
grass, to place there in safety the larvæ which the others wish to
carry away. The ruses adopted in flight are as varied as those of
attack. Every animal tries to profit as much as possible by all his
resources.

Larks, a feeble race of birds, rise higher in the air than any
rapacious bird, and this is often a cause of safety. Their greatest
enemy is the Hobby (_Hypotriorchis sublutes_). They fear him greatly,
so that as soon as one appears singing ceases, and each suddenly
closes his wings, falls to the earth and hides against the soil. But
some have mounted so high to pour out their clear song that they
cannot hope to reach the earth before being seized. Then, knowing that
the bird of prey is to be feared when he occupies a more elevated
position from which he can throw himself on them, they endeavour to
remain always above him. They mount higher and higher. The enemy seeks
to pass them, but they mount still, until at last the Hobby, heavier,
and little accustomed to this rarefied air, grows tired and gives up
the pursuit.[37]

   [37] _Naturgeschichte der Vögel Deutschlands_, etc.

The Gold-winged Woodpecker of the United States (_Colaptes auratus_)
often escapes Falcons either by throwing himself into the first hole
that he finds, or if he cannot find one, through seizing the trunk of
a tree with his claws. As he is a very good climber, he describes
rapid spirals around it, and the falcon cannot in flying trace such
small circles. By this method the _Colaptes_ usually escapes.[38]

   [38] Audubon, _Ornithological Biography_, New York and
        Edinburgh, 1831-49.

The Fox, who is so ingenious in hunting, is not less so when his own
safety is concerned. He knows when it is best to flee or to remain; he
is suspicious in a surprising degree, not only of man but also of the
engines which man prepares against him. He recognises them or smells
them. Certain facts almost lead us to suspect that he understands
their mechanism. When one of them has been surprised in his hole, and
the trap has been placed before every opening, he will not emerge from
the burrow. If hunger becomes too imperious, he recognises that
patience will only change the manner of his death, and then he decides
to dare fate; but previously he had done everything to flee without
passing over the snare. As long as he had claws and strength he
hollowed out the earth to form a new issue, but hunger rapidly
exhausted his vigour and he was not able to complete the work. Foxes
thus trapped have recognised immediately when one of these engines
went off, either owing to another animal being caught or from some
other reason. In this case the captive understands very well that the
mechanism has produced its effect, that it is no longer to be dreaded,
and he boldly emerges.

It has happened that foxes have been caught in a trap by a paw or else
by the tail, when delicately endeavouring to extract the bait.
Recognising the manner in which they are retained prisoners, certain
of them have had the intelligence and the courage to cut off with
their teeth the part engaged in the trap, and to escape thus
mutilated. St. John knew a fox who thus escaped by amputating a paw,
and who was able to earn his living for three or four years
subsequently, when he was finally caught.

In Australia great kangaroo hunts are organised. Generally the capture
is sufficiently easy, and the dogs are able to seize the kangaroo, but
sometimes he makes a long and rather original defence. If possible, he
directs his flight towards a river. If he reaches it he enters, and,
thanks to his great height, he is able to go on foot to a depth where
the dogs are obliged to swim. Arrived there, he plants himself on his
two posterior legs and his tail, and, up to his shoulders in the
water, awaits the arrival of the pack. With his anterior paws he
seizes by the head the first dog who approaches him, and, as he is
more solidly balanced than his assailant, he holds the dog's nose
beneath the water as long as he can. Unless a second dog speedily
comes to the rescue the first is inevitably drowned. If a companion
arrives to free him, he is so disturbed by this unexpected bath that
he regains the bank as quickly as possible, and has no further desire
to attack this suffocating prey. A strong and courageous old male can
thus hold his own against twenty or thirty dogs, drowning some and
frightening others, and the hunter is obliged to intervene and put an
end to this energetic defence by a bullet.[39]

   [39] J. Gould, _The Mammals of Australia_, London, 1845-60.

_Feint._--Many animals, when they cannot escape danger by flight, seek
safety by various feints. The device of feigning death is especially
widespread.

Many coleopterous insects and Spiders simulate death to perfection,
although it has been ascertained that they do not always adopt the
attitude which members of their species fall into when really dead.
But they remain perfectly motionless; neither leg nor antenna stirs.
McCook, who has devoted such loving study to Spiders, remarks in his
magnificent work, that the Orbweavers, especially, possess this habit.
"One who touches an Orbweaver when hanging upon its web will often be
surprised to see it suddenly cast itself from the snare, or appear to
drop from it, as though shot off by some unseen force. Unless he
understands the nature of the creature he will be utterly at a loss to
know what has become of it. In truth it has simply dropped upon the
ground by a long thread which had been instantaneously emitted, and
had maintained the Aranead in its remarkable exit, so that its fall
was not only harmless, but its return to the web assured. The legs are
drawn up around the body, and to the inexperienced eye it has the
external semblance of death. In this condition it may be handled, it
may be turned over, it may be picked up, and, for a little while at
least, will retain its death-like appearance." Preyer, who has studied
this phenomenon in various animals, comes to the conclusion that it is
usually due to unconsciousness as the result of fright.[40] McCook is
unable to accept this theory of kataplexy, so far as Spiders are
concerned. "I have frequently watched Spiders in this condition," he
observes, "to determine the point in question, and their behaviour
always impressed me as being a genuine feigning of death, and
therefore entirely within their volition. The evidence is of such
indefinite nature that one can hardly venture to give it visible
expression, but my conviction is none the less decided. I may say,
however, that my observations indicate that the Spiders remained in
this condition as long as there seemed to be any threatened danger;
now and again the legs would be relaxed slightly, as though the
creature were about getting ready to resume its normal condition, but
at the slightest alarm withheld its purpose and relapsed into
rigidity. The slight unclasping of the legs, the faint quivering
indications of a purpose to come to life, and then the instant
suppression of the purpose, were so many evidences that the power of
volition was retained, and that the Aranead might have at once
recovered if it had been disposed to do so. Again, I think that I have
never noticed anything like that gradual emergence from the
kataplectic condition which one would naturally expect if the act were
not a voluntary one. On the contrary, the spider invariably recovered,
immediately sprang upon its legs, and hoisted itself to its snare, or
ran vigorously away among the grasses."[41]

   [40] _Sammlung physiologischer Abhandlungen_, Zweite Reihe,
        Erster Heft, 1878.

   [41] H. C. McCook, _American Spiders_ (1889, etc.), vol. ii.
        pp. 437-445. Romanes has an interesting discussion of the
        habit of feigning death among animals, and cautiously
        reaches the conclusion that it is very largely due, not to
        kataplexy, but to intelligent action.--_Mental Evolution in
        Animals_, pp. 303-316. And for some remarks on this subject
        by Darwin in his Essay on Instinct, see the same volume, pp.
        365, 366. Also Alix, _Esprit de nos Bêtes_, 1890, pp.
        543-548.

Among fish, the Perch and the Sturgeon feign death; according to
Couch,[42] the Landrail, the Skylark, the Corncrake adopt the same
device. Among mammals, the best-known example is probably the Opossum.

   [42] _Illustrations of Instinct_, 1847.

An Opossum (_Didelphys azaræ_) of South America enters farms to
devastate the poultry yards. When he is discovered he runs away, but
is soon caught, and blows from sticks rain upon him. Seeing that he
cannot escape correction he seeks at least to save his life. Letting
his head fall and straightening his inert legs he receives the blows
without flinching. Often he is considered dead, and abandoned. The
cunning little beast, who desires nothing better, arises, shakes
himself, and rather bruised, but at all events alive, takes his way
back to the wood.

The Argentine Fox (_Canis azaræ_), when caught in a trap or run down
by dogs, though it fights savagely at first, after a time drops down
and apparently dies. "When in this condition of feigning death," Mr.
W. H. Hudson remarks, "I am quite sure that the animal does not
altogether lose consciousness. It is exceedingly difficult to discover
any evidence of life in the opossum, but when one withdraws a little
way from the feigning fox, and watches him very attentively, a slight
opening of the eye may be detected; and, finally, when left to
himself, he does not recover and start up like an animal that has been
stunned, but slowly and cautiously raises his head first, and only
gets up when his foes are at a safe distance. Yet I have seen
_guachos_, who are very cruel to animals, practise the most barbarous
experiments on a captive fox without being able to rouse it into
exhibiting any sign of life. This has greatly puzzled me, since, if
death-feigning is simply a cunning habit, the animal could not suffer
itself to be mutilated without wincing. I can only believe that the
fox, though not insensible, as its behaviour on being left to itself
appears to prove, yet has its body thrown by extreme terror into that
benumbed condition which simulates death, and during which it is
unable to feel the tortures practised on it. The swoon sometimes
actually takes place before the animal has been touched, and even when
the exciting cause is at a considerable distance."[43]

   [43] W. H. Hudson, _Naturalist in La Plata_, p. 203.

It is probably a measure of prudence which impels certain birds to
imitate successively the cries of neighbouring animals, in order to
persuade their enemies that all the beasts in creation are brought
together in this spot except themselves. It is perhaps going a little
too far to suppose so reflective and diplomatic a motive, but it is
not doubtful that in certain cases this custom can be very useful to
them by putting their enemies on the wrong scent. In North America
nearly all the species of the Cassique family have this custom. If
they wish to deceive the ears of the great Falcons who watch them--or
is it simple amusement?--they interrupt their own song to introduce
the most varied melodies. If a sheep bleats, the bird immediately
replies to the bleating; the clucking of a turkey, the cackling of a
goose, the cry of the toucan are noted and faithfully reproduced. Then
the Cassique returns to his own special refrain, to abandon it anew on
the first opportunity.[44]

   [44] Waterton, _Wanderings in South America_ (First Journey), ch. iii.

Not only do animals thus feign death in order to secure their own
safety, but the female sometimes endeavours to attract an enemy's
attention and feigns to be wounded in order to decoy him away from her
young. This trick is adopted especially by birds. In illustration of
this it will be sufficient to quote from Bendire's _Life Histories of
North American Birds_ some observations by Mr. Ernest Thompson of
Toronto, regarding the Canadian Ruffled Grouse (_Bonasa umbellus
togata_), commonly called the Partridge by Canadians:--"Every field
man must be acquainted with the simulation of lameness, by which many
birds decoy or try to decoy intruders from their nests. This is an
invariable device of the Partridge, and I have no doubt that it is
quite successful with the natural foes of the bird; indeed it is often
so with Man. A dog, as I have often seen, is certain to be misled and
duped, and there is little doubt that a mink, skunk, racoon, fox,
coyote, or wolf would fare no better. Imagine the effects of the
bird's tactics on a prowling fox: he has scented her as she sits; he
is almost upon her, but she has been watching him, and suddenly, with
a loud 'whirr,' she springs up and tumbles a few yards before him. The
suddenness and noise with which the bird appears cause the fox to be
totally carried away; he forgets all his former experience, he never
thinks of the eggs, his mind is filled with the thought of the wounded
bird almost within his reach; a few more bounds and his meal will be
secured. So he springs and springs, and very nearly catches her, and
in his excitement he is led on, and away, till finally the bird flies
off, leaving him a quarter of a mile or more from the nest.

"If instead of eggs the Partridge has chicks, she does not await the
coming of the enemy, but runs to meet and mislead him ere yet he is in
the neighbourhood of the brood; she then leads him far away, and
returning by a circuitous route, gathers her young together again by
her clucking. When surprised she utters a well-known danger-signal, a
peculiar whine, whereupon the young ones hide under logs and among
grass. Many persons say they will each seize a leaf in their beaks and
then turn over on their backs. I have never found any support for this
idea, although I have often seen one of the little creatures crawl
under a dead leaf."[45]

   [45] Bendire, _Life Histories of North American Birds_
        (_Smithsonian Contributions to Knowledge_, vol. xxviii.),
        1892, p. 64.

_Resistance in common by social animals._--If neither flight nor feint
has saved an animal from the hunter, he naturally fights as long as he
can, but this struggle _in extremis_ is rarely crowned with success.
Certain species, especially those which live in society, are able
nevertheless, by uniting their efforts, to resist enemies who would
easily triumph over them if they were isolated.

Among tribes of Apes mutual assistance, as described by Brehm, is
common. When by chance a bird of prey, such as an eagle, has thrown
himself on a young ape who is amusing himself far from the maternal
eye, the little one does not let himself be taken without resistance;
he clings to the branches and utters shrill and despairing cries. His
appeals are heard, and in an instant a dozen agile males arrive to
save him; they throw themselves on the imprudent ravisher and seize
him, one by the claw, another by the neck, another by a wing, pulling
him about and harassing him. The bird struggles as well as he can,
distributing around him blows from talons and beak. But he is often
strangled, and when his temerity does not receive this extreme
punishment, the feathers which fall from him when he flies away bear
witness that he has not emerged unscathed from the scuffle.

Animals like Buffaloes resist by a common defence the most terrible
Carnivora. Even the Tiger is their victim, although if one of them met
that wild beast alone he would surely become its prey. Being very
agile, the tiger can reach by one leap the back of the ruminant, whose
brutal and massive force cannot thus be exercised; but the feline who
falls into the midst of a troop fares very badly. One buffalo falls on
him with lowered horns, and with a robust blow of the head throws him
into the air. The tiger cannot regain his senses, for as soon as he
reaches the ground, and often even before, he is again seized and
thrown towards other horns. Thus thrown from one to another like a
ball, he is promptly put to death.

The less terrible Carnivora give Buffaloes no trouble. Wolves do not
dare to attack them when they are united; they await in ambush the
passage of some strayed calf, and rapidly gain possession of it before
the rest of the flock are aware, or they would dearly pay for their
attack.

The Bisons of North America, near relatives of the Buffaloes, also
repulse Wolves in common; and if Man succeeds better against them it
is owing to the skill which he shows in hiding himself and not
attracting their attention. Every one knows how Indians hunt the Bison
with arrows, and his pursuit is very risky to the hunter, for he must
not be discovered by the game, as he would then be trodden underfoot
or disembowelled. In the immense prairies where these ruminants feed,
a few Indians covered by bisons' skins advance on all fours, so that
nothing betrays their presence. The victims fall one by one beneath
silent blows, and their companions, who can see nothing suspicious in
the neighbourhood, are not disturbed, supposing them, no doubt, to be
peacefully resting.

It is not only against other animals that these great mammals have to
defend themselves; they are much afraid of heat, and they are
accustomed, especially in the south of Persia, to ruminate while lying
in the water during the hot hours of the day. They only allow the end
of the snout, or at most the head, to appear. It is a curious
spectacle when fording a river to see emerge from the reeds the great
heads and calm eyes of the Buffaloes, who follow with astonishment all
the movements of the horsemen, although nothing will disturb their
sweet and fresh siesta.

But let us return to defences arranged in common. Horses are extremely
sociable, and in the immense pampas of South America those who become
wild again live in large troops. In difficult circumstances they help
one another. If a great danger threatens them all the colts and mares
assemble together, and the stallions form a circle round the group,
ready to drive back the assailant. But they do not accomplish this
manoeuvre in the presence of an enemy of small importance. When a wolf
appears on the plain all the males run after him, seeking to strike
him with their feet and kill him, unless prompt flight delivers him
from their blows.

The sociable humour of these horses makes them compassionate towards
their fellows who are enslaved by man, and if a harnessed cart meets
on its road a free band, it is a serious matter to the owner. They run
up and surround the enslaved horse, saluting him with their cries and
gambols, having the air of inviting him to throw his harness to the
winds and follow them on the plain, where grass grows for all without
work. Naturally the driver endeavours to preserve his noble conquest,
and distributes blows with the whip to those who wish to debauch it.
Then the wild horses become furious, and throw themselves on the
vehicle; they break it with their feet and cut their comrade's traces
with their teeth to enable him to share their own free life. The
enterprise satisfactorily concluded, they gallop away neighing in
triumph.

It is owing to their union in large bands that Crows have so little to
fear from diurnal birds of prey; if one approaches, they do not
hesitate to throw themselves on him altogether. The Great Horn Owl,
however, causes many ravages among them; for when asleep at night the
Crow is without defence against the ravisher, for whom, on the
contrary, obscurity is propitious. Thus they recognise him as a
hereditary enemy, and never allow an opportunity of revenge to pass
without profiting by it. If by chance an owl appears by day and one of
them perceives him, immediately a clamour arises--a veritable cry of
war; all those who are in the neighbourhood fly to the spot, and
business ceases; the nocturnal bird of prey is assaulted, riddled with
blows from beaks, stunned, his feathers torn out, and, notwithstanding
his defence, he succumbs to numbers.

In all the preceding examples the social species unite for the common
security the forces and effects which they can derive from their own
organs.

I have spoken of the Apes and described how they defend themselves
with their hands and teeth; but in certain cases they use weapons,
employing foreign objects like a club or like projectiles.

Acts of this nature are considered to indicate a high degree of
development, and it has often been repeated that they are the appanage
of man alone; we have, however, seen the _Toxotes_, who, like all
fishes, is not particularly intelligent, squirt water on to his
victims. It is not easy to understand how a greater intellectual
effort is required to throw a stone with the hand than to project
water with the mouth. This is what the apes do, throwing on their
assailants from the heights of trees everything which comes to hand:
cocoa-nuts, hard fruits, fragments of wood, etc.

Baboons (_Cynocephali_) who usually live in the midst of rocks protect
their retreat by rolling very heavy blocks on to their aggressors, or
by forcibly throwing stones about the size of the fist. As these bands
may contain from a hundred to one hundred and fifty individuals, it is
a veritable hail of stones of all sizes which they roll down from the
heights of the mountains where they find shelter.

_Sentinels._--Not only do Apes know how to face danger or to avoid it
by a prudent flight, but they also seek to foresee it, and to avoid
exposing themselves to it. A troop of Apes, according to Brehm,
generally places the leadership in the hands of a robust and
experienced male. This primitive royalty is founded partly on the
confidence inspired by an old chief, and partly by the fear inspired
by his muscular arms and ferocious canine teeth. (Fig. 9.) He gives
himself a great deal of trouble for the security of his subjects, and
does not abuse the authority which he possesses. Always at the head,
he leaps from branch to branch, and the band follows him. From time to
time he scales a tall tree, and from its heights scrutinises the
neighbourhood. If he discovers nothing suspicious a particular
guttural grunt gives information to his companions. If, on the
contrary, he perceives some danger he warns them by another cry, and
all draw in ready to follow him in his retreat, which he directs in
the same way as he guided the forward march.

Apes are not alone in relying on the experience of one of their
members. Many other animals act in the same way: antelopes, gazelles,
elephants, who advance in troops always conducted by an old male or
female who knows all the forest paths, all the places favourable to
pasture, and all the regions which must be avoided.

[Illustration: FIG. 9.]

Others, more democratic, instead of giving up the care of their safety
to one individual, which cannot be done without abdicating some degree
of individual independence, dispose around the place which they occupy
a certain number of sentinels charged to watch over the common safety.
This custom exists among prairie dogs, moufflons, crows, paroquets,
and a great many other animals. The sentinels of the crows are not
only always on the watch, but they are extremely discriminating; they
do not give a warning at the wrong time. It is certain that these
birds can distinguish a man armed with a gun from another who merely
carries a stick, and they allow the second to approach much nearer than
the first before giving the alarm.

Paroquets of all species live in joyous and noisy bands. After having
passed the night on the same tree they disperse in the neighbourhood,
not without having first posted watchers here and there, and they are
very attentive to their cries and indications.

The great Aras or Macaws, the large and handsome parrots of the Andes,
act with much prudence when circumstances make it advisable, and they
know when they ought to be on their guard. When they are in the depths
of the forest, their own domain, they gather fruits in the midst of a
deafening noise; each one squalls and cries according to his own
humour. But if they have resolved to pillage a field of maize, as
experience has taught them that these joyous manifestations would then
be unseasonable and would not fail to attract the furious proprietor,
they consummate the robbery in perfect silence. Sentinels are placed
on the neighbouring trees. To the first warning a low cry responds; on
the second, announcing a nearer danger, all the band fly away with
vociferations which need no longer be restrained. The common Crane
(_Grus cinerea_), still more far-seeing to avoid a possible future
danger, despatches scouts who are thus distinct from sentinels who
inform their fellows of present danger.[46]

   [46] E. Poppig, _Fragmenta zoologica itineris Chilensis_,
        1829-30.

When these birds have been disturbed in any spot, they never return
without great precautions. Before arriving, they stop; a few only go
circumspectly forward, examining everything, and coming back to make
their report. If this is not satisfactory the troop remains
suspicious, sending new messengers. When they are at last assured that
there is really nothing to fear, the rest follow.

Thus by the most varied methods animals endeavour to save their
threatened lives, and succeed to some extent in attaining safety.
Destruction and the chase on one side, conservation and flight on the
other: these are the two chief acts which occupy living beings. Many,
however, less threatened, succeed in perfecting their manner of life,
and employ their industry in less pressing occupations than eating
others or preventing others from eating them.



CHAPTER IV.

PROVISIONS AND DOMESTIC ANIMALS.

    PROVISIONS LAID UP FOR A SHORT PERIOD--PROVISIONS LAID UP FOR
    A LONG PERIOD--ANIMALS WHO CONSTRUCT BARNS--PHYSIOLOGICAL
    RESERVES--STAGES BETWEEN PHYSIOLOGICAL RESERVES AND
    PROVISIONS--ANIMALS WHO SUBMIT FOOD TO SPECIAL TREATMENT IN
    ORDER TO FACILITATE TRANSPORT--CARE BESTOWED ON HARVESTED
    PROVISIONS--AGRICULTURAL ANTS--GARDENING ANTS--DOMESTIC
    ANIMALS OF ANTS--DEGREES OF CIVILISATION IN THE SAME SPECIES
    OF ANTS--APHIS-PENS AND PADDOCKS--SLAVERY AMONG ANTS.


The industries of the chase which are derived immediately from the
most imperious of needs--that of assuring the existence of the
individual--never arrive at a very extraordinary degree of perfection;
or at all events, as they are indispensable to existence, we are not
surprised at their development. It is unquestionable that an industry
marks a higher degree of civilisation not only by its development, but
still more by its reference to the less necessary things of life; in
every species the importance of the place given to the superfluous is
a mark of superiority. The animals who, foreseeing a hard season, or
fearing the days when hunting will not be productive, lay up
provisions to utilise in such times of famine, rise a degree higher
than even the most skilful hunters. Not all amass with the same
sagacity, and we shall find different examples of foresight, from the
most rudimentary to the highest, very near what we may observe in Man.

The provisions harvested by animals have more than one destination:
some are for the individual himself who has gathered them; others, on
the contrary, are to serve as the food for his young at the age when
they are not yet capable of seeking their own food. I will deal with
these latter in another chapter, and propose at present only to speak
of those animals who provision barns with the intention of themselves
profiting by them.

The foresight of the animal is so much the greater the more remote the
future for which he prepares. The Carnivora live from day to day and
lay up no stores; it is the Rodents, certain frugivorous birds, and
insects who exhibit the most complicated acts of economy.

_Provisions laid up for a short period._--As a rudimentary example of
the art of preserving food in view of possible famine, I may mention
the case of the _Lanius collurio_. I have already spoken of this bird
and of his custom in days of abundance of spitting on thorns all the
captures he has made. One may see side by side Coleoptera, crickets,
grasshoppers, frogs, and small birds. It is evident that these
reserves cannot be preserved for more than a day, or at most two days.
The bird amasses just enough to show us his apprehensions of the
possible future lack of success in hunting, and his thought of
preserving the surplus of the present in view of privations to
come.[47]

   [47] Naumann, _Naturgeschichte der Vögel Deutschlands_, etc.

The Fox, a very skilful hunter, has no trouble in finding game; of all
the Carnivora he is, however, the only one who is truly foreseeing.
The others in presence of abundant food gorge themselves, and abandon
the rest at the risk of suffering to-morrow. The fox is not so
careless. If he has had the good fortune to discover a poultry yard,
well supplied but ill watched, he carries away as many fowls as he can
before dawn and hides them in the neighbourhood of his burrow. He
places each by itself, one at the foot of a hedge, another beneath a
bush, a third in a hole rapidly hollowed out and closed up again. It
is said that he thus scatters his treasures to avoid the risk of
losing all at one stroke, although this prudence complicates his task
when he needs to utilise his provisions. The fox, however, loses
nothing, and knows very well where to find his stores. The very nature
of the game prevents him from keeping it more than a few days.

_Provisions laid up for a long period._--The Rodents, who live on dry
fruits or grains, can on the other hand preserve them for a long time
in their barns. The Squirrel, who may be seen all the summer leaping
like a little madman from branch to branch, and who seems to have no
cares except to exhibit his red fleece and show off his tail, is,
contrary to appearance, a most sensible and methodical animal. He
knows that winter is a hard time for poor beasts, and that fruits are
then rare or hidden beneath the snow; in the autumn, therefore, when
all the riches of the earth are abundant, and beech-nuts, acorns, and
chestnuts have ripened, he harvests quantities of them and hides them
wherever he can. Making use of the cavities he is acquainted with
around his domain, hollow trees, holes that he makes in the earth
beneath bushes, etc., he fills them with fruits, and when winter has
come he extracts them to munch.

_Animals who construct barns._--The Field Rat of Hungary and Asia
(_Psammomys_) gathers wheat during the summer. He cuts the blades and
transports them to his home, where he stores them up in very
considerable quantities; and during rigorous winters when famine
appears also among men, gleaners of another species appear on the
scene and seek for corn under the earth in the nests of the
_Psammomys_. A single rat can store up more than a bushel. Those who
are skilful in finding their holes can thus in a day glean a good
harvest, to the detriment of the rats who are thus in their turn
reduced to beggary.

The Hamster also makes provision of grain, but he introduces two
improvements: the first at the harvest by only taking the edible part
of the ear, and the second by constructing barns distinct from his
home. Each possesses a burrow composed of a sleeping chamber, around
which he has hollowed one or two others communicating with the first
by passages, and intended to serve as barns. The old and more
experienced animals prepare even four or five of these storehouses.
The end of summer is their season for work. They scatter themselves in
the fields of barley or wheat, pull down the stalks of the cereals
with their anterior paws, and then cut off the ear with their teeth.
This done, they set about thrashing their wheat--that is to say, they
separate the grain from the straw by turning the ear round and round
between their paws. When the grains come out they pile them up in
their cheeks, and thus transport them to one of the chambers already
mentioned; they then return to exploit the field and continue these
labours until they have completed the stores for winter.

A certain Vole (_Arvicola economus_) acts in much the same way as the
Hamster, though he harvests a different class of objects. It is not
wheat which he collects but roots. He has to find these roots, to dig
them up, to cut them into fragments of suitable dimensions for
transport, and finally to pile them up in rooms disposed to receive
them. This species, which inhabits Siberia, measures about twelve
centimetres in length, but during summer and autumn Voles accomplish
an amount of work which is surprising having regard to their size. The
moment having arrived to think about winter, the Voles spread
themselves about the steppe. Each hollows little pits around the roots
he wishes to extract. After having bared them he cleans them while
still in position, so as not to encumber his storehouses with useless
earth. This preparatory labour having been completed, he divides the
root into slices of a weight proportioned to his strength, and carries
away the fragments one by one. Seizing each with his teeth, he walks
backwards drawing it after him, and thus traverses a long road,
crossing paths, going round tufts of grass or other obstacles, not
letting himself be rebuffed by the difficulty and length of the task.
Arrived at his hole, he enters this also backwards, drawing his burden
through all his galleries. His dwelling, though the entrance is rather
more complicated, resembles that of the Hamster. Like the latter, it
is composed of a central room placed in communication with the outside
by a maze of passages, which cross one another. That is the
sleeping-room, the walls of which are well formed, and which is
carpeted with hay. From this various underground passages start which
lead to the storerooms, which are three or four in number. It is to
these that the Vole bears his harvest. Each compartment is large
enough to contain four or five kilogrammes of roots, so that the
little rodent finds himself at the end of the season the proprietor of
about fifteen kilogrammes of food in reserve. He would have enough to
enable him to revel in abundance if he were able to reckon without his
neighbours. This diligent animal has in fact one terrible parasite.
This is Man, who will not allow him to enjoy in peace the fruits of
his long labour and economy. In Siberia, a long and severe winter
follows a very hot summer; in this season the inhabitants often lack
provisions. A moment comes when they are glad to make up for want of
bread by edible roots; but the search for these is long and
troublesome, and should indeed have been thought of during summer.
Man, during the fine weather less foreseeing than the rodent, does not
hesitate when famine has come to turn to him for help. As he is the
weaker, the Vole is obliged to submit to this vexatious tax. According
to Pallas,[48] the inhabitants seek these nests full of provisions and
dig them up. The conqueror takes all he pleases, and abandons the rest
to the unfortunate little beast, who, whether he likes it or not, has
to be content. In this region the burrows of the Vole abound;
therefore this singular tithe ensures a considerable revenue to those
who levy it, as may be understood when we remember the extent of the
stores amassed by the animal.

   [48] Pallas, _Ueber d. am Volgastrome bemerkten Wanderungen
        der grossen Wassermäuse (Arvicola amphibius),
        Nord­-Beitr._, vol. i., 1781, p. 335.

A Vole resembling the _Arvicola arvalis_, but larger, paler, and more
rat-like, with large shining eyes and very short tail, overran in
1892-93 the classic land of Thessaly, the land of Olympus, and the
Vale of Tempe. It has always inhabited this region, and the old Greeks
had an Apollo Smintheus, or Myoktonos, the Mouse-destroying God. "At
the beginning of March," according to Prof. Loeffler, who has given an
account of this invasion,[49] "the Voles were only beginning to troop
from the slopes of the hills and the fallow-lands to the cultivated
fields. It was frequently observed that they followed regular paths
during their inroads. Thus they advanced along the railway embankment.
Their progress seemed to be rather slow. Perhaps they do not advance
further till the inhabitants of one of their strongholds or so-called
castles have become too numerous. The runs which they excavate are at
a depth of about twenty to thirty centimetres below the surface of the
ground. The extent of their runs varies, and we found them extending
in length from thirty to forty metres and more. These runs are
connected with the surface by vertical holes of about five centimetres
in diameter. In many places four, five, and more holes have led to the
same run. In such cases there is generally, not far off, an
enlargement for the nest, lined with finely-ground vegetable material,
where the young are produced and reared. In front of newly-opened
holes the earth, which has been thrown far out, forms smooth hillocks.
There were many well-defined and well-trodden paths on the ground, by
which the Voles pass from one hole to another. They are never seen out
of their holes by day, not even in places where the entire ground is
riddled with holes like a sieve. They do not come out in search of
food till the evening; even then not many are to be seen, but the
peculiar squeaking noise they make is to be heard everywhere. Next day
all sorts of freshly-severed plants are to be found in the holes.
Stalks of corn they manipulate by standing on their hind legs and
gnawing through the stalk; when this is bitten off they drag it into
their holes to devour it there, sometimes making it smaller. They do
their work with amazing rapidity. One evening a field was visited
which was to be mowed next day, but when the labourers came in the
morning they found nothing to cut. The Voles had destroyed the entire
crop in a single night. A miller in the neighbourhood of Velestino
reported that he went to his field early one morning, cut a measure of
corn, loaded it on his ass, and brought it to his mill. When he
returned to his mill with a second load he found scarcely a vestige of
the first remaining. Thinking it had been stolen he kept watch for the
thief; but suddenly, to his great astonishment, hosts of Voles
appeared and set to work to carry off the second load." Such facts as
these recorded by Loeffler are by no means a merely recent phenomenon;
Aristotle was familiar with the devastations of the Voles, and wrote
that "some small farmers, having one day observed that their corn was
ready for harvest, when they went the following day to cut their corn,
found it all eaten." Other ancient writers record similar facts.[50]

   [49] _Centralblatt f. Bak. u. Parasitenkunde_, July 1892,
        and _Zoologist_, September 1892.

   [50] _Zoologist_, May 1893. It may be added that the
        Scottish Vole, which was so destructive about the same time,
        does not burrow to a depth like the Thessaly Vole, but lives
        in shallow runs amongst the roots of herbage. Its exploits
        are recorded in a Report on the Plague of Field-Mice in
        Scotland, made by a committee appointed by the President of
        the Board of Agriculture, 1893.

Two birds of North America, belonging to the Woodpecker family,
prepare their provisions for the bad season with consummate art; not
only do they harvest them and place them in shelter, but they arrange
them in such a manner that at the right moment they can utilise them
in the most convenient manner.

One of them which is common in California, the _Melanerpes
formicivorus_, nourishes himself, as his name indicates, by insects,
and especially ants. All the summer he gives himself up to this hunt,
but at the same time he collects acorns, which he does not touch,
however, so long as he can find other food. He amasses them in the
following ingenious manner: he chooses a tree and hollows out in its
trunk a cavity just capable of receiving one acorn. He then carries a
fruit and introduces it forcibly into the hole he has just made. Thus
buried, the acorn can neither fall nor become the prey of another
animal. In the domain of these birds trees may be found which are
riddled like a sieve with holes stopped up by an acorn as by a plug.
When the hunting of insects ceases to be fruitful, the _Melanerpes_
visits his barns. If an ordinary bird wished to eat one of these
fruits, at each stroke of his beak, on account of the polish and
convexity of the acorn's surface, it would escape him, and only by a
series of reiterated efforts would the interior be exposed; but for
the American woodpecker the task is simplified; each acorn being
maintained firmly in the bark, it is sufficient to break the envelope
and the pulp is easily seized.[51]

   [51] See, for instance, _Nature_, 20th July 1871; also A. L.
        Heermann, "Notes on the Birds of California," _Journ. Acad.
        Nat. Sc. Philadelphia_, 2nd Series, vol. ii., 1853, p. 259.

A relation of this bird, the _Colaptes mexicanus_, does not yield to
him in economy and skill. He places his barn in the interior of a
plant which is very abundant in the zone he inhabits. Insectivorous
during a part of the year, he is forced to renounce this diet during
the dry season. In the regions of Mexico where this bird is found the
dry period is so absolute that he would die of hunger for want of
insects or fruits if he had not taken the precaution of laying up
stores during spring. His store consists of acorns. He has not time to
fix them one by one, like the _Melanerpes_, and only thinks at first
of rapidly collecting a large quantity. But it is in deciding the
question as to where they are to be laid up that the _Colaptes_ shows
his remarkable intelligence. In the forests where he lives are to be
found aloes, yuccas, and agaves. When the agaves have flowered, the
flower-bearing stem, two or three metres in length, shrivels, but
remains standing for some time. Its peripheral portion is hardened by
the heat, while the sap in the interior almost entirely disappears. A
hollow cylinder with a well-sheltered cavity is thus formed, and the
_Colaptes_ proposes to utilise it as a storehouse. His acorns will
there be well protected against external influences and against the
birds whose beaks are too weak to pierce the agave. It is then a
question of filling the tube. The animal first pierces the wall
towards the base of the stalk; through this hole he introduces acorns
until he has filled the lower part of the cavity. This done, he makes
a new hole rather above the first, and fills the interval between the
two, continuing this process until he has arrived at the top of the
stalk and filled the whole interior. (Figs. 10 and 11.) The bird seems
at first to take unnecessary trouble by boring so many holes. He would
reach his end as well, it would seem, by making a single hole at the
top to fill his storehouse, and another at the bottom to empty it. But
we must not thus accuse him of lack of judgment. The interior of the
tube is just large enough for the passage of an acorn; but at certain
points the sap is not entirely absorbed, and there might easily be an
impediment which would leave a large part of the cavity empty. Hence
the necessity for a number of openings. When the sun has scorched up
plants, and provisions are rare, he turns to his barns of abundance.
Now and every time that he has need he can utilise the method that has
been employed by his cousin the _Melanerpes_. In order to feed on each
acorn without too much trouble, or allowing it to slip from his beak,
the bird places it in a vice. He hollows a hole in the trunk of a
tree, introduces the fruit there forcibly, and eats it at his
ease.[52]

   [52] Henri de Saussure, "Observations sur les moeurs de
        divers oiseaux du Mexique," _Arch. Sci. phys. et natur._,
        1859, pp. 21-41.

[Illustration: FIG. 10.]

[Illustration: FIG. 11.]

The provisions collected by these two birds reveal a remarkable fact.
They possess indeed two distinct diets; they do not preserve for the
period of famine the overplus of the foods which they consume in the
period of abundance. They chase insects and feed on them as long as
they can find them, while they gather up in their storehouses an
entirely different food.

