Home
  By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | HTML | PDF ]

Look for this book on Amazon


We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: The Uses of Astronomy - An Oration Delivered at Albany on the 28th of July, 1856
Author: Everett, Edward, 1794-1865
Language: English
As this book started as an ASCII text book there are no pictures available.
Copyright Status: Not copyrighted in the United States. If you live elsewhere check the laws of your country before downloading this ebook. See comments about copyright issues at end of book.

*** Start of this Doctrine Publishing Corporation Digital Book "The Uses of Astronomy - An Oration Delivered at Albany on the 28th of July, 1856" ***

This book is indexed by ISYS Web Indexing system to allow the reader find any word or number within the document.



Making of America Collection of the Digital & Multimedia Center, Michigan
State University Libraries (http://digital.lib.msu.edu/)



Note: Images of the original pages are available through the
      Digital & Multimedia Center, Michigan State University
      Libraries. See
      http://www.hti.umich.edu/cgi/t/text/text-idx?c=moa;idno=AAN1277.0001.001



                          THE USES OF ASTRONOMY.


                               AN ORATION


             Delivered at Albany, on the 28th of July, 1856

                                   BY

                             EDWARD EVERETT,


                                 ON THE

               OCCASION OF THE INAUGURATION OF THE DUDLEY
                        ASTRONOMICAL OBSERVATORY,


                                 WITH A

                   CONDENSED REPORT OF THE PROCEEDINGS,

                          AND AN ACCOUNT OF THE

              DEDICATION OF NEW YORK STATE GEOLOGICAL HALL.


                               NEW YORK:
                      PUBLISHED BY ROSS & TOUSEY,
                           103 NASSAU STREET.
                                 1856.



                          A NOTE EXPLANATORY.

     The undersigned ventures to put forth this report of Mr.
     EVERETT'S Oration, in connection with a condensed account of the
     Inauguration of the Dudley Observatory, and the Dedication of
     the New State Geological Hall, at Albany,--in the hope that the
     demand which has exhausted the newspaper editions, may exhaust
     this as speedily as possible; not that he is particularly
     tenacious of a reward for his own slight labors, but because he
     believes that the extensive circulation of the record of the two
     events so interesting and important to the cause of Science will
     exercise a beneficial influence upon the public mind. The effort
     of the distinguished Statesman who has invested Astronomy with
     new beauties, is the latest and one of the most brilliant of
     his compositions, and is already wholly out of print, though
     scarcely a month has elapsed since the date of its delivery.
     The account of the proceedings at Albany during the Ceremonies
     of Inauguration is necessarily brief, but accurate, and is
     respectfully submitted to the consideration of the reader.

                                                    A. MAVERICK.
     NEW YORK, _October 1, 1856._



                    TWO NEW INSTITUTIONS OF SCIENCE;

                                  AND

              THE SCENES WHICH ATTENDED THEIR CHRISTENING.


In the month of August last, two events took place in the city of
Albany, which have more than an ephemeral interest. They occurred in
close connection with the proceedings of a Scientific Convention,
and the memory of them deserves to be cherished as a recollection of
the easy way in which Science may be popularized and be rendered so
generally acceptable that the people will cry, like Oliver Twist, for
more. It is the purpose of this small publication to embody, in a form
more durable than that of the daily newspaper, the record of proceedings
which have so near a relation to the progress of scientific research. A
marked feature in the ceremonies was the magnificent Oration of the Hon.
EDWARD EVERETT, inaugurating the Dudley Observatory of Albany; and it is
believed that the reissue of that speech in its present form will be
acceptable to the admirers of that distinguished gentleman, not less
than to the lovers of Science, who hung with delight upon his words.


                 THE DEDICATION OF THE GEOLOGICAL HALL.

On Wednesday, August 27, 1856, the State Geological Hall of New York
was dedicated with appropriate ceremonies. For the purpose of affording
accommodation to the immense crowds of people who, it was confidently
anticipated, would throng to this demonstration and that of the
succeeding day, at which Mr. EVERETT spoke, a capacious Tent was
arranged with care in the center of Academy Park, on Capitol Hill;
and under its shelter the ceremonies of the inauguration of both
institutions were conducted without accident or confusion; attended on
the first day by fully three thousand persons, and on the second by a
number which may be safely computed at from five to seven thousand.

The announcement that Hon. WM. H. SEWARD would be present at the
dedication of the Geological Hall, excited great interest among the
citizens; but the hope of his appearance proved fallacious. His place
was occupied by seven picked men of the American Association for the
Advancement of Science, one of whom (Prof. HENRY) declared his inability
to compute the problem why seven men of science were to be considered
equal to one statesman. The result justified the selections of the
committee, and although the Senator was not present, the seven
Commoners of Science made the occasion a most notable one by the flow
of wit, elegance of phrase, solidity and cogency of argument, and rare
discernment of natural truths, with which their discourse was garnished.

The members of the American Association marched in procession to the
Tent, from their place of meeting in the State Capitol. On the stage
were assembled many distinguished gentlemen, and in the audience were
hundreds of ladies. GOV. CLARK and Ex-Governors HUNT and SEYMOUR, of New
York, Sir WM. LOGAN, of Canada, Hon. GEORGE BANCROFT, and others as well
known as these, were among the number present. The tent was profusely
decorated. Small banners in tri-color were distributed over the entire
area covered by the stage, and adorned the wings. The following
inscriptions were placed over the front of the rostrum,--that in honor
of "_The Press_" occupying a central position:

                GEOLOGY.                  THE PRESS.
                METEOROLOGY.              MINERALOGY.
                METALLURGY.               ETHNOLOGY.
                              ASTRONOMY.

The following were arranged in various positions on the right and left:

                CHEMISTRY.                TELEGRAPH.
                PHYSIOLOGY.               LETTERS.
                CONCHOLOGY.               HYDROLOGY.
                PALÆONTOLOGY.             ZOOLOGY.
                MICROSCOPY.               ICHTHYOLOGY.
                ART.                      MANUFACTURES.
                STEAM.                    AGRICULTURE.
                COMMERCE.                 PHYSICS.
                SCIENCE.                  ANATOMY.
                NAVIGATION.               BOTANY.

The proceedings of the day were opened with prayer by Rev. GEO. W.
BETHUNE, D.D., of Brooklyn.

Hon. GARRIT Y. LANSING, of Albany, then introduced Professor LOUIS
AGASSIZ, of Cambridge, Mass., who was the first of the "seven men
of science" to entertain his audience, always with the aid of the
inevitable black-board, without which the excellent Professor would be
as much at a loss as a chemist without a laboratory. Professor AGASSIZ
spoke for an hour, giving his views of a new theory of animal
development. He began by saying:--

     We are here to inaugurate the Geological Hall, which has grown
     out of the geological survey of the State. To make the occasion
     memorable, a distinguished statesman of your own State, and Mr.
     FRANK C. GRAY, were expected to be present and address you. The
     pressure of public duties has detained Mr. SEWARD, and severe
     sickness has detained Mr. GRAY. I deeply lament that the occasion
     is lost to you to hear my friend Mr. GRAY, who is a devotee to
     science, and as warm-hearted a friend as ever I knew. Night
     before last I was requested to assist in taking their place--I,
     who am the most unfit of men for the post. I never made a speech.
     I have addressed learned bodies, but I lack that liberty of
     speech--the ability to present in finished style, and with that
     rich imagery which characterize the words of the orator, the
     thoughts fitting to such an occasion as this. He would limit
     himself, he continued, to presenting some motives why the
     community should patronize science, and foster such institutions
     as this. We scientific men regard this as an occasion of the
     highest interest, and thus do not hesitate to give the sanction
     of the highest learned body of the country as an indorsement of
     the liberality of this State. The geological survey of New York
     has given to the world a new nomenclature. No geologist can,
     hereafter, describe the several strata of the earth without
     referring to it. Its results, as recorded in your published
     volumes, are treasured in the most valuable libraries of the
     world. They have made this city famous; and now, when the
     scientific geologist lands on your shore, his first question is,
     "Which is the way to Albany? I want to see your fossils." But
     Paleontology is only one branch of the subject, and many others
     your survey has equally fostered.

     He next proceeded to show that organized beings were organized
     with reference to a plan, which the relations between different
     animals, and between different plants, and between animals and
     plants, everywhere exhibit;--drew sections of the body of a
     fish, and of the bird, and of man, and pointed out that in each
     there was the same central back-bone, the cavity above and
     the ribbed cavity below the flesh on each side, and the skin
     over all--showing that the maker of each possessed the same
     thought--followed the same plan of structure. And upon that plan
     He had made all the kinds of quadrupeds, 2,000 in number, all the
     kinds of birds, 7,000 in number, all of the reptiles, 2,000 to
     3,000 in number, all the fish, 10,000 to 12,000 in number. All
     their forms may be derived as different expressions of the same
     formula. There are only four of these great types; or, said he,
     may I not call them the four tunes on which Divinity has played
     the harmonies that have peopled, in living and beautiful reality,
     the whole world?


                 PROFESSOR HITCHCOCK ON REMINISCENCES.

ERASTUS C. BENEDICT, Esq. of New York, introduced Prof. HITCHCOCK, of
Amherst, as a gentleman whose name was very familiar, who had laid
aside, voluntarily, the charge of one of the largest colleges in New
England, but who could never lay aside the honors he had earned in the
literature and science of geology.

After a few introductory observations, Prof. HITCHCOCK said:--

     This, I believe, is the first example in which a State Government
     in our country has erected a museum for the exhibition of its
     natural resources, its mineral and rock, its plants and animals,
     living and fossil. And this seems to me the most appropriate spot
     in the country for placing the first geological hall erected by
     the Government; for the County of Albany was the district where
     the first geological survey was undertaken, on this side of the
     Atlantic, and, perhaps, the world. This was in 1820, and ordered
     by that eminent philanthropist, Stephen Van Rensselaer, who,
     three years later, appointed Prof. Eaton to survey, in like
     manner, the whole region traversed by the Erie Canal. This was
     the commencement of a work, which, during the last thirty years,
     has had a wonderful expansion, reaching a large part of the
     States of the Union, as well as Canada, Nova Scotia, and New
     Brunswick, and, I might add, several European countries, where
     the magnificent surveys now in progress did not commence till
     after the survey of Albany and Rensselaer Counties. How glad
     are we, therefore, to find on this spot the first Museum of
     Economical Geology on this side of the Atlantic! Nay, embracing
     as it does all the department of Natural History, I see in it
     more than a European Museum of Economical Geology, splendid
     though they are. I fancy, rather, that I see here the germ of a
     Cis-Atlantic British Museum, or Garden of Plants.

     North Carolina was the first State that ordered a geological
     survey; and I have the pleasure of seeing before me the gentleman
     who executed it, and in 1824-5 published a report of 140 pages.
     I refer to Professor Olmstead, who, though he has since won
     brighter laurels in another department of science, will always be
     honored as the first commissioned State geologist in our land.

Of the New York State Survey he said:--

     This survey has developed the older fossiliferous rocks, with a
     fullness and distinctness unknown elsewhere. Hence European
     savans study the New York Reports with eagerness. In 1850, as I
     entered the Woodwardian Museum, in the University of Cambridge,
     in England, I found Professor McCoy busy with a collection of
     Silurian fossils before him, which he was studying with Hall's
     first volume of Paleontology as his guide; and in the splendid
     volumes, entitled _British Paleozoric Rocks and Fossils_, which
     appeared last year as the result of those researches, I find
     Professor Hall denominated the great American Paleontologist. I
     tell you, Sir, that this survey has given New York a reputation
     throughout the learned world, of which she may well be proud. Am
     I told that it will, probably, cost half a million? Very well.
     The larger the sum, the higher will be the reputation of New
     York for liberality; and what other half million expended in our
     country, has developed so many new facts or thrown so much light
     upon the history of the globe, or won so world-wide and enviable
     a reputation?

And of Geological Surveys in general:--

     In regard to this matter of geological surveys, I can hardly
     avoid making a suggestion here. So large a portion of our country
     has now been examined, more or less thoroughly, by the several
     State governments, that it does seem to me the time has come
     when the National government should order a survey--geological,
     zoological, and botanical--of the whole country, on such a
     liberal and thorough plan as the surveys in Great Britain are
     now conducted; in the latter country it being understood that at
     least thirty years will be occupied in the work. Could not the
     distinguished New York statesman who was to have addressed us
     to-day be induced, when the present great struggle in which he
     is engaged shall have been brought to a close, by a merciful
     Providence, to introduce this subject, and urge it upon Congress?
     And would it not be appropriate for the American Association
     for the Advancement of Science to throw a petition before the
     government for such an object? Or might it not, with the consent
     of the eminent gentleman who has charge of the Coast Survey, be
     connected therewith, as it is with the Ordnance Survey in Great
     Britain.

