Home
  By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | HTML | PDF ]

Look for this book on Amazon


We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: Piano Tuning - A Simple and Accurate Method for Amateurs
Author: Fischer, J. Cree (Jerry Cree), 1871-
Language: English
As this book started as an ASCII text book there are no pictures available.
Copyright Status: Not copyrighted in the United States. If you live elsewhere check the laws of your country before downloading this ebook. See comments about copyright issues at end of book.

*** Start of this Doctrine Publishing Corporation Digital Book "Piano Tuning - A Simple and Accurate Method for Amateurs" ***

This book is indexed by ISYS Web Indexing system to allow the reader find any word or number within the document.



J. CREE FISCHER

PIANO TUNING

A SIMPLE AND ACCURATE METHOD
FOR AMATEURS



DOVER PUBLICATIONS, INC.
NEW YORK



Copyright © 1907 by Theo. Presser.

All rights reserved under Pan American and International Copyright
Conventions.

Published in Canada by General Publishing Company, Ltd., 30 Lesmill
Road, Don Mills, Toronto, Ontario.

Published in the United Kingdom by Constable and Company, Ltd., 10
Orange Street, London WC 2.

This Dover edition, first published in 1975, is a republication of the
work originally published in Philadelphia in 1907. The following
sections have been omitted from the present edition because they were
out-of-date: Practical Application of Piano Tuning as a Profession,
Business Hints, Ideas in Advertising, and Charges for Services. This
edition is reprinted by special arrangement with Theodore Presser
Company, Presser Place, Bryn Mawr, Pennsylvania, publisher of the
original edition.

_International Standard Book Number: 0-486-23267-0_

_Library of Congress Catalog Card Number: 75-14759_

Manufactured in the United States of America

Dover Publications, Inc.

180 Varick Street

New York, N.Y. 10014



PREFACE.


For some years past a lack of competent men in the profession of Piano
Tuning has been generally acknowledged. This may be accounted for as
follows: The immense popularity of the piano and the assiduous efforts
of factories and salesmen have led to the result that nearly every
well-to-do household is furnished with an instrument. To supply this
demand the annual production and sale for the year 1906 is estimated
at three hundred thousand pianos in the United States. These pianos
must be tuned many times in the factory before they are shipped to the
salesroom; there they must be kept in tune until sold. When, finally,
they take up their permanent abode in the homes of the purchasers,
they should be given the attention of the tuner at least twice a year.
This means work for the tuner. But this is not all. Presuming that the
average life of the piano is about fifty years, it is evident that
there exists in this country an accumulation of instruments variously
estimated at from four to five millions. This means _more work for
tuners_.

While production and accumulation have been increasing, there has been
little, if any, effort made to provide tuners to look after the needs
of this ever-increasing number of instruments, no provision for the
thorough instruction of the learner of Piano Tuning, outside the walls
of the factories, and of the few musical colleges where the art is
taught. Doubtless there are many persons who are by nature well
adapted to this agreeable and profitable occupation--persons who would
make earnest effort to acquire the necessary skill and its honest
application if they had a favorable opportunity. Musical colleges in
which tuning is taught are few and far between; piano factories are
built for the purpose of producing pianos and not tuners, for
mechanics and laborers and not for teachers and pupils; furthermore,
very little fine tuning is done in the factory; rough tuning is the
bulk of the work there, and a long apprenticeship in the factory, with
its meager advantages, is rarely sufficient to meet the demands of the
would-be-thorough tuner. This may account, in part, for the fact that
many who are incompetent are following this profession, and that
there is an increasing demand for tuners of skill.

In view of these facts the author came to the opinion that if a course
of instruction were prepared which would demonstrate clearly the many
abstruse details of the art in an interesting and comprehensible way,
it would be appreciated by those who are desirous to learn. Acting
upon this impulse, he began the preparation of such a course.

The present book is the outgrowth of a course of instruction, used
successfully with pupils from various parts of the United States and
Canada, conducted partly by correspondence; partly at the school
directed by the author. Although it has been necessary to revise the
course somewhat for publication in the present form, no essential
matter has been omitted and much has been added.

In preparing this course of study the utmost effort has been made to
present the various topics in the clearest, most comprehensive manner,
literary excellence being a secondary consideration.

While the book is designed for self-instruction, the systematic
arrangement of the text, and the review questions with each lesson,
suggest its use as a text-book for schools and colleges which give
personal training in the care of the piano.

To the talented individual of either sex who is ambitious to acquire a
dignified and profitable profession, to the scientifically-inclined
musician who is eager to learn the fundamental principles underlying
all musical harmony, and finally to the non-professional who loves to
read because of a fondness for science, the book is submitted; if it
should prove a boon to the former, a benefit to the second, or a
pleasure to the latter, I shall feel rewarded for the work of its
preparation.

THE AUTHOR.



CONTENTS.

                                                             page

LESSON I.                                                       7
    Introduction.

LESSON II.                                                     11
    General construction of the piano and something of its
    evolution and history,

LESSON III.                                                    20
    Technical Names and Uses of the Parts of the Upright
    Action,

LESSON IV.                                                     32
    Action of the Square Piano. Action of the Grand Piano.
    Instructions for Removing the Square and Grand Piano
    Actions,

LESSON V.                                                      43
    Regulating and Repairing. Faults in Pianos aside from
    the Action and their Remedies. Regulating and Repairing
    the Upright Action,

LESSON VI.                                                     56
    Regulating and Repairing the Square Action.
    Miscellaneous Repairs,

LESSON VII.                                                    66
    The Study and Practice of Piano Tuning,

LESSON VIII.                                                   72
    The Temperament. Beats, Waves, Pulsations. The New
    System of Temperament. The Octave. The Fifth. Pitch.
    Diagram of the Fischer System of Temperament,

LESSON IX.                                                     85
    Specific Instructions in Setting Temperament. The
    Continuous Mute,

LESSON X.                                                      97
    Theory of the Temperament. Equal Temperament. Unequal
    Temperament,

LESSON XI.                                                    109
    Technique or Modus Operandi in Piano Tuning.
    Manipulation of the Tuning Hammer. Setting the Mutes or
    Wedges in the Upright Piano. Setting the Mutes or
    Wedges in the Square Piano,

LESSON XII.                                                   126
    Mathematics of the Tempered Scale. Rationale of the
    Temperament. Proposition I,

LESSON XIII.                                                  139
    Rationale of the Temperament, Concluded. Proposition
    II. Proposition III. Numerical Comparison of the
    Diatonic with the Tempered Scale. Various Mathematical
    Tables and Examples,

LESSON XIV.                                                   150
    Miscellaneous Topics Pertaining to the Practical Work
    of Tuning. Cause of the Beats. Finishing up the
    Temperament. Tuning the Treble. Tuning the Bass. False
    Waves,

LESSON XV.                                                    163
    Miscellaneous Items Pertaining to the Practical Work of
    Tuning, Regulating, and Repairing. Comparison of the
    Different Systems of Temperament. System A. System B.
    System C. Final Inspection. Loose Pins. Split Bridges.
    Stringing. Wire Splicing,

LESSON XVI.                                                   178
    Tuning and Repairing the Reed Organ. Cleaning. Stops.
    Examination. Sticking Keys. Leaks. Pedal Defects.
    Sympathetic Vibrations. Tuning,

LESSON XVII.                                                  193
    Concluding Professional Hints. Peculiar Expressions
    Used in Designating Qualities of Tone. Questions often
    Asked the Piano Tuner. Seasons for Tuning,

INDEX,                                                        199



LESSON I.

~INTRODUCTION.~


Undoubtedly every human being is fitted for some sphere of
usefulness--some industry by which he can benefit mankind and support
himself in comfort. Just what we are fitted for must, almost
invariably, be decided by ourselves; and the sooner the better, else
we may plod among the thousands whose lives are miserable failures for
the reason that "they have missed their calling."

In the consideration of Piano Tuning as a profession, one should first
determine if he possesses the necessary qualifications, the most
important of which are a musical ear and some degree of mechanical
ability. Having these, all else may be acquired by study. It is not
necessary to possess a musical education or to be a musician; although
a knowledge of music will be found a great aid. Still, an elementary
knowledge of the principles of music is a necessity to the student of
this course, as it has been found impossible to avoid the use of a few
technical terms. In most cases, however, they are set forth in such a
way that they will be readily apprehended by anyone who has even a
slight knowledge of the fundamental principles of music.

In teaching Piano Tuning, it is the custom of the "Central School of
Piano Tuning," for which these lessons were originally prepared, to
have all students prepare two lessons in harmony as a test of their
acquaintance with the intervals and chords used in tuning. The lessons
are not difficult, and they embody only those principles which are
essential to the proper understanding of the key-board: the intervals
of the diatonic scale and the major common chord in the twelve
different keys, C, D, E, F, G, A, B, B-flat, D-flat, E-flat, G-flat,
and A-flat. In connection with the harmony lessons, we use as a
text-book "Clarke's Harmony,"[A] and the student is required to master
the first two chapters and prepare manuscripts upon each of the
lessons. Below is a number of the most important questions selected
from those lessons upon which manuscripts have been written:

     1. Every white key on the piano represents an "absolute pitch."
     By what names are these pitches known? How are the black keys
     named?

     2. How many tones constitute the diatonic scale? Give numerical
     names.

     3. Intervals are measured by steps and half-steps. How many steps
     from 1 to 3 in the diatonic scale? 1 to 4? 1 to 5? 3 to 5? 5 to
     8? 1 to 8?

     4. Why is there no black key between E and F, and between B and
     C?

     5. From 1 to 3 is called an interval of a third; from 3 to 5,
     also a third; from 1 to 5, a fifth: they are so called because
     they include, respectively, three and five members of the
     diatonic scale. What is the interval 3 to 6? 2 to 5? 5 to 8? 2 to
     6? 1 to 8?

     6. Thirds are of two kinds: major (larger) thirds embrace two
     whole-steps; minor (smaller) thirds embrace a step and a half.
     What kind of a third is 1-3 in the diatonic scale? 2-4? 3-5? 6-8?

     7. What do we mean by the term, Fundamental of a chord? What is
     added to it to complete the common chord?

     8. What absolute pitches comprise the common chord of C? What
     kind of interval between the first two members? What between the
     first and last? What between the second and last?

     9. What tones would you use if told to strike the common chord of
     C in four-part, close harmony, using the fundamental for the
     highest tone?

     10. How many keys (white and black) are there between the
     fundamental and the third? How many between the third and the
     fifth? How many between the fundamental and the fifth when the
     fifth is played above the fundamental?

     11. How many keys (white and black) are there between two keys
     comprising a perfect fourth?

     12. (Most important of all.) What keys of the piano keyboard
     comprise the common chord founded upon G as the fundamental? Upon
     F? Upon F♯? Upon G♯? Upon B♭? Upon D♭? Upon E♭? Upon D? Upon E?
     Upon A? Upon B?

If one is able to answer these questions correctly he is qualified to
begin the study of Piano Tuning.

    [A] Published by Theodore Presser, Philadelphia, Pa.



LESSON II.

~GENERAL CONSTRUCTION OF THE PIANO; SOMETHING OF ITS EVOLUTION AND
HISTORY.~


The piano of today is, unquestionably, the most perfect, and
consequently the most popular and beloved of all musical instruments.

    That enchanting Queen of the home,
      Whose place in the hearts of the family
    Is as dear as though it could speak
      In words of joy and sorrow,
    Sadness or consolation;
      Soothing, animating, enrapturing,
    Charming away the soul
      From its worldly weight of cares,
    And wafting it softly
      Into the realm of celestial dreams.

The untiring efforts of genius for over a century have succeeded in
producing a musical instrument that falls little short of perfection.
Yet other inventions and improvements are sure to come, for we are
never content with "good enough."

The student of these lessons may, in his practice, discover defective
mechanical action and by his ingenuity be able to improve it; he may
likewise see where an improvement can be made in acoustic
construction; where a better scale can be drawn; or where different
and perhaps new materials may be used for the component parts of the
instrument. The possibilities are numerous along these lines, and in
addition to bestowing a favor upon the general public, the man who has
the originality to produce something new, places himself beyond want.

The inevitable inference is that the piano is an evolution of the harp
principle. This instrument was known centuries previous to the
Christian era. From the best history obtainable, we learn that about
three hundred years ago, the first effort was made to interpose a
mechanical contrivance between the performer and the strings whereby
it would only be necessary to strike the keys to produce tone from the
strings, thereby decreasing the difficulty in finding the strings and
picking them with the fingers, and greatly increasing the
possibilities in musical rendition.

History gives credit to Italy for the first productions of this kind,
about 1600 A.D., when the faculty of music was beginning to manifest
itself more boldly. Scientists saw that wonderful developments were
possible, and we have reason to believe that experiments were made in
England, France, Germany and all civilized countries about this time,
for the production of the instrument which we call, in this day, a
Pianoforte. (_Piano e forte_: soft and loud.)

At this time communication between the different countries was, of
course, slow and uncertain, and experiments of this kind were probably
unknown outside of the immediate neighborhood in which they were
tried; therefore, much valuable and interesting history has not come
to light. However, from the specimens which we have had the pleasure
of seeing, and some of which we have had the opportunity to work on,
we infer that about the same line of difficulties presented themselves
to all of these early experimenters, most of which were not
efficiently overcome until in the last century, and the most important
of which it fell to the lot of American inventors to overcome.

Some of these early instruments were not even provided with dampers
for stopping the tone when the key was released; consequently, when a
number of keys were struck in succession, the tone continued from
all, so long as the strings would vibrate. The strings and sound-board
being very light, the sustaining qualities were meager compared to
those of the modern piano; consequently the dampers were not so much
missed as they would be if removed from a modern upright or grand,
which would surely render them unfit for use.

In the first attempts at piano building, the difficulties to be
overcome may be enumerated as follows: The frames were not strong
enough to resist the tension of the strings; they were made almost
entirely of wood which yields to the pull of the strings and is
subject to climatic changes; the scale was very imperfect, that is,
the length, tension and weight of the strings were not properly
proportioned, the result being a different quality of tone from
different portions of the keyboard; the actions were either heavy and
imperfect, or too light to produce sufficient vibration; the proper
point upon the strings for the hammers to strike and for the dampers
to bear had not yet been ascertained; the preparation and seasoning of
the wood for the different parts of the instrument had not received
sufficient attention.

One cannot conceive how difficult it is to produce something that has
never existed, until he tries. The requirements necessary to such
results as are obtainable from the modern piano are numerous and rigid
and the result of many costly experiments.

Probably the most important essential in piano building is the
production of a frame of such strength and stability that the enormous
tension of the strings is completely resisted in all parts of the
scale. In many of the cheaper pianos of this day, the lack of this
essential manifests itself in an annoying degree to the piano tuner.
In tuning, the workman "brings up" his temperament in the middle of
the instrument; in most cases the temperament stands all right. He
next tunes the treble, then the bass; after doing his work perfectly
he will often find that the treble fell somewhat while he was bringing
up the bass; or, in a few cases, he may find that the treble
sharpened, thus showing that there was yielding of the frame. Of
course, this defect might be overcome by using an extremely heavy
metal plate and wooden frame; but the commercial side of the question,
in this day, calls for lightness in the instrument as a check to the
expense of production, and, consequently, pianos that are "made to
sell" are often much too light to fulfil this requirement.

In the upright piano, the back frame of wood is first made; at the top
of this is the pin-block, sometimes called the wrest-plank. This is
composed of several layers of wood firmly glued together with the
grain running in different directions to prevent splitting and
warping. Into this plank the tuning pins are driven. The sound-board
is fitted firmly into this frame of wood below the pin-block.

Next, the strong metal plate is secured to the frame by large bolts
and screws. Openings are left in the plate for the bridges, which
project from the sound-board beyond the metal plate; also for the
tuning pins, action bracket bolts, etc.

At the lower end of the plate, and just below the bridges,[B] the
hitchpins are driven firmly into holes drilled to receive them. Their
purpose is to support the lower ends of the strings. The bass strings
are separate, and each has a loop with which to fasten it to the
hitchpin. In the treble, one piece of wire forms two strings; the two
ends are secured to the tuning pins above, and the string is simply
brought around the hitchpin. The bridges communicating with the
sound-board are at the lower end of the sound-board. Notice, there is
a portion of the length of each string between the bridge and the
hitchpin.

    [B] There are two sections of the lower bridge, one for the treble
    and one for the overstrung bass.

[Illustration]

At the upper end of the strings, a "bearing-bar," situated between the
tuning pins and upper bridge, is attached to the pin-block by screws
which draw it inward; its function is to hold the strings firmly in
position. You will notice that the lengths of the strings, above the
bearing-bar, vary considerably, even in the three strings comprising
the unison. (We will speak of the effect of this in tuning, farther
on.)

After that portion of the case is completed which forms the key-bed or
action frame, we are ready to set in the


ACTION.

By this is meant the keys and all those intricate parts which convey
the motion of the key to the hammers which strike the strings, and the
dampers which mute them.

The requisites of the action are as follows:

The keys must descend quickly and easily at the touch of the
performer, giving quick response.

The weight of the hammer must be properly proportioned to the strings
it causes to vibrate.

The hammer must rebound after striking the string. (Where the hammer
remains against the string, thereby preventing vibration, the term
"blocking" is used to designate the fault.)

The action must be capable of quick repetition; that is, when a key is
struck a number of times in quick succession, it must respond
perfectly every time.

After striking and rebounding from the string, the hammer should not
fall to its lowest position where it rests when not in use, as this
would prevent quick repetition. For catching the hammer at a short
distance from the string, a felted piece of wood suspended on a wire,
called the back check, rises when the key is depressed, and returns
when the key is released, allowing the hammer to regain its resting
position.

A damper, for stopping the tone of the string when a key is released,
must leave the string just before the hammer strikes, and return the
instant the key is released.

A means must be provided for releasing all the dampers from the
strings at the will of the performer. The loud pedal, as it is
called, but more properly, the damper pedal, accomplishes this end by
raising the dampers from the strings.

In the square and the grand piano, the action is under the
sound-board, while the strings are over it; so the hammers are made to
strike through an opening in the sound-board. In the upright, the
strings are between the action and the sound-board; so no opening is
necessary in the latter.

The "trap-action" consists of the pedals and the parts which convey
motion to the action proper.


QUESTIONS ON LESSON II.

    1. What have been some of the salient obstacles necessary to
    overcome in producing the perfected piano?

    2. Of what use are the dampers? Explain their mechanical action.

    3. Mention several of the qualities necessary to a good action.

    4. Describe the building of an upright piano.

    5. Contrast the musical capacity and peculiar characteristics of
    the piano with those of the organ, which has the same keyboard.



LESSON III.

~TECHNICAL NAMES AND USES OF THE PARTS OF THE UPRIGHT PIANO ACTION.~


In the practice of piano tuning, the first thing is to ascertain if
the action is in first-class condition. The tuner must be able to
detect, locate and correct the slightest defect in any portion of the
instrument. Any regulating or repairing of the action should be
attended to before tuning the instrument; the latter should be the
final operation. As a thorough knowledge of regulating and repairing
is practically indispensable to the professional tuner, the author has
spared neither means, labor nor research to make this part of the
lessons very complete, and feels sure that it will meet with the
hearty approval of most, if not all, students. The piano tuner who
knows nothing of regulating and repairing will miss many an
opportunity to earn extra money.

The illustration accompanying this lesson is from a Wessell, Nickel
and Gross Upright action. This firm, whose product is considered the
acme of perfection, makes nothing but actions. Most manufacturers of
pianos, of the present day, build the wooden frame, the sound-board
and the case only; the action, metal plate, strings, tuning-pins,
etc., being purchased from different firms who make a specialty of the
manufacture of these parts. A few concerns, however, make every piece
that enters into the composition of the instruments bearing their
names.

[Illustration]

_Ky_, is the Key in its resting position.

_c_, wherever found, represents a cushion of felt or soft leather upon
which the different parts of the action rest or come in contact with
each other. Their purpose, as is readily seen, is that of rendering
the action noiseless and easy of operation.

_Bnc R_, shows the end of the balance rail, extending the entire
length of the keyboard.

_B P_, is the balance pin. This is a perfectly round pin driven firmly
in the balance rail. The bottom of the hole in the key fits closely
around the balance pin; at the top, it is the shape of a mortise,
parallel with the key, which allows the key to move only in the
direction intended. The mortise in the wooden cap on top of the key at
this point is lined with bushing cloth which holds the key in position
laterally, and prevents looseness and rattling, yet allows the key to
move easily.

_L_, is the lead put in this portion of the key to balance it, and to
insure uniformity of "touch," and quick and certain return of key to
its rest position. As there is more or less difference in the length
of keys, and also in the weight of the hammers operated by them, some
keys are leaded much more heavily than others. In some cases the lead
is inserted in the extreme back end of the key; in others it is put
near the balance rail according to the requirement. In some actions
the lead is omitted entirely; but in the best actions it is almost
invariably present. In the action of the grand piano the keys are
leaded in front of the balance rail instead of back of it. This is due
to the fact that in the grand piano the hammer rests in a horizontal
position and its whole weight must be actually lifted and the force of
gravity overcome, while in the upright, the hammer rests in a
vertical position, only requiring to be thrown forward.

_G P_, is the guide pin, generally of oval shape, with the longest
diameter in line with the key. The hole in the lower portion of the
key, in which the guide pin works, is bushed with bushing cloth and is
made to fit so closely that the key will not move laterally, yet not
so tightly that the key will not work easily.

_Bm_, is a wooden block called the bottom; sometimes called the
key-rocker. It is held in position by the two screws shown in cut by
which it can be adjusted or regulated.

_E_, is the extension communicating the motion of the key to the upper
part of the action. There are various ways in which the extension is
connected to the bottom. In this action, the extension is made round
at the lower end and fits snugly into a hole in the bottom upon a felt
disc. When the action is taken out, the extensions simply lift out of
the holes, and when it is put back it is necessary to enter each one
in its place. In other actions, the upper side of the bottom where
the extension rests has no hole but simply a felt covering upon which
the extension rests; in this case it is necessary to provide what is
called an extension guide which is hinged to the extension guide rail
shown in the cut at the left of the extension. In actions of this
kind, the extensions remain in place at all times and the trouble of
placing them properly on the bottom when replacing the action is
obviated. Other methods also are employed which are readily understood
upon slight examination, but are essentially similar to the above.
Instead of the bottom, a capstan screw is used in some actions as
follows:

_Cpn_, is a capstan screw used in some actions in place of the bottom.
It is turned by inserting a pointed instrument in one of the four
holes, thus raising or lowering the capstan in regulating. The lower
end of the extension is felted. In such actions the extension is
invariably provided with the extension guide.

