By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | HTML | PDF ]

Look for this book on Amazon

We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: Bangerter's Inventions - His Marvelous Time Clock
Author: Everett Lincoln King, - To be updated
Language: English
As this book started as an ASCII text book there are no pictures available.
Copyright Status: Not copyrighted in the United States. If you live elsewhere check the laws of your country before downloading this ebook. See comments about copyright issues at end of book.

*** Start of this Doctrine Publishing Corporation Digital Book "Bangerter's Inventions - His Marvelous Time Clock" ***

This book is indexed by ISYS Web Indexing system to allow the reader find any word or number within the document.



                              Time Clock

                  [Illustration: FRIEDRICH BANGERTER


                          COPYRIGHT, 1911, BY
                         FRIEDRICH BANGERTER,
                           50 CHURCH STREET,
                               NEW YORK.


At the World Universal Expositions in Paris, 1900, and in Belgium, 1905,
              for Bangerter’s Many Marvelous Inventions.]


                              TIME CLOCK

                            EDITED BY KING



DREAM OF AGES REALIZED                                                 9

Perpetual Force                                                        9

A Practical Invention                                                 10

A Truly Wonderful Invention                                           10

What Does Perpetual Motion Mean?                                      13

Napoleon’s Fatal Error                                                13

Flying Machines Everywhere                                            14

America! Land of Opportunities                                        17

Stimulus to Inventive Genius                                          17

Perpetual Motion, the Study of Ages                                   18

When Nature Is Ready                                                  18

Other Natural Forces                                                  21

Variation of Temperature                                              21

Nature’s Many Phenomena                                               22

Nature’s Great Planetary Clockwork                                    22

Heat the Source of All Power                                          25

Heat--Expansion and Contraction                                       25

SPECIFICATION                                                         29


BANGERTER’S FIRE DETECTOR AND FIRE ALARM                              77

BANGERTER’S FIRE ALARM AND WATER SPRINKLER                            79

BRIEF BIOGRAPHY OF FRIEDRICH BANGERTER                                81

BANGERTER’S AUTOMATIC WATCH CHAIN MACHINE                             83

BANGERTER’S WRITING AND TALKING DOLL                                  87

BANGERTER’S AUTOMATIC JEWELER                                         91

BANGERTER’S AIRSHIP                                                   93

BANGERTER’S POWDERLESS GUN                                            95


The Twentieth Century is the century of successful accomplishment. The
zenith of human achievements appears to have been reached. Yet every day
brings its new surprises. There seems to be no limit to the output of
human genius and ingenuity. We have now the aeroplane skimming through
the air with bird-like ease and rapidity; the wireless telegraph and
wireless telephone; the leviathan steamship “Olympic,” which annihilates
distance between Europe and America and a sight of which would make our
ancestors gasp in amazement, as well as other modern marvels.

And these pages tell about one of the greatest inventions of all time--a
discovery of to-day that will add a crowning glory to successful
Twentieth Century endeavor.

Bangerter’s Perpetulium Time Clock is most concrete, tangible and
eloquent evidence that PERPETUAL FORCE--the greatest of all mechanical
problems--is solved at last.


Bangerter’s latest and highly successful creation sounds like a fairy
story realized. The wizardry of true genius is thus marvellously
expressed. Volumes have been written by prominent authors and leading
scientific men illustrating the wasted efforts and picturing the despair
of many inventors in all ages who failed in their persistent efforts to
solve the problem of perpetual force--producing motion. Centuries of
unwearying studies and activities only met with failure. It was called
an impossible task, a phantom, a phantasy, a freak of the imagination
that never could be converted to a practical issue.

But the failure of those who attempted and failed in the past could not
keep back the energy and force of progress.

To-day the problem of perpetual force is really solved. It remained for
a young Swiss inventor--Mr. Friedrich Bangerter--to successfully
accomplish the heretofore impossible.

Bangerter’s Perpetual Time Clock is perfect in theory and practice. It
is operated by a principle that cannot fail. A glance at the machine
will convince the most skeptical.

From time to time we read of wonderful inventions that never get beyond
the stage where they are talked about. They are impractical and
impossible, because their inventors are fakirs, fanatics or
dreamers--inventors lacking the character, knowledge and brains to
understand whether or not their ideas are of any realizable value.


This is emphatically not the case with Mr. Bangerter. His is a most
practical mind. His record as an inventor is one of successes. He has
had twenty years’ experience as a practical and technical mechanical
engineer, with a great number of patents and inventions in operation all
over the world. His marvelous automatic machines--taking wrought casting
and bars of metal and automatically making gears, chains, spindles,
screws, pinions, etc., of the highest precision--is a striking example
of his great ability.

At two World’s Expositions--in Paris, 1900, and Belgium, 1905--the Jury
of International Selection of Mechanical Experts awarded him Silver and
Gold Medals and Diplomas for his inventions of the most marvelous


Bangerter’s Perpetual Time Clock is a truly wonderful mechanism and an
exact, reliable timepiece. It will do the work for which it is intended,
as long as the mechanical parts hold together--as long as the shafts and
spindles run in their bearings.

In other words, this clock will run for


generations--yes, from 100 to 500 years--without winding. During this
unbelievably long period this clock will run, show the exact time,
strike the hours and play the marvelous Westminster melodies without the
slightest expenditure of time or effort in winding up with springs or

There is employed no electricity, chemicals, secret preparations or
fuel, to produce the power and energy to run Bangerter’s Perpetual Force
Clock. Yet there is a natural law behind it all--the secret of its
practical application was discovered and successfully applied by the
young Swiss inventor.


To avoid loss of time and to obviate dissension and discussion between
readers and critics herewith is given the technical understanding of the
title “PERPETUAL MOTION.” It is taken from “The International
Cyclopedia,” Vol. II, Page 522, and reads as follows:

“Perpetual Motion means an engine which, without any supply of power
from without, can not only maintain its own motion forever, or as long
as its material lasts, but can also be applied to drive machinery, and
therefore to do external work. In other words, it means a device for
creating power energy without corresponding expenditure. This is now
known to be absolutely impossible, no matter what physical forces be

The Bangerter Clock is eloquent evidence that the theory just quoted
(and heretofore generally accepted as correct) is not, in fact, correct.
It will be necessary, in the face of this new discovery, to write a new
definition of Perpetual Motion.

Impossibilities of yesterday are the stern realities of to-day. We have
now arrived at such a stage of advancement as to be surprised at no
discovery or invention, no matter how improbable or wonderful.


Napoleon was advised not to listen to Fulton’s plan of the steamboat--a
certain cause of his downfall, for had he accepted Fulton’s radical and
previously unheard of ideas he would presently have a fleet of
steamships. He would thus be Emperor of the Ocean, for with his fleet
of steamships he would surely have conquered Britain’s old-fashioned
sailing navy.

Ten years ago all the scientific men to whom Bangerter presented his
plans for an airship, gravely shook their heads. They said:--

“Your principle is right--it shows the most practical device we have yet
seen, and if there were such proposition as a ‘heavier-than-air’
possibility you would have the best chance of success.”

Very well, the “heavier-than-air” possibility has become a certainty.
To-day scientific men see the weight of a man’s body (increased by a
heavy framework and many mechanical contrivances) soar lightly and
majestically between the blue sky and the earth below. The dream of the
pitied and sneered at inventor of a decade ago is exemplified to-day all
over the civilized world!

All this the scientists a few years ago did not see.

The new born force--insignificant in size and appearance, but giant-like
in actual force--now known as the gasolene engine, did not then make an
appearance. But now hundreds of machines are flying all over the
world--propelled by the pygmy gasolene engine.

In other words, as the force of a man is mechanically figured to 1-7 of
one H. P., some gasolene engines of the weight and size of a man develop
700 times more power.

This enormous force may soon bring about a revolution in warfare by
displacing powder as a force to expel bullets from guns.

Tests made last year with a small model gun have demonstrated great
possibilities by shooting small 3-8 inch round ball-bearing at so
terrific a speed that they pierced a 1½-inch pine target at 60 feet
distance, and in such enormous quantities that inside of a few seconds
five targets were riddled to atoms.


Aeroplanes are to-day counted by hundreds. Some carry ten or more men at
a time, and keeping it up for hours with a speed of nearly 100 miles per

How great is the number of the wonderful time-saving, effort-saving and
distance-annihilating inventions of the past fifty years!


How wonderful is the transformation! How sudden and how amazingly great
is the progress that a single generation produces in this remarkable
century! Great men have lived before us. Intellectual giants were our
fathers and grandfathers. But the time had not come for the infinite
hand to touch the mainspring that would set all these fountains of
activity to pouring out their rich treasures of knowledge and invention.
But as soon as the time is reached, how supremely marvelous are the
undreamed-of achievements!