The history of the American Association was then given:--

     Prof. Mather, I believe, through Prof. Emmons, first suggested to
     the New-York Board of Geologists in November, 1838, in a letter
     proposing a number of points for their consideration. I quote
     from him the following paragraph relating to the meeting. As to
     the credit he has here given me of having personally suggested
     the subject, I can say only that I had been in the habit for
     several years of making this meeting of scientific men a sort
     of hobby in my correspondence with such. Whether others did the
     same, I did not then, and do not now know. Were this the proper
     place, I could go more into detail on this point; but I will
     merely quote Prof. Mather's language to the Board:--

       * * * * "Would it not be well to suggest the propriety of a
     meeting of Geologists and other scientific men of our country at
     some central point next fall,--say at New-York or Philadelphia?
     There are many questions in our Geology that will receive new
     light from friendly discussion and the combined observations of
     various individuals who have noted them in different parts of our
     country. Such a meeting has been suggested by Prof. Hitchcock;
     and to me it seems desirable. It would undoubtedly be an
     advantage not only to science but to the several surveys that are
     now in progress and that may in future be authorized. It would
     tend to make known our scientific men to each other personally,
     give them more confidence in each other, and cause them to
     concentrate their observation on those questions that are of
     interest in either a scientific or economical point of view. More
     questions may be satisfactorily settled in a day by oral
     discussion in such a body, than a year by writing and
     publication."[A]

     [Footnote A: In the letter alluded to, on examination, we
     discover another passage bearing on the point, which, owing to
     the Professor's modesty we suspect, he did not read. Prof. Mather
     adds. "You, so far as I know, first suggested the matter of such
     an Association. I laid the matter before the Board of Geologists
     of New-York, specifying some of the advantages that might be
     expected to result; and Prof. Vanuxem probably made the motion
     before the Board in regard to it."]

     Though the Board adopted the plan of a meeting, various causes
     delayed the first over till April, 1840, when we assembled in
     Philadelphia, and spent a week in most profitable and pleasant
     discussion, and the presentation of papers. Our number that year
     was only 18, because confined almost exclusively to the State
     geologists; but the next year, when we met again in Philadelphia,
     and a more extended invitation was given, about eighty were
     present; and the members have been increasing to the present
     time. But, in fact, those first two meetings proved the type, in
     all things essential, of all that have followed. The principal
     changes have been those of expansion and the consequent
     introduction of many other branches of science with their eminent
     cultivators. In 1842, we changed the name to that of the
     Association of American Geologists and Naturalists; and in 1847,
     to that of the American Association for the Advancement of
     Science. I trust it has not yet reached its fullest development,
     as our country and its scientific men multiply, and new fields of
     discovery open.

Prof. H. said of this particular occasion:--

     We may be quite sure that this Hall will be a center of deep
     interest to coming generations. Long after we shall have passed
     away will the men of New-York, as they survey these monuments,
     feel stimulated to engage in other noble enterprises by this
     work of their progenitors, and from many a distant part of the
     civilized world will men come here to solve their scientific
     questions, and to bring far-off regions into comparison with
     this. New-York, then, by her liberal patronage, has not only
     acquired an honorable name among those living in all civilized
     lands, but has secured the voice of History to transmit her fame
     to far-off generations.


              SIR WILLIAM LOGAN ASKS "THE WAY TO ALBANY."

Sir WILLIAM E. LOGAN, of Canada, in a brief speech acknowledged the
services rendered by the New-York Survey to Canada. He should manifest
ingratitude if he declined to unite in the joyful occasion of
inaugurating the Museum which was to hold forever the evidence of the
truth of its published results. The Survey of Canada had been ordered,
and the Commission of five years twice renewed; and the last time, the
provision for it was more than doubled. It happened to him, as Mr.
Agassiz had said: after crossing the ocean first, the first thing he
asked was, "Which is the way to Albany?" and when he arrived here, he
found that with the aid of Prof. Hall's discoveries, he had only to take
up the different formations as he had left them on the boundary line,
and follow them into Canada. It was both a convenience and a necessity
to adopt the New-York nomenclature, which was thus extended over an area
six times as large as New-York. In Paris he heard De Vernier using the
words Trenton and Niagara, as if they were household words. He was
delighted to witness the impatience with which Barron inquired when the
remaining volumes of the Paleontology of New-York would be published.
Your Paleontological reputation, said he, has made New-York known,
even among men not scientific, all over Europe. I hope you will not
stop here, but will go on and give us in equally thorough, full, and
magnificent style, the character of the Durassic and Cretaceous
formations.


                     PROFESSOR HENRY ON DUTCHMEN.

Professor HENRY was at a loss to know by what process they had arrived
at the conclusion that seven men of science must be substituted to fill
the place of one distinguished statesman whom they had expected to hear.
He prided himself on his Albany nativity. He was proud of the old Dutch
character, that was the substratum of the city. The Dutch are hard to be
moved, but when they do start their momentum is not as other men's in
proportion to the velocity, but as the square of the velocity. So when
the Dutchman goes three times as fast, he has nine times the force of
another man. The Dutchman has an immense potentia agency, but it wants a
small spark of Yankee enterprise to touch it off. In this strain the
Professor continued, making his audience very merry, and giving them a
fine chance to express themselves with repeated explosions of laughter.


          PROFESSOR DAVIES ON THE PRACTICAL NATURE OF SCIENCE.

Prof. CHARLES DAVIES was introduced by EX-GOVERNOR SEYMOUR, and spoke
briefly, but humorously and very much to the point, in defense of the
practical character of scientific researches. He said that to one
accustomed to speak only on the abstract quantities of number and space,
this was an unusual occasion, and this an unusual audience; and inquired
how he could discuss the abstract forms of geometry, when he saw before
him, in such profusion, the most beautiful real forms that Providence
has vouchsafed to the life of man. He proposed to introduce and develop
but a single train of thought--the unchangeable connection between what
in common language is called the theoretical and practical, but in more
technical phraseology, the ideal and the actual. The actual, or true
practical, consists in the uses of the forces of nature, according to
the laws of nature; and here we must distinguish between it and the
empirical, which uses, or attempts to use, those forces, without a
knowledge of the laws. The true practical, therefore, is the result, or
actual, of an antecedent ideal. The ideal, full and complete, must exist
in the mind before the actual can be brought forth according to the
laws of science. Who, then, are the truly practical men of our age? Are
they not those who are engaged most laboriously and successfully in
investigating the great laws? Are they not those who are pressing out
the boundaries of knowledge, and conducting the mind into new and
unexplored regions, where there may yet be discovered a California of
undeveloped thought? Is not the gentleman from Massachusetts (Professor
Agassiz) the most practical man in our country in the department of
Natural History, not because he has collected the greatest number of
specimens, but because he has laid open to us all the laws of the animal
kingdom? Are the formulas written on the black-board by the gentleman
from Cambridge (Prof. Pierce) of no practical value, because they cannot
be read by the uninstructed eye? A single line may contain the elements
of the motions of all the heavenly bodies; and the eye of science,
taking its stand-point at the center of gravity of the system, will
see in the equation the harmonious revolutions of all the bodies which
circle the heavens. It is such labors and such generalizations that have
rendered his name illustrious in the history of mathematical science.
Is it of no practical value that the Chief of the Coast Survey (Prof.
Bache), by a few characters written upon paper, at Washington, has
determined the exact time of high and low tide in the harbor of Boston,
and can determine, by a similar process, the exact times of high and low
water at every point on the surface of the globe? Are not these results,
the highest efforts of science, also of the greatest practical utility?
And may we not, then, conclude that _there is nothing truly practical
which is not the consequence of an antecedent ideal_?

Science is to art what the great fly-wheel and governor of a
steam-engine are to the working part of the machinery--it guides,
regulates, and controls the whole. Science and art are inseparably
connected; like the Siamese Twins, they cannot be separated without
producing the death of both.

How, then, are we to regard the superb specimens of natural history,
which the liberality, the munificence; and the wisdom of our State have
collected at the Capitol? They are the elements from which we can here
determine all that belongs to the Natural History of our State; and may
we not indulge the hope, that science and genius will come here, and,
striking them with a magic wand, cause the true practical to spring into
immortal life?


Remarks were also uttered by Prof. CHESTER DEWEY, President ANDERSON,
and Rev. Dr. COX.

And thus ended the Inauguration of the State Geological Hall.

We turn to the Observatory, in regular order of succession.



                  INAUGURATION OF DUDLEY OBSERVATORY.


The Inauguration of the Dudley Observatory took place under the same
tent which was appropriated to the dedication of the Geological Hall,
and on the day following that event. An immense audience was assembled,
drawn by the announcement of Mr. EVERETT'S Oration.

At a little past three o'clock the procession of _savans_ arrived from
the Assembly Chamber, escorted by the Burgesses Corps. Directly in front
of the speaker's stand sat Mrs. DUDLEY, the venerable lady to whose
munificence the world is indebted for this Observatory. She was dressed
in an antique, olive-colored silk, with a figure of a lighter color, a
heavy, red broché shawl, and her bonnet, cap, &c., after the strictest
style of the old school. Her presence added a new point of interest.

Prayer having been uttered by Rev. Dr. SPRAGUE, of Albany, THOMAS W.
OLCOTT, Esq., introduced to the audience Ex-Governor WASHINGTON HUNT,
who spoke briefly in honor of the memory of CHARLES E. DUDLEY, whose
widow has founded and in part endowed this Observatory with a liberality
so remarkable.

Remarks were offered by Dr. B. A. GOULD and Prof. A. D. BACHE, and
Judge HARRIS read the following letter from Mrs. DUDLEY, announcing
another munificent donation in aid of the new Observatory--$50,000,
in addition to the $25,000 which had been already expended in the
construction of the building. The letter was received with shouts of
applause, Prof. AGASSIZ rising and leading the vast assemblage in three
vehement cheers in honor of Mrs. DUDLEY!

                                        ALBANY, Thursday, Aug. 14, 1856.

_To the Trustees of the Dudley Observatory:_

     GENTLEMEN,--I scarcely need refer in a letter to you to the
     modest beginning and gradual growth of the institution over which
     you preside, and of which you are the responsible guardians. But
     we have arrived at a period in its history when its inauguration
     gives to it and to you some degree of prominence, and which must
     stamp our past efforts with weakness and inconsideration, or
     exalt those of the future to the measure of liberality necessary
     to certain success.

     You have a building erected and instruments engaged of unrivaled
     excellence; and it now remains to carry out the suggestion of
     the Astronomer Royal of England in giving permanency to the
     establishment. The very distinguished Professors BACHE, PIERCE,
     and GOULD, state in a letter, which I have been permitted to see,
     that to expand this institution to the wants of American science
     and the honors of a national character, will require an
     investment which will yield annually not less than $10,000; and
     these gentlemen say, in the letter referred to,--

     "If the greatness of your giving can rise to this occasion, as
     it has to all our previous suggestions, with such unflinching
     magnanimity, we promise you our earnest and hearty coöperation,
     and stake our reputation that the scientific success shall fill
     up the measure of your hopes and anticipations."

     For the attainment of an object so rich in scientific reward and
     national glory, guaranteed by men with reputations as exalted and
     enduring as the skies upon which they are written, contributions
     should be general, and not confined to an individual or a place.

     For myself, I offer, as my part of the required endowment, the
     sum of $50,000 in addition to the advances which I have already
     made; and, trusting that the name which you have given to the
     Observatory may not be regarded as an undeserved compliment, and
     that it will not diminish the public regard by giving to the
     institution a seemingly individual character,

                     I remain, Gentlemen, your obedient servant,
                                                    BLANDINA DUDLEY.

Judge HARRIS then introduced the Orator of the occasion, Hon. EDWARD
EVERETT, whose speech is given verbatim in these pages.


                THE INSTRUMENTS OF THE DUDLEY OBSERVATORY.