_B_, is the metal action bracket. The bracket is one solid piece of
metal. There are generally four brackets in the upright action. The
brackets rest on supports in and at the sides of the keybed, and are
secured at the top by large bolts,

_BB_, which go through the metal plate and into the wooden frame or
pin block. At the top of each bracket is an opening to receive this
bolt and a thumbscrew (not shown in the cut, being behind the hammer)
which fastens the action securely in position.

_M R_, is the main rail; so called because the main constituents of
the action are attached to it. (Everything designated as "rail" in the
action runs the entire length of the action in one solid piece.)

_W_, is the wippen. Those pieces upon which or by which the small
letter _g_ is shown are the flanges. The one at the left of the wippen
is called the wippen flange. It is made fast to the main rail by a
screw, and upon it the wippen is hinged by means of a "center-pin" at
the lower end. The center-pin in the wippen is driven through a hole
in which it fits tightly and immovably in the middle part, and it (the
center-pin) is consequently stationary in the wippen. The flange
extends down at the sides of the wippen and the holes in flange are
made large enough to receive bushing cloth in which the center-pin
works freely but not loosely. All flange joints are of this nature;
some, however, are provided with a means for tightening the center-pin
in the middle portion of the joint.

_j_, is the jack. The purpose of the jack is to communicate the motion
of the wippen to the hammer. The precise adjustment of the jack and
the adjacent parts upon which it depends for its exact movements, play
an important part in regulating the "touch" of the piano, and will be
fully entered into in following lessons.

_js_, jack spring. Its purpose is to hold the jack inward against the
"nose" or "heel" of the hammer butt. (See _Bt_, hammer butt.)

_Rr_, regulating rail. The _regulating button_ is shown attached to
the rail by the regulating screw which is turned by means of its ring
on top of _Rr_. The purpose of the regulating button is to throw the
point of the jack out of the nose of the hammer butt, and allow the
hammer to rebound from the string. If the button is too high, it does
not throw or trip the jack in time to prevent blocking. When the
button is too low, it disengages too soon, and much of the force of
the key is lost before it reaches the hammer.

_BR_, is the block rail, felted on the side next to the jack which
strikes against it when thrown from nose. This rail is absent in some
actions, in which case the back of the jack is felted and strikes
against the "back catch," which is also felted on inner side. (The
back catch has no mark in the cut, but is explained below in
connection with the "back check.")

_BC_, is the back check which is simply a piece of wood with a thick
piece of felt glued to the inner face and suspended on a wire.

_BCW_, back check wire supporting the back check, and screwed to the
wippen. The purpose of the back check is to check the hammer by coming
in contact with the "back catch" (the backward projection of the
butt), at a short distance from the string in its return, and prevent
the hammer from falling entirely back to its rest position, thereby
preventing quick repetition.

_Bl_, bridle. This is a piece of tape about an eighth of an inch wide
with a piece of leather glued to the end and a hole near the end for
the point of the "stirrup" or bridle wire. The cut shows where the
bridle is fastened in the hammer butt by being put into the hole in
the butt, and the back catch stem covered with glue and driven in by
it which precludes all possibility of its coming loose. The bridle
passes through a hole in the lower part of the back catch. Its purpose
is to assist the hammer to return quickly by hanging to it with the
weight of the wippen, extension, jack, etc., when the key is released.
Thus the bridle becomes the main factor in the matter of quick
repetition.

_Bl W_, bridle wire, screwed into wippen, bent in the shape of a
buckle at top to hold bridle.

_Bt_, butt; or, more specifically, hammer butt. In some cheap actions
the butt is joined to its flange _g_, by the means described under the
head of wippen flange; but in this action the center-pin is held
firmly in the butt by a small strip of brass containing a set screw;
somewhat obscure in the cut, but discernible. As explained elsewhere,
all center-pins turn in the flange and not in the middle part.

_HS_, hammer shank in rest position.

_H_, hammer showing wood body or head, and covering of two layers of
felt.

_H R_, hammer rail, resting on felt cushion, _c_, glued to rail or
bracket. The hammer rail is held in position by the rod, shown under
the hammer shank, which is hinged to the bracket at the lower end, and
which allows it to be moved forward when the soft pedal is used. The
soft pedal communicates with this rail by a rod which moves it forward
and thereby shortens the stroke of the hammers and produces a softer
tone.

_sr_, spring rail screwed to the brackets. This rail supports the
light wire springs which assist the hammers in returning to rest
position.

_S_, string.

_D_, is the damper head secured to the damper wire by a set screw.

_DL_, damper lever, working in damper flange _g_, which is screwed to
main rail.

_s_, spoon; so called from its shape. It is screwed into the wippen.
When the key is struck, the motion on the wippen throws the spoon
forward, pushing the lower end of damper lever forward, and releasing
the damper from its contact with the string. The damper is held
against the string by the wire spring which is seen running from the
damper flange to the top of the damper lever.

_DR_, damper rod. This is a rod running from the left or bass end of
the action to the right as far as the dampers are continued in the
treble. It is acted upon by the "loud" or damper pedal, which raises
the outer projection, and by being hinged to the main rail about the
same height as this projection, the entire rod is thrown outward
against the lower ends of the damper levers, releasing all the dampers
simultaneously. This being the only office of the right pedal, it is
readily seen that this pedal does not increase the loudness, but
simply _sustains_ any number of tones struck successively, giving the
effect of more volume.

The student should familiarize himself with all technical terms used
in this lesson, as they will be referred to frequently in the
succeeding lessons on repairing and regulating.


QUESTIONS ON LESSON III.

Without reference to anything but the cut, give technical names for
parts of action represented by the following letters or abbreviations:

    1. Bnc R, c, G P, BP, Ky, L.

    2. Bm, Cpn, E, W, j, js, g, and M R.

    3. Rr, B C, B R, B C W, Bl, and Bl W.

    4. Bt, H, H S, H R, and sr.

    5. S, D, D L, D R, s, B, and B B.

    6. Explain the purpose and movements of the jack.

    7. Describe a flange and the joint of same.

    8. Give names of the four flanges shown in cut.

    9. What is the purpose of the back catch and back check?

    10. Explain the mechanical action of the damper pedal, and its
    effect when used; also, that of the soft pedal.



LESSON IV.

~ACTION OF SQUARE AND GRAND PIANOS.~


ACTION OF THE SQUARE PIANO.

Up to about the year 1870, the square was the popular piano. The grand
has always been too expensive for the great music-loving masses, and
previous to this time the upright had not been developed sufficiently
to assert itself as a satisfactory instrument. The numerous objections
to the square piano forced its manufacture to be discontinued a few
years after the introduction of the improved new upright. Square
pianos that come, at the present day, under the hand of the tuner, are
usually at least fifteen years old, and more frequently twenty or
more. However, in some localities the tuner will meet numbers of these
pianos and he will find them a great source of revenue, as they are
almost invariably in need of repair.

Compare the three cuts of actions in the study of this lesson.

The main constituent parts of the square action are similar in
appearance to those of the upright; in fact, most of the parts are
the same in name and office. However, the parts are necessarily
assembled very differently. In the square action, the hammers strike
in a vertical direction, while in the upright they strike in a
horizontal direction; the motion of the key being the same in both.

Of the three types, the square is the simplest action, as many of the
parts seen in the upright and grand are entirely absent in the square.

Beginning with the key, it has its balance pin, guide pin, cushions,
etc., practically the same as in the other types.

The bottom, or key rocker, is reversed in the square; the end
transmitting the motion being nearest the performer.

The extension and wippen are absent in the square, as the jack is
attached directly to the bottom or key-rocker.

The back check is screwed to the key, and as the hammer head rests
against it after striking, the use of the contrivance called the back
catch in the upright is unnecessary.

[Illustration: ACTION OF THE SQUARE PIANO.]

     ACTION OF THE SQUARE PIANO.

    A. Action Frame.

    B's Indicate the Cushions, or Bushing, of felt, cloth or leather.

    C. Balance Rail.

    D. Balance Pin. Round.

    E. Mortised Cap for Balance Pin. Bushed.

    F. Key.

    G. Lead.

    H. Back Check.

    I. Bottom or Key Rocker.

    J. Bottom Screws; used to regulate height of Jack.

    K. Jack.

    L. Jack Spring; concealed under Bottom.

    M. Center Pin to Jack.

    N. Hammer Rail.

    O. Regulating Screw.

    P. Regulating Button.

    Q. Flange Rail.

    R. Flange. Split.

    S. Flange Rail Screw.

    T. Flange Screw, to regulate jaws of flange.

    U. Hammer Butt.

    V. Center Pin.

    W. Hammer Stem or Shank.

    X. Hammer Head.

    Y. Hammer Felt. Treble hammers sometimes capped with buckskin in
    old instruments.

     TOP ACTION OF SQUARE PIANO.

    1. Damper Lifter Wire.

    2. Damper Lifter Buttons.

    3. Damper Felt.

    4. Damper Head.

    5. Damper Lever.

    6. Damper Leads.

    7. Shade, supported by wire stanchions, on top of which are
    screwed shade buttons.

    8. Damper Rail. Tilted by Loud Pedal Rod which raises all the
    dampers simultaneously.

    9. Damper Flange.

    10. Flange Screw.

    11. Damper Lever Center Pin.

     THE TRAP ACTION

     consists of Pedals, Pedal Braces, Pedal Feet, Pedal Rods, Roller
     Boards or Elbows, Studs, Plugs, Trap Springs, Wires and Lifter
     Rods.

     The cut is from the French action. Nearly all square pianos in
     use at the present time are of this type.

The hammer rail in the square, in addition to serving its purpose as
a rest for the hammers, also serves the purpose of the regulating
rail, as you will see the regulating screw, with its button, attached
to it. This rail is stationary in the square, not moving toward the
strings and shortening the stroke as it does in the upright when the
soft pedal is used. The soft pedal in the square piano simply
interposes a piece of felt between each hammer and its corresponding
string or strings. This felt being much softer than that of the
hammers, the tone is greatly subdued.

The mechanical arrangement of the dampers is very different in the
square from that in the upright. The dampers are above the strings.
Instead of springs to hold them against the strings, they simply rest
upon them with their weight. In many old squares some of the dampers
fall upon nodal points, causing defective damping or harmonic
after-tones.

The stationary parts of the square action are: action frame, to which
is secured the balance rail, balance pins and guide pins, hammer rail,
flange rail, and damper rail. When the key is struck, the parts that
move upward are: the back end of the key, bottom, jack, hammer, back
check, damper wire and damper lever. The hammer falls back upon the
back check immediately after striking, and remains there until the
key is released, when all movable parts fall to rest position.

The action of the jack is the same in all types.


ACTION OF THE GRAND PIANO.

After thoroughly going over the details of the action of the square
and upright pianos, there remains very little to describe in the
action of the grand.

The grand action partakes of the characteristics of both the upright
and the square, and is somewhat more complicated than either.

The bottom and extension are almost identical with those of the
upright; the extension, however, is necessarily very short.

The wippen is of different construction, and somewhat more complicated
in the grand.

The flange rail in the grand is made also to serve the purpose of
regulating rail, as the hammer rail is made to do in the square.

The back check is identical with that of the square.

The dampers are the same in their working principles as those of the
square, but are generally different in construction; yet, some squares
have the same arrangement of dampers as those shown in the cut of the
grand action.

The soft pedal of the grand shifts the entire action to the right so
that the hammers strike only two and in some cases only one of the
strings.

The student should study the three types of actions from the actions
themselves, if possible.

[Illustration: ACTION OF THE GRAND PIANO.]

     ACTION OF THE GRAND PIANO.

    1. Indicates the felt, cloth or leather, upon which the various
    parts of the action rest, or fall noiselessly.

    2. Key.

    3. Bottom; sometimes called Key Rocker.

    4. Extension; split at lower end to receive center pin in Bottom.

    5. Wippen Support.

    6. Jack.

    7. Jack Spring.

    8. Flange and Regulating Rail.

    9. Regulating Screw, Button and Cushion.

    10. Escapement Lever.

    11. Regulating Screw in Hammer Flange, for Escapement Lever.

    12. Check Wire, for Escapement Lever.

    13. Screw to regulate fall of Escapement Lever.

    14. Lever Flange, screwed to Flange Rail.

    15. Hammer Shank.

    16. Hammer.

    17. Back Check.

    18. Damper Lever, leaded.

    19. Damper Wire, screwed into upright.

    20. Damper Wire Guide, fastened to Sound-Board.

    21. Damper Head and Felt.

    0. Center Pins. Holes lined with Bushing Cloth.



INSTRUCTIONS FOR REMOVING THE SQUARE AND GRAND ACTIONS.

First, feel or look underneath the keyboard and see if there are
screws that go up into the action. In most of the better grade
instruments the action is fastened in this way. If the screws have
square heads, your tuning hammer will fit them and bring them out; if
common screws, a screw-driver will suffice. Look through the opening
in the sound board where the hammers strike and see that they are all
down before pulling out the action, lest they break off by catching on
the under side of the sound board. This is almost sure to happen if
actions are out of order.

In most square pianos, the narrow board just below the keys can be
removed by being raised straight up, as it simply sets over screw
heads in the key frame. When this strip is removed, a wire handle will
be found in the middle of the key frame by which to draw out the
action. In some cases, and especially in grands, this strip is secured
by screws found underneath the piano. In other pianos, the action is
held by screws in front of the key frame, which will be revealed by
the removal of the front strip, above referred to.

Be especially careful in placing the action back into the piano. As a
rule, it is safe to keep the right (long) end of the square action
bearing against the right side of entrance, being sure that one end of
action does not get ahead, which might cause some of the hammers to
strike the props for which the openings are left in the back
extremities of action.

While the action is out, study carefully the purpose of every part and
its movements, referring to this and the previous lesson until you
have thoroughly mastered the entire mechanism. Do not rest until you
can name correctly everything you see and know its use so well that
you could explain it satisfactorily to an inquirer. Sometimes the
tuner is asked a great many perplexing questions and is expected to
respond intelligently.

We have dealt with the three types of actions that are most commonly
found in the three types of pianos. The student must bear in mind that
there are numerous manufacturers of actions, and that each has his
peculiar method of constructing his special action to bring about the
desired results, which are practically the same in all cases; and
consequently, while a variety of construction will confront the
beginner in piano regulating and repairing, he will understand the
construction and requirements of any action that may demand his skill
from the foregoing instruction, if properly mastered. In this, as in
all other mechanical professions, one's inventive genius must often be
summoned to assist in surmounting obstacles which are sure to arise
unexpectedly.


QUESTIONS ON LESSON IV.

    1. From a philosophical point of view, which do you consider the
    easiest and most perfect of the three types of actions? Also give
    reasons.

    2. Considering the wippen and its attachments as one part, how
    many parts move when a key is struck in the upright piano? How
    many in the square?

    3. Name the parts found in the upright action that are absent in
    the square.

    4. Describe the three methods by which soft tone is obtained from
    use of soft pedal in the three types of actions.

    5. What rail serves two purposes in the square action, and what
    are they? What rail serves two purposes in the grand action, and
    what are they?



LESSON V.

~REGULATING AND REPAIRING.~

FAULTS IN PIANOS, ASIDE FROM THE ACTION, AND THEIR REMEDIES.


One of the most common, and, at the same time, most annoying
conditions both to the owner of the piano and the tuner, is the
"sympathetic rattle." This trouble is most usual in the square and the
grand pianos and is generally due to some loose substance lying on the
sound board. The rattle will be apparent only when certain keys are
struck, other tones being perfectly free from it. These tones cause
the sound board to vibrate in sympathy, so to speak, with the weight
of the intruding substance at the point where it lies, and if it be
moved the distance of six inches it will sometimes cease to respond to
these particular tones, but may respond to others, or cease to cause
any trouble.

The article may generally be found near the front of the sound board
under the top piece of the case, this being the place where it would
most likely fall. No special instrument is made for the purpose of
searching for such objects, but one can be easily devised with which
the tuner can feel all over the sound board, and remove such articles
as well as dust and dirt. Secure a piece of rattan or good pliable
hickory, and draw it down to the width of half an inch, thin enough to
bend easily, and long enough to reach anywhere under the stringing or
metal plate. By putting a cloth over this stick you can remove
anything that comes in its way. Some difficulty will be found,
however, in getting under the plate in some pianos. In case you cannot
procure a suitable piece of wood, a piece of clock spring will be
found to answer very well. We have taken from pianos such articles as
pencils, pieces of candy, dolls, pointers used by music teachers,
tacks, nails, pennies, buttons, pieces of broken lamp chimneys, etc.,
etc., any one of which is sufficient to render the piano unfit for
use. The sound board of the upright being vertical prevents its being
subject to the above difficulty.

A split in the sound board, in any style of piano, sometimes causes
trouble due to the vibrating edges of the board coming in contact
with each other. Insert the point of your screwdriver in the crack,
holding it there firmly; if the rattling stops, the difficulty is
discovered, and may be remedied by placing a screw or wedge in the
crack, or a wedge of wood, cork or rubber between the sound board and
iron plate or casing, if the location of the trouble permits. While
this method seems a perfunctory one, it is nevertheless the best the
tuner is prepared to do, for it is next to impossible to glue a crack
in the sound board successfully outside of a regular factory or repair
shop, where the instrument may be taken all apart and a new sound
board put in or the old one properly repaired.

Sometimes the sound board gets loose or unglued at the edges, or the
bridges or ribs come loose. Any part of the piano where there is
vibration or loose material may become the source of the sympathetic
rattle, as even parts of the case vibrate with the tones struck; so
you must examine the panels, lock, hinges, soft pedal bar (in square),
in fact all parts of the case and woodwork for the location of the
trouble. Once found, the remedy will suggest itself. The greatest
difficulty is to locate the cause. Very frequently this will be found
entirely outside of the piano; a loose window glass, picture glass,
lamp or other article of furniture in the room may respond to a
particular tone or its octave. We have never found the sympathetic
rattle in the action; it has rattles, but not of this character. Any
other defect which may be found under this head will only require the
exercise of a little mechanical ingenuity to suggest a remedy.


REGULATING AND REPAIRING THE UPRIGHT ACTION.

(Use cut of upright action for reference in following study.)

We will begin with the key and take up each part of the action in the
succession in which motion is transmitted.

1. _Key_.--Keys stick; that is, after being struck, they fail to come
up quickly, if at all. First ascertain if the trouble is really in the
key, or in the upper part of the action. To do this, lift the
extension or wippen until the upper part of the action is entirely
free from the key, so that you may test the key independently. Some
keys are leaded so that they will fall in front of the balance rail,
others so that they will fall back of it; in either case, lift the low
end and let go, to see if it will fall by its own weight. If it seems
quite free, you may know the trouble is not in the key; you will also
find that when you release the extension or wippen, it will not fall
readily, showing that the trouble lies in the upper part.

If the trouble is found in the key, examine the guide pin. See if it
is placed in a direct line with the key. If so, and it still binds,
enlarge the hole by pressing the wood back slightly with some
wedge-shaped instrument, if you have not a pair of the key pliers
which are used for this purpose. See that the cloth, with which the
hole is bushed, is not loose and wrinkled. Do not oil or grease the
guide pin unless such treatment has been previously resorted to, as
the polished pin will work more freely in the dry cloth. Do not pinch
hard on the pin with rough pliers and spoil the polished surface.

Sometimes you will find one key warped so that it rubs on the next, in
which case, plane off a slight shaving to free it. Sometimes changing
the position of the guide pin will straighten or level the key and
make it work all right.

The balance pin is subject to some of the same difficulties as the
guide pin. See that it sets properly and is not bound by the mortise.

Sometimes a splinter will be found on one side of a key where the lead
has been put in. A piece of any foreign material between two keys
generally causes both to stick.

Where the action is too deep, that is, the keys go down farther than
they ought, place cardboard washers under the felt ones around the
guide pin, or raise the felt strip under back end of keys.

Where the action is too shallow, place thin washers under those around
the balance pin. When this is done, the whole action must be regulated
accordingly, as this alteration will make a change in the working of
the upper part of the action.

2. _The Bottom or Capstan_.--This should be so adjusted that when the
key falls back to its rest position, the point of the jack will just
spring into its place in the nose of the hammer butt. If held too
high, the jack fails to catch in the nose, and the key may be struck
without producing any effect on the hammer. When the bottom or capstan
is too low, the point of the jack will be some distance below the
notch, which will cause what is known as lost motion, it being
necessary to depress the key a portion of its depth before the jack
can act upon the hammer. Depress the key slowly, watching the hammer,
and the fault will be discovered.

After a piano has been used for some time, the keys that are struck
most frequently (those in the middle of the instrument) will be found
to have this fault. The felts under the keys and those which are
between the working parts of the action become compressed or worn so
that the jack will be found to set so low that there will be lost
motion in the key. In this case, loosen one of the screws in the
bottom and turn the other down so as to move the jack upward until
nearly all lost motion is taken up. A little play is generally
necessary, but very little. In case the action has a capstan, simply
turn it upward.

3. _Back Check_.--Blocking is most usually caused by the back check
being too near the back catch, so that when the key is struck, the
back check holds the hammer against the string. This should be seen
after raising the bottom or capstan as above referred to. It will be
observed that when this is done on account of the wear of the felts,
the back check will stand much nearer the back catch than it did
before, and will need bending back so as to give the hammer plenty of
"rebound." A steel instrument with properly shaped notches at the
point, called a regulator, is used for bending wires in regulating the
action. See that the wires stand as nearly in line as is possible. In
old actions that are considerably worn, however, you will be obliged
to alter some more than others.

4. _Bridle and Bridle Wire_.--In putting in a new bridle, it should be
doubled over at the end and secured to the hammer butt by a small
tack. Be sure you get it exactly the same length as the others;
otherwise it will be necessary to bend the bridle wire out of line.
Some tuners glue the bridle around the back catch stem, but the above
method is preferable.

The purpose of the bridle is to jerk the hammer back quickly and the
wire must be set, neither so far back as to check the stroke of the
hammer, nor so far forward that the bridle is too slack to draw upon
the hammer.