_Physiological reserves._--All the animals of which I have just spoken
place their provisions for the future in barns in the same manner as
Man. Those who have not this foresight are either able to nourish
themselves in all seasons by the chase, or else, after having feasted
one half of the year, they fast during the other half. In the latter
case they consume during the fasting period a portion of their own
substance, and use up materials placed in reserve in their organism,
in the form of fat for example. This arrangement, which allows them to
prolong life, though growing thin, until the next season of
prosperity, is not under the control of the will. It is a complication
of physiological phenomena resulting from the functioning of different
parts of the organism.

_Stages between physiological reserves and provisions._--Between
physiological reserves and industrial stores we may place as an
intermediate stage the interesting case of the Honey Ants.[53]

   [53] H. C. McCook, _The Honey Ants of the Garden of the
        Gods, and the Ants of the American Plains_, Philadelphia,
        1882.

[Illustration: FIG. 12.]

[Illustration: FIG. 13.]

These insects (_Myrmecocystus_) live in Texas, and form colonies in
which certain individuals play a very special part They exaggerate to
an extreme point the power of preserving provisions in their crops.
These materials are not assimilated; they do not form part of the
animal's body, and although placed inside it cannot be compared to
physiological reserves. It is especially curious that they are not to
be utilised only by the animal itself, but also by the other members
of the colony who are not able to form such stores. Among the
_Myrmecocystus_ there are workers of two sorts; the first kind
resemble other ants with some differences of detail, and build and
hollow the earth nest which shelters the community. The second kind is
quite different; the abdomen in these workers is enormously distended
so as to constitute a voluminous sphere, which may become four or five
times larger than the thorax and head together. (Fig. 12.) On this
distended receptacle appear several darker plates; these are the
remains of the chitinous parts of the primitive wings. In the fine
season these ants go out in a band and collect a sweet liquor which
forms pearly drops on certain galls of oak leaves. These drops,
elaborated into honey, gradually fill the crop, distending it and
pushing back neighbouring organs until it receives its globular form.
When they have arrived at this obese condition, the heavy honey ants
no longer leave the nest. They remain without movement, hanging by
their legs to the roof or lying against the walls of a room. The
workers who have remained slender come and go, attending to their
usual occupations, and pass near the others without paying attention
to them or going out of the way to lend assistance to their impotent
sisters when one of them has rolled over on the ground and can no
longer arise unaided. (Fig. 13.) They only cease to be indifferent
when impelled by the selfish sentiment of hunger, and then it is to
ask and not to give assistance. The fat ants in fact could not
themselves consume all the honey that they have elaborated; the others
in times of famine approach them, caress them with their antennæ, and
obtain by solicitation a drop of honey which the large ones disgorge
from the crop. Here, then, is a colony in which the division of labour
has reached a remarkable degree of polymorphism. Some of the members
accomplish the work of engineers and masons, while the others
fabricate for the community a store of honey. Instead of depositing
these provisions in cells like bees, they preserve them in their own
digestive tube. This custom has re-acted to such an extent on the form
of their bodies that at first sight they seem to belong to a different
species.

[Illustration: FIG. 14.]

_Animals who submit foods to special preparation in order to
facilitate transport._--Not content with collecting materials as they
are found in nature, certain animals submit them to preparation with
various aims, either to render transport easier or that they may not
deteriorate when stored. Among those of whom I have just spoken, some
collect with the view of utilising their stores in a more remote
future than others. The _Ateucus sacer_ intends to consume the
provisions he prepares almost immediately. Yet he acts in so careful a
manner that I cannot pass him in silence. This beetle is the sacred
Scarabæus so venerated by the Egyptians, who have everywhere
reproduced his image in porphyry and granite. He is a most singular
insect. The celebrated Fabre has given a complete and very picturesque
history of his customs.[54] I have myself had an opportunity of seeing
him at work. It was in Persia, in the plain of Susiana, on a hot
morning in March. We had passed the night in the open air, proposing
to continue our journey in the early morning, but our mules, rendered
rather lively by the fresh grass brought out by the spring weather,
had decided otherwise. They had all decamped to take a ramble on their
own account. In order to pass away the hours taken up by the muleteers
in searching for the strayed animals, the Scarabæus would, I thought,
furnish me with an amusing and instructive spectacle. During the night
the mules had not failed to leave here and there the relics of their
digestion. The aroma, borne on the morning breeze, had struck the
Scarabæus on awaking. It was his favourite dish. From all points of
the sky their heavy silhouettes could be seen against the blue. It was
still fresh, the sun having only risen about an hour before; the heat
would soon become oppressive, and the sybaritic beetle, without
attending to his morning appetite, which his fresh meal could not fail
to excite, nourishes the bourgeois dream of making his little pile in
order to enjoy himself sheltered from the hot rays. Immediately on
arriving on the scene of the accident each began to display feverish
activity. All set to work. With their heads, the anterior edge of
which is flat and supplied with six strong spines, they raised their
provisions; with their anterior feet, which are large and also armed
with spines, they moulded the paste and placed it beneath the abdomen
between the four other legs, giving it a rounded form. Little by
little the sphere increased and acquired the size of a small apple.
That was sufficiently large, and besides it was already becoming hot.
The insect set about carting away his prize to a sheltered
dining-room. He placed his four posterior legs on the ball; with the
two last, which were continually moving, he made certain of the
equilibrium of the mass; then resting his head and two anterior feet
on the ground he pushed backwards, and with extreme rapidity. (Fig.
14.) There was enough for all; each worker could find the just reward
for his labour; I witnessed none of the regrettable facts narrated by
Fabre. It happens sometimes, according to this ingenious observer,
that a cunning Scarabæus, who has taken no part in the laborious
labour of moulding the paste, arrives when it is on the road to aid
the convoy, or even simply to pretend to help, in order that when the
moment has come he may claim a share in the coveted meal, or even
carry it all away if he can profit by a momentary inattention on the
part of the lawful proprietor. I followed one of these Coleoptera for
more than five metres from the place where his labour began. After
having deposited his ball he began to dig up the earth around it;[55]
but the mules had returned and I was obliged to depart.

   [54] J. H. Fabre, _Souvenirs entomologiques_, 1879.

   [55] In captivity also, as Mrs. Brightwen found, the
        Scarabæus always attempts to bury its ball in the earth.

I have no doubt that subsequent events were not exactly the same as
narrated by Fabre for the Scarabæus of Provence. The insect having
made his hole, buries himself in it for a _tête à tête_ with the
precious sphere. He immediately sets about passing the whole through
his body. Without haste but without rest, for a week or a fortnight,
as long as there is any of it left, he eats continuously, and
continuously digests. He does not stop for a moment, his jaws are
working the whole time; and Fabre has called attention to the fact
that from the opposite extremity of the animal a continuous thread
emerges without breaking, and becomes coiled up.

_Care bestowed on harvested provisions._--Among the animals who take
particular care of the provisions they have amassed, special mention
must be made of certain species of Ants. It was formerly believed that
these industrious Hymenoptera are not accustomed to store up in barns
for the winter. This opinion long prevailed owing to the authority of
Huber, so competent in these matters, although the ancients were well
acquainted with the storehouses of ants.[56] But it was founded on an
exclusive study of these insects in northern countries, in which,
during the cold season, they become torpid and buried in their
hybernal sleep. Naturally they have no need of food during this
period, but it was incorrect to generalise from this fact. The ants of
the south are active all the year round. An English naturalist,
Moggridge, who passed several winters at Mentone, has placed this fact
out of doubt. Suffering from an incurable disease, he occupied the
last years of his life in observing and setting down for the
instruction of others the habits of these insects. He found that ants
of the species _Atta barbara_ store up grains. They utilise plants of
various kinds, but usually fumitory, oats, nettle, various species of
_Veronica_, etc. They procure these grains towards the end of autumn,
collecting them on the soil, or even, when they do not fall in
sufficient quantities, climbing up the plants and gathering them in
position. An ant will, for instance, ascend the stem of a fruiting
plant, of shepherd's-purse, let us say, and select a well-filled but
green pod, mid-way up the stem, those below being ready to shed their
seeds at a touch. Then seizing it in its jaws, and fixing its hind
legs firmly as a pivot, it contrives to turn round and round, and so
to strain the fibres of the fruit-stalk until they snap; it then
patiently backs down the stem. Sometimes two ants combine their
efforts; one, at the base of the peduncle, gnaws at the point of
greatest tension, while the other hauls upon it and twists it. And
sometimes the ants drop the capsules to their companions below,
corresponding with the curious account given by Ælian of the way the
spikelets of corn are thrown down "to the people below." In this
labour they display the activity usual in their race, and do not stop
until they have carried away to their barns the amount of provision
they desire. When their wealth is stored up in the nest, the ants pile
up the grains in some hundred little rooms designed for this purpose,
each measuring from seven to eight centimetres in diameter, and three
or four in height; the average granary being about the size of a
gentleman's gold watch. Adding up the quantities of grain divided
between these different barns, it is found that they may be estimated
at about 500 or 600 grammes, which represents a very large number of
meals for such small appetites, and must cost colossal labour if we
take into consideration the size of the workers. But when the harvest
is completed, the _Atta barbara_ have not completed their task; they
are too ingenious to limit themselves to waiting with crossed legs for
the moment to come when they may enjoy their labour, without
considering the damage that may arise. Their first care is to prevent
the grains from germinating for some weeks. How they obtain this
result is not exactly known, but it is certain that germination does
not take place, although all the conditions of heat and moisture
offered by the interior of the ant-hill are favourable to it; it is
not less certain that this arrest is due to the ants. This is shown in
a very simple manner. It is sufficient to prevent the access of the
insects to one of these chambers to cause the grains to germinate
immediately. We can only suppose some direct action of the ants, every
other hypothesis falling before this single fact: the arrested
phenomenon is produced as soon as the _Atta barbara_ no longer acts on
it. Therefore they arrest germination without rendering it impossible,
and when the moment arrives for utilising the accumulated stores,
their first care is to allow the grains to follow the normal course of
evolution. The envelope breaks, the little plant makes its appearance;
radicle and stalk come to light. But the ants do not permit the
development to go too far. The little plant, in order to grow, digests
the starch which is associated with the albumen, for it is not yet
able to draw its nourishment direct from the soil. To be absorbed and
assimilated this starch must first be transformed into sugar. This
chemical transformation being effected, the grain is in the condition
in which the ants prefer it. Like a wine-grower who watches over the
fermentation in his vat, and stops it before the wine turns sour, they
stop the digestion of the starch at this stage. If we do not know how
they retard germination, we know at all events how they render it
impossible at this later stage. It is the young plant which absorbs
the glucose, and which must therefore be destroyed; they cut off the
radicle with their mandibles, and gnaw the stalk; the germ is thus
suppressed. They have not yet finished their manipulations, which must
enable them to preserve without further alteration the provisions
which they have already rendered palatable. They bring out all their
provisions to the sun, dry them, and take them back to the barns. As
long as winter lasts they feed on this sweet flour. An anatomical
peculiarity enables them to make the most of it; their mouth is so
arranged that they can absorb solid particles and eat the albuminous
powder. In this they differ from their northern kin, who are obliged
to feed exclusively on juices.

   [56] See chapter on "The Ancient Belief in Harvesting Ants,"
        in McCook's _Agricultural Ants_.

I have compared the labours of these ants to those of the wine-grower.
Both of them in fact utilise the chemical phenomena going on in living
matter; both of them know how at a given moment to prevent the
transformation from going further. Neither of them for the rest take
into account the part played by diastasis and ferments. The ancestors
of one as of the other have by chance found out the method, and they
transmit it from generation to generation.[57]

   [57] J. Treherne Moggridge, _Harvesting Ants and Trap-Door
        Spiders_, London, 1873, pp. 16-60.

_Agricultural Ants._--The art of amassing stores is still more highly
perfected by an Ant which inhabits North America. It is called the
_Pogonomyrmex barbatus_, or, on account of its customs, the
Agricultural Ant. It carries out a certain number of preparatory acts,
and pushes foresight further than any other animal, since it looks
after its property while still growing. It is grain which these
insects collect, but only a single species of graminaceous grain. This
choice leads them to spend great trouble on their preferred plant.
They act in such a way that in the case of men we should say, purely
and simply, that they were cultivating. The art of treating the earth
with a view of augmenting the products which it yields is certainly of
all the manifestations of human activity that which we should least
expect to find among animals. It is, however, impossible otherwise to
describe the conduct of Agricultural Ants. The field which they
prepare is found in front of their ant-hill; it is a terrace in extent
about a square metre or more; there they will allow no other plant to
grow but that from which they propose to gather fruit. This latter
(_Aristida stricta_) is rather like a grain of oats, and in taste
resembles rice; in America it is called ant rice. This culture
represents for these insects a much more important property than a
wheat field for man. It is, in relation to their size, a forest
planted with great trees, in comparison with which baobabs and
sequoias are dwarfs. It is not known if the _Pogonomyrmex_ sow their
rice; Lincecum asserted that the ants actually sow the seeds, that he
had seen the process going on year after year; "there can be no
doubt," he concludes, "of the fact that this particular species of
grass is intentionally planted, and in farmer-like manner carefully
divested of all other grasses and weeds during the time of its
growth."[58] McCook is not able to accept this unqualified conclusion.
"I do not believe that the ants deliberately sow a crop, as Lincecum
asserts, but that they have, for some reason, found it to their
advantage to permit the _Aristida_ to grow upon their disks, while
they clear off all other herbage; that the crop is seeded yearly in a
natural way by droppings from the plant, or by seeds cast out by the
ants, or dropped by them; that the probable reason for protecting the
_Aristida_ is the greater convenience of harvesting the seed; but,
finally, that there is nothing unreasonable, nor beyond the probable
capacity of the emmet intellect, in the supposition that the crop is
actually sown. Simply, it is the Scotch verdict--Not proven."[59]
However it may be, they certainly allow no other plant to grow in the
neighbourhood of their grain, to withdraw the nourishment which they
wish to reserve entirely for it. Properly speaking, they weed their
field, cutting off with their jaws all the troublesome plants which
appear above the soil. They pursue this labour very diligently, and no
strange shoot escapes their investigations. Thus cared for, their
culture flourishes, and at the epoch of maturity the grains are
collected one by one and carried within. Like all harvesters, these
Hymenoptera are at the mercy of a shower that may fall during the
harvest. They are well aware that in this case their provisions would
be damaged, and that they would run the risk of germination or decay
in the barns. Therefore, on the first sunny day all the ants, as
observed by Lincecum and Buckley, may be seen carrying their grains
outside, only bringing them back when they have been thoroughly dried,
and always leaving behind those that have sprouted.[60]

   [58] Lincecum's most important published paper on the habits
        of the _Myrmica molefaciens_ appeared in the _Proc. Acad.
        Nat. Sci. Philadelphia_, vol. xviii., 1866, p. 323-331. See
        also Darwin, _Proceedings of the Linnæan Soc._, 1861.

   [59] H. C. McCook, _Natural History of the Agricultural Ants
        of Texas_, Philadelphia, 1879, pp. 33-39.

   [60] McCook, _Agricultural Ants of Texas_, pp. 105-107.

_Gardening Ants._--The Leaf-cutting Ants (_Oecodoma_) of tropical
America are often alluded to by travellers on account of their ravages
on vegetation; and they are capable of destroying whole plantations of
orange, mango, and lemon trees. They climb the tree, station
themselves on the edge of a leaf and make a circular incision with
their scissor-like jaws; the piece of leaf, about the size of a
sixpence, held vertically between the jaws, is then borne off to the
formicarium. This consists of low wide mounds, in the neighbourhood of
which no vegetation is allowed, probably in order that the ventilation
of the underground galleries may not be interfered with.

For a long time there was considerable doubt as to the use to which
the leaf-cutting ants put the leaves; some naturalists supposed they
are used directly as food, others that the ants roof their underground
dwellings with them. The question was set at rest by Fritz Müller, who
observed these ants in Brazil,[61] and independently by Belt, who
studied them in Nicaragua, and has written an interesting account of
their proceedings.[62] The real use of the leaves is as manure on
which to grow a minute species of fungus; these ants are, in reality,
mushroom growers and eaters. Belt several times exposed the
underground chambers to observation and found that they were always
about three parts filled with "a speckled, brown, flocculent,
spongy-looking mass of a light and loosely-connected substance."
Scattered throughout these masses were the pupæ and larvæ, together
with the smallest division of workers who do not engage in
leaf-carrying, but whose duties appear to be to cut up the leaves into
small fragments and to care for the young. On examination the masses
proved to be composed of "minutely sub-divided pieces of leaves,
withered to a brown colour, and overgrown and lightly connected
together by a minute white fungus that ramified in every direction
throughout it." That they do not eat the leaves themselves was shown
by the fact that near the tenanted chambers were found deserted ones
filled with the refuse of leaves that had been exhausted as manure,
and which served as food for the larvæ of various beetles. There are
numerous holes leading up from the underground chambers, and these are
opened out or closed up, apparently in order to regulate the
temperature below. Great care is also taken that the nest should be
neither too dry nor too damp; if a sudden shower comes on the leaves
are left near the entrance, and carried down when nearly dry; during
very hot weather, on the other hand, when the leaves would be parched
in a very short time, the ants only work in the cool of the day and
during the night. Occasionally, inexperienced ants carry in grass and
unsuitable leaves; these are invariably brought out again and thrown
away.[63]

   [61] _Nature_, 11th June 1874. And see Appendix.

   [62] _Naturalist in Nicaragua_, 2nd edition, 1888, pp. 71-84.

   [63] For a brief discussion of the relation of ants to
        plants generally, see Lubbock's _Ants, Bees, and Wasps_,
        1882, chap. iii.

_Domestic animals of Ants._--Following through different species the
perfection reached in the art of laying up provisions for the future,
we have gradually arrived at methods resembling those of Man. But a
foresight still greater and nearer to his is manifested by those ants
who breed and keep near them animals of different species, not for the
sake of their flesh, but for certain secretions, just as man utilises
the milk of the cow or the goat. Ants have true domestic animals
belonging to a variety of species, but the most widely spread are the
_Claviger_ and the Aphides or plant-lice. To keep these insects at
their disposal, Hymenoptera act in various ways: some, who are a
little experienced, are content to take advantage of a free aphis
which chance may put in their way; others shut up their cattle in
stables situated in the midst of the ant-hill, or else pen them in the
country at a spot where they can best find their food. These facts
have long since been carefully studied and leave no room for doubt.

The _Claviger testaceus_ is a small beetle, often met in the dwellings
of ants. Nature has not been very generous on its behalf. It is blind,
and its eyes are indeed altogether atrophied. The elytra are soldered
at the median edge, so that it cannot spread its wings to fly. It is
an animal predestined to the yoke; and for the rest its masters treat
it with extreme kindness. The yellow ants, according to Müller,[64]
have reduced this outcast beetle to domesticity, and it is almost a
piece of good fortune for him to have lost his freedom and to have
gained in exchange a shelter and a well-furnished trough. These
insects are in fact cared for by their masters, who feed them by
disgorging into their mouths the sweet liquids they have gathered here
and there. If a nest is disturbed the ants hasten to carry their eggs
and larvæ out of danger; they display the same solicitude with regard
to the _Claviger_, and carefully bear them to the depth of their
galleries. It must not be believed that the practical insect takes so
much care in order to repair the injustice of nature towards the
beetle; the part of a devoted sick nurse would not suit him; he cares
for the _Claviger_ because it is his property, a capital which brings
in interest in the shape of excellent sweet little drops which are
good to suck.[65]

   [64] Ph. W. J. Müller, "Beiträge zur Naturgeschichte der
        Gattung _Claviger_," _Germer u. Zincken's Magaz. d.
        Entomol._, iii., 1881, pp. 69-112.

   [65] There is little doubt, however, that some species of
        Aphides and allied Coccidæ would be liable to extermination
        if not protected by their ant masters. See, for instance,
        Forel, _Bull. Soc. Vaud._, 1876. Mr. Cockerell in Jamaica
        has noted an interesting Coccid, _Icerya rosæ_, which is
        protected by ants; "at the present moment some of these
        _Iceryæ_ are enjoying life, which would certainly have
        perished at my hands but for the inconvenience presented by
        the numbers of stinging ants."--_Nature_, 27th April 1893.
        Mr. Romanes (_Nature_, 18th May 1893) quotes as follows from
        a letter addressed to him by the Rev. W. G. Proudfoot:--"On
        looking up I noticed that hundreds of large black ants were
        going up and down the tree, and then I saw the aphides....
        But what struck me most was that the aphides showered down
        their excretions independently of the ants' solicitations,
        while at other times I noticed that an ant would approach an
        aphis without getting anything, and would then go to
        another. I was struck with this, because I remembered Mr.
        Darwin's inability to make the aphides yield their secretion
        after many experiments. A large number of hornets were
        flying about the tree, but seemed afraid of the ants; for
        when they attempted to alight, an ant would at once rush to
        the spot, and the hornet would get out of its way."

A yellow ant, who wishes to enjoy the result of the cares given to his
pensioner, approaches it and gently caresses it with his antennæ; the
other shows signs of pleasure at this visit, and soon a pearly drop
appears on the tuft of hairs at the edge of its elytra, and this the
ant hastens to lick. The beetle is thus exploited and tickled by all
the members of the community to which he belongs who meet him on their
road. But when it has been milked two or three times it ceases to
secrete. A solicitous ant arriving at this moment finds its efforts in
vain, but still behaves like a good shepherd; it shows no impatience
or anger towards its exhausted beast, knowing well that it is only
necessary to come back a little later or to go to another member of
the herd. Nor are his cares lessened by finding the source dried up.
He foresees that it will still be good after repose, and if it is
hungry he disgorges food for it.

_Degrees of civilisation in the same species of Ants._--These facts
are sufficiently marvellous in themselves, but are more surprising
when we recollect that they cannot be regarded as an innate and
unreflecting instinct with which all the individuals of the same
species are endowed. The art of domesticating the _Claviger_ is a
stage of civilisation reached by some tribes and not by others.
Lespès[66] has placed this out of doubt in the following manner. He
had specimens of _Lasius niger_ who exploited a flock of Coleoptera.
Having met ants of the same species who possessed no flocks, he
brought them some. At the sight of the little insects they threw
themselves on them, killed them, and devoured them. If we compare
these facts with those which pass in human societies, it will seem to
us that these latter Hymenoptera behave like a horde of hunters in the
presence of a flock of sheep, while the first have already arrived at
the sheep-herding stage.

   [66] "Recherches sur quelques Coleoptères aveugles," _Ann.
        Sc. Nat._, v. Série, t. ix., 1868, p. 71.

_Aphis-pens and paddocks._--Ants can also keep Aphides in their homes.
In this case, fearing that the adult beasts may not be able to adopt a
change of surroundings and food, they bring the eggs to their nests
and care for them at the same time as their own children. In time they
come out and constitute a flock easy to tame. Other ants, still more
intelligent, have discovered a method of holding the Aphides captive,
while allowing them to enjoy their accustomed life, and to feed at
will on the foods they prefer on their own favourite spots. It is
sufficient for this purpose to establish barriers around a group of
cattle who have themselves fixed the place of their sojourn. The
_Lasius niger_, a skilful architect, constructs vaulted passages from
his dwelling into the country. These covered roads, built with earth
moistened with saliva, have various ends; some have been made in order
to reach remote work sheltered from the sun, or to give concealment
from enemies. Many lead to the pens of the Aphides; they reach from
the anthill as far as the foot of a plant where these insects are
abundant. In order to have their milkers at their disposal, without
removing them from pasture, the ants make tunnels along the stalk, and
enclose within it all the Aphides they meet. They thus prevent any
desire for a distant ramble. But in order that the flock may not be
too closely confined, the _Lasius niger_ enlarge the galleries in
places, and make a sort of chamber or stable in which the beasts may
disport themselves at ease. These halls, which are proportionately
very vast, are supported against the branches and leaves of the plant
which bears up the walls and the vaults. The captives find themselves
then with all the advantages of material life, and may be milked with
every facility.[67]

   [67] P. Huber, _Recherches sur les Moeurs des Fourmis
        indigènes_, pp. 176-200.

An allied species of ant, the _Lasius brunneus_, lives almost entirely
on the sweet secretion of large Aphides in the bark of oaks and walnut
trees. The ants construct around these insects cabins made of
fragments of wood, and wall them in completely so as to keep them at
their own disposal.

The _Myrmica_ also forms similar pasture lands; its system is rather
less perfect than that of the _Lasius_, as it does not form covered
galleries to reach its stables. It is content to build large earth
huts around a colony. A large hole, which allows the passage of the
ants, but not the escape of the flock, is formed so that they may come
to milk their cows. They use the same methods we have seen practised
on the _Claviger_, caressing the insect with their antennæ until the
sugared drop appears.[68]

   [68] In Central America, Belt has described how the
        Leaf-hoppers are milked for their honey by various species
        of Ants, and also by a Wasp. He considered that some species
        of Leaf-hopper would be exterminated if it were not for the
        protection they received from Ants.--_Naturalist in
        Nicaragua_, 1888, pp. 227-230.

An example is quoted which shows still greater intelligence and
foresight in Ants. They have been known to repopulate their
territories after an epidemic, or at least after the destruction of
their Aphides. The proprietor of a tree, finding it covered with these
exploited beasts, cleared it of its inconvenient guests by repeated
washes; but the dispossessed Hymenoptera, considering that this
pasture close to their nest was very convenient for a flock, resolved
to repopulate it, and for some time these tenacious insects could be
seen bringing back among the foliage Aphides captured elsewhere.[69]

   [69] P. Huber, _Recherches_, etc., pp. 210-250; Lubbock, "On
        the Habits of Ants," _Wiltshire Arch. and Nat. Hist. Mag._,
        1879, pp. 49-62.

_Slavery among Ants._--The custom of making slaves is widely spread in
the ant world; I have already described the expeditions organised to
obtain them. We will now consider the relations of these insects among
themselves.

The _Formica sanguinea_ takes possession of the eggs of the _Formica
fusca_ and rears them with its own. When the slaves reach the adult
condition they live beside their masters and share their labours, for
the latter work, are skilful in all tasks, and can by their own
activity construct an ant-hill and keep it going. If they desire
servants, it is not in order to throw all the work on them, but to
have intelligent assistants. This is the primitive form of slavery as
it first existed among men. It was not until later that it became
modified, to become at last an institution against which the sentiment
of justice arose. Other species of Ants have pushed the exploitation
of slaves to a point Man has never reached. But the _Formica
sanguinea_ are companions to their helpers rather than masters, and
even show them great consideration. When the colony emigrates one may
see the owners of the nest, who are of larger size than the _Formica
fusca_, take these up in their jaws and carry them the entire way.

The Amazons (_Polyergus rufescens_) act otherwise. Very skilful in
obtaining slaves and powerfully armed for triumphant raids, their
nests always contain legions of servants, and the custom of being
waited upon has become so impressed on the race by heredity that it is
an instinct stronger even than personal preservation. The master ant
has not only lost the taste and the idea of work, but even the habit
of feeding himself, and would die of hunger beside a pile of honey or
sugar if a grey ant was not there to put it into his mouth. Thus
Huber, the earliest accurate observer of these ants, enclosed thirty
Amazons with several pupæ and larvæ of their own species, and twenty
negro pupæ, in a glass box, the bottom of which was covered with a
thick layer of earth; honey was given to them, so that, although cut
off from their auxiliaries, the Amazons had both shelter and food. At
first they appeared to pay some little attention to the young; this
soon ceased, and they neither traced out a dwelling nor took any food;
in two days one-half died of hunger, and the other remained weak and
languid. Commiserating their condition, he gave them _one_ of their
black companions. This little creature, unassisted, formed a chamber
in the earth, gathered together the larvæ, put everything into
complete order, and preserved the lives of those which were about to
perish.

All their industry is expended in the acquisition of captives. The
_Polyergus_ avoid introducing into their houses adults who would not
become reconciled to the loss of liberty, and would prefer to die
rather than work for others. They carry off the larvæ of _Formica
fusca_ and _Formica cunicularia_. When brought into the ant-hill these
larvæ are placed in the jaws of slaves of their own species, who care
for them; they are born captives, and have neither the regret nor the
idea of a free life. Among the Amazons the slaves undertake every
labour; it is they who build and who care for the larvæ of their
masters, as well as those carried away in expeditions. They have also
complicated personal services towards the _Polyergus_. They bring them
food, lick off the dust from their hairs, clean them, carry them from
one place to another, if there is need to emigrate, although they
themselves are much smaller. The masters, by force of losing interest
in work, lose also their votes when it is a question of taking a
resolution concerning the whole colony. The servants act on their own
initiative and their own responsibility, direct constructions
according to their own ideas, and even in grave concerns, such as
emigration, the idle masters do not seem to be consulted. The workers
deliberate among themselves, and having come to a decision, proceed to
execute it. They transport the household goods, the eggs, the future
of the city, and the Amazons who have become its parasites. It is a
most curious fact that the slaves should submit to this precarious
fate when their masters are absolutely dependent on them. It is just
to add that the robust mandibles of the latter may contribute to
preserve the position they enjoy.[70]

   [70] Lubbock has a brief discussion on the relations of Ants
        to their domestic animals and to their slaves, _Ants, Bees,
        and Wasps_, chap. iv.



CHAPTER V.

PROVISION FOR REARING THE YOUNG.

    THE PRESERVATION OF THE INDIVIDUAL AND THE PRESERVATION OF THE
    SPECIES--FOODS MANUFACTURED BY THE PARENTS FOR THEIR
    YOUNG--SPECIES WHICH OBTAIN FOR THEIR LARVÆ FOODS
    MANUFACTURED BY OTHERS--CARCASSES OF ANIMALS STORED
    UP--PROVISION OF PARALYSED LIVING ANIMALS--THE CAUSE OF THE
    PARALYSIS--THE SURENESS OF INSTINCT--SIMILAR CASES IN WHICH
    THE SPECIFIC INSTINCT IS LESS POWERFUL AND INDIVIDUAL
    INITIATIVE GREATER--GENERA LESS SKILFUL IN THE ART OF
    PARALYSING VICTIMS.


_The preservation of the individual and the preservation of the
species._--In the previous chapter we have seen animals preparing for
the future, and amassing materials for their own subsistence. In other
cases these provisions are destined to feed the young. It is the same
industry, sometimes exercised for the preservation of the individual,
sometimes for the perpetuation of the race. We must expect to find
acts of the last kind more instinctive and less reflective than those
of the first, and this agrees well with what we know of natural
selection. If we now see living beings display so many resources and
calculate with such certainty all that will favour the healthy
development of their descendants, we must not necessarily conclude
that the species possess these instincts from the beginning. They are
not to be regarded as mechanisms artfully wound up and functioning
since the appearance of life on the earth with the same inevitable
regularity. The qualities which we find in them were weak at first;
they have developed in the course of ages, and have finally, by
heredity, been impressed upon the creatures to manifest themselves by
necessary acts from which there is no longer any escape. There is no
need for surprise if we meet to-day, I do not say among all, but among
a very large number of animals, this foresight for offspring in a
well-marked form. It is easy to understand that the species that first
acquired and fixed an instinct propitious to the increase of the race
has rapidly prospered, stifling beneath its extension those that are
less favoured from this point of view, which is of capital importance
in a struggle for a place beneath the sun. At the present day if the
struggle of animal life offers few facts of lack of foresight for the
rearing of young, it is because this defect has killed the races who
were subject to it; they have disappeared, or have only been saved by
qualities of another order.

For the rest, if it is difficult to reconstitute except in imagination
the different stages through which, in time, and in a determined
species, acts at first imperfect, but designed, have become perfect
and instinctive, we can at least find in space different degrees of
the same instinct in allied genera which lead us by a succession of
transitions from mechanical action to reflective action.

As I cannot quote all the facts showing this care for the future, I
will select a few. It must be said at first that a considerable number
of animals show nothing of the kind. Let us leave aside all the
inferior beings to speak of those among whom we may expect some degree
of method. Crustacea, fish, Batrachians, and many others lay their
eggs, are contented to conceal them a little so that they may not
become a too easy prey, and are altogether indifferent as to what may
happen afterwards. As soon as they come out, the young obtain their
own food from day to day; myriads are destroyed, and if the races
remain so strong numerically it is because they are saved by the
innumerable quantity of eggs produced by a single female. If it were
not for this prodigious fecundity these species would have
disappeared. Birds make no provision for their young; but, on the
other hand, as long as the latter are weak and unable to obtain their
own prey, the parents feed them every day by hunting both for
themselves and the brood.

I will not insist on those beings who, like mammals, produce
physiological reserves, not for their own use, but for the profit of
their young. The females of these animals elaborate materials from
their own organism and store them up in the form of milk to nourish
the young. This fact is related to foresight, with a view to
offspring, exactly in the same way as the Honey Ants show a
transformation of foresight for the individual. In both cases industry
is replaced by the function of a specially adapted organ.

_Foods manufactured by the parents for the young._--It is especially
insects with whose industries we are here concerned, and they are more
or less instinctive in various cases. Every one knows how the
Hymenoptera prepare honey from the pollen of flowers, to some extent
for themselves, but especially in order that their young may at the
moment of appearance possess a food which will enable them to undergo
their first metamorphosis sheltered from the inclemencies outside.
These foods are enclosed with great art, according to the species,
either in skilfully-constructed cells of wax, as by Bees, or in nests
of paper or cardboard which the Wasps fabricate, or again in huts
built of earth in the manner of the _Chalicodoma_.

_Species which obtain for their larvæ foods manufactured by
others._--Other insects have not this taste for lengthy labours, and
do not know how to execute them; but they do not intend that their
young shall be the victims of maternal lack of skill, and they display
marvellous resources to enable them to profit by the foresight of
others.

[Illustration: FIG. 15.]