The development of the greatest of all countries--the United States of
America--is a most prolific source and cause of inventions. After the
Civil War had proven that equality and freedom were not mere figures of
speech, but that they were real, substantial blessings to be enjoyed by
all American citizens, a great stimulus to inventive genius was given.
The brains responded to the call for improvement and development.

The winnings from mining, the rewards from manufacture, the profits to
be derived in the thousand and one forms of commerce and the handsome
payments to be derived from agriculture, lumbering, cattle raising,
fruit culture, etc., were the strongest possible incentives to the
exercise of brains and inventive ingenuity.

Manufacture and commerce were fostered and developed by rapid
transportation. Railroads and steamships soon ran wherever needed.
Prosperity and happiness were the natural results of this wholesale
national activity.

The machinery of warfare, such as marine fortifications, great guns and
war vessels, was installed and maintained at an enormous expense.

It is not too much to say that America’s prosperity has aroused the
greatest possible interest in European countries. They have made the
most strenuous exertions in order to compete in the world’s trade marts.


A long period of universal peace has made it possible to keep up
inventive investigation and experimenting with marvelously fruitful

Up to the present time more than ONE MILLION PATENTS have been issued
for the United States alone. Truly a marvelous record!


In every age inventors have dreamed of that problem of
problems--Perpetual Motion. It is a problem that has exhausted the mind,
purse and patience of thousands of inventors. Almost every one has heard
of some one else’s interest in this great subject. But history shows
that the study of perpetual motion has been tinctured with charlatanism.

Fakirs have from time to time shown contrivances which seemed to solve
the problem, but were delusions and humbugs pure and simple, as they
were gotten up to delude the public and deceive investors. The notorious
Keely Motor was but one case of many.

Notwithstanding the enormous amount of unsuccessful effort and study in
an endeavor to solve Perpetual Motion there are yet many enthusiastic
students earnestly laboring in the field.

There is one great Perpetual Motion. It is Nature’s own handiwork, and
the only successful human attempt is exemplified in Bangerter’s
marvelously combined clockwork in which the silent forces of Nature are
harnessed to carry out immutable laws. Similar attempts had already been
undertaken by scientific men, but without success, until Friedrich
Bangerter touched the true keynote.


The time and conditions were ripe and ready. So was the man! It seems to
be one of the great laws of Mother Nature to withhold her most precious
secrets until she sees fit to divulge them, and then she brings in happy
juxtaposition “The Time, The Place and The Man.”

This has proven true with most of the world’s most important inventions
and discoveries. Nature in her own good time gives up the priceless
secret--that little something that spells success and that was so long
sought after until the golden moment it was revealed.


Had Lilienthal to-day’s gasolene engine--an engine developing 100 H. P.
to the weight of only 200 pounds, as the rotary Gnome Engine, he would
have been highly successful in his efforts to fly.

The development of the automobile meant the development of the gasolene
engine, which became so reduced in weight and so powerful in action that
all that was necessary was to attach it to some planes, revolve
propellers, and, presto! off went the flying machine with ease and

As time goes on and as the needs of men multiply other great inventions
will be perfected in obedience to the universal Law of Creation.

Every student of Perpetual Motion, yes, every intelligent observer of
the world’s progress, will be intensely interested in Bangerter’s
wonderful clock.


There are many other natural sources that could be called in to develop
Perpetual Force for clocks, machinery, etc., just as waterfalls,
rainfalls, the blowing of winds, etc., but all these could not be
considered and compared with Bangerter’s inventions. They are at present
impractical on account of the extensive and expensive outside
connections required.

Streams are sometimes found only at great distances, and the entire
system of turbines, dynamos, electrical conducting wires and motors are
much too complicated to operate a simple system of your own.


We cannot depend upon a wind or a rainfall, but we can always depend
upon a variation of temperature day after day and year after year. Some
days there may be a variation of only one or two degrees, other days
from 15 to 25 degrees, but no matter what the variation may be,
Bangerter’s machine collects the daily results and stores their

These results are produced day after day by the phenomena of expansion
and contraction of material, and is so combined as to always have
sufficient force stored to always keep the clock running.

In other words, Bangerter’s Perpetulium Time Clock will always run
without winding.

Even if there should be no variation of temperature for a period of
several days or weeks--which will never happen as long as the world
exists--sufficient force would be stored from past variations to keep it
running for a considerable period of time.

This clock will give perfect time in any room, in any house or building
and in any exterior or interior location. It is not affected by time or
locality. The mysterious forces of Nature operate it equally as well in
the jungles of Africa as in a New York or London mansion.

It is the one clock for all time, all localities and all conditions.


How marvelous and manifold are the workings of Nature! Her phenomena and
secrets are ever subjects of intense study by the world’s greatest

Nature’s manifestations are mild, majestic, mighty, cold, calm,
bounteous, benign, beneficent, beautiful, terrific, tender,
temperate--in fact, every adjective in the English language could be
employed to describe her full gamut of moods.

Some of us have heard the furious roaring of a blizzard and observed the
enormous force and terrific speed of the tempest, leaving behind death
and destruction in its wake. Many towns, large and small, have been
swept out of existence by blizzards, tornadoes and cyclones.

And the silent, fructifying forces of Nature--how grand and beautiful
beyond expression do they accomplish their work! “Great oaks from little
acorns grow,” and from little, apparently insignificant seeds spring
monarch trees of the forest, their crowns majestically waving three and
four hundred feet in the air. The mysteries of life have yet been
revealed to no man, and the artist has not lived who has been able to
paint the picture, to catch the true color effects, that only Mother
Nature can depict on a world wide canvas.


Every atom of force in the universe performs a purpose and function.
Nature never makes a mistake.


Each of the myriad forces under her control has the most logical cause
for existence, and all are under the guidance of the most perfect
system. The entire planetary system may be termed the Clockwork of the
Universe--the great Natural Clock, absolutely authoritative and perfect
in operation and giving us days, nights, seasons and variations of
temperature with a regularity that never fails.

These variations of temperature really mean the source of all life and
vegetation. In order that we human beings live the globe must revolve on
its axis, and as the year grows on apace we receive the heat rays from
another planet--the Sun--in different angles and positions and in the
variations of temperature ranging from extreme heat to extreme cold.


From heat comes all power. When the latent forces of Nature were first
set aflame by primitive man he touched the spring of civilization. Since
that time fire has been working for human progress. It is one of the
most powerful agents in the development of civilization.

Our rude ancestors long ago discovered its great utility, and they
cudgeled their brains to aid the flame of fire and obtain a still
fiercer heat. The bellows was the result--the wind pointed the way to
this invention.

Then followed by slow degrees the acquirement of further knowledge
concerning fire and its uses. Our forefathers learned the processes of
melting and smelting--later were established various metallurgical

The path was thus prepared for Tubal Cain and other artificers in
metals. Man eventually became exceedingly skilled in applying heat
forces in his many requirements in articles of brass, tin, zinc, steel,


From an article by J. Gordon Ogden, Ph.D., in “Popular Mechanics,”
September, 1910, we quote:

“Expansion is one of the most remarkable of the phenomena to be reckoned
with in the natural world. Practically every bit of matter from the
Great Brooklyn Bridge to the tiny hairspring in one’s watch is under its
imperial domination. It is a tremendous force, and the world of
mechanics has to treat it with the deference and respect due to its
gigantic power. Unlike gravity, and other forces of nature, it is
whimsical and takes sudden fits and starts, now acting one way, now
another. It affects different bodies in different ways, and seems to be
at variance with the time-honored forces whose action can be predicted
under all circumstances. At least that is what it apparently does. In
our meagre knowledge of the great underlying laws that control the
universe it is possibly unwise to speak so unkindly of expansion, as
though it were a spoiled child in need of correction; its behavior,
however, is so contrary to what one might expect that one is at a loss
to say anything else.

“The walls of a building are sometimes rectified by the enormous force
exerted by the contraction of iron rods. Bars of iron are placed so as
to join the two walls where the bulging is most pronounced. These bars
terminate in screws furnished with nuts. The whole of their length is
heated and the nuts tightened. On cooling the bars will contract with
practically irresistible force, causing the walls to straighten up. This
operation is repeated until the rectification is completed. Boiler
plates are fastened with red-hot rivets. The contraction of the rivets
incident upon their cooling draws the plates tightly together, forming a
steam-proof joint.”