5. _Jack_.--The jack itself seldom gets out of order. So long as its
flange does not come unglued in the wippen, or its spring get out of
place or broken, or get tight in its joint, it will need nothing. Its
adjustment and action is controlled by the bottom or capstan, and the
regulating button.

6. _Regulating Button_.--This button determines the point in the
stroke of the hammer where the jack flies off from the nose of the
butt. If the button is too high, the jack does not fly off soon
enough, and the result is, that the hammer either blocks against the
string or bounces from the jack after the stroke has been made,
striking the string a second or third time from one stroke of the key.
The felt punching on the lower side of the button often wears until
this trouble prevails. Lower the button by turning down the screw on
top of the regulator rail; if lowered too far, however, the action is
weakened by causing the jack to fly off too soon, without giving the
hammer a sufficient impulse. A regulating screwdriver is used for
this, but in its absence, a wire hook, similar to a shoe buttoner,
will turn the screw.

The block rail is properly adjusted at the factory and requires no
attention.

7. _Hammer Butt_.--The felts and leather on the heel of the hammer
butt wear out and must be replaced. The felt cushion, that is lowest
and farthest to the left (see illustration), is the one that wears out
first. The jack, in returning to the notch, strikes this cushion, and
in time wears it away so that the jack in returning strikes the wood
of the hammer butt, producing a sharp click, which is very annoying,
to say the least. This click is heard at the instant the key rises to
its rest position. Sometimes, however, a similar click is produced by
the top of the key striking the board which is set over the keys, due
to the cloth being eaten off by moths, or a pencil or some other
article lying on the keys back of this board.

The center pin in the butt of some cheap actions is not held in the
butt by metal clip and screw, and if it gets loose so that it works
out, must be replaced by a larger pin. The size of center pins
generally used in the factory, is .050 of an inch in diameter; the
size for repairing should be .053. All of the best actions have the
set screw with which to make the pin fast in the butt.

Hammers stick when the center pin is too tight in the flange. The
bushing in the flange often expands. Some tuners oil at the ends of
the pin with kerosene or wet it with alcohol, which is very good; but
a better plan is to shrink the bushing with a drop of water on each
side so that it will penetrate the bushing. After this is done, the
piano cannot be used for a day or two, as the water first swells the
bushing, making all the hammers stick; but when they are dry again,
they will be found free. This may seem a curious method, but you need
not be afraid of it; it is the most effective.

Before leaving the hammer butt, see that the hammer spring is in its
place.

8. _Hammer Stem_.--These sometimes warp, split, crack, or come unglued
at the butt or hammer. If twisted so far that it does not strike
properly on the strings, or that it binds against the next hammer, the
best thing is to put in a new stem. If merely split or unglued, it may
be repaired. Sometimes a click is heard and it will seem impossible to
find the cause, the hammer and stem apparently perfect, but a close
examination will reveal a looseness in the stem somewhere.

In putting in a new shank, drill or chip out the old one, scrape the
holes out clean, take your measure carefully, and do not make the new
shank too tight, but large enough to fill the hole snugly. Apply glue
to the ends of the shank and also in the holes. Cedar is used in some
makes, but good maple is stronger, and is more generally used.

9. _Hammers_.--When too hard, soften with a felt pick. Do not raise
the felt up, but stick the pick in the felt just back of the point and
this will loosen it up and make it softer and more elastic. Where the
strings have worn deep grooves, sandpaper them down nearly even and
soften the felt as above.

In regluing the felt to the head, glue only the back ends of the felt,
and clamp with strong rubber band till the glue sets. Use tailor's
chalk (fuller's earth) to clean hammer felts. To harden or draw felts
back in shape, place a damp cloth over them, and then pass a hot iron
over it.

10. _Dampers_.--Damper felt often gets hardened so that when it comes
against the vibrating string, it causes a sort of buzzing sound.
Loosen it up with the pick. Imperfect damping can sometimes be
corrected in the same way.

The damper head sometimes turns round on its wire, leaving one or two
strings undamped. Tighten the set screw. See that the dampers are in
line; and that they will stop the tone properly when the key is
released.

Damper springs sometimes break. It is necessary to take out the damper
lever to put in a new one.

See that the spoons are in line and work properly. Press the
sustaining pedal down, and see if all the dampers are in line; if not,
bend the damper wires with the regulator until they line up perfectly.

11. _Damper Rod_.--When the sustaining pedal squeaks, look first to
the pedal, then to the wooden rods leading up to the damper rod. If
the trouble is found in any of these, or the springs, use sperm oil or
vaseline.

Catch hold of the damper rod at the left behind the action and work
it. If it squeaks, you will have to take out the action and oil the
swings where they are hinged to the main rail.


QUESTIONS ON LESSON V.

    1. If you should find a key sticking, how would you determine the
    cause?

    2. Name all the defects to which the key is subject.

    3. Describe the proper adjustment of bottom or capstan.

    4. Give two causes of blocking.

    5. Give the purpose of the regulating button, and its proper
    adjustment.



LESSON VI.

~REGULATING AND REPAIRING.--(Continued.)~

THE SQUARE ACTION.


1. _The key_ in the square piano is subject to the same troubles as
that of the upright, and requires the same treatment. However, the
keys being much longer are more liable to cause trouble by warping.

2. _Bottom or Key Rocker_.--Unlike in the upright action, the jack is
attached directly to the bottom; but, lowering or raising the bottom
has the same effect in both cases. The screws regulating the height of
the jack can be gotten at with a proper screwdriver. If you have to
take out the key in order to regulate the bottom, first take
particular notice of the conditions in respect to the operation of the
jack on the hammer. Work the key slowly, to discover if there is lost
motion. Decide which way the bottom must go and how far, so that you
will not have to remove and replace the key more than once or twice
to adjust it. In taking out the key, remove the board which is set
edgewise over the keys immediately back of where the fingers strike,
by taking out the screw at each end. Lift the hammer with the finger
until the jack falls out of place; then by lifting the key off the
balance pin it can be drawn out. The back check will sometimes rub so
hard against the regulating button that it will be bent somewhat, and
must be adjusted after the key is replaced.

The bottom is often found to have shrunken; it rattles at every stroke
of the key. This can generally be stopped by simply turning the back
screw down until tight, which can be done without taking the key out.
This will rarely be found to alter the jack enough to cause it to fail
to return to the notch in the butt. After doing this, however, it is
well to examine for such a condition.

A sluggish motion of the jack is often found in old square pianos
caused by the swelling of the wood, at the point where the jack is
hinged to the bottom, or by the center pin's becoming foul from oxide.
This will cause the jack to fail at times to operate on the hammer,
especially in quick repetition. The key is struck with no response.
Take out the bottom entirely, and with the fingers press the sides of
the bottom inward; at the same time, work the jack back and forth.
This will generally free it if the jack-spring is all right.

3. _Jack_.--As in the upright, the behavior of the jack depends
entirely upon the surrounding members. A very common occurrence in the
square piano is a broken jack-spring. This spring is concealed in a
groove on the under side of the bottom, with a linen thread leading
around the end of the jack and held fast by a wooden plug. If the
spring is found to be long enough, drive out the plug, attach a new
thread to the spring, and fasten as before. If a new spring is needed,
one may be made by wrapping some small wire round a piece of music
wire of the right size.

4. _The back check, hammer stem and regulating button_ are subject to
the same faults as their counterparts in the upright, which may be
remedied in the same way. Bridles and hammer springs are not needed in
the square, as the weight of the hammer, moving in a vertical
direction, is sufficient to bring it to its rest position.

5. _Hammers_, when made of felt, will of course require the same
treatment as those in the upright. In many old squares the hammers are
built up of buckskin. If this becomes beaten down hard, it is well to
cap the hammer with a new soft piece of buckskin, gluing only at the
back ends.

6. _Butts and Flanges_.--A click just as the key comes up, indicates
that the felt cushion, against which the jack rests, is worn out and
must be replaced.

In all square actions the center pin, in the butt, is held by friction
alone, but rarely gets loose; if it should be found loose, put in a
larger pin.

The flange, shown in the cut, is what is called a split flange. By the
set screw T, the jaws can be regulated so that they neither clamp
the center pin so tightly as to make the action sluggish nor so
loosely as to let the hammer wabble.

If the bushing cloth is found to be badly worn, it is better to put in
new, which must be done neatly, or the result will not be
satisfactory.

Hammer flanges, like all other wooden parts, shrink away from the
screw heads and allow the hammer to drift to one side or rattle. While
the action is in the piano, strike the keys to see if there are any
that strike improperly. Mark the keys so as to indicate just what the
trouble is, so that you will know how to remedy it when the action is
out. If the hammers are set so close that they rub against each other,
you may have to cut off a slight shaving of felt, but this is rarely
necessary; for if properly placed, there is generally room for all;
yet sometimes the expansion of the felt or warping of the shank makes
cutting necessary.

7. _Dampers_.--The dampers in the square action depend entirely upon
their weight for their efficiency in damping the strings and returning
after being raised by the key. Often, after the key is struck, the
damper will not return to its place and the string is undamped. This
is generally found to be caused by the wire sticking in the hole
through which it passes, the wire being rusty or bent or some foreign
substance being in the hole round the wire. The bushing cloth in the
hole may be in such condition as to retard the free passage of the
damper wire, in which case the wire may be heated with a match and run
up and down a few times through the hole, which will free it. The
damper may not fall readily on account of a sluggish joint in the
flange. Work it back and forth as far as it will go a few times; if
necessary, take it off the damper rail and look for the cause of the
trouble.

Damper flanges get loose on the damper rail and work to one side,
causing defective damping and rattling. See that they are all tight,
and in their places.

Damper lifter buttons sometimes hold the damper off the string. See
that the top button falls so low that the damper lever does not touch
it when the key is released. This is accomplished by altering the
lower button. Examine the damper felts to see if they are moth-eaten,
or have become hardened or in any way impaired. Notice the adjustment
of the shade; that it is not too low or too high. The purpose of the
shade is to prevent the damper levers from flying up; but it should be
high enough so that the levers do not touch it when the key is
depressed gently.

Defective damping is one of the most annoying conditions, and when one
is employed to regulate a piano thoroughly and put it in order, he
should see that no key is left in which this occurs. Strike each key
and immediately let it up to see if it stops the sound quickly, or, in
other words, damps perfectly; if it does not, find the cause and
regulate until satisfactory.

8. _The grand action_ being, in principle, practically the same as
that of the square and the upright, containing the same mechanism as
is found in those actions, it is needless to give special instructions
concerning it; as the previous work has given the pupil a thorough
knowledge of the requirements of all actions, their common faults, and
proper methods of regulating to bring about satisfactory results. Let
us merely remark: Study thoroughly the behavior of every component
part of each action that comes under your observation; understand what
each part is for, why it is there, and how it works or should work
properly to fill its office. Then regulate and try for results. If you
have natural mechanical genius, a little experience will prepare you
to do all regulating and repairing with skill and quickness.


MISCELLANEOUS REPAIRS.

A few miscellaneous difficulties, common to all styles of actions, are
occasionally met with and need to be rectified.

1. _Broken Hammer Shank_.--Glue the ends, lay a nicely fitting piece
of wood, well coated with glue, on each side and wrap with binding
wire. If it is broken off up so close to the hammer as not to permit
this, drill a hole through the hammer head in line with the center of
the shank, with a small-sized screwdriver such as watchmakers use, and
run the wire through this and around the shank, drawing it firm; glue
as before; when dry it will be as strong as ever. When the shank is
broken off close to the butt, the same treatment will sometimes
answer, but the strain here is so much greater that it is sometimes
necessary to put in a new shank. In fact, it is always better to do
so.

2. _Flanges, damper heads_, and all small wooden parts are liable to
break or come unglued. The watchmaker's screwdriver, the binding wire
and the glue must always be at hand for these emergencies. These
breaks are generally in places where wrapping is not permissible, and
you are compelled to drill. Keep the screwdriver well sharpened and
the drilling is easy.

3. _Ivories_.--When unglued, scrape the old glue off, apply glue to
both surfaces and clamp with an ivory clamp or rubber band until the
glue is firm. Apply the same treatment to ebony sharps.

4. _Leads_ in the keys and the dampers of the square piano get loose
and rattle. Hammer them just enough to tighten; too much might split
the key.

5. _Friction_.--Where different materials, such as wood and felt,
would rub together they are covered with black lead to lubricate them.
The point of the jack where it comes in contact with the butt, the toe
of the jack which strikes the regulating button, and the long wooden
capstan which takes the place of the extension and works directly on
the under side of the wippen, which is covered with felt, are
black-leaded. When a key squeaks and goes down reluctantly, the
trouble can usually be traced to these places; especially to the
wooden capstan, the black lead having worn away. Use powdered black
lead on these parts.

There are many things in this kind of work that require only the
exercise of "common sense." These we have omitted to mention, treating
only of those things the student does not know intuitively.


QUESTIONS ON LESSON VI.

    1. When a key snaps or clicks at the instant it is let up, give
    two or more conditions that might cause it.

    2. When a key simply rattles, what parts of the action would you
    examine for the trouble?

    3. When a key is struck and there is no response, what may be the
    cause?

    4. Give two causes for defective damping in a square piano.

    5. Give cause of and remedy for a squeaking key.



LESSON VII.

~THE STUDY AND PRACTICE OF PIANO TUNING.~


Before commencing the systematic study of piano tuning, we want to
impress the student with a few important facts that underlie the great
principles of scale building and general details of the art.

If you have followed the suggestions, and thoroughly mastered the work
up to this point you should now have some idea of the natural and
artificial phenomena of musical tones; you should have a clear
knowledge at least of the fundamental principles of harmony and the
technical terms by which we designate intervals and their relation to
each other; a knowledge of the general and specific construction of
the different types of pianos and their actions, and the methods
employed to put them in perfect working condition mechanically. This
admitted, we are ready to consider the art of tuning--one, the
appreciation of which is in direct proportion to the understanding of
it. Let us now view this art for a moment in its past, present and
future phases.

You may be a little surprised at what we are about to tell you, but it
is a fact, gleaned from long experience in traveling and observation,
that many, verily, the majority of pretending tuners have not so much
practical knowledge of a piano as you should now have. We have no
doubt that you, if you have a musical ear, could, without further
instruction, improve an instrument that was extremely out of tune. You
could detect and improve a tone which you should find extremely sharp
or flat; you could detect and improve a unison that might be badly
out, and you might produce an entire scale in which none of the chords
would be unbearably rasping. But this is not enough. You should aspire
to perfection, and not stop short of it.

It may seem to us who are musicians with thorough knowledge of the
simpler laws of music, that a scale of eight tones is a simple affair;
simply a natural consequence; the inevitable arrangement; but a
historical investigation will prove our mistake. We will not go into
the complexities of musical history; suffice it to say that the wisest
philosophers who lived prior to the fourteenth century had no idea of
a scale like that we have at the present day.

In piano tuning, as in other arts, many theories and conjectures have
been advanced regarding the end to be sought and the means by which to
gain it. There must be a plan--a system by which to work. The question
is: What plan will insure the most perfect results with the least
amount of labor? In Piano Tuning, this plan is called the Temperament.

Webster defines the word thus: "A system of compromises in the tuning
of pianofortes, organs," etc. Later on we will discuss fully what
these compromises are, and why they exist; for it is in them that the
tuner demonstrates his greatest skill, and to them that the piano owes
its surpassing excellence as a musical instrument, and, consequently,
its immense popularity. For the present, the term "temperament" may be
considered as meaning the plan or pattern from which the tuner works.

No subject of so great importance in the whole realm of musical
science has been so strangely neglected as the method of setting a
temperament. Even musicians of high learning, in other respects, give
little attention to scale building, and hence they differ widely on
this topic. There can be but one "best way" of doing a thing, and that
best way should be known and followed by the profession; but, strange
to say, there are a half dozen systems of setting the temperament in
vogue at the present time. The author has, in his library, a book on
"Temperament" which, if followed, would result in the production of a
scale in which every chord would be unbalanced, harsh and unbearable.
This is mentioned merely to call attention to the fact that great
differences of opinion exist among scientific men regarding this
important subject.

In the author's practice, he was curious to try the different methods,
and has tuned by all the systems of temperament in vogue at the
present, or that have ever been used extensively. His experience has
proved that all but one is hampered with uncertainty, difficulty of
execution or imperfection in some respect.

A system which will positively insure the strictest uniformity of
difference in pitch of any given interval in all the keys, and that
makes use of the fewest intervals in tuning and the easiest
ones--those in which a discrepancy is most readily perceived by the
ear, is the best system to adopt and follow. Such a system is the one
followed by the author for years with the most satisfying results. He
does not claim any high honor by this statement, but does claim that,
while his system differs but slightly from some of the others, it is
more certain to produce the best results, is the simplest to
understand, is the easiest to follow, and, consequently, is the best.

To become a piano tuner of the highest skill, many things are
necessary; but what may be lacking at the outset may be acquired by
study and practice. More depends upon the ear than upon anything else;
but no person, however talented, has a sufficiently acute perception
to tune perfectly without some culture. Some practice in tuning is
necessary to bring the ear to that acuteness of perception so
indispensable in certain portions of the instrument. It may also be
said that no extraordinary talent for music is absolutely necessary,
since many of the best tuners are not musicians in any sense of the
word. Patience and perseverance, associated with conscientiousness and
an insatiable desire to excel, are among the foremost requirements.
Having these it only remains to gain a thorough knowledge of every
detail of the work; a little practice will bring skill and dexterity.

Finally, we would impress the student with the strenuous importance of
thoroughly mastering the lessons which immediately follow. You should
be inspired with the utmost confidence, both in yourself and in the
possibilities of the profession to those who merit a reputation. And,
while this lesson contains little technical instruction, if by its
study the pupil is impressed with the maxims herein presented, and is
inspired to make earnest effort in his future work, both in acquiring
and in practicing the art of Piano Tuning, the author will feel that
its mission is, by no means, the least significant one in the course.



LESSON VIII.

~THE TEMPERAMENT.~

Some tuners favor the term, "laying the bearings," others say "setting
the temperament." The former is more commonplace, as it merely
suggests the idea of laying a number of patterns by which all others
are to be measured. The latter term is extremely comprehensive. A
lucid definition of the word "temperament," in the sense in which it
is used here, would require a discourse of considerable length. The
following statements will elicit the full meaning of the term:

The untutored would, perhaps, not think of setting a temperament to
tune by. He would likely begin at some unfavorable point, and tune by
various intervals, relying wholly upon his conception of pitch for the
accuracy of the tones tuned, the same as a violinist in tuning his
four strings. To be sure, pitch has to be reckoned as a rude guide in
setting the tones; but if pitch alone were the guide we would never
attain to any degree of perfection in scale forming. We could never
adjust our tones to that delicate fineness so much appreciated, which
gives to the instrument its surpassing brilliancy.

~Beats, Waves, Pulsations.~--To obtain absolute accuracy the tuner is
guided by beats, waves or pulsations. These three words refer to one
and the same thing, a phenomenon that occurs in certain intervals when
two tones are sounded together that are not in exact tune. These terms
must not be confounded with the term "sound wave" or "vibrations" so
often used in discussions on the theory of sound. However, we think
the student is thoroughly familiar with these terms. The rate of
vibration of two tones not in a favorable ratio, may produce the
phenomenon known as "beats, waves, or pulsations." Vibrations may
exist either with or without pulsations.

These pulsations are most perceptible in the unison, the octave and
the fifth. They are more easily perceived in the unison than in the
octave, and more easily in the octave than in the fifth. They are also
perceptible in the perfect fourth, the major and minor third and some
other intervals, but on account of their obscurity, and because these
intervals are unnecessary in tuning they have long since been
abandoned in "temperament making" (with the exception of the perfect
fourth) by most tuners, although a few still make use of it. We do not
say that the fourth is unsafe to tune by, but you will see later on
why it is not best to make use of it.

_The Fischer System_ or method of "setting the temperament" has these
advantages: It uses but two kinds of intervals: the fifth and octave;
by employing two whole octaves in place of one or one and a half,
nearly all of the middle section of strings is brought up in pitch
which insures that the temperament will stand better while the
remaining strings are being tuned; and the alternate tuning of the
fifth and octave makes the system exceedingly easy to learn, enabling
the tuner to work with less mental strain. Also the two-octave system
gives a greater compass for testing, thus insuring greater accuracy.

If you have access to a piano, it will now be well for you to begin
training the ear to perceive the pulsations. If you cannot use a
piano, you can train very well by the use of a mandolin, guitar,
violin, zither, or any stringed instrument. An instrument with metal
strings, however, is better, as the vibrations are more perfect.

You will, of course, know that the front top panel of the case has to
be removed to give access to the tuning pins, and that you should have
a regular tuning hammer and set of mutes to begin with. The panel is
held in place in various ways: sometimes with buttons, sometimes with
pins set in slots, and sometimes with patent fastenings; but a little
examination will reveal how it may be removed.

To produce a tone of a certain pitch, the string must be of the right
thickness and length. These items are decided by the scale draughtsman
in the factory; if incorrect, the tuner can do nothing to improve
them.

To produce the correct pitch, the string must be of the right tension,
which is brought about by winding one end of the string around the
tuning pin until the proper degree of tension is reached. This must be
decided by the ear of the tuner. Two strings of equal thickness and
equal length produce the same tone when brought to the same tension;
the result being known as "unison." A defect in the unison being the
easiest way in which to detect the beats, we advise that the student
practice on it first.

After taking out the panel, the first thing to do is to place your
rubber mute between two trios of strings (if the piano is an upright
which usually has three strings to a note) so that only two strings
sound when the key is struck. Select some key near the middle of the
keyboard. Strike the key strongly and hold it down. If the two
sounding strings give forth a smooth, unwavering tone--a tone that
sounds as if it came from one string, the unison is perfect. If you
find it so, remove the mute and place it on the other side of the trio
of strings. If the piano has been tuned recently by an expert, you may
have to continue your search over several keys before you find an
imperfect unison; but you will rarely find a piano in such perfect
tune that it will not contain some defective unisons. However, if you
do not succeed in finding a defective unison, select a key near the
middle of the key-board, place your mute so that but two strings
sound, and with your tuning hammer loosen one of the strings very
slightly. Now you will notice a throbbing, beating sound, very unlike
the tone produced when the strings were in exact unison. See if you
can count the beats. If you have lowered the tension too much, the
beats will be too rapid to permit counting. Now with a steady and
gradual pull, with the heel of the hand against some stationary part,
bring the string up slowly. You will notice these waves become slower
and slower. When they become quite slow, stop and count, or wave the
hand in time with the pulsations. After practicing this until you are
sure your ear has become accustomed to the beats and will recognize
them again, you may proceed to perfect the unison. Bring the string up
gradually as before, and when the unison is reached you will hear one
single, simple, musical tone, as though it were from a single string.
Never have more than two strings sounding at once. You might go over
the entire key-board now and correct all the unisons if the scale is
yet fairly good. See which string is, in your opinion, the nearest to
correctness with respect to the scale, and tune the other one, or two,
as the case may be, to it. If the scale is badly out of symmetry, you
will not get very good results without setting a temperament; but the
tones will sound better individually. This experiment is more for
practice than for improving the piano.