The _Sitaris muralis_, a beetle whose customs have been described by
Fabre in a remarkable manner,[71] may be counted among the cleverest
in assuring to its larvæ the goods of others. It puts them in a
position to profit by it, and when they are installed they know
sufficiently well what to do. The species has so long perpetuated
itself by this process that it has become, both in mother and
offspring, highly automatic. It is a hymenopterous insect which this
family, whose first vital manifestation is theft, thus levies a
contribution on. It is called the _Anthophora pilifera_, and during
the fine weather it makes a collection of honey intended to be
absorbed by its own larvæ, if it had not the misfortune to be watched
by one of these intriguing Coleoptera. Wherever in Provence there is a
perpendicular wall, natural or artificial, a little cliff, a sloping
ditch, or the wall of one of those caves which the people of the
country use for putting their tools in, the _Anthophora_ hollows out
galleries, at the bottom of which he builds a certain number of
chambers. He fills each of them with honey, places in it an egg which
floats in the midst of this little lake of nectar, and closes it all
up. The _Sitaris_ covets this honey to nourish its offspring, and the
chamber to shelter it. After having discovered one of the galleries of
which I have spoken, the female _Sitaris_ comes about the beginning of
September to lay her eggs, which are numerous, being not generally
fewer than two thousand. In the following month the larvæ appear; they
are black, and swarm in a little heap mixed up with the remains of
egg-shells. They vegetate in this condition for a long time, and may
still be found there in May. At this period they have become more
active, and, in order to complete their development, are thinking of
profiting by their favourable situation near the entrance to a gallery
of the Hymenoptera; when a male _Anthophora_ comes within reach, two
or three of them catch hold of him and climb on to his thorax. They
maintain themselves there by clinging to the hairs. At the moment of
fertilisation the male, thus burdened, comes in contact with the
female; the coleopterous larvæ then pass on to her, so that, according
to Fabre's expression, the meeting of the sexes brings death and life
to the eggs at the same time. Henceforth fixed on this laying insect,
the little _Sitaris_ remain quiet, and have only to wait; their future
is assured. The _Anthophora_ has made her chambers, and with the
greatest care has filled each of them with honey. Then in the midst
she deposits an egg, which remains floating on the surface like a
little boat; when her task is accomplished, the mother passes to a new
cell to confide to it another of her descendants. During this time the
parasite larva hastily descends the abdominal hairs and allows itself
to fall on the egg of the _Anthophora_, to be then borne upon it as
upon a raft; its fall must take place at the precise instant which
will enable it to embark without falling into the honey, in which just
now it would be glued fast, and perish. This series of circumstances
results only in the introduction of a single _Sitaris_ into a chamber;
the moment which must be profited by is too short for many of them to
seize. If the female _Anthophora_ carries others hidden in her hairs,
they are obliged to await a new hatching to let themselves glide off.
Thus enclosed with the egg of the _Anthophora_ and its provision of
honey, the larva has no other rival to fear, and may alone utilise the
whole store. This parasitism has to such an extent become a habit with
the species, that the larva's organisation has become modified by it.
At the moment when it falls into the cell it cannot feed on honey. It
is indispensable for its development that it should first devour the
egg on which it floats; it can at this period be nourished by no other
food. In acting in this way it also frees itself from a voracious
being who would require much food. This first repast lasts about eight
days, at the end of which it undergoes a moult, takes another form,
and begins to float on the honey, gradually devouring it, for at this
stage it becomes able to assimilate honey. Slowly its development is
completed, with extremely interesting details with which we need not
now concern ourselves. The larva of _Sitaris_ is then in conditions
exceptionally favourable for growth; but, in spite of appearances,
there is no reason for admiring the marvellous foresight and
extraordinary sureness of instinct; nearly everything depends on a
fortuitous circumstance, a chance. This becomes very evident if we
study another related beetle; it is called the _Sitaris colletis_, and
lives at the expense of the hymenopterous _Colletes_, as its relative
at the expense of the _Anthophora_. But these two species of the same
genus are very unequally aided by chance. The one whose history we
have just traced attaches itself to an insect whose egg floats above a
store of honey; the second chooses a victim who attaches its egg to
the walls of a chamber. (Fig. 15.) This almost insignificant
difference has a considerable influence on the parasite's evolution.
In the first case it is alone, and may develop with certainty; in the
second, on the contrary, several _Sitaris_ penetrate the chamber and
climb up to attack the egg, which in this case also must be their
first food. This rivalry causes a struggle to the death. If one of the
larvæ is notably more vigorous than its rivals, it may free itself
from them and survive. Let us consider the fate in store for the two
species. The first is much more favoured, since a happy chance permits
each germ to produce an individual; in the second, each individual
which completes its evolution deprives several of its brothers of
life. And even this only happens in the most favourable cases, for it
may be that not one _Sitaris_ in the chamber may reach the adult
state. If the first arrival begins to absorb the egg of the
_Colletes_, a second hungry one may kill it in the midst of its repast
and take its place. But the conqueror finds the provisions already
reduced and insufficient to enable it to reach the moulting stage, at
the end of which it could profit by the honey. Ill-nourished and
weakened, it cannot support this crisis, and its corpse falls beside
that of its fellow whom it had sacrificed. Three or four parasites may
thus succeed to the same feast, and the victory of the last is useless
to him. His first struggle for life and his first triumph are followed
by irreparable defeat. These two examples show very well how a slight
difference may favour a species, and how a happy quality is capable of
being perpetuated by heredity, since by its very nature it is destined
to be extended to more numerous beings.

   [71] "Hypermetamorphoses et Moeurs des Meloïdes," _Ann. Sc.
        Nat._, iv. Série, t. 7, 1857, p. 299; also "Nouvelles
        observations sur l'hypermetamorphose et les Moeurs des
        Meloïdes," _ibid._, t. 9, 1858, p. 265.

[Illustration: FIG. 16.]

_Carcasses of animals stored up._--These insects lay up for their
offspring stores manufactured by themselves or by others. The class we
are now about to consider makes provision of animals either dead or in
a torpid condition, with more or less art and more or less sure
instinct. Most people have seen the _Necrophorus_ or Burying Beetle
working in fields or gardens. These are large Coleoptera who feed on
abandoned carrion; everything is good to them--bodies of small
mammals, birds, or frogs; they are very easy to please, and as long as
the beast is dead that is all they require. When they have found such
remains, and consider only how to satisfy their hunger, they do not
take much trouble, and gnaw the prey on the spot where they have found
it. They are not alone at the feast, and in spite of their diligence
numerous rivals come up to dispute it; it is necessary to share with a
great number of noisy and voracious flies and insects. In the adult
state they come out well from this competition; but as good parents
they wish to save their larvæ from it, as in a feeble condition these
might suffer severely. They desire to lay up a carcass for their young
alone, and with this object they bury it in the earth. The eggs also
which will thus develop in the soil have more chance of escaping
destruction by various insectivorous animals. If these diggers find a
rat (Fig. 16) or a dead bird, three or four unite their efforts, glide
beneath it, and dig with immense activity, kicking away with their
hind legs the earth withdrawn from the hole. They do not pause, and
their work soon perceptibly advances. The rat gradually sinks in the
pit as it grows deeper. When they have the good fortune to find the
earth soft they can sink the prey in less than two hours to a depth of
thirty centimetres. At this level they stop, and throw back into the
hole the earth they have dug out, carefully smoothing the hillock
which covers the grave. Thus stored up, the carcass is ready to
receive the _Necrophorus_ eggs. The females enter the soil and lay on
the buried mammal; then they retire, satisfied to leave their little
ones, when they appear, face to face with such abundant nourishment.
When they emerge from the envelope the young larvæ find themselves in
the presence of this stored food, which has been softened by
putrefaction and rendered more easy of digestion. If the treasure has
not fallen on a spot easy to dig, the _Necrophorus_ quickly recognise
the fact, and do not waste time in useless labour. Endowed with
considerable strength relatively to their size, three or four of them
creep beneath the prey, and co-ordinating their efforts they transport
it several metres off to a spot which they know by experience to be
suitable for their labours. It may happen that soft earth is too far
away, and transport becoming too difficult a task, they renounce it.
But as good food should never be wasted, they utilise it by feeding
themselves, awaiting a more manageable god-send for their offspring.

Many observers have studied these beetles, and all are surprised at
their sagacity, and the way in which their various operations are
adapted to circumstances; genuine reflection governs their acts, which
are always combined to produce a definite effect.

_Provision of paralysed living animals._--It is unnecessary to say how
much better it would be for the young larva to have at its disposal
instead of a carcass a living animal, but paralysed and rendered
motionless by some method. It is difficult to believe the thing
possible, yet nothing is better established. There is a hymenopterous
relative of the Wasp called the _Sphex_. Instead of laying up honey
they store animal provisions for their larvæ. Fabre has studied one of
them, the _Sphex flavipennis_.[72] It is in September that this wasp
lays her eggs; during this month to shelter her little ones she
hollows out a dozen burrows and provisions them. She has then to
devote about three days' work to each of them, for there is much to
do, as may be imagined. For each of these hiding-places the _Sphex_
first pierces a horizontal gallery about two or three inches long;
then she bends it obliquely so that it penetrates deeply into the
earth, and it is again continued in this direction for about three
inches. At the end of this passage three or four chambers are made,
usually three; each of these is meant to receive one egg. The insect
interrupts its mining task, not forming the three chambers
consecutively; when the first is completed she provisions it--we shall
soon see in what manner--and lays an egg there; then she blocks it up,
suppressing all communication between this cell and the gallery; this
done she bores a second passage, provisions it, and lays another egg,
closes up the orifice, and proceeds to prepare the third. This work is
pushed on with great activity, and when completed the _Sphex_ entirely
fills up the subterranean passage, and completely isolates the hope of
the race at a depth sufficient to shelter it well. A last precaution
is taken: before leaving, the rubbish in front of the obstructed
opening is cleared away, and every trace of the operation disappears.
The nest is then definitely abandoned, and another one prepared.

   [72] "Étude sur l'instinct et les metamorphoses des
        Sphégiens," _Ann. Sci. Nat._, 1856.

The chambers in which the larvæ are enclosed--hastily made with little
care, and with rough unsmoothed walls--are not very solid, and could
not last long without slipping; but as they only have to last for a
single season they possess sufficient resistance for the insect's
purpose. The larva also knows very well how to protect itself against
the roughness of the walls, and overlays them with a silky secretion
produced by its glands.

We have now to consider the nature of the provisions placed by the
_Sphex_ near the egg. Each cell must contain four crickets. That is
the amount of food necessary for a larva during its evolution, and
these insects are in fact large enough to supply a considerable amount
of nourishment. When the _Sphex_ interrupts digging operations it is
to fly on a hunting expedition. It soon returns with a cricket it has
seized, holding it by one antenna which it turns round in its jaws. It
is a heavy burden for the slender _Sphex_ to bear. Sometimes on foot,
dragging its burden after it, sometimes flying, and carrying the
suspended cricket always in a passive condition, the burrow is
gradually reached, not without difficulty. In spite of appearances,
the cricket is not dead; it cannot move, but if kept for several days
it will not putrefy, and its joints remain supple. It is simply the
victim of a general paralysis.

_The cause of the paralysis._--It was evidently of the greatest
interest to know how the _Sphex_ contrived this capture, and what
method it used to suppress the movements of the prey. In order to
obtain the solution of this problem, Fabre during a long period
accumulated experiments and observations, and at last discovered in
every detail how the thing was done. In order to compel the _Sphex_ to
act in his presence, he placed himself in front of the orifice of a
gallery in which the insect was working; he soon saw it returning with
a paralysed cricket. Arrived at the burrow, the insect placed the prey
on the ground for a moment and disappeared in the passage to see that
everything was in order, and that no damage had taken place since its
departure. Everything was going well, and it reappeared, took up its
burden, and again entered the subterranean passage, drawing the victim
along. It brought it into the chamber for which it was destined,
placing it on its back, the head down and the feet towards the door.
Then it set out hunting again until it had ranged four crickets side
by side. Before attempting a decisive experiment, the observer felt
his way. At the moment when the _Sphex_ was buried in the earth
examining the chamber, Fabre withdrew the prey a short distance and
awaited events. Having made the domiciliary visit, the _Sphex_ then
went straight to the place where it had left its insect, but could not
find it. It was naturally very perplexed, and examined the
neighbourhood with extreme agitation, not knowing what had happened,
and evidently regarding the whole affair as very extraordinary; at
last it found the victim it was seeking. The cricket still preserved
the same immobility; its executioner seized it by an antenna and drew
it anew to the entrance of the hole. In the interior of the
subterranean domain everything is in good order; the insect had just
assured itself of the fact, and we should expect to see it enter with
its prey; not at all, it entered alone, and only decided to introduce
the prey after it had made a fresh inspection. This fact is
surprising, and it is still more surprising that if the practical joke
of removing the cricket is repeated several times in succession, the
_Sphex_ drags it anew every time to the entrance of the burrow and
first descends alone; forty times over this experiment succeeded
without the insect deciding to renounce the habitual manoeuvre. Fabre
insists on this fact, and rightly, for nothing should be neglected; he
makes it a text to show how automatic instinct is, and how the acts
which proceed from it are invariably regulated so as to succeed one
another always in the same order. In their nature these acts are quite
indistinguishable from intelligent acts; only the creature is not
capable of modifying them to bring them into harmony with unforeseen
circumstances. All this is correct, but where it becomes excessive is
in endowing animals alone with instinct and separating them from this
point of view from Man. It is incontestable that the custom of
visiting the burrow before introducing a victim into it has become so
imperious in the _Sphex_ that it cannot be broken, even when it is of
no use. It is a mechanical instinct. But we may see an exactly
parallel manifestation of human intelligence. In face of danger man
utters cries of distress; they are heard and assistance comes. But
these appeals are not intelligent and appropriate to the end; they are
instinctive. Place the same individual in a situation where he knows
very well that his voice cannot be heard; this will not hinder him
from reproducing the same acts if he finds himself in the presence of
danger. It is thus that the _Sphex_ proceeds, guided by instincts, and
it is no reason for despising it. And even in the course of this
little experiment the insect gives proof of judgment. When it finds
its cricket, it is perfectly aware that it is the same cricket which
it brought, that there is no life in it, and that there is no need to
re-commence the struggle; it sees too that it is not an ordinary
corpse liable to putrefaction, but the very same cricket, and it does
not hesitate to utilise it at once.

These habits being ascertained, Fabre proceeded to find out how the
paralysis is produced. He awaited near a burrow the _Sphex's_ arrival,
dragging a victim by an antenna, and while the insect was occupied in
the subterranean survey he substituted a living cricket for that which
the _Sphex_ had left, expecting to find it on the spot where it had
been placed. On emerging it perceives the cricket scampering away; not
a moment was to be lost, and without reflection it leapt on the
refractory victim. A lively struggle followed, a duel to the death
among the blades of grass; it was a truly dramatic spectacle, the
agile assailant whirling around the Cricket, who kicked violently with
his hind legs. If a blow were to reach the _Sphex_ it would be
disembowelled; but it avoids the blows skilfully without ceasing its
own violent attack. At last the combat ends; the cricket is brought to
earth, turned on to its back, and maintained in this position by the
_Sphex_. Still on its guard, the latter seizes in its jaws one of the
filaments which terminate the abdomen of the vanquished, placing its
legs on the belly; with the two posterior legs it holds the head
turned back so as to stretch the under side of the neck. The cricket
is unable to move and the conqueror's sting wanders over the horny
carapace seeking a joint, feeling for a soft place in which it can
enter to give the finishing stroke. The dart at last reaches, between
the head and the neck, the spot where the hard portions articulate,
leaving between them a space without covering. The joint in the armour
is found. The _Sphex's_ abdomen is agitated convulsively; the sting
penetrates the skin, piercing a ganglion situated just beneath this
point; the venom spreads and acts on the nervous cells, which can no
longer convey messages to the muscles. That is not all; the sting
wanders over the cricket's belly, this time seeking the joint between
the neck and the thorax; it finds it, and is again thrust in with
fury; a second ganglion of the nervous chain is thus perforated and
poisoned. After these two wounds the victim is completely paralysed.

As already mentioned, several facts enable us to recognise that the
Cricket is by no means dead. It is simply incapable of movement, as
would happen after an injection of curare. This poison kills a
superior animal, for it hinders the muscular movements of the chest
and diaphragm, necessary to respiration; but if a frog, which can
breathe through its skin, is thus acted on it comes to life again at
the end of twenty-four or forty-eight hours if the dose has not been
too strong. The cricket is in a similar condition; it neither eats nor
breathes; being incapable also of movement, there is no vital
expenditure; it remains in a sort of torpor, or latent life, awaiting
the tragic fate that is reserved for it. When it has been deposited in
the little mortuary chamber the _Sphex_ lays an egg on its thorax. The
larva will soon come out to penetrate the body of the prey by
enlarging the hole left by the sting. It thus finds for its first
meals a food which unites the flavour of living flesh with the
immobility of death. Nothing can be more convenient. When the first
body is eaten it proceeds to the second, and thus devours successively
the four victims stored up by maternal foresight.

In order not to interrupt the description and interfere with the
succession of the acts, I have passed without remark the experiment in
which Fabre substituted a living animal for the _Sphex's_ already
paralysed captive. It seems to me, however, that in this circumstance
the insect showed judgment, and knew how to act in accordance with new
requirements. It was evidently the first time in insect memory in
which so surprising a phenomenon had been seen as a victim at the last
moment again taking the field. We cannot make instinct intervene here.
If the _Sphex's_ acts are so automatic as we are sometimes led to
believe, in accordance with facts which are perfectly accurate, we
ought always to observe the following succession of acts: first,
hollowing of the burrow; second, the chase; third, the blows of the
dart; fourth, the different manoeuvres for placing the victim in the
sarcophagus. Now in the present case the insect had accomplished the
first three series of actions, and had even begun the fourth; it ought
next to drag the cricket into the burrow without listening to the
recriminations which the latter had no business to make, since it was
to be regarded as having received the two routine doses of poison. But
the _Sphex_ sees its victim come to life, understands this fact, and
without seeking to fathom the cause judges that a new struggle and new
blows of the sting are necessary; he understands that it is necessary
to begin afresh, since the usual result has not been attained. He is
then capable of reflection, and the series of acts which he
accomplishes are not ordained with such inflexibility that it is
impossible for him to modify them in order to conform them to varying
circumstances.

The _Sphex occitanica_ acts in the same manner as its relative in this
complicated art of laying up provisions for the family. The
differences are only in detail. Instead of hollowing the burrow first
and then setting out on the chase to fill it, it does not devote
itself to the labour of digging until a successful expedition has
already assured the victim. (Fig. 17.) Instead of attacking crickets
it seeks a larger orthopterous insect, the _Ephippigera_. The struggle
is no doubt more difficult, but the result is proportionately greater,
and the pursuit does not need to be so often renewed; a single captive
is sufficient for its larva.[73]

   [73] For some remarks on the action of the _Sphex_, and for
        Darwin's opinion on the matter, see Romanes' _Mental
        Evolution in Animals_, pp. 299-303.

[Illustration: FIG. 17.]

_The sureness of instinct._--It is not doubtful that a sure inherited
instinct conducts the _Sphex_ to prick its victim in the situation of
the nervous ganglia, which will be wounded in the act. It may be said
that the lesion results from the position in which the hymenopterous
insect maintains its victim; for the sting is on the median line, and
can only penetrate at the soft points; the two points attacked are
then rigorously determined by physical circumstances. But these
arguments have no bearing if we consider the method of procedure
adopted by the _Ammophila_,[74] a hymenopterous insect related to the
preceding, which paralyses caterpillars. It is free in this case to
insert its sting at any portion of the body; yet it knows how to turn
over and arrange the captive so that the dart shall penetrate both
times at two points where ganglia will be poisoned and immobility
without death be induced. It must then be agreed that there is here an
instinct much too sure to be called mechanical; but these facts, which
considered alone seem simply marvellous, become much less so, and lend
themselves to evolutionary interpretation, when it is recognised that
they are related by insensible degrees to other facts of the same
order, much more intelligent and at the same time less sure.

   [74] Paul Marchal, "Observations sur _l'Ammophila affinis_,"
        _Arch. de Zool. exp. et génér._, ii. Série, t. x., 1892.

_Similar cases in which the specific instinct is less powerful and
individual initiative greater._--Here is, for instance, the case of
the _Chlorion_, where each animal possesses more considerable
initiative.[75] It attacks the Cockroach. These insects are of an
extremely varied size, according to age, and as they are also very
agile the _Chlorion_ is not certain of being always able to obtain
victims of the same dimension. The orifice of its burrow, which it
hollows in walls between the crevices of the stones, is calculated on
the average size of its victims. It has also the habit of paralysing
the cockroach by stinging it on the nervous chain. These preliminary
operations do not impede it, but it is embarrassed when it wishes to
introduce through the entrance of its gallery an insect which is too
large. It pulls at first as much as it can, but seeing the failure of
its efforts it does not persevere in this attempt, and comes out to
survey the situation. Decidedly the victim is too large and cannot
pass through. The _Chlorion_ begins by cutting off the elytra, which
maintain it rigid and prevent it from being compressed. This done, it
harnesses itself anew and re-commences its efforts. But this is not
sufficient, and the victim still resists. The insect returns, and
again examines the situation. Now it is a leg which is placed
cross-ways and opposes the introduction of the body; strong diseases
need strong remedies, and our _Chlorion_ sets itself to amputate this
encumbering appendage. It triumphs at last; the cockroach yields to
its efforts, and little by little penetrates the hole. As may be seen,
the labour is laborious and painful, and may present itself beneath
various aspects which call for a certain ingenuity on the part of the
animal.

   [75] Réaumur, _Memoires pour servir à l'histoire des
        Insectes_, Paris, 1742, t. vi., pp. 282-284.

Up to recent years the _Cerceris_ was considered to act with as much
certainty as the _Sphex_, and to obey an infallible instinct which
always guided it for the best in the interests of its offspring. The
insects it attacks belong to the genus _Buprestis_. It consumes them
in considerable numbers. Its manner of action, as described by Léon
Dufour,[76] much resembles that of the _Sphex_, and it would be
superfluous to describe it. The only fact which I wish to mention, and
which has been put out of doubt by the illustrious naturalist, is
this: the _Buprestis_ are paralysed, not dead; all the joints of the
antennæ and legs remain flexible and the intestines in good condition.
He was able to dissect some which had been in a state of lethargy for
at least a week or a fortnight, although, under normal conditions,
these insects in summer decay rapidly, and after forty-eight hours
cannot be used for anatomical purposes. Another observer, Paul
Marchal, took up this question afresh, and the results which he
obtained seemed to indicate an instinct much less firm than earlier
studies tended to show.[77]

   [76] "Histoire des _Cerceris_," _Ann. Sc. Nat._, ii. Série,
        t. xv., 1841, pp. 353-370.

   [77] _Arch. de Zool. exp._, 1887.

_Genera less skilful in the art of paralysing victims._--These
researches show us that in the _Cerceris_ instinct is still subject to
defect. In some neighbouring genera we can seize it, as it were, in
process of formation. The way in which the _Bembex_, or Sand Wasp,
provisions burrows by maternal foresight is much less mechanical than
that of the _Sphex_. It is again Fabre who has described with most
care the customs of this hymenopterous insect.[78] It hollows out for
each egg a chamber communicating with the air by a gallery, and
performs this work with little care and very roughly. Less skilful
than the others, it does not amass at once all the provisions which
its larvæ will need during the period of evolution. When the offspring
has absorbed the last prey brought, it is necessary to bring a new
victim. This insect is scarcely more advanced than birds, who feed
their young from day to day. And it is a great labour to re-open every
time the gallery which leads to the nursery; on all these visits, in
fact, the _Bembex_ fills it up on leaving, and causes the
disappearance of all revealing traces. It is obliged to take so much
trouble, because it has not inherited from its ancestors the receipt
for the paralysing sting; it throws itself without care on its victim,
delivers a few chance blows, and kills it. Necessarily it cannot,
under these conditions, lay up provisions for the future; they would
corrupt, and the larvæ would not be benefited; hence the obligation of
frequently returning to the nest, and of a perpetual hunt to feed
descendants whom nature has gifted with an excellent appetite.
According to the age of the offspring, the mother chooses prey of
different sizes; at first she brings small Diptera; then, when it has
grown, she captures for it large blow-flies, and lastly gadflies.[79]
It will be seen, then, that if we suppose the instinct of the _Sphex_
to be slowly developed by being derived from a sting given at random,
we make a supposition which is quite admissible and rests on
ascertained facts. However this may be, the _Bembex_, returning to its
burrow, is able to find it again with marvellous certainty, in spite
of the care taken to hide it by removing every trace that might reveal
its existence. It is guided by an extraordinary topographic instinct,
which men not only do not possess, but cannot even understand the
nature of.

   [78] _Souvenirs entomologiques_, 1879, pp. 225 _et seq._

   [79] A Wasp found in La Plata, the _Monedula punctata_, as
        described by Hudson (_Naturalist in La Plata_, pp. 162-164),
        is an adroit fly-catcher, and thus supplies her grub with
        fresh food, carefully covering the mouth of the hole with
        loose earth after each visit; as many as six or seven
        freshly-killed insects may be found for the use of one grub.

It would appear that certain Hymenoptera, fearing to kill their victim
with the sting, and not knowing the art of skilful lesions, attempt to
immobilise them by wounds of another sort. This is the case with the
_Pompilius_, according to Goureau,[80] who has studied it. This insect
nourishes its larvæ with spiders; it seems certain that in most cases
the spider is not pricked. Victims who have been taken from the
interior of provision burrows can live for a long time in spite of
their wounds; they cannot, therefore, have received venom by
inoculation. The author already quoted believes that the Pompilius
seizes its captive by the pedicle which unites the abdomen to the
cephalothorax, and that it triturates this point between its jaws.
From this either death or temporary immobility may follow. The
_Pompilius_ also makes up for its relative ignorance by considerable
ingenuity. Thus sometimes, when it fears a return to life of the
victim destined for its larvæ, it cuts off the legs while it is still
passive. Goureau has found in the nest of this insect living spiders
with their legs cut off.

   [80] "Observations pour servir à l'histoire de quelques
        Insectes," _Ann. Soc. entomol. de France_, t. 8, 1839, p. 541.



CHAPTER VI.

DWELLINGS.

    ANIMALS NATURALLY PROVIDED WITH DWELLINGS--ANIMALS WHO
    INCREASE THEIR NATURAL PROTECTION BY THE ADDITION OF FOREIGN
    BODIES--ANIMALS WHO ESTABLISH THEIR HOME IN THE NATURAL OR
    ARTIFICIAL DWELLINGS OF OTHERS--CLASSIFICATION OF ARTIFICIAL
    SHELTERS--HOLLOWED DWELLINGS--RUDIMENTARY
    BURROWS--CAREFULLY-DISPOSED BURROWS--BURROWS WITH BARNS
    ADJOINED--DWELLINGS HOLLOWED OUT IN WOOD--WOVEN
    DWELLINGS--RUDIMENTS OF THIS INDUSTRY--DWELLINGS FORMED OF
    COARSELY-ENTANGLED MATERIALS--DWELLINGS WOVEN OF FLEXIBLE
    SUBSTANCES--DWELLINGS WOVEN WITH GREATER ART--THE ART OF
    SEWING AMONG BIRDS--MODIFICATIONS OF DWELLINGS ACCORDING TO
    SEASON AND CLIMATE--BUILT DWELLINGS--PAPER NESTS--GELATINE
    NESTS--CONSTRUCTIONS BUILT OF EARTH--SOLITARY MASONS--MASONS
    WORKING IN ASSOCIATION--INDIVIDUAL SKILL AND
    REFLECTION--DWELLINGS BUILT OF HARD MATERIALS UNITED BY
    MORTAR--THE DAMS OF BEAVERS.


Animals construct dwellings either to protect themselves from the
cold, heat, rain, and other chances of the weather, or to retire to at
moments when the search for food does not compel them to be outside
and exposed to the attacks of enemies. Some inhabit these refuges
permanently; others only remain there during the winter; others,
again, who live during the rest of the year in the open air set up
dwellings to bring forth their young, or to lay their eggs and rear
the offspring. Whatever the object may be for which these retreats are
built, they constitute altogether various manifestations of the same
industry, and I will class them, not according to the uses which they
are to serve, but according to the amount of art displayed by the
architect.

In this series, as in those which we have already studied, we shall
find every stage from that of beings provided for by nature, and
endowed with a special organ which secretes for them a shelter, up to
those who are constrained by necessity to seek in their own
intelligence an expedient to repair the forgetfulness of nature. These
productions, so different in their origin, can only be compared from
the point of view of the part they play; there are analogies between
them but not the least homology.

_Animals naturally provided with dwellings._--Nearly all the Mollusca
are enveloped by a very hard calcareous case, secreted by their
mantle: this shell, which is a movable house, they bear about with
them and retire into at the slightest warning.

Caterpillars which are about to be transformed into chrysalides weave
a cocoon, a very close dwelling in which they can go through their
metamorphosis far from exterior troubles. It is an organic form of
dwelling, or produced by an organ. It is not necessary to multiply
examples of this kind; they are extremely numerous. In the same
category must be ranged the cells issuing from the wax-glands which
supply Bees with materials for their combs in which they enclose the
eggs of the queen with a provision of honey.

I do not wish to insist on creations of this kind which are
independent of the animal's will and reflection. Near these facts must
be placed those in which animals, still using a natural secretion, yet
endeavour to obtain ingenious advantages from it unknown by related
species.

[Illustration: FIG. 18.]

There is, for example, the _Macropus viridi-auratus_, or
Paradise-fish, which blows air bubbles in the mucus produced from its
mouth. This mucus becomes fairly resistant, and all the bubbles
imprisoned and sticking aside by side at last form a floor. It is
beneath this floating shelter that the fish suspends its eggs for its
little ones to undergo their early development.

_Animals who increase their natural protection by the addition of
foreign bodies._--Certain tubicolar Annelids, whose skin furnishes
abundant mucus which does not become sufficiently hard to form an
efficacious protection, utilise it to weld together and unite around
them neighbouring substances, grains of sand, fragments of shell, etc.
They thus construct a case which both resembles formations by special
organs and manufacture by the aid of foreign materials. The larvæ of
_Phryganea_, who lead an aquatic life, use this method to separate
themselves from the world and prepare tubes in which to dwell. (Fig.
18.) All the fragments carried down by the stream are good for their
labours on condition only that they are denser than the water. They
take possession of fragments of aquatic leaves, and little fragments
of wood which have been sufficiently long in the water to have
thoroughly imbibed it and so become heavy enough to keep themselves at
the bottom, or at least to prevent them from floating to the surface.
It is the larva of _Phryganea striata_ which has been best studied;
those of neighbouring species evidently act much in the same way, with
differences only in detail. The little carpenter stops a fragment
rather longer than his own body, lies on it and brings it in contact
with other pieces along his own sides. He thus obtains the skeleton of
a cylinder. The largest holes are filled up with detritus of all
kinds. Then these materials are agglutinated by a special secretion.
The larva overlays the interior of its tube with a covering of soft
silk which renders the cylinder watertight and consolidates the
earlier labours. The insect is thus in possession of a safe retreat.
Resembling some piece of rubbish, it completes its metamorphosis in
peace, undisturbed by the carnivora of the stream. There is here
already a tendency towards the dwellings of which I shall speak later
on, and which are entirely formed of the external environment.

_Animals who establish their home in the natural or artificial
dwellings of others._--Between the beings whom nature has endowed with
a shelter and those who construct it by their own industry, we may
intercept those who, deprived of a natural asylum and not having the
inclination or the power to make one, utilise the dwellings of others,
either when the latter still inhabit them, or when they are empty on
account of the death or departure of the owner. In the natural
sciences there is no group of facts around which may be traced a clear
boundary; each of them is more or less closely related to a group
which appears at first of an entirely different nature. Thus it does
not enter into our plan to speak of parasites. Yet, if among these
some turn to a host to demand of him both food and shelter, if even
they can come to be so modified and so marked by parasitism that they
can live in no other way, there are others who ask for lodging only
from an animal better protected than they are themselves. It is these
whose customs we are called upon to consider. In the interior of the
branchial chamber of many bivalvular Mollusca, and especially the
Mussel, there lives a little crustaceous commensal called the Pea-crab
(_Pinnoteres pisum_). He goes, comes, hunts, and retires at the least
alarm within his host's shell. The mussel, as the price of its
hospitality, no doubt profits by the prizes which fall to the little
crab's claws. It is even said that the crab in recognition of the
benefits bestowed by his indolent friend keeps him acquainted with
what is passing on around, and as he is much more active and alert
than his companion he sees danger much farther away, and gives notice
of it, asking for the door to be shut by lightly pinching the mussel's
gill. But this gratitude of the Crustacean towards a sympathetic
bivalve is merely a hypothesis; we do not exactly know what passes in
the intimacy of these two widely-differing natures.

For birds like the Cuckoo and the _Molothrus_ it is not possible to
plead attenuating circumstances. They occupy a place in an inhabited
house without paying any sort of rent. Every one knows the Cuckoo's
audacity. The female lays her eggs in different nests and troubles
herself no further about their fate. She seeks for her offspring a
shelter which she does not take the trouble to construct, and moreover
at the same time assures for them the cares of a stranger in place of
her own.

In North America a kind of Starling, the _Molothrus pecoris_, commonly
called the Cow-bird, acts in the same careless fashion. It lives in
the midst of herds, and owes its specific name to this custom; it
feeds on the parasites on the skin of cattle. This bird constructs no
nest. At the moment of laying the female seeks out an inhabited
dwelling, and when the owner is absent she furtively lays an egg
there. The young intruder breaks his shell after four days'
incubation, that is to say, usually much before the legitimate
children; and the parents, in order to silence the beak of the
stranger who, without shame, claims his share with loud cries, neglect
their own brood which have not yet appeared, and which they abandon.
Their foster children repay them, however, with the blackest
ingratitude. As soon as the little _Molothrus_ feels his body covered
with feathers and his little wings strong enough to sustain him he
quits his adopted parents without consideration. These birds show a
love of independence very rare among animals, with whom conjugal
fidelity has become proverbial; they do not unite in couples; unions
are free, and the mother hastens to deliver herself from the cares of
bringing up her young in the manner we have seen. Two other species of
_Molothrus_ have the same habit, as have the American Cuckoo and the
Golden Cuckoo of South Africa.

The habits of the _Molothrus bovariensis_, a closely allied Argentine
Cow-bird, have been carefully studied by Mr. W. H. Hudson, who has
also some interesting remarks as to the vestiges of the nesting
instinct in this interesting parasitical bird, which now is constantly
dropping eggs in all sorts of places, even on the ground, most of them
being lost. "Before and during the breeding-season the females,
sometimes accompanied by the males, are seen continually haunting and
examining the domed nests of the _Dendrocolaptidæ_. This does not seem
like a mere freak of curiosity, but their persistence in their
investigations is precisely like that of birds that habitually make
choice of such breeding-places. It is surprising that they never do
actually lay in such nests, except when the side or dome has been
accidentally broken enough to admit the light into the interior.
Whenever I set boxes up in my trees, the female Cow-birds were the
first to visit them. Sometimes one will spend half a day loitering
about and inspecting a box, repeatedly climbing round and over it, and
always ending at the entrance, into which she peers curiously, and
when about to enter starting back, as if scared at the obscurity
within. But after retiring a little space she will return again and
again, as if fascinated by the comfort and security of such an abode.
It is amusing to see how pertinaciously they hang about the ovens of
the Oven-birds, apparently determined to take possession of them,
flying back after a hundred repulses, and yet not entering them even
when they have the opportunity. Sometimes one is seen following a Wren
or a Swallow to its nest beneath the eaves, and then clinging to the
wall beneath the hole into which it disappeared. That it is a
recurrence to a long-disused habit I can scarcely doubt. I may mention
that twice I have seen birds of this species attempting to build
nests, and that on both occasions they failed to complete the work. So
universal is the nest-making instinct that one might safely say the
_M. bovariensis_ had once possessed it, and that in the cases I have
mentioned it was a recurrence, too weak to be efficient, to the
ancestral habit." Mr. Hudson suggests that this bird lost the
nest-making instinct by acquiring the semi-parasitical habit, common
to many South American birds, of breeding in the large covered nests
of the _Dendrocolaptidæ_, although, owing to increased severity in the
struggle for the possession of such nests, this habit was
defeated.[81]

   [81] P. L. Sclater and W. H. Hudson, _Argentine
        Ornithology_, 1888, vol. i. pp. 72-86. A brief summary of
        the facts regarding parasitism among birds will be found in
        Girod's _Les Sociétés chez les Animaux_, 1891, pp.
        287-294.

The _Rhodius anarus_, a fish of European rivers, also ensures a quiet
retreat for his offspring by a method which is not less indiscreet. At
the period of spawning, a male chooses a female companion and with
great vigilance keeps off all those who wish to approach her. When the
laying becomes imminent, the _Rhodius_, swimming up and down at the
bottom of the stream, at length discovers a _Unio_. The bivalve is
asleep with his shell ajar, not suspecting the plot which is being
formed against him. It is a question of nothing less than of
transforming him into furnished lodgings. The female fish bears
underneath her tail a prolongation of the oviduct; she introduces it
delicately between the Mollusc's valves and allows an egg to fall
between his branchial folds. In his turn the male approaches, shakes
himself over it, and fertilises it. Then the couple depart in search
of another _Unio_, to whom to confide another representative of the
race. The egg, well sheltered against dangers from without, undergoes
development, and one fine day the little fish emerges and frisks away
from his peaceful retreat.

Other animals, more respectful of property, avoid using another's
dwelling until it is abandoned by its proprietor, and no reproach of
indelicacy can be addressed to the _Gobius minutus_, a fish which
lives on our coasts at the mouth of rivers. The female lays beneath
overturned shells, remains of Oysters, or Cardium shells. The valve is
buried beneath several centimetres of sand, which supports it like a
vault. It forms a solid roof, beneath which the eggs undergo their
evolution. Sometimes the male remains by the little chamber to watch
over their fate. It is possible to distinguish the two holes of
entrance and exit which mark his habitual passage.

[Illustration: FIG. 19.]

The Hermit-crab perhaps knows best how to take advantage of old
clothes. (Fig. 19.) He collects shells of Gasteropods, abandoned
flotsam, the first inhabitant of which has died. The Hermit-crab
(_Pagurus Bernhardus_) is a Decapod Crustacean--that is to say, he
resembles a very small Crab. But his inveterate habit during so many
generations of sheltering his abdomen in a shell prevents this part
from being encrusted with lime and becoming hard. The legs and the
head remain in the ordinary condition outside the house, and the
animal moves bearing it everywhere with him; on the least warning he
retires into it entirely. But the Crustacean grows. When young he had
chosen a small shell. A Mollusc, in growing, makes his house grow with
him. The Hermit-crab cannot do this, and when his dwelling has become
too narrow he abandons it for one that is more comfortable. At first
enclosed in the remains of a _Trochus_, he changes into that of a
_Purpura_; a little later he seeks asylum in a Whelk. Beside the
shelter which these shells assure to the Crustacean, they serve to
mask his ferocity, and the prey which approaches confidently what it
takes to be an inoffensive Mollusc, becomes his victim.