“Tyndall, in his work on heat, gives an excellent illustration of the
force of expansion and contraction. ‘The choir of Bristol Cathedral was
covered with sheet lead, the length of the covering being 60 feet and
its depth 19 feet 5 inches. It had been laid in the year 1851, and two
years afterward it had moved bodily down for a distance of 18 inches.
The descent had been continually going on from the time the lead had
been laid down, and an attempt to stop it by driving nails into the
rafters had failed, for the force with which the lead had descended was
sufficient to draw out the nails. The roof was not a steep one, and the
lead could have rested on it forever without sliding down by gravity.
What, then, was the cause of the descent? The lead was exposed to the
varying temperatures of day and night. During the day the heat imparted
to it caused it to expand. Had it lain upon a horizontal surface, it
would have expanded all around; but as it lay upon an inclined surface
it expanded more freely downward than upward. When, on the contrary, the
lead contracted at night its upper edge was drawn more easily downward
than its lower edge upward. Its motion was, therefore, exactly like that
of a common earthworm; it pushed its lower edge forward during the day
and drew its upper edge after it during the night, and thus by degrees
it crawled through a space of 18 inches in two years.’

“Mention has been made in a preceding article of the effect of unequal
expansion upon two different metals that have been bolted together. It
is by this principle that the action of the ordinary thermostat, so
familiar now as a controller and regulator of the temperature of high
buildings, is explained--a rod made up of two different metals whose
rates of expansion are different. When the temperature of the room in
which the thermostat is placed becomes too high the rod curls toward the
metal point S and touches it, completing an electrical contact which
causes a motor to shut off the draft. When the temperature of the room
falls below a certain point the rod curls in the opposite direction
toward the metal point T. This causes a motor to open the draft and thus
furnish a more abundant supply of hot air.

“Everybody in these days of cheap and reliable timepieces carries a
watch. And yet there are very few who appreciate the methods and devices
by means of which the troublesome expansion and contraction of metals
are corrected, in order that a watch may keep correct time. The balance
wheel of a watch corresponds to the pendulum of a clock, and any
variation in its dimensions will cause it to move faster or slower, as
the case may be. The hairspring is really a long strip of metal which
becomes weakened in its effect when expanded by an increase in
temperature and has its power augmented when contraction takes place.

“To correct both of these conditions the rim of the balance wheel is
made up of two different metals, the outer part brass, the inner part
iron. When the hairspring becomes weaker by expansion the brass of the
balance wheel also expands; but as it expands more than the iron to
which it is bonded, it curls in toward the center of the wheel, making
practically a wheel of smaller diameter, and causing the same effect as
is produced when a clock pendulum is shortened. Exactly the opposite
conditions obtain when the timepiece is exposed to extreme cold and the
balance wheel has its diameter increased, thus causing a slowing up to
counteract the increased strain produced by the contraction of the
hairspring. The same principle is applied in the construction of
first-class clocks. Any uncorrected variation in the length of a
pendulum is fatal to the timekeeping quality of a clock. A gridiron
pendulum made up of alternate rods of steel and brass serves to correct
the result of the expansive force.

“The central steel rod passes through holes in the lower horizontal
framework and supports the bob at the lower end. The steel rods are so
arranged that they will expand downward, while the brass rods expand
upward and the total length of each metal used is exactly sufficient to
counteract each other’s expansion, and the centre of the bob will remain
at a constant distance from the point of suspension.”

Scientific men and engineers are more or less familiar with the
phenomena of expansion. But no inventor produced a system capable of
utilizing this force to run a clock until Bangerter succeeded in
mastering the problem.

Bangerter’s clock is unquestionably a triumph of human ingenuity. It is
a mechanical masterpiece. Herewith follows the complete specification:



Be it known that I, FRIEDRICH BANGERTER, of the City of New York
(Borough of Richmond), County of Richmond and State of New York, have
invented certain new and useful improvements in

                         EXPANSIBLE MATERIALS,

of which the following is a full, clear and exact specification, such as
will enable others skilled in the art to which it appertains to make and
use the same.

This invention relates to apparatus whereby energy may be educed from
expansible materials, due to the expansion and contraction thereof on
changes of temperature, and the said energy either applied direct or
stored and applied for the purpose of operating machines and devices of
various kinds.

I show and describe herein two forms of apparatus for obtaining such
expansion and contraction and the required energy therefrom, and I also
show two forms in which the energy so obtained is accumulated and
stored. In connection therewith, I show the application of my invention
to the running of clocks, but it will be understood that the invention
is not limited in its application to that particular class of machine,
and that it may be applied to any use of which it is susceptible.

It is well known that all metals are capable of some degree of expansion
and contraction, and some metals have this property in greater degree
than others. The amount of expansion for each degree rise in temperature
is quite regular, and is called the co-efficient of expansion. It is
also well known that zinc has this property in greater degree than any
other of the solid metals, its co-efficient of linear expansion being
appreciably higher. For this reason, as well as because of its
relatively low cost, I preferably make use of zinc in the construction
of the expansible parts of my apparatus.

One of the objects of my invention, therefore, is to provide an
expansion device of novel construction and arrangement, which will
generate energy and maintain motion during changes in temperature, to
such an appreciable and useful amount, as to constitute it in fact a
temperature motor.

A further object of my invention is to provide means for accumulating or
storing the energy thus generated.

A further object is to provide means for applying the energy thus
generated and stored.

Other objects, such as compactness, durability and comparatively low
cost of the apparatus, will appear in the following description, in
which reference is had to the accompanying drawings.

In the drawings:--

Fig. 1 is a front elevation, showing the application of my invention to
a clock provided, in this case, with a mainspring as usual;

Fig. 2 is a rear elevation of the same with a part removed;

Fig. 3 is an enlarged perspective detail showing how the strips forming
part of the expansion member or coil are connected up;

Fig. 4 is a sectional view, on lines 5--5 of Fig. 1;

Fig. 5 is an enlarged detail elevation, with parts removed;

Fig. 6 is an enlarged detail cross section of the central portion of the
apparatus, with part broken away;

Fig. 7 is a rear elevation of the same with parts broken away;

Fig. 8 is an enlarged detail of the upper portion of the apparatus shown
in Fig. 4, with parts removed;

Fig. 9 is a perspective detail, partly broken away;

Fig. 10 is an enlarged detail of a portion of the ratchet mechanism
shown in the lower portion of Figs. 6 and 7;

Fig. 11 is an enlarged section of a flexible coupling shown in Fig. 7;

Fig. 12 is an elevation of a modification of the expansion coil;

Fig. 12ª is a perspective view showing how two of such modified
expansion coils may be connected;

[Illustration: _Fig. 1._


Fig. 13 is a front elevation showing my invention applied to another
form of force storage mechanism;

Fig. 14 is a plan view of same, on lines 14--14 of Fig. 13;

Fig. 15 is a rear elevation on lines 15--15 of Fig. 14;

Fig. 16 is a vertical section on lines 16--16 of Fig. 14;

Fig. 17 is an enlarged detail of part of the apparatus shown in the
upper portion of Fig. 16;

Fig. 18 is an enlarged detail of the ball-discharging means shown in the
lower portion of Fig. 16;

Fig. 19 is an enlarged detail of the loading device shown in the
opposite part of the lower portion of Fig. 16; and

Fig. 20 is a plan view on lines 20--20 of Fig. 13.

Referring to the construction illustrated in Fig. 1 to 11, inclusive, B
represents the outer frame of the apparatus.

Mounted within the outer frame B is an inner frame comprising the
uprights C, C¹, which are rigidly secured by cross-bars D¹, D².

The outer frame B, as well as the inner frame uprights C, C¹ are
preferably formed of wood or other material capable of a low degree of

Within the upper and lower ends of the inner frame are anti-friction
knife-bars E, E^¹{1}, the upper one of which, E, has each end within a
vertically disposed slot E² in the uprights C, C¹, within which said
knife-bar may be moved vertically, as hereinafter described.

Each end of the lower knife-bar E¹ lies immovable within a recess in a
plate E³ mounted on each of the uprights C, C¹.

These knife-bars, which are preferably formed of hardened steel, have
oppositely disposed relatively sharp edges E^{5}, which act as bearings
for a series of horizontally disposed anti-friction levers, F, F¹, which
I will term balance-levers, since they are intended to balance evenly
and freely on the thin edges of the knife-bars with little friction
somewhat in the nature of a scale-balance. These levers are pivotally
connected to a series of metallic expansion strips G, G¹, G², G³, etc.,
the construction and arrangement and manner of connecting up the same
being more clearly shown in Fig. 3.