_The cause_ of the waves in a defective unison is the alternate
recurring of the periods when the condensations and rarefactions
correspond in the two strings and then antagonize. This is known in
physics as "interference of sound-waves."

~The Octave.~--When perfectly tuned, the upper tone of the octave has
exactly double the number of vibrations of the lower. If the lower
tone vibrates 1000 per second, the upper will vibrate 2000. Of course,
the ear cannot ascertain in any way the number of vibrations per
second; we use these figures for scientific demonstration only.
However, there is an instrument called the Siren which is constructed
for the purpose of ascertaining the number of vibrations per second of
any given tone, and which is delicately accurate in its work. By its
assistance we know, definitely, a great many things regarding our
musical scale of which we would otherwise be ignorant. But, while we
cannot, by the ear, ascertain these numbers, we can, by the
"interference of sound-waves" above referred to, ascertain, to the
most delicate point, when the relative vibration of two strings is
mathematically exact, if they are tuned to a unison, octave, fifth,
etc.

Practice now on tuning the octave. Find an octave in which the upper
tone is flat. Mute all but one string in the lower tone to make sure
of getting a pure tone, then select one string (the middle one if a
piano has three strings) of the upper octave and proceed to pull it up
gradually until all beats disappear. This being done, bring up the
unisons.

~The Fifth.~--In our system, when we speak of a fifth, we mean a fifth
upward. The fifth to C is G, to G is D, and so on.

The vibration of the fifth is one and a half times that of its
fundamental. If a certain F vibrates 100, the C, a fifth above, will
vibrate 150, if tuned so that no waves are heard; but for reasons
which will be fully explained later, the fifth cannot be tuned with
mathematical precision. On account of certain peculiarities in our
tempered scale, the fifth must always be left somewhat flatter than
perfect. This fact is always learned with some astonishment by
beginners.

In your practice on tuning the fifth, first tune it perfectly, so that
no waves are perceptible; then flat it so that there are very slow
waves; less than one per second. Some authorities say there should be
three beats in five seconds; but the tuner must learn to determine
this by his own judgment. The tempering of the fifth will be treated
exhaustively in subsequent lessons.

We advise that you confine your practice to the unison until you are
sure you have a clear conception of its peculiarities in all portions
of the key-board, except the extreme lower and upper octaves; do not
try these yet. Do not begin to practice on the octave until you are
very familiar with the beats in the unison. By gradual progress you
will avoid confusing the ear, each step being thoroughly mastered
before advancing to the next. Remember, there is nothing that is
extremely difficult in learning to tune if you but understand what has
to be done, go about it systematically, and have plenty of patience.

In this lesson we give you our system of setting the temperament; that
is, the succession in which the different tones of the temperament are
tuned. We advise, however, that you do not attempt to set a
temperament until after studying Lesson IX, which enters into the
theory of temperament, testing, etc.

Two octaves are used for the temperament: an octave above, and an
octave below middle C. Middle C can be told by its being, the C
nearest the name of the piano on the name board. In other words, it
is the fifth C from the highest C, and the fourth from the lowest in
the modern piano, which has seven and a third octaves.

The diagram illustrates the two octaves of the key-board, and shows
how each key is designated in giving the system of temperament.

~Pitch.~--The Piano Manufacturers' Association has established what is
known as "international pitch." Tuning-forks made to this pitch are
marked "C-517.3," meaning that our 3C vibrates 517.3 per second.
Concert pitch is nearly a half step higher than this. Some
manufacturers still tune their instruments to this higher pitch.

If it is desired to tune a piano to a certain pitch, say concert
pitch, tune the C that is an octave above middle C by a concert pitch
tuning-fork or pipe. If, however, the piano is too much below that, it
is not safe to bring it up to it at one tuning. But, say it will
permit tuning to concert pitch; after this C (3C) is well laid, tune
middle C (2C) by it, then tune the C octave below middle C (1C) to
middle C. Having 1C for a starting point, proceed by tuning a fifth
up, then its octave, then a fifth, then an octave, always tuning the
octave whichever way is necessary to keep within the two octaves.

The simplicity of this system can be readily seen; yet for the use of
beginners, we give on the following page the whole succession of
intervals as they are taken in setting the temperament.

DIAGRAM OF THE TWO OCTAVES USED IN "TEMPERAMENT," AND OF THE
SUCCESSION IN WHICH THEY ARE TUNED.

 C♯ D♯   F♯ G♯ A♯     C♯ D♯   F♯ G♯ A♯
C  D  E F  G  A  B    C  D  E F  G  A  B C
                      *
1C, 1D, 1E, etc.      2C, 2D, 2E, etc.     3C
--------------------  ---------------------

Middle C begins second octave; known by the asterisk (*) under it.

~THE FISCHER SYSTEM OF SETTING TEMPERAMENT.~

First, tune 3C by tuning pipe, or as directed.

By this, tune 2C, and by 2C tune 1C; then tune as follows:

By  1C       tune 1G    fifth above,
 "  1G        "   2G     octave above,
 "  1G        "   2D    fifth above,
 "  2D        "   1D     octave below,
By  1D       tune 1A    fifth above,
"   1A        "   2A     octave above,
"   1A        "   2E    fifth above,
"   2E        "   1E     octave below,
"   1E        "   1B    fifth above,
"   1B        "   2B     octave above,
"   1B        "   2F♯   fifth above,
"   2F♯       "   1F♯    octave below,
"   1F♯       "   2C♯   fifth above,
"   2C♯       "   1C♯    octave below,
"   1C♯       "   1G♯   fifth above,
"   1G♯       "   2G♯    octave above,
"   1G♯       "   2D♯   fifth above,
"   2D♯       "   1D♯    octave below,
"   1D♯       "   1A♯   fifth above,
"   1A♯       "   2A♯    octave above,
"   1A♯(B♭)      2F    fifth above,
"   2F        "   1F     octave below,
"   1F       try  2C    fifth above.

You will observe this last fifth brings you back to the starting-point
(C). It is called the "wolf," from the howling of its beats when the
tuner has been inaccurate or the piano fails to stand.


QUESTIONS ON LESSON VIII.

    1. What is the cause of the beats or pulsations?

    2. Have you practiced tuning the unison?

    3. Can you distinguish the beats clearly?

    4. Have you practiced tuning the octave?

    5. Do you thoroughly understand the system of setting the
    temperament as set forth in this lesson?



LESSON IX.

~SPECIFIC INSTRUCTIONS IN TEMPERAMENT SETTING.~


~Pitch.~--It is a matter of importance in tuning an instrument that it
be tuned to a pitch that will adapt it to the special use to which it
may be subjected. As previously explained, there are at present two
different pitches in use, international pitch and concert pitch, the
latter being about a half-step higher than the former. The tuner
should carry with him a tuning pipe or fork tuned to 3C in one or the
other of these pitches. The special uses to which pianos are subjected
are as follows:

1st, As a concert piano.--In the opera house, music hall, and
occasionally in the church, or even in a private dwelling, the piano
is used along with orchestral instruments. All orchestral instruments
are supposed to be tuned to concert pitch. The stringed instruments
can, of course, be tuned to any pitch; but the brass and wood-wind
instruments are not so adjustable. The brass instruments are provided
with a tuning slide and their pitch can be lowered somewhat, but
rarely as much as a half-step, while the clarinet should not be varied
from its fixed pitch if it can be avoided. It is desirable, then, that
all pianos used with orchestra should be tuned to concert pitch if
possible.

2d, As an accompaniment for singing.--Some persons use their pianos
mainly for accompanying. It may be that singers cannot sing high, in
which case they are better pleased if the piano is tuned to
international pitch, while others, especially concert singers, have
their pianos at a higher pitch. Where a piano is used in the home to
practice by, and the singer goes out to various places to sing with
other instruments, we have always advised to have the piano tuned as
near concert pitch as it would bear, for the reason that if one
practices with an instrument tuned to concert pitch he may feel sure
of reaching the pitch of any instrument he may be called upon to sing
with elsewhere.

The great majority of pianos are left entirely to the tuner's judgment
in regard to pitch. The tuner knows, or should know, to what pitch to
tune the piano to insure the best results. The following suggestions
will be found entirely safe to follow in deciding the question of the
pitch to which to tune:

Ascertain if the piano is used with orchestra, and if clarinets and
cornets are used. If so, and the piano is not too much below concert
pitch, and bids fair to stand the tension, draw your 3C up to concert
pitch and proceed to lay your temperament. If the piano is nearly as
low as international pitch, do not try to bring it up at one tuning to
concert unless the owner demands it, when you may explain that it will
not stand in tune long. The slightest alteration possible, in the
pitch of an instrument, insures the best results, so far as standing
in tune is concerned.

If everything be left to your judgment, as it generally is, and the
instrument is for general, rather than special use, set your
temperament at such a pitch as will require the least possible
alteration. This may be arrived at in the following way: Ascertain
which portion of the instrument has fallen the most. The overstrung
bass strings generally stand better than any other, and in most cases
you will find the C which is two octaves below middle C to be higher
(relatively) than any other C in the piano. If so, take it as a basis
and tune by perfect octaves up to 3C.

The supposition is, that all strings in an instrument gradually grow
flatter; and in a well-balanced instrument they should do so; but the
fact is, that in certain cases some of the strings will grow sharper.
The cause is this: The tension of the strings on one side of a brace
in the metal plate or frame is greater than on the other side; and if
there is any yielding of the structure, the result is that the
overpowered strings are drawn tighter. This condition, however, is
rare in the better grade of pianos. Here is a rule which is safe, and
will prove satisfactory in ninety-nine per cent. of your practice
where no specific pitch is prescribed:

Take the three Cs included in the temperament and the C that is an
octave below 1C, and try each of them with its octave until you
ascertain which is the sharpest with respect to the others; then,
bring the others up to it. You now have your pitch established in the
Cs and can begin on 1C and proceed to set the temperament. Before
applying this rule, it is well to try 3C with tuning pipe or fork to
see if the piano is below international pitch. We would not advise
tuning any modern piano below international pitch. Aim to keep within
the bounds of the two prescribed pitches; never higher than concert,
nor lower than international. If, however, you should be called on to
tune an old instrument that has become extremely low, with very rusty
strings, and perhaps with some of them broken, that by all appearances
will not stand even international pitch, you may be compelled to leave
it somewhat below.

~The Continuous Mute.~--Do not try to set a temperament without a
continuous mute. Its purpose is to mute all outside (1st and 3d[C])
strings of all the trios included in the temperament so that none but
the middle strings sound when struck by the hammers. The advantage of
this can be seen at once. The tuner tunes only the middle strings in
setting the temperament and thereby avoids the confusion of hearing
more than two strings at once. The continuous mute is then removed and
the outside strings tuned to the middle. Without the continuous mute,
he would be obliged to tune all three of the strings of the unison
before he could tune another interval by it, and it would not be so
safe to tune by as a single string, as there might be a slight
discrepancy in the unison giving rise to waves which would confuse the
ear. The tuner should hear but two strings at once while setting a
temperament; the one he is tuning by and the one he is tuning. A
continuous mute is a strip of muting felt of the proper thickness to
be pushed in between the trios of strings. Simply lay it across a
portion of the strings and with a screwdriver push it in between the
trios just above where the hammers strike. In the square piano, which
has but two strings to a key, the continuous mute cannot be used and
you will be obliged to tune both strings in unison before leaving to
tune another interval. This is one of the reasons why the square piano
does not, as a rule, admit of as fine tuning as the upright.

    [C] The three strings composing the trio or unison are numbered 1st,
    2d or middle, and 3d, from left to right.

It is presumed that you are now familiar with the succession of tones
and intervals used in setting the temperament. Fix these things in
your mind and the system is easy to understand and remember. Keep
within the bounds of the two octaves laid out in Lesson X. Tune all
fifths upward; that is, tune all fifths by their fundamentals. For
example, starting on 1C, use it as fundamental, and by it, tune its
fifth, which is G; then, having G tuned, use it as fundamental, and by
it tune its fifth, which is D, and so on through. After tuning a
fifth, always tune its octave either above or below, whichever way it
lies within the bounds of the two octaves. After going through one or
two experiments in setting temperament you will see the simplicity of
this system and will, perhaps, not be obliged to refer to the diagram
any more.

For various reasons, it is better to try your experiments on an
upright piano, and the better the piano, the more satisfactory will be
the result of the experiment. You should have no hesitancy or timidity
in taking hold of a good piano, as you cannot damage it if you use
good judgment, follow instructions, and work carefully. The first
caution is, be very careful that you draw a string but slightly
sharper than it is to be left. Rest the heel of the hand against some
stationary part of the piano and pull very slowly, and in a direct
right angle with the tuning pin so as to avoid any tendency to bend or
spring the pin. We would advise now that you find an upright piano
that is badly out of tune, if you have none of your own, and proceed
to set a temperament.

The following instructions will suffice for your first experiments,
and by them you may be able to get fairly good results; however, the
theory of temperament, which is more thoroughly entered into in Lesson
XII, must be studied before you can have a thorough understanding of
the causes and effects.

After deciding, as per instructions on pitch which C you will tune
first, place the tuning hammer (using the star head if pins are
square) on the pin with the handle extending upwards or inclined
slightly to the right. (The star head, which will fit the pin at eight
different angles, enables the tuner to select the most favorable
position.) To raise the pitch, you will, of course, pull the hammer to
the right. In order to make a string stand in tune, it is well to draw
it very slightly above the pitch at which it is to remain, and settle
it back by striking the key repeatedly and strongly, and at the same
time bearing gently to the left on the tuning hammer. The exact amount
of over-tension must be learned by practice; but it should be so
slight as to be barely perceptible. Aim to get the string tuned with
the least possible turning of the hammer. The tension of the string
should be evenly distributed over its entire length; that is, over its
vibrating middle and its "dead ends" beyond the bridges. Therefore it
is necessary to strike the key strongly while tuning so as to make the
string draw through the bridges. By practice, you will gain control of
the hammer and become so expert that you can feel the strings draw
through the bridges and the pins turn in the block.

Having now tuned your three Cs, you will take 1C as a starting point,
and by it, tune 1G a perfect fifth above. Tune it perfect by drawing
it gradually up or down until all pulsations disappear. Now after
making sure you have it perfect, flatten it until you can hear slow,
almost imperceptible waves; less rapid than one per second. This
flattening of the fifth is called tempering, and from it comes the
word "temperament." The fact that the fifth must always be tuned a
little flatter than perfect, is a matter which always causes some
astonishment when first learned. It seems, to the uninitiated, that
every interval should be made perfect; but it is impossible to make
them so, and get a correct scale, as we shall see later on.

Now tune 2G by the 1G just tuned, to a perfect octave. Remember that
all octaves should be left perfect--all waves tuned out. Now try 2G
with 2C. If your octaves are perfect, this upper fifth will beat a
little faster than the lower one, but the dissonance should not be so
great as to be disagreeable. Proceed to your next fifth, which is 2D,
then its octave, 1D, then its fifth and so on as per directions on the
system card. You can make no chord trials until you have tuned E, an
interval of a major third from C.

Having tuned 2E, you can now make your first trial: the chord of C. If
you have tempered your fifths correctly, this chord will come out in
pleasing harmony, and yet the E will be somewhat sharper than a
perfect major third to C. Now, just for experiment, lower 2E until all
waves disappear when sounded with 2C. You now have a perfect major
third. Upon sounding the chord, you will find it more pleasing than
before; but you cannot leave your thirds perfect. Draw it up again to
its proper temperament with A, and you will notice it has very
pronounced beats when sounded with C. Proceed with the next step,
which is that of tuning 1B, fifth to 1E. When tuned, try it as a major
third in the chord of G. At each step from this on, try the note just
tuned as a major third in its proper chord. Remember, the third always
sounds better if lower than you dare to leave it; but, on the other
hand, it must not be left so sharp as to be at all unpleasant when
heard in the chord. As to the position of the chord for these trials,
the second position, that is, with the third the highest, is the most
favorable, as in this position you can more easily discern excessive
sharpness of the third, which is the most common occurrence. When you
have gone through the entire system and arrived at the last fifth,
1F-2C, you should find it nearly as perfect as the rest, but you will
hardly be able to do so in your first efforts. Even old tuners
frequently have to go over their work a second or third time before
all fifths are properly tempered. By this system, however, you cannot
go far wrong if you test each step as directed, and your first chord
comes up right. If the first test, G-C-E, proves that there is a false
member in the chord, do not proceed with the system, but go over the
first seven steps until you find the offending members and rectify.
Do not be discouraged on account of failures. No one ever set a
correct temperament at the first attempt.


QUESTIONS ON LESSON IX.

    1. Define the terms, "International Pitch," and "Concert Pitch."

    2. How would you arrive at the most favorable pitch at which to
    tune a piano, if the owner did not suggest any certain pitch?

    3. What is the advantage in using the continuous mute?

    4. Tell what is necessary in the tuning of a string to insure it
    to stand well?

    5. What would result in the major third C-E, if all the fifths, up
    to E, were tuned perfect?



LESSON X.

~THEORY OF THE TEMPERAMENT.~


The instructions given in Lessons VIII and IX cover the subject of
temperament pretty thoroughly in a way, and by them alone, the student
might learn to set a temperament satisfactorily; but the student who
is ambitious and enthusiastic is not content with a mere knowledge of
how to do a thing; he wants to know why he does it; why certain causes
produce certain effects; why this and that is necessary, etc. In the
following lessons we set forth a comprehensive demonstration of the
theory of Temperament, requirements of the correct scale and the
essentials of its mathematics.

~Equal Temperament.~--Equal temperament is one in which the twelve
fixed tones of the chromatic scale[D] are equidistant. Any chord will
be as harmonious in one key as in another.

    [D] The chromatic scale is a succession of all the half steps in the
    compass of one octave. Counting the octave tone, it contains
    thirteen tones, but we speak of twelve, as there are only twelve
    which differ in name.

~Unequal Temperament.~--Unequal temperament was practiced in olden
times when music did not wander far from a few keys which were favored
in the tuning. You will see, presently, how a temperament could be set
in such a way as to favor a certain key (family of tones) and also
those keys which are nearly related to it; but, that in favoring these
keys, our scale must be constructed greatly to the detriment of the
"remote" keys. While a chord or progression of chords would sound
extremely harmonious in the favored keys, they would be so unbalanced
in the remote keys as to render them extremely unpleasant and almost
unfit to be used. In this day, when piano and organ music is written
and played in all the keys, the unequal temperament is, of course, out
of the question. But, strange to say, it is only within the last half
century that the system of equal temperament has been universally
adopted, and some tuners, even now, will try to favor the flat keys
because they are used more by the mass of players who play little but
popular music, which is mostly written in keys having flats in the
signature.

Upon the system table you will notice that the first five tones tuned
(not counting the octaves) are C, G, D, A and E; it being necessary
to go over these fifths before we can make any tests of the complete
major chord or even the major third. Now, just for a proof of what has
been said about the necessity of flattening the fifths, try tuning all
these fifths perfect. Tune them so that there are absolutely no waves
in any of them and you will find that, on trying the chord G-C-E, or
the major third C-E, the E will be very much too sharp. Now, let your
E down until perfect with C, all waves disappearing. You now have the
most perfect, sweetest harmony in the chord of C (G, C, E) that can be
produced; all its members being absolutely perfect; not a wave to mar
its serene purity. But, now, upon sounding this E with the A below it,
you will find it so flat that the dissonance is unbearable. Try the
minor chord of A (A-C-E) and you will hear the rasping, throbbing
beats of the too greatly flattened fifth.

So, you see, we are confronted with a difficulty. If we tune our
fifths perfect (in which case our fourths would also be perfect), our
thirds are so sharp that the ear will not tolerate them; and, if we
tune our thirds low enough to banish all beats, our fifths are
intolerably flat.

The experiment above shows us beautifully the prominent inconsistency
of our scale. We have demonstrated, that if we tune the members of the
chord of C so as to get absolutely pure harmony, we could not use the
chord of A on account of the flat fifth E, which did duty so perfectly
as third in the chord of C.

There is but one solution to this problem: Since we cannot tune either
the fifth or the third perfect, we must compromise, we must strike the
happy medium. So we will proceed by a method that will leave our
fifths flatter than perfect, but not so much as to make them at all
displeasing, and that will leave our thirds sharper than perfect, but
not intolerably so.

We have, thus far, spoken only of the octave, fifth and third. The
inquisitive student may, at this juncture, want to know something
about the various other intervals, such as the minor third, the major
and minor sixth, the diminished seventh, etc. But please bear in mind
that there are many peculiarities in the tempered scale, and we are
going to have you fully and explicitly informed on every point, if you
will be content to absorb as little at a time as you are prepared to
receive. While it may seem to us that the tempered scale is a very
complex institution when viewed as a specific arrangement of tones
from which we are to derive all the various kinds of harmony, yet,
when we consider that the chromatic scale is simply a series of twelve
half-steps--twelve perfectly similar intervals--it seems very simple.

Bear in mind that the two cardinal points of the system of tuning are:

    1. All octaves shall be tuned perfect.

    2. All fifths shall be tuned a little flatter than perfect.

You have seen from Lesson VIII that by this system we begin upon a
certain tone and by a circle of twelve fifths cover every chromatic
tone of the scale, and that we are finally brought around to a fifth,
landing upon the tone upon which we started.

So you see there is very little to remember. Later on we will speak of
the various other intervals used in harmony: not that they form any
prominent part in scale forming, for they do not; but for the purpose
of giving the learner a thorough understanding of all that pertains to
the establishing of a correct equal temperament.