During the Sessions of the American Association, the new Astronomical
Instruments of Dudley Observatory were described in detail by Dr. B. A.
GOULD, who is the Astronomer in charge. We condense his statements:--

     The Meridian Circle and Transit instrument were ordered from
     Pistor & Martins, the celebrated manufacturers of Berlin, by
     whom the new instrument at Ann Arbor was made. A number of
     improvements have been introduced in the Albany instruments, not
     perhaps all absolutely new, but an eclectic combination of late
     adaptations with new improvements. Dr. Gould made a distinction
     of modern astronomical instruments into two classes, the English
     and the German. The English is the massive type; the German,
     light and airy. The English instrument is the instrument of the
     engineer; the German, the instrument of the artist. In ordering
     the instruments for the Albany Observatory, the Doctor preferred
     the German type and discarded the heavier English. He instanced,
     as a specimen of the latter, the new instrument at Greenwich,
     recently erected under the superintendence of the Astronomer
     Royal. That instrument registers observations in single seconds;
     the Dudley instrument will register to tenths of seconds. That
     has six or eight microscopes; this has four. That has a gas lamp,
     by the light of which the graduations are read off; the Albany
     instrument has no lamp, and the Doctor considered the lamp a
     hazardous experiment, affecting the integrity of the experiment,
     not only by its radiant heat but by the currents of heated air
     which it produces. The diameter of the object-glass of the Albany
     instrument is 7-1/2 French inches clear aperture, or 8 English
     inches, and the length of the tube 8 feet. He would have
     preferred an instrument in which the facilities of manipulation
     would have been greater, but was hampered by one proviso, upon
     which the Trustees of the institution insisted--that this should
     be the biggest instrument of its kind; and the instruction was
     obeyed. The glass was made by Chance, and ground by Pistor
     himself. The eye-piece is fitted with two micrometers, for
     vertical and horizontal observations. Another apparatus provides
     for the detection and measurement of the flexure of the tube.
     Much trouble was experienced in securing a good casting for the
     steel axis of the instrument. Three were found imperfect under
     the lathe, and the fourth was chosen; but even then the pivots
     were made in separate pieces, which were set in very deeply and
     welded. Dr. Gould said he had been requested by the gentlemen who
     had this enterprise in charge to suggest, as a mark of respect to
     a gentleman of Albany who was a munificent patron of Science,
     that this instrument be known as the Olcott Meridian Circle.


                     WHAT THE DUDLEY OBSERVATORY IS.

It stands a mile from the Capitol, in the city of Albany, upon the crest
of a hill, so difficult of approach, as to be in reality a Hill of
Science. There are two ways of getting to it. In both cases there are
rail fences to be clambered over, and long grass to wade through,
settlements to explore, and a clayey road to travel; but these are minor
troubles. The elevation of the hill above tide-water is, perhaps, 200
feet; its distance from the Capitol about a mile and a half. The view
for miles is unimpeded; and the Observatory is belted about with woods
and verdant lawns. There could not be a finer location or a purer air.
The plateau contains some fifteen acres.

The Observatory is constructed in the form of a Latin cross. Its eastern
arm is an apartment 22 by 24 feet, in which the meridian circle is to be
placed. The western arm is a room of the same dimensions, intended for
the transit instrument. From the north and south faces of both rooms
are semi-circular apsides, projecting 6 feet 6 inches, containing the
Collimator piers and the vertical openings for observation. The entire
length of each room is, therefore, 37 feet. In the northern arm are
placed the library, 23 feet by 27 feet; two computing rooms, 12 feet
by 23 feet each; side entrance halls, staircases, &c. The southern arm
contains the principal entrance, consisting of an arched colonnade of
four Tuscan columns, surrounded by a pediment. A broad flight of stone
steps leads to this colonnade; and through the entrance door beneath
it to the main central hall, 28 feet square, in which are placed (in
niches) the very beautiful electric clock and pendulum presented by
Erastus Corning, Esq. The center of this hall is occupied by a massive
pier of stone, 10 feet square, passing from the basement into the dome
above, and intended for the support of the great heliometer. Directly
opposite the entrance door is a large niche, in which it is proposed to
place the bust of the late Mr. Dudley. Immediately above this hall is
the equatorial room, a circular apartment, 22 feet 6 inches in diameter,
and 24 feet high, covered by a low conical roof, in which and in the
walls are the usual observing slits. The drum, or cylindrical portion,
of this room is divided into two parts--the lower one fixed, the upper,
revolving on cast-iron balls moving in grooved metal plates, can command
the entire horizon.

The building is in two stories--the upper of brick, with freestone
quoins, impost and window and door dressings, rests upon a rusticated
basement of freestone, six feet high. The style adopted is the modern
Italian, of which it is a very excellent specimen. The building has been
completed some time; but, in consequence of the size of the instruments
now procured being greater than that originally contemplated, sundry
alterations were required in the Transit and Meridian Circle rooms.
These consist of the semi-circular projections already mentioned, and
which, by varying the outlines of the building, will add greatly to its
beauty and picturesqueness.

The piers for the Meridian Circle and Transit have, after careful
investigation, been procured from the Lockport quarries. The great
density and uniformity of the structure of the stone, and the facility
with which such large masses as are required for this purpose can be
procured there, have induced the selection of these quarries. The stones
will weigh from six and a half to eight tons each.

The main building was erected from the drawings of Messrs. Woollett and
Ogden, Architects, Albany; the additions and the machinery have been
designed by Mr. W. Hodgins, Civil Engineer; and the latter is now being
constructed under his superintendence, in a very superior manner, at the
iron works of Messrs. Pruyn and Lansing, Albany.

The entire building is a tasteful and elegant structure, much superior
in architectural character to any other in America devoted to a similar
purpose.



                                ORATION.


FELLOW CITIZENS OF ALBANY:--

Assembled as we are, under your auspices, in this ancient and hospitable
city, for an object indicative of a highly-advanced stage of scientific
culture, it is natural, in the first place, to cast a historical glance
at the past. It seems almost to surpass belief, though an unquestioned
fact, that more than a century should have passed away, after Cabot had
discovered the coast of North America for England, before any knowledge
was gained of the noble river on which your city stands, and which was
destined by Providence to determine, in after times, the position of the
commercial metropolis of the Continent. It is true that Verazzano, a
bold and sagacious Florentine navigator, in the service of France, had
entered the Narrows in 1524, which he describes as a very large river,
deep at its mouth, which forced its way through steep hills to the sea;
but though he, like all the naval adventurers of that age, was sailing
westward in search of a shorter passage to India, he left this part
of the coast without any attempt to ascend the river; nor can it be
gathered from his narrative that he believed it to penetrate far into
the interior.


                      VOYAGE OF HENDRICK HUDSON.

Near a hundred years elapsed before that great thought acquired
substance and form. In the spring of 1609, the heroic but unfortunate
Hudson, one of the brightest names in the history of English maritime
adventure, but then in the employment of the Dutch East India Company,
in a vessel of eighty tons, bearing the very astronomical name of the
_Half Moon_, having been stopped by the ice in the Polar Sea, in the
attempt to reach the East by the way of Nova Zembla, struck over to the
coast of America in a high northern latitude. He then stretched down
southwardly to the entrance of Chesapeake Bay (of which he had gained
a knowledge from the charts and descriptions of his friend, Captain
Smith), thence returning to the north, entered Delaware Bay, standing
out again to sea, arrived on the second of September in sight of the
"high hills" of Neversink, pronouncing it "a good land to fall in with,
and a pleasant land to see;" and, on the following morning, sending his
boat before him to sound the way, passed Sandy Hook, and there came to
anchor on the third of September, 1609; two hundred and forty-seven
years ago next Wednesday. What an event, my friends, in the history of
American population, enterprise, commerce, intelligence, and power--the
dropping of that anchor at Sandy Hook!


                     DISCOVERY OF THE HUDSON RIVER.

Here he lingered a week, in friendly intercourse with the natives of New
Jersey, while a boat's company explored the waters up to Newark Bay. And
now the great question. Shall he turn back, like Verazzano, or ascend
the stream? Hudson was of a race not prone to turn back, by sea or by
land. On the eleventh of September he raised the anchor of the _Half
Moon_, passed through the Narrows, beholding on both sides "as beautiful
a land as one can tread on;" and floated cautiously and slowly up the
noble stream--the first ship that ever rested on its bosom. He passed
the Palisades, nature's dark basaltic Malakoff, forced the iron gateway
of the Highlands, anchored, on the fourteenth, near West Point; swept
onward and upward, the following day, by grassy meadows and tangled
slopes, hereafter to be covered with smiling villages;--by elevated
banks and woody heights, the destined site of towns and cities--of
Newburg, Poughkeepsie, Catskill;--on the evening of the fifteenth
arrived opposite "the mountains which lie from the river side," where
he found "a very loving people and very old men;" and the day following
sailed by the spot hereafter to be honored by his own illustrious name.
One more day wafts him up between Schodac and Castleton; and here he
landed and passed a day with the natives,--greeted with all sorts of
barbarous hospitality,--the land "the finest for cultivation he ever set
foot on," the natives so kind and gentle, that when they found he would
not remain with them over night, and feared that he left them--poor
children of nature!--because he was afraid of their weapons,--he, whose
quarter-deck was heavy with ordnance,--they "broke their arrows in
pieces, and threw them in the fire." On the following morning, with
the early flood-tide, on the 19th of September, 1609, the _Half Moon_
"ran higher up, two leagues above the Shoals," and came to anchor in
deep water, near the site of the present city of Albany. Happy if he
could have closed his gallant career on the banks of the stream which
so justly bears his name, and thus have escaped the sorrowful and
mysterious catastrophe which awaited him the next year!


            CHAMPLAIN'S VOYAGE AND THE GROWTH OF COLONIES.

But the discovery of your great river and of the site of your ancient
city, is not the only event which renders the year 1609 memorable in the
annals of America and the world. It was one of those years in which a
sort of sympathetic movement toward great results unconsciously pervades
the races and the minds of men. While Hudson discovered this mighty
river and this vast region for the Dutch East India Company, Champlain,
in the same year, carried the lilies of France to the beautiful
lake which bears his name on your northern limits; the languishing
establishments of England in Virginia were strengthened by the second
charter granted to that colony; the little church of Robinson removed
from Amsterdam to Leyden, from which, in a few years, they went forth,
to lay the foundations of New England on Plymouth Rock; the seven United
Provinces of the Netherlands, after that terrific struggle of forty
years (the commencement of which has just been embalmed in a record
worthy of the great event by an American historian) wrested from Spain
the virtual acknowledgment of their independence, in the Twelve Years'
Truce; and James the First, in the same year, granted to the British
East India Company their first permanent charter,--corner-stone of an
empire destined in two centuries to overshadow the East.


                         GALILEO'S DISCOVERIES

One more incident is wanting to complete the list of the memorable
occurrences which signalize the year 1609, and one most worthy to be
remembered by us on this occasion. Cotemporaneously with the events
which I have enumerated--eras of history, dates of empire, the
starting-point in some of the greatest political, social, and moral
revolutions in our annals, an Italian astronomer, who had heard of the
magnifying glasses which had been made in Holland, by which distant
objects could be brought seemingly near, caught at the idea, constructed
a telescope, and pointed it to the heavens. Yes, my friends, in the same
year in which Hudson discovered your river and the site of your ancient
town, in which Robinson made his melancholy hegira from Amsterdam to
Leyden, Galileo Galilei, with a telescope, the work of his own hands,
discovered the phases of Venus and the satellites of Jupiter; and now,
after the lapse of less than two centuries and a half, on a spot then
embosomed in the wilderness--the covert of the least civilized of all
the races of men--we are assembled--descendants of the Hollanders,
descendants of the Pilgrims, in this ancient and prosperous city, to
inaugurate the establishment of a first-class Astronomical Observatory.


                         EARLY DAYS OF ALBANY.

One more glance at your early history. Three years after the landing of
the Pilgrims at Plymouth, Fort Orange was erected, in the center of what
is now the business part of the city of Albany; and, a few years later,
the little hamlet of Beverswyck began to nestle under its walls. Two
centuries ago, my Albanian friends, this very year, and I believe this
very month of August, your forefathers assembled, not to inaugurate an
observatory, but to lay the foundations of a new church, in the place of
the rude cabin which had hitherto served them in that capacity. It was
built at the intersection of Yonker's and Handelaar's, better known
to you as State and Market streets. Public and private liberality
coöperated in the important work. The authorities at the Fort gave
fifteen hundred guilders; the patroon of that early day, with the
liberality coëval with the name and the race, contributed a thousand;
while the inhabitants, for whose benefit it was erected, whose numbers
were small and their resources smaller, contributed twenty beavers "for
the purchase of an oaken pulpit in Holland." Whether the largest part of
this subscription was bestowed by some liberal benefactress, tradition
has not informed us.


                             NEW AMSTERDAM

Nor is the year 1656 memorable in the annals of Albany alone. In
that same year your imperial metropolis, then numbering about three
hundred inhabitants, was first laid out as a city, by the name of New
Amsterdam.[A] In eight years more, New Netherland becomes New York; Fort
Orange and its dependent hamlet assumes the name of Albany. A century
of various fortune succeeds; the scourge of French and Indian war is
rarely absent from the land; every shock of European policy vibrates
with electric rapidity across the Atlantic; but the year 1756 finds
a population of 300,000 in your growing province. Albany, however,
may still be regarded almost as a frontier settlement. Of the twelve
counties into which the province was divided a hundred years ago, the
county of Albany comprehended all that lay north and west of the city;
and the city itself contained but about three hundred and fifty houses.