It will be observed that the arrangement of the levers F and expansion
strips G, G¹, etc., is such as to form, in effect, a spiral, the short
strip G being connected to one end of one of the balance-levers F, and
the strip G being connected at its lower end to the opposite end of said
lever, the upper end of said strip G¹ being connected to one end of the
first one of the levers F¹. To the opposite end of said lever F¹ the
upper end of strip G² is connected, the lower end of said strip being
connected to the left-hand end of the second one of the levers F, and so
on to the final short strip G^{x}. The levers F, F¹ must be formed of a
metal capable of withstanding great strain without bending, and for this
purpose I prefer to use the metal known as macadamite.

For convenience of designation, I will refer to each of these groups of
balance-levers F, F¹, and expansion strips G, G¹, etc., as expansion
coils, and while I have herein shown but two sets of such expansion
coils, it is to be understood that there may be any number of such sets
desired, and any desired number of strips and levers composing such
coils, depending upon the character of the work to be performed.

Furthermore, I desire it to be understood that when I use the terms
“strips"--as characterizing the members connecting the
balance-levers--either in the specification or claims, I do not limit
myself to the form of connecting member or “strips” shown, but mean to
include in the use of the term “strips” any other form such as wires,
rods or bars of either square, round, hexagonal or other cross sectional

The ends of the short strips G, G^{x} are connected by wires H, H¹ with
the opposite ends of what I will term a coil lever I, which, as more
clearly shown in Fig. 5, is keyed to a shaft J, which latter has its end
journaled upon the cross-bars J¹, J² secured to the uprights C, C¹ of
the inner frame of the apparatus, and this shaft I will name a coil

Keyed to the coil shaft J is a lever K, which it may be proper to
designate as a stress lever, since from it is suspended a weight K¹, the
function of which is to place a certain amount of stress upon the series
of expansion strips and balance-levers composing the expansion coil,
keeping the metal of the strips slightly stretched and preventing any
loss of motion at the different points of connection, and thereby
furthering a very important object, which is to make of each series of
expansion strips

[Illustration: _Fig. 2._


and balance-levers a single spiral unit, throughout which the expansion
and contraction of the strips are transmitted.

Also keyed to the shaft J is a power transmisson lever L, and any rotary
motion imparted to said shaft is necessarily imparted to the lever L in
the form of reciprocating motion.

Referring now to the power storage device, one or a number of which may
be used in connection with my expansion coils.

Disposed approximately midway of the uprights C, C¹ and within casing M,
secured at its ends to said uprights, is rotatably mounted a power
transmission shaft M¹, keyed to which is a spur wheel M². Also mounted
on the shaft M¹ is a spur wheel M³, meshing with which at its upper and
lower sides are two spur wheels M^{4}, M^{5}, loosely mounted upon short
supporting shafts M^{6}, M^{7}, journaled in uprights M^{8}, M^{8}
secured to the casing M. To each of the spur wheels M^{4}, M^{5} is
secured the outer end of a coil spring M^{9}, M^{10}, respectively, the
inner ends of said springs being secured to the respective shafts M^{6},
M^{7}, the arrangement being such that when the springs are placed under
tension by the rotation of the shafts M^{6}, M^{7}, the force of the
springs rotates the spur wheels M^{4}, M^{5}, thereby rotating the spur
wheel M³, shaft M¹ and the spur wheel M².

Also mounted upon each of the respective short shafts M^{6}, M^{7}, and
keyed thereto, is a ratchet wheel M^{11}, M^{12}, and adjacent thereto
and loosely mounted upon each of said shafts M^{6}, M^{7} is a pawl
carrier plate M^{13}, M^{14}, each carrying a pawl indicated at M^{15},
M^{16}, which is adapted to engage the teeth of the ratchet wheels
M^{11}, M^{12}, being held in engagement therewith by springs, one of
which is shown at M^{17}, secured to said pawl carrier M^{13}. Suitably
mounted upon the casing M, and adapted to engage the teeth of the
ratchet wheels M^{11}, M^{12}, is a detent M^{19}, to prevent reverse
movement of said ratchet wheels.

The pawl carrier plate M^{13} is provided with a pin M^{21}, and secured
thereby loosely to said carrier is one end of a connecting rod M^{21ª},
the other end of said connecting rod being connected to one end of a
longitudinally flexible coupling M^{22}, the other end of said coupling
being secured by means of the connecting rod M^{23} to the power
transmission lever L. The function of the flexible coupling M^{22} will
be hereinafter referred to.

The pawl carrier M^{13} also carries, at its lower end, a pin N, and
loosely mounted thereon is one end of a connecting rod N¹, the other end
of said rod being connected to a pin N² secured to the pawl carrier
M^{14}, whereby, when motion is imparted to pawl carrier M^{13} and,
through the pawl M^{15} to the ratchet wheel M^{11}, motion is imparted
to the pawl carrier M^{14}, and through its pawl M^{16} to the ratchet
wheel M^{12}. From the pin N² is suspended a weight N³ to return the
pawl carriers to their lowermost positions when they complete their
upward travel.

The flexible coupling M^{22} comprises a tubular casing N^{4}, which is
provided at one end with an opening N^{5}, through which projects a rod
N^{6} having a head N^{7}, which is adapted to bear against a spiral
spring N^{8} mounted within said casing, the other end of said rod N^{6}
being connected to the rod M^{23}.

The operation of the apparatus, as thus far described, will be more
readily apparent from an inspection of Fig. 5.

Assuming that the expansion coil there shown has been subject to a
normal temperature of say 75 degrees Fahrenheit, and at that temperature
the lever L is in the position shown in full lines on a decrease in
temperature of say 10 degrees, the contraction of the coil, which will
operate upon its entire length, will exert a pressure at the ends
thereof in the direction of the arrows, the result of which will be to
rotate the shaft J and raise the lever L against the force of the
weighted lever K (carrying the latter therewith) to the position shown
in dotted lines, thereby actuating the ratchet wheels M^{11}, M^{12},
and winding up the springs M^{9}, M^{10}, of the power-storage device,
the force there stored being afterwards taken off, as required, through
the medium of the power transmission shaft M¹ and spur wheel M² and any
suitable gearing or power transmission means.

The function of the flexible coupling indicated at M^{22} will now be
quite clear. It will be seen that the coil spring N^{8} will be
sufficiently strong not to give under the pull of the lever L except
when the springs M^{9}, M^{10} are wound full. When that condition
exists, the coil spring N^{8} will give, under the force of the lever L,

[Illustration: _Fig. 3._


no further power will be applied to the springs M^{9}, M^{10}. When,
however, those springs have become unwound to a sufficient extent the
spring N^{8} of the coupling M^{22} will be stronger than the springs of
the power-storage device and will transmit, from the expansion coil, the
force necessary to wind said springs as often as they become unwound; in
other cases the force will be expended in simply compressing the coil
spring N^{8} without effect upon the springs of the power-storage

Referring now to what I will term the force-increasing devices, which
are more clearly shown in Figs. 1, 2, 4, 8 and 9.

Near each end of the upper knife-bar E, and contacting therewith at its
under surface, is a support O, in the form of a flat-headed bolt (Fig.
8), the shank of said bolt passing through one end of lever O¹, which is
fulcrumed at O² upon the upper surface of a cross-bar O³ securely
fastened to the rear portion of the uprights C, C¹. To the front of said
uprights is rigidly secured a second cross-bar O^{4}, and at the lower
portion of said uprights and rigidly secured thereto is a third
cross-bar O^{5}, against the under surface of which rests a lever O^{6}
(Fig. 9) having its fulcrum point at O^{7}.

As shown in Fig. 2, there are three sets of the levers O¹, at the upper
end of the expansion coils at the rear side thereof below the knife-bars
E, one lever at each end of said bar and one in the middle thereof. As
these levers act directly upon the under surface of the knife-bars E to
raise the same I will call them knife-bar lifting-levers. There are also
the same number of levers O^{6} at the lower end of the expansion coils
below the cross-bar O^{5} projecting through to the forward side of the
apparatus, as shown in Fig. 1.

Rigidly secured to the cross-bar O^{4} is one end of a relatively heavy
metallic expansion strip O^{8},--preferably formed of zinc--the lower
end being secured to one end of the lever O^{6}; to the opposite end of
the lever O^{6} is secured the lower end of a similar but longer zinc
strip O^{9}, the upper end of the strip O^{9} being secured to the rear
end of the lever O¹. As shown in Figs. 1 and 2, there are two of these
strips O^{8} at the front and two of the strips O^{9} at the rear of the

In addition to the heavy strips O^{8}, O^{9}, there is provided at the
front of the apparatus a heavy wide expansion sheet or strip O^{10},
which, at its upper end, is rigidly secured to the cross-bar O^{4}, and
at its lower end to the front end of the middle one of the levers O^{6}.
A similar heavy wide expansion sheet or strip O^{11} is secured, at its
lower end, to the rear end of the middle lever O^{6}, and, at its upper
end, to the middle one of the levers O¹.