The Great Horned Owl likewise does not construct a nest; but takes
possession of the dwellings abandoned by others. These birds utilise
for laying their eggs sometimes the nest of a Crow or a Dove,
sometimes the lair which a Squirrel had considered too dilapidated.
The female, without troubling about the bad state of these ruins, or
taking pains to repair them, lays her eggs here and sits on them.

_Classification of artificial shelters._--It is time to turn to
animals who have more regard for comfort, and who erect dwellings for
themselves or their offspring. These dwellings may be divided into
three groups: (1) Those which are hollowed in earth or in wood; (2)
those which in the simplest form result from the division of material
of any kind; then, as a complication, of materials bound together;
then, as a last refinement, of delicate materials, such as blades of
grass or threads of wool woven together; such are the nests of certain
birds and the tents of nomads; (3) those which are built of moist
earth which becomes hard on drying; the perfection of this method
consists of piling up hard fragments, pieces of wood or ashlar, the
moist earth being only a mortar which unites the hard parts together.
Animals exercise with varying success these different methods, all of
which Man still practises.

_Hollowed dwellings--Rudimentary burrows._--We will first occupy
ourselves with the dwelling hollowed in the earth. It is the least
complicated form. The number of creatures who purely and simply bury
themselves thus to obtain shelter is incalculable; I will only mention
a few examples, and pass on from simple combinations to the more
perfected industries, of which they present the first sketch.

It is known that at a certain epoch of the year Crabs abandon their
hard carapaces. This phenomenon is known by the name of the moult;
they remain in this condition for some time; it is the period during
which they grow; then their integuments are encrusted anew with lime
and again become resistant. While they are thus deprived of their
ordinary protection they are exposed to a crowd of dangers, and they
are so well aware of this that they remain hidden beneath rocks and
pebbles. A crab of Guadeloupe, called _Gecarinus ruricola_, escapes
the perils of this situation, thanks to its kind of life and its habit
of hollowing out a burrow to live in while it is deprived of its
habitual defence. This Crustacean lives on the earth, at a distance of
about ten or twelve kilometres from the sea-shore, and nourishes
itself on animal and vegetable remains. It approaches the water only
at the period of laying eggs, turning towards the coast in the months
of February and March. This migration does not take place, like some
others, in compact bands; each follows the road in independence, and
preserves a certain amount of liberty with regard to the path and the
epoch of the journey. They lead an aquatic life till May or June; then
the female abandons her little ones, who had begun their development
attached to her claws, and they return to land. The moult takes place
in August. At the approach of this dreaded crisis each hollows a hole
between two roots, supplies it with green leaves, and carefully stops
up the entrance. These labours accomplished, the crab is entirely
sheltered; it undergoes the moult in safety, and does not emerge from
its retreat until it is again capable of facing enemies, and of
seizing food with its claws, which have become hard again. This
seclusion appears to last a month. Here is, then, an example of a
temporary dwelling rendered necessary by special conditions of defect
for external life. We are here still in the infancy of the art.

Speaking generally, birds are accomplished architects. Certain of them
are, however, content with a rudimentary cavern. There is no question
here of those who retire to clefts in the rock or in trunks of trees,
for in these cases the cavity is only the support of the true house,
and it is in the construction of this that the artist reveals his
talent. I wish to speak of animals which remain in a burrow without
making a nest there. A Parroquet of New Zealand called the _Kakapo_
(_Strigops habroptilus_) thus dwells in natural or hollowed
excavations. It is only found in a restricted portion of the island
and leads a miserable life there, habitually staying in the earth and
pursued by numerous enemies, especially half-wild dogs. It tries to
hold its own, but its wings and beak do not suffice to protect it, and
the race would have completely disappeared if these birds were not
able to resist, owing to the prudence with which they stay within
their dwellings. They profit by a natural retreat, or one constructed
in rocks or beneath roots of trees; they only come out when impelled
by hunger, and return as soon as they can in case of danger.

A large number of animals also hollow out shelters for their eggs,
with the double object of maintaining them at a constant temperature
and of concealing them. Most reptiles act in this manner. The way in
which a Tortoise, the _Cistudo lunaria_, prepares its nest is
extremely curious. When the time for this labour arrives, the tortoise
chooses a site. It commences by boring in the earth with the end of
its tail, the muscles of which are held firmly contracted; it turns
the tail like a gimlet and succeeds in making a conical hole.
Gradually the depth of the hole becomes equal to the length of the
tail, and the tool then becomes useless. The _Cistudo_ enlarges the
cavity with the help of its posterior legs. Using them alternately it
withdraws the earth and kicks it away, then piles up this rubbish on
the edge of the hole, arranging it so as to form a circular rampart.
Soon the posterior members can take nothing more from the too distant
bottom. The moment for laying has now come. As soon as the egg arrives
at the cloaca one of the feet seizes it and lowers it gently into the
nest, while the second foot seizes another egg, which during this time
had appeared at the orifice. This manipulation lasts until the end of
the operation, when the tortoise buries all its family, and to flatten
the prominence which results she strikes it repeatedly with her
plastron, raising herself on her legs.

It is not only land animals which adopt this custom of living in the
earth, and there sheltering their offspring. Fish also make retreats
on the bank or at the bottom. To mention only one case, the Bullhead
(_Cottus gobio_) of our rivers, which spawns in the Seine in May,
June, and July, acts in this manner. Beneath a rock in the sand it
prepares a cavity; then seeks females and brings them to lay eggs in
its little lodging. During the four or five weeks before they come out
it watches the eggs, keeping away as far as possible every danger
which threatens them. It only leaves its position when pressed by
hunger, and as soon as the hunt is concluded, returns to the post of
duty.

Other animals when digging have a double object; they wish to shelter
themselves, and at the same time to find the water which they need for
themselves or for the development of their young.

It is well known that Frogs and Toads generally go in the spring to
lay their eggs in streams and ponds. A Batrachian of Brazil and the
hot regions of South America, the _Cystignathus ocellatus_, no doubt
fearing too many dangers for the spawn if deposited in the open water,
employs the artifice of hollowing, not far from the bank, a hole the
bottom of which is filled by infiltration. It there places its eggs,
and the little ones on their birth can lead an aquatic life while
being guaranteed against its risks.

A terrestrial Crab, the _Cardisoma carnifex_, found in Bengal and the
Antilles, acts in the same manner; but in this case it has in view its
own convenience and not care for its offspring. Its habitat is
especially in low-lying spots near the shore, where water may be found
at a trifling depth beneath the soil. To establish its dwelling, the
Crustacean first buries itself until it reaches the liquid level.
Arrived at this point, it makes a large lair in the soft soil, and
effects communication with the outside by various openings. It can
thus easily come and go and retire into its cave, where it finds
security and a humidity favourable for branchial respiration. From
time to time it cleans out the dirt and rubbish which accumulate in
the hole. It makes a little pile of all the refuse which it finds,
and, seizing it between its claws and abdomen, carries it outside.
Executing several journeys very rapidly, it soon clears out its
dwelling.

The dipnoid _Protopterus_, which inhabits the marshes of Senegal and
Gambia, is curious in more than one respect. Firstly, it can breathe
oxygen, whether, like other fish, it finds it dissolved in water or in
the atmospheric air. When during the summer the marshes in which it
lives dry up, it takes refuge in the mud at the bottom, which hardens
and imprisons it, and it thus remains curled up until the time when
the water after the rainy season has softened the earth which
surrounds it. This fact had been known for some time; travellers had
brought back lumps of dried earth of varied size, the largest about as
big as two fists. On opening them the same fish was always found
within, and the chamber in which it is contained was lined with a sort
of cocoon, having the appearance of dry gelatine. Duméril was able to
observe one of these animals in captivity. At the period corresponding
to the dry period of its own country, the _Protopterus_ buried itself
in the mud which had been placed at the bottom of the aquarium. In
order to realise the conditions found in nature, the water which
covered it was gradually withdrawn. The earth hardened in drying, and
when broken the recluse was seen surrounded by hardened mucus, exactly
like those which came from Senegal.

_Carefully-disposed burrows._--All the cases which we have considered
show us the industry of the hollowed dwelling in its primitive state;
but other animals know how to furnish it with greater luxury. I will
continue in the same order of increasing complication. Many beings
live permanently in a burrow; Reptiles--Snakes or Lizards--are to be
placed among these. Among others, the _Lacerta stirpium_ arranges a
narrow and deep hole, well hidden beneath a thicket, and retires into
it for the winter, when cold renders it incapable of movement and at
the mercy of its enemies. Before giving itself up to its hybernal
sleep, it is careful to close hermetically the opening of the dwelling
with a little earth and dried leaves. When spring returns and the heat
awakens the reptile, it comes out to warm itself and to hunt, but
never abandons its dwelling, always retiring into it in case of alarm
and to pass there cold days and nights.

Darwin has observed and described[82] how a little Lacertilian, the
_Conolophus subcristatus_, conducts its work of mining and digging. It
establishes its burrow in a soft tufa, and directs it almost
horizontally, hollowing it out in such a way that the axis of the hole
makes a very small angle with the soil. This reptile does not
foolishly expend its strength in this troublesome labour. It only
works with one side of its body at a time, allowing the other side to
rest. For instance, the right anterior leg sets to work digging, while
the posterior leg on the same side throws out the earth. When
fatigued, the left legs come into play, allowing the others to repose.

   [82] _Voyage of the Beagle_.

Other animals, without building their cavern with remarkable skill,
show much sagacity in the choice of a site calculated to obtain
certain determined advantages. In Egypt there are dogs which have
become wild. Having shaken off the yoke of man, which in the East
affords them little or no support, they lead an independent life.
During the day they remain quiescent in desert spots or ruins, and at
night they prowl about like jackals, hunting living prey or feeding on
abandoned carcasses. There are hills which have in a manner become the
property of these animals. They have founded villages there, and allow
no one to approach. These hills have an orientation from north to
south, so that one slope is exposed to the sun from morning to mid-day
and the other from mid-day to evening. Now, dogs have a great horror
of heat. They fear the torrid heat of the south as much as in our
climate they like to lie warmed by gentle rays; there is no shadow too
deep for their siesta. Therefore, on these Egyptian hills every dog
hollows out a lair on both slopes. One of these dwellings is thus
turned towards the east, the other towards the west. In the morning,
when he returns from his nocturnal expeditions, the animal takes
refuge in the second, and remains there until mid-day, sunk in
refreshing sleep. At that hour the sun begins to reach him, and to
escape it he passes over to the opposite slope; it is a curious sight
to see them all, with pendent heads and sleepy air, advance with
trailing steps to their eastern retreat, settle down in it, and
continue their dream and their digestion till evening, when they again
set forth to prowl. We never grow tired of admiring the intelligence
of their domesticated fellows, but this trait seems to me worthy of
remark; it proves a very developed power of observation and
reflection.

[Illustration: FIG. 20.]

[Illustration: FIG. 21.]

The Trap-door Spiders of the south of Europe construct burrows which
have been studied with great care and in much detail by Moggridge.[83]
He found that there were four chief types of burrow, shown in the
accompanying illustration (Fig. 20) at about one-third the actual size
(except C1 and D1, which are of natural size). While A and B have only
one door, C and D, besides the surface door, have another a short way
under ground. The whole burrow as well as the door are lined with
silk, which also forms the hinge. The great art of the Trap-door
Spider lies in her skilful forming of the door, which fits tightly,
although it opens widely when she emerges, and which she frequently
holds down when an intruder strives to enter, and in the manner with
which the presence of the door is concealed, so as to harmonise with
surrounding objects. Perhaps in no case is the concealment more
complete than when dead leaves are employed to cover the door. In some
cases a single withered olive leaf is selected, and it serves to cover
the entrance; in other cases several are woven together with bits of
wood or roots, as in the accompanying illustration, which represents
such a door when open and when shut. (Fig. 21.)

   [83] J. T. Moggridge, _Harvesting Ants and Trap-door
        Spiders_, contained in two elaborately illustrated volumes,
        London, 1873-74.

The Trap-door Spider (_Mygale henzii_, Girard), which is widely
diffused in California, forms a simple shaft-like burrow, but, like
the European Trap-door Spider, it is very skilful in forming an entrance
and in concealing its presence. Its habits have lately been described
by D. Cleveland of San Diego.[84] In the adobe land hillocks are
numerous; they are about a foot in height, and some three or four feet
in diameter. These hillocks are selected by the spiders--apparently
because they afford excellent drainage, and cannot be washed away by
the winter rains--and their stony summits are often full of spiders'
nests. These subterranean dwellings are shafts sunk vertically in the
earth, except where some stony obstruction compels the miner to
deflect from a downward course. The shafts are from five to twelve
inches in depth, and from one-half to one and a half inches in
diameter, depending largely upon the age and size of the spider.

   [84] _Science_, 20th January 1893.

When the spider has decided upon a location, which is always in clay,
adobe or stiff soil, he excavates the shaft by means of the sharp
horns at the end of his mandibles, which are his pick and shovel and
mining tools. The earth is held between the mandibles and carried to
the surface. When the shaft is of the required size, the spider
smoothes and glazes the wall with a fluid which is secreted by itself.
Then the whole shaft is covered with a silken paper lining, spun from
the animal's spinnerets.

The door at the top of the shaft is made of several alternate layers
of silk and earth, and is supplied with an elastic and ingenious
hinge, and fits closely in a groove around the rim of the tube. This
door simulates the surface on which it lies, and is distinguishable
from it only by a careful scrutiny. The clever spider even glues earth
and bits of small plants on the upper side of his trap-door, thus
making it closely resemble the surrounding surface.

The spider generally stations itself at the bottom of the tube. When,
by tapping on the door, or by other means, a gentle vibration is
caused, the spider runs to the top of his nest, raises the lid, looks
out and reconnoitres. If a small creature is seen, it is seized and
devoured. If the invader is more formidable, the door is quickly
closed, seized and held down by the spider, so that much force is
required to lever it open. Then, with the intruder looking down upon
him, the spider drops to the bottom of his shaft.

It has been found by many experiments that when the door of his nest
is removed, the spider can renew it five times--never more than that.
Within these limitations, the door torn off in the evening was found
replaced by a new one in the morning. Each successive renewal showed,
however, a greater proportion of earth, and a smaller proportion of
silk, until finally the fifth door had barely enough silk to hold the
earth together. The sixth attempt, if made, was a failure, because the
spinnerets had exhausted their supply of the web fluid. When the poor
persecuted spider finds his domicile thus open and defenceless, he is
compelled to leave it, and wait until his stock of web fluid is
renewed.[85]

   [85] The Trap-door Spiders of various parts of the world
        have been carefully studied, and the gradual development of
        their skill traced through various species, by Eugène
        Simon; see, for example, _Actes de la Soc. Lin. de
        Bordeaux_, 1888.

Skilful diggers prepare burrows with several entrances; some even
arrange several rooms, each for a special object. The Otter seeks its
food in the water, and actively hunts fish in ponds and rivers. But
when fishing is over, it likes to keep dry and at the same time
sheltered from terrestrial enemies. Its dwelling must also present an
easy opening into the water. In order to fulfil all these conditions,
its house consists first of a large room hollowed in the bank at a
level sufficiently high to be beyond reach of floods. From the bottom
of this keep a passage starts which sinks and opens about fifty
centimetres beneath the surface of the water. It is through here that
the Otter noiselessly glides to find himself in the midst of his
hunting domain without having been seen or been obliged to make a
noisy plunge which would put the game to flight. If this were all, the
hermetically-closed dwelling would soon become uninhabitable, as there
would be no provision for renewing the air, so the Otter proceeds to
form a second passage from the ceiling of the room to the ground, thus
forming a ventilation tube. In order that this may not prove a cause
of danger, it is always made to open up in the midst of brushwood or
in a tuft of rushes and reeds.

Marmots also are not afraid of the work which will assure them a warm
and safe refuge in the regions they inhabit, where the climate is
rough. In summer they ascend the Alps to a height of 2,500 to 3,000
metres and rapidly hollow a burrow like that for winter time, which I
am about to describe, but smaller and less comfortable. They retire
into it during bad weather or to pass the night. When the snow chases
them away and causes them to descend to a lower zone, they think about
constructing a genuine house in which to shut themselves during the
winter and to sleep. Twelve or fifteen of these little animals unite
their efforts to make first a horizontal passage, which may reach the
length of three or four metres. They enlarge the extremity of it into
a vaulted and circular room more than two metres in diameter. They
make there a good pile of very dry hay on which they all install
themselves, after having carefully protected themselves against the
external cold by closing up the passage with stones and calking the
interstices with grass and moss.

In solitary woods or roads the Badger (_Meles_), who does not like
noise, prepares for himself a peaceful retreat, clean and well
ventilated, composed of a vast chamber situated about a metre and a
half beneath the surface. He spares no pains over it, and makes it
communicate with the external world by seven or eight very long
passages, so that the points where they open are about thirty paces
distant from one another. In this way, if an enemy discovers one of
them and introduces himself into the Badger's home, the Badger can
still take flight through one of the other passages. In ordinary times
they serve for the aëration of the central room. The animal attaches
considerable importance to this. He is also very clean in his habits,
and every day may be seen coming out for little walks, having an
object of an opposite nature to the search for food. This praiseworthy
habit is, as we shall see, exploited by the Fox in an unworthy manner.

The Fox has many misdeeds on his conscience, but his conduct towards
the Badger is peculiarly indelicate. The Fox is a skilful digger, and
when he cannot avoid it, he can hollow out a house with several rooms.
The dwelling has numerous openings, both as a measure of prudence and
of hygiene, for this arrangement enables the air to be renewed. He
prepares several chambers side by side; one of which he uses for
observation and to take his siesta in; a second as a sort of larder in
which he piles up what he cannot devour at once; a third, in which the
female brings forth and rears her young. But he does not hesitate to
avoid this labour when possible. If he finds a rabbit warren he tries
first to eat the inhabitants, and then, his mind cleared from this
anxiety, arranges their domicile to his own taste, and comfortably
installs himself in it. In South America, again, the Argentine Fox
frequently takes up permanent residence in a vizcachera, ejecting the
rightful owners; he is so quiet and unassuming in his manners that the
vizcachas become indifferent to his presence, but in spring the female
fox will seize on the young vizcachas to feed her own young, and if
she has eight or nine, the young of the whole village of vizcachas may
be exterminated.

The Badger's dwelling appears to the Fox particularly enviable. In
order to dislodge the proprietor he adopts the following plan. Knowing
that the latter can tolerate no ordure near his home, he chooses as a
place of retirement one of the passages which lead to the chamber of
the peaceful recluse. He insists repeatedly, until at last the Badger,
insulted by this grossness, and suffocated by the odour, decides to
move elsewhere and hollow a fresh palace. The Fox is only waiting for
this, and installs himself without ceremony.

The Vizcacha (_Lagostomus trichodactylus_) is a large Rodent
inhabiting a vast extent of country in the pampas of La Plata,
Patagonia, etc. Unlike most other burrowing species, the Vizcacha
prefers to work on open level spots. On the great grassy plains it is
even able to make its own conditions, like the Beaver, and is in this
respect, and in its highly-developed social instinct, among the two or
three Mammals which approach Man, although only a Rodent, and even in
this order, according to Waterhouse, coming very low down by reason of
its marsupial affinities.

The Vizcacha lives in small communities of from twenty to thirty
members, in a village of deep-chambered burrows, some twelve or
fifteen in number, with large pit-like entrances closely grouped
together, and as the Vizcachera, as this village is called, endures
for an indefinitely long period, the earth which is constantly brought
up forms an irregular mound thirty or forty feet in diameter, and from
fifteen to thirty inches above the level of the road; this mound
serves to protect the dwelling from floods on low ground. A clearing
is made all round the abode and all rubbish thrown on the mound; the
Vizcachas thus have a smooth turf on which to disport themselves, and
are freed from the danger of lurking enemies.

The entire village occupies an area of one hundred to two hundred
square feet of ground. The burrows vary greatly in extent; usually in
a Vizcachera there are several that, at a distance of from four to six
feet from the entrance, open into large circular chambers. From these
chambers other burrows diverge in all directions, some running
horizontally, others obliquely downwards to a maximum depth of six
feet from the surface; some of these galleries communicate with those
of other burrows.

On viewing a Vizcachera closely, the first thing that strikes the
observer is the enormous size of the entrances to the central burrows
in the mound; there are usually several smaller outside burrows. The
entrance to some of the principal burrows is sometimes four to six
feet across the mouth, and sometimes it is deep enough for a tall man
to stand in up to the waist.

It is not easy to tell what induces a Vizcacha to found a new
community, for they increase very slowly, and are very fond of each
other's society. It is invariably one individual alone who founds the
new village. If it were for the sake of better pasture he would remove
to a considerable distance, but he merely goes from forty to sixty
yards off to begin operations. Sooner or later, perhaps after many
months, other individuals join the solitary Vizcacha, and they become
the parents of innumerable generations in the same village: old men,
who have lived all their lives in one district, remember that many of
the Vizcacheras around them existed when they were children.

It is always a male who begins the new village. Although he does not
always adopt the same method, he usually works very straight into the
earth, digging a hole twelve or fourteen inches wide, but not so deep,
at an angle of about 25° with the surface. After he has progressed
inwards for a few feet, the animal is no longer content merely to
scatter the loose earth; he cleans it away in a straight line from the
entrance, and scratches so much on this line, apparently to make the
slope gentler, that he soon forms a trench a foot or more in depth,
and often three or four feet in length. This facilitates the
conveyance of the loose earth as far as possible from the entrance of
the burrow. But after a while the animal is unwilling that earth
should accumulate even at the end of this long passage, and proceeds
to form two additional trenches, making an acute or right angle
converging into the first trench, so that the whole when completed
takes a Y shape. These trenches are continually deepened and
lengthened in this manner, the angular segment of earth between them
being scratched away, until by degrees it gives place to one large
deep irregular mouth. The burrows are made best in the black and red
moulds of the pampas; but even in such soils the entrances may be
varied. In some the central trench is wanting, or so short that there
appear to be but two passages converging directly into the burrow, or
these two trenches may be so curved inwards as to form the segment of
a circle. Usually, however, the varieties are only modifications of
the Y-shaped system.

On the pampas a wide-mouthed burrow possesses a distinct advantage
over the more usual shape. The two outer trenches diverge so widely
from the mouth that half the earth brought out is cast behind instead
of before it, thus creating a mound of equal height about the
entrance, by which it is secured from water during great rainfalls,
while cattle avoid treading over the great pit-like entrances, though
they soon tread and break in the burrows of the Armadillo and other
species when these make their homes on perfectly level ground.

The Vizcachas do not usually leave their burrows until dark, but in
summer they come out before sunset. Usually one of the old males first
appears, and sits on some prominent place on the mound, apparently in
no haste to begin his evening meal. Other Vizcachas soon begin to
appear, each quietly taking up his position at the burrow's mouth. The
females, known by their smaller size and lighter colour, sit upright
on their haunches, as if to command a better view; they are always
wilder and sprightlier in their gestures than the males. They view a
human stranger with a mixture of fear and curiosity, sometimes
allowing him to come within five or six paces of them; in desert
regions, however, where enemies are numerous, the Vizcacha is very
timid and wary.

These animals are very sociable, and their sociability extends beyond
their own vizcachera. On approaching a vizcachera at night, usually
some of the Vizcachas on it scamper off to distant burrows. These are
neighbours merely come to pay a friendly visit. The intercourse is so
frequent that little straight paths are formed from one village to
another. Their social instinct leads members of one village to assist
those of another when in trouble. Thus, if a vizcachera is covered
over with earth in order to destroy the animals within, Vizcachas from
distant burrows will subsequently be found zealously digging out their
friends. The hospitality of the Vizcacha does not, however, extend to
his burrow; he has a very strong feeling with regard to the sanctity
of the burrow. A Vizcacha never enters another's burrow, and if by
chance driven into one by dogs will emerge speedily, apparently
finding that the danger within is greater than the danger without. In
connection with the sociability of the Vizcacha, we must take into
consideration the fact that Vizcachas possess a wonderfully varied and
expressive language, and are engaged in perpetual discussion all night
long.[86]

   [86] The Vizcacha has been carefully studied by Mr. W. H.
        Hudson, whose account has here been closely followed,
        _Proceedings of the Zoological Society_, 1872, and
        _Naturalist in La Plata_, 1892, pp. 289-313.

_Burrows with barns adjoined._--Certain Rodents have carried hollow
dwellings to great perfection. Among these the Hamster of Germany
(_Cricetus frumentarius_) is not the least ingenious. To his
dwelling-room he adds three or four storehouses for the amassed
provisions of which I have already had occasion to speak. The burrow
possesses two openings: one, which the animal prefers to use, which
sinks vertically into the soil; the other, the passage of exit with a
gentle and very winding slope. The bottom of the central room is
carpeted with moss and straw, which make it a warm and pleasant home.
A third tunnel starts from this sleeping chamber, soon forking and
leading to the wheat barns. Thus during the winter the Hamster has no
pressing need to go out except on fine days for a little fresh air. He
has everything within his reach, and can remain shut up with nothing
to fear from the severity of the season.

_Dwellings hollowed out in wood._--It is not only the soil which may
serve for retreat; wood serves as an asylum for numerous animals, who
bore it, and find in it both food and shelter. In this class must be
placed a large number of Worms, Insects, and Crustaceans. One of these
last, the _Chelura terebrans_, a little Amphipod, constitutes a great
danger for the works of man. It attacks piles sunken to support
structures, and undermines them to such a degree that they eventually
fall. Wood is formed of concentric layers alternately composed of
large vessels formed during the summer, and smaller vessels formed
during the winter. The latter zones are more resistant, the former are
softer. When one of these Crustaceans attacks a pile, it first bores a
little horizontal passage, stopping at a layer of summer-growth. It
there hollows a large grotto, leaving here and there pillars of
support. It lays in this space. The new generation working around the
parents increases the space and feeds on the wood removed. A second
generation is produced, and the inhabitants become pressed for space.
The new-born pierce numerous passages and penetrate towards the
interior of the pile as far as the next summer layer. There they
spread themselves, always boring; they construct new rooms like the
first, and arrange pillars here and there. Their descendants gain the
subjacent zone, and so the process goes on. During this time the early
ancestors who hollowed the surface dwellings have died, and the holes
which they made are no longer habitable; but they have all contributed
to diminish the resistance of the wood, and this continues as long as
the race which they produced makes its way towards the centre of the
stake.

[Illustration: FIG. 22.]

An insect, the _Xylocopa violacea_ (Fig. 22), related to our
Humble-bee, from which it differs in several anatomical characters,
and by the dark violet tint of its wings, brings an improvement to the
formation of the shelter which it makes in wood for its larvæ. Instead
of hollowing a mere retreat to place there all its eggs
indiscriminately, it divides them into compartments, separated by
horizontal partitions. It is the female alone who accomplishes this
task, connected with the function of perpetuating the race. She
chooses an old tree-trunk, a pole, or the post of a fence, exposed to
the sun and already worm-eaten, so that her labour may be lightened.
She first attacks the wood perpendicularly to the surface, then
suddenly turns and directs downwards the passage, the diameter of
which is about equal to the size of the insect's body. The _Xylocopa_
thus forms a tube about thirty centimetres in length. Quite at the
bottom she places the first egg, leaving beside it a provision of
honey necessary to nourish the larva during its evolution; she then
closes it with a partition. This partition is made with fragments of
the powder of wood glued together with saliva. A first horizontal ring
is applied round the circumference of the tube; then in the interior
of this first ring a second is formed, and so on continuously, until
the central opening, more and more reduced, is at last entirely closed
up. This ceiling forms the floor for the next chamber, in which the
female deposits a new egg, provided, like the other, with abundant
provisions. The same acts are repeated until the retreat becomes
transformed into a series of isolated cells in which the larvæ can
effect their development, and from which they will emerge either by
themselves perforating a thin wall which separates them from daylight,
or by an opening which the careful mother has left to allow them to
attain liberty without trouble.[87]

   [87] Réaumur, _Memoires pour servir à l'histoire des
        Insectes_, pp. 97 _et seq._

_Woven dwellings._--The second class of habitation, which I have
called the woven dwelling, proceeds at first from the parcelling up of
substances, then of objects capable of being entangled like wisps of
wood or straw, then of fine and supple materials which the artisan can
work together in a regular manner, that is to say by felting or
weaving. Facts will show us the successive stages of improvement which
have been introduced into this industry. I will begin with the more
rudimentary.

_Rudiments of this industry._--There are, first, cases in which the
will of the animal does not intervene, or at least is very slightly
manifested. The creature is found covered and protected by foreign
bodies which are often living beings. Spider-crabs (_Maïa_), for
example, have their carapaces covered with algæ and hydroids of all
sorts. Thus garnished, the Crustaceans have the advantage of not being
recognised from afar when they go hunting, since beneath this fleece
they resemble some rock. H. Fol has observed at Villefranche-sur-Mer a
_Maïa_ so buried beneath this vegetation that it was impossible at
first sight to distinguish it from the stones around. Under these
conditions the animal submits to a shelter rather than creates it. Yet
it is not so passive as one might at first be led to suppose. When the
algæ which flourish on its back become too long and impede or delay
its progress, it tears them off with its claws and thoroughly cleans
itself. The carapace being quite clean, the animal finds itself too
smooth and too easy to distinguish from surrounding objects; it
therefore takes up again fragments of algæ and replaces them where
they do not delay to take root like cuttings and to flourish anew.
This culture is therefore intentional; the crab directs it and arrests
its exuberance; it is no more the victim of it than the gardener is
the slave of the vegetables which he waters day by day. From
generation to generation this crab has acquired the habit, the
instinct if one prefers, of thus covering itself so that it may be
confused with neighbouring objects. Naturally it is ignorant of
botany, and knows nothing of cuttings. If placed in an aquarium with
little fragments of paper it will seize them and place them on its
back, as it would have done with algæ, without troubling as to whether
they become fixed or not. In spite of this lack of judgment, we cannot
fail to recognise in this _Maïa_ a certain ingenuity in
self-concealment.

[Illustration: FIG. 23.]

The Sponge-crab (_Dromia vulgaris_) also practises this method of
shelter. It seizes a large sponge and maintains it firmly over its
carapace with the help of the posterior pair of limbs. The sponge
continues to prosper and to spread over the Crustacean who has adopted
it. (Fig. 23.) The two beings do not seem to be definitely fixed to
each other; the contact of a sudden wave will separate them. When the
divorce is effected, the _Dromia_ immediately throws itself on its
cherished covering and replaces it. M. Künckel d'Herculais tells of
one of these curious crustaceans which delighted the workers in the
laboratory of Concarneau. The need for covering themselves experienced
by these Crabs is so strong that in aquariums when their sponge is
taken away they will apply to the back a fragment of wrack or of
anything which comes to hand. A little white cloak with the arms of
Brittany was manufactured for one of these captives, and it was very
amusing to see him put on his overcoat when he had nothing else
wherewith to cover himself.[88]

   [88] Brehm, édition Française, _Crustacés_, p. 738.

In these two cases which I have brought forward to exhibit the
rudiments of this industry, the animals' reflection and will play but
a small part; even in the _Dromia_ custom is so inveterate in the race
that it has reacted on the animal's organisation, and its four
posterior legs are profoundly modified for the purpose of firmly
holding the sheltering sponge; they no longer serve for swimming or
walking. The animals of which I have now to speak possess more
initiative; although all do not act with the same success, or show
themselves equally skilful. Let us turn first to the least
experienced.

An Australian bird, the _Catheturus Lathami_, as described by Gould,
is still in the rudiments, and limits itself to preparing an enormous
pile of leaves. It begins its work some weeks before laying its eggs;
with its claws it pushes behind it all the dead leaves which fall on
the earth and brings them into a heap. The bird throws new material on
the summit until the hole is of suitable height. This detritus
ferments when left to itself, and a gentle heat is developed in the
centre of the edifice. The _Catheturus_ returns to lay near this
coarse shelter; it then takes each egg and buries it in the heap, the
larger end uppermost. It places a new layer above, and quits its
labour for good. Incubation takes place favoured by the uniform heat
of this decomposing mass, hatching is produced, and the young emerge
from their primitive nest.

[Illustration: FIG. 24.]

Birds are not alone in constructing temporary dwellings in which to
lay their eggs; some Fish are equally artistic in this kind of
industry, and even certain Reptiles. The Alligator of the Mississippi
would not perhaps at first be regarded as a model of maternal
foresight. Yet the female constructs a genuine nest. She seeks a very
inaccessible spot in the midst of brushwood and thickets of reeds.
With her jaw she carries thither boughs which she arranges on the soil
and covers with leaves. She lays her eggs and conceals them with care
beneath vegetable remains. Not yet considering her work completed, she
stays in the neighbourhood watching with jealous eye the thicket which
shelters the dear deposit, and never ceases to mount guard
threateningly until the day when her young ones can follow her into
the stream.

A hymenopterous relative of the Bees, the _Megachile_, cuts out in
rose-leaves fragments of appropriate form which it bears away to a
small hole in a tree, an abandoned mouse nest or some similar cavity.
There it rolls them, works them up, and arranges them with much art,
so as to manufacture what resemble thimbles, which it fills with honey
and in which it lays.[89] (Fig. 24.)

   [89] Réaumur, _Memoires pour servir à l'histoire des
        Insectes_, pp. 97 _et seq._

The _Anthocopa_ acts in a similar manner, carpeting the holes of which
it takes possession with the delicate petals of the corn poppy.

The retreats of nocturnal birds of prey do not differ in method of
construction from these two kinds of nests. They are holes in trees,
in ruins, in old walls, and are lined with soft and warm material.
These dwellings are related, not to the type of the hollowed cave, but
to that of the habitation manufactured from mingled materials. They
constitute an inferior form in which the pieces are not firmly bound
together but need support throughout. The cavity is the support which
sustains the real house.

_Dwellings formed of coarsely-entangled materials._--Diurnal birds of
prey are the first animals who practise skilfully the twining of
materials. Their nests, which have received the name of eyries, are
not yet masterpieces of architecture, and reveal the beginning of the
industry which is pushed so far by other birds. Usually situated in
wild and inaccessible spots, the young are there in safety when their
parents are away on distant expeditions. The abrupt summits of cliffs
and the tops of the highest forest trees are the favourite spots
chosen by the great birds of prey. The eyrie generally consists of a
mass of dry branches which cross and mutually support one another,
constituting a whole which is fairly resistant.

Even these primitive nests are not, however, without more complicated
details of interest. Thus Mr. Denis Gale wrote to Bendire concerning
the Golden Eagle in America: "Here in Colorado, in the numerous glades
running from the valleys into the foothills, high inaccessible ledges
are quite frequently met with which afford the Eagles secure sites for
their enormous nests. I know of one nest that must contain two
waggon-loads of material. It is over seven feet high, and quite six
feet wide on its upper surface. In most cases the cliff above
overhangs the site. At the end of February or the beginning of March,
the needful repairs to the nest are attended to, and the universal
branch of evergreen is laid upon the nest, seemingly for any purpose
save that of utility. This feature has been present in all the nests I
have examined myself, or have had examined by others; it would seem to
be employed as a badge of occupancy."[90] This curious feature is also
found in the nests of the Bald or American Eagle. Thus Dr. W. L. Ralph
furnished Bendire with the following observations made in Florida on
the dwellings of this, the national bird of the United States:--"The
nests are immense structures, from five to six feet in diameter, and
about the same in depth, and so strong that a man can walk around in
one without danger of breaking through; in fact, my assistant would
always get in the nest before letting the eggs down to me. They are
composed of sticks, some of which are two or three inches thick, and
are lined with marsh grass or some similar material. There is usually
a slight depression in the centre, where the eggs are placed, but the
edge of the nest extends so far beyond this that it is almost
impossible to see the bird from below, unless it has its head well up.
I have frequently found foreign substances in their nests, usually
placed on the edges of it, the object of which I cannot account for.
Often it would be a ball of grass, wet or dry, sometimes a green
branch from a pine tree, and again a piece of wood, bark, or other
material. It seemed as if they were placed in the nests as if to mark
them. From its frequent occurrence, at least, it seemed to me as if
designedly done."[91]

   [90] _Life Histories of North American Birds_, 1892, p. 265.