If the instruction thus far is understood and carried out, and the
student can properly tune fifths and octaves, the other intervals will
take care of themselves, and will take their places gracefully in any
harmony in which they are called upon to take part; but if there is a
single instance in which an octave or a fifth is allowed to remain
untrue or untempered, one or more chords will show it up. It may
manifest itself in one chord only. A tone may be untrue to our
tempered scale, and yet sound beautifully in certain chords, but there
will always be at least one in which it will "howl." For instance, if
in the seventh step of our system, we tune E a little too flat, it
sounds all the better when used as third in the chord of C, as we have
shown in the experiment mentioned on page 94 of this lesson. But, if
the remainder of the temperament is accurate, this E, in the chord in
which E acts as tonic or fundamental, will be found to be too flat,
and its third, G sharp, will demonstrate the fact by sounding too
sharp.

The following suggestions will serve you greatly in testing: When a
third sounds disagreeably sharp, one or more fifths have not been
sufficiently flattened.[E] While it is true that thirds are tuned
sharp, there is a limit beyond which we cannot go, and this excessive
sharpness of the third is the thing that tuners always listen for.

    [E] In making these suggestions, no calculation is made for the
    liability of the tones tuned to fall. This often happens, in which
    case your first test will display a sharp third. In cases like this
    it is best to go on through, taking pains to temper carefully, and
    go all over the temperament again, giving all the strings an equal
    chance to fall. If the piano is very bad, you may have to bring up
    the unisons roughly, inuring this portion of the instrument to the
    increased tension, when you may again place your continuous mute and
    set your temperament with more certainty.

The fundamental sounds better to the ear when too sharp. The reason
for this is the same as has already been explained above; namely, if
the fundamental is too sharp the third will be less sharp to it, and,
therefore, nearer perfect.

After you have gone all over your temperament, test every member of
the chromatic scale as a fundamental of a chord, as a third, and as a
fifth. For instance: try middle C as fundamental in the chord of C
(G-C-E or E-G-C or C-E-G). Then try it as third in the chord A flat (E
flat-A flat-C or C-E flat-A flat or A flat-C-E flat). Then try it as
fifth in the chord of F (C-F-A or A-C-F or F-A-C). Take G likewise and
try it as fundamental in the chord of G in its three positions, then
try it as a third in the chord of E flat, then as fifth in the chord
of C. In like manner try every tone in this way, and if there is a
falsely tempered interval in the scale you will be sure to find it.

You now understand that the correctness of your temperament depends
entirely upon your ability to judge the degree of flatness of your
fifths; provided, of course, that the strings stand as tuned. We have
told you something about this, but you may not be able at once to
judge with sufficient accuracy to insure a good temperament. Now, we
have said, let the fifths beat a little more slowly than once a
second; but the question crops up, How am I to judge of a second of
time? The fact is that a second of time is quickly learned and more
easily estimated, perhaps, than any other interval of time; however,
we describe here a little device which will accustom one to estimate
it very accurately in a short time. The pendulum oscillates by an
invariable law which says that a pendulum of a certain length will
vibrate always in a corresponding period of time, whether it swings
through a short arc or a long one. A pendulum thirty-nine and a half
inches long will vibrate seconds by a single swing; one nine and
seven-eighths inches long will vibrate seconds at the double swing,
or the to-and-fro swing. You can easily make one by tying any little
heavy article to a string of either of these lengths. Measure from the
center of such heavy article to the point of contact of the string at
the top with some stationary object. This is a sure guide. Set the
pendulum swinging and count the vibrations and you will soon become
quite infallible. Having acquired the ability to judge a second of
time you can go to work with more confidence.

Now, as a matter of fact, in a scale which is equally tempered, no two
fifths beat exactly alike, as the lower a fifth, the slower it should
beat, and thus the fifths in the bass are hardly perceptibly flat,
while those in the treble beat more rapidly. For example, if a certain
fifth beat once a second, the fifth an octave higher will beat twice a
second, and one that is two octaves higher will beat four times a
second, and so on, doubling the number of beats with each ascending
octave.

In a subsequent lesson, in which we give the mathematics of the
temperament, these various ratios will be found accurately figured
out; but for the present let us notice the difference between the
actual tempered scale and the exact mathematical scale in the point of
the flattening of the fifth. Take for example 1C, and for convenience
of figuring, say it vibrates 128 per second. The relation of a
fundamental to its fifth is that of 2 to 3. So if 128 is represented
as 2, we think of it as 2 times 64. Then with another 64 added, we
have 192, which represents 3. In other words, a fundamental has just
two-thirds of the number of vibrations per second that its fifth has,
in the exact scale. This would mean a fifth in which there would be no
beats. Now in the tempered scale we find that G vibrates 191.78
instead of 192; so we can easily see how much variation from the
mathematical standard there is in this portion of the instrument. It
is only about a fourth of a vibration. This would mean that, in this
fifth we would hear the beats a little slower than one per second.
Take the same fifth an octave higher and take 2C as fundamental, which
has 256 for its vibration number. The G, fifth above, should vibrate
384, but in the tempered scale it beats but 383.57, almost half a
vibration flat. This would give nearly 2 beats in 3 seconds.

These figures simply represent to the eye the ratios of these sounds,
and it is not supposed that a tuner is to attain to such a degree of
accuracy, but he should strive to arrive as near it as possible.

It is well for the student to practice temperament setting and regular
tuning now if he can do so. After getting a good temperament, proceed
to tune by octaves upward, always testing the tone tuned as a fifth
and third until his ear becomes sufficiently true on the octave that
testing otherwise is unnecessary. Tune the overstrung bass last and
your work is finished. If your first efforts are at all satisfactory
you should be greatly encouraged and feel assured that accuracy will
reward continued practice.


QUESTIONS ON LESSON X.

    1. What is meant by the term "equal temperament"?

    2. What is meant by the term "unequal temperament"?

    3. Webster defines the term "temperament" thus: "A system of
    compromises in the tuning of pianofortes, organs, etc." Explain
    fully what these compromises are.

    4. In testing chords to ascertain if temperament is correct, what
    is the main thing to listen for as a guide?

    5. In what three chords would you try the tone A, in testing your
    temperament?

    6. With what results have you demonstrated the experiments in this
    and the previous lesson?



LESSON XI.

~THE TECHNIQUE OR MODUS OPERANDI OF PIANO TUNING.~


At this juncture, it is thought prudent to defer the discussion of
scale building and detail some of the requirements connected with the
technical operations of tuning. We do this here because some students
are, at this stage, beginning to tune and unless instructed in these
things will take hold of the work in an unfavorable way and, perhaps,
form habits that will be hard to break. Especially is this so in the
matter of setting the mutes or wedges. As to our discussion of scale
building, we shall take that up again, that you may be more thoroughly
informed on that subject.

Some mechanics do more work in a given time than others, do it as well
or better, and with less exertion. This is because they have method or
system in their work so that there are no movements lost. Every
motion is made to count for the advancement of the cause. Others go
about things in a reckless way, taking no thought as to time and
labor-saving methods.

In spite of any instruction that can be given, the beginner in piano
tuning will not be able to take hold of his work with the ease and the
grace of the veteran, nor will he ever be able to work with great
accuracy and expedition unless he has a systematic method of doing the
various things incident to his profession.

In this lesson, as its subject implies, we endeavor to tell you just
how to begin and the way to proceed, step by step, through the work,
to obtain the best results in the shortest time, with the greatest
ease and the least confusion.


MANIPULATION OF THE TUNING HAMMER.

It may seem that the tightening of a string by turning a pin, around
which it is wound, by the aid of an instrument fitting its square end,
is such a simple operation that it should require no skill. Simply
tightening a string in this manner is, to be sure, a simple matter;
but there is a definite degree of tension at which the _vibrating
section_ of the string must be left, and it should be left in such a
condition that the tension will remain invariable, or as near so as is
possible. The only means given the tuner by which he is to bring about
this condition are his tuning hammer and the key of the piano, with
its mechanism, whereby he may strike the string he is tuning.

The purpose of the tuning hammer is that of altering the tension. The
purpose of striking the string by means of the key is twofold: first,
to ascertain the pitch of the string, and second, to equalize the
tension of the string over its entire length. Consider the string in
its three sections, viz.: lower dead end (from hitch pin to lower
bridge), vibrating section (section between the bridges), and upper
dead end (from upper bridge to tuning pin).

When placing the hammer on the tuning pin and turning to the right, it
is evident that the increased tension will be manifest first in the
upper dead end. In pianos having agraffes or upper bridges with a
tightly screwed bearing bar which makes the strings draw very hard
through the bridge, some considerable tension may be produced in the
upper dead end before the string will draw through the bridge and
increase the tension in the vibrating middle. In other pianos the
strings "render" very easily over the upper bridge, and the slightest
turn of the hammer manifests an alteration of pitch in the vibrating
section. As a rule, strings "render" much more easily through the
upper, than the lower bridge. There are two reasons for this: One is,
that the construction of the lower bridge is such as to cause a
tendency in this direction, having two bridge-pins which stand out of
line with the string and bear against it in opposite directions; the
other is that the lower bridge is so much farther from the point where
the hammer strikes the string that its vibration does not help it
through as it does at the upper bridge.

Now, the thing desired is to have the tension equally distributed over
the entire length of the string. Tension should be the same in the
three different sections. This is of paramount importance. If this
condition does not obtain, the piano will not stand in tune. Yet, this
is not the only item of importance. The tuning pin must be properly
"set," as tuners term it.

By "setting the pins," we mean, leaving it so balanced with respect to
the pull of the string that it will neither yield to the pull of the
string nor tend to draw it tighter. Coming now to the exact
manipulation of the tuning hammer, there are some important items to
consider.[F] Now, if the tuning hammer is placed upon the tuning pin
with the handle straight upward, and it is pulled backward (from the
tuner) just a little, before it is turned to the right, the tension
will be increased somewhat before the pin is turned, as this motion,
slight as it may seem, pulls the pin upward enough to draw the string
through the upper bridge an infinitesimally small distance, but enough
to be perceptible to the ear. Now if the hammer were removed, the
tendency of the pin would be to yield to the pull of the string; but
if the pin is turned enough to take up such amount of string as was
pulled through the bridge, and, as it is turned, is allowed to yield
downward toward the pull of the string, it will resume its balance and
the string will stand at that pitch, provided it has been "rendered"
properly over the bridges.

    [F] Bear in mind, the foregoing and following instructions are
    written with reference to the upright piano. The square does not
    permit the observance of these suggestions so favorably as the
    upright.

We set forth these details that you may have a thorough understanding
of what is meant by setting the pins, and while it is not always
advisable to follow this method in tuning, there are some pianos that
will stand more satisfactorily when treated in this way. This method
is recommended where the string has become rusty at the upper bridge,
as it is loosened at the bridge before it is started to wind around
the pin which prevents it breaking at that point. We believe that
ninety per cent. of strings break right where they start around tuning
pin. A very good way to draw a string up is to give the hammer an
alternate up and down motion, pulling the handle lightly to you, then
from you, as you draw it up; not enough to bend or break the pin or to
crush the wood around the pin, but just enough to make the string take
on its increased tension equally.

In regard to the lower bridge, the strings will rarely "render"
through them properly unless brought to a tension a little higher than
it is desired they shall be left. If this is done, a few sharp blows
of key will generally make them equalize all right; then press the
hammer gently to the left, not enough to turn the pin in the socket,
but to settle it back to a well-balanced position. After a little
practice the tuner can generally guess precisely how much
over-tension to allow. If the pin is left slightly sprung downward,
its tendency will be to spring upward, thereby sharpening the string;
so be careful to leave the pins in perfect balance, or as tuners say,
"properly set."

The foregoing, while applicable to the whole scale, is not so urgent
in the over-strung bass. The strings are so heavy and the tension is
so great that they will generally "render" quite freely over the
bridges, and it is only necessary to bring them up to pitch, handling
the hammer in such a manner as to leave the pins well balanced; but it
is not necessary to give them over-tension and beat them down again;
in fact it is not advisable, as a rule. At all times, place the hammer
on the pin as far as it will go, and strike the key while drawing a
string up.

In tuning the square piano, it is not possible to set the hammer upon
the pin with the handle in line with, and beyond the string, as is the
rule in the upright. Where the square has the square pin, the hammer
(with star head) can always be set with the handle to the right of the
string somewhat, but usually almost in line with the string and almost
directly over it, and the manipulation of the hammer is much the
same, though the tuner is at a greater disadvantage, the pins being
farther from him and he has not such a good rest for his hand. Many
old squares have the oblong pin. In this case, use the double hammer
head. On the one side the hole in the head is made with the longer
diameter in line with the handle, and on the other side the hole is
made with the longer diameter at right angles with the handle; so that
if you cannot get a favorable position with one end you can with the
other.

We have said nothing about which hand to use in striking the keys and
in wielding the hammer, but it is customary to handle the hammer with
the right hand and it is always advisable for two very good reasons:
It gives the tuner a much more favorable position at the instrument;
and, as the right hand is more used in ordinary every-day operations
and is more trained in applying degrees of force and guiding tools, it
is more easily trained to manipulate the hammer properly. Training the
hand in the skilful use of the hammer is of the utmost importance and
comes only by continued practice, but when it is trained, one can
virtually "feel" the tones with the hammer.

At first, the young tuner is almost invariably discouraged by his slow
progress. He must remember that, however fine his ear and however
great his mechanical ability, he has much to acquire by training in
both, and he must expect to be two or three times longer in finishing
off a job of tuning at the outset than will be necessary after he has
had a few months' practice. You can be your own trainer in these
things if you will do a little rational thinking and be content to
"hasten slowly." And as to using the left hand, we would not advise it
in any event.


SETTING THE MUTES OR WEDGES IN THE UPRIGHT.

As stated in a previous lesson, the mutes should be so placed that
only two strings are heard at one time: the one the tuner is tuning,
and the one he is tuning by. It is true that this is an easy matter,
but it is also true that very few tuners know how to do it in a way to
save time and avoid placing the mutes two or more times in the same
place. By using a little inventive genius during early practice the
author succeeded in formulating a system of muting by which he
accomplished the ends as stated above, and assures the reader that a
great deal of time can be saved by following it.

After removing the muffler or any other instrumental attachment which
may be in the piano in the way of placing the mutes, the first thing
to do is to place the continuous mute so that all the outside strings
of the trios are damped. The temperament is then set by tuning the
middle strings, of the twenty-five trios comprised in the two-octave
temperament as demonstrated in a previous lesson. After satisfying
yourself by trials or test that the temperament is true, you then
remove the continuous mute and proceed to bring the outside strings in
unison with the middle one. Now, your 1C is sometimes found to be the
first pair in the over-strung bass, which usually has two strings to a
key, while in other pianos, 1C is the first trio in the treble
stringing, and in many cases it is the second trio in the treble. For
illustration, we will say it is the second in the treble. In speaking
of the separate strings of a trio we will number them 1st, 2d, and 3d,
from left to right, as in foot-note, page 89, Lesson IX. Setting the
mutes in bringing up the unisons in the temperament is exceedingly
simple.

The following diagram will, we think, demonstrate clearly the method
employed:

Upper row----  o   o   o   o   o   o   o   o   o   o    Tim-

Middle row---   o   o   o   o   o   o   o   o   o   o   ing

Lower row----    o   o   o   o   o   o   o   o   o   o  Pins.
             ------------------------------------------ Bridge.

             * 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * &c
           /// /// /// /// /// /// /// /// /// ///    Treble stringing.
           B   C   C♯  D   D♯  E   F   F♯  G   G♯  &c

The upper row of O's represents the upper row of tuning pins. To these
are attached the first string of each unison. To the middle row are
attached the second or middle strings, and to the lower row are
attached the third strings. The diagonal lines represent the three
strings of the unison (trio). The asterisk on the middle one indicates
that it has been tuned.

But one mute is used in tuning these unisons. It is inserted between
the trios in the order indicated by the figures 1, 2, 3, etc. When
inserted in place 1, between unisons B and C, it will mute the first
string of C; so the first string of the trio to tune is always the
third. Then place your mute in place 2 and tune the first string of C.
Then, without moving your mute, bring up third string of C♯, then
third string of D and so on. By this method, you tune two strings
every time you reset your mute.

When through with the temperament, the next step is usually that of
tuning the bass; but while we are in the treble we will proceed to
give the method of setting the mutes in the upper treble beyond the
temperament. All three strings have yet to be tuned here, and we have
to use two mutes. The unisons are tuned in regular succession upward
the same as in the example above. The mute that is kept farthest to
the left, is indicated by the letter A, and the one kept to the right,
by the letter B, as in diagram below.

(T e m p e r a m e n t )   1   2   3   4   5   6   7    &c.
 *** *** *** *** *** ***   A   B
/// /// /// /// /// /// /// /// /// /// /// /// /// ///
                            C♯  D   D♯  E   F   F♯  G   &c.

The mutes are first placed in the places indicated by the figures 1
and 2, thereby muting first and third strings of the first unison
beyond the temperament, which is 3C♯. The middle string of this unison
is now tuned by its octave below. (If you have left imperfect unisons
in your temperament, rendering it difficult to tune octaves by them,
it will be well to replace your continuous mute so as to tune from a
single string.) Having tuned the middle string of C♯, move mute B to
place 3 and tune third string of C♯. Then, move mute A to place 2 and
tune first string of C♯. Your mutes are now already set for tuning the
middle string of D. After this is done, proceed to move mute B first,
then mute A; tuning middle string, then third, then first, moving step
by step as indicated in example above until the last unison is
reached. By this system you tune three strings every time the mutes
are set twice.

The over-strung bass usually has but two strings to a unison and only
one mute is needed. In the extreme low or contra-bass, pianos have but
one string, in tuning which the mute is discarded. Set the mute as
indicated by the figures 1, 2, 3, etc., in the diagram below, always
tuning the string farthest to the right by its octave above; then move
the mute to its next place and tune the left string by the right.
Here, again, you tune two strings every time you reset your mute. The
I's represent bass strings.

                    9    8   7   6   5   4   3   2   1
I  I  I  I  I  I  I   II  II  II  II  II  II  II  II  II
               C  C♯  D   D♯  E   F   F♯  G   G♯  A   A♯  B  C
 Contra-Bass.                     Bass.                   Treble.


SETTING THE MUTES IN THE SQUARE PIANO.

In setting the temperament in the square piano, simply mute the string
farthest to the left and tune the one to the right until the
temperament is finished, then set the mutes in the bass the same as in
the upright. In tuning the treble, if the piano has three strings, the
same system is used as has been described for the upright. When the
piano has but two strings to a unison, as is usually the case, employ
the system described for the bass of the upright, but reversed, as you
are proceeding to the right instead of to the left.

Remove the shade before beginning to tune a square piano, and if
necessary, lay the dampers back and trace the strings to their pins so
as to mark them. Certain pins are marked to guide the tuner in placing
his hammer. The way we have always marked them is as follows:

Mark both pins of each pair of C strings with white crayon. Mark only
one pin of each pair of G's. Knowing the intervals of the other keys
from the marked ones, you can easily calculate correctly, upon which
pin to set your hammer to tune any string desired. For instance, if
you are striking D♯, next above middle C, you calculate that, as D♯ is
the third chromatic interval from middle C, you are to set the hammer
on one or the other of the pins belonging to the third pair to the
right of the pair marked as middle C. B would be first pair to the
left, F♯ would be first pair to the left of the marked G, and so on.
It is usually necessary to mark only those pairs near the middle of
the piano, but we advise the beginner to mark throughout the scale, as
by so doing he may avoid breaking a string occasionally by pulling on
some other than the one he is sounding. This will occur in your early
practice if you do not use caution. And for safety, some tuners always
mark throughout.


QUESTIONS ON LESSON XI.

    1. By what means is the tuner enabled to make the strings draw
    through the bridges and equalize the tension throughout their
    entire length?

    2. State conditions that may result from a tuning pin's not being
    properly set.

    3. In this system of muting, state definitely which string is
    tuned first after the continuous mute is removed. Which second?
    Which third?

    4. After the unisons are finished in the temperament, which string
    is tuned next, if we go immediately from the temperament to the
    over-strung bass? Which second? Which third?

    5. Upon beginning to tune the treble beyond the temperament, which
    string is tuned first? Which second? Which third?

    6. (a) How many mutes are used in tuning outside the strings of
       the temperament?

       (b) In what proportion is the number of times the mute is
       changed to the number of strings tuned?

    7. (a) How many mutes are used in tuning the treble beyond the
       temperament?

       (b) In what proportion is the number of times the mute is
       changed to the number of strings tuned?

    8. Which pairs of pins are marked in the square piano to guide the
    tuner in placing his hammer? Also, how are they marked?

    9. Having marked your pins as instructed, how would you find the
    pins belonging to a pair of strings struck by F on key-board? How
    those struck by G♯?

    10. Tell what you can of the requirements necessary to insure that
    a piano will stand in tune.



LESSON XII.

~MATHEMATICS OF THE TEMPERED SCALE.~


One of the first questions that arises in the mind of the thinking
young tuner is: Why is it necessary to temper certain intervals in
tuning? We cannot answer this question in a few words; but you have
seen, if you have tried the experiments laid down in previous lessons,
that such deviation is inevitable. You know that practical scale
making will permit but two pure intervals (unison and octave), but you
have yet to learn the scientific reasons why this is so. To do this,
requires a little mathematical reasoning.

In this lesson we shall demonstrate the principles of this complex
subject in a clear and comprehensive way, and if you will study it
carefully you may master it thoroughly, which will place you in
possession of a knowledge of the art of which few tuners of the
present can boast.

In the following demonstrations of relative pitch numbers, we adopt a
pitch in which middle C has 256 vibrations per second. This is not a
pitch which is used in actual practice, as it is even below
international (middle C 258.65); but is chosen on account of the fact
that the various relative pitch numbers work out more favorably, and
hence, it is called the "Philosophical Standard." Below are the actual
vibration numbers of the two pitches in vogue; so you can see that
neither of these pitches would be so favorable to deal with
mathematically.

International--3C--517.3. Concert--3C--540.

(Let us state here that the difference in these pitches is less than a
half-step, but is so near that it is generally spoken of as being just
a half-step.)