[Footnote A: These historical notices are, for the most part, abridged
from Mr. Brodhead's excellent history of New York.]


                           TWO HUNDRED YEARS.

One more century; another act in the great drama of empire; another
French and Indian War beneath the banners of England; a successful
Revolution, of which some of the most momentous events occurred within
your limits; a union of States; a Constitution of Federal Government;
your population carried to the St. Lawrence and the great Lakes, and
their waters poured into the Hudson; your territory covered with a
net-work of canals and railroads, filled with life and action, and
power, with all the works of peaceful art and prosperous enterprise with
all the institutions which constitute and advance the civilization of
the age; its population exceeding that of the Union at the date of the
Revolution; your own numbers twice as large as those of the largest city
of that day, you have met together, my Friends, just two hundred years
since the erection of the little church of Beverswyck, to dedicate a
noble temple of science and to take a becoming public notice of the
establishment of an institution, destined, as we trust, to exert a
beneficial influence on the progress of useful knowledge at home and
abroad, and through that on the general cause of civilization.


                          SCIENTIFIC PROGRESS.

You will observe that I am careful to say the progress of science "at
home and abroad;" for the study of Astronomy in this country has long
since, I am happy to add, passed that point where it is content to
repeat the observations and verify the results of European research. It
has boldly and successfully entered the field of original investigation,
discovery, and speculation; and there is not now a single department of
the science in which the names of American observers and mathematicians
are not cited by our brethren across the water, side by side with the
most eminent of their European contemporaries.

This state of things is certainly recent. During the colonial period
and in the first generation after the Revolution, no department of
science was, for obvious causes, very extensively cultivated in
America--astronomy perhaps as much as the kindred branches. The
improvement in the quadrant, commonly known as Hadley's, had already
been made at Philadelphia by Godfrey, in the early part of the last
century; and the beautiful invention of the collimating telescope was
made at a later period by Rittenhouse, an astronomer of distinguished
repute. The transits of Venus of 1761 and 1769 were observed, and
orreries were constructed in different parts of the country; and some
respectable scientific essays are contained and valuable observations
are recorded in the early volumes of the Transactions of the
Philosophical Society, at Philadelphia, and the American Academy of Arts
and Sciences at Boston and Cambridge. But in the absence of a numerous
class of men of science to encourage and aid each other, without
observatories and without valuable instruments, little of importance
could be expected in the higher walks of astronomical life.


                         AMERICAN OBSERVATIONS.

The greater the credit due for the achievement of an enterprise
commenced in the early part of the present century, and which would
reflect honor on the science of any country and any age; I mean the
translation and commentary on Laplace's _Mécanique Celeste_, by
Bowditch; a work of whose merit I am myself wholly unable to form
an opinion, but which I suppose places the learned translator and
commentator on a level with the ablest astronomers and geometers of the
day. This work may be considered as opening a new era in the history
of American science. The country was still almost wholly deficient in
instrumental power; but the want was generally felt by men of science,
and the public mind in various parts of the country began to be turned
towards the means of supplying it. In 1825, President John Quincy Adams
brought the subject of a National Observatory before Congress. Political
considerations prevented its being favorably entertained at that
time; and it was not till 1842, and as an incident of the exploring
expedition, that an appropriation was made for a dépôt for the charts
and instruments of the Navy. On this modest basis has been reared the
National Observatory at Washington; an institution which has already
taken and fully sustains an honorable position among the scientific
establishments of the age.

Besides the institution at Washington, fifteen or twenty observatories
have within the last few years, been established in different parts
of the country, some of them on a modest scale, for the gratification
of the scientific taste and zeal of individuals, others on a broad
foundation of expense and usefulness. In these establishments,
public and private, the means are provided for the highest order of
astronomical observation, research, and instruction. There is already
in the country an amount of instrumental power (to which addition
is constantly making), and of mathematical skill on the part of our
men of science, adequate to a manly competition with their European
contemporaries. The fruits are already before the world, in the
triangulation of several of the States, in the great work of the Coast
Survey, in the numerous scientific surveys of the interior of the
Continent, in the astronomical department of the Exploring Expedition,
in the scientific expedition to Chili, in the brilliant hydrographical
labors of the Observatory at Washington, in the published observations
of Washington and Cambridge, in the Journal conducted by the Nestor
of American Science, now in its eighth lustrum; in the _Sidereal
Messenger_, the _Astronomical Journal_, and the _National Ephemeris_;
in the great chronometrical expeditions to determine the longitude of
Cambridge, better ascertained than that of Paris was till within the
last year; in the prompt rectification of the errors in the predicted
elements of Neptune; in its identification with Lalande's missing star,
and in the calculation of its ephemeris; in the discovery of the
satellite of Neptune, of the eighth satellite of Saturn, and of the
innermost of its rings; in the establishment, both by observation and
theory, of the non-solid character of Saturn's rings; in the separation
and measurement of many double and triple stars, amenable only to
superior instrumental power, in the immense labor already performed
in preparing star catalogues, and in numerous accurate observations
of standard stars; in the diligent and successful observation of the
meteoric showers; in an extensive series of magnetic observations; in
the discovery of an asteroid and ten or twelve telescopic comets; in
the resolution of nebulæ which had defied every thing in Europe but
Lord Rosse's great reflector; in the application of electricity to the
measurement of differences in longitude; in the ascertainment of the
velocity of the electro-magnetic fluid, and its truly wonderful uses
in recording astronomical observations. These are but a portion of the
achievements of American astronomical science within fifteen or twenty
years, and fully justify the most sanguine anticipations of its further
progress.

How far our astronomers may be able to pursue their researches, will
depend upon the resources of our public institutions, and the liberality
of wealthy individuals in furnishing the requisite means. With the
exception of the observatories at Washington and West Point, little
can be done, or be expected to be done, by the government of the Union
or the States; but in this, as in every other department of liberal
art and science, the great dependence,--and may I not add, the safe
dependence?--as it ever has been, must continue to be upon the bounty of
enlightened, liberal, and public-spirited individuals.


                         THE DUDLEY OBSERVATORY.

It is by a signal exercise of this bounty, my Friends, that we are
called together to-day. The munificence of several citizens of this
ancient city, among whom the first place is due to the generous lady
whose name has with great propriety been given to the institution, has
furnished the means for the foundation of the Dudley Observatory at
Albany. On a commanding elevation on the northern edge of the city,
liberally given for that purpose by the head of a family in which the
patronage of science is hereditary, a building of ample dimensions has
been erected, upon a plan which combines all the requisites of solidity,
convenience, and taste. A large portion of the expense of the structure
has been defrayed by Mrs. Blandina Dudley; to whose generosity, and that
of several other public-spirited individuals, the institution is also
indebted for the provision which has been made for an adequate supply of
first-class instruments, to be executed by the most eminent makers in
Europe and America; and which, it is confidently expected, will yield to
none of their class in any observatory in the world.[A]

[Footnote A: Prof. Loomis, in _Harper's Magazine_ for June, p. 49.]

With a liberal supply of instrumental power; established in a community
to whose intelligence and generosity its support may be safely confided,
and whose educational institutions are rapidly realizing the conception
of a university; countenanced by the gentleman who conducts the United
States Coast Survey with such scientific skill and administrative
energy; committed to the immediate supervision of an astronomer to
whose distinguished talent had been added the advantage of a thorough
scientific education in the most renowned universities of Europe, and
who, as the editor of the _American Astronomical Journal_, has shown
himself to be fully qualified for the high trust;--under these favorable
circumstances, the Dudley Observatory at Albany takes its place among
the scientific foundations of the country and the world.


                          WONDERS OF ASTRONOMY.

It is no affected modesty which leads me to express the regret that this
interesting occasion could not have taken place under somewhat different
auspices. I feel that the duty of addressing this great and enlightened
assembly, comprising so much of the intelligence of the community and of
the science of the country, ought to have been elsewhere assigned; that
it should have devolved upon some one of the eminent persons, many of
whom I see before me, to whom you have been listening the past week,
who, as observers and geometers, could have treated the subject with a
master's power; astronomers, whose telescopes have penetrated the depths
of the heavens, or mathematicians, whose analysis unthreads the maze
of their wondrous mechanism. If, instead of commanding, as you easily
could have done, qualifications of this kind, your choice has rather
fallen on one making no pretensions to the honorable name of a man of
science,--but whose delight it has always been to turn aside from the
dusty paths of active life, for an interval of recreation in the green
fields of sacred nature in all her kingdoms,--it is, I presume, because
you have desired on an occasion of this kind, necessarily of a popular
character, that those views of the subject should be presented which
address themselves to the general intelligence of the community, and
not to its select scientific circles. There is, perhaps, no branch of
science which to the same extent as astronomy exhibits phenomena which,
while they task the highest powers of philosophical research, are also
well adapted to arrest the attention of minds barely tinctured with
scientific culture, and even to teach the sensibilities of the wholly
uninstructed observer. The profound investigations of the chemist into
the ultimate constitution of material nature, the minute researches of
the physiologist into the secrets of animal life, the transcendental
logic of the geometer, clothed in a notation, the very sight of which
terrifies the uninitiated,--are lost on the common understanding. But
the unspeakable glories of the rising and the setting sun; the serene
majesty of the moon, as she walks in full-orbed brightness through the
heavens; the soft witchery of the morning and the evening star; the
imperial splendors of the firmament on a bright, unclouded night; the
comet, whose streaming banner floats over half the sky,--these are
objects which charm and astonish alike the philosopher and the peasant,
the mathematician who weighs the masses and defines the orbits of the
heavenly bodies, and the untutored observer who sees nothing beyond the
images painted upon the eye.


                  WHAT IS AN ASTRONOMICAL OBSERVATORY?

An astronomical observatory, in the general acceptation of the word, is
a building erected for the reception and appropriate use of astronomical
instruments, and the accommodation of the men of science employed
in making and reducing observations of the heavenly bodies. These
instruments are mainly of three classes, to which I believe all others
of a strictly astronomical character may be referred.

1. The instruments by which the heavens are inspected, with a view to
discover the existence of those celestial bodies which are not visible
to the naked eye (beyond all comparison more numerous than those which
are), and the magnitude, shapes, and other sensible qualities, both of
those which are and those which are not thus visible to the unaided
sight. The instruments of this class are designated by the general name
of Telescope, and are of two kinds,--the refracting telescope, which
derives its magnifying power from a system of convex lenses; and the
reflecting telescope, which receives the image of the heavenly body upon
a concave mirror.

2d. The second class of instruments consists of those which are designed
principally to measure the angular distances of the heavenly bodies
from each other, and their time of passing the meridian. The transit
instrument, the meridian circle, the mural circle, the heliometer,
and the sextant, belong to this class. The brilliant discoveries
of astronomy are, for the most part, made with the first class of
instruments; its practical results wrought out by the second.

3d. The third class contains the clock, with its subsidiary apparatus,
for measuring the time and making its subdivisions with the greatest
possible accuracy; indispensable auxiliary of all the instruments, by
which the positions and motions of the heavenly bodies are observed, and
measured, and recorded.


                            THE TELESCOPE.

The telescope may be likened to a wondrous cyclopean eye, endued with
superhuman power, by which the astronomer extends the reach of his
vision to the further heavens, and surveys galaxies and universes
compared with which the solar system is but an atom floating in the air.
The transit may be compared to the measuring rod which he lays from
planet to planet, and from star to star, to ascertain and mark off the
heavenly spaces, and transfer them to his note-book; the clock is that
marvelous apparatus by which he equalizes and divides into nicely
measured parts a portion of that unconceived infinity of duration,
without beginning and without end, in which all existence floats as on a
shoreless and bottomless sea.

In the contrivance and the execution of these instruments, the utmost
stretch of inventive skill and mechanical ingenuity has been put forth.
To such perfection have they been carried, that a single second of
magnitude or space is rendered a distinctly visible and appreciable
quantity. "The arc of a circle," says Sir J. Herschell, "subtended by
one second, is less than the 200,000th part of the radius, so that on a
circle of six feet in diameter, it would occupy no greater linear extent
than 1-5700 part of an inch, a quantity requiring a powerful microscope
to be discerned at all."[A] The largest body in our system, the sun,
whose real diameter is 882,000 miles, subtends, at a distance of
95,000,000 miles, but an angle of little more than 32; while so
admirably are the best instruments constructed, that both in Europe
and America a satellite of Neptune, an object of comparatively
inconsiderable diameter, has been discovered at a distance of 2,850
millions of miles.

[Footnote A: _Outlines_, § 131.]