   [91] _Life Histories of American Birds_, p. 275.

The abodes of Squirrels, though exhibiting more art, are constructions
of the same nature; that is to say, they are formed of interlaced
sticks. This animal builds its home to shelter itself there in the bad
season, to pass the night in it, and to rear its young. Very agile,
and not afraid of climbing, it places its domicile near the tops of
our highest forest trees. Rather capricious also, and desiring change
of residence from time to time, it builds several of them; at least
three or four, sometimes more. The materials which it needs are
collected on the earth among fallen dead branches, or are torn away
from the old abandoned nest of a crow or some other bird. The Squirrel
firsts builds a rather hollow floor by intermingling the fragments of
wood which it has brought. In this state its dwelling resembles a
magpie's nest. But the fastidious little animal wishes to be better
protected and not thus to sleep in the open air. Over this foundation
he raises a conical roof; the sticks which form it are very skilfully
disposed, and so well interlaced that the whole is impenetrable to
rain. The house must still be furnished, and this is done with
oriental luxury; that is to say, the entire furniture consists of a
carpet, a carpet of very dry moss, which the Squirrel tears from the
trunks of trees, and which it piles up so as to have a soft and warm
couch. An entrance situated at the lower part gives access to the
aërial castle; it is usually directed towards the east. On the
opposite side there is another orifice by which the animal can escape
if an enemy should invade the principal entrance. In ordinary times
also it serves to ventilate the chamber by setting up a slight current
of air. The Squirrel greatly fears storms and rain, and during bad
weather hastens to take refuge in his dwelling. If the wind blows in
the direction of the openings, the little beast at once closes them
with two stoppers of moss, and keeps well shut in as long as the storm
rages.

The great Anthropoid Apes have found nothing better for shelter than
the Squirrels' method. It must, however, be taken into account that
they have much more difficulty in arranging and maintaining much
heavier rooms, and in building up a shelter with larger surface.

The Orang-outang, which lives in the virgin forests of the Sunda
Archipelago, does not feel the need of constructing a roof against the
rain. He is content with a floor established in the midst of a tree,
and made of broken and interlaced branches. He piles up on this
support a considerable mass of leaves and moss; for the Orang does not
sleep seated like the other great apes, but lies down in the manner of
Man, as has often been observed when he is in captivity. When he feels
the cold he is ingenious enough to cover himself with the leaves of
his couch.

In Upper and Lower Guinea the Chimpanzee (_Troglodytes niger_) also
establishes his dwelling on trees. He first makes choice of a large
horizontal branch, which constitutes a sufficient floor for the agile
animal. Above this branch he bends the neighbouring boughs, crosses
them, and interlaces them so as to obtain a sort of framework. When
this preliminary labour is accomplished, he collects dead wood or
breaks up branches and adds them to the first. Before commencing he
had taken care when choosing the site that the whole was so arranged
that a fork was within reach to sustain the roof. He thus constructs a
very sufficient shelter. These apes are sociable and prefer to live in
each other's neighbourhood. They even go on excursions in rather large
bands. Notwithstanding this, more than one or two cabins are never
seen on the same tree; perhaps this is because the complicated
conditions required for the construction are not likely to be realised
several times on the same tree; perhaps also it is a desire for
independence which impels the Chimpanzees not to live too near to each
other.[92]

   [92] Savage, "Observations on the External Characters and
        Habits of the _Troglodytes niger_," _Boston Journal Nat.
        Hist._, 1843, pp. 362-376.

The _Troglodytes calvus_, a relative of the preceding, inhabiting the
same regions, as described by Du Chaillu, shows still more skill in
raising his roof. A tree is always chosen for support. He breaks off
boughs and fastens them by one end to the trunk, by the other to a
large branch. To fix all these pieces he employs very strong creepers,
which grow in abundance in his forests. Above this framework, which
indicates remarkable ingenuity, the animal piles up large leaves,
forming in layers well pressed down and quite impenetrable to the
rain. The whole has the appearance of an open parasol. The ape sits on
a branch beneath his handiwork, supporting himself against the trunk
with one arm. He has thus an excellent shelter against the mid-day sun
as well as against tropical showers. Male and female each possess a
dwelling on two neighbouring trees, the principle of conjugal
cohabitation not being admitted in this species. As to the child, it
appears that it sleeps near its mother, until it is of age to lead an
independent life.

There exists in Australia, the country of zoological singularities, a
bird with very curious customs. This is the Satin Bower-bird. The art
displayed in this bird's constructions is not less interesting than
the sociability he gives evidence of, and his desire to have for his
hours of leisure a shelter adorned to his taste. The bowers which he
constructs, and which present on a small scale the appearance of the
arbours in our old gardens, are places for re-union and for warbling
and courtship, in which the birds stay during the day, when no anxiety
leads them to disperse. They are not, properly speaking, nests built
for the purpose of rearing young; for at the epoch of love each couple
separates and constructs a special retreat in the neighbourhood of the
bower. These shelters are always situated in the most retired parts of
the forest, and are placed on the earth at the foot of trees. Several
couples work together to raise the edifice, the males performing the
chief part of the work. At first they establish a slightly convex
floor, made with interlaced sticks, intended to keep the place
sheltered from the moisture of the soil. The arbour rises in the
centre of this first platform. Boughs vertically arranged are
interlaced at the base with those of the floor. The birds arrange them
in two rows facing each other; they then curve together the upper
extremities of these sticks, and fix them so as to obtain a vault. All
the prominences in the materials employed are turned towards the
outside, so that the interior of the room may be smooth and the birds
may not catch their plumage in it. This done, the little architects,
to embellish their retreat, transport to it a number of conspicuous
objects, such as very white stones from a neighbouring stream, shells,
the bright feathers of the parroquet, whatever comes to their beak.
All these treasures are arranged on the earth, before the two entries
to the bower, so as to form on each side a carpet, which is not
smooth, but the varied colours of which rejoice the eye. The prettiest
treasures are fixed into the wall of the hut. These houses of
pleasure, with all their adornments, form a dwelling very much to the
taste of this winged folk, and the birds pass there the greater part
of the day, preening their feathers and narrating the news of the
forest. Bower-birds' clubs are drawing-rooms raised at the common
expense by all who frequent them. The Spotted Bower-bird, the
_Chlamydera maculata_, which also lives in the interior of Australia,
exercises this method of construction with equal success. The bowers
built by these birds may be one metre in length; this is on a very
luxurious scale, the animal itself only measuring twenty-five
centimetres. In this species, as among other Bower-birds, the bowers
are not the labour and the property of a single couple; they are the
result of the collaboration of several households, who come together
to shelter themselves there. These birds feed only on grains, so that
it is to a very pronounced taste for collecting that we must attribute
this mania of piling up before the entrance of the bower white stones,
shells, and small bones. (Fig. 25.) These objects are intended solely
for the delight of these feathered artists. They are very careful also
only to collect pieces which have been whitened and dried by the
sun.[93]

   [93] Gould first accurately described the habits of the
        Bower-birds, _Proceed. Zool. Soc._; _London_, 1840, p. 94;
        also _Handbook to the Birds of Australia_ (1865), vol. i.
        pp. 444-461. See also Darwin's _Descent of Man_ (1881), pp.
        381 and 413-414.

Certain Humming-birds also, according to Gould, decorate their
dwellings with great taste. "They instinctively fasten thereon," he
stated, "beautiful pieces of flat lichen, the larger pieces in the
middle, and the smaller on the part attached to the branch. Now and
then a pretty feather is intertwined or fastened to the outer sides,
the stem being always so placed that the feather stands out beyond the
surface."[94]

   [94] Gould, _Introduction to the Trochilidæ_, 1861, p. 19.

_Dwellings woven of flexible substances._--In spite of their lack of
skill and the inadequacy of their organs for this kind of work, Fish
are not the most awkward architects. The species which construct nests
for laying in are fairly numerous; the classical case of the
Stickleback is always quoted, but this is not the only animal of its
class to possess the secret of the manufacture of a shelter for its
eggs.

A fish of Java, the Gourami (_Osphronemus olfax_), establishes an
ovoid nest with the leaves of aquatic plants woven together. It makes
its work about the size of a fist, takes no rest until it is
completed, and is able to finish it in five or six days. It is the
male alone who weaves this dwelling; when it is ready a female comes
to lay there, and generally fills it; it may contain from six hundred
to a thousand eggs.

[Illustration: FIG. 25.]

In the sea of Sargasso lives a fish which has received the name of the
_Antennarius marmoratus_. Its flattened and monstrous head gives it a
strange aspect, and it is marbled with brown and yellow. These colours
are those of the tufts of floating seaweed around it, and, thanks to
this arrangement, it can easily hide itself amid them without being
recognised from afar. This animal constructs for its offspring a
fairly safe retreat. The materials which it employs are tufts of
Sargasso so abundant in this portion of the Atlantic. It collects all
the filaments, and unites them solidly by surrounding them with
viscous mucus which it secretes and which hardens. When its work is
sufficiently firm not to be destroyed by the waves it lays its eggs in
it, and the floating nest is abandoned to its fate. The little ones
come out and find within it a sufficient protection for their early
age. These dwellings thus floating on the surface of the sea are
rounded and about the size of a cocoa-nut.

In Guiana and Brazil another species, the _Choestostomus pictus_, is
found, which is equally skilful. With aquatic plants it constructs a
spherical nest and arranges it in the midst of the reeds, level with
the water. At the lower part a hole is left, through which the female
comes to lay. After fertilisation, the couple, as is rarely found
among fish, remain in the neighbourhood of their offspring to assist
them if necessary. This praiseworthy sentiment is often the cause of
their ruin. The inhabitants of the banks speculate on the love of
these fish for their offspring to gain possession of them. It is
sufficient to place a basket near the entrance of the dwelling, which
is then lightly struck. The animal, threatened in its affections,
darts furiously forward with bristling spines and throws itself into
the trap.

It is scarcely necessary to recall the skilful art with which the
Stickleback which inhabits all our streams plaits its nest and remains
sentinel near it. (Fig. 26.) This fish has indeed monopolised our
admiration, and is considered as the most skilful, if not the only
aquatic architect. Yet, besides those which I have already mentioned,
there is one which equals the Stickleback in the skill it displays in
constructing a shelter for its spawn. This is the _Gobius niger_ met
on our coasts, especially in the estuaries of rivers. The male
interlaces and weaves the leaves of algæ, etc., and when he has
finished his preparations, he goes to seek females, and leads them one
by one to lay in the retreat he has built. Then he remains in the
neighbourhood until the young come out, ready to throw himself
furiously with his spines on any imprudent intruders.

[Illustration: FIG. 26.]

[Illustration: FIG. 27.]

_Dwellings woven with greater art._--Without doubt the class of Birds
furnishes the most expert artisans in the industry of the woven
dwelling. In our own country we may see them seeking every day to
right and left, carrying a morsel of straw, a pinch of moss, a hair
from a horse's tail, or a tuft of wool caught in a bush. They
intermingle these materials, making the framework of the construction
with the coarser pieces, keeping those that are warmer and more
delicate for the interior. These nests, attached to a fork in a branch
or in a shrub, hidden in the depth of a thicket, are little
masterpieces of skill and patience. To describe every form and every
method would fill a volume. But I cannot pass in silence those which
reveal a science sure of itself, and which are not very inferior to
what man can do in this line. The Lithuanian Titmouse (_Ægithalus
pendulinus_), whose works have been well described by Baldamus, lives
in the marshes in the midst of reeds and willows in Poland, Galicia,
and Hungary. Its nest, which resembles none met in our own country, is
always suspended above the water, two or three metres above the
surface, fixed to a willow branch.[95] All individuals do not exhibit
the same skill in fabricating their dwelling; some are more careful
and clever than others who are less experienced. Some also are obliged
by circumstances to hasten their work. It frequently happens that
Magpies spoil or even altogether destroy with blows of their beaks one
of these pretty nests. The unfortunate couple are obliged to
recommence their task, and if this accident happens two or three times
to the same household, it can easily be imagined that, discouraged and
depressed by the advancing season, they hasten to build a shelter
anyhow, only doing what is indispensable, and neglecting perfection.
However this may be, the nests which are properly finished have the
form of a purse, twenty centimetres high and twelve broad. (Fig. 27.)
At the side an opening, prolonged by a passage which is generally
horizontal, gives access to the interior. Sometimes another opening is
found without any passage. Every nest in the course of construction
possessed this second entry, but it is usually filled up when the work
is completed. When the bird has resolved to establish its retreat, it
first chooses a hanging branch presenting bifurcations which can be
utilised as a rigid frame on which to weave the lateral walls of the
habitation. It intercrosses wool and goat's hair so as to form two
courses which are afterwards united to each other below, and
constitute the first sketch of the nest, at this moment like a
flat-bottomed basket. This is only the beginning. The whole wall is
reinforced by the addition of new material. The architect piles up
down from the poplar and the willow, and binds it all together with
filaments torn from the bark of trees, so as to make a whole which is
very resistant. Then a couch is formed by heaping up wool and down at
the bottom of the nest.

   [95] Baldamus, _Beiträge zur Oologie und Nidologie_, 1853,
        pp. 419-445.

The American Baltimore Oriole, also called the Baltimore Bird, is a
distinguished weaver. With strong stalks and hemp or flax, fastened
round two forked twigs corresponding to the proposed width of nest, it
makes a very delicate sort of mat, weaving into it quantities of loose
tow. The form of the nest might be compared to that of a ham; it is
attached by the narrow portion to a small branch, the large part being
below. An opening exists at the lower end of the dwelling, and the
interior is carefully lined with soft substances, well interwoven with
the outward netting, and it is finished with an external layer of
horse-hair, while the whole is protected from sun and rain by a
natural canopy of leaves.

The Rufous-necked Weaver Bird, as described by Brehm, shows itself
equally clever. Its nest is woven with extreme delicacy, and resembles
a long-necked decanter hung up with the opening below. From the bottom
of the decanter a strong band attaches the whole to the branch of a
tree. (Fig. 28.) The Yellow Weaver Bird of Java, as described by
Forbes, constructs very similar retort-shaped nests.[96]

   [96] H. O. Forbes, _A Naturalist's Wanderings in the Eastern
        Archipelago_, 1885, pp. 56-58.

These birds have no monopoly of these careful dwellings; a
considerable number of genera have carried this industry to the same
degree of perfection.

[Illustration: FIG. 28.]

[Illustration: FIG. 29.]

When animals apply themselves in association to any work, they nearly
always exhibit in it a marked superiority over neighbouring species
among whom the individuals work in isolation. The construction of
dwellings is no exception, and the nests of the Sociable Weaver Birds
of South Africa are the best constructed that can be found. These
birds live together in considerable colonies; the members of an
association are at least two hundred in number, and sometimes rise to
five hundred. The city which they construct is a marvel of industry.
They first make with grass a sloping roof; giving it the form of a
mushroom or an open umbrella, and they place it in such a way that it
is supported by the trunk of a tree and one or two of the branches.
(Fig. 29.) This thatch is prepared with so much care that it is
absolutely impenetrable to water. Beneath this protecting shelter each
couple constructs its private dwelling. All the individual nests have
their openings below, and they are so closely pressed against one
another that on looking at the construction from beneath, the
divisions cannot be seen. One only perceives a surface riddled with
holes like a skimmer; each of these holes is the door of a nest. The
work may endure for several years; as long as there is room beneath
the roof the young form pairs near their cradle; but at last, as the
colony continues to increase, a portion emigrate to found a new town
on another tree in the forest.[97]

   [97] An early description of this bird is to be found in W.
        Paterson's _Narrative of Four Journeys into the Country of
        the Hottentots_, 1789; also in Le Vaillant's _Second Voyage
        dans l'intérieur de l'Afrique_, 1803, t. iii., p. 322.

[Illustration: FIG. 30.]

The industry of the woven dwelling does not flourish among mammals;
but there is one which excels in it. This is the Dwarf Mouse (_Mus
minutus_), certainly one of the smallest Rodents. It generally lives
amidst reeds and rushes, and it is perhaps this circumstance which has
impelled it to construct an aërial dwelling for its young, not being
able to deposit them on the damp and often flooded soil. This retreat
is not used in every season; its sole object is for bringing forth the
young. It is therefore a genuine nest, not only by the manner in which
it is made, but by the object it is intended to serve. The mouse
chooses in the midst of its usual domain a tuft with leaves more or
less crossed; but not too inextricable, so that there may remain in
the midst an empty space, in the centre of which the work will be
arranged. Great ingenuity is shown in the preliminaries; the mouse
simplifies its task by utilising material within its reach instead of
going afar to collect them with trouble. The little animal examines
the thicket, and on reflection chooses some thirty leaves which appear
suitable. Then, without detaching them, it tears each into seven or
eight threads which are held together by the base, and remain attached
to the reeds. It is a clever idea to avoid losing a natural point of
support. The little bands being thus prepared, they are interlaced and
crossed with much art, the animal comes and goes, placing first one of
them, then another above, taken from a different leaf. It has soon
woven a ball about the size of the fist, and hollowed out the
interior. (Fig. 30.) Delicate materials are not lacking around to make
a soft bed. The mouse gleans and constantly brings in the light down
of the willow, grains with cottony crests, and the petals of flowers.
This is all carefully fitted, and when the edifice is completed the
female retires into it to bring forth her young, which are there well
sheltered against the dangers without, and the caprices of storms and
floods. The nest is made with as much delicacy as that of any bird,
and no other mammal except Man is capable of executing such weaver's
work.

_The art of sewing among birds._--There are birds which have succeeded
in solving a remarkable difficulty. Sewing seems so ingenious an art
that it must be reserved for the human species alone. Yet the Tailor
Bird, the _Orthotomus longicauda_, and other species possess the
elements of it. They place their nests in a large leaf which they
prepare to this end. With their beaks they pierce two rows of holes
along the two edges of the leaf; they then pass a stout thread from
one side to the other alternately. With this leaf, at first flat, they
form a horn in which they weave their nest with cotton or hair. (Fig.
31.) These labours of weaving and sewing are preceded by the spinning
of the thread. The bird makes it itself by twisting in its beak
spiders' webs, bits of cotton, and little ends of wool. Sykes found
that the threads used for sewing were knotted at the ends.[98] It is
impossible not to admire animals who have skilfully triumphed over all
the obstacles met with in the course of these complicated
operations.[99]

   [98] _Catalogue of Birds, etc._, p. 16.

   [99] Tristram, "On the Ornithology of Northern Africa," _Isis_, 1859-60.

[Illustration: FIG. 31.]

Certain Spiders, while they do not actually sew in the sense that they
perforate the leaves they use to build their nest, and draw the thread
through them, yet subject the leaves to an operation which cannot well
be called anything else but sewing it.[100]

  [100] McCook describes, and gives good illustrations of,
        these nests in various stages of progress, _American
        Spiders_, vol i. p. 302.

_Modifications of dwellings according to season and climate._--A
certain number of facts show that these various industries are not
fixed and immutable instincts imposed on the species. Certain Birds
change the form of their dwelling according to the climate, or
according to the season in which they inhabit it. For example, the
Crossbill, _Loxia tænioptera_ (Fig. 32), does not build its nest
according to the same rules in Sweden as in France. It builds in every
season. The winter shelter is spherical, constructed with very dry
lichens, and it is very large. A very narrow opening, just sufficient
for the passage of the owner, prevents the external cold from
penetrating within. The summer nests are much smaller, in consequence
of a reduction in the thickness of the walls. There is no longer need
to fear that the cold will come through them, and the animal gives
itself no superfluous trouble.

[Illustration: FIG. 32.]

Again, the Baltimore Oriole, which inhabits both the Northern and
Southern States of North America, knows very well how to adapt his
manner of work to the external circumstances in which he lives. Thus,
in the Southern States the nest is woven of delicate materials united
in a rather loose fashion, so that the air can circulate freely and
keep the interior fresh; it is lined with no warm substance, and the
entrance is turned to the west so that the sun only sends into it the
oblique evening rays. In the north, on the contrary, the nest is
oriented to the south to profit by all the warm sunshine; the walls
are thick, without interstices, and the dwelling is carpeted in the
warmest and softest manner. Even in the same region there is great
diversity in the style, neatness, and finish of the nests, as well as
in the materials used. Skeins of silk and hanks of thread have
frequently been found in the Baltimore Bird's nest, so woven up and
entangled that they could not be withdrawn. As such materials could
not be obtained before the introduction of Europeans, it is evident
that this bird, with the sagacity of a good architect, knows how to
select the strongest and best materials for his work. Many other facts
might be quoted, but these suffice to show that the species is not
animated by an inevitable instinct, but that each individual, skilful
no doubt by heredity, can modify the methods transmitted to him by his
ancestors, according to his own experience and his own judgment.

_Built dwellings._--The built dwelling, the expression of the highest
civilisation, still remains to be studied. Man has only known how to
construct this kind of shelter at a comparatively late period in his
evolution; and among animals we do not find it widely spread, much
less so, certainly, than the two foregoing methods, especially the
first. The difficulty of this work is greater, and it only arrives at
considerable development among very sociable species, since the united
efforts of a great number of individuals are needed to carry it on.

There are, however, masons who operate separately; but their
constructions are rudimentary. The characteristic of all these works
is that they are manufactured with some substance to which the animal
gives a determined form while it is still soft, and that in drying it
preserves this form and acquires solidity. The matter most usually
employed is softened and tempered earth--mortar; but there are animals
who use with success more delicate bodies. Two examples will suffice
to indicate the nature of these exceptions: the labours of Wasps and
those of certain Swallows.

[Illustration: FIG. 33.]

_Paper nests._--Certain Wasps, by the material of their dwellings,
approach the Japanese; they build with paper. This paper or cardboard
is very strong and supplies a solid support; moreover, being a bad
conductor of heat, it contributes to maintain an equable temperature
within the nest. The constructions of these insects, though they do
not exhibit the geometric arrangement of those of Bees, are not less
interesting. The paper which they employ is manufactured on the spot,
as the walls of the cells develop. Detritus of every kind enters into
its preparation: small fragments of wood, sawdust, etc.; anything is
good. These Hymenoptera possess no organ specially adapted to aid
them; it is with their saliva that they glue this dust together and
make of it a substance very suitable for its purpose. The dwellings
often reach considerable size, yet they are always begun by a single
female, who does all the work without help until the moment when the
first eggs come out; she is thus furnished with workers capable of
taking a share in her task. The _Vespa sylvestris_ builds a paper nest
of this kind, hanging to the branch of a tree, like a great grey
sphere prolonged to a blunt neck. (Fig. 33.) The Hornet's nest is
similar in construction.

_Gelatine nests._--These are made by certain Swallows who nest in
grottoes or cliffs on the edge of the sea. After having collected from
the water a gelatinous substance formed either of the spawn of fish or
the eggs of Mollusca, they carry this substance on to a perpendicular
wall, and apply it to form an arc of a circle. This first deposit
being dry, they increase it by sticking on to its edge a new deposit.
Gradually the dwelling takes on the appearance of a cup and receives
the workers' eggs. (Fig. 34.) These dwellings are the famous swallows'
nests, so appreciated by the epicures of the extreme East, which are
edible in the same way as, for example, caviare.

_Constructions built of earth--Solitary masons._--Certain animals,
whose dwelling participates in the nature of a hollow cavern, make
additions to it which claim a place among the constructions with which
we are now occupied.

[Illustration: FIG. 34.]

[Illustration: FIG. 35.]

The _Anthophora parietina_ is in this group; it is a small bee which
lives in liberty in our climate. As its name indicates, it prefers to
frequent the walls of old buildings and finds a refuge in the
interstices, hollowing out the mortar half disintegrated by time. The
entrance to the dwelling is protected by a tube curved towards the
bottom, and making an external prominence. (Fig. 35.) The owner comes
and goes by this passage, and as it is curved towards the earth the
interior is protected against a flow of rain, while at the same time
the entry is rendered more difficult for _Melectes_ and _Anthrax_.
These insects, in fact, watch the departure of the _Anthophora_ to
endeavour to penetrate into their nests and lay their eggs there. The
gallery of entry and exit has been built with grains of sand, the
_débris_ produced by the insect in working. These grains of sand glued
together form, on drying, a very resistant wall.[101]

  [101] Latreille, "Observations sur l'abeille parietine
        (_Anthophora parietina_)," _Annales du Muséum d'Hist.
        Nat._, t. iii., 1804, p. 257.

The other animals of which I have to speak are genuine masons, who
prepare their mortar by tempering moistened earth. Every one has seen
the Swallow in spring working at its nest in the corner of a window.
It usually establishes its dwelling in an angle, so that the three
existing walls can be utilised, and to have an enclosed space there is
need only to add the face. It usually gives to this the form of a
quarter of a sphere, and begins it by applying earth more or less
mixed with chopped hay against the walls which are to support the
edifice. At the summit of the construction a hole is left for entry
and exit. During the whole of its sojourn in our country the Swallow
uses this dwelling, and even returns to it for many years in
succession, as long as its work will support the attacks of time. The
faithful return of these birds to their old nest has been many times
proved by attaching ribbons to their claws; they have always returned
with the distinctive mark.

[Illustration: FIG. 36.]

The _Chalicodoma_, whose name of Mason Bee indicates the industry it
exercises, is a hymenopterous relative to our Bees, long since
carefully studied by Réaumur. It does not live in societies like the
latter, and exhibits individual initiative and skill as great as the
swallows. The females accomplish the work which I am about to
describe. The little cells which they build are arranged, to the
number of eight or ten together, in the most various places; sometimes
on a pebble, sometimes on a branch, or, again, on a stone wall. (Fig.
36.) The insect collects earth as fine as possible, such as the dust
of a trodden path, and tempers it with its own saliva. It places side
by side these little balls of mortar and the work soon takes the form
of a cupola, to the edge of which it constantly adds new deposits. The
sun quickly dries the hole and gives it the necessary consistence.
When the cell has acquired sufficient height, the _Chalicodoma_
abandons its occupation of mason, and visits flowers for pollen and
nectar wherewith to fill the little chamber. It goes back to the nest,
disgorges its supply, and returns to the field, until the little cup
of earth is full to the edge. When the dwelling is thus prepared and
provisioned, the insect lays an egg there and closes the upper part
with a vault, built by successive deposits over the opening, which is
more and more narrowed until it is finally shut up. Having completed a
chamber, it passes on to the next, and so on until it has assured the
fate of all its descendants.

This hymenopterous insect certainly shows in its acts as an artisan an
inevitable instinct: hereditary intelligence has become less personal
and less spontaneous. In certain cases, however, the instinct loses
its rigidity and automatism. Thus, when a _Chalicodoma_, at the moment
of preparing to accomplish its task, finds an old nest, still capable
of repair although dilapidated, it does not hesitate to take
possession of it and to silence its assumed innate instinct of
building. It profits by the work already done, and is content to fill
up the cracks or to re-establish the masonry where defective; then it
provisions the renewed cells with honey, and lays its eggs in them. In
certain circumstances it shows itself still more sparing of trouble,
and boldly rebels against the law which seems to be imposed on it by
nature. If it feels itself sufficiently strong, the _Chalicodoma_
throws itself on one of its fellows, a peaceful constructor that has
almost completed its work; it chases it away, and takes possession of
its property to shelter its own eggs. Instead of manufacturing the
cell from bottom to top, it has only to complete it. Such acts
evidently show the reflection appearing through instinct.

Besides the Swallows, of which I have already spoken, birds offer us
several types of skilful construction with tempered earth.

The Flamingo, which lives in marshes, cannot place its eggs on the
earth nor in the trunks of trees, which are often absent from its
domain. It builds a cone of mud, which dries and becomes very
resistant, and it prepares at the summit an excavation open to the
air; this is the nest. The female broods by sitting with her legs
hanging over the sides of the hillock on which her little family
prospers above the waters and the damp soil.

A Perch in the Danube also manufactures a dwelling of dried earth. It
gives it the form of an elliptic cupola, and prepares a semicircular
opening for entry and exit.

The bird which shows itself the most skilful mason is probably the
Oven-Bird (_Furnarius rufus_) of Brazil and La Plata. Its name is
owing to the form of the nest which it constructs for brooding, and
which has the appearance of an oven. It is very skilful and knows how
to build a dome of clay without scaffolding, which is not altogether
easy. Having chosen for the site of its labours a large horizontal
branch, it brings to it a number of little clay balls more or less
combined with vegetable _débris_, works them altogether, and makes a
very uniform floor, which is to serve as a platform for the rest of
the work. When this is done, and while the foundation is drying, the
bird arranges on it a circular border of mortar slightly inclined
outwards. This becomes hard; it raises it by a new application, this
time inclined inwards. All the other layers which will be placed above
this will also be inclined towards the interior of the chamber. As the
structure rises, the circle which terminates it above becomes more and
more narrow. Soon it is quite small, and the animal, closing it with a
little ball of clay, finds itself in possession of a well-made dome.
Naturally it prepares an entrance; the form of this is semicircular.
But this is not all. In the interior it arranges two partitions: one
vertical, the other horizontal, separating off a small chamber. The
vertical partition begins at one of the edges of the door, so that the
air from without cannot penetrate directly into the dwelling, which is
thus protected against extreme variations of temperature. It is in the
compartment thus formed that the female lays her eggs and broods,
after having taken care to carpet it with a thick layer of small
herbs.

"In favourable seasons, the Oven-birds begin building in the autumn,"
Hudson tells us, "and the work is resumed during the winter whenever
there is a spell of mild, wet weather. Some of their structures are
finished early in winter, others not until spring, everything
depending on the weather and the condition of the birds. In cold, dry
weather, and when food is scarce, they do not work at all. The site
chosen is a stout horizontal branch, or the top of a post, and they
also frequently build on a cornice or the roof of a house; and
sometimes, but rarely, on the ground. The material used is mud, with
the addition of horse hair or slender fibrous rootlets, which make the
structure harder and prevent it from cracking. I have frequently seen
a bird engaged in building first pick up a thread or hair, then repair
to a puddle, where it was worked into a pellet of mud about the size
of a filbert, then carried to the nest. When finished the structure is
shaped outwardly like a baker's oven, only with a deeper and narrower
entrance. It is always placed very conspicuously, and with the
entrance facing a building, if one be near, or if at a roadside it
looks towards the road; the reason for this being, no doubt, that the
bird keeps a continuous eye on the movements of people near it while
building, and so leaves the nest opened and unfinished on that side
until the last, and then the entrance is necessarily formed. When the
structure has assumed the globular form with only a narrow opening,
the wall on one side is curved inwards, reaching from the floor to the
dome, and at the inner extremity an aperture is left to admit the bird
to the interior or second chamber, in which the eggs are laid. A man's
hand fits easily into the first or entrance chamber, but cannot be
twisted about so as to reach the eggs in the interior cavity, the
entrance being so small and high up. The interior is lined with dry
soft grass, and five white pear-shaped eggs are laid. The oven is a
foot or more in diameter, and is sometimes very massive, weighing
eight or nine pounds, and so strong that, unless loosened by the
swaying of the branch, it often remains unharmed for two or three
years. A new oven is built every year, and I have more than once seen
a second oven built on the top of the first, when this has been placed
very advantageously, as on a projection and against a wall."[102]

  [102] P. L. Sclater and W. H. Hudson, _Argentine
        Ornithology_, 1888, vol. i. pp. 168, 169. See also
        Burmeister, "Ueber die Eier und Nester einiger
        brasilianischen Vögel," _Cabani's Journal für Ornith._,
        1853, pp. 161-177.

_Masons working in association._--Ants have already furnished us with
numerous proofs of their intelligence and their prodigious industry.
So remote from Man from the anatomical point of view, they are of all
animals those whose psychic faculties bring them nearest to him.
Sociable like him, they have undergone an evolution parallel to his
which has placed them at the head of Insects in the same way as he has
become superior to all other Mammals. The brain in Ants as in Man has
undergone a disproportionate development. Like Man, they possess a
language which enables them to combine their efforts, and there is no
human industry in which these insects have not arrived at a high
degree of perfection. If in certain parts of the earth human societies
are superior to those of Ants, in many others the civilisation of Ants
is notably superior. No village of Kaffirs can be compared to a palace
of the Termites. The classifications separate these insects (sometimes
called "White Ants") from the Ants, since the latter are Hymenoptera,
while the former are ranked among the Neuroptera, but their
constructions are almost alike, and may be described together. These
small animals, relatively to their size, build on a colossal scale
compared to Man; even our most exceptional monuments cannot be placed
beside their ordinary buildings. (Fig. 37.) The domes of triturated
and plastered clay which cover their nests may rise to a height of
five metres; that is to say, to dimensions equal to one thousand times
the length of the worker. The Eiffel Tower, the most elevated monument
of which human industry can boast, is only one hundred and
eighty-seven times the average height of the worker. It is three
hundred metres high, but to equal the Termites' audacity, it would
have to attain a height of 1,600 metres.

[Illustration: FIG. 37.]

[Illustration: FIG. 38. 1. King before wings are cast off; 2. Worker
(neuter); 3. Queen with abdomen distended with eggs; 4. Soldier
(neuter); 5. Young (resembling adults).]

The different species of Termite are not equally industrious. The _T.
bellicosus_ seems to have carried the art of construction to the
highest point. All the individuals of the species are not alike; there
exists a polymorphism which produces creatures of three sorts: 1, the
_soldiers_, recognised by their large heads and long sharp mandibles,
moved by powerful muscles; it is their mission to defend the whole
colony against its adversaries, and the wounds they can produce, fatal
to creatures of their own size, are painful even to man; 2, the
_workers_, who labour as navvies and architects, and take charge of
the pupæ: they form the great majority of the community; 3, the _king_
and _queen_. (Fig. 38.) To each nest there is usually only a single
fertile and lazy couple. These two personages do absolutely nothing;
the soldiers and the workers care for them and bring them food. They
have both possessed wings, but these fall off. The queen reigns but
does not govern; she lays. The king is simply the husband of the
queen. The internal administration of the palace is bound up with the
parts played by these three kinds of beings.

[Illustration: FIG. 39.]

The lofty nest, or Termitarium, constitutes a hillock in the form of a
cupola. The interior arrangement is very complicated, and at the same
time very well adapted to the life of the inhabitants. There are four
storeys in all, covered by the general exterior walls. (Fig. 39.) The
walls of the dome are very thick; at the base they measure from sixty
to eighty centimetres. The clay in drying attains the hardness of
brick, and the whole is very coherent. The sentinels of herds of wild
cattle choose these tumuli as observatories and do not break them
down. The walls of this exterior _enceinte_ are hollowed by galleries
of two kinds: some horizontal and giving access from outside to all
the storeys; the others mounting spirally in the thickness of the wall
to the summit of the dome. When the colony is in full activity, after
the construction is completed, these little passages have no further
use. They served for the passage of the masons when building the
cupola; and they could be utilised again if a breach should be made in
the wall. At the lower part these galleries in the wall are very wide,
and they sink into the earth beneath the palace to a depth of more
than 1 metre 50.

These subterranean passages (_c_) are the catacombs of the Termites,
and have a very close analogy with those of old and populous human
cities. Their origin is similar; they are ancient quarries. The
insects hollowed them in obtaining the necessary clay for their
labours. Later, when the rains come, they serve as drains to carry off
the water which might threaten to invade the dwelling.

Such is the external wall within which a busy population swarms. On
passing to the interior let us first enter the ground-floor. In the
centre is found the royal chamber (_r_). The walls are extremely
strong and are supplied with windows for ventilation, and with doors
to enable the Termites to render their services. It is necessary to
renew the air in this chamber, which constantly contains more than two
thousand insects. The openings are large enough for the passage of the
workers, but the queen cannot pass through them. She is therefore a
prisoner, as immured as a goddess in her temple. The chain which holds
her is the prodigious development of her abdomen. As a virgin she
could enter, when fertilised she cannot henceforth go out. She
continuously elaborates eggs; every moment one appears at the orifice
of the oviduct. The king remains near her, to give his assistance when
occasion arises; hence he has received the title, absolutely justified
under the circumstances, of Father of the People. Around the couple
zealous attendants crowd. There are about two thousand of them,
workers and soldiers, licking the two royal captives to remove any
dust from their hairs, and bringing them food. As soon as the queen
lays an egg, one of the workers hastens to take it gently between its
jaws; it is the property of the state, and is carefully carried off to
the second storey where the state nursery is situated.