These heavy strips O^{8}, O^{9} and sheets O^{10}, O^{11} are preferably
formed of zinc, and are not only capable of great expansion and
contraction, but will be capable by their contraction of lifting the
entire weight of the knife-bars E, with the carried balance-levers and
expansion strips of expansion coils, the operation thereof being as

The front strips O^{8} and rear strips O^{9} and the front sheets O^{10}
and the rear sheets O^{11} are connected to the levers O^{6}, so as to
form, in effect, single expansion strips and sheets of relatively great
length. They are fastened, however, at their front upper ends to the
cross-bars O^{4}, so that the expansion cannot extend beyond that point
and takes place in a direction towards the opposite end, and, of course,
the contraction takes place in the opposite direction. Assuming now that
at a temperature of say 75 degrees Fahr. these heavy strips and sheets
lie in the position shown in Figs. 4 and 9 (the heavy strips O^{8},
O^{9} being shown in Fig. 9, and the heavy wide sheets O^{10}, O^{11} in
Fig. 4), on a decrease in temperature of say five degrees Fahr., the
heavy strips O^{8}, O^{9} and sheets O^{11}, O^{12} will contract in the
direction of the arrows, depressing the rear ends of the levers O¹,
O^{6}, and thereby through the levers O¹ lifting the knife-bars E, and
the balance-levers suspended thereon, with the result that the force
normally exerted at the ends of each expansion coil is increased to the
extent of the lifting power of the contraction of the metal strips and

I have found by experiment as well as observation that the average daily
change of temperature in residence and office buildings is about five
degrees. Sometimes the changes will be much greater, and sometimes less.
On even a low average of temperature change, my apparatus will be able
to generate force in larger amounts than required, and the surplus will
be stored in a power-storage device such as above described, or by means
hereinafter referred to, which surplus will


_Fig. 4._

_Fig. 5._


be drawn upon when it should happen that the average temperature is
approximately uniform.

For clearness of illustration, I have shown, as above stated, but two
sets of expansion coils, but there is no limit to the number that may be
used. Assuming that we have an apparatus with four expansion coils, each
knife-bar holding 50 balance levers, giving a total of 200 levers, with
expansion strips of the same number, in 5-foot lengths, we would have a
total of 1,000 linear feet of zinc strips, which entire length of strips
will, on the slightest change of temperature, get longer or shorter. The
expansion and contracting of this 1,000 feet of zinc strips for every
temperature change of 5 degrees Fahr. will be 1 inch. Now, assuming that
the knife-bars are pulled upward by heavy strips O^{8}, O^{9}, and
sheets O^{10}, O^{11} of five feet length (making ten feet for the front
and rear strips and sheets), on a decrease in temperature of 5 degrees
Fahr. the upward movement of those bars will be 10-1000 of one inch;
this contraction (10-1000) will now be multiplied as many times as there
are levers and strips in the expansion coils, viz., 200 times, which
would be 2 inches, and this, together with 1 inch from the contraction
of the expansion coils alone, will give a total movement of 3 inches. If
the strips are of a capacity to pull or lift 100 pounds, we obtain a
lift of 100 pounds 3 inches. As thirty-three per cent approximately must
be deducted for loss by stress (it being necessary to place the coils
under strain, as shown in the drawings and described above), the final
result will be a power to lift 100 pounds 2 inches, or 10 pounds 20
inches, and this force will be sufficient to run a large sized time
clock with powerful striking force.

As illustrated in Figs. 4, 5, 6 and 7, the power applied by the springs
M^{9}, M^{10} to the power transmission shaft M¹ is taken, through the
spur wheel M² by means of any suitable gearing, to run a clock or any
other machine adapted to the purpose. As there illustrated, I show the
spur wheel M² meshing with a pinion P, through which is driven the spur
wheel P¹, which latter meshes with a pinion P², through which is driven
a sprocket wheel P³ carried by the bracket P^{4}, which latter, as well
as the shafts carrying said spur wheels and pinions, are supported by an
upright P^{5} mounted upon the casing M. The sprocket wheel P³ carries a
sprocket chain P^{6}, which, through any suitable gearing, is adapted
to wind the main spring of a clock indicated at Q, carried by suitable
supports on the cross-bar Q¹ secured to the uprights C, C¹. As this
clock may be of any well known form, it will not be necessary to
describe the same in detail, except to state that as soon as the main
spring of the clock becomes weaker than the springs of the power-storage
device illustrated in Fig. 7, the latter will wind the clock main
spring, and as in this manner it is wound frequently, it is always kept
at a uniform high tension, which is desirable and results in good

In Fig. 12 I show a modification of my invention, wherein, instead of
having the balance-levers F, F¹ arranged side by side, they are
superposed one above the other, in this case a plurality of knife-bars
E, E¹ also being superposed one above the other, the expansion strips G,
G¹, etc. (in this case shown as formed of wires or rods), and
balance-levers being arranged in the same plane, somewhat in the nature
of a coiled spring, the coil shaft being indicated at J and the coil
lever at I, to which are connected the end expansion strips G, G^{x},
and the weight K¹ for placing the coil under tension. By this
arrangement of balance-levers and expansion strips, in the same plane,
much economy of space is effected, and when desired, a great number of
such coils may be suspended upon the series of knife-bars.

In Fig. 12ª I show two such coils connected in series, the terminal
expansion strip G^{x} of the front coil being connected to one end of
the lever I, and the opposite terminal G of that coil being connected to
the shortest one of the rear set of levers F^{1ª}, the terminal G^{y} of
the rear set being connected to the other end of the lever I. Thus two
or more such coils may be connected, and the force of expansion and
contraction of the combined coils transmitted to the lever I. When a
number of such combined coils are suspended from the knife-bars E, E¹,
the levers connecting their respective terminals may be themselves
connected by a system of compound levers such, for example, as shown in
Fig. 13, to be hereinafter referred to.

Referring now to Figs. 13 to 20 inclusive. These figures illustrate
another form of the invention whereby not only the power-storage device
of the preceding


_Fig. 6._

_Fig. 7._


figures may be dispensed with, but also the main spring of the clock
there shown, both of these elements being supplanted by apparatus
effecting the raising and lowering of weights (in this instance shown in
the form of balls), the force of expansion and contraction of the coils
being utilized to operate a rotary member which elevates a series of
weights and discharges the same into a storage receiver, the clock (or
other machine) being operated through the energy so stored and given up
by the falling of said weights.

As illustrated in said figures, this feature of the invention consists
of a frame, indicated in whole at 10, located about midway the length of
the expansion coils shown in Fig. 1, and it may be supported by securing
it to the uprights C, C¹, or in any other suitable manner.

Said frame comprises two horizontally disposed longitudinal framing
members, 10ª, 10^{b}, which are connected at each end by cross-bars (not

Mounted on the supports 10ª, 10^{b}, are four uprights, 12ª, 12^{b},
13ª, 13^{b}. The uprights 12ª 12^{b} are connected at their upper ends
by a longitudinal framing member 14ª, and the uprights 13ª 13^{b} are
connected by longitudinal framing member 14^{b}, said framing members
14ª 14^{b} being also in turn connected at their ends by transverse bars
(not shown), said members constituting an open frame for the working
parts of the apparatus.

Mounted respectively upon the longitudinal framing members 10ª 10^{b},
approximately midway thereof, are two standards, 16ª 16^{b}, which are
rigidly secured together by a cross-bar 17, said standards and cross-bar
constituting a rigid support for the gearing now to be described.

Rotatably mounted upon the standards 16ª, 16^{b} is a driving shaft 18,
one end of which is journaled in the standard 16ª, and the other end in
a bearing-bolt 19 passing through the standard 16^{b}, which, being
threaded, is capable of fine adjustment.

Mounted upon and keyed to the shaft 18 is a wheel 19, the spokes 20 of
which support a rim 21, within which are set a series of pockets 22, the
inner surfaces of which are so shaped as to permit their receiving
successively, at the bottom of the wheel, a series of balls 23 and
holding the same during a travel of 180 degrees, or one-half revolution
of the wheel, when they are discharged as hereinafter described. This
wheel I will term an energy-storing wheel, since it acts through the
force taken from the expansion coils to raise the balls, the lowering of
which is to drive the wheel now to be described.