                 UTILITY OF ASTRONOMICAL OBSERVATIONS.

The object of an observatory, erected and supplied with instruments of
this admirable construction, and at proportionate expense, is, as I have
already intimated, to provide for an accurate and systematic survey
of the heavenly bodies, with a view to a more correct and extensive
acquaintance with those already known, and as instrumental power
and skill in using it increase, to the discovery of bodies hitherto
invisible, and in both classes to the determination of their distances,
their relations to each other, and the laws which govern their
movements.

Why should we wish to obtain this knowledge? What inducement is there
to expend large sums of money in the erection of observatories, and in
furnishing them with costly instruments, and in the support of the men
of science employed in making, discussing, and recording, for successive
generations, those minute observations of the heavenly bodies?

In an exclusively scientific treatment of this subject, an inquiry
into its utilitarian relations would be superfluous--even wearisome.
But on an occasion like the present, you will not, perhaps, think it
out of place if I briefly answer the question, What is the use of an
observatory, and what benefit may be expected from the operations of
such an establishment in a community like ours?

1. In the first place, then, we derive from the observations of the
heavenly bodies which are made at an observatory, our only adequate
measures of time, and our only means of comparing the time of one
place with the time of another. Our artificial time-keepers--clocks,
watches, and chronometers--however ingeniously contrived and admirably
fabricated, are but a transcript, so to say, of the celestial motions,
and would be of no value without the means of regulating them by
observation. It is impossible for them, under any circumstances, to
escape the imperfection of all machinery the work of human hands; and
the moment we remove with our time-keeper east or west, it fails us. It
will keep home time alone, like the fond traveler who leaves his heart
behind him. The artificial instrument is of incalculable utility, but
must itself be regulated by the eternal clock-work of the skies.


         RELATIONS BETWEEN NATURAL PHENOMENA AND DAILY LIFE.

This single consideration is sufficient to show how completely the daily
business of life is affected and controlled by the heavenly bodies.
It is they--and not our main-springs, our expansion balances, and our
compensation pendulums--which give us our time. To reverse the line of
Pope:

            "'Tis with our watches as our judgments;--none
              Go just alike, but each believes his own."

But for all the kindreds and tribes and tongues of men--each upon their
own meridian--from the Arctic pole to the equator, from the equator to
the Antarctic pole, the eternal sun strikes twelve at noon, and the
glorious constellations, far up in the everlasting belfries of the
skies, chime twelve at midnight;--twelve for the pale student over his
flickering lamp; twelve amid the flaming glories of Orion's belt, if he
crosses the meridian at that fated hour; twelve by the weary couch of
languishing humanity; twelve in the star-paved courts of the Empyrean;
twelve for the heaving tides of the ocean; twelve for the weary arm of
labor; twelve for the toiling brain; twelve for the watching, waking,
broken heart; twelve for the meteor which blazes for a moment and
expires; twelve for the comet whose period is measured by centuries;
twelve for every substantial, for every imaginary thing, which exists in
the sense, the intellect, or the fancy, and which the speech or thought
of man, at the given meridian, refers to the lapse of time.

Not only do we resort to the observation of the heavenly bodies for the
means of regulating and rectifying our clocks, but the great divisions
of day and month and year are derived from the same source. By the
constitution of our nature, the elements of our existence are closely
connected with celestial times. Partly by his physical organization,
partly by the experience of the race from the dawn of creation, man as
he is, and the times and seasons of the heavenly bodies, are part and
parcel of one system. The first great division of time, the day-night
(nychthemerum), for which we have no precise synonym in our language,
with its primal alternation of waking and sleeping, of labor and rest,
is a vital condition of the existence of such a creature as man. The
revolution of the year, with its various incidents of summer and winter,
and seed-time and harvest, is not less involved in our social, material,
and moral progress. It is true that at the poles, and on the equator,
the effects of these revolutions are variously modified or wholly
disappear; but as the necessary consequence, human life is extinguished
at the poles, and on the equator attains only a languid or feverish
development. Those latitudes only in which the great motions and
cardinal positions of the earth exert a mean influence, exhibit man in
the harmonious expansion of his powers. The lunar period, which lies
at the foundation of the _month_, is less vitally connected with human
existence and development; but is proved by the experience of every age
and race to be eminently conducive to the progress of civilization and
culture.

But indispensable as are these heavenly measures of time to our life and
progress, and obvious as are the phenomena on which they rest, yet owing
to the circumstance that, in the economy of nature, the day, the month,
and the year are not exactly commensurable, some of the most difficult
questions in practical astronomy are those by which an accurate division
of time, applicable to the various uses of life, is derived from the
observation of the heavenly bodies. I have no doubt that, to the Supreme
Intelligence which created and rules the universe, there is a harmony
hidden to us in the numerical relation to each other of days, months,
and years; but in our ignorance of that harmony, their practical
adjustment to each other is a work of difficulty. The great
embarrassment which attended the reformation of the calendar, after the
error of the Julian period had, in the lapse of centuries, reached ten
(or rather twelve) days, sufficiently illustrates this remark. It is
most true that scientific difficulties did not form the chief obstacle.
Having been proposed under the auspices of the Roman pontiff, the
Protestant world, for a century and more, rejected the new style.
It was in various places the subject of controversy, collision, and
bloodshed.[A] It was not adopted in England till nearly two centuries
after its introduction at Rome; and in the country of Struve and the
Pulkova equatorial, they persist at the present day in adding eleven
minutes and twelve seconds to the length of the tropical year.

[Footnote A: Stern's "_Himmelskunde_," p. 72.]


                         GEOGRAPHICAL SCIENCE.

2. The second great practical use of an Astronomical Observatory is
connected with the science of geography. The first page of the history
of our Continent declares this truth. Profound meditation on the
sphericity of the earth was one of the main reasons which led Columbus
to undertake his momentous voyage; and his thorough acquaintance with
the astronomical science of that day was, in his own judgment, what
enabled him to overcome the almost innumerable obstacles which attended
its prosecution.[A] In return, I find that Copernicus in the very
commencement of his immortal work _De Revolutionibus Orbium Coelestium_,
fol. 2, appeals to the discovery of America as completing the
demonstration of the sphericity of the earth. Much of our knowledge of
the figure, size, density, and position of the earth, as a member of
the solar system, is derived from this science; and it furnishes us
the means of performing the most important operations of practical
geography. Latitude and longitude, which lie at the basis of all
descriptive geography, are determined by observation. No map deserves
the name, on which the position of important points has not been
astronomically determined. Some even of our most important political and
administrative arrangements depend upon the coöperation of this science.
Among these I may mention the land system of the United States, and the
determination of the boundaries of the country. I believe that till it
was done by the Federal Government, a uniform system of mathematical
survey had never in any country been applied to an extensive territory.
Large grants and sales of public land took place before the Revolution,
and in the interval between the peace and the adoption of the
Constitution; but the limits of these grants and sales were ascertained
by sensible objects, by trees, streams, rocks, hills, and by reference
to adjacent portions of territory, previously surveyed. The uncertainty
of boundaries thus defined, was a never-failing source of litigation.
Large tracts of land in the Western country, granted by Virginia
under this old system of special and local survey, were covered with
conflicting claims; and the controversies to which they gave rise
formed no small part of the business of the Federal Court after its
organization. But the adoption of the present land-system brought order
out of chaos. The entire public domain is now scientifically surveyed
before it is offered for sale; it is laid off into ranges, townships,
sections, and smaller divisions, with unerring accuracy, resting on the
foundation of base and meridian lines; and I have been informed that
under this system, scarce a case of contested location and boundary has
ever presented itself in court. The General Land Office contains maps
and plans, in which every quarter-section of the public land is laid
down with mathematical precision. The superficies of half a continent is
thus transferred in miniature to the bureaus of Washington; while the
local Land Offices contain transcripts of these plans, copies of which
are furnished to the individual purchaser. When we consider the tide of
population annually flowing into the public domain, and the immense
importance of its efficient and economical administration, the utility
of this application of Astronomy will be duly estimated.

[Footnote A: Humboldt, _Histotre de la Geographie_, &c., Tom. 1,
page 71.]

I will here venture to repeat an anecdote, which I heard lately from
a son of the late Hon. Timothy Pickering. Mr. Octavius Pickering, on
behalf of his father, had applied to Mr. David Putnam of Marietta, to
act as his legal adviser, with respect to certain land claims in the
Virginia Military district, in the State of Ohio. Mr. Putnam declined
the agency. He had had much to do with business of that kind, and found
it beset with endless litigation. "I have never," he added, "succeeded
but in a single case, and that was a location and survey made by General
Washington before the Revolution; and I am not acquainted with any
surveys, except those made by him, but what have been litigated."

At this moment, a most important survey of the coast of the United
States is in progress, an operation of the utmost consequence, in
reference to the commerce, navigation, and hydrography of the country.
The entire work, I need scarce say, is one of practical astronomy. The
scientific establishment which we this day inaugurate is looked to for
important coöperation in this great undertaking, and will no doubt
contribute efficiently to its prosecution.

Astronomical observation furnishes by far the best means of defining the
boundaries of States, especially when the lines are of great length and
run through unsettled countries. Natural indications, like rivers and
mountains, however indistinct in appearance, are in practice subject to
unavoidable error. By the treaty of 1783, a boundary was established
between the United States and Great Britain, depending chiefly on the
course of rivers and highlands dividing the waters which flow into the
Atlantic Ocean from those which flow into the St. Lawrence. It took
twenty years to find out which river was the true St. Croix, that being
the starting point. England then having made the extraordinary discovery
that the Bay of Fundy is not a part of the Atlantic Ocean, forty years
more were passed in the unsuccessful attempt to re-create the highlands
which this strange theory had annihilated; and just as the two countries
were on the verge of a war, the controversy was settled by compromise.
Had the boundary been accurately described by lines of latitude and
longitude, no dispute could have arisen. No dispute arose as to the
boundary between the United States and Spain, and her successor, Mexico,
where it runs through untrodden deserts and over pathless mountains
along the 42d degree of latitude. The identity of rivers may be
disputed, as in the case of the St. Croix; the course of mountain chains
is too broad for a dividing line; the division of streams, as experience
has shown, is uncertain; but a degree of latitude is written on the
heavenly sphere, and nothing but an observation is required to read the
record.


                         QUESTIONS OF BOUNDARY.

But scientific elements, like sharp instruments, must be handled with
scientific accuracy. A part of our boundary between the British
Provinces ran upon the forty-fifth degree of latitude; and about forty
years ago, an expensive fortress was commenced by the government of the
United States, at Rouse's Point, on Lake Champlain, on a spot intended
to be just within our limits. When a line came to be more carefully
surveyed, the fortress turned out to be on the wrong side of the line;
we had been building an expensive fortification for our neighbor. But in
the general compromises of the Treaty of Washington by the Webster and
Ashburton Treaty in 1842, the fortification was left within our
limits.[A]

[Footnote A: Webster's Works. Vol. V., 110, 115.]

Errors still more serious had nearly resulted, a few years since, in
a war with Mexico. By the treaty of Guadalupe Hidalgo, in 1848, the
boundary line between the United States and that country was in part
described by reference to the town of El Paso, as laid down on a
specified map of the United States, of which a copy was appended to the
treaty. This boundary was to be surveyed and run by a joint commission
of men of science. It soon appeared that errors of two or three degrees
existed in the projection of the map. Its lines of latitude and
longitude did not conform to the topography of the region; so that it
became impossible to execute the text of the treaty. The famous Mesilla
Valley was a part of the debatable ground; and the sum of $10,000,000,
paid to the Mexican Government for that and for an additional strip of
territory on the southwest, was the smart-money which expiated the
inaccuracy of the map--the necessary result, perhaps, of the want of
good materials for its construction.

It became my official duty in London, a few years ago, to apply to
the British Government for an authentic statement of their claim to
jurisdiction over New Zealand. The official _Gazette_ for the 2d of
October, 1840, was sent me from the Foreign Office, as affording the
desired information. This number of the _Gazette_ contained the
proclamations issued by the Lieutenant Governor of New Zealand, "in
pursuance of the instructions he received from the Marquis of Normanby,
one of Her Majesty's principal Secretaries of State," asserting the
jurisdiction of his government over the islands of New Zealand, and
declaring them to extend "from 34° 30' North to 47° 10' South latitude."
It is scarcely necessary to say that south latitude was intended in both
instances. This error of 69° of latitude, which would have extended the
claim of British jurisdiction over the whole breadth of the Pacific,
had, apparently, escaped the notice of that government.


                        COMMERCE AND NAVIGATION.