The centre of the ground-floor, therefore, is occupied by the royal
apartment; around this, and communicating with it by means of numerous
entrances, are a number of cells used by the attendants on the queen
(_s_). These little chambers are surrounded by a labyrinth of
passages. The central room and its dependencies constitute a solid
mass, around which other chambers are grouped. The whole space between
it and the general wall is filled by vast storehouses, divided into
many very spacious compartments. Within them are piled up the
provisions which the Termites harvest every day; they consist
especially of gums and the juices of plants, dried and pulverised so
as to form a fine powder. Access to this property is given by means of
large corridors which cross one another, and conduct to the outside
through the horizontal galleries traversing the wall.

Above the whole of this ground-floor rests a thick vault of clay,
which forms a strong floor for the first storey (B). This is composed
of only a single room; it is put to no use, unless to isolate and
support the apartments of the second floor, in the arrangement of
which great care is exercised. There are no partitions on this floor,
nothing but massive columns of clay to support the ceiling. These
columns are more than a metre in height. It is a gigantic cathedral in
which the lilliputian architects have displayed considerable art. By
means of this immense empty chamber a huge reservoir of air is placed
in the very centre of the construction; through the galleries in the
external wall it is sufficiently renewed for the purposes of
respiration without too great a change in temperature.

The second storey rests on the first. To this the eggs are brought,
and here the larvæ go through their evolution. Partitions of clay
divide the space into a few large halls (_a_); these are again
subdivided, this time not by earth, which is employed throughout the
rest of the building, but by materials of a more delicate kind, which
are, moreover, very bad conductors of heat (_b_). It is a question, in
fact, of maintaining these little chambers at an almost constant
temperature, favourable for the development of the eggs. The
substances utilised for this purpose are fragments of wood and of gum.
The Termites glue them together and thus form the walls of these
important cells.

The arrangement of the top storey (D) is also disposed with a view of
protecting the young who are the future of the city. It constitutes
the attic, situated just beneath the cupola, and contains absolutely
nothing; it simply serves to interpose beneath the summit of the
edifice and the storey below a layer of air, which is a bad conductor
of heat. The chamber devoted to the young is thus placed between two
gaseous layers, a precaution which, combined with the choice of
material, places it in the very best conditions for protection against
the alternation of cold at night and torrid heat during the day.

It is difficult to know which to admire most--the audacity and
vastness of the labour undertaken by these insects, or the ingenious
foresight by which they ensure to their delicate larvæ a comfortable
youth. There can be no doubt that these animals show themselves very
superior to Man, taking into consideration his enormous size compared
to theirs, in the art of building. Pillars, cupolas, vaults--nothing
is too difficult or too complicated for these small and patient
labourers.[103]

  [103] The earliest comprehensive account of the Termites and
        their industries was by Smeathman in the _Philosophical
        Transactions of the Royal Society_, vol. lxxi., 1781, pp.
        139-192. Later they were studied by Lespès: "Recherches sur
        l'organisation et les moeurs du Termite lucifuge," _Ann. des
        Sci. Nat._, 4me Série, t. v., fasc. 4 and 5, Paris,
        1856. For a description of the South American Termitarium
        see also Bates's _Naturalist on the Amazons_ (unabridged
        edition, 1892), pp. 208-214; and for the African Termites of
        Victoria Nyanza, a chapter in H. Drummond's _Tropical
        Africa_, 1888, pp. 123-158; while Forbes has briefly
        described them in Java, _Naturalist's Wanderings in the
        Eastern Archipelago_, pp. 73, 74.

The Ants of our own lands do not yield to the Termites in this
industry, and their dwellings are models of architecture. As they have
been more carefully studied we know more exactly how they work, and
the considerable sum of intelligence and initiative which they reveal
in the accomplishment of their task. At the foot of hedges, on the
outskirts of woods, they raise their frail monuments. The species are
not equally skilful, and such differences as we have found in other
industries may also be found here. In a general manner it was soon
found that Ants do not, like Bees, obey a rigid instinct which ordains
the line of conduct under every circumstance, and impels each
individual to act so that his efforts are naturally combined and
harmonised with those of his neighbours in the workshop. One soon
perceives when observing an ant-hill that any individual insect
follows, when working, a personal idea which it has conceived, and
which it realises without troubling itself about the others. Often
these latter are executing a quite contradictory plan. It is rather an
anarchistic republic. Happily Ants are not obstinate, and when they
see the idea of one of them disengaging itself from the labour
commenced, they are content to abandon their own less satisfactory
idea and to collaborate in the other's work. They are able, for the
rest, to concert plans; the movements of their antennæ are a very
complicated language containing many expressions, and the worker who
desires the acceptance of his own point of view is not sparing in
their use.[104] It sometimes happens that his efforts are vain, and
that his companions manoeuvre to thwart his schemes. In the presence of
such resistance those who are determined to obtain the adoption of
their own plans destroy the labours of their opponents; fierce
struggles ensue, and here it is the strongest who becomes the
architect-general.

  [104] For a discussion of the methods of communication among
        Ants, tending to the conclusion that these methods "almost
        amount to language," see Lubbock's _Ants, Bees, and Wasps_,
        chap. vi. And for a general discussion of language among
        animals, see Alix, _L'esprit de nos Bêtes_, pp. 331-367.

The _Formica fusca_ constructs its nest of plastered earth. The
different superimposed storeys have been added one by one to the upper
part of the old dwelling when the latter became too small for the
growing colony. In opening an ant-hill, they are found to be quite
distinct from each other; each is divided by a large number of
partitions into vaulted compartments. In the larger ones pillars of
earth support the ceiling. The rooms communicate with one another by
means of bull's-eye passages formed in the separating walls. The whole
is small, proportioned to the size of the works, but excellently
arranged.

When, in the council of the republic, it has been resolved to raise a
common habitation, the workers operate in a singular manner. All the
ants scatter themselves abroad, and with extreme activity take
fragments of earth between their mandibles and place them on the
summit of the dwelling. After some time the result of this
microscopical work appears. The ancient roof, strengthened by all this
material, becomes a thick terrace which the insects first cover very
evenly. The earth, having been brought in grain by grain, is soft and
easy to dig. The construction of the new storey begins at first by the
hollowing out of a number of trenches. The ants scrape away in places
the terrace which they have just made. They thus diminish the
thickness of the layer at the spots where rooms, corridors, etc., are
to be formed, and with the material thus obtained they form walls,
partitions, and pillars. Soon the entire plan of the new storey may be
perceived. It differs essentially from that which Man would adopt; in
the latter case the walls would be shown by the hollowing out of the
foundations; the work of these Hymenoptera, on the contrary, shows
them in relief. These first arrangements made, the six-footed
architects have only to complete their constructions by new deposits
from without. Gradually the storey reaches a sufficient height. It
remains to cover it, and this is not the easiest part of the business.
The ceiling is formed of vaults going from one wall to another, or
from a wall to a column. When one of these vaults is to be small, some
millimetres at the most, the _Formica fusca_ constructs it with the
help of two ledges, which are made facing each other on the tops of
two partitions. These prominences, formed of materials glued together
by saliva, are enlarged by additions to their free edges. They advance
to meet each other and soon join; it is wonderful to see each insect,
following its individual initiative, profit by every twig or fragment
capable of bearing any weight, in order to enlarge the overhanging
ledges.

_Individual skill and reflection._--This personality in work, which
reveals the intelligent effort of each, has certainly its
inconveniences for the common work. Badly-concerted operations may not
succeed, and Huber witnessed an accident due to this cause.[105] Two
walls facing each other were to be united by an arch. A foolish worker
had begun to form a horizontal ledge on the summit of one of the walls
without paying attention to the fact that the other wall was very much
higher. By continuing the project the ceiling would have come against
the middle of the opposite ceiling instead of resting on its summit.
Another ant passes, examines affairs with an intelligent air, and
evidently considers that this sort of work is absurd. Without
consideration for the _amour-propre_ of its unskilful fellow-citizen,
it demolishes its work, raises the wall that is too low, and re-makes
the construction correctly in the presence of the observer. If this
incident reveals inconceivable thoughtlessness in one of the members
of this serious republic, it also brings to light the judgment,
reflection, and decision of which they are capable, as well as a
freedom which cannot be found in the works of instinct.

  [105] _Recherches sur les Moeurs des Fourmis indigènes_,
        pp. 47, 48.

This _Formica fusca_ sometimes finds itself in the presence of other
difficulties. It may happen that the hall to be roofed is too large
and the arch too considerable to allow of the cohesion of the
materials employed. The insects soon become aware of the existence of
this embarrassing state of things and remedy it in various ways, either
by hastily constructing pillars in the centre of the too large room,
or by some other method. Ebrard describes an artifice he has seen
employed, which shows to what an extent ants can quickly appreciate
and take advantage of the most unforeseen circumstances.[106] A worker
was labouring to cover a large cell; two prominences, parts of
opposite walls, were advancing towards each other, but there was still
a space of from twelve to fifteen millimetres between them, and it
seemed no longer possible to burden the two sides without risking a
general downfall. The little mason was much disturbed. A graminaceous
plant was growing near. The ant seemed anxious to take advantage of
it, for it went to it and climbed up the stalk. After having examined
and devised, it set about curving it in the direction of the edifice.
To attain this object, it placed a little mass of moist earth on the
extremity of the leaf, and fixed it there. Under the influence of this
weight flexion was produced, but only at the end. This could not
satisfy the insect; it became a question of decreasing the resistance
at the base. The ant gnawed a little at this spot; the desired result
was attained, and the whole length of the leaf became bent over the
building in course of construction. To prevent it bending back, and to
ensure its remaining adherent to the roof, the worker returned to the
plant and placed earth between the sheath and the stalk. This time all
difficulties were surmounted, and there was a solid scaffolding to
support the materials for the roof.

  [106] Ebrard, _Études de Moeurs_, Genève, 1864, p. 3.

Among the _Lasius niger_ the independence of the workers is perhaps
still greater; no doubt they do their best to concert their efforts,
but they do not succeed so well as if an inevitable instinct impelled
them. Notwithstanding the irregularities of the construction, it is
possible to recognise in it a whole formed of hollowed, concentric
half-spheres; they have been added one after the other to the surface
to increase the dwelling. The interval between these clay spheres
constitutes a storey, cut up by the partitions which divide it into
chambers and communicating galleries; the roofs of the largest halls
are supported by numerous pillars. (Fig. 40.)

[Illustration: FIG. 40.]

These ants, as Huber has shown, are highly accomplished in the art of
constructing a cupola. When they wish to increase their nest by a new
layer, they take advantage of the first wet day, the rain serving to
agglutinate and unite the materials. They operate in almost the same
way as the _Formica fusca_, though exhibiting more skill and resource
as architects; they know better how to calculate beforehand the number
of pillars required in a hall of a determined size. As soon as the
rain has given the signal for work, they spread themselves abroad and
prepare a very thick terrace on the external surface of the dwelling
which has become too small. They carry to it small balls of earth
ground very fine by their jaws, and then lightly piled up so as to
pulverise afresh; these are then spread over the construction with the
anterior legs. Then, by hollowing out, the ants trace the plan of the
new storey, leaving the walls, partitions, and columns in relief.
After having raised these parts to a sufficient height, all work
together to cover them with a general ceiling, each ant applying
itself to one small corner of the work.

The vaulting is executed by the method already described; horizontal
ledges, slanting from the summit of pillar or wall, are formed to meet
one another. The insects are intelligent enough to begin their labour
at the spots best fitted to give strong support to the overhanging
materials, as for instance, at the angle of two walls. There is so
much activity among the workers, and they are so anxious to take
advantage of the damp, that the storey is sometimes completely
finished in seven or eight hours. If the rain suddenly stops in the
course of the work, they abandon operations, to complete them as soon
as another shower falls.

I have already had occasion to speak of the covered passages and
Aphis-pens built by Ants outside their dwellings. Besides these
constructions, they also make roads in the fields, tearing up the
grass and hollowing out the earth so as to form a beaten path free
from the lilliputian bushes in which there would be danger of becoming
entangled, on returning to the nest laden with various and often
embarrassing burdens.

Nor are Ants by any means alone in exhibiting the results of
individual skill and reflection. It will, however, be sufficient to
mention only one other example, that furnished by Spiders. McCook, in
his great work, after elaborately describing and carefully
illustrating the skill exhibited in individual cases by Spiders in
their aërial labours, considers himself justified in concluding as
follows:--"The manner in which the ends of the radii which terminate
upon the herb are wrapped roundabout and braced by the notched zone;
the manner in which the wide non-viscid scaffold lines are woven in
order to give vantage ground from which to place the close-lying and
permanent viscid spirals, upon which the usefulness of the orb
depends--all these, to mention no other points, seem to indicate a
very delicate perception of those modes (shall I also say principles?)
of construction which are continually recognised in the art of the
builder, the architect, and the engineer."[107]

  [107] _American Spiders_, vol. i. p. 228.

_Dwellings built of hard materials united by mortar._--Among mammals
few animals have become so skilful in the art of building houses as
the insects we have just been considering. There are, however, two who
equal if they do not surpass them--the Musk-rat and its relative, the
Beaver.

The Musk-rats of Canada live in colonies on the banks of streams or
deep lakes, and construct dwellings which are very well arranged. In
their methods we find combined the woven shelter with the house of
built earth. Their cabins are established over the highest level of
the water and look like little domes. In building them the animals
begin by placing reeds in the earth; these they interlace and weave so
as to form a sort of vertical mat. They plaster it externally with a
layer of mud, which is mixed by means of the paws and smoothed by the
tail. At the upper part of the hut the reeds are not pressed together
or covered with earth, so that the air may be renewed in the interior.
A dwelling of this kind, intended to house six or eight individuals
who have combined to build it, may measure up to 65 centimetres in
diameter. There is no door directly opening on to the ground. A
subterranean gallery starts from the floor and opens out beneath the
water. It presents secondary branches, some horizontal, through which
the animal goes in search of roots for food, while others descend
vertically to pits specially reserved for the disposal of ordure.

But it is, above all, the Beaver (_Castor fiber_) who exhibits the
highest qualities as an engineer and mason. This industrious and
sagacious Rodent is well adapted to inconvenience the partisans of
instinct as an entity, apart from intelligence, which renders animals
similar to machines and impels them to effect associated acts, without
themselves being able to understand them, and with a fatality and
determination from which they can under no circumstance escape.

Beavers now only live in Canada. A few individuals may, however, still
be found on the banks of the lower Rhône, in Camargue, and on a few
other European rivers. Several centuries ago they existed in the
neighbourhood of Paris in considerable numbers. The Bièvre gained its
name from the old French word for Beaver, and its resemblance to the
English name, as well as to the German (_Biber_), is striking. In the
sixteenth century, according to Bishop Magnus of Upsala, the Beaver
was still common on the banks of the Rhine, the Danube, and on the
shores of the Black Sea, and in the North it still exercised great art
in its constructions. In the twelfth century it was found in Scotland
and Wales. If we go back to ancient times, we find that Herodotus
mentions that the Budini who lived in the neighbourhood of the Black
Sea used the skins of the Beavers, which abounded there, on the
borders of their garments; and in the time of Pliny the Beaver was so
common there that he speaks of it as the Pontic Beaver. Fossil remains
of the Beaver have also been found throughout Europe in conjunction
with those of the Mammoth and other extinct animals.

But the civilisation of the Beaver has perished in the presence of
Man's civilisation, or rather of his persecution. In regions where it
is tracked and disturbed by Man the Beaver lives in couples, and is
content to hollow out a burrow like the Otter's, instead of showing
its consummate art. It merely vegetates, fleeing from enemies who are
too strong for it, and depriving itself of a dangerous comfort. But
when the security of solitude permits these animals to unite in
societies, and to possess, without too much fear, a pond or a stream,
they then exhibit all their industry.

They build very well arranged dwellings, although at first sight they
look like mere piles of twigs, branches, and logs, heaped in disorder
on a small dome of mud. At the edge of a pond each raises his own
lodge, and there is no work by the colony in common. If, however,
there is a question of inhabiting the bank of a shallow stream,
certain preliminary works become necessary. The rodents establish a
dam, so that they may possess a large sheet of water which may be of
fair depth, and above all constant, not at the mercy of the rise and
fall of the stream. A sudden and excessive flood is the one danger
likely to prove fatal to these dykes; but even our own constructions
are threatened under such circumstances.

When the Beavers, tempted by abundance of willows and poplars, of
which they eat the bark and utilise the wood in construction, have
chosen a site, and have decided to establish a village on the edge of
the water, there are several labours to be successively accomplished.
Their first desire is to be in possession of a large number of felled
trunks of trees. To obtain them they scatter themselves in the forest
bordering the stream and attack saplings of from twenty to thirty
centimetres in diameter. They are equipped for this purpose. With
their powerful incisors, worked by strong jaws, they can soon gnaw
through a tree of this size. But they are capable of attacking trees,
even more than 100 cc. in circumference and some forty metres in
height, with great skill and adaptability; "no better work could be
accomplished by a most highly-finished steel cutting tool, wielded by
a muscular human arm" (Martin). They operate seated on their hind
quarters, and they make their incision in the wood with a feather
edge. It was once supposed that they always take care so to direct
their wood-cutting task that the tree may fall on the water-side, but
this is by no means the case, and appears to be simply due, as Martin
points out, to the fact that trees by the water-side usually slope
towards the water. The austerity of labour alternates, it may be
added, with the pleasures of the table. From time to time the Beavers
remove the bark of the fallen trees, of which they are very fond, and
feed on it.

Mr. Lewis H. Morgan studied the American Beaver with great care and
thoroughness, more especially on the south-west shore of Lake
Superior; he devotes fifty pages to the dams, and it is worth while to
quote his preliminary remarks regarding them. "The dam is the
principal structure of the beaver. It is also the most important of
his erections as it is the most extensive, and because its production
and preservation could only be accomplished by patient and
long-continued labour. In point of time, also, it precedes the lodge,
since the floor of the latter and the entrances to its chamber are
constructed with reference to the level of the water in the pond. The
object of the dam is the formation of an artificial pond, the
principal use of which is the refuge it affords to them when assailed,
and the water-connection it gives to their lodges and to their burrows
in the banks. Hence, as the level of the pond must, in all cases, rise
from one to two feet above these entrances for the protection of the
animal from pursuit and capture, the surface-level of the pond must,
to a greater or less extent, be subject to their immediate control. As
the dam is not an absolute necessity to the beaver for the maintenance
of his life, his normal habitation being rather natural ponds and
rivers, and burrows in their banks, it is, in itself considered, a
remarkable fact that he should have voluntarily transferred himself,
by means of dams and ponds of his own construction, from a natural to
an artificial mode of life.

"Some of these dams are so extensive as to forbid the supposition that
they were the exclusive work of a single pair, or of a single family
of beavers; but it does not follow, as has very generally been
supposed, that several families, or a colony, unite for the joint
construction of a dam. After careful examination of some hundreds of
these structures, and of the lodges and burrows attached to many of
them, I am altogether satisfied that the larger dams were not the
joint-product of the labour of large numbers of beavers working
together, and brought thus to immediate completion; but, on the
contrary, that they arose from small beginnings, and were built upon
year after year, until they finally reached that size which exhausted
the capabilities of the location; after which they were maintained for
centuries, at the ascertained standard, by constant repairs. So far as
my observations have enabled me to form an opinion, I think they were
usually, if not invariably, commenced by a single pair, or a single
family of beavers; and that when, in the course of time, by the
gradual increase of the dam, the pond had become sufficiently enlarged
to accommodate more families than one, other families took up their
residence upon it, and afterwards contributed by their labour to its
maintenance. There is no satisfactory evidence that the American
beavers either live or work in colonies; and if some such cases have
been observed, it will either be found to be an exception to the
general rule, or in consequence of the sudden destruction of a work
upon the maintenance of which a number of families were at the time
depending.

"The great age of the larger dams is shown by their size, by the large
amount of solid materials they contain, and by the destruction of the
primitive forest within the area of the ponds; and also by the extent
of the beaver-meadows along the margins of the streams where dams are
maintained, and by the hummocks formed upon them by and through the
annual growth and decay of vegetation in separate hills. These meadows
were undoubtedly covered with trees adapted to a wet soil when the
dams were constructed. It must have required long periods of time to
destroy every vestige of the ancient forest by the increased
saturation of the earth, accompanied with occasional overflows from
the streams. The evidence from these and other sources tends to show
that these dams have existed in the same places for hundreds and
thousands of years, and that they have been maintained by a system of
continuous repairs.

"At the place selected for the construction of a dam, the ground is
usually firm and often stony, and when across the channel of a flowing
stream, a hard rather than a soft bottom is preferred. Such places are
necessarily unfavourable for the insertion of stakes in the ground, if
such were, in fact, their practice in building dams. The theory upon
which beaver-dams are constructed is perfectly simple, and involves no
such necessity. Soft earth, intermixed with vegetable fibre, is used
to form an embankment, with sticks, brush, and poles embedded within
these materials to bind them together, and to impart to them the
requisite solidity to resist the effects both of pressure and of
saturation. Small sticks and brush are used, in the first instance,
with mud and earth and stones for down-weight. Consequently these dams
are extremely rude at their commencement, and they do not attain their
remarkably artistic appearance until after they have been raised to a
considerable height, and have been maintained, by a system of annual
repairs, for a number of years."[108]

  [108] L. H. Morgan, _The American Beaver and his Works_,
        Philadelphia, 1868, pp. 82-86.

There are two different kinds of beaver-dams, although they are both
constructed on the same principle. One, the stick-dam, consists of
interlaced stick and pole work below, with an embankment of earth
raised with the same material upon the upper or water face. This is
usually found in brooks or large streams with ill-defined banks. The
other, the solid-bank dam, is not so common nor so interesting, and is
usually found on those parts of the same stream where the banks are
well defined, the channel deep, and the current uniform. In this kind
the earth and mud entirely buries the sticks and poles, giving the
whole a solid appearance. In the first kind the surplus water
percolates through the dam along its entire length, while in the
second it is discharged through a single opening in the crest formed
for that purpose.

The materials being prepared in the manner I have previously
described, the animals make ready to establish their dyke. They
intermix their materials--driftwood, green willows, birch, poplars,
etc.--in the bed of the river, with mud and stones, so making a solid
bank, capable of resisting a great force of water; sometimes the trees
will shoot up forming a hedge. The dam has a thickness of from three
to four metres at the base, and about sixty centimetres at the upper
part. The wall facing up-stream is sloping, that directed down-stream
is vertical; this is the best arrangement for supporting the pressure
of the mass of water which is thus expended on an inclined surface. In
certain cases Beavers carry hydraulic science still further. If the
course of the water is not very rapid, they generally make an almost
straight dyke, perpendicular to the two banks, as this is then
sufficient; but if the current is strong, they curve it so that the
convexity is turned up-stream. In this way it is much better fitted to
resist. Thus they do not always act in the same way, but arrange their
actions so as to adapt them to the conditions of the environment.

The embankment being completed, the animals construct their lodges.
Fragments of wood, deprived of the bark, are arranged and united by
clay or mud which the Beavers take from the riverside, transport, mix,
and work with their fore-paws. During a single night they can collect
as much mud at their houses as amounts to some thousands of their
small handfuls. They thus plaster their houses with mud every autumn;
in the winter this freezes as hard as a stone and protects them from
enemies. These cabins form domes from three to four metres in diameter
at the base, and from two to two and a half metres in height. The
floor is on a level with the surface of the artificial pond. A passage
sinks in the earth and opens about one and a half metres below the
level of the water, so that it cannot be closed up by ice during the
severe winters of these regions.

Within, near the entry, the beavers form, with the aid of a partition,
a special compartment to serve as a storehouse, and they there pile up
enormous heaps of nenuphar roots as provisions for the days when ice
and snow will prevent them from barking the young trunks.

A dwelling of this kind may last for three or four years, and the
animal here tranquilly enjoys the fruits of its industry, as long as
man fails to discover the retreat; for the beaver can escape by
swimming from all carnivorous animals excepting, perhaps, the Otter.
During floods the level of the water nearly reaches the hut; if the
inundation is prolonged and the animal runs the risk of being
asphyxiated beneath his dome, it breaks through the upper part with
its teeth and escapes. When the water returns to its bed the beaver
comes back, makes the necessary repairs, and resumes the usual
peaceful course of its life.[109]

  [109] The Beaver has been fully studied by Lewis H. Morgan,
        _The American Beaver_, 1868. See also Horace T. Martin's
        recent work, _Castorologia, or the History and Traditions of
        the Canadian Beaver_, 1892; in an appendix to this work will
        be found Samuel Hearne's classical account of the Beaver,
        written nearly two hundred years ago, and free from the many
        exaggerations and superstitions which have grown up around
        this animal.

We have thus seen, from a shapeless hole to these complex dwellings,
every possible stage; we have found among animals the rudiments of the
different human habitations, certain animals, indeed, having arrived
at a degree of civilisation which Man himself in some countries has
not yet surpassed, or even indeed yet attained.



CHAPTER VII.

THE DEFENCE AND SANITATION OF DWELLINGS.

    GENERAL PRECAUTIONS AGAINST POSSIBLE DANGER--SEPARATION OF
    FEMALES WHILE BROODING--HYGIENIC MEASURES OF BEES--PRUDENCE OF
    BEES--FORTIFICATIONS OF BEES--PRECAUTIONS AGAINST
    INQUISITIVENESS--LIGHTING UP THE NESTS.


The building of comfortable dwellings is not the last stage reached by
the industry of animals. There are among them some who show genuine
skill in rendering them healthy and defending them against invasions
from without.

_General precautions against possible danger._--Some animals show,
even during the construction of the nest, extreme prudence in
preventing its site from being discovered. Several authors refer to
the stratagem of the Magpie, who begins several nests at the same
time; but only one is intended to receive the brood, and that only is
completed. The aim of the others is merely to distract attention. It
is around these latter that the bird shows ostentatious activity,
while it works at the real nest only for a few hours during the day,
in the morning and evening.

The Crane takes equally ingenious precautions in order that its
constant presence at the same spot may not arouse suspicion. It never
comes or goes flying, but always on foot, concealing itself along
tufts of reeds. De Homeyer even reports that the female at the time of
laying covers her wings and back with mud. When dried this gives the
animal a red tone, which causes it to be confused with neighbouring
objects; this is intentional mimicry.

The Linnet (Fig. 41) again, wrongly accused of wanting judgment, is
well aware that a pile of excrement at the foot of a tree announces a
nest in the branches. It is careful to suppress this revealing sign,
and every day takes it away in its beak to disperse it afar.

[Illustration: FIG. 41.]

Birds will sometimes take the trouble to remove the eggs or the nest
altogether, when the latter has been discovered, in order to avoid
further risks of danger. The American Sparrow Hawk has been observed
to do this, and the following incident is quoted by Bendire, from
MacFarlane's _Manuscript Notes on Birds Nesting in British America_,
concerning the Pigeon Hawk (_Falco columbarius_):--"On May 25, 1864, a
trusty Indian in my employ found a nest placed in a thick branch of a
pine tree at a height of about six feet from the ground. It was rather
loosely constructed of a few dry sticks and a small quantity of coarse
hay; it then contained two eggs; both parents were seen, fired at, and
missed. On the 31st he revisited the nest, which still held but two
eggs, and again missed the birds. Several days later he made another
visit thereto, and, to his surprise, the eggs and parents had
disappeared. His first impression was that some other person had taken
them; but after looking carefully around he perceived both birds at a
short distance, and this led him to institute a search which soon
resulted in finding that the eggs must have been removed by the parent
birds to the face of a muddy bank at least forty yards distant from
the original nest. A few decayed leaves had been placed under them,
but nothing else in the way of lining. A third egg had been added in
the interim. There can hardly be any doubt of the truth of the
foregoing facts."[110]

  [110] Bendire, _Life Histories of North American Birds_,
        1892, p. 301.

_Separation of females while brooding._--The Hornbill of Malacca[111]
assures the protection of its nest and of the female while she is
brooding in a singular manner. She lays in the hollow of a tree; as
soon as she begins to sit on her eggs, the male closes the opening
with diluted clay, only leaving a hole through which the captive can
pass her beak to receive the fruits which he brings her in abundance.
If the lady is thus cloistered as closely as in the most jealous
harem, her lord and master at least expends on her the most attentive
cares.

  [111] Bernstein, "Ueber Nester und Eier einiger Javaschen
        Vögel," _Cabani's Journ. f. Ornith._, 1859.

What can be the object of this strange custom? It has been asserted
that during incubation the female loses her feathers and becomes
unable to fly. The male would thus only wall her up as a precaution
for fear of seeing her fall from the nest; because if this deplorable
accident happened she would not be able to get back again. It seems to
me that the effect is here taken for the cause, and that the falling
off of feathers and torpidity must be the result rather than the
motive of cloistration. One is tempted to believe that the male
desires by this method to guarantee his female and her offspring
against the attacks of squirrels or rapacious birds.

_Hygienic measures of Bees._--Among the animals who expend industry on
hygiene and the protection of their dwellings, we must place Bees in
the first line. It may happen that mice, snakes, and moths may find
their way into a hive. Assaulted by the swarm, and riddled with
stings, they die without being able to escape. These great corpses
cannot be dragged out by the Hymenoptera, and their putrefaction
threatens to cause disease. To remedy this scourge the insects
immediately cover them with _propolis_--that is to say, the paste
which they manufacture from the resin of poplars, birches, and pines.
The corpse thus sheltered from contact with the air does not putrefy.
In other respects Bees are very careful about the cleanliness of their
dwellings; they remove with care and throw outside dust, mud, and
sawdust which may be found there. Bees are careful also not to defile
their hives with excrement, as Kirby noted; they go aside to expel
their excretions, and in winter, when prevented by extreme cold or the
closing of the hive from going out for this purpose, their bodies
become so swollen from retention of fæces that when at last able to go
out they fall to the ground and perish. Büchner records the
observations of a friend of his during a season in which a severe
epidemic of dysentery had broken out among the bees, which interfered
with the usual habits of the insects; on careful examination of a hive
it was found that a cavity in the posterior wall of the hive,
containing crumbled clay, had been used as an earth closet. Many
mammals are equally careful in this respect; thus, for example, the
Beaver, as Hearne observed, always enters the water, or goes out on
the ice, to urinate or defæcate; the fæces float and are soon
disintegrated.

Animals are also careful about aëration. Thus, among Bees, in a hive
full of very active insects the heat rises considerably and the air is
vitiated. A service for aëration is organised. Bees ranged in files
one above the other in the interior agitate their wings with a
feverish movement; this movement causes a current of air which can be
felt by holding the hand before the opening of the hive. When the
workers of the corps are fatigued, comrades who have been resting come
to take their place. These acts are not the result of a stupid
instinct which the Hymenoptera obey without understanding. If we place
a swarm, as Huber did, in a roomy position where there is plenty of
air, they do not devote themselves to an aimless exercise. This only
takes place in the narrow dwellings which Man grants to his winged
guests.

The attention of Ants to public hygiene is more than equalled by their
attention to personal hygiene. Without going into the question of
their athletic exercises, which have attracted considerable attention,
it is sufficient to quote one observer as to their habits of
cleanliness. McCook remarks:--"The Agricultural Ants--and the remark
applies to all other Ants of which I have knowledge--is one of the
neatest of creatures in her personal habits. I think I have never seen
one of my imprisoned harvesters, either _Barbatus_ or _Crudelis_, in
an untidy condition. They issue from their burrows, after the most
active digging, even when the earth is damp, without being perceptibly
soiled. Such minute particles of dust as cling to the body are
carefully removed. Indeed, the whole body is frequently and thoroughly
cleansed, a duty which is habitually, I might almost venture to say
invariably, attended to after eating and after sleep. In this process
the Ants assist one another; and it is an exceedingly interesting
sight which is presented to the observer when this general 'washing
up' is in progress."[112]

  [112] H. C. McCook, _Agricultural Ants of Texas_, 1879,
        chapter on "Toilet, Sleeping, and Funeral Habits," p. 125.

_Prudence of Bees._--Certain species exhibit very great prudence,
especially the _Melipona geniculata_, which lives in a wild state in
South America. They place their combs in the hollow of a tree or the
cleft of a rock; they fill up all the crevices and only leave a round
hole for entry. And even this they are accustomed to close every
evening by a small partition, which they remove in the morning. This
door is shut with various materials, such as resin or even clay, which
the bees bring on their legs as those of our own country bring pollen.

All these facts were observed with great exactness in a swarm given in
1874 by M. Drory (who during a long period of years studied every
Brazilian species of _Melipona_ at Bordeaux) to the Jardin
d'Acclimatation. It was even seen that the door might be put up under
certain circumstances in open day, as for example, when a storm or
sudden cold delays the appearance of the workers. If one of them
happened to be late it had to perforate the partition, and the hole
was then stopped up again.

[Illustration: FIG. 42.]

_Fortifications of Bees._--As these facts take place always they may
be called instinctive; but that is not the case with regard to
defences elevated with a view to a particular circumstance, and which
disappear when the danger to which they correspond disappears. Such
are the labours of the bees to repel the invasions of the large
nocturnal Death's-head Moth. (Fig. 42.) He is very greedy of honey,
and furtively introduces himself into the hives. Protected by the long
and fluffy hairs which cover him, he has little to fear from stings,
and gorges himself with the greatest freedom on the stores of the
swarm. Huber, in his admirable investigations,[113] narrates that one
year in Switzerland numbers of hives were emptied, and contained no
more honey in summer than in the spring. During that year Death's-head
Moths were very numerous. The illustrious naturalist soon became
certain that this moth was guilty of the thefts in question. While he
was reflecting as to what should be done, the bees, who were more
directly interested, had invented several different methods of
procedure. Some closed the entrance with wax, leaving only a narrow
opening through which the great robber could not penetrate. Others
built up before the opening a series of parallel walls, leaving
between them a zigzag corridor through which the Hymenoptera
themselves were able to enter. But the intruder was much too long to
perform this exercise successfully. Man utilises defences of this
kind; it is thus at the entrance of a field, for example, he places a
turnstile, or parallel bars that do not face each other; the passage
is not closed for him, but a cow is too long to overcome the obstacle.
In years when the Death's-head Moth is rare the bees do not set up
these barricades, which, indeed, they themselves find troublesome. For
two or three consecutive years they leave their doors wide open. Then
another invasion occurs, and they immediately close the openings. It
cannot be denied that in these cases their acts agree with
circumstances that are not habitual.[114]

  [113] Huber, _Nouvelles observations sur les Abeilles_.

  [114] These facts have recently been observed and recorded
        afresh by Mr. Clifford in _Nature Notes_, January 1893.

_Precautions against inquisitiveness._--I will finally quote a fact of
defence which took place under circumstances that were absolutely
exceptional, and which therefore exhibits genuine reflection in these
insects. During the first exhibition of 1855 an artificial hive was
set up, one face of which was closed by a glass pane. A wooden shutter
concealed this pane, but passers-by opened it every moment to
contemplate the work of the small insects. Annoyed by this
inquisitiveness, the bees resolved to put an end to it, and cemented
the shutter with _propolis_. When this substance dried it was no
longer possible to open the shutter. The bees were visible to nobody.

[Illustration: FIG. 43.]

[Illustration: FIG. 44.]