Loosely mounted on the shaft 18 is a wheel 24, smaller in diameter than
the wheel 19, the spokes 25 of which, secured to the hub 26, support a
rim 27, within which are set a series of pockets 28, which are adapted
to receive successively, at the top of the wheel, the balls 23, and
discharge the same when they have been lowered through 180 degrees or,
in other words, at the bottom of the wheel. The inner wall of the
pockets 28 is formed, for the most part, with a pronounced rounded
groove (indicated at 28ª), as shown above the ball in Fig. 18, which
groove lies under the ball when the pocket is in its uppermost position,
as shown in Fig. 17, said groove becoming less pronounced at one edge
towards the opposite portion of the pocket, at which point it has an
approximately level surface at one side, as shown in Fig. 18, and
indicated at 28^{b}; the subject of this arrangement being that the ball
may be readily discharged in this position, and securely held within the
pocket when the ball and pocket are in other positions. The wheel
24--which I will designate as the power-transmission wheel--is supported
upon ball bearings indicated at 28^{c}, 28^{d}, which are held in
position by collars 28^{e}, 28^{f}, both keyed to shaft 18.

Mounted upon a collar 29, which is keyed to the driving shaft 18, is a
ratchet wheel 30, engaging the teeth of which are two pawls 31, 32,
secured to one arm of a double-arm pawl-carrier 33, the other arm of
which is connected by a rod 34 to a lever 35, one end of which lever is
pivotally connected to a standard 36, secured to the frame, and the
other end of which is provided with a weight 36ª.

Near the inner end of the lever 35 connection is made by means of the
connecting rods 37 and 38, link 39 and rods 40, 41, with two levers
indicated at L, L, which are adapted to take power from the expansion
coils heretofore described, through the coil shafts J, J, to which
shafts are also connected the coil levers I, I, the ends of the latter
being connected to the strips G, G^{x} of the expansion coil by the
wires H, H¹, as already set forth and clearly illustrated in Figs. 2, 3,
5, 6 and 7.

As illustrated in Fig. 13, upon contraction of the


_Fig. 8._

_Fig. 9._

_Fig. 10._

_Fig. 11._


expansion coils, the wires H, H¹ will be pulled in the direction
indicated by the arrows, the ends of the long arms of the levers L,
L--through the movement of the shafts J, J--will rise, thereby, through
the rods 40, 41, link 39 and rods 38, 37, raising the lever 35, and
through the rod 34 actuating the pawl carrier 33, and through the pawls
31, 32, imparting rotary motion to the ratchet wheel 30, and, through
it, to the shaft 18 and the power-storing wheel 19, said pawl carrier
being returned to its normal position by the weight 36ª. Motion of said
wheel and shaft in the reverse direction is prevented by means of a
ratchet wheel 42, keyed to the collar 29, engaging the teeth of which
wheel is a detent 43, carried by a plate 44, secured to the supports 45,
affixed to the standard 16ª.

The hub member 26 of the power transmission wheel 24 is provided with a
sprocket wheel 46, which is adapted to engage and drive a sprocket chain
47, and thereby drive the great wheel of a clock mechanism or gearing of
any other machine adapted to the purpose.

Having shown the mechanism for driving the energy-storing wheel 19,
which, as already stated, is keyed to the shaft 18, I will now describe
the mechanism for driving the power transmission wheel 24, which runs
loose on the shaft 18.

It will be seen from an inspection of Fig. 16 that the wheel 19 is of
greater diameter than the wheel 24.

Suitably mounted between said wheels, on cross-bars 48, 49, I provide a
series of ball-storage runways designated in whole at 50 (see Fig. 14),
and, as shown in Fig. 16, these runways are laterally inclined
downwardly from the wheel 19 to the wheel 24.

Similar ball runways designated in whole at 51 are provided at the lower
portion of said wheels and between the same (Fig. 20), being mounted
upon cross-bars 52, 53, but the last named runways are laterally
inclined in the reverse direction to that of the runways 50.

The ball-storage runways 50 comprise inclined floor members 54, 54ª,
54^{b}, each having longitudinally a slight downward inclination in the
direction of the arrows. These runways also comprise longitudinally
extending walls 55, 56, 57, 58, one end of the wall 55 being curved to
meet one end of the wall 57, leaving a passageway 59 between it and one
end of the wall 56. One end of the wall 58 is similarly curved to meet
one end of the wall 56, leaving a passageway 60 between it and one end
of the wall 57. Thus are provided parallel runways 61, 62 and 63, with
passageways from one to the other, whereby a ball deposited in runway 61
will move continuously from that end of the series of runways to the
other end. The runway 61 is provided with an end wall 61ª, and adjacent
thereto the longitudinal wall 55 is provided with an opening 61^{b} to
permit the passage therethrough successively of balls from the
energy-storing wheel 19 to the runway 61.

Projecting through the standard 16^{b} is a threaded bolt 63ª, the end
of the shank of which is beveled, as clearly shown in Figs. 14 and 16,
the function of which is to eject from the uppermost pocket 22 of the
wheel 19, as the same revolves, the balls 23, and thrust them
successively into the runway 61.

At the lower end of the runway 63 is provided a laterally movable
receptacle 64, which has a receiving capacity of one ball only. Said
receptacle comprises a base 65 and perpendicular stop 66. The base 65 is
connected to the floor member 54^{b} of the runway 63 by a horizontally
disposed hinge 67, and to it is also affixed a plate 68, carrying a
downwardly extending lever arm 69, which is formed at its lower
extremity with an outwardly curving portion 70, which is adapted to
engage with the spokes 25 of the wheel 24 and be thereby pressed
inwardly, the result of which is to depress the outer end of the base 65
of the ball receptacle 64, inclining the same in such position that the
ball therein will fall into the adjacent pocket of the wheel 24, the
ball being prevented from falling therefrom on the opposite side by the
stop 71 secured to the standard 16ª. The center of gravity of the lever
arm 69 is such that when the curved lower portion is in its normal
forwardly extended position the rear side of the base 65 of the
receptacle 64 will be depressed and the forward side elevated, so that
the forward side will normally project above the floor level of the
runway 63 and serve as a stop to prevent more than one ball occupying
any of the space within said receptacle at one time.

The ball-storage runways 51 comprise inclined floor members 72, 72ª,
72^{b}, each having a slight downward inclination longitudinally in the
direction of the arrows. They also comprise longitudinally extending
walls 73,

[Illustration: _Fig. 12._


74, 75 and 76, one end of the wall 73 being curved to meet one end of
the wall 75, leaving a passageway 77 between it and one end of the wall
74. One end of the wall 76 is similarly curved to meet one end of the
wall 74, leaving a passageway 78 between it and the other end of the
wall 75. There are thus formed parallel runways 79, 80 and 81, with
passageways from one to the other, whereby a ball deposited at the other
end of the runway 79 will move continuously from that end of the series
of runways to the other end. The runway 79 is provided with an end wall
82, and adjacent thereto the longitudinal wall 76 is provided with an
opening 76ª to permit the passage therethrough, at intervals, of balls
from the power-transmission wheel 24 to the runway 79. Adjacent the wall
82 is perpendicularly disposed pin 82ª whereby the balls, as they pass
through the opening in the wall 76 are deflected to pass through the
runway 79 in the direction of the arrow.

At the lower end of the runway 81 is provided a laterally movable
receptacle 83, which has a receiving capacity for one ball only. Said
receptacle comprises a base 84 and end stop 85. Said receptacle is
horizontally hinged at 86 to the floor member 72 of the runway 81, and
is provided with an outward extension 87, which is adapted to be engaged
by a shoulder 88 on the ball pockets 22, and thereby depress the outer
edge of the base of the receptacle in such a way as to eject the ball
therefrom, and place the same in the pocket of the wheel 19.

It will be seen that the hinge 86 (Fig. 19) is off center and when the
base 84 of the receptacle 83 is depressed at the rear the upper end of a
pin 89, projecting upwardly from the base 84 contacts with the upper
portion of the wall 74, thereby preventing the rear portion of the base
being depressed too low. When a ball is in said receptacle, the forward
end will be elevated so that a portion of the side edge of the base will
be projected above the floor member of the runway 81, serving as a stop
to prevent more than one ball occupying any of the space within said
receptacle. When one ball moves into a pocket 22, another ball quickly
moves into the receptacle, taking its position at the rear thereof. This
operation takes place when the base 84 is level with the floor member of
the runway 81, the outer end of the base rising as soon as the pocket
and its ball have passed by the projection 87.