Temperament denotes the arrangement of a system of musical sounds in
which _each one_ will form a serviceable interval with _any one_ of
the others. Any given tone must do duty as the initial or key-note of
a major or of a minor scale and also as any other member; thus:

C must serve as 1, in the key of C major or C minor.
   "      "     2,   "       "   B♭ "     B♭   "
   "      "     3,   "       "   A♭ "     A    "
   "      "     4,   "       "   G  "     G    "
   "      "     5,   "       "   F  "     F    "
   "      "     6,   "       "   E♭ "     E    "
   "      "     7,   "       "   D♭ "     C♯   "

Likewise, all other tones of the instrument must be so stationed that
they can serve as _any member_ of _any scale_, major or minor.

This is rendered necessary on account of the various modulations
employed in modern music, in which every possible harmony in every key
is used.


RATIONALE OF THE TEMPERAMENT.

Writers upon the mathematics of sound tell us, experience teaches us,
and in previous lessons we have demonstrated in various ways, that if
we tune all fifths perfect up to the seventh step (see diagram, pages
82, 83) the last E obtained will be too sharp to form a major third to
C. In fact, the third thus obtained is so sharp as to render it
offensive to the ear, and therefore unfit for use in harmony, where
this interval plays so conspicuous a part. To remedy this, it becomes
necessary to tune each of the fifths a very small degree flatter than
perfect. The E thus obtained will not be so sharp as to be offensive
to the ear; yet, if the fifth be properly altered or tempered, the
third will still be sharper than perfect; for if the fifths were
flattened enough to render the thirds perfect, they (the fifths) would
become offensive. Now, it is a fact, that the third will bear greater
deviation from perfect consonance than the fifth; so the compromise
is made somewhat in favor of the fifth. If we should continue the
series of perfect fifths, we will find the same defect in all the
major thirds throughout the scale.

We must, therefore, flatten each fifth of the complete circle,
C-G-D-A-E-B-F♯-C♯-G♯ or A♭-E♭-B♭-F-C, successively in a very small
degree; the depression, while it will not materially impair the
consonant quality of the fifths, will produce a series of somewhat
sharp, though still agreeable and harmonious major thirds.

We wish, now, to demonstrate the cause of the foregoing by
mathematical calculation, which, while it is somewhat lengthy and
tedious, is not difficult if followed progressively. First, we will
consider tone relationship in connection with relative string length.
Students who have small stringed instruments, guitar, violin, or
mandolin, may find pleasure in demonstrating some of the following
facts thereupon.

One-half of any string will produce a tone exactly an octave above
that yielded by its entire length. Harmonic tones on the violin are
made by touching the string lightly with the finger at such points as
will cause the string to vibrate in segments; thus if touched exactly
in the middle it will produce a harmonic tone an octave above that of
the whole string.

Two-thirds of the length of a string when stopped produces a tone a
fifth higher than that of the entire string; one-third of the length
of a string on the violin, either from the nut or from the bridge, if
touched lightly with the finger at that point, produces a harmonic
tone an octave higher than the fifth to the open tone of that string,
because you divide the string into three vibrating segments, each of
which is one-third its entire length. Reason it thus: If two-thirds of
a string produce a fifth, one-third, being just half of two-thirds,
will produce a tone an octave higher than two-thirds. For
illustration, if the string be tuned to 1C, the harmonic tone produced
as above will be 2G. We might go on for pages concerning harmonics,
but for our present use it is only necessary to show the general
principles. For our needs we will discuss the relative length of
string necessary to produce the various tones of the diatonic scale,
showing ratios of the intervals in the same.

In the following table, 1 represents the entire length of a string
sounding the tone C. The other tones of the ascending major scale
require strings of such fractional length as are indicated by the
fractions beneath them. By taking accurate measurements you can
demonstrate these figures upon any small stringed instrument.

Funda- | Major | Major | Perfect | Perfect | Major |  Major  |  Oc- |
mental |Second | Third | Fourth  |  Fifth  | Sixth | Seventh | tave |
       |       |       |         |         |       |         |      |
   C   |   D   |   E   |    F    |    G    |   A   |    B    |  C   |
   1   |  8/9  |  4/5  |   3/4   |   2/3   |  3/5  |   8/15  | 1/2  |


To illustrate this principle further and make it very clear, let us
suppose that the entire length of the string sounding the fundamental
C is 360 inches; then the segments of this string necessary to produce
the other tones of the ascending major scale will be, in inches, as
follows:

 C  |  D  |  E  |  F  |  G  |  A  |  B  |  C  |
360 | 320 | 288 | 270 | 240 | 216 | 192 | 180 |


Comparing now one with another (by means of the ratios expressed by
their corresponding numbers) the intervals formed by the tones of the
above scale, it will be found that they all preserve their original
purity except the minor third, D-F, and the fifth, D-A. The third,
D-F, presents itself in the ratio of 320 to 270 instead of 324 to 270
(which latter is equivalent to the ratio of 6 to 5, the true ratio of
the minor third). The third, D-F, therefore, is to the true minor
third as 320 to 324 (reduced to their lowest terms by dividing both
numbers by 4, gives the ratio of 80 to 81). Again, the fifth, A-F,
presents itself in the ratio of 320 to 216, or (dividing each term by
4) 80 to 54; instead of 3 to 2 (=81 to 54--multiplying each term by
27), which is the ratio of the true fifth. Continuing the scale an
octave higher, it will be found that the sixth, F-D, and the fourth,
A-D, will labor under the same imperfections.

The comparison, then, of these ratios of the minor third, D-F, and the
fifth, D-A, with the perfect ratios of these intervals, shows that
each is too small by the ratio expressed by the figures 80 to 81. This
is called, by mathematicians, the _syntonic comma_.

As experience teaches us that the ear cannot endure such deviation as
a whole comma in any fifth, it is easy to see that some tempering must
take place even in such a simple and limited number of sounds as the
above series of eight tones.

The necessity of temperament becomes still more apparent when it is
proposed to combine every sound used in music into a connected system,
such that each individual sound shall not only form practical
intervals with all the other sounds, but also that each sound may be
employed as the root of its own major or minor key; and that all the
tones necessary to form its scale shall stand in such relation to each
other as to satisfy the ear.

The chief requisites of any system of musical temperament adapted to
the purposes of modern music are:--

    1. That all octaves must remain perfect, each being divided into
    twelve semitones.

    2. That each sound of the system may be employed as the root of a
    major or minor scale, without increasing the number of sounds in
    the system.

    3. That each consonant interval, according to its degree of
    consonance, shall lose as little of its original purity as
    possible; so that the ear may still acknowledge it as a perfect or
    imperfect consonance.

Several ways of adjusting such a system of temperament have been
proposed, all of which may be classed under either the head of equal
or of unequal temperament.

The principles set forth in the following propositions clearly
demonstrate the reasons for tempering, and the whole rationale of the
system of equal temperament, which is that in general use, and which
is invariably sought and practiced by tuners of the present.


PROPOSITION I.

If we divide an octave, as from middle C to 3C, into three major
thirds, each in the perfect ratio of 5 to 4, as C-E, E-G♯ (A♭), A♭-C,
then the C obtained from the last third, A♭-C, will be too flat to
form a perfect octave by a small quantity, called in the theory of
harmonics a _diesis_, which is expressed by the ratio 128 to 125.

EXPLANATION.--The length of the string sounding the tone C is
represented by unity or 1. Now, as we have shown, the major third to
that C, which is E, is produced by 4/5 of its length.

In like manner, G♯, the major third to E, will be produced by 4/5 of
that segment of the string which sounds the tone E; that is, G♯ will
be produced by 4/5 of 4/5 (4/5 multiplied by 4/5) which equals 16/25
of the entire length of the string sounding the tone C.

We come, now, to the last third, G♯ (A♭) to C, which completes the
interval of the octave, middle C to 3C. This last C, being the major
third from the A♭, will be produced as before, by 4/5 of that segment
of the string which sounds A♭; that is, by 4/5 of 16/25, which equals
64/125 of the entire length of the string. Keep this last fraction,
64/125, in mind, and remember it as representing the segment of the
entire string, which produces the upper C by the succession of three
perfectly tuned major thirds.

Now, let us refer to the law which says that a perfect octave is
obtained from the exact half of the length of any string. Is 64/125 an
exact half? No; using the same numerator, an exact half would be
64/128.

Hence, it is clear that the octave obtained by the succession of
perfect major thirds will differ from the true octave by the ratio of
128 to 125. The fraction, 64/125, representing a longer segment of the
string than 64/128 (1/2), it would produce a flatter tone than the
exact half.

It is evident, therefore, that _all major thirds must be tuned
somewhat sharper than perfect_ in a system of equal temperament.

The ratio which expresses the value of the _diesis_ is that of 128 to
125. If, therefore, the octaves are to remain perfect, which they must
do, _each major third must be tuned sharper than perfect by one-third
part of the diesis_.

The foregoing demonstration may be made still clearer by the following
diagram which represents the length of string necessary to produce
these tones. (This diagram is exact in the various proportional
lengths, being about one twenty-fifth the actual length represented.)

                             Middle C (2C) 60 inches.
    --------------------------------------------------
    O                                                O

                             E (4/5 of 60) 48 inches.
          --------------------------------------------
          O                                          O

                   G♯ (A♭) (4/5 of 48) 38-2/5 inches.
                --------------------------------------
                O                                    O

                  3C (4/5 of 38-2/5) 30-18/25 inches.
                      --------------------------------
                      O                              O

This diagram clearly demonstrates that the last C obtained by the
succession of thirds covers a segment of the string which is 18/25
longer than an exact half; nearly three-fourths of an inch too long,
30 inches being the exact half.

To make this proposition still better understood, we give the
comparison of the actual vibration numbers as follows:--

Perfect thirds in ratio
4/5 have these vibration
numbers: =

            1st third           2d third              3d third
         (C 256 - E 320)    (E 320 - G♯ 400)      (G♯ 400 - C 500)
         ---------------    -----------------     -----------------
            no beats            no beats              no beats

Tempered thirds qualified
to produce true
octave: =

     (C 256 - E 322 5/10) (E 322 5/10 - G♯ 406 4/10) (G♯ 406 4/10 - C 512)
     -------------------- -------------------------- ----------------------
            10 beats            13-1/10 beats               16 beats

We think the foregoing elucidation of Proposition I sufficient to
establish a thorough understanding of the facts set forth therein, if
they are studied over carefully a few times. If everything is not
clear at the first reading, go over it several times, as this matter
is of value to you.


QUESTIONS ON LESSON XII.

    1. Why is the pitch, C-256, adopted for scientific discussion, and
    what is this pitch called?

    2. The tone G forms the root (1) in the key of G. What does it
    form in the key of C? What in F? What in D?

    3. What tone is produced by a 2/3 segment of a string? What by a
    1/2 segment? What by a 4/5 segment?

    4. (a) What intervals must be tuned absolutely perfect?

    (b) In the two intervals that must be tempered, the third and the
    fifth, which will bear the greater deviation?

    5. What would be the result if we should tune from 2C to 3C by a
    succession of perfect thirds?

    6. Do you understand the facts set forth in Proposition I, in this
    lesson?



LESSON XIII.

~RATIONALE OF THE TEMPERAMENT.~ (Concluded from Lesson XII.)

PROPOSITION II.


That the student of scientific scale building may understand fully the
reasons why the tempered scale is at constant variance with exact
mathematical ratios, we continue this discussion through two more
propositions, No. II, following, demonstrating the result of dividing
the octave into four minor thirds, and Proposition III, demonstrating
the result of twelve perfect fifths. The matter in Lesson XII, if
properly mastered, has given a thorough insight into the principal
features of the subject in question; so the following demonstration
will be made as brief as possible, consistent with clearness.

Let us figure the result of dividing an octave into four minor thirds.
The ratio of the length of string sounding a fundamental, to the
length necessary to sound its minor third, is that of 6 to 5. In other
words, 5/6 of any string sounds a tone which is an exact minor third
above that of the whole string.

Now, suppose we select, as before, a string sounding middle C, as the
fundamental tone. We now ascend by minor thirds until we reach the C,
octave above middle C, which we call 3C, as follows:

Middle C-E♭; E♭-F♯; F♯-A; A-3C.

Demonstrate by figures as follows:--Let the whole length of string
sounding middle C be represented by unity or 1.

    E♭ will be sounded by 5/6 of the string                 5/6
    F♯, by 5/6 of the E♭ segment; that is, by 5/6 of
      5/6 of the entire string, which equals               25/36
    A, by 5/6 of 25/36 of entire string, which equals     125/216
    3C, by 5/6 of 125/216 of entire string, which equals  625/1296

Now bear in mind, this last fraction, 625/1296, represents the segment
of the entire string which should sound the tone 3C, an exact octave
above middle C. Remember, our law demands an exact half of a string by
which to sound its octave. How much does it vary? Divide the
denominator (1296) by 2 and place the result over it for a numerator,
and this gives 648/1296, which is an exact half. Notice the
comparison.

    3C obtained from a succession of exact minor thirds,      625/1296
    3C obtained from an exact half of the string              648/1296

Now, the former fraction is smaller than the latter; hence, the
segment of string which it represents will be shorter than the exact
half, and will consequently yield a sharper tone. The denominators
being the same, we have only to find the difference between the
numerators to tell how much too short the former segment is. This
proves the C obtained by the succession of minor thirds to be too
short by 23/1296 of the length of the whole string.

If, therefore, all octaves are to remain perfect, it is evident that
_all minor thirds must be tuned flatter than perfect_ in the system of
equal temperament.

The ratio, then, of 648 to 625 expresses the excess by which the true
octave exceeds four exact minor thirds; consequently, each minor third
must be flatter than perfect by one-fourth part of the difference
between these fractions. By this means the dissonance is evenly
distributed so that it is not noticeable in the various chords, in the
major and minor keys, where this interval is almost invariably
present. (We find no record of writers on the mathematics of sound
giving a name to the above ratio expressing variance, as they have to
others.)


PROPOSITION III.

Proposition III deals with the perfect fifth, showing the result from
a series of twelve perfect fifths employed within the space of an
octave.

METHOD.--Taking 1C as the fundamental, representing it by unity or 1,
the G, fifth above, is sounded by a 2/3 segment of the string sounding
C. The next fifth, G-D, takes us beyond the octave, and we find that
the D will be sounded by 4/9 (2/3 of 2/3 equals 4/9) of the entire
string, which fraction is less than half; so to keep within the bounds
of the octave, we must double this segment and make it sound the tone
D an octave lower, thus: 4/9 times 2 equals 8/9, the segment sounding
the D within the octave.

We may shorten the operation as follows: Instead of multiplying 2/3 by
2/3, giving us 4/9, and then multiplying this answer by 2, let us
double the fraction, 2/3, which equals 4/3, and use it as a multiplier
when it becomes necessary to double the segment to keep within the
octave.

We may proceed now with the twelve steps as follows:--

Steps--

1.  1C  to 1G                                  segment  2/3    for 1G
2.  1G   " 1D Multiply  2/3      by 4/3, gives segment  8/9      " 1D
3.  1D   " 1A    "      8/9      "  2/3   "     "      16/27     " 1A
4.  1A   " 1E    "     16/27     "  4/3   "     "      64/81     " 1E
5.  1E   " 1B    "     64/81     "  2/3   "     "     128/243    " 1B
6.  1B   " 1F♯   "    128/243    "  4/3   "     "     512/729    " 1F♯
7.  1F♯  " 1C♯   "    512/729    "  4/3   "     "    2048/2187   " 1C♯
8.  1C♯  " 1G♯   "   2048/2187   "  2/3   "     "    4096/6561   " 1G♯
9.  1G♯  " 1D♯   "   4096/6561   "  4/3   "     "   16384/19683  " 1D♯
10. 1D♯  " 1A♯   "  16384/19683  "  2/3   "     "   32768/59049  " 1A♯
11. 1A♯  " 1F    "  32768/59049  "  4/3   "     "  131072/177147 " 1F
12. 1F   " 2C    " 131072/177147 "  2/3   "     "  262144/531441 " 2C

Now, this last fraction should be equivalent to 1/2, when reduced to
its lowest terms, if it is destined to produce a true octave; but,
using this numerator, 262144, a half would be expressed by
262144/524288, the segment producing the true octave; so the fraction
262144/531441, which represents the segment for 2C, obtained by the
circle of fifths, being evidently less than 1/2, this segment will
yield a tone somewhat sharper than the true octave. The two
denominators are taken in this case to show the ratio of the variance;
so the octave obtained from the circle of fifths is sharper than the
true octave in the ratio expressed by 531441 to 524288, which ratio is
called the _ditonic comma_. This comma is equal to one-fifth of a
half-step.

We are to conclude, then, that if octaves are to remain perfect, and
we desire to establish an equal temperament, the above-named
difference is best disposed of by dividing it into twelve equal parts
and depressing each of the fifths one-twelfth part of the ditonic
comma; thereby dispersing the dissonance so that it will allow perfect
octaves, and yet, but slightly impair the consonance of the fifths.

We believe the foregoing propositions will demonstrate the facts
stated therein, to the student's satisfaction, and that he should now
have a pretty thorough knowledge of the mathematics of the
temperament. That the equal temperament is the only practical
temperament, is confidently affirmed by Mr. W.S.B. Woolhouse, an
eminent authority on musical mathematics, who says:--

"It is very misleading to suppose that the necessity of temperament
applies only to instruments which have fixed tones. Singers and
performers on perfect instruments must all temper their intervals, or
they could not keep in tune with each other, or even with themselves;
and on arriving at the same notes by different routes, would be
continually finding a want of agreement. The scale of equal
temperament obviates all such inconveniences, and continues to be
universally accepted with unqualified satisfaction by the most eminent
vocalists; and equally so by the most renowned and accomplished
performers on stringed instruments, although these instruments are
capable of an indefinite variety of intonation. The high development
of modern instrumental music would not have been possible, and could
not have been acquired, without the manifold advantages of the
tempered intonation by equal semitones, and it has, in consequence,
long become the established basis of tuning."


NUMERICAL COMPARISON OF THE DIATONIC SCALE WITH THE TEMPERED
SCALE.

The following table, comparing vibration numbers of the diatonic scale
with those of the tempered, shows the difference in the two scales,
existing between the thirds, fifths and other intervals.

Notice that the difference is but slight in the lowest octave used
which is shown on the left; but taking the scale four octaves higher,
shown on the right, the difference becomes more striking.

 |DIATONIC.|TEMPERED.| |DIATONIC.|TEMPERED.|
C|32.      |32.      |C|512.     |512.     |
D|36.      |35.92    |D|576.     |574.70   |
E|40.      |40.32    |E|640.     |645.08   |
F|42.66    |42.71    |F|682.66   |683.44   |
G|48.      |47.95    |G|768.     |767.13   |
A|53.33    |53.82    |A|853.33   |861.08   |
B|60.      |60.41    |B|960.     |966.53   |
C|64.      |64.      |C|1024.    |1024.    |

Following this paragraph we give a reference table in which the
numbers are given for four consecutive octaves, calculated for the
system of equal temperament. Each column represents an octave. The
first two columns cover the tones of the two octaves used in setting
the temperament by our system.

TABLE OF VIBRATIONS PER SECOND.

C  |128.   |256.   |512.   |1024.   |
C♯ |135.61 |271.22 |542.44 |1084.89 |
D  |143.68 |287.35 |574.70 |1149.40 |
D♯ |152.22 |304.44 |608.87 |1217.75 |
E  |161.27 |322.54 |645.08 |1290.16 |
F  |170.86 |341.72 |683.44 |1366.87 |
F♯ |181.02 |362.04 |724.08 |1448.15 |
G  |191.78 |383.57 |767.13 |1534.27 |
G♯ |203.19 |406.37 |812.75 |1625.50 |
A  |215.27 |430.54 |861.08 |1722.16 |
A♯ |228.07 |456.14 |912.28 |1824.56 |
B  |241.63 |483.26 |966.53 |1933.06 |
C  |256.   |512.   |1024.  |2048.   |

Much interesting and valuable exercise may be derived from the
investigation of this table by figuring out what certain intervals
would be if exact, and then comparing them with the figures shown in
this tempered scale. To do this, select two notes and ascertain what
interval the higher forms to the lower; then, by the fraction in the
table below corresponding to that interval, multiply the vibration
number of the lower note.

EXAMPLE.--Say we select the first C, 128, and the G in the same
column. We know this to be an interval of a perfect fifth. Referring
to the table below, we find that the vibration of the fifth is 3/2 of,
or 3/2 times, that of its fundamental; so we simply multiply this
fraction by the vibration number of C, which is 128, and this gives
192 as the exact fifth. Now, on referring to the above table of equal
temperament, we find this G quoted a little less (flatter), viz.,
191.78. To find a fourth from any note, multiply its number by 4/3, a
major third, by 5/4, and so on as per table below.

TABLE SHOWING RELATIVE VIBRATION OF INTERVALS BY IMPROPER FRACTIONS.

The relation of the Octave to a Fundamental is expressed by  2/1
 "     "         "  Fifth to a         "          "          3/2
 "     "         "  Fourth to a        "          "          4/3
 "     "         "  Major Third to a   "          "          5/4
 "     "         "  Minor Third to a   "          "          6/5
 "     "         "  Major Second to a  "          "          9/8
 "     "         "  Major Sixth to a   "          "          5/3
 "     "         "  Minor Sixth to a   "          "          8/5
 "     "         "  Major Seventh to a "          "         15/8
 "     "         "  Minor Second to a  "          "         16/15


QUESTIONS ON LESSON XIII.

    1. State what principle is demonstrated in Proposition II.

    2. State what principle is demonstrated in Proposition III.

    3. What would be the vibration per second of an exact (not
    tempered) fifth, from C-512?

    4. Give the figures and the process used in finding the vibration
    number of the _exact_ major third to C-256.

    5. If we should tune the whole circle of twelve fifths exactly as
    detailed in Proposition III, how much too sharp would the last C
    be to the first C tuned?



LESSON XIV.

~MISCELLANEOUS TOPICS PERTAINING TO THE PRACTICAL WORK OF TUNING.~


~Beats.~--The phenomenon known as "beats" has been but briefly alluded
to in previous lessons, and not analytically discussed as it should
be, being so important a feature as it is, in the practical operations
of tuning. The average tuner hears and considers the beats with a
vague and indefinite comprehension, guessing at causes and effects,
and arriving at uncertain results. Having now become familiar with
vibration numbers and ratios, the student may, at this juncture, more
readily understand the phenomenon, the more scientific discussion of
which it has been thought prudent to withhold until now.