_Lighting up the nests._--An improvement of another nature in the
comfort of the dwelling is introduced by the _Baya_, and if the facts
narrated are correct they are the most marvellous of all. It is a
question of lighting up a nest by means of Glow-worms. The
_Melicourvis baya_ inhabits India; it is a small bird related to the
_Loxia_, already spoken of in this book. Like the latter it constructs
a nest that is very well designed and executed. (Fig. 43.) It suspends
it in general from a palm tree, but sometimes also from the roofs of
houses. In these shelters, woven with extreme art, are always to be
found little balls of dry and hardened clay. Why does the bird amass
these objects? Is it impelled by a collector's instinct less perfect
than that of the Bower-bird? There is no reason to suppose this. Nor
does it appear that he wishes to make the nest heavier and prevent it
by this ballast from being blown about by every breeze when the couple
are out, and the young not heavy enough to ensure the stability of the
edifice. The part played by these little balls is much more
remarkable, if we may trust the evidence of the natives, as confirmed
by competent European observers. Thus Mr. H. A. Severn writes:--"I
have been informed on safe authority that the Indian Bottle-bird
protects his nest at night by sticking several of these glow-beetles
around the entrance by means of clay; and only a few days back an
intimate friend of my own was watching three rats on a roof-rafter of
his bungalow when a glow-fly lodged very close to them; the rats
immediately scampered off."[115] These observations are confirmed by
Captain Briant, as reported by Professor R. Dubois.[116] In tropical
regions luminous insects give out a brilliant light, of which the
Glow-worms of northern countries can only give a feeble idea. These
flying or climbing stars are the constellations of virgin forests. In
South America the Indians utilise one of these insects, the _Cucujo_,
by fastening it to the great toe like a little lantern, and profit by
its light to find their road or to preserve their naked feet from
snakes. The first missionaries to the Antilles, lacking oil for their
lamps, sometimes replaced them by Fire-flies to read matins by.[117]
The _Melicourvis baya_ had already discovered this method of lighting,
and the mysterious little balls of clay were nothing more than
candlesticks in which these birds set Glow-worms, when they are fresh,
to act as candles. The entrance to the nest is thus luminous. (Fig.
44.) Apparently this lighting up is a defensive measure, for the birds
have nothing to do at night except to sleep, and must be rather
incommoded than cheered by this light. But the terrible enemy of all
broods, the Snake, is, it is said, frightened by this illumination,
which is able to penetrate the meshes of the nest, and will not dare
to enter. The system is ingenious, and the Roman Emperors, when they
used burning Christians as torches, were only plagiarising from this
little bird, which paves with martyrs the threshold of its house of
love.

  [115] "Notes on the Indian Glow-fly," _Nature_, 23rd June 1881.

  [116] _Science et Nature_, t. iv. (1885), No. 94, p. 232.

  [117] P. Dutertre, _Hist. des Antilles française_, 1667.



CHAPTER VIII.

CONCLUSION.

    DEGREE OF PERFECTION IN INDUSTRY INDEPENDENT OF ZOOLOGICAL
    SUPERIORITY--MENTAL FACULTIES OF THE LOWER ANIMALS OF LIKE
    NATURE TO MAN'S.


_Degree of perfection in industry independent of zoological
superiority._--As the result of our study we see the fundamental
industries of Man dispersed throughout the animal kingdom, though not,
indeed, all of them, nor the more subtle, which were only born
yesterday. We may remark the extent to which intellectual
manifestations of this sort are independent of the more or less
elevated rank assigned to species in zoological classification. The
latter, as it should be, brings together or separates beings according
to their physical character. But intelligence does not depend on the
whole body; its superior or inferior development is related to a
certain corresponding complexity in the surface, volume, and
histologic structure of the nervous centres.

It happens with the cerebral as with the other functions. An animal's
superiority is not exhibited in all his organs nor in all his
qualities; it results from a certain grouping of characters in which
there may be weak points. The highest in organisation are not
necessarily the swiftest or the strongest, any more than they are
necessarily the most intelligent. It may happen; it happens in the
case of Man; but it as easily fails to happen. In organisation the
Horse is nearer to Man than the Ant; but it is far otherwise as
regards intellectual development.

For this reason, when following the progress of any industry, I have
taken my examples first in one group, then in another far-removed
group, to return afterwards to the first. There are not, and cannot
be, bonds between a solitary function of the being and its place in
classification--a place which has been determined by the form of all
the organs, without even taking into account their methods of
activity.

Comparative anatomy has long since removed the barriers, once thought
impassable, raised by human pride between Man and the other animals.
Our bodies do not differ from theirs; and moreover, such glimpses as
we are able to obtain allow us to conclude that their psychic
faculties are of the same nature as our own. Man in his evolution
introduces no new factor.

The industries in which the talents of animals are exercised
demonstrate that, under the influence of the same environment, animals
have reacted in the same manner as Man, and have formed the same
combinations to protect themselves from cold or heat, to defend
themselves against the attacks of enemies, and to ensure sufficient
provision of food during those hard seasons of the year when the earth
does not yield in abundance.

It must only be added, to avoid falling into exaggeration, that Man
excels in all the arts, of which only scattered rudiments are found
among the other animals; and we may safeguard our pride by affirming
that we need not fear comparison. If our intelligence is not
essentially different from that of animals, we have the satisfaction
of knowing that it is much superior to theirs.



APPENDIX.

BIBLIOGRAPHY.


_Brehm's Thierleben_ is the great repository of facts concerning the
social lives of the higher animals. The third edition, in ten large
volumes, fully illustrated, and edited by Pechuel Lösche, has lately
appeared (Leipzig und Wien, Bibliog. Institute, 1890-92). It is,
indeed, as Virchow has lately termed it, "a sort of zoological
library," popular in character, and almost purely descriptive. (There
is a French edition of this work in nine volumes, but, with the
exception of one fragment, it has not appeared in English. The nearest
approach to Brehm's work in England is Cassell's _New Natural
History_, and in America the _Riverside Natural History_.) It is
impossible to enumerate the numberless works by travellers and others
on which the knowledge of animal industries is founded. The works of
Huber, Fabre, Audubon, Le Vaillant, C. St. John, Belt, Bates, Tennent,
are frequently quoted in the course of this work. Many of the most
important and detailed studies of animal industries are scattered
through the pages of the scientific periodicals of all countries.
References to a few of the chief of these studies will be found in the
text.

For a scientific discussion of the phenomena of animal skill and
intelligence we may perhaps best turn to Professor C. Lloyd Morgan,
whose work is always both acute and cautious. In _Animal Life and
Intelligence_ (1890) he has furnished an excellent introduction to the
subject. In his _Introduction to Comparative Psychology_ (shortly to
appear in the Contemporary Science Series) he discusses the
fundamental problems of mental processes in animals, and the
transition from animal intelligence to human intelligence. Romanes'
_Mental Evolution in Animals_ (1883) and other works by this writer,
dealing with the same subject, but proceeding on a different method,
should also be studied; and his _Animal Intelligence_ (International
Science Series) is an excellent critical summary of the facts.
Büchner's _Aus dem Geistesleben der Thiere_ (Berlin, 1877) and
Houzeau's _Facultés Mentales des Animaux_ (Brussels, 1877) may also be
mentioned, and Espinas' _Sociétés Animales_ (1877), though dealing
primarily with sociology, is an original and suggestive study of great
value.

As a general introduction, of a popular but not unscientific
character, to all the various aspects of animal life, J. Arthur
Thomson's little book, _The Study of Animal Life_ (University
Extension Manuals, 1892), may be recommended. At the end of Mr.
Thomson's volume will be found a useful classified list of the "Best
Books" on animal life.


GARDENING ANTS.

The operations of various species of Gardening Ants have recently been
very thoroughly investigated at Blumenau by Herr Alfred Möller, nephew
of Dr. Fritz Müller ("Die Pilzgärten einiger südamerikanischer
Ameisen." Heft 6 of Schimper's "Botanische Mittheilungen aus den
Tropen." Jena: G. Fischer, 1893. Herr Möller's work is clearly
summarised by Mr. John C. Willis in "The Fungus Gardens of certain
South American Ants," _Nature_, 24th August 1893).

The ants of Blumenau chiefly differ from those described by Belt in
that they form very narrow streets, in which they travel only in
single file, and also that their nests occur both in the forest and in
the open. The commonest species is the _Atta_ (_Acromyrmex_)
_discigera_, Mayr, and the workers are never more than 6.5 mm. long.
There are other species of _Atta_ which have very similar streets;
one, the _Atta hystrix_, Latr., appears to work only at night. A
minute description is given of a street of _A. discigera_, which was
26 metres long and about 1.5 cm. wide and high, roofed in in parts
wherever possible. It led to a number of small Cupheas, whose leaves
the ants were cutting. In the street could be seen a procession of
loaded ants going towards the nest, and others empty-handed, going in
the opposite direction. Some of the large workers run up and down the
road unloaded, and act as road-menders if any accident happens to a
part of the track. Other very small workers, which do not cut leaves,
may also be seen carried upon the backs or even upon the loads of the
actual leaf-cutters. An ant carrying a peculiarly shaped piece of leaf
was watched from end to end of the track, and travelled the 26 m. in
70 minutes. The load was twice as heavy as itself.

The plants attacked by the ants were found to be very numerous, and
the ants seemed to be very capricious in this respect, one day
stripping a plant and the next day leaving it untouched.

The jaws of the ants are very strong, with serrated edges, and clash
together laterally. The ant begins at the edge of a leaf, and cuts out
a piece in about five minutes, revolving on one of its hind legs as a
centre. When the piece is almost freed, the ant goes on to the main
portion of the leaf, cuts through the last piece uniting it with the
severed portion, drags up the latter, balances it on edge between its
forelegs, and then, grasping it with its jaws, lifts it up above its
head, so that the centre of gravity of the load is above the ant
itself. It then marches off, down the stem, to the base, over the
ground to the end of the street, and along this to the nest,
travelling at a very uniform speed, and never letting go its load. The
weight thus carried was found, on an average, to be twice that of the
ant; but many were found carrying heavier loads, even as much as ten
times their own weight!

The nests are usually below the surface of the soil, but covered,
wherever necessary, with a thick mass of withered pieces of leaves and
twigs, etc. They may be as much as 1-1/2 metres in diameter. In the
nests of all species examined there is found, filling up the interior,
a curious grey spongy mass, full of chambers, like a coarse sponge, in
which the ants may be seen running about, and in which, here and
there, occur eggs, larvæ, and pupæ. This is the fungus garden. It is
separated from the roof and lateral walls of the nest by a clear
space. The walls and roof are much thicker in winter than in summer;
one nest examined had a roof 25 cm. thick and wall 40 cm. The garden
consists of two parts, differently coloured, but not very sharply
marked off from each other. The older part is yellowish-red in colour;
the newly-built portions, forming the surface of the garden, are of a
blue-black colour. It is this part which is of the greater importance
to the ants.

The garden is found, on examination, to consist of an immense
conglomeration of small round particles of not more than .5 mm. in
diameter, of a dark green colour when quite fresh, then blue-black,
and finally yellowish-red. They are penetrated by, and enveloped in,
white fungus hyphæ, which hold the particles together. These hyphæ are
similar throughout the nest.

Strewn thickly upon the surface of the garden are seen round white
bodies about .25 mm. in diameter; they always occur in the nests,
except in the very young portion of the gardens. They consist of
aggregations of peculiar swollen hyphæ, and are termed by Möller the
"Kohl-rabi clumps." The hyphæ swell out at the ends into large
spherical thickenings, filled with richly vacuolated protoplasm like
the ordinary hyphæ. These clumps of "Kohl-rabi" are only found on the
surface of the garden, and form the principal food of the ants; they
have no doubt reached their present form under the cultivation and
selection of the ants. The fungus was found to belong to the genus
_Rozites_, and the species was named _R. gongylophora_. A microscopic
examination of the particles of which the garden is composed shows
that they contain remains of leaves; bits of epidermis, stomata,
spiral vessels, etc., occur in them.

If a nest is broken into and the fungus garden scattered, the ants
collect it as quickly as possible, especially the younger parts,
taking as much trouble over it as over the larvæ. They also cover it
up again as soon as possible to protect it from the light. A nest, 1
metre × 50 cm., was opened, and in twenty-four hours the ants had put
on a new roof 10 cm. deep.

Some ants' nests were placed under a bell jar and supplied with
leaves; they made no use of them and presently died. If they were
supplied with a piece of "garden," they rebuilt it and covered it so
far as they could. It was seen to shrink from day to day, the ants
bringing out the old pieces and adding them to the wall; finally it
was exhausted and the ants died. Others were starved for five days,
and then supplied with a bit of garden; they at once began to eat the
Kohl-rabi clumps. Finally, by supplying the ants with bits of garden,
a damp sandy floor, and fresh leaves, they were induced to build in
captivity. The dish in which they worked was covered by a glass lid,
and when this was covered with a dark cloth or otherwise kept dark,
the ants built under it without covering the garden. In this way the
whole process was observed. An ant bringing in a piece of leaf
proceeds to cut it into halves, repeating the process till it has got
a very small piece left, which it holds between its fore feet and
turns round, crushing it in its jaws until the whole is reduced to a
round ball of pulp about .25 mm. thick. This it then takes and adds to
the garden. So well is the kneading performed that no single cell
remains uninjured, and it was observed that the hyphæ of the fungus
grew through and round one of these particles within a few hours. Belt
supposed that this process was performed by the small workers
above-mentioned, but it is not so, as we have just seen. The small
workers perform the function of weeding the garden, and this is so
well done that a portion of it removed and grown in a nutrient
solution gives a perfectly pure culture, not even containing bacteria!

In the course of these investigations it was found that somewhat
similar fungus gardens occur in the nests of the hairy ant,
_Apterostigma_, but the fungus appeared to belong to a different
genus, and the hairy ants, who live in decaying wood and have small
gardens built of bits of wood-fibre, beetle-dung, etc., have not
succeeded in cultivating and selecting Kohl-rabi to the same high
degree. An allied genus of ants, _Cyphomyrmex_, were also found to be
fungus-growers.

This elaborate study, which is illustrated by beautiful plates and
photographs of the mushroom gardens, constitutes, as Mr. Willis (whose
summary has here been followed) remarks, one of the most fascinating
contributions to our knowledge of mycology and of animal industries
which have been made for many years.



INDEX.


  _Ægithalus pendulinus_
  Ælian
  Alix
  Alligator as a hunter; its nest
  Ambush, hunting in; baited
  _Ammophila affinis_
  Angler's baited ambush
  _Anomalocorax splendens_
  Ant, foraging;
    wars;
    honey;
    harvesting;
    agricultural;
    gardening;
    domestic animals;
    aphis-pens and paddocks;
    slaves;
    masons;
    attention to personal hygiene
  _Antennarius marmoratus_
  _Anthocopa_
  _Anthophora parietina_
  _Anthophora pilifera_
  Ape
  Aphis-pens of ants
  Aras
  Aristotle
  _Arvicola_
  _Astur palumbarius_
  _Ateucus sacer_
  _Atta barbara_
  Audubon
  Baboon
  Badger
  Baited ambush
  Baker, Sir S.
  Baldamus
  Baltimore bird
  Bates
  Bear
  Beaver
  Bee
  Beef-eater
  Belt
  _Bembex_
  Bendire
  Beneden
  Bernard
  Bernstein
  Bison
  Blackcap
  _Bonasa togata_
  Bower-birds
  Brehm
  Briant
  Brightwen, Mrs.
  Büchner
  Buffalo
  Buffalo-bird
  Bullhead
  _Buphaga_
  Burmeister
  Burying-beetle

  _Cam's azaræ_
  Caracara, Guadeloupe
  _Cardisoma carnifex_
  Cassique
  _Castor fiber_
  _Catheturus Lathami_
  _Cerceris ornata_
  _Chalicodoma_
  _Chelinous_
  _Cheliura terebrans_
  _Chlamydera maculata_
  _Chlorion_
  _Choestostomus pictus_
  _Cicindela campestris_
  _Cisludo lunaria_
  _Claviger testaceus_
  Cleveland, D.
  _Colaptes auratus_
  _Colaptes Mexicanus_
  _Conolophus subcristatus_
  _Cottus gobio_
  Couch
  Coursing by animals
  Cow-bird
  Crab
  Crane
  _Cricetus frumentarius_
  Crocodile as a hunter
  Crossbill
  Crows
  Cuckoo
  _Cucujo_
  Cuvier
  _Cystignathus ocellatus_

  Darwin
  Death, feigning
  Death's-head Moth
  Defence of dwellings _et seq._
  _Didelphys azaræ_
  Dog;
    wild
  Dog-fish
  _Dromia vulgaris_
  Drory
  Drummond, H.
  Dubois, R.
  Dufour
  Duméril
  Dutertre
  Dwellings of animals _et seq._

  Eagle, Bald;
    Caracara;
    Golden
  Ebrard
  _Eciton_
  Espinas
  Evolution, the theory of

  Fabre
  Falcon
  Feint
  Féré
  Flamingo
  Flights, methods of
  Fol, H.
  Foraging ants
  Forbes, H. O.
  _Formica_
  Fox
  Frog
  _Furnarius rufus_

  _Gecarinus ruricola_
  Gelatine nests
  Girod
  Glow-worm
  _Gobius minutus_
  _Gobius niger_
  Goshawk
  Gould
  Gourami
  Goureau
  Grouse
  _Grus cinerea_
  _Gypäetos barbatus_
  _Gypogeranus reptilivorus_

  _Haliäetus leucocephalus_
  Hamster
  Hearne, S.
  Hedgehog
  Heermann
  Hermit-crab
  Hobby
  Hornbill
  Hornet's nest
  Horse
  Houzeau
  Huber
  Hudson, W. H.
  Humming-bird
  Hunting _et seq._;
    in ambush;
    in the burrow
  Hygiene among animals _et seq._
  Intelligence and instinct _et seq._

  Jackdaw
  Jerdon

  Kakapo
  Kangaroo
  Kataplexy
  Kirby
  Kite

  _Lacerta stirpium_
  Lacepède
  _Lagostomus trichodactylus_
  Lamarck
  Lammergeyer
  _Lanius_
  Lark
  _Lasius_
  Latreille
  Le Vaillant
  Lespès
  Lighting up nests
  Lincecum
  Linnet
  Loeffler
  _Lophius piscatorius_
  Lowe, J.
  _Loxia_
  Lubbock

  Macaw
  _Macropus viridi-auratus_
  _Maïa_
  Magpie
  Man's industries
  Marchal, P.
  Marmot
  Martin, H. T.
  Mason-bee
  McCook
  _Megachile_
  _Melanerpes erythrocephalus_
  _Melanerpes formicivorus_
  _Meles_
  _Melicourvis baya_
  _Melipona geniculata_
  Merlin
  Moggridge
  _Molothrus_
  _Monedula punctata_
  Morgan, C. L.
  Morgan, L. H.
  Mouse
  Müller, Fritz
  Müller, P. W. J.
  _Mus minutus_
  Musk-rat
  _Mygale henzii_
  _Myrmecocystus_
  _Myrmica_

  Natural history and the natural sciences
  Naturalist of yesterday and to-day
  Naumann
  _Necrophorus_
  Nests _et seq._

  _Oecodoma_
  _Opossum_
  _Orthotomus longicauda_
  _Orycteropus_
  _Osphronemus olfax_
  Otter
  Oven-bird
  Owl

  _Pagurus Bernhardus_
  Pallas
  Paradise-fish
  Parroquet
  Parseval-Deschênes
  Paterson, W.
  Pea-crab
  Pelican, Brown
  Perch
  _Pholcus_
  _Phryganea striata_
  Physiological reserves
  _Pinnoteres pisum_
  _Pogonomyrmex barbatus_
  _Polyborus lutosus_
  _Polyborus cheriway_
  _Polyergus rufescens_
  _Pompilius_
  Poppig
  Preyer
  Projectiles, hunting with
  _Protopterus_
  _Psammomys_
  _Pseudaetus_
  Python's ambush

  Quelelis
  _Quiscalus major_

  Raven
  Réaumur
  _Rhodius anarus_
  Romanes
  Rook

  Saint-Hilaire, G.
  St. John, C.
  Sand-wasp
  Sanitation of dwellings _et seq._
  Saussure, H. de
  Scarabæus
  Sea-gulls
  Secretary-bird
  Sentinels
  Severn, H. A.
  Sewing among birds
  Shrike
  Simon, Eugène
  _Sitaris muralis_
  _Sitaris colletis_
  Slavery among ants
  Smeathman
  Snake
  Sparrow-hawk
  _Sphex_
  Spider
  Spider-crab
  Sponge-crab
  Squirrel
  _Staphilinus Cæsareus_
  Stickleback
  _Strigops habroptilus_
  Sturgeon
  Swallow's nest
  Sykes
  _Sylvia atricapilla_

  Tailor-bird
  Tennent
  Termites
  Thomson, J. A.
  Tiger-beetle
  Titmouse
  Toad
  Tortoise
  _Toxotes jaculator_
  Trap-door spider
  Tristram
  _Troglodytes calvus_
  Tschüdi
  Tyrant-bird

  _Uranoscopus scaber_

  _Vespa sylvestris_
  Vizcacha
  Vole

  Wasp
  Waterton
  Weaver-bird
  Wodzicki
  Wolves
  Woodpecker
  Woven dwellings

  _Xylocopa violacea_



THE WALTER SCOTT PRESS, NEWCASTLE-ON-TYNE.



The Contemporary Science Series.

EDITED BY HAVELOCK ELLIS.


I. THE EVOLUTION OF SEX. By Professor PATRICK GEDDES and J. ARTHUR
THOMSON. With 90 Illustrations. Second Edition.

    "The authors have brought to the task--as indeed their names
    guarantee--a wealth of knowledge, a lucid and attractive
    method of treatment, and a rich vein of picturesque
    language."--_Nature_.

II. ELECTRICITY IN MODERN LIFE. By G. W. DE TUNZELMANN. With 88
Illustrations.

    "A clearly-written and connected sketch of what is known about
    electricity and magnetism, the more prominent modern
    applications, and the principles on which they are
    based."--_Saturday Review_.

III. THE ORIGIN OF THE ARYANS. By Dr. ISAAC TAYLOR. Illustrated.
Second Edition.

    "Canon Taylor is probably the most encyclopædic all-round
    scholar now living. His new volume on the Origin of the Aryans
    is a first-rate example of the excellent account to which he
    can turn his exceptionally wide and varied information....
    Masterly and exhaustive."--PALL MALL GAZETTE.

IV. PHYSIOGNOMY AND EXPRESSION. By P. MANTEGAZZA. Illustrated.

    "Professor Mantegazza is a writer full of life and spirit, and
    the natural attractiveness of his subject is not destroyed by
    his scientific handling of it."--_Literary World_ (Boston).

V. EVOLUTION AND DISEASE. By J. B. SUTTON, F R.C.S. With 135
Illustrations.

    "The book is as interesting as a novel, without sacrifice of
    accuracy or system, and is calculated to give an appreciation
    of the fundamentals of pathology to the lay reader, while
    forming a useful collection of illustrations of disease for
    medical reference."--_Journal of Mental Science_.

VI. THE VILLAGE COMMUNITY. By G. L. GOMME. Illustrated.

    "The fruit of some years of investigation on a subject which
    has of late attracted much attention, and is of much
    importance, inasmuch as it lies at the basis of our
    society."--_Antiquary_.

VII. THE CRIMINAL. By HAVELOCK ELLIS. Illustrated.

    "An ably written, an instructive, and a most entertaining
    book."--_Law Quarterly Review_.

VIII. SANITY AND INSANITY. By Dr. CHARLES MERCIER. Illustrated.

    "Taken as a whole, it is the brightest book on the physical
    side of mental science published in our time."--_Pall Mall
    Gazette_.

IX. HYPNOTISM. By Dr. ALBERT MOLL. Second Edition.

    "Marks a step of some importance in the study of some
    difficult physiological and psychological problems which have
    not yet received much attention in the scientific world of
    England."--_Nature_.

X. MANUAL TRAINING. By Dr. C. M. WOODWARD, Director of the Manual
Training School, St Louis. Illustrated.

    "There is no greater authority on the subject than Professor
    Woodward."--_Manchester Guardian_.

XI. THE SCIENCE OF FAIRY TALES. By E. SIDNEY HARTLAND.

    "Mr. Hartland's book will win the sympathy of all earnest
    students, both by the knowledge it displays, and by a thorough
    love and appreciation of his subject, which is evident
    throughout."--_Spectator_.

XII. PRIMITIVE FOLK. By ELIE RECLUS.

    "For an introduction to the study of the questions of
    property, marriage, government, religion,--in a word, to the
    evolution of society,--this little volume will be found most
    convenient."--_Scottish Leader_.

XIII. THE EVOLUTION OF MARRIAGE. By Professor LETOURNEAU.

    "Among the distinguished French students of sociology,
    Professor Letourneau has long stood in the first rank. He
    approaches the great study of man free from bias and shy of
    generalisations. To collect, scrutinise, and appraise facts is
    his chief business."--_Science_.

XIV. BACTERIA AND THEIR PRODUCTS. By Dr. G. SIMS WOODHEAD.
Illustrated.

    "An excellent summary of the present state of knowledge of the
    subject."--_Lancet_.

XV. EDUCATION AND HEREDITY. By J. M. GUYAU.

    "It is at once a treatise on sociology, ethics, and
    pædagogics. It is doubtful whether among all the ardent
    evolutionists who have had their say on the moral and the
    educational question any one has carried forward the new
    doctrine so boldly to its extreme logical
    consequence."--Professor SULLY in _Mind_.

XVI. THE MAN OF GENIUS. By Professor LOMBROSO. Illustrated.

    "By far the most comprehensive and fascinating collection of
    facts and generalisations concerning genius which has yet been
    brought together."--_Journal of Mental Science_.

XVII. THE GRAMMAR OF SCIENCE. By KARL PEARSON, M.A., Gresham Professor
of Geometry. Illustrated.

    "The problems discussed with great ability and lucidity, and
    often in a most suggestive manner, by Prof. Pearson, are such
    as should interest _all_ students of natural
    science."--_Natural Science_.

XVIII. PROPERTY: ITS ORIGIN AND DEVELOPMENT. By Professor LETOURNEAU.

    "M. Letourneau has read a great deal, and he seems to us to
    have selected and interpreted his facts with considerable
    judgment and learning."--_Westminster Review_.

XIX. VOLCANOES: PAST AND PRESENT. By EDWARD HULL, M.A., LL.D., F.R.S.
With 45 Illustrations.

    "A very readable account of the phenomena of volcanoes and
    earthquakes."--_Nature_.

XX. PUBLIC HEALTH. By Dr. J. F. J. SYKES. With numerous Illustrations.

    "Takes up essential points in evolution, environment,
    prophylaxis, and sanitation bearing upon the preservation of
    public health."--_Lancet_.

XXI. MODERN METEOROLOGY. By FRANK WALDO, Ph.D., etc. With 112
Illustrations.

    "The present volume is the best on the subject for general use
    that we have seen."--_Daily Telegraph_.

XXII. THE GERM-PLASM: A THEORY OF HEREDITY. By Dr. A. WEISMANN.
Illustrated.

    "There has been no work published since Darwin's own books
    which has brought to light so many new facts."--_British
    Medical Journal_.



                          LIBRARY OF POETRY.

                    HANDSOME PRESENTATION VOLUMES.

    _Crown 8vo, White and Gold Brocade Elegant, Price 3/6 each._

SPECIAL FEATURE OF THIS RE-ISSUE--

       _EACH VOLUME CONTAINS A FRONTISPIECE IN PHOTOGRAVURE._

WOMEN'S VOICES. With Portrait of Mrs. Browning.

SONNETS OF THIS CENTURY. With Portrait of D. G. Rossetti.

CHILDREN OF THE POETS. With an Engraving of "The Orphans," by
Gainsborough.

SACRED SONG. With Portrait of John Keble.

AUSTRALIAN SONG. With Portrait of Adam Lindsay Gordon.

JACOBITE SONG. With Portrait of Prince Charles Edward.

IRISH MINSTRELSY. With Portrait of Thomas Davis.

SONNETS OF EUROPE. With Portrait of John Addington Symonds.

EARLY ENGLISH POETRY. With Portrait of the Earl of Surrey.

BALLADS OF THE NORTH COUNTRIE. With View of Neidpath Castle.

POEMS OF THE SEA. With a View of Corbière Rocks, Jersey.

SONGS OF FAIRYLAND. With Engraving from a Drawing by C. E. Brock.

SONGS OF THE GREAT DOMINION. With Canadian Landscape.

             London: WALTER SCOTT, Ltd., 24 Warwick Lane.



                          LIBRARY OF HUMOUR

         _Cloth Elegant, Large Crown 8vo, Price 3/6 per vol._

                      _VOLUMES ALREADY ISSUED._

THE HUMOUR OF FRANCE. Translated, with an Introduction and Notes, by
Elizabeth Lee. With numerous Illustrations by Paul Frénzeny.

THE HUMOUR OF GERMANY. Translated, with an Introduction and Notes, by
Hans Müller-Casenov. With numerous Illustrations by C. E. Brock.

THE HUMOUR OF ITALY. Translated, with an Introduction and Notes, by A.
Werner. With 50 Illustrations and a Frontispiece by Arturo Faldi.

THE HUMOUR OF AMERICA. Edited, with an Introduction and Notes, by J.
Barr (of the _Detroit Free Press_). With numerous Illustrations by C.
E. Brock.


                      _VOLUMES IN PREPARATION._

THE HUMOUR OF HOLLAND. Translated, with an Introduction and Notes, by
A. Werner. With Numerous Illustrations by Dudley Hardy.

THE HUMOUR OF IRELAND. Selected by D. J. O'Donoghue. With numerous
Illustrations by Oliver Paque.

THE HUMOUR OF RUSSIA. Translated, with Notes, by E. L. Boole, and an
Introduction by Stepniak. With 50 Illustrations by Paul Frénzeny.

THE HUMOUR OF SPAIN. Translated, with an Introduction and Notes, by S.
Taylor. With numerous Illustrations.


To be followed by volumes representative of ENGLAND, SCOTLAND, JAPAN,
etc. The Series will be complete in about twelve volumes.

           London: WALTER SCOTT, LIMITED, 24 Warwick Lane.



                        BOOKS OF FAIRY TALES.

            _Crown 8vo, Cloth Elegant, Price 3/6 per Vol._

ENGLISH FAIRY AND OTHER FOLK TALES.
Selected and Edited, with an Introduction,
By EDWIN SIDNEY HARTLAND.
_With Twelve Full-Page Illustrations by_ CHARLES E. BROCK.

SCOTTISH FAIRY AND FOLK TALES.
Selected and Edited, with an Introduction,
BY SIR GEORGE DOUGLAS, BART.
_With Twelve Full-Page Illustrations by_ JAMES TORRANCE.

IRISH FAIRY AND FOLK TALES.
Selected and Edited, with an Introduction,
By W. B. YEATS.
_With Twelve Full-Page Illustrations by_ JAMES TORRANCE.

    London: WALTER SCOTT, LTD., 24 Warwick Lane, Paternoster Row.



                        _AUTHORISED VERSION._

                    _Crown 8vo, Cloth, Price 6s._

PEER GYNT: A Dramatic Poem.

By HENRIK IBSEN.

TRANSLATED BY WILLIAM AND CHARLES ARCHER.

_This Translation, though unrhymed, preserves throughout the various
rhythms of the original._

    "In _Brand_ the hero is an embodied protest against the
    poverty of spirit and half-heartedness that Ibsen rebelled
    against in his countrymen. In _Peer Gynt_ the hero is himself
    the embodiment of that spirit. In _Brand_ the fundamental
    antithesis, upon which, as its central theme, the drama is
    constructed, is the contrast between the spirit of compromise
    on the one hand, and the motto 'everything or nothing' on the
    other. And _Peer Gynt_ is the very incarnation of a
    compromising dread of decisive committal to any one course. In
    _Brand_ the problem of self-realisation and the relation of
    the individual to his surroundings is obscurely struggling for
    recognition, and in _Peer Gynt_ it becomes the formal theme
    upon which all the fantastic variations of the drama are built
    up. In both plays alike the problems of heredity and the
    influence of early surroundings are more than touched upon;
    and both alike culminate in the doctrine that the only
    redeeming power on earth or in heaven is the power of
    love."--Mr. P. H. WICKSTEED.

           London: WALTER SCOTT, LIMITED, 24 Warwick Lane.



                       _COMPACT AND PRACTICAL._

         _In Limp Cloth; for the Pocket. Price One Shilling._

THE EUROPEAN CONVERSATION BOOKS.

                        FRENCH     ITALIAN

                        SPANISH     GERMAN

                            NORWEGIAN

CONTENTS.

_Hints to Travellers--Everyday Expressions--Arriving at and Leaving a
Railway Station--Custom House Enquiries--In a Train--At a Buffet and
Restaurant--At an Hotel--Paying an Hotel Bill--Enquiries in a Town--On
Board Ship--Embarking and Disembarking--Excursion by
Carriage--Enquiries as to Diligences--Enquiries as to Boats--Engaging
Apartments--Washing List and Days of Week--Restaurant
Vocabulary--Telegrams and Letters, etc., etc._

The contents of these little handbooks are so arranged as to permit
direct and immediate reference. All dialogues or enquiries not
considered absolutely essential have been purposely excluded, nothing
being introduced which might confuse the traveller rather than assist
him. A few hints are given in the introduction which will be found
valuable to those unaccustomed to foreign travel.

       London: WALTER SCOTT, 24 Warwick Lane, Paternoster Row.



                       TREASURE-HOUSE OF TALES

     _Handsome Crown 8vo volumes, bound in Cloth Gilt, 3/6 each._

EACH VOLUME ILLUSTRATED WITH A PORTRAIT ETCHED FOR THIS SERIES BY M.
ADOLPHE LALAUZE.


LEIGH HUNT.

Tales by LEIGH HUNT, hitherto uncollected, with a Biographical
Introduction by WILLIAM KNIGHT, LL.D., Professor of Moral Philosophy,
University of St. Andrews. With a Portrait of LEIGH HUNT in his young
days, etched by AD. LALAUZE, Paris.


MRS. SHELLEY.

Tales by MARY WOLLSTONECRAFT SHELLEY, hitherto uncollected, with a
Critical Introduction by RICHARD GARNETT, LL.D., of the British
Museum. With an Etching by AD. LALAUZE, from an unpublished Portrait
lent by LADY SHELLEY.


DOUGLAS JERROLD.

Tales by DOUGLAS JERROLD, hitherto uncollected, with a Biographical
Notice by J. LOGIE ROBERTSON, M.A. "Hugh Haliburton"), illustrated
with a Frontispiece from an early Portrait etched by AD. LALAUZE, of
Paris.


LORD BEACONSFIELD.

Tales by BENJAMIN DISRAELI, LORD BEACONSFIELD, hitherto, for the
greater part, uncollected, with a Biographical Notice by J. LOGIE
ROBERTSON, M.A. ("Hugh Haliburton"). The Frontispiece being an Etching
by AD. LALAUZE, from a Portrait of the author when thirty-five years
of age.

           London: WALTER SCOTT, LIMITED, 24 Warwick Lane.



                         NEW ENGLAND LIBRARY

                      CLOTH, GILT TOP, 2s. EACH.

Contains the following Works--


NATHANIEL HAWTHORNE.

   1. THE HOUSE OF THE SEVEN GABLES.
   2. THE SCARLET LETTER.
   3. MOSSES FROM AN OLD MANSE.
   4. THE NEW ADAM AND EVE.
   5. TWICE-TOLD TALES.
   6. LEGENDS OF THE PROVINCE HOUSE.
   7. THE SNOW IMAGE.
   8. OUR OLD HOME.
   9. TANGLEWOOD TALES.
  10. THE BLITHEDALE ROMANCE.
  11. TRUE STORIES FROM HISTORY AND BIOGRAPHY.
  12. A WONDER-BOOK FOR GIRLS AND BOYS.


A. S. HARDY.

  13. BUT YET A WOMAN.


THEO. WINTHROP.

  14. CECIL DREEME.
  15. JOHN BRENT.
  16. EDWIN BROTHERTOFT.
  17. CANOE AND SADDLE.


O. W. HOLMES.

  18. AUTOCRAT OF THE BREAKFAST-TABLE.
  19. PROFESSOR AT THE BREAKFAST-TABLE.
  20. POET AT THE BREAKFAST-TABLE.
  21. ELSIE VENNER.
  22. A MORTAL ANTIPATHY.


WASHINGTON IRVING.

  23. THE SKETCH BOOK.
  24. CHRISTMAS


In ordering, it is sufficient to note the numbers to the above titles.

           London: WALTER SCOTT, LIMITED, 24 Warwick Lane.



                        WORKS BY GEORGE MOORE.

               _Crown 8vo, Cloth, Price 3s. 6d. each._


TWENTIETH EDITION.

A MUMMER'S WIFE.

"'A Mummer's Wife' is a striking book--clever, unpleasant,
realistic.... No one who wishes to examine the subject of realism in
fiction, with regard to English novels, can afford to neglect 'A
Mummer's Wife.'"--_Athenæum_.