It will be seen that the energy-storing wheel 19, which takes its motive
power through the shaft 18 from the expansion coils, acts to raise the
balls or weights from the lower ball runways 51 to the ball storage
runways 50. The wheel 19 may act at more or less irregular intervals,
while the power transmission wheel 24 acts--and must act--continuously
and regularly. This wheel takes and transmits power from the lowering of
the balls, which are delivered to it when the pockets are in the
position of the one shown uppermost in Fig. 15, and are discharged from
the pockets when in the position of the one shown lowermost in said
figure, in which position of the wheel the approximately flat surface of
the pocket (Fig. 18) is lowermost, or under the ball, permitting ready
discharge of same. From the delivery side of the power transmission
wheel 24 the balls are discharged into the runway 79, being deflected
into proper direction by the pin 83ª, thence passing through the
passageway 78 through the runway 80 in the direction of the arrow,
thence through the opening 77 into the runway 81, thence into receptacle
83, and when the shoulder 88 of the energy-storing wheel 19 reaches a
point opposite said receptacle the base of the latter is depressed,
which results in passing a ball into the wheel pocket; as the wheel
turns and the next pocket arrives in position another ball is taken on,
and so on, as long as there are any balls in the lower runway. When a
ball on the wheel 19 reaches the uppermost position, as shown in Fig.
16, it contacts with the ejector 63ª and is thereby passed into the
runway 61 and thence to the lower end of that series of runways, and in
the same way the balls following will take position in the upper series
of runways.

It will be understood that when my invention is applied to the operation
of a clock the power taken from the power transmission wheel 24 will be
given up gradually, being controlled by the pendulum or balance wheel
governed escapement in the usual way.

In the application of my invention as last above described the apparatus
will be designed and built to furnish energy sufficient not only to run
the clock, but provide a surplus for storage. On some days the variation
in temperature may be but two or three degrees, and on

[Illustration: _Fig. 12ª._


other days it may be as high as twenty degrees. If the clock requires
for its operation the lowering of three balls each day the apparatus
will be so arranged that with an average daily temperature variation of,
say, six degrees, four balls will be raised, of which three will operate
the power transmission wheel and one will be held in storage. With a
variation of twelve degrees, eight balls will be raised, of which five
balls will be left in storage. If the ball storage runways each have a
holding capacity for one hundred balls, and the variation in temperature
is greater than required, the balls will soon be lifted from the lower
to the upper runways. Assuming that on certain days there will be no
variation in temperature, and as a result the energy-storing wheel
should not revolve, the running of the clock will not be interrupted,
for the power transmission wheel will continue revolving, taking its
power from the balls in storage.

I wish it understood that I do not confine myself to the precise details
of construction and arrangement of parts as herein set forth and
described or to the materials specified, as modification and variation
may be made without departing from the spirit of the invention as
defined by the appended claims.

[Illustration: _Fig. 13._



_Fig. 14._

_Fig. 15._



_Fig. 16._



_Fig. 17._

_Fig. 18._

_Fig. 19._

_Fig. 20._



Patent Applied for, 1911.]




The Bangerter Anniversary Self-Winding Regulator deserves this title
because its construction embodies all the principles essential to a
Regulator to be the very best time-keeper. “Graham dead-beat escapement”
and a pendulum provided with means for keeping its gravity always the
same length, overcoming the variation which change in temperature
invariably brings about.

Another great improvement is the daily Self-Winding System, winding a
weight which is the only means of maintaining an even pull to the
delicate works of the clock. Wound by a force which requires attention
one minute a year only.

This invention relates to clocks, and particularly that class wherein a
pendulum escapement is employed and wherein the clock-train is weight

It is well known to those skilled in the art that the most accurate and
reliable clocks are those which are driven by a weight. Most of such
clocks are provided with a plurality of weights, one being used to
supply the energy necessary to strike the time, and the other the energy
for operating the clock-train, and in clocks of such construction they
have to be wound frequently, usually either daily or weekly.

Many attempts have been made to produce clocks which will run for a
relatively long time without requiring the attention of an attendant to
wind the same. In such clocks (other than electrical clocks) powerful
springs have been employed, one of such springs being used for
time-striking and the other for actuating the clock-train. Clocks of
this class designed to run for an extended length of time, such, for
example, as period of, say, a year or more, have been indifferent
time-keepers, due to the fact that the power of the springs becomes
materially lessened during the latter part of the cycle of operations.
Therefore, spring-operated clocks, calculated to be run for any great
length of time, have been more or less unsatisfactory, and have not gone
into very extensive use.

The object of my invention is to provide a clock which will not require
the attention of an attendant but once in a long period of time, and
which will also be an accurate time-keeper.

A further object is to provide a clock operated by a uniformly pulling
weight, the pull of which is not varied by the lifting of said weight.

A further object is to provide a power-storage device and power
transmission mechanism and automatic devices connected thereto, whereby
the power of said power-storage mechanism is utilized to wind up the
clock--that is to say, to lift the clock-train operating weight at
certain definitely recurring intervals of time.

A further object of my invention is to provide, in connection with such
power-storage mechanism, time-striking means operated by said
power-storage device, which being independent of the clock-train
operating means does not interfere therewith.

A further object of my invention is to provide a single power-storage
mechanism which will afford the power to strike the time and effect the
winding of the clock, doing away with two sets of mechanism (one for
each purpose), as heretofore used.

A further object of my invention is to provide such a power-storage
device that with one winding of the same the clock may be kept running,
and also striking the time, for a year or more in duration.

A further object of my invention is to provide means in connection with
said power-storage device whereby the winding of the clock-train does
not interfere with continuous running and perfect time-keeping of the
clock, and does not require any supplemental propelling mechanism for
the clock-train during the winding operation.

[Illustration: _Fig. 3._



This is the most marvelous little machine that science has ever devised
to watch your house day and night. It is the truest of all Watch Dogs
and will in case of fire make such a loud and noisy alarm that you will
wake up from the deepest of sleeps. It calls when the fire is at its
infancy, in time to save you and your beloved ones. It is a most simple
little apparatus requiring no electricity, no wiring or connections, no
care of any kind; just as reliable after it has been hanging in your
room for twenty years as it was when newly installed.]


More than a hundred million dollars is the yearly loss by fire in the
United States; 50 per cent. of this loss is by water. How important
therefore is Bangerter’s “Watch Dog Fire Alarm and Sprinkler,” regulated
to ring, first a loud call when a fire is in its infancy. A watchman or
anyone hearing the call can rush to the place and extinguish the fire.
The sprinkler will only work when the alarm call is not attended to. Our
Fire Alarm and Sprinkler system can be connected to piping from the
water main, or to the tank on the roof of a building, but can also be
installed in any place if there should be no water piping or tank. In
this case a water tank of from twenty to one hundred gallons of water
has to be installed. This tank can be set in any out of the way place.
Compressed air keeps this water under high pressure, and in case of fire
the valves are automatically opened and the sprinkler will act with
efficacious result.]




Friedrich Bangerter can justly lay claim to being one of this country’s
leading inventors.

He has some fifty inventions to his credit.

He has been honored with Silver and Gold Medals and Diplomas.

His displays at great World’s Expositions have occasioned the utmost
favorable comment.

His splendid record speaks for itself and shows the profound student,
the practical machinist and brainy inventor of worldwide experience with
a long list of successes to his credit.

Born in Lyss, Switzerland, in 1868, at the age of 16 he entered the
machine shop of his town’s watch factory as an apprentice. There he was
favored with the opportunity to become familiar with all sorts of tools
and machines used in making watches.

By the age of 22 he so progressed that “all by himself” he constructed
all the necessary machines to make watches and added so many important
improvements, embracing such automatic devices and machines in which
hands, moving from place to place, picking up pieces of work, then
setting them in the right positions (operating with such perfection and
precision) that he was called a wizard. One of these automatic machines
would pick up blanks from a wire, set them in the machine from one to
twenty-four at a time and cut the teeth of watch gearing perfectly.

Another of Bangerter’s machines would take small, smooth, round steel
rods and automatically make perfectly finished pinions with pivots,
shoulders and smallest holes.

An automatic trumpet of his invention would play a complete tune and was
so simple in operation that a one-year-old child, by simply blowing in
it, could play it.

United States Patent 543668 for a Hair Clipper, issued to F. Bangerter,
San Francisco, is specified as follows:--

543668. Hair Clipper. Fred Bangerter, San Francisco, Cal., assignor, by
mesne assignments, to Charles H. Greene, same place. Filed July 21,
1894. Renewed July 2, 1895. Serial No. 554,715. (No model.)

Claim 1. In a Hair Clipper, the combination of the stationary and
movable plates, a pair of pivoted handles, one of said handles being
hinged or connected with one of said plates so that the device may be
turned to different angles, an opposing plate having its rear portion
recessed and provided with rearwardly and upwardly extending curved
arms, and the other handle having arms adapted to enter the recess of
said plate and engage the curved arms thereof in whatever position the
device is turned.

In 1892 he exhibited an automatic figure in a big department store in
San Francisco which drew a complete portrait of Christopher Columbus.