It would be easy to multiply illustrations in proof of the great
practical importance of accurate scientific designations, drawn from
astronomical observations, in various relations connected with
boundaries, surveys, and other geographical purposes; but I must hasten
to

3. A third important department, in which the services rendered by
astronomy are equally conspicuous. I refer to commerce and navigation.
It is mainly owing to the results of astronomical observation, that
modern commerce has attained such a vast expansion, compared with that
of the ancient world. I have already reminded you that accurate ideas
in this respect contributed materially to the conception in the mind
of Columbus of his immortal enterprise, and to the practical success
with which it was conducted. It was mainly his skill in the use of
astronomical instruments--imperfect as they were--which enabled him, in
spite of the bewildering variation of the compass, to find his way
across the ocean.

With the progress of the true system of the universe toward general
adoption, the problem of finding the longitude at sea presented itself.
This was the avowed object of the foundation of the observatory at
Greenwich;[A] and no one subject has received more of the attention of
astronomers, than those investigations of the lunar theory on which
the requisite tables of the navigator are founded. The pathways of the
ocean are marked out in the sky above. The eternal lights of the heavens
are the only Pharos whose beams never fail, which no tempest can shake
from its foundation. Within my recollection, it was deemed a necessary
qualification for the master and the mate of a merchant-ship, and even
for a prime hand, to be able to "work a lunar," as it was called. The
improvements in the chronometer have in practice, to a great extent,
superseded this laborious operation; but observation remains,
and unquestionably will for ever remain, the only dependence for
ascertaining the ship's time and deducting the longitude from the
comparison of that time with the chronometer.

[Footnote A: Grant's _Physical Astronomy_, p. 460.]

It may, perhaps, be thought that astronomical science is brought already
to such a state of perfection that nothing more is to be desired, or at
least that nothing more is attainable, in reference to such practicable
applications as I have described. This, however, is an idea which
generous minds will reject, in this, as in every other department of
human knowledge. In astronomy, as in every thing else, the discoveries
already made, theoretical or practical, instead of exhausting the
science, or putting a limit to its advancement, do but furnish the means
and instruments of further progress. I have no doubt we live on the
verge of discoveries and inventions, in every department, as brilliant
as any that have ever been made; that there are new truths, new facts,
ready to start into recognition on every side; and it seems to me there
never was an age, since the dawn of time, when men ought to be less
disposed to rest satisfied with the progress already made, than the age
in which we live; for there never was an age more distinguished for
ingenious research, for novel result, and bold generalization.

That no further improvement is desirable in the means and methods of
ascertaining the ship's place at sea, no one I think will from
experience be disposed to assert. The last time I crossed the Atlantic,
I walked the quarter-deck with the officer in charge of the noble
vessel, on one occasion, when we were driving along before a leading
breeze and under a head of steam, beneath a starless sky at midnight, at
the rate certainly of ten or eleven miles an hour. There is something
sublime, but approaching the terrible, in such a scene;--the rayless
gloom, the midnight chill,--the awful swell of the deep,--the dismal
moan of the wind through the rigging, the all but volcanic fires within
the hold of the ship. I scarce know an occasion in ordinary life in
which a reflecting mind feels more keenly its hopeless dependence on
irrational forces beyond its own control. I asked my companion how
nearly he could determine his ship's place at sea under favorable
circumstances. Theoretically, he answered, I think, within a
mile;--practically and usually within three or four. My next question
was, how near do you think we may be to Cape Race;--that dangerous
headland which pushes its iron-bound unlighted bastions from the
shore of Newfoundland far into the Atlantic,--first landfall to
the homeward-bound American vessel. We must, said he, by our last
observations and reckoning, be within three or four miles of Cape Race.
A comparison of these two remarks, under the circumstances in which we
were placed at the moment, brought my mind to the conclusion, that it is
greatly to be wished that the means should be discovered of finding the
ship's place more accurately, or that navigators would give Cape Race a
little wider berth. But I do not remember that one of the steam packets
between England and America was ever lost on that formidable point.

It appears to me by no means unlikely that, with the improvement of
instrumental power, and of the means of ascertaining the ship's time
with exactness, as great an advance beyond the present state of art and
science in finding a ship's place at sea may take place, as was effected
by the invention of the reflecting quadrant, the calculation of lunar
tables, and the improved construction of chronometers.


                      BABBAGE'S DIFFERENCE MACHINE.

In the wonderful versatility of the human mind, the improvement, when
made, will very probably be made by paths where it is least expected.
The great inducement to Mr. Babbage to attempt the construction of an
engine by which astronomical tables could be calculated, and even
printed, by mechanical means and with entire accuracy, was the errors
in the requisite tables. Nineteen such errors, in point of fact, were
discovered in an edition of Taylor's Logarithms printed in 1796; some
of which might have led to the most dangerous results in calculating a
ship's place. These nineteen errors, (of which one only was an error of
the press), were pointed out in the _Nautical Almanac_ for 1832. In one
of these _errata_ the seat of the error was stated to be in cosine of
14° 18' 3". Subsequent examination showed that there was an error of one
second in this correction; and, accordingly, in the _Nautical Almanac_
of the next year a new correction was necessary. But in making the new
correction of one second, a new error was committed of ten degrees.
Instead of cosine 14° 18' 2" the correction was printed cosine 4° 18' 2"
making it still necessary, in some future edition of the _Nautical
Almanac_, to insert an _erratum_ in an _erratum_ of the _errata_ in
Taylor's logarithms.[A]

[Footnote A: Edinburgh Review, Vol. LIX., 282.]

In the hope of obviating the possibility of such errors, Mr. Babbage
projected his calculating, or, as he prefers to call it, his difference
machine. Although this extraordinary undertaking has been arrested, in
consequence of the enormous expense attending its execution, enough has
been achieved to show the mechanical possibility of constructing an
engine of this kind, and even one of far higher powers, of which Mr.
Babbage has matured the conception, devised the notation, and executed
the drawings--themselves an imperishable monument of the genius of the
author.

I happened on one occasion to be in company with this highly
distinguished man of science, whose social qualities are as pleasing as
his constructive talent is marvelous, when another eminent _savant_,
Count Strzelecki, just returned from his Oriental and Australian tour,
observed that he found among the Chinese, a great desire to know
something more of Mr. Babbage's calculating machine, and especially
whether, like their own _swampan_, it could be made to go into the
pocket. Mr. Babbage good-humouredly observed that, thus far, he had been
very much out of pocket with it.


               INCREASED COMMAND OF INSTRUMENTAL POWER.

Whatever advances may be made in astronomical science, theoretical
or applied, I am strongly inclined to think that they will be made
in connection with an increased command of instrumental power. The
natural order in which the human mind proceeds in the acquisition
of astronomical knowledge is minute and accurate observation of the
phenomena of the heavens, the skillful discussion and analysis of these
observations, and sound philosophy in generalizing the results.

In pursuing this course, however, a difficulty presented itself, which
for ages proved insuperable--and which to the same extent has existed
in no other science, viz.: that all the leading phenomena are in their
appearance delusive. It is indeed true that in all sciences superficial
observation can only lead, except by chance, to superficial knowledge;
but I know of no branch in which, to the same degree as in astronomy,
the great leading phenomena are the reverse of true; while they yet
appeal so strongly to the senses, that men who could foretell eclipses,
and who discovered the precession of the equinoxes, still believed that
the earth was at rest in the center of the universe, and that all the
host of heaven performed a daily revolution about it as a center.

It usually happens in scientific progress, that when a great fact is at
length discovered, it approves itself at once to all competent judges.
It furnishes a solution to so many problems, and harmonizes with so many
other facts,--that all the other _data_ as it were crystallize at once
about it. In modern times, we have often witnessed such an impatience,
so to say, of great truths, to be discovered, that it has frequently
happened that they have been found out simultaneously by more than one
individual; and a disputed question of priority is an event of very
common occurrence. Not so with the true theory of the heavens. So
complete is the deception practiced on the senses, that it failed more
than once to yield to the suggestion of the truth; and it was only when
the visual organs were armed with an almost preternatural instrumental
power, that the great fact found admission to the human mind.


                         THE COPERNICAN SYSTEM.

It is supposed that in the very dawn of science, Pythagoras or his
disciples explained the apparent motion of the heavenly bodies about
the earth by the diurnal revolution of the earth on its axis. But this
theory, though bearing so deeply impressed upon it the great seal of
truth, _simplicity_, was in such glaring contrast with the evidence of
the senses, that it failed of acceptance in antiquity or the middle
ages. It found no favor with minds like those of Aristotle, Archimedes,
Hipparchus, Ptolemy, or any of the acute and learned Arabian or mediæval
astronomers. All their ingenuity and all their mathematical skill were
exhausted in the development of a wonderfully complicated and ingenious,
but erroneous history. The great master truth, rejected for its
simplicity, lay disregarded at their feet.

At the second dawn of science, the great fact again beamed into the mind
of Copernicus. Now, at least, in that glorious age which witnessed the
invention of printing, the great mechanical engine of intellectual
progress, and the discovery of America, we may expect that this
long-hidden revelation, a second time proclaimed, will command the
assent of mankind. But the sensible phenomena were still too strong
for the theory; the glorious delusion of the rising and the setting
sun could not be overcome. Tycho de Brahe furnished his Observatory
with instruments superior in number and quality to all that had been
collected before; but the great instrument of discovery, which, by
augmenting the optic power of the eye, enables it to penetrate beyond
the apparent phenomena, and to discern the true constitution of the
heavenly bodies, was wanting at Uranienburg. The observations of Tycho
as discussed by Kepler, conducted that most fervid, powerful, and
sagacious mind to the discovery of some of the most important laws of
the celestial motions; but it was not till Galileo, at Florence, had
pointed his telescope to the sky, that the Copernican system could be
said to be firmly established in the scientific world.


                          THE HOME OF GALILEO.

On this great name, my Friends, assembled as we are to dedicate a temple
to instrumental Astronomy, we may well pause for a moment.

There is much, in every way, in the city of Florence to excite the
curiosity, to kindle the imagination, and to gratify the taste.
Sheltered on the north by the vine-clad hills of Fiesoli, whose
cyclopean walls carry back the antiquary to ages before the Roman,
before the Etruscan power, the flowery city (Fiorenza) covers the sunny
banks of the Arno with its stately palaces. Dark and frowning piles
of mediæval structure; a majestic dome, the prototype of St. Peter's;
basilicas which enshrine the ashes of some of the mightiest of the dead;
the stone where Dante stood to gaze on the Campanile; the house of
Michael Angelo, still occupied by a descendant of his lineage and name,
his hammer, his chisel, his dividers, his manuscript poems, all as if
he had left them but yesterday; airy bridges, which seem not so much to
rest on the earth as to hover over the waters they span; the loveliest
creations of ancient art, rescued from the grave of ages again to
enchant the world; the breathing marbles of Michael Angelo, the glowing
canvas of Raphael and Titian, museums filled with medals and coins of
every age from Cyrus the younger, and gems and amulets and vases from
the sepulchers of Egyptian Pharaohs coëval with Joseph, and Etruscan
Lucumons that swayed Italy before the Romans,--libraries stored with the
choicest texts of ancient literature,--gardens of rose and orange,
and pomegranate, and myrtle,--the very air you breathe languid with
music and perfume;--such is Florence. But among all its fascinations,
addressed to the sense, the memory, and the heart, there was none
to which I more frequently gave a meditative hour during a year's
residence, than to the spot where Galileo Galilei sleeps beneath the
marble door of Santa Croce; no building on which I gazed with greater
reverence, than I did upon the modest mansion at Arcetri, villa at once
and prison, in which that venerable sage, by command of the Inquisition,
passed the sad closing years of his life. The beloved daughter on whom
he had depended to smooth his passage to the grave, laid there before
him; the eyes with which he had discovered worlds before unknown,
quenched in blindness:

               Ahime! quegli occhi si son fatti oscuri,
               Che vider più di tutti i tempi antichi,
               E luce fur dei secoli futuri.

That was the house, "where," says Milton (another of those of whom the
world was not worthy), "I found and visited the famous Galileo, grown
old--a prisoner to the Inquisition, for thinking on astronomy otherwise
than as the Dominican and Franciscan licensers thought."[A] Great
Heavens! what a tribunal, what a culprit, what a crime! Let us thank
God, my Friends, that we live in the nineteenth century. Of all the
wonders of ancient and modern art, statues and paintings, and jewels and
manuscripts,--the admiration and the delight of ages,--there was nothing
which I beheld with more affectionate awe than that poor, rough tube,
a few feet in length,--the work of his own hands,--that very "optic
glass," through which the "Tuscan Artist" viewed the moon,

              "At evening, from the top of Fesolé,
               Or in Valdarno, to descry new lands,
               Rivers, or mountains, in her spotty globe."

that poor little spy-glass (for it is scarcely more) through which
the human eye first distinctly beheld the surface of the moon--first
discovered the phases of Venus, the satellites of Jupiter, and the
seeming handles of Saturn--first penetrated the dusky depths of the
heavens--first pierced the clouds of visual error, which, from the
creation of the world, involved the system of the Universe.