In speaking of the unison in Lesson VIII, we stated that "the cause of
the waves in a defective unison is the alternate recurring of the
periods when the condensations and the rarefactions correspond in the
two strings, and then antagonize." This concise definition is
complete; but it may not as yet have been fully apprehended. The
unison being the simplest interval, we shall use it for consideration
before taking the more complex intervals into account.

Let us consider the nature of a single musical tone: that it consists
of a chain of sound-waves; that each sound-wave consists of a
condensation and a rarefaction, which are directly opposed to each
other; and that sound-waves travel through air at a specific rate per
second. Let us also remark, here, that in the foregoing lessons, where
reference is made to vibrations, the term signifies sound-waves. In
other words, the terms, "vibration" and "sound-wave," are synonymous.

If two strings, tuned to give forth the same number of vibrations per
second, are struck at the same time, the tone produced will appear to
come from a single source; one sweet, continuous, smooth, musical
tone. The reason is this: The condensations sent forth from each of
the two strings occur exactly together; the rarefactions, which, of
course, alternate with the condensations, are also simultaneous. It
necessarily follows, therefore, that the condensations from each of
the two strings travel with the same velocity. Now, while this
condition prevails, it is evident that the two strings assist each
other, making the condensations more condensed, and, consequently, the
rarefactions more rarefied, the result of which is, the two allied
forces combine to strengthen the tone.

In opposition to the above, if two strings, tuned to produce the same
tone, could be so struck that the condensation of one would occur at
the same instant with the rarefaction of the other, it is readily seen
that the two forces would oppose, or counteract each other, which, if
equal, would result in absolute silence.[G]

    [G] When the bushing of the center-pin of the hammer butt becomes
    badly worn or the hammer-flange becomes loose, or the condition of
    the hammer or flange becomes so impaired that the hammer has too
    much play, it may so strike the strings as to tend to produce the
    phenomenon described in the above paragraph. When in such a
    condition, one side of the hammer may strike in advance of the other
    just enough to throw the vibrations in opposition. Once you may get
    a strong tone, and again you strike with the same force and hear but
    a faint, almost inaudible sound. For this reason, as well as that of
    preventing excessive wear, the hammer joint should be kept firm and
    rigid.

If one of the strings vibrates 100 times in a second, and the other
101, there will be a portion of time during each second when the
vibrations will coincide, and likewise a portion of time when they
will antagonize each other. The periods of coincidence and of
antagonism pass by progressive transition from one to the other, and
the portion of time when exactitude is attained is infinitesimal; so
there will be two opposite effects noticed in every second of time:
the one, a progressive augmentation of strength and volume, the other,
a gradual diminution of the same; the former occurring when the
vibrations are coming into coincidence, the latter, when they are
approaching the point of antagonism. Therefore, when we speak of one
beat per second, we mean that there will be one period of augmentation
and one period of diminution in one second. Young tuners sometimes get
confused and accept one beat as being two, taking the period of
augmentation for one beat and likewise the period of diminution. This
is most likely to occur in the lower fifths of the temperament where
the beats are very slow.

Two strings struck at the same time, one tuned an octave higher than
the other, will vibrate in the ratio of 2 to 1. If these two strings
vary from this ratio to the amount of _one_ vibration, they will
produce _two_ beats. Two strings sounding an interval of the fifth
vibrate in the ratio of 3 to 2. If they vary from this ratio to the
amount of _one_ vibration, there will occur _three_ beats per second.
In the case of the major third, there will occur _four_ beats per
second to a variation of _one_ vibration from the true ratio of 5 to
4. You should bear this in mind in considering the proper number of
beats for an interval, the vibration number being known.

It will be seen, from the above facts in connection with the study of
the table of vibration numbers in Lesson XIII, that all fifths do not
beat alike. The lower the vibration number, the slower the beats. If,
at a certain point, a fifth beats once per second, the fifth taken an
octave higher will beat twice; and the intervening fifths will beat
from a little more than once, up to nearly twice per second, as they
approach the higher fifth. Vibrations per second double with each
octave, and so do beats.

By referring to the table in Lesson XIII, above referred to, the exact
beating of any fifth may be ascertained as follows:--

Ascertain what the vibration number of the _exact_ fifth would be,
according to the instructions given beneath the table; find the
difference between this and the _tempered_ fifth given in the table.
Multiply this difference by 3, and the result will be the number of
beats or fraction thereof, of the tempered fifth. The reason we
multiply by 3 is because, as above stated, a variation of one
vibration per second in the fifth causes three beats per second.

_Example._--Take the first fifth in the table, C-128 to G-191.78, and
by the proper calculation (see example, page 147, Lesson XIII) we find
the exact fifth to this C would be 192. The difference, then, found by
subtracting the smaller from the greater, is .22 (22/100). Multiply
.22 by 3 and the result is .66, or about two-thirds of a beat per
second.

By these calculations we learn that the fifth, C-256 to G-383.57,
should have 1.29 beats: nearly one and a third per second, and that
the highest fifth of the temperament, F-341.72 to C-512, should be
1.74, or nearly one and three-quarters. By remembering these figures,
and endeavoring to temper as nearly according to them as possible, the
tuner will find that his temperament will come up most beautifully.
This is one of the features that is overlooked or entirely unknown to
many fairly good tuners; their aim being to get all fifths the same.

~Finishing up the Temperament.~--If your last trial, F-C, does not
prove a correct fifth, you must consider how best to rectify. The
following are the causes which result in improper temperament:

    1. Fifths too flat.
    2. Fifths not flat enough.
    3. Some fifths correctly tempered and others not.
    4. Some fifths sharper instead of flatter than perfect;
       a condition that must be watched with vigilance.
    5. Some or all of the strings tuned fall from the pitch
       at which they were left.

From a little reflection upon these causes, it is seen that the last
trial may prove a correct fifth and yet the temperament be imperfect.
If this is the case, it will be necessary to go all over the
temperament again. Generally, however, after you have had a little
experience, you will find the trouble in one of the first two causes
above, unless it be a piano wherein, the strings fall as in Cause 5.
This latter cause can be ascertained in cases only where you have
started from a tuning pipe or fork. Sometimes you may find that the
temperament may be corrected by the alteration of but two or three
tones; so it is always well to stop and examine carefully before
attempting the correction. A haphazard attempt might cause much extra
work.

In temperament setting by our system, if the fifths are properly
tempered and the octaves are left perfect, the other intervals will
need no attention, and will be found beautifully correct when used in
testing.

The mistuned or tempered intervals are as follows:--

INTERVALS FLATTENED.     INTERVALS SHARPENED.
The Fifth, slightly.     The Fourth, slightly.
The Minor Third,         The Major Third,
  considerably.             greatly.
The Minor Sixth,         The Major Sixth,
  considerably.             greatly.

~Tuning the Treble.~--In tuning the treble, which is always tuned by
exact octaves, from their corresponding tones within the temperament,
the ear will often accept an octave as true before its pitch has been
sufficiently raised. Especially is this true in the upper octaves.
After tuning a string in the treble by its octave in the temperament,
test it as a fifth. For instance, after tuning your first string
beyond the temperament, 3C♯, test it as a fifth to 2F♯. If you are yet
uncertain, try it as a major third in the chord of A. The beats will
serve you as a guide in testing by fifths, up to about an octave and a
half above the highest tone of the temperament; but beyond this point
they become so rapid as to be only discernible as degrees of
roughness. The beats will serve as a guide in tuning _octaves_ higher
in the treble than the point at which the beats of the _fifth_ become
unavailable; and in tuning _unisons_, the beats are discernible almost
to the last tone.

The best method to follow in tuning the treble may be summed up as
follows: Tune the first octave with the beats as guides both in the
octave and in testing it by the fifth. If yet uncertain, test by
chords. Above this octave, rely somewhat upon the beats in the octave,
still use the fifth for testing, but listen for the pitch in the
extreme upper tones and not so much for the beats except in bringing
up unisons, in which the beats are more prominent.

In the extreme upper tones, the musical ear of the tuner is tried to
the utmost. Here, his judgment of correct harmonic relation is the
principal or only guide, while in the middle octaves the beats serve
him so faithfully, his musical qualifications being brought into
requisition only as a rough guide in determining pitch of the various
intervals. To tune by the beats requires a sharp ear and mental
discernment; to tune by pitch requires a fine musical ear and
knowledge of the simpler laws of harmony.

As stated above, the tuner will fail in many cases to tune his high
octaves sharp enough. Rarely, if ever, will a tuner with a good ear
leave the upper tones too sharp. Now, there is one more fact which is
of the utmost importance in tuning the treble: it is the fact that the
extreme upper octave and a half must be tuned slightly sharper than
perfect; if the octaves are tuned perfect, the upper tones of the
instrument will sound flat when used in scale and arpeggio passages
covering a large portion of the key-board. Begin to sharpen your
octaves slightly from about the seventeenth key from the last;
counting both black and white. In other words, begin to sharpen from
the last A♭ but one, in the standard scale of seven and a third
octaves of which the last key is C. Sharpen but slightly, and increase
the degree of sharpening but little as you proceed.

~Tuning the Bass.~--In tuning the bass, listen for the beats only, in
bringing up the octaves. It is sometimes well to try the string tuned,
with its fifth, but the octave in the bass should suffice, as the
vibrations are so much slower here that if you listen acutely the
octave beats will guide you.

It is not necessary to pull the strings higher than the pitch at which
they are to stand. Learn to pull them up gradually and in a way that
will "render" the string over the bridges, which is an easy thing to
do, the strings being so much heavier here than elsewhere. Never leave
a bass string the slightest amount too sharp. As flatness is so
obnoxious in the treble, just so is sharpness in the bass, so if there
must be any variation in any bass tone let it be flat; but aim at
perfect octaves throughout the bass.

~False Waves.~--We say "false waves" for want of a better name. You
will find a string occasionally that will give forth waves or beats so
similar to the real ones that it takes a practiced ear to distinguish
the difference. Where a unison contains a string of this kind, select
some other string by which to tune the interval, and leave the bad
string until the last; you may then find difficulty in being able to
tell when you have it in unison. The cause may be a twisted string, a
fault in the string by imperfect drawing of the wire, or in the
construction of the sound-board.

In the low bass tones, a kind of false waves are always present, and
will annoy the tuner long after he has been in regular practice. They
are, however, of a different nature from the true waves in that they
are of a metallic timbre and of much greater rapidity than the latter.
Close attention will generally enable the tuner to distinguish between
them. They are caused by what is known as "harmonics" or "over-tones";
the string vibrating in fractional segments.

False waves will occur in an annoying degree when the tuner sets a
mute on a nodal point in the string; it will cause the muted string to
sound a real harmonic tone. This does not happen in the upright, as
the mutes are set so near the end of the string as to preclude this
possibility. In the square, however, it very frequently happens, as
there are so many nodes between the dampers and the bridge, where the
tuner sets his mutes. If, for instance, he is tuning an octave and has
his mute set precisely in the middle of the vibrating segment, in
place of muting the string it sounds its own octave, which will
disturb the ear in listening for the tone from the one free string.
Move the mute either way until it is found to mute the string
entirely.


QUESTIONS ON LESSON XIV.

    1. Explain the cause of the beats.

    2. How many _beats_ per second in a unison of two strings, one
    tuned to 100, the other to 101 vibrations per second?

    3. How many beats per second in an octave, the lower tone of which
    is tuned to 100, the upper to 201 vibrations per second?

    4. How many beats per second in a fifth, the fundamental of which
    is tuned to 100, the fifth to 151?

    5. The fifth, 2F-3C, when properly tempered, should beat 1-3/4
    times per second. How often should a fifth, an octave higher,
    beat?



LESSON XV.

~MISCELLANEOUS TOPICS PERTAINING TO THE PRACTICAL WORK OF TUNING,
REGULATING, AND REPAIRING.~


~Comparison of the Different Systems.~--Up to this time, we have given
no account of any system of tuning except the one recommended. For the
purpose of making the student more thoroughly informed we detail here
several different systems which have been devised and practiced by
other tuners. It is a matter of history that artisans in this
profession and leaders in musical science have endeavored to devise a
system of temperament having all the desirable qualifications.

The aims of many have been to invent a system which uses the fewest
number of tones; working under the impression that the fewer the tones
used in the temperament, the easier the tuner's work. These have
reduced the compass of the temperament to the twelve semi-tones from
middle C to B above; or from F below, to E above middle C. This
system requires the tuner to make use of both fourths and fifths. Not
only does he have to use these two kinds of intervals in tuning, but
he has to tune by fourths up and fourths down, and, likewise, by
fifths up and fifths down. When tuning a fifth upward, he flattens it;
and when tuning a fifth downward he sharpens the lower tone; when
tuning a fourth upward, he sharpens it; when tuning a fourth downward,
he flattens the lower tone.

It is readily seen that by a system of this kind the tuner's mind is
constantly on a strain to know how to temper the interval he is
tuning, and how much to temper it, as fourths require a different
degree of tempering from the fifths; and he is constantly changing
from an interval upward to one downward; so, this system must be
stamped as tedious and complicated, to say the least. Yet this system
is much followed in factories for rough tuning, and also by many old
professional tuners.

The table on the following page gives the succession of intervals
generally taken by tuners employing this system using the tones within
the F octave mentioned above. Middle C is obtained in the usual way,
from the tuning fork.


SYSTEM A.

By middle C  tune F             fifth below.      Temper sharp.
       By F    "  B♭ (A♯)     fourth above.         "     "
        " C    "  G             fourth below.       "    flat
        " G    "  D           fifth above.          "     "
        " D    "  A             fourth below.       "     "
        " A    "  E           fifth above.          "     "
        " E    "  B             fourth below.       "     "
        " B    "  F♯            fourth below.       "     "
        " F♯   "  C♯          fifth above.          "     "
        " C♯   "  G♯            fourth below.       "     "
        " G♯   "  D♯          fifth above.          "     "

Then try D♯ with A♯ previously tuned for "wolves."

We think a little study and trial of this system will produce the
conviction that it is a very difficult and precarious one, and that it
has every disadvantage but one, namely, that it uses the smallest
possible number of tones, which is really of little value, and does
not compensate for the difficulty encountered and the uncertainty of
the results.

Another system which has many advantages over the above, is one which
employs fifths only and covers a compass of an octave and a half. This
system is similar to ours in that it employs fifths in the same
succession as far as G♯, the most of them, however, being an octave
higher. From this G♯ there is a break in the succession, and the
tuner goes back to middle C from which he started and tunes by fifths
downward until he reaches the G♯ at which he left off. This system
employs the tones from F below middle C to C, octave above. Below is
the succession, starting upon 3C, whose pitch is determined as usual.


SYSTEM B.

    By 3C   tune 2C       octave below.
    "  2C    "   2G    fifth above.
    "  2G    "   1G       octave below.
    "  1G    "   2D    fifth above.
    "  2D    "   2A    fifth above.
    "  2A    "   1A       octave below.
    "  1A    "   2E    fifth above.
    "  2E    "   2B    fifth above.
    "  2B    "   1B       octave below.
    "  1B    "   2F♯   fifth above.
    "  2F♯   "   1F♯      octave below.
    "  1F♯   "   2C♯   fifth above.
    "  2C♯   "   2G♯   fifth above.
    "  2G♯   "   1G♯      octave below.


    By 2C   tune 1F    fifth below. Temper sharp.
    "  1F    "   2F       octave above.
    "  2F    "   1B♭   fifth below. Temper sharp.
    "  1B♭   "   2B♭      octave above.
    "  2B♭   "   2E♭   fifth below. Temper sharp.

    Now by 2E♭ try 1A♭ (G♯) fifth below for the "wolf."

Note that this last trial brings you back to the last tone
tuned before the break.

This system is used by a great number of very successful tuners, and
it has but one appreciable disadvantage, which is that involved in
changing from fifths upward to fifths downward. This difficulty is
easily overcome, if it were all there is to encounter; but in
practice, we find that after tuning the intervals in the above
succession down to the last step in the first series, middle C will
often have changed pitch somewhat, and the last five tones with their
octaves tuned from it will not be in true harmony with the intervals
tuned in the first series. For this reason it is better to go on
through, as in our system, tuning by fifths upward, and if there is
any change of pitch in the first tones tuned, they may be more easily
corrected by going over them in the same way as at the start; also,
the amount of difficulty in locating discrepancies is greatly
lessened.


SYSTEM C.

The following system is one that is followed by many good tuners of
the present day and has many advantages. To use this system
successfully, however, one must be familiar with the number of beats
necessary in each interval used.

  Take 1F as a standard.

  By 1F, tune 2C, fifth above.
  By 1F, tune 1B♭, fourth above.
  By 1F, tune 1A, major third above.
  By 1F, tune 2D, sixth above.
  By 1F, tune 1A♭, minor third above.
  By 1F, tune 2F, octave above.
  By 2C or 2D, tune 1G, fourth or fifth below.
  By 1G, 1A or 2C, tune 2E, sixth, fifth or third above.
  By 1G or 2E, tune 1B, third above or fourth below.
  By 1A or A♯, tune 2C♯, major or minor third above.
  By 1A♭, 1B♭ or 1B, tune 2E♭, fifth, fourth or major third above.
  By 1B♭, 1B, 2C♯ or 2E♭, tune 1F♯, major third, fourth, fifth or sixth below.

As each step is taken in this system, the tone tuned is tested with
any or all of the tones previously tuned.

You will notice that six tones are tuned by the first standard, F.
Therefore, if any error is left in any one of the intervals it exists
in this only and is not transmitted to other tones, if corrected
before such other tones are used to tune by.

The numerous tests possible, early in the system, and the small
compass used, one octave, may be said to be the chief advantages of
the system.

The intervals used are the minor and major third, perfect fourth and
fifth, and major sixth. The thirds and sixths beat from about 7 to
nearly 12 per second. The exact number of beats for each step in the
system may be calculated from the "Table of Vibration Numbers" in
Lesson XIII. For instance, take middle C (2C) at 256, and its major
third, 2E. The exact third, determined by multiplying 256 by 5/4, is
found to be 320. By reference to the table, we find the tempered third
vibrates 322.54. The difference then is 2.54 vibrations per second,
and, knowing that a difference of one vibration from the exact major
third produces 4 beats, we simply multiply 2.54 by 4 and we have
10.16, the number of beats we should hear per second when this third
is tempered correctly. Other intervals may be figured out in like
manner by reference to the various tables given.

It is very doubtful if a beginner could succeed with this system. He
should tune by an easier system until he can hear the beats very
distinctly and judge quite accurately the rapidity of them. Having
acquired this ability, he may try this system and follow it in
preference to others.

In any system used it is well to test your work in the following
manner:

Begin with your lowest major third and strike each third in
succession, ascending chromatically. Of course, each third should beat
slightly faster than the one below it. For instance, in our system of
two octaves, take 1C-E; this third should beat about 5 per second.
Next, take 1C♯-F, which should beat about 5-1/2 per second. The beats
should increase each test nearly a half beat, or the amount of 5 beats
in this octave; hence, 2C-E will beat about 10 per second; or, using
the exact figures, 10.16. After arriving at the last-named test, 2C-E,
you may test the remainder of the two octaves by tenths, beginning
with 1C-2E. The tenth is similar to the third mathematically, and its
beats are even more distinct.

We may remark here that our system may be reduced to the compass of an
octave and a half by simply not tuning the octaves upward which reach
beyond 2F♯; and if anything were to be gained and nothing lost by
shortening the compass of the temperament, we would advise using only
the octave and a half. But in many years of experience in tuning all
imaginable types, styles and kinds of pianos, and by all systems, we
have found good reasons for adopting the two-octave temperament as
laid down in Lesson VIII, for universal application. Its advantages
may be summed up as follows:

~Simplicity.~--But two kinds of intervals are employed: the fifth and
the octave. The fifth is always tuned to a fundamental below and hence
always flattened, which relieves the tuner of any mental operation to
determine which way he is to temper. Being a regular succession of
fifths and octaves, without a break, the system is easily learned, and
can be followed with little mental strain.

~Uniformity.~--After the tuner has become well trained in tempering
his fifths, there is little danger of an uneven temperament, as the
various intervals used in trials will prove a false member in some
chord in time to correct it before he has gotten so far from it as to
make the correction difficult. When a correction is necessary, the
offending point is most easily found.

~Precision.~--In our experience, we have never known another system by
which we could attain the absolute precision gained by this.

~Stability.~--Stability is the feature wherein rests the paramount
reason for employing two octaves. From what has been said in previous
lessons concerning the liability of some strings to flatten or sharpen
by reason of altering the tension of other strings, the student will
readily see that the temperament should cover a sufficient portion of
the instrument, if possible, to insure that it will stand while the
remaining portion is being tuned. Our two octaves cover nearly all the
strings between the over-strung bass and the brace in the metal plate.
This being the case, any reasonable alteration of the strings beyond,
or outside, the braces from the temperament, will rarely, if ever,
affect it noticeably.

~Final Inspection.~--Always test every key on the piano, or especially
those of the middle five octaves, for bad unisons. Upon finding one,
search for the string that has stood in tune, by testing each string
of the unison with its octave. This being done, simply bring the other
to it. Go over the whole key-board, striking octaves, and correct any
that might offend. One extremely bad tone or octave may disparage your
reputation, when in reality your work merits commendation.

~Loose Pins.~--You will occasionally find pianos in which the tuning
pins have become so loose that they will not resist the pull of the
strings. If many of them are in this condition it is better, before
you begin to tune, to take a hammer of considerable weight and drive
them a little. Commence at one end of the row of pins and aim to
strike all the pins with the same force. Those which are tight enough
will not yield to the blow, while those which are loose may require
two or three blows to tighten them sufficiently. This defect is
generally found in very old squares or cheap uprights wherein the
pin-block is of poor material or defective in manufacture or in pianos
which have been abused.

~Split Bridges.~--Even in pianos of the highest grade, we sometimes
find a string sounding as if there was a pin or some metallic
substance bearing against it. In such cases, find the string and
examine the place where it crosses the bridge. You will often find the
bridge split at that point or the bridge-pin, having yielded to the
pressure of the string, vibrates against the next pin, giving rise to
the singing effect. You can do little if anything toward repairing a
split bridge. You may, however, stop the singing by inserting the
point of your screw-driver between the close pins and pressing them
apart. This will generally stop the difficulty for the time being at
least.