United States Patent 512089 was issued to Mr. Bangerter for an
“Automatic Delineating Machine,” a toy doll which would correctly write
the complete alphabet. Later he so improved this figure that it could
spell and talk while writing.

At the Paris Exposition in 1900 he exhibited a most remarkable machine
which made collar buttons. Three rods of metal were used at the same
time--one to make the head of the button, one the bottom or base, and
the other the stud. The three parts of the collar button were perfectly
made and finished.

The head was drilled and tapped, the stud was threaded and screwed into
the head while spun into the base or bottom. The manufactured collar
buttons fell into a box at the rate of 300 an hour--thus effecting a
great economy of metal.

In 1905, at the Belgium Exposition, he displayed an intensely
interesting novelty--an “Automatic Jeweler"--which, with arm and hand,
operated an ordinary machine which turned out perfectly made collar
buttons of which thousands were sold within the Exposition Grounds.

A most marvelous contrivance was his four-spindle


Composed of Over Three Thousand Parts.]

automatic watch chain machine composed of over three thousand parts.

This machine made from wire of four different metals, namely, gold,
silver, nickel and German silver, being fed into the machine at the same
time would automatically make four watch chains of four different
patterns completely and properly finished. The chain itself, an
invention of Mr. Bangerter, was called the Bangerter Chain. Patent sold
in France.


Invention which THE LONDON DAILY TELEGRAPH calls the Bangerter Gun, a
marvel and masterpiece for war.


     Automatic Invention Operated by Secret Mechanical Power Is Tested
     at Stapleton, S. I.

     A working model of an automatic machine gun which, it is said, will
     discharge bullets over a range of a mile or more at the rate of one
     million an hour, with a muzzle velocity of more than 3,000 feet per
     second, and operated by a secret mechanical power, was demonstrated
     yesterday by the inventor, Friedrich Bangerter.

     The model, which was built to shoot a three-eighth-inch bullet, was
     mounted behind a partition in the factory at 79 Broad St.,
     Stapleton, S. I. All the motive parts were covered by a tarpaulin,
     and the machine was run by an electric motor, connected with the
     gun by a belt.

     The muzzle was pointed through a hole in a partition, and the
     observers having gathered behind a screen, the motor was started.

     The target, a pine board, was placed sixty feet away. As the motor
     began to hum the operator turned a little wheel and a steady stream
     of bullets poured from the muzzle of the gun like a stream of water
     from the nozzle of a hose. The target seemed to melt before the
     eyes as all the missiles struck it, and in about 10 seconds the
     entire centre of the board had disappeared. This model was built
     for round bullets, but the inventor says that on a standard make
     gun, which will have a half-inch bore, conical bullets will be
     fired and the barrels, of which there will be two, will be rifled.

     The principal use of the new gun, according to the inventor’s
     claim, will be for operating against airships, and, as there is no
     recoil, he says, the gun can be pointed toward any point of the


     A Wonderful Gun.--A million bullets an hour can be fired without
     powder.... It really does shoot.... Reporters see wooden targets
     torn to bits, but the inventor won’t let them see the works.

     A gun that can shoot one million bullets per hour at a cost of $20,
     that uses neither powder nor compressed air, and that fires bullets
     that do not require shells, was shot for the enlightenment of a
     delegation of New York reporters yesterday afternoon. The reporters
     saw the gun shoot, but they were not permitted to see that part of
     the gun out of which the little steel bullets came with such
     rapidity. The exhibition was in the factory building at No. 79
     Broad street, Stapleton, S. I. In a little room adjoining that in
     which were placed the reporters was the gun. There were targets
     made of a series of big boards arranged about a foot behind one in
     front of it. There were four targets.

     At 4 p. m. the shooting began. The first of the targets was dragged
     into position. A moment later the motor started up, then the
     bullets started to fly. They riddled the target into a pile of
     splinters a foot high, and they did it in less than a minute. All
     in all, it was estimated that 15,000 bullets pierced the targets.
     Not only the first of the targets was riddled into a shapeless
     mass, but each of the other three as well.

     The reporters were permitted then to enter the gun-room. They saw a
     motor, from the wheel of which a belt was operated. The belt
     connected the motor with another wheel, which was a part of the
     mechanism of the gun, on top of which was a covering out of which
     the bullets came. They also saw the hoppers on either side of the
     gun into which the bullets are poured as they are needed. The
     reporters asked to see the gun in operation. The inventor ordered
     another target swung into position. There was another whirl and a
     second storm of bullets struck the target. The fusillade lasted
     about ten seconds. Again was the target demolished. The


A Great Combination of Cams and Levers.]

     inventor refused to say anything about what was under the covering
     in the little gun-room.

     Wall Street brokers had offered Mr. Bangerter the necessary capital
     to build a standard size gun, but Mr. Bangerter soon found out that
     their plans were to get the secret of his invention and take it
     from him. He therefore separated from these brokers and has had
     nothing to do with them since. He has kept his secrets and has
     remained true to the words he declared which were published in the
     New York World of March 1st, 1908, that if he does not make money
     out of his invention nobody else shall.

     Army officers and scientific men marvelled at the great results of
     Bangerter’s model gun. Before the tests no one believed in its
     success, declaring it impossible. Mr. Bangerter has never applied
     for a patent for this invention, as he intended to sell the secrets
     to a government, and therefore kept the plans carefully.

     Naturally everyone was still skeptical as to the outcome of a
     standard-size gun, and to show to those who kept an eye on him that
     impossibilities of yesterday are made the realities of to-day, he
     centered his mind on another impossibility--his Perpetual
     Clock--while apparently forgetting his gun for a year.

     “Perpetual Motion the Folly of All Ages” has become an eloquent

     A crowning result of his strenuous labor on this marvelous clock
     was the outcome of three other inventions which the studies in a
     large field of problems have brought to life as his anniversary
     self-winding clock, his fire alarm and sprinkler apparatus. These
     inventions and others not here mentioned, owing to lack of space,
     stamp Friedrich Bangerter as a most unusual and fertile-minded

     His crowning achievement in inventing that marvel of marvels--


     has therefore a background of brilliant accomplishments, profound
     studies and many natural abilities behind a work that shall ever
     establish his fame as inventor of The Perpetual Clock.


     This Automatic Jeweler Making Collar Buttons at the Belgian World
     Exposition, 1905, Often Mistaken for a Living Man. Thousands of
     Collar Buttons of His Make Were Sold Within the Exposition Grounds.]


Mr. Bangerter conceived the plans of his airship in 1898 and deposited
the plans in France in March, 1905.

By his principles the basket, engine and traveler being about fifteen
feet below the planes, it is an absolute impossibility for it to turn
turtle, either by wind or storm. The four planes automatically acting as
parachutes in case of descending. This airship can rise vertically and
keep steady at any height, permitting the dropping of explosives with
accuracy after having aimed and regulated its position.]


View of Targets Which Thousands of Bullets Have Pierced.

Thickness of the Targets, 2½ inch. Time, 20 seconds.]

                      THE McCONNELL PRINTING CO.

                               NEW YORK

*** End of this Doctrine Publishing Corporation Digital Book "Bangerter's Inventions - His Marvelous Time Clock" ***

Doctrine Publishing Corporation provides digitized public domain materials.
Public domain books belong to the public and we are merely their custodians.
This effort is time consuming and expensive, so in order to keep providing
this resource, we have taken steps to prevent abuse by commercial parties,
including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the files We designed Doctrine Publishing
Corporation's ISYS search for use by individuals, and we request that you
use these files for personal, non-commercial purposes.

+ Refrain from automated querying Do not send automated queries of any sort
to Doctrine Publishing's system: If you are conducting research on machine
translation, optical character recognition or other areas where access to a
large amount of text is helpful, please contact us. We encourage the use of
public domain materials for these purposes and may be able to help.

+ Keep it legal -  Whatever your use, remember that you are responsible for
ensuring that what you are doing is legal. Do not assume that just because
we believe a book is in the public domain for users in the United States,
that the work is also in the public domain for users in other countries.
Whether a book is still in copyright varies from country to country, and we
can't offer guidance on whether any specific use of any specific book is
allowed. Please do not assume that a book's appearance in Doctrine Publishing
ISYS search  means it can be used in any manner anywhere in the world.
Copyright infringement liability can be quite severe.

About ISYS® Search Software
Established in 1988, ISYS Search Software is a global supplier of enterprise
search solutions for business and government.  The company's award-winning
software suite offers a broad range of search, navigation and discovery
solutions for desktop search, intranet search, SharePoint search and embedded
search applications.  ISYS has been deployed by thousands of organizations
operating in a variety of industries, including government, legal, law
enforcement, financial services, healthcare and recruitment.