[Footnote A: Prose Works, vol. 1, p. 213.]

There are occasions in life in which a great mind lives years of rapt
enjoyment in a moment. I can fancy the emotions of Galileo, when, first
raising the newly-constructed telescope to the heavens, he saw fulfilled
the grand prophecy of Copernicus, and beheld the planet Venus crescent
like the moon. It was such another moment as that when the immortal
printers of Mentz and Strasburg received the first copy of the Bible
into their hands, the work of their divine art; like that when Columbus,
through the gray dawn of the 12th of October, 1492 (Copernicus, at the
age of eighteen, was then a student at Cracow), beheld the shores of San
Salvador; like that when the law of gravitation first revealed itself to
the intellect of Newton; like that when Franklin saw by the stiffening
fibers of the hempen cord of his kite, that he held the lightning in his
grasp; like that when Leverrier received back from Berlin the tidings
that the predicted planet was found.

Yes, noble Galileo, thou art right, _E pur si muove._ "It does move."
Bigots may make thee recant it; but it moves, nevertheless. Yes, the
earth moves, and the planets move, and the mighty waters move, and the
great sweeping tides of air move, and the empires of men move, and the
world of thought moves, ever onward and upward to higher facts and
bolder theories. The Inquisition may seal thy lips, but they can no more
stop the progress of the great truth propounded by Copernicus, and
demonstrated by thee, than they can stop the revolving earth.

Close now, venerable sage, that sightless, tearful eye; it has seen
what man never before saw--it has seen enough. Hang up that poor
little spy-glass--it has done its work. Not Herschell nor Rosse have,
comparatively, done more. Franciscans and Dominicans deride thy
discoveries now; but the time will come when, from two hundred
observatories in Europe and America, the glorious artillery of science
shall nightly assault the skies, but they shall gain no conquests in
those glittering fields before which thine shall be forgotten. Rest in
peace, great Columbus of the heavens--like him scorned, persecuted,
broken-hearted!--in other ages, in distant hemispheres, when the
votaries of science, with solemn acts of consecration, shall dedicate
their stately edifices to the cause of knowledge and truth, thy name
shall be mentioned with honor.


                 NEW PERIODS IN ASTRONOMICAL SCIENCE.

It is not my intention, in dwelling with such emphasis upon the
invention of the telescope, to ascribe undue importance, in promoting
the advancement of science, to the increase of instrumental power.
Too much, indeed, cannot be said of the service rendered by its
first application in confirming and bringing into general repute the
Copernican system; but for a considerable time, little more was effected
by the wondrous instrument than the gratification of curiosity and
taste, by the inspection of the planetary phases, and the addition
of the rings and satellites of Saturn to the solar family. Newton,
prematurely despairing of any further improvement in the refracting
telescope, applied the principle of reflection; and the nicer
observations now made, no doubt, hastened the maturity of his great
discovery of the law of gravitation; but that discovery was the work of
his transcendent genius and consummate skill.

With Bradley, in 1741, a new period commenced in instrumental astronomy,
not so much of discovery as of measurement. The superior accuracy and
minuteness with which the motions and distances of the heavenly bodies
were now observed, resulted in the accumulation of a mass of new
materials, both for tabular comparison and theoretical speculation.
These materials formed the enlarged basis of astronomical science
between Newton and Sir William Herschell. His gigantic reflectors
introduced the astronomer to regions of space before unvisited--extended
beyond all previous conception the range of the observed phenomena, and
with it proportionably enlarged the range of constructive theory. The
discovery of a new primary planet and its attendant satellites was
but the first step of his progress into the labyrinth of the heavens.
Cotemporaneously with his observations, the French astronomers, and
especially La Place, with a geometrical skill scarcely, if at all,
inferior to that of its great author, resumed the whole system of
Newton, and brought every phenomenon observed since his time within his
laws. Difficulties of fact, with which he struggled in vain, gave way to
more accurate observations; and problems that defied the power of his
analysis, yielded to the modern improvements of the calculus.


                      HERSCHELL'S NEBULAR THEORY.

But there is no _Ultima Thule_ in the progress of science. With the
recent augmentations of telescopic power, the details of the nebular
theory, proposed by Sir W. Herschell with such courage and ingenuity,
have been drawn in question. Many--most--of those milky patches in which
he beheld what he regarded as cosmical matter, as yet in an unformed
state,--the rudimental material of worlds not yet condensed,--have been
resolved into stars, as bright and distinct as any in the firmament.
I well recall the glow of satisfaction with which, on the 22d of
September, 1847, being then connected with the University at Cambridge,
I received a letter from the venerable director of the Observatory
there, beginning with these memorable words:--"You will rejoice with
me that the great nebula in Orion has yielded to the powers of our
incomparable telescope! * * * It should be borne in mind that this
nebula, and that of Andromeda [which has been also resolved at
Cambridge], are the last strongholds of the nebular theory."[A]

[Footnote A: _Annals of the Observatory of Harvard College_, p. 121.]

But if some of the adventurous speculations built by Sir William
Herschell on the bewildering revelations of his telescope have been
since questioned, the vast progress which has been made in sidereal
astronomy, to which, as I understand, the Dudley Observatory will be
particularly devoted, the discovery of the parallax of the fixed stars,
the investigation of the interior relations of binary and triple systems
of stars, the theories for the explanation of the extraordinary, not to
say fantastic, shapes discerned in some of the nebulous systems--whirls
and spirals radiating through spaces as vast as the orbit of Neptune;[A]
the glimpses at systems beyond that to which our sun belongs;--these are
all splendid results, which may fairly be attributed to the school of
Herschell, and will for ever insure no secondary place to that name in
the annals of science.

[Footnote A: See the remarkable memoir of Professor Alexander, "On the
origin of the forms and the present condition of some of the clusters of
stars, and several of the nebulæ," (Gould's _Astronomical Journal_, Vol.
iii, p. 95.)]


                   RELATIONSHIP OF THE LIBERAL ARTS.

In the remarks which I have hitherto made, I have had mainly in view
the direct connection of astronomical science with the uses of life and
the service of man. But a generous philosophy contemplates the subject
in higher relations. It is a remark as old, at least, as Plato, and
is repeated from him more than once by Cicero, that all the liberal
arts have a common bond and relationship.[A] The different sciences
contemplate as their immediate object the different departments of
animate and inanimate nature; but this great system itself is but
one, and its parts are so interwoven with each other, that the most
extraordinary relations and unexpected analogies are constantly
presenting themselves; and arts and sciences seemingly the least
connected, render to each other the most effective assistance.

[Footnote A: Archias, i.; De Oratore, iii., 21.]

The history of electricity, galvanism, and magnetism, furnishes the most
striking illustration of this remark. Commencing with the meteorological
phenomena of our own atmosphere, and terminating with the observation
of the remotest heavens, it may well be adduced, on an occasion like
the present. Franklin demonstrated the identity of lightning and the
electric fluid. This discovery gave a great impulse to electrical
research, with little else in view but the means of protection from
the thunder-cloud. A purely accidental circumstance led the physician
Galvani, at Bologna, to trace the mysterious element, under conditions
entirely novel, both of development and application. In this new form it
became, in the hands of Davy, the instrument of the most extraordinary
chemical operations; and earths and alkalis, touched by the creative
wire, started up into metals that float on water, and kindle in the
air. At a later period, the closest affinities are observed between
electricity and magnetism, on the one hand; while, on the other, the
relations of polarity are detected between acids and alkalis. Plating
and gilding henceforth become electrical processes. In the last
applications of the same subtle medium, it has become the messenger of
intelligence across the land and beneath the sea; and is now employed by
the astronomer to ascertain the difference of longitudes, to transfer
the beats of the clock from one station to another, and to record the
moment of his observations with automatic accuracy. How large a share
has been borne by America in these magnificent discoveries and
applications, among the most brilliant achievements of modern science,
will sufficiently appear from the repetition of the names of Franklin,
Henry, Morse, Walker, Mitchell, Lock, and Bond.


                         VERSATILITY OF GENIUS.

It has sometimes happened, whether from the harmonious relations to
each other of every department of science, or from rare felicity of
individual genius, that the most extraordinary intellectual versatility
has been manifested by the same person. Although Newton's transcendent
talent did not blaze out in childhood, yet as a boy he discovered great
aptitude for mechanical contrivance. His water-clock, self-moving
vehicle, and mill, were the wonder of the village; the latter propelled
by a living mouse. Sir David Brewster represents the accounts as
differing, whether the mouse was made to advance "by a string attached
to its tail," or by "its unavailing attempts to reach a portion of corn
placed above the wheel." It seems more reasonable to conclude that
the youthful discoverer of the law of gravitation intended by the
combination of these opposite attractions to produce a balanced
movement. It is consoling to the average mediocrity of the race to
perceive in these sportive assays, that the mind of Newton passed
through the stage of boyhood. But emerging from boyhood, what a bound it
made, as from earth to heaven! Hardly commencing bachelor of arts, at
the age of twenty-four, he untwisted the golden and silver threads of
the solar spectrum, simultaneously or soon after conceived the method of
fluxions, and arrived at the elemental idea of universal gravity before
he had passed to his master's degree. Master of Arts indeed! That
degree, if no other, was well bestowed. Universities are unjustly
accused of fixing science in stereotype. That diploma is enough of
itself to redeem the honors of academical parchment from centuries of
learned dullness and scholastic dogmatism.

But the great object of all knowledge is to enlarge and purify the soul,
to fill the mind with noble contemplations, to furnish a refined
pleasure, and to lead our feeble reason from the works of nature up to
its great Author and Sustainer. Considering this as the ultimate end of
science, no branch of it can surely claim precedence of Astronomy. No
other science furnishes such a palpable embodiment of the abstractions
which lie at the foundation of our intellectual system; the great ideas
of time, and space, and extension, and magnitude, and number, and
motion, and power. How grand the conception of the ages on ages required
for several of the secular equations of the solar system; of distances
from which the light of a fixed star would not reach us in twenty
millions of years, of magnitudes compared with which the earth is but a
foot-ball; of starry hosts--suns like our own--numberless as the sands
on the shore; of worlds and systems shooting through the infinite
spaces, with a velocity compared with which the cannon-ball is a
way-worn, heavy-paced traveler![A]

[Footnote A: Nichol's _Architecture of the Heavens_, p. 160.]


                    THE SPECTACLE OF THE HEAVENS.

Much, however, as we are indebted to our observatories for elevating our
conceptions of the heavenly bodies, they present, even to the unaided
sight, scenes of glory which words are too feeble to describe. I had
occasion, a few weeks since, to take the early train from Providence to
Boston; and for this purpose rose at 2 o'clock in the morning. Every
thing around was wrapped in darkness and hushed in silence, broken only
by what seemed at that hour the unearthly clank and rush of the train.
It was a mild, serene midsummer's night; the sky was without a
cloud--the winds were whist. The moon, then in the last quarter, had
just risen, and the stars shone with a spectral luster but little
affected by her presence; Jupiter, two hours high, was the herald of the
day; the Pleiades, just above the horizon, shed their sweet influence in
the east; Lyra sparkled near the zenith; Andromeda veiled her newly
discovered glories from the naked eye in the south; the steady Pointers,
far beneath the pole, looked meekly up from the depths of the north to
their sovereign.

Such was the glorious spectacle as I entered the train. As we proceeded,
the timid approach of twilight became more perceptible; the intense blue
of the sky began to soften, the smaller stars, like little children,
went first to rest; the sister-beams of the Pleiades soon melted
together; but the bright constellations of the west and north remained
unchanged. Steadily the wondrous transfiguration went on. Hands of
angels hidden from mortal eyes shifted the scenery of the heavens; the
glories of night dissolved into the glories of the dawn. The blue sky
now turned more softly gray; the great watch-stars shut up their holy
eyes; the east began to kindle. Faint streaks of purple soon blushed
along the sky; the whole celestial concave was filled with the inflowing
tides of the morning light, which came pouring down from above in one
great ocean of radiance; till at length, as we reached the Blue Hills, a
flash of purple fire blazed out from above the horizon, and turned the
dewy teardrops of flower and leaf into rubies and diamonds. In a few
seconds the everlasting gates of the morning were thrown wide open, and
the lord of day, arrayed in glories too severe for the gaze of man,
began his course.