"'A Mummer's Wife,' in virtue of its vividness of presentation and
real literary skill, may be regarded as in some degree a
representative example of the work of a literary school that has of
late years attracted to itself a great deal of
notoriety."--_Spectator_.


EIGHTH EDITION.

A MODERN LOVER.

"It would be difficult to praise too highly the strength, truth,
delicacy, and pathos of the incident of Gwynnie Lloyd, and the
admirable treatment of the great sacrifice she makes."--_Spectator_.


SEVENTH EDITION.

A DRAMA IN MUSLIN.

"Mr. George Moore's work stands on a very much higher plane than the
facile fiction of the circulating libraries.... The characters are
drawn with patient care, and with a power of individualisation which
marks the born novelist. It is a serious, powerful, and in many
respects edifying book."--_Pall Mall Gazette_.


_Crown 8vo, Cloth, Price 6s._

VAIN FORTUNE.

With Eleven Illustrations by MAURICE GREIFFENHAGEN.

_A few Large-Paper Copies on Hand-made Paper, Price One Guinea net._


A VOLUME of ESSAYS by GEORGE MOORE.

_Crown 8vo, Cloth, Price 6s._

MODERN PAINTING.


_Crown 8vo, Cloth, Price 5s._

THE STRIKE AT ARLINGFORD.

PLAY IN THREE ACTS.

           London: WALTER SCOTT, LIMITED, 24 Warwick Lane.



                            BOOKS AT 3/6.


THE INSPECTOR-GENERAL. A Russian Comedy, by NIKOLAI V. GOGOL.
Translated by ARTHUR A. SYKES.

THE CAREER OF A NIHILIST. By STEPNIAK.

ANNA KARÉNINA. By COUNT TOLSTOÏ. Translated by N. H. DOLE.

CRIME AND PUNISHMENT. By F. DOSTOIEFFSKY.

A DRAMA IN MUSLIN. By GEORGE MOORE.

THE MUMMER'S WIFE. By GEORGE MOORE.

A MODERN LOVER. By GEORGE MOORE.

THE NEW BORDER TALES. By SIR GEORGE DOUGLAS, BART. (Illustrated.)

FROM AUSTRALIA AND JAPAN. A collection of Short Stories. By A. M.
(Illustrated.)

FOR LUST OF GOLD: A NARRATIVE OF ADVENTURE. By AARON WATSON.
(Illustrated.)

SCOTTISH FAIRY AND FOLK TALES. By SIR GEORGE DOUGLAS, BART.
(Illustrated.)

ENGLISH FAIRY AND FOLK TALES. Edited by E. SIDNEY HARTLAND.
(Illustrated.)

IRISH FAIRY AND FOLK TALES. Edited and Selected by W. B. YEATS.
(Illustrated.)

DRAMATIC ESSAYS. Edited by WILLIAM ARCHER and ROBERT W. LOWE. 3 Vols.

  The First Series contains the criticisms of LEIGH HUNT.
  The Second Series contains the criticisms of WILLIAM HAZLITT.
  The Third Series contains hitherto uncollected criticisms by JOHN
      FORSTER, GEORGE HENRY LEWES, and others.

IBSEN'S PROSE DRAMAS--Edited by WM. ARCHER.

  VOL. I. "A DOLL'S HOUSE," "THE LEAGUE OF YOUTH," and "THE
    PILLARS OF SOCIETY."

  VOL. II. "GHOSTS," "AN ENEMY OF THE PEOPLE," and "THE WILD
    DUCK." With an Introductory Note.

  VOL. III. "LADY INGER OF ÖSTRÅT," "THE VIKINGS AT
    HELGELAND," "THE PRETENDERS."

  VOL. IV. "EMPEROR AND GALILEAN." With an Introductory Note by
    WILLIAM ARCHER.

  VOL. V. "ROSMERSHOLM," "THE LADY FROM THE SEA," "HEDDA
    GABLER."

           London: WALTER SCOTT, LIMITED, 24 Warwick Lane.



                            BOOKS AT 6/-.

VAIN FORTUNE. By GEORGE MOORE. With Eleven Illustrations by MAURICE
GREIFFENHAGEN.

MODERN PAINTING. A Volume of Essays. By GEORGE MOORE.

PEER GYNT: A DRAMATIC POEM. By HENRIK IBSEN. Translated by WILLIAM and
CHARLES ARCHER.

AMONG THE CAMPS; OR, YOUNG PEOPLE'S STORIES OF THE WAR. By THOMAS
NELSON PAGE. (Illustrated.)

THE MUSIC OF THE POETS: A MUSICIANS' BIRTHDAY BOOK. Edited by ELEONORE
D'ESTERRE KEELING.

THE GERM-PLASM: A THEORY OF HEREDITY. By AUGUST WEISMANN, Professor in
the University of Freiburg-in-Breisgau.

           London: WALTER SCOTT, LIMITED, 24 Warwick Lane.



                          THE SCOTT LIBRARY.

       Cloth, Uncut Edges, Gilt Top. Price 1s. 6d. per Volume.

VOLUMES ALREADY ISSUED--

1 MALORY'S ROMANCE OF KING ARTHUR AND THE QUEST OF THE HOLY GRAIL.
Edited by Ernest Rhys.

2 THOREAU'S WALDEN. With Introductory Note by Will H. Dircks.

3 THOREAU'S "WEEK." With Prefatory Note by Will H. Dircks.

4 THOREAU'S ESSAYS. Edited, with an Introduction, by Will H. Dircks.

5 CONFESSIONS OF AN ENGLISH OPIUM-EATER, ETC. By Thomas De Quincey.
With Introductory Note by William Sharp.

6 LANDOR'S IMAGINARY CONVERSATIONS. Selected, with Introduction, by
Havelock Ellis.

7 PLUTARCH'S LIVES (LANGHORNE). With Introductory Note by B. J. Snell,
M.A.

8 BROWNE'S RELIGIO MEDICI, ETC. With Introduction by J. Addington
Symonds.

9 SHELLEY'S ESSAYS AND LETTERS. Edited, with Introductory Note, by
Ernest Rhys.

10 SWIFT'S PROSE WRITINGS. Chosen and Arranged, with Introduction, by
Walter Lewin.

11 MY STUDY WINDOWS. By James Russell Lowell. With Introduction by R.
Garnett, LL.D.

12 LOWELL'S ESSAYS ON THE ENGLISH POETS. With a new Introduction by
Mr. Lowell.

13 THE BIGLOW PAPERS. By James Russell Lowell. With a Prefatory Note
by Ernest Rhys.

14 GREAT ENGLISH PAINTERS. Selected From Cunningham's _Lives_. Edited
by William Sharp.

15 BYRON'S LETTERS AND JOURNALS. Selected, with Introduction, by
Mathilde Blind.

16 LEIGH HUNT'S ESSAYS. With Introduction And Notes by Arthur Symons.

17 LONGFELLOW'S "HYPERION," "KAVANAH," AND "The Trouveres." With
Introduction by W. Tirebuck.

18 GREAT MUSICAL COMPOSERS. By G. F. Ferris. Edited, with
Introduction, by Mrs. William Sharp.

19 THE MEDITATIONS OF MARCUS AURELIUS. Edited by Alice Zimmern.

20 THE TEACHING OF EPICTETUS. Translated From the Greek, with
Introduction and Notes, by T. W. Rolleston.

21 SELECTIONS FROM SENECA. With Introduction by Walter Clode.

22 SPECIMEN DAYS IN AMERICA. By Walt Whitman. Revised by the Author,
with fresh Preface.

23 DEMOCRATIC VISTAS, AND OTHER PAPERS. By Walt Whitman. (Published by
arrangement with the Author.)

24 WHITE'S NATURAL HISTORY OF SELBORNE. With a Preface by Richard
Jefferies.

25 DEFOE'S CAPTAIN SINGLETON. Edited, With Introduction, by H.
Halliday Sparling.

26 MAZZINI'S ESSAYS: LITERARY, POLITICAL, AND RELIGIOUS. With
Introduction by William Clarke.

27 PROSE WRITINGS OF HEINE. With Introduction by Havelock Ellis.

28 REYNOLDS'S DISCOURSES. With Introduction by Helen Zimmern.

29 PAPERS OF STEELE AND ADDISON. Edited BY Walter Lewin.

30 BURNS'S LETTERS. Selected and Arranged, with Introduction, by J.
Logie Robertson, M.A.

31 VOLSUNGA SAGA. William Morris. With Introduction by H. H. Sparling.

32 SARTOR RESARTUS. By Thomas Carlyle. With Introduction by Ernest
Rhys.

33 SELECT WRITINGS OF EMERSON. With Introduction by Percival Chubb.

34 AUTOBIOGRAPHY OF LORD HERBERT. Edited, with an Introduction, by
Will H. Dircks.

35 ENGLISH PROSE, FROM MAUNDEVILLE TO THACKERAY. Chosen and Edited by
Arthur Galton.

36 THE PILLARS OF SOCIETY, AND OTHER PLAYS. By Henrik Ibsen. Edited,
with an Introduction, by Havelock Ellis.

37 IRISH FAIRY AND FOLK TALES. Edited And Selected by W. B. Yeats.

38 ESSAYS OF DR. JOHNSON, with Biographical Introduction and Notes by
Stuart J. Reid.

39 ESSAYS OF WILLIAM HAZLITT. Selected and Edited, with Introduction
and Notes, by Frank Carr.

40 LANDOR'S PENTAMERON, AND OTHER IMAGINARY CONVERSATIONS. Edited,
with a Preface, by H. Ellis.

41 POE'S TALES AND ESSAYS. Edited, with Introduction, by Ernest Rhys.

42 VICAR OF WAKEFIELD. By Oliver Goldsmith Edited, with Preface, by
Ernest Rhys.

43 POLITICAL ORATIONS, FROM WENTWORTH TO MACAULAY. Edited, with
Introduction, by William Clarke.

44 THE AUTOCRAT OF THE BREAKFAST-TABLE. By Oliver Wendell Holmes.

45 THE POET AT THE BREAKFAST-TABLE. By Oliver Wendell Holmes.

46 THE PROFESSOR AT THE BREAKFAST-TABLE. By Oliver Wendell Holmes.

47 LORD CHESTERFIELD'S LETTERS TO HIS SON. Selected, with
Introduction, by Charles Sayle.

48 STORIES FROM CARLETON. Selected, with Introduction, by W. Yeats.

49 JANE EYRE. BY CHARLOTTE BRONTË. Edited by Clement K. Shorter.

50 ELIZABETHAN ENGLAND. Edited by Lothrop Withington, with a Preface
by Dr. Furnivall.

51 THE PROSE WRITINGS OF THOMAS DAVIS. Edited by T. W. Rolleston.

52 SPENCE'S ANECDOTES. A SELECTION. Edited, with an Introduction and
Notes, by John Underhill.

53 MORE'S UTOPIA, AND LIFE OF EDWARD V. Edited, with an Introduction,
by Maurice Adams.

54 SADI'S GULISTAN, OR FLOWER GARDEN. Translated, with an Essay, by
James Ross.

55 ENGLISH FAIRY AND FOLK TALES. Edited by E. Sidney Hartland.

56 NORTHERN STUDIES. BY EDMUND GOSSE. With a Note by Ernest Rhys.

57 EARLY REVIEWS OF GREAT WRITERS. Edited by E. Stevenson.

58 ARISTOTLE'S ETHICS. With George Henry Lewes's Essay on Aristotle
prefixed.

59 LANDOR'S PERICLES AND ASPASIA. Edited, with an Introduction, by
Havelock Ellis.

60 ANNALS OF TACITUS. Thomas Gordon's Translation. Edited, with an
Introduction, by Arthur Galton.

61 ESSAYS OF ELIA. By Charles Lamb. Edited, with an Introduction, by
Ernest Rhys.

62 BALZAC'S SHORTER STORIES. Translated by William Wilson and the
Count Stenbock.

63 COMEDIES OF DE MUSSET. Edited, with an Introductory Note, by S. L.
Gwynn.

64 CORAL REEFS. By Charles Darwin. Edited, with an Introduction, by
Dr. J. W. Williams.

65 SHERIDAN'S PLAYS. Edited, with an Introduction, by Rudolf Dircks.

66 OUR VILLAGE. By Miss Mitford. Edited, with an Introduction, by
Ernest Rhys.

67 MASTER HUMPHREY'S CLOCK, AND OTHER STORIES. By Charles Dickens.
With Introduction by Frank T. Marzials.

68 TALES FROM WONDERLAND. By Rudolph Baumbach. Translated by Helen B.
Dole.

69 ESSAYS AND PAPERS BY DOUGLAS JERROLD. Edited by Walter Jerrold.

70 VINDICATION OF THE RIGHTS OF WOMAN. By Mary Wollstonecraft.
Introduction by Mrs. E. Robins Pennell.

71 "THE ATHENIAN ORACLE." A SELECTION. Edited by John Underhill, with
Prefatory Note by Walter Besant.

72 ESSAYS OF SAINTE-BEUVE. Translated and Edited, with an
Introduction, by Elizabeth Lee.

73 SELECTIONS FROM PLATO. From the Translation of Sydenham and Taylor.
Edited by T. W. Rolleston.

74 HEINE'S ITALIAN TRAVEL SKETCHES, ETC. Translated by Elizabeth A.
Sharp. With an Introduction from the French of Théophile Gautier.

75 SCHILLER'S MAID OF ORLEANS. Translated, with an Introduction, by
Major-General Patrick Maxwell.

76 SELECTIONS FROM SYDNEY SMITH. Edited, WITH an Introduction, by
Ernest Rhys.

77 THE NEW SPIRIT. By Havelock Ellis.

78 THE BOOK OF MARVELLOUS ADVENTURES. From the "Morte d'Arthur."
Edited by Ernest Rhys. [This, together with No. 1, forms the complete
"Morte d'Arthur."]

79 ESSAYS AND APHORISMS. By Sir Arthur Helps. With an Introduction by
E. A. Helps.

80 ESSAYS OF MONTAIGNE. Selected, with a Prefatory Note, by PERCIVAL
CHUBB.

81 THE LUCK OF BARRY LYNDON. By W. M. Thackeray. Edited by F. T.
Marzials.

82 SCHILLER'S WILLIAM TELL. Translated, with an Introduction, by
Major-General Patrick Maxwell.

83 CARLYLE'S ESSAYS ON GERMAN LITERATURE. With an Introduction by
Ernest Rhys.

           London: WALTER SCOTT, LIMITED, 24 Warwick Lane.



                            GREAT WRITERS.

                A NEW SERIES OF CRITICAL BIOGRAPHIES.

Edited by ERIC ROBERTSON and FRANK T. MARZIALS.

A Complete Bibliography to each Volume, by J. P. ANDERSON, British
Museum, London.

Cloth, Uncut Edges, Gilt Top. Price 1/6.


VOLUMES ALREADY ISSUED--


LIFE OF LONGFELLOW. By PROF. ERIC S. ROBERTSON.

    "A most readable little work."--_Liverpool Mercury_.


LIFE OF COLERIDGE. By HALL CAINE.

    "Brief and vigorous, written throughout with spirit and great
    literary skill."--_Scotsman_.


LIFE OF DICKENS. By FRANK T. MARZIALS.

    "Notwithstanding the mass of matter that has been printed
    relating to Dickens and his works ... we should, until we came
    across this volume, have been at a loss to recommend any
    popular life of England's most popular novelist as being
    really satisfactory. The difficulty is removed by Mr.
    Marzials's little book."--_Athenæum_.


LIFE OF DANTE GABRIEL ROSSETTI. By J. KNIGHT.

    "Mr. Knight's picture of the great poet and painter is the
    fullest and best yet presented to the public."--_The Graphic_.


LIFE OF SAMUEL JOHNSON. By COLONEL F. GRANT.

    "Colonel Grant has performed his task with diligence, sound
    judgment, good taste, and accuracy."--_Illustrated London
    News_.


LIFE OF DARWIN. By G. T. BETTANY.

    "Mr. G. T. Bettany's _Life of Darwin_ is a sound and
    conscientious work."--_Saturday Review_.


LIFE OF CHARLOTTE BRONTË. By A. BIRRELL.

    "Those who know much of Charlotte Brontë will learn more, and
    those who know nothing about her will find all that is best
    worth learning in Mr. Birrell's pleasant book."--_St. James'
    Gazette_.


LIFE OF THOMAS CARLYLE. By R. GARNETT, LL.D.

    "This is an admirable book. Nothing could be more felicitous
    and fairer than the way in which he takes us through Carlyle's
    life and works."--_Pall Mall Gazette_.


LIFE OF ADAM SMITH. By R. B. HALDANE, M.P.

    "Written with a perspicuity seldom exemplified when dealing
    with economic science."--_Scotsman_.


LIFE OF KEATS. By W. M. ROSSETTI.

    "Valuable for the ample information which it
    contains."--_Cambridge Independent_.


LIFE OF SHELLEY. By WILLIAM SHARP.

    "The criticisms ... entitle this capital monograph to be
    ranked with the best biographies of Shelley."--_Westminster
    Review_.


LIFE OF SMOLLETT. By DAVID HANNAY.

    "A capable record of a writer who still remains one of the
    great masters of the English novel."--_Saturday Review_.


LIFE OF GOLDSMITH. By AUSTIN DOBSON.

    "The story of his literary and social life in London, with all
    its humorous and pathetic vicissitudes, is here retold, as
    none could tell it better."--_Daily News_.


LIFE OF SCOTT. By PROFESSOR YONGE.

    "This is a most enjoyable book."--_Aberdeen Free Press_.


LIFE OF BURNS. By PROFESSOR BLACKIE.

    "The editor certainly made a hit when he persuaded Blackie to
    write about Burns."--_Pall Mall Gazette_.


LIFE OF VICTOR HUGO. By FRANK T. MARZIALS.

    "Mr. Marzials's volume presents to us, in a more handy form
    than any English or even French handbook gives, the summary of
    what is known about the life of the great poet."--_Saturday
    Review_.


LIFE OF EMERSON. By RICHARD GARNETT, LL.D.

    "No record of Emerson's life could be more
    desirable."--_Saturday Review_.


LIFE OF GOETHE. By JAMES SIME.

    "Mr. James Sime's competence as a biographer of Goethe is
    beyond question."--_Manchester Guardian_.


LIFE OF CONGREVE. By EDMUND GOSSE.

    "Mr. Gosse has written an admirable biography."--_Academy_.


LIFE OF BUNYAN. By CANON VENABLES.

    "A most intelligent, appreciative, and valuable
    memoir."--_Scotsman_.


LIFE OF CRABBE. By T. E. KEBBEL.

    "No English poet since Shakespeare has observed certain
    aspects of nature and of human life more
    closely."--_Athenæum_.


LIFE OF HEINE. By WILLIAM SHARP.

    "An admirable monograph ... more fully written up to the level
    of recent knowledge and criticism than any other English
    work."--_Scotsman_.


LIFE OF MILL. By W. L. COURTNEY.

    "A most sympathetic and discriminating memoir."--_Glasgow
    Herald_.


LIFE OF SCHILLER. By HENRY W. NEVINSON.

    "Presents the poet's life in a neatly rounded
    picture."--_Scotsman_.


LIFE OF CAPTAIN MARRYAT. By DAVID HANNAY.

    "We have nothing but praise for the manner in which Mr. Hannay
    has done justice to him."--_Saturday Review_.


LIFE OF LESSING. By T. W. ROLLESTON.

    "One of the best books of the series."--_Manchester Guardian_.


LIFE OF MILTON. By RICHARD GARNETT, LL.D.

    "Has never been more charmingly or adequately
    told."--_Scottish Leader_.


LIFE OF BALZAC. By FREDERICK WEDMORE.

    "Mr. Wedmore's monograph on the greatest of French writers of
    fiction, whose greatness is to be measured by comparison with
    his successors, is a piece of careful and critical
    composition, neat and nice in style."--_Daily News_.


LIFE OF GEORGE ELIOT. By OSCAR BROWNING.

    "A book of the character of Mr Browning's, to stand midway
    between the bulky work of Mr. Cross and the very slight sketch
    of Miss Blind, was much to be desired, and Mr. Browning has
    done his work with vivacity, and not without
    skill."--_Manchester Guardian_.


LIFE OF JANE AUSTEN. By GOLDWIN SMITH.

    "Mr. Goldwin Smith has added another to the not inconsiderable
    roll of eminent men who have found their delight in Miss
    Austen.... His little book upon her, just published by Walter
    Scott, is certainly a fascinating book to those who already
    know her and love her well; and we have little doubt that it
    will prove also a fascinating book to those who have still to
    make her acquaintance."--_Spectator_.


LIFE OF BROWNING. By WILLIAM SHARP.

    "This little volume is a model of excellent English, and in
    every respect it seems to us what a biography should
    be."--_Public Opinion_.


LIFE OF BYRON. By HON. RODEN NOEL.

    "The Hon. Roden Noel's volume on Byron is decidedly one of the
    most readable in the excellent 'Great Writers'
    series."--_Scottish Leader_.


LIFE OF HAWTHORNE. By MONCURE CONWAY.

    "It is a delightful causerie--pleasant, genial talk about a
    most interesting man. Easy and conversational as the tone is
    throughout, no important fact is omitted, no valueless fact is
    recalled; and it is entirely exempt from platitude and
    conventionality."--_The Speaker_.


LIFE OF SCHOPENHAUER. By PROFESSOR WALLACE.

    "We can speak very highly of this little book of Mr.
    Wallace's. It is, perhaps, excessively lenient in dealing with
    the man, and it cannot be said to be at all ferociously
    critical in dealing with the philosophy."--_Saturday Review_.


LIFE OF SHERIDAN. By LLOYD SANDERS.

    "To say that Mr. Lloyd Sanders, in this little volume, has
    produced the best existing memoir of Sheridan, is really to
    award much fainter praise than the work
    deserves."--_Manchester Examiner_.


LIFE OF THACKERAY. By HERMAN MERIVALE and P. T. MARZIALS.

    "The monograph just published is well worth reading.... and
    the book, with its excellent bibliography, is one which
    neither the student nor the general reader can well afford to
    miss."--_Pall Mall Gazette_.


LIFE OF CERVANTES. By H. E. WATTS.

    "We can commend this book as a worthy addition to the useful
    series to which it belongs."--_London Daily Chronicle_.


LIFE OF VOLTAIRE. By FRANCIS ESPINASSE.

    George Saintsbury, in The _Illustrated London News_,
    says:--"In this little volume the wayfaring man who has no
    time to devour libraries will find most things that it
    concerns him to know about Voltaire's actual life and work put
    very clearly, sufficiently, and accurately for the most part."


LIFE OF LEIGH HUNT. By COSMO MONKHOUSE.


        LIBRARY EDITION OF "GREAT WRITERS," Demy 8vo, 2s. 6d.

           London: WALTER SCOTT, LIMITED, 24 Warwick Lane.



                      SELECTED THREE-VOL. SETS

                       IN NEW BROCADE BINDING.

6s. per Set, in Shell Case to match. May also be had bound in Roan,
with Roan Case to match, 9s. per Set.


_THE FOLLOWING SETS CAN BE OBTAINED--_

POEMS OF

  WORDSWORTH
  KEATS
  SHELLEY

  LONGFELLOW
  WHITTIER
  EMERSON

  HOGG
  ALLAN RAMSAY
  SCOTTISH MINOR POETS

  SHAKESPEARE
  BEN JONSON
  MARLOWE

  SONNETS OF THIS CENTURY
  SONNETS OF EUROPE
  AMERICAN SONNETS

  HEINE
  GOETHE
  HUGO

  COLERIDGE
  SOUTHEY
  COWPER

  BORDER BALLADS
  JACOBITE SONGS
  OSSIAN

  CAVALIER POETS
  LOVE LYRICS
  HERRICK

  CHRISTIAN YEAR
  IMITATION of CHRIST
  HERBERT

  AMERICAN HUMOROUS VERSE
  ENGLISH HUMOROUS VERSE
  BALLADES AND RONDEAUS

  EARLY ENGLISH POETRY
  CHAUCER
  SPENSER

  HORACE
  GREEK ANTHOLOGY
  LANDOR

  GOLDSMITH
  MOORE
  IRISH MINSTRELSY

  WOMEN POETS
  CHILDREN OF POETS
  SEA MUSIC

  PRAED
  HUNT AND HOOD
  DOBELL

  MEREDITH
  MARSTON
  LOVE LETTERS

  BURNS'S SONGS
  BURNS'S POEMS
  LIFE OF BURNS, BY BLACKIE

  SCOTT'S MARMION, &c.
  SCOTT'S LADY OF LAKE, &c.
  LIFE OF SCOTT, BY PROF. YONGE

    London: WALTER SCOTT, LTD., 24 Warwick Lane, Paternoster Row.



                      SELECTED THREE-VOL. SETS

                       IN NEW BROCADE BINDING.

                _6s. PER SET, IN SHELL CASE TO MATCH._

        Also Bound in Roan, in Shell Case, Price 9s. per Set.


_O. W. Holmes Set--_

  Autocrat of the Breakfast-Table.
  Professor at the Breakfast-Table.
  Poet at the Breakfast-Table.


_Landor Set--_

  Lando's Imaginary Conversations.
  Pentameron.
  Pericles and Aspasia.


_Three English Essayists--_

  Essays of Elia.
  Essays of Leigh Hunt.
  Essays of William Hazlitt.


_Three Classical Moralists--_

  Meditations of Marcus Aurelius.
  Teaching of Epictetus.
  Morals of Seneca.


_Walden Set--_

  Thoreau's Walden.
  Thoreau's Week.
  Thoreau's Selections.


_Famous Letters Set--_

  Letters of Byron.
  Letters of Chesterfield.
  Letters of Burns.


_Lowell Set--_

  My Study Windows.
  The English Poets.
  The Biglow Papers.


_Heine Set--_

  Life of Heine.
  Heine's Prose.
  Heine's Travel-Sketches.


_Three Essayists--_

  Essays of Mazzini.
  Essays of Sainte-Beuve.
  Essays of Montaigne.


_Schiller Set--_

  Life of Schiller.
  Maid of Orleans.
  William Tell.


_Carlyle Set--_

  Life of Carlyle.
  Sartor Resartus.
  Carlyle's German Essays.

    London: WALTER SCOTT, LTD., 24 Warwick Lane, Paternoster Row.



     Crown 8vo, about 350 pp. each, Cloth Cover, 2s. 6d. per vol.

                 Half-polished Morocco, gilt top, 5s.

                        COUNT TOLSTOÏ'S WORKS.


The following Volumes are already issued--

  A RUSSIAN PROPRIETOR.
  THE COSSACKS.
  IVAN ILYITCH, AND OTHER STORIES.
  MY RELIGION.
  LIFE.
  MY CONFESSION.
  CHILDHOOD, BOYHOOD, YOUTH.
  THE PHYSIOLOGY OF WAR.
  ANNA KARÉNINA 3s. 6d.
  WHAT TO DO?
  WAR AND PEACE. (4 VOLS.)
  THE LONG EXILE, AND OTHER STORIES FOR CHILDREN.
  SEVASTOPOL.
  THE KREUTZER SONATA, AND FAMILY HAPPINESS.


Uniform with the above.

  IMPRESSIONS OF RUSSIA. By DR. GEORG BRANDES.

           London: WALTER SCOTT, LIMITED, 24 Warwick Lane.



                        IBSEN'S PROSE DRAMAS.

                      EDITED BY WILLIAM ARCHER.

       Complete in Five Vols. Crown 8vo, Cloth, Price 3/6 each.

  Set of Five Vols., in Case, 17/6; in Half Morocco, in Case, 32/6.

    "_We seem at last to be shown men and women as they are; and
    at first it is more than we can endure.... All Ibsen's
    characters speak and act as if they were hypnotised, and under
    their creators imperious demand to reveal themselves. There
    never was such a mirror held up to nature before: it is too
    terrible.... Yet we must return to Ibsen, with his remorseless
    surgery, his remorseless electric-light, until we, too, have
    grown strong and learned to face the naked--if necessary, the
    flayed and bleeding--reality._"--SPEAKER (London).

Vol. I. "A DOLL'S HOUSE," "THE LEAGUE OF YOUTH," and "THE PILLARS OF
SOCIETY." With Portrait of the Author, and Biographical Introduction
by WILLIAM ARCHER.

Vol. II. "GHOSTS," "AN ENEMY OF THE PEOPLE," and "THE WILD DUCK." With
an Introductory Note.

Vol. III. "LADY INGER OF ÖSTRÅT," "THE VIKINGS AT HELGELAND," "THE
PRETENDERS." With an Introductory Note and Portrait of Ibsen.

Vol. IV. "EMPEROR AND GALILEAN." With an Introductory Note by WILLIAM
ARCHER.

Vol. V. "ROSMERSHOLM," "THE LADY FROM THE SEA," "HEDDA GABLER."
Translated by WILLIAM ARCHER. With an Introductory Note.


The sequence of the plays _in each volume_ is chronological; the
complete set of volumes comprising the dramas thus presents them in
chronological order.

"The art of prose translation does not perhaps enjoy a very high
literary status in England, but we have no hesitation in numbering the
present version of Ibsen, so far as it has gone (Vols. I. and II.),
among the very best achievements, in that kind, of our
generation."--_Academy_.

"We have seldom, if ever, met with a translation so absolutely
idiomatic."--_Glasgow Herald_.

           LONDON: WALTER SCOTT, LIMITED, 24 WARWICK LANE.



                        THE CANTERBURY POETS.

           EDITED BY WILLIAM SHARP. IN 1/- MONTHLY VOLUMES.

                    Cloth, Red Edges           1s.
                    Cloth, Uncut Edges         1s.
                    Red Roan, Gilt Edges,      2s. 6d.
                    Pad. Morocco, Gilt Edges,  5s.

  THE CHRISTIAN YEAR                 By the Rev. John Keble.
  COLERIDGE                          Edited by Joseph Skipsey.
  LONGFELLOW                         Edited by Eva Hope.
  CAMPBELL                           Edited by John Hogben.
  SHELLEY                            Edited by Joseph Skipsey.
  WORDSWORTH                         Edited by A. J. Symington.
  BLAKE                              Edited by Joseph Skipsey.
  WHITTIER                           Edited by Eva Hope.
  POE                                Edited by Joseph Skipsey.
  CHATTERTON                         Edited by John Richmond.
  BURNS. Poems                       Edited by Joseph Skipsey.
  BURNS. Songs                       Edited by Joseph Skipsey.
  MARLOWE                            Edited by Percy E. Pinkerton.
  KEATS                              Edited by John Hogben.
  HERBERT                            Edited by Ernest Rhys.
  HUGO                               Translated by Dean Carrington.
  COWPER                             Edited by Eva Hope.
  SHAKESPEARE'S POEMS, Etc.          Edited by William Sharp.
  EMERSON                            Edited by Walter Lewin.
  SONNETS OF THIS CENTURY            Edited by William Sharp.
  WHITMAN                            Edited by Ernest Rhys.
  SCOTT. Marmion, etc.               Edited by William Sharp.
  SCOTT. Lady of the Lake, etc.      Edited by William Sharp.
  PRAED                              Edited by Frederick Cooper.
  HOGG                               Edited by his Daughter, Mrs. Garden.
  GOLDSMITH                          Edited by William Tirebuck.
  LOVE LETTERS, Etc.                 By Eric Mackay.
  SPENSER                            Edited by Hon. Roden Noel.
  CHILDREN OF THE POETS              Edited by Eric S. Robertson.
  JONSON                             Edited by J. Addington Symonda.
  BYRON (2 Vols.)                    Edited by Mathilde Blind.
  THE SONNETS OF EUROPE              Edited by S. Waddington.
  RAMSAY                             Edited by J. Logie Robertson.
  DOBELL                             Edited by Mrs. Dobell.
  DAYS OF THE YEAR                   With Introduction by William Sharp.
  POPE                               Edited by John Hogben.
  HEINE                              Edited by Mrs. Kroeker.
  BEAUMONT AND FLETCHER              Edited by John S. Fletcher.
  BOWLES, LAMB, &c.                  Edited by William Tirebuck.
  EARLY ENGLISH POETRY               Edited by H. Macaulay Fitzgibbon.
  SEA MUSIC                          Edited by Mrs Sharp.
  HERRICK                            Edited by Ernest Rhys.
  BALLADES AND RONDEAUS              Edited by J. Gleeson White.
  IRISH MINSTRELSY                   Edited by H. Halliday Sparling.
  MILTON'S PARADISE LOST             Edited by J. Bradshaw, M.A., LL.D.
  JACOBITE BALLADS                   Edited by G. S. Macquoid.
  AUSTRALIAN BALLADS                 Edited by D. B. W. Sladen, B.A.
  MOORE                              Edited by John Dorrian.
  BORDER BALLADS                     Edited by Graham R. Tomson.
  SONG-TIDE                          By Philip Bourke Marston.
  ODES OF HORACE                     Translations by Sir Stephen de Vere, Bt.
  OSSIAN                             Edited by George Eyre-Todd.
  ELFIN MUSIC                        Edited by Arthur Edward Waite.
  SOUTHEY                            Edited by Sidney R. Thompson.
  CHAUCER                            Edited by Frederick Noël Paton.
  POEMS OF WILD LIFE                 Edited by Charles G. D. Roberts, M.A.
  PARADISE REGAINED                  Edited by J. Bradshaw, M.A., LL.D.
  CRABBE                             Edited by E. Lamplough.
  DORA GREENWELL                     Edited by William Dorling.
  FAUST                              Edited by Elizabeth Craigmyle.
  AMERICAN SONNETS                   Edited by William Sharp.
  LANDOR'S POEMS                     Edited by Ernest Radford.
  GREEK ANTHOLOGY                    Edited by Graham R. Tomson.
  HUNT AND HOOD                      Edited by J. Harwood Panting.
  HUMOROUS POEMS                     Edited by Ralph H. Caine.
  LYTTON'S PLAYS                     Edited by R. Farquharson Sharp.
  GREAT ODES                         Edited by William Sharp.
  MEREDITH'S POEMS                   Edited by M. Betham-Edwards.
  PAINTER-POETS                      Edited by Kineton Parkes.
  WOMEN POETS                        Edited by Mrs. Sharp.
  LOVE LYRICS                        Edited by Percy Hulburd.
  AMERICAN HUMOROUS VERSE            Edited by James Barr.
  MINOR SCOTCH LYRICS                Edited by Sir George Douglas.
  CAVALIER LYRISTS                   Edited by Will H. Dircks.
  GERMAN BALLADS                     Edited by Elizabeth Craigmyle.
  SONGS OF BERANGER                  Translated by William Toynbee.
  HON. RODEN NOEL'S POEMS. With an Introduction by R. Buchanan.
  SONGS OF FREEDOM. Selected, with an Introduction, by H. S. Salt.



                     NEW EDITION IN NEW BINDING.

    In the new edition there are added about forty reproductions
    in fac-simile of autographs of distinguished singers and
    instrumentalists, including Sarasate, Joachim, Sir Charles
    Hallé, Paderewsky, Stavenhagen, Henachel, Trebelli, Miss
    Macintyre, Jean Gérardy, etc.

_Quarto, cloth elegant, gilt edges, emblematic design on cover, 6s.
May also be had in a variety of Fancy Bindings._


                       THE MUSIC OF THE POETS:

                     A MUSICIANS' BIRTHDAY BOOK.

EDITED BY ELEONORE D'ESTERRE KEELING.

This is a unique Birthday Book. Against each date are given the names
of musicians whose birthday it is, together with a verse-quotation
appropriate to the character of their different compositions or
performances. A special feature of the book consists in the
reproduction in fac-simile of autographs, and autographic music, of
living composers. Three sonnets by Mr. Theodore Watts, on the "Fausts"
of Berlioz, Schumann, and Gounod, have been written specially for this
volume. It is illustrated with designs of various musical instruments,
etc.; autographs of Rubenstein, Dvorâk, Greig, Mackenzie, Villiers
Stanford, etc., etc.

             London: WALTER SCOTT, LTD., 24 Warwick Lane



Transcriber's Note: The list of books that comprise _The Contemporary
Science Series_ has been moved from the front of the book to after the
index.





*** End of this LibraryBlog Digital Book "The Industries of Animals" ***

Copyright 2023 LibraryBlog. All rights reserved.



Home