I do not wonder at the superstition of the ancient Magians, who in the
morning of the world went up to the hill-tops of Central Asia, and
ignorant of the true God, adored the most glorious work of his hand.
But I am filled with amazement, when I am told that in this enlightened
age, and in the heart of the Christian world, there are persons who can
witness this daily manifestation of the power and wisdom of the Creator,
and yet say in their hearts, "There is no God."


                          UNDISCOVERED BODIES.

Numerous as are the heavenly bodies visible to the naked eye, and
glorious as are their manifestations, it is probable that in our own
system there are great numbers as yet undiscovered. Just two hundred
years ago this year, Huyghens announced the discovery of one satellite
of Saturn, and expressed the opinion that the six planets and six
satellites then known, and making up the perfect number of _twelve_,
composed the whole of our planetary system. In 1729 an astronomical
writer expressed the opinion that there might be other bodies in our
system, but that the limit of telescopic power had been reached, and no
further discoveries were likely to be made.[A] The orbit of one comet
only had been definitively calculated. Since that time the power of the
telescope has been indefinitely increased; two primary planets of the
first class, ten satellites, and forty-three small planets revolving
between Mars and Jupiter, have been discovered, the orbits of six or
seven hundred comets, some of brief period, have been ascertained;--and
it has been computed, that hundreds of thousands of these mysterious
bodies wander through our system. There is no reason to think that all
the primary planets, which revolve about the sun, have been discovered.
An indefinite increase in the number of asteroids may be anticipated;
while outside of Neptune, between our sun and the nearest fixed star,
supposing the attraction of the sun to prevail through half the
distance, there is room for ten more primary planets succeeding each
other at distances increasing in a geometrical ratio. The first of
these will, unquestionably, be discovered as soon as the perturbations
of Neptune shall have been accurately observed; and with maps of the
heavens, on which the smallest telescopic stars are laid down, it may be
discovered much sooner.

[Footnote A: _Memoirs of A.A.S._, vol. iii, 275.]


                       THE VASTNESS OF CREATION.

But it is when we turn our observation and our thoughts from our own
system, to the systems which lie beyond it in the heavenly spaces, that
we approach a more adequate conception of the vastness of creation. All
analogy teaches us that the sun which gives light to us is but one of
those countless stellar fires which deck the firmament, and that every
glittering star in that shining host is the center of a system as vast
and as full of subordinate luminaries as our own. Of these suns--centers
of planetary systems--thousands are visible to the naked eye, millions
are discovered by the telescope. Sir John Herschell, in the account of
his operations at the Cape of Good Hope (p. 381) calculates that about
five and a half millions of stars are visible enough to be _distinctly
counted_ in a twenty-foot reflector, in both hemispheres. He adds, that
"the actual number is much greater, there can be little doubt." His
illustrious father, estimated on one occasion that 125,000 stars passed
through the field of his forty foot reflector in a quarter of an hour.
This would give 12,000,000 for the entire circuit of the heavens, in a
single telescopic zone; and this estimate was made under the assumption
that the nebulæ were masses of luminous matter not yet condensed into
suns.

These stupendous calculations, however, form but the first column of the
inventory of the universe. Faint white specks are visible, even to the
naked eye of a practiced observer in different parts of the heavens.
Under high magnifying powers, several thousands of such spots are
visible,--no longer however, faint, white specks, but many of them
resolved by powerful telescopes into vast aggregations of stars, each
of which may, with propriety, be compared with the milky way. Many of
these nebulæ, however, resisted the power of Sir Wm. Herschell's great
reflector, and were, accordingly, still regarded by him as masses of
unformed matter, not yet condensed into suns. This, till a few years
since, was, perhaps, the prevailing opinion; and the nebular theory
filled a large space in modern astronomical science. But with the
increase of instrumental power, especially under the mighty grasp of
Lord Rosse's gigantic reflector, and the great refractors at Pulkova and
Cambridge, the most irresolvable of these nebulæ have given way; and the
better opinion now is, that every one of them is a galaxy, like our own
milky way, composed of millions of suns. In other words, we are brought
to the bewildering conclusion that thousands of these misty specks, the
greater part of them too faint to be seen with the naked eye, are, not
each a universe like our solar system, but each a "swarm" of universes
of unappreciable magnitude.[A] The mind sinks, overpowered by the
contemplation. We repeat the words, but they no longer convey distinct
ideas to the understanding.

[Footnote A: Humboldt's _Cosmos_, iii. 41.]


                      CONCEPTIONS OF THE UNIVERSE.

But these conclusions, however vast their comprehension, carry us but
another step forward in the realms of sidereal astronomy. A proper
motion in space of our sun, and of the fixed stars as we call them,
has long been believed to exist. Their vast distances only prevent its
being more apparent. The great improvement of instruments of measurement
within the last generation has not only established the existence of
this motion, but has pointed to the region in the starry vault around
which our whole solar and stellar system, with its myriad of attendant
planetary worlds, appears to be performing a mighty revolution. If,
then, we assume that outside of the system to which we belong and in
which our sun is but a star like Aldebaran or Sirius, the different
nebulæ of which we have spoken,--thousands of which spot the
heavens--constitute a distinct family of universes, we must, following
the guide of analogy, attribute to each of them also, beyond all the
revolutions of their individual attendant planetary systems, a great
revolution, comprehending the whole; while the same course of analogical
reasoning would lead us still further onward, and in the last analysis,
require us to assume a transcendental connection between all these
mighty systems--a universe of universes, circling round in the infinity
of space, and preserving its equilibrium by the same laws of mutual
attraction which bind the lower worlds together.

It may be thought that conceptions like these are calculated rather to
depress than to elevate us in the scale of being; that, banished as he
is by these contemplations to a corner of creation, and there reduced
to an atom, man sinks to nothingness in this infinity of worlds. But a
second thought corrects the impression. These vast contemplations are
well calculated to inspire awe, but not abasement. Mind and matter are
incommensurable. An immortal soul, even while clothed in "this muddy
vesture of decay," is in the eye of God and reason, a purer essence than
the brightest sun that lights the depths of heaven. The organized human
eye, instinct with life and soul, which, gazing through the telescope,
travels up to the cloudy speck in the handle of Orion's sword, and bids
it blaze forth into a galaxy as vast as ours, stands higher in the order
of being than all that host of luminaries. The intellect of Newton which
discovered the law that holds the revolving worlds together, is a nobler
work of God than a universe of universes of unthinking matter.

If, still treading the loftiest paths of analogy, we adopt the
supposition,--to me I own the grateful supposition,--that the countless
planetary worlds which attend these countless suns, are the abodes of
rational beings like man, instead of bringing back from this exalted
conception a feeling of insignificance, as if the individuals of our
race were but poor atoms in the infinity of being, I regard it, on the
contrary, as a glory of our human nature, that it belongs to a family
which no man can number of rational natures like itself. In the order of
being they may stand beneath us, or they may stand above us; _he_ may
well be content with his place, who is made "a little lower than the
angels."


                     CONTEMPLATION OF THE HEAVENS.

Finally, my Friends, I believe there is no contemplation better adapted
to awaken devout ideas than that of the heavenly bodies,--no branch of
natural science which bears clearer testimony to the power and wisdom of
God than that to which you this day consecrate a temple. The heart of
the ancient world, with all the prevailing ignorance of the true nature
and motions of the heavenly orbs, was religiously impressed by their
survey. There is a passage in one of those admirable philosophical
treatises of Cicero composed in the decline of life, as a solace under
domestic bereavement and patriotic concern at the impending convulsions
of the state, in which, quoting from some lost work of Aristotle, he
treats the topic in a manner which almost puts to shame the teachings of
Christian wisdom.

"Præclare ergo Aristoteles, 'Si essent,' inquit, 'qui sub terra semper
habitavissent, bonis et illustribus domiciliis quæ essent ornata signis
atque picturis, instructaque rebus iis omnibus quibus abundant ii qui
beati putantur, nec tamen exissent unquam supra terram; accepissent
autem fama et auditione, esse quoddam numen et vim Deorum,--deinde
aliquo tempore patefactis terræ faucibus ex illis abditis sedibus
evadere in hæc loca quæ nos incolimus, atque exire potuissent; cum
repente terram et maria coelumque, vidissent; nubium magnitudinem
ventorumque vim, cognovissent; aspexissentque solem, ejusque tum
magnitudinem, pulchritudinemque; tum etiam efficientiam cognovissent,
quod is diem efficeret, toto coelo luce diffusa; cum autem terras nox
opacasset, tum coelum totum cernerent astris distinctum et ornatum,
lunæque luminum varietatem tum crescentis tum senescentis, corumque
omnium ortus et occasus atque in æternitate ratos immutabilesque
cursus;--hæc cum viderent, profecto et esse Deos, et hæc tanta opera
Deorum esse, arbitrarentur."[A]

There is much by day to engage the attention of the Observatory; the
sun, his apparent motions, his dimensions, the spots on his disc (to
us the faint indications of movements of unimagined grandeur in his
luminous atmosphere), a solar eclipse, a transit of the inferior
planets, the mysteries of the spectrum;--all phenomena of vast
importance and interest. But night is the astronomer's accepted time; he
goes to his delightful labors when the busy world goes to its rest. A
dark pall spreads over the resorts of active life; terrestrial objects,
hill and valley, and rock and stream, and the abodes of men disappear;
but the curtain is drawn up which concealed the heavenly hosts. There
they shine and there they move, as they moved and shone to the eyes of
Newton and Galileo, of Kepler and Copernicus, of Ptolemy and Hipparchus;
yes, as they moved and shone when the morning stars sang together, and
all the sons of God shouted for joy. All has changed on earth; but
the glorious heavens remain unchanged. The plow passes over the site
of mighty cities,--the homes of powerful nations are desolate, the
languages they spoke are forgotten; but the stars that shone for them
are shining for us; the same eclipses run their steady cycle; the same
equinoxes call out the flowers of spring, and send the husbandman
to the harvest; the sun pauses at either tropic as he did when his
course began; and sun and moon, and planet and satellite, and star and
constellation and galaxy, still bear witness to the power, the wisdom,
and the love, which placed them in the heavens and uphold them there.

[Footnote A: "Nobly does Aristotle observe, that if there were beings
who had always lived under ground, in convenient, nay, in magnificent
dwellings, adorned with statues and pictures, and every thing which
belongs to prosperous life, but who had never come above ground; who had
heard, however, by fame and report, of the being and power of the gods;
if, at a certain time, the portals of the earth being thrown open,
they had been able to emerge from those hidden abodes to the regions
inhabited by us; when suddenly they had seen the earth, the sea, and
the sky; had perceived the vastness of the clouds and the force of the
winds; had contemplated the sun, his magnitude and his beauty, and
still more his effectual power, that it is he who makes the day, by
the diffusion of his light through the whole sky; and, when night had
darkened the earth, should then behold the whole heavens studded and
adorned with stars, and the various lights of the waxing and waning
moon, the risings and the settings of all these heavenly bodies, and the
courses fixed and immutable in all eternity; when, I say, they should
see these things, truly they would believe that there were gods, and
these so great things are their works."--Cicero, _De Natura Deorum_ lib.
ii., § 30.]





*** End of this Doctrine Publishing Corporation Digital Book "The Uses of Astronomy - An Oration Delivered at Albany on the 28th of July, 1856" ***

Doctrine Publishing Corporation provides digitized public domain materials.
Public domain books belong to the public and we are merely their custodians.
This effort is time consuming and expensive, so in order to keep providing
this resource, we have taken steps to prevent abuse by commercial parties,
including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the files We designed Doctrine Publishing
Corporation's ISYS search for use by individuals, and we request that you
use these files for personal, non-commercial purposes.

+ Refrain from automated querying Do not send automated queries of any sort
to Doctrine Publishing's system: If you are conducting research on machine
translation, optical character recognition or other areas where access to a
large amount of text is helpful, please contact us. We encourage the use of
public domain materials for these purposes and may be able to help.

+ Keep it legal -  Whatever your use, remember that you are responsible for
ensuring that what you are doing is legal. Do not assume that just because
we believe a book is in the public domain for users in the United States,
that the work is also in the public domain for users in other countries.
Whether a book is still in copyright varies from country to country, and we
can't offer guidance on whether any specific use of any specific book is
allowed. Please do not assume that a book's appearance in Doctrine Publishing
ISYS search  means it can be used in any manner anywhere in the world.
Copyright infringement liability can be quite severe.

About ISYS® Search Software
Established in 1988, ISYS Search Software is a global supplier of enterprise
search solutions for business and government.  The company's award-winning
software suite offers a broad range of search, navigation and discovery
solutions for desktop search, intranet search, SharePoint search and embedded
search applications.  ISYS has been deployed by thousands of organizations
operating in a variety of industries, including government, legal, law
enforcement, financial services, healthcare and recruitment.



Home