Strings crossing the bridge near a split will not stand in tune well,
and will, perhaps, have to be gone over two or three times. The same
may be said of a broken metal plate. Many old squares have broken
plates; generally found near the overstrung bass, or within the first
octave of the treble. All the tuner can do is to apprise the owner of
the defect and inform her that it will not stand well at this point,
as the intense strain is thrown largely upon the wooden frame, which
will have a tendency to yield gradually to it.

~Stringing.~--Strings break while the tuner is drawing them up,
sometimes because he does not pull them gradually, gives them an
abrupt turn or draws them too far above the pitch at which they are
intended to stand. More often, however, they break from being rusty at
the point where they pass over the bridge or around the tuning pin.
The best instruction concerning putting on new strings is, follow
appearances. Make the string you put on look just like those on the
instrument. In most modern pianos the string is wound with three coils
around the pin.

You will, of course, have to take out the action; not the key-board,
however, unless it be one of those rare cases where the key-board and
upper action are built to come out together. In the square it is only
necessary to remove the shade over the dampers, and the dampers, which
are all removed easily by taking out the screw at the left. This
allows the whole set of dampers with their support to come out
together.

Treble strings are nearly always passed around the hitch-pin, one wire
thus forming two strings. Take out the old string, noticing how it
passes over and under the felt at the dead end. After removing the
string always give the pin about three turns backward to draw it out
sufficiently so that when a new string is put on, the pin will turn
into the block as far as it did originally. Run one end of the string
barely through the hole in the tuning pin and turn it about twice
around, taking pains that the coils lie closely; then unwind enough
wire (of the same size of course) from your supply to reach down to
the hitch pin and back. Place the string on the bridge pins properly,
draw it as tight as you can by hand and cut it off about three
fingers' width beyond the pin upon which it is to be wound. This will
make about three coils around the pin. Place the end in the hole and
turn up gradually, watching that the string is clear down on hitch pin
and properly laid on the bridge. New strings will require drawing up
two or three times before they will stand in tune, and even then they
will run down in a short time. It is well on this account to leave
them slightly sharp, calling the owner's attention to the fact.

[Illustration: KNOT FOR SPLICING WIRE.]

When a bass string breaks at the point where it starts around the
tuning pin, it can nearly always be spliced and the trouble of sending
it away to have a new one made be avoided. Take a piece of new wire as
large or larger than the old string and splice it to the broken end
by a good secure knot. A knot called the square or ruft knot is the
best for this purpose. When a bass string breaks too far from the pin
to permit of a splice, the only resort will be to send the broken
string to some factory and have a new one made from it.


QUESTIONS ON LESSON XV.

    1. Name the advantages and disadvantages of system A.

    2. Name the advantages and disadvantages of system B.

    3. What are the important points to be desired in any system of
    setting temperament?

    4. State three or four items of importance in the operation of
    putting on a new string.

    5. Why do pianos get out of tune?



LESSON XVI.

~TUNING AND REPAIRING THE REED ORGAN.~


An impression seems to be prevalent among some musicians of the more
advanced class, that the reed organ has gone or is going out of use;
in certain communities there appears to be sufficient ground for such
an impression; in other communities, however, we find the number of
organs largely in excess of the number of pianos. Not only is this the
case, but statistics of the various organ factories throughout the
United States show that the output is enormous, which is a sufficient
assurance that the reed organ is not an obsolete instrument by any
means. To be sure, the organ has been superseded in numerous cases by
the piano, which is, in many respects, a greatly superior instrument,
and, generally speaking, is more popular; yet, the reed organ has its
special features of tone quality and adaptation, which render it even
more desirable to many than the piano, aside from the fact of its
being less expensive.

The musical effects possible on the organ and not on the piano may be
few; but they are of no small value, when certain kinds of musical
compositions are to be rendered.

One great point in favor of the organ is, that it is capable of
continuing any tone or chord for any length of time, without
diminution, while in the piano, the bass tones may be continued for
considerable time, the middle tones a shorter length of time, and the
extreme high tones of the treble have but the slightest duration;
every tone in the piano gradually grows weaker from the instant of its
sounding until it fades into silence. Another feature of the organ,
not possible in the piano, is its ability of making the "crescendo" (a
gradual increase of strength or volume) in single tones or chords.
Still another point in favor of the organ (not in the tuner's favor,
however) is that it rarely gets out of tune and does not require being
gone over by the tuner at short intervals in order to keep it in fit
condition to be used.

The idea with which we desire to impress the student by the foregoing
remarks is, that while the piano is a superior instrument, and the art
of tuning the piano is a much deeper study from the general tuner's
standpoint than that of doing the various things the tuner is called
to do on the organ, he should not consider the reed organ of minor
importance, or slight the organ when called upon to put it in order.
The fact is, persons having organs in their homes cherish them as much
as others do their pianos, and there is no reason why they should not
have as good service.

It will be impossible to give anything more than general instruction
in organ work, as the difference in construction is so pronounced.
Pianos are built practically on the same plan, and when the
construction of one is learned, the tuner will find little difficulty
in others of the same type; but it seems that every organ manufacturer
has his own hobbies as to the best means of securing results; however,
the general principles are the same, and, like many operations coming
under the hand of the tuner, all that is necessary is to examine,
reason, and use good mechanical judgment.


CLEANING.

Organs need cleaning about once a year, or oftener if they are kept
and used in dusty places. The bellows are suction or exhaustion
bellows, and they draw the air in at the top of the organ through the
reeds and discharge it below. The effect of this is that if any dust
is floating in the air it is drawn in about the action and reeds,
where it settles and clogs the working parts, stopping the vibration
of the reeds entirely.

The front board or key strip is usually held in place by a screw at
each end, but sometimes by slides entering the holes in the side of
the case, which may be disconnected by wooden buttons at each end,
which are pulled toward the center. The back of all organs may be
entered by removing the board at the back of the case, held in place
by screws or buttons. Close all the stops, then take your dust blower,
if you have one, or a cloth, and remove all the dirt possible in this
way. Lift the muffler boards worked by the right knee-swell, take a
brush and clean thoroughly next to the reeds which will be exposed
when the muffler boards are raised.

If any dirt is left here it will be drawn into the reeds the instant
the organ is played. In bad cases, in fact it is better in every case,
to draw every reed, letting them lie in a row on the reed board and
going over each one separately, brush the dust from it. This will
improve the tone, or, rather, the tune of the instrument. Dirt on the
tongue of a reed adds sufficient weight to alter the pitch, and if it
is removed, the instrument will generally be in as good tune as when
it left the factory. Simply cleaning an organ in this way is often
called tuning, by inexperienced persons. If it happens that there are
only a few reeds that do not speak, and the owner does not care to pay
for a thorough cleaning, you will find the silent reeds by the method
given under the head "Examination," and, drawing them, clean and
replace.


STOPS.

Each stop on the organ (if there be no dummies) affects either the
tone quality or the power of the instrument. The Vox Humana stop
affects the quality of the tone by operating a fan in the rear of the
instrument or a contrivance contained in a small box, which produces a
tremolo effect. All other stops may be said to affect the power. Stops
having such names as Diapason, Melodia, Dulcet, Celeste, Cremona,
Echo, Principal, Bourdon, Sub Bass, Piccolo, Flute, Dulciana, etc.,
etc., open certain sets of reeds supposed to give forth a tone quality
similar to the instrument whose name it bears, or the tone of the
pipes of the pipe organ bearing such names. These stops operate on
the sets of reeds by raising the mutes which, when closed, stop the
passage of air through the reeds.

The octave coupler stop, sometimes called Harmonique, controls an
arrangement whereby, when a key is depressed, its octave is made to
sound also. "Forte" stops lift the mufflers or swells, and as these
are controlled by the right knee-swell, the Forte stop may be
considered of little value. The left knee-swell, called the Full Organ
swell, as its name implies, opens up the full power of all sets of
reeds and throws on the couplers.

A mere peep into any organ will disclose the mechanical working of
stops, which is in such great variety that we will not attempt to
detail it here.


EXAMINATION.

After a little experience you will be able to make an examination of
an organ and tell just what it needs without so much as drawing a
screw. The reeds are usually divided into treble sets and bass sets;
two octaves of bass reeds, and three octaves of treble reeds
constitute a set. The Diapason stop is nearly always present, and
controls the heaviest reeds in the bass except the Bourdon or Sub
Bass, if the organ should have either of these. In examining an organ,
close all stops but the Diapason, for instance, then successively
press every key in the two bass octaves.

Now if, for instance, a key is found silent, that is, just an octave
from the lowest tone, by counting the keys from the lowest tone, you
will find the silent key is number thirteen. Look into the organ, find
the mute that is up by reason of this Diapason stop's being pulled,
and count the reeds from the lowest to the thirteenth; pull the reed
and you will find it obstructed or perhaps broken. Most organs have a
Dulciana stop in the treble which corresponds with the Diapason in the
bass. Test the reeds of this set just as you did those of the
Diapason. Go over each set of reeds in like manner. Broken reeds
should be sent to the factory where the organ was built. The
manufacturers will send a new one, often without cost.

Stops are sometimes found disconnected from the mutes, which deprives
the player of the use of certain sets of reeds, and while it is a
small matter to connect them, it adds much to the improvement
imparted to the instrument by the tuner. After disconnecting the stops
for any purpose, always be sure you connect them properly before
leaving your work.


STICKING KEYS.

The key itself is subject to many of the same faults as is that of the
piano. It may bind in the guide pin or warp so as to cause it to
stick, or it may stick from some substance between the keys. Sometimes
the front board is so near the front of the keys that when the latter
are depressed they stick against it. A screw is generally found in the
center, the head of which comes against the front board and holds it
out. If the board is too near give the screw a turn or two back. If
there is no screw, place a piece of card against the board and the
case at the ends. The end keys sometimes stick against the blocks at
the ends of the key-board. Scrape the block or key where it sticks. A
key may stay down because of the cedar pin, sometimes called the
tracker pin or pitman, sticking in the hole. Take out the key-board
which is held by a screw at each end, sometimes by another in the
middle; in which case a key or two must be removed to get at it. To
remove a key, take off the strip at the back of the keys, held in
place by small screws, and the key may be lifted up. Now, finding the
sticking pin, pull it out and sandpaper or rub it with black lead
until it is found to work quite freely in the guide hole of the guide
board and the hole in the reed board.

Just under the reed board is a wooden slip covered with soft leather,
called the valve or pallet, which covers the openings in the reed
board which admit air to pass down through the reeds. The tracker pin,
pushed down by the key, opens the pallet which is held against the
reed board by a spring and kept in place by a guide pin at each end.
It sometimes happens that a pallet will be pushed down so far as to
catch on the guide pins and cause the tone to sound continually. In
other cases a piece of dirt will get in the way of the pallet and
prevent it from closing the opening. If this be the case, draw the
reeds that sound when this key is depressed and also a reed at each
side of it, and pump the bellows briskly, at the same time pressing
the three keys. This will generally create enough air to remove the
obstacle. If the key still sounds and cannot be made to "hush up" in
this way, you may be compelled to take out the entire action so that
you can get to the pallets, which can be done by removing all the
screws that hold the reed board in place. At the back, these screws
are on top of the board and sometimes they are on top in front; but
often they are under the air chamber in front. Be sure the screws are
all out before trying to pull the board loose, as you might crack the
board and thereby cause a leak. A moment's notice will reveal the
cause of the trouble in the pallet.

New pallet springs may be made of piano wire, using old springs for a
pattern.


LEAKS.

If a leak is found in the air boards, such as a crack or split, it can
be stopped permanently by gluing a piece of bellows cloth or any good
rubber cloth over the split. A leak in the bellows can be repaired in
the same way, but if it happens to be a hole at or near a part of the
cloth which is compelled to bend in the working of the bellows, you
will have to use some kind of rubber or leather cement, preferably the
latter. This can be made by dissolving gutta-percha in bisulphide of
carbon, but a good leather cement may be had at almost any shoe store.
If the bellows are porous, it may be well to give them a coat of
cement, but never paint them; the paint cracks and the leaks are made
worse.


PEDAL DETECTS.

Broken pedal straps are the most frequent annoyance. In all modern
organs there is a panel above the pedals which will come out and admit
the mechanic to the bellows, straps, springs, etc.; but in some old
instruments the case is made solid, in which case the workman must do
his work from the bottom, turning the organ down so as to get at it.
Pedal straps are easily put on; generally with screws at either end.
If the pedal squeaks examine the springs or oil and change their
position slightly. Examine the pulleys over which the straps work and
oil or rub them on the outside with soap. Broken pedal hinges may be
duplicated by any blacksmith; the ordinary hinges, such as can be
bought at hardware stores, are sometimes substituted, but they rarely
answer the purpose as well as the regular pedal hinge. The leather
flaps over the holes in the exhausters sometimes get too tight by
shrinkage so that they will not let the air escape readily, and
consequently the pedals come up slowly, often making it difficult to
keep the instrument sufficiently supplied with power. Simply stretch
the leather flaps, being careful not to pull the tacks loose or tear
the leather.


SYMPATHETIC VIBRATIONS.

Organs, like pianos, are subject to sympathetic vibrations. A reed
fitting loosely in the reed chamber will sometimes buzz when sounded.
A bit of paper under the back end of the reed will stop it. Any loose
material about the instrument may cause trouble of this kind. Trace up
the cause and the remedy will suggest itself.

A buzzing sound may be caused by a reed's being too tight in the reed
chamber, causing the tongue to vibrate against the sides of the brass
body. In some rare cases, not being firmly riveted, the tongue will
move to one side, causing the same trouble. Care and pains must be
taken in working with reeds, but when in this condition they must be
repaired. Tap the rivet lightly with a hammer and try it; if it still
does not sound clear, catch the butt of the reed (riveted end) with a
pair of parallel pliers, and turn it toward the center until, when
vibrating, it clears the jaws.


TUNING.

The method of tuning the organ is very simple. To flatten the tone of
a reed, scrape the tongue near the butt or rivet, making it thinner at
that point, which will cause it to vibrate at a slower rate. To
sharpen the tone, scrape it at the point, thereby lightening the
vibrating end, which will cause a more rapid rate of vibration. When a
reed has been scraped or filed so thin at the point that it will bear
no more scraping, it can sometimes be sharpened by bending it up and
down a few times, which has a tendency to put temper in the metal.
Some reeds are curved at the point purposely to secure a certain
voice. Do not interfere with the proper curvature when tuning. In
tuning organs, the same system and general instruction given for piano
tuning will apply; however, it is rarely, if ever, necessary to give
an organ as thorough tuning as you would a piano. It is a very tedious
job where you have to draw each reed, apply the proper method, insert
it and try the result, thus cutting and trying each one perhaps
several times before getting the desired result. In factories devices
are used which render the operation very much easier.

One thing you should know is, that organs are not tempered as finely
as pianos, nor is there the pains taken to secure perfect unisons. In
fact, you can hardly find a perfect unison in an organ of modern make,
much less, a correct temperament. Finding a tone that is so far out as
to be very disagreeable, adjust it between the octave below and the
octave above, try it in the proper chords and equalize it in the best
possible way; but it is not often you will be able to tune it to
absolute precision with its octaves. It is thought by many that a
slight deviation from correct unisons, sufficient to give a series of
waves, gives the organ a more mellow voice and consequently a more
musical (?) tone; and while we do not agree with any such proposition,
it makes the tuner's work less exacting.

We feel that an apology is in order for not giving illustrations of
the action of the organ, but if the student will study this lesson in
connection with the instrument itself, we believe he will have no
trouble in learning all about its mechanical action and its demands
upon the tuner.


QUESTIONS ON LESSON XVI.

    1. Name the musical advantages possessed by the organ which are
    absent in the piano.

    2. Name the musical advantages possessed by the piano which are
    absent in the organ.

    3. Describe the mechanical operations taking place in the organ
    when a key is being sounded.

    4. State what you would do to flatten the tone of a reed and give
    reasons.

    5. State what you would do to sharpen the tone of a reed and give
    reasons.



LESSON XVII.

~CONCLUDING PROFESSIONAL HINTS.~


Peculiar incidents occur in the experience of the piano tuner, some of
which have come under the observation of the author so frequently that
he deems it advisable to mention them here; there are incidents also
that happen once in a life-time which must be treated in their time
with tact and good judgment, and which it is impossible to describe
here, as each tuner, in his special field, will elicit new
developments. Occasion often requires the tuner to summon all his wits
and tact in order to dispose of questions put to him, both by pianos
and owners.

Among the perplexing things that come to the tuner are the terms used
by musicians and piano owners to express certain qualities of tone and
certain discrepancies of the instrument. We will define a number of
these.

~Brilliant.~--The sense in which this term is used is astonishing to
one who is accustomed to using words according to their dictionary
meanings. We have heard persons say their piano was too _brilliant_;
or, that it was not _brilliant_ enough. They mean this term to apply
to what we are pleased to call the voice of the instrument. When the
hammers are hard, producing a sharp, penetrating tone, they call it
_brilliant_; when the hammers are soft and produce what a trained ear
would accept as a soft, sweet, musical tone, some persons will say
that the instrument lacks brilliancy. Persons of a different taste,
and, we would say, a more cultured ear, call the tone _harsh_ when the
hammers are hard, and they usually desire the tuner to _soften_ the
tone, which he does by softening the hammer ends as has been described
in Lesson VII. This operation, which we call voicing, is a very
delicate piece of work, and the tuner should exercise care and pains
in doing it; so we will deviate from the trend of the discourse and
offer a few directions here, as the previous instructions are hardly
complete.

Insert the felt pick (which should contain only one point, and not
three or four, as they usually do) in the point of the hammer and give
it a rotary motion, so to speak, loosening up the felt and giving it
its original elasticity. Do not pick up the felt at the point. This
method, which is resorted to by many tuners, is injurious to the
hammers and really does no permanent good. Another method which is
very good, and a very easy one, is to take your parallel pliers and
squeeze the felt slightly at the point. Apply the pliers at right
angles with the hammer (if the action of the upright, your pliers will
be in an upright position) and catch the hammer at a depth of about
three-quarters of the thickness of the felt. If the hammers are very
hard it may be well to use both the pliers and the pick; but care must
always be taken not to get the hammers too soft, and extreme care must
be taken not to get some softer than others. Some hammers are always
used more than others and, of course, these will need more softening.
Usually those at the extreme ends of the instrument will need no
softening at all, but sometimes the bass will bear considerable
softening. After going over them in the above way, try them by playing
the chromatic scale and you will invariably find some that need
additional attention. Be sure that no hard tone is left, as such a
condition is a great annoyance to a delicate ear.

~Singing.~--When a damper is out of order and does not do its work
properly, they often say the tone _sings_. They say the same thing
about the reed organ when a pallet sticks or a key stays down.
Sometimes this term is used to express the grating vibration which has
been treated under the head of _sympathetic rattle_.

~Tin-panny.~--This term is often used and generally means that the
instrument is out of tune, and especially that the unisons are out.
Sometimes it is used to express a _hollow_ quality of tone; but you
will rarely, if ever, hear a piano spoken of in this way if it is in
correct tune. Any piano out of tune badly may be said to sound
tin-panny.

~Bass-ey.~--This term expresses a very harsh bass. Imperfect octaves
or unisons in the bass of a piano give rise to the use of this term.
If the bass of the instrument is decidedly flat, the same term is
sometimes used to express the condition.

~Harsh.~--This term, when it does not apply to the voice of the piano,
generally reflects upon the work of the tuner (?). Chords are _harsh_
when they contain over-sharp thirds, bad fifths, octaves, etc. Take
care that your temperament contains no bad chords, and after you are
all through, see that all tones have stood, and that you have left no
bad unisons or octaves. One or two carelessly tuned tones may
disparage your otherwise creditable work.

~Questions.~--Questions are often asked the tuner concerning the care
of the piano. Be prepared to answer any reasonable question that may
come up, which your knowledge of the instrument should enable you to
do. In regard to temperature, moisture, etc., an extreme either way is
the thing to avoid. A very dry or hot atmosphere will crack the
varnish, warp the wooden parts, crack the sound-board, cause parts to
come unglued, etc. On the other hand, too much moisture will rust the
steel parts, strings, etc.; so the "happy medium" is the condition to
be desired. As to keeping pianos closed, a question you will often be
asked, we think it is better to keep them open at all times than to
keep them closed at all times; because, if they are kept open they are
subjected to the changes of the atmosphere, which will rarely permit
the piano to become either very damp or too dry. In a word, a room
that is healthy for human beings is all right for the piano.

~Seasons for Tuning.~--The prevalent idea in regard to this matter is
that pianos should be tuned either at the beginning of cold or of warm
weather. In our experience, we have found that it makes no difference
when the piano is tuned if it is kept in the living room. If, however,
a piano were tuned upon a warm day in the fall and then allowed to
remain in a room in which the temperature suddenly fell to zero, we
could not expect it to stand in tune; and much less, if the room is
heated up occasionally and then left for an interval at the mercy of
the weather. Persons who treat their pianos in this way should have
them tuned about four times a year.



INDEX.



Action, 17
  brackets, 24
  of grand piano, 37, 38, 62
  of square piano, 32, 34
  removing, square and grand, 38
  replacing, square and grand, 39
  requisites of, 17, 18
  top, of square piano, 34
  trap, of square piano, 19, 34

Advantages of two-octave temperament, 171

Ancient instruments, 13


Back check, adjustment of, 49
  and back catch, 18, 27, 28, 33, 37
  wire, 27

Balance pin, 21
  rail, 21

Bearing bar, 17

Beats, waves, and pulsations, 73, 150
  of unison, octave, and major third, 154
  cause of, 77, 150

Black lead, use of, 64

Block rail, 27, 51

Bottom or capstan, adjustment of, 48, 99
  or key rocker, 23, 33, 48, 56, 57

Bracket bolts, 25

Bridle, 28
  putting in new, 50
  wire, 28, 50

Bridges, 16, 17
  split, 173

Building of upright piano, 16

Butts, 28
  and flanges, repairing of, 59


Capstan, 24, 48

Cause of beats 27, 150

Center-pins, 25
  putting in new 52

Clicks at release of key, 51, 52

Compromises, the, 99, 100

Continuous mute, 89


Damper lever, 29
  felt, softening, 54

Damper, of grand piano, 37
  of square piano, 36, 60
  rod, 30
  rod, squeaking of, 55
  spoon, 29
  springs broken, 54

Dampers, 18, 29

Damping, defective, 54, 60, 61

Ditonic comma 144


Evolution of the piano, 12

Extension, 23


False waves, 160, 161

Fifths, beats of, 79
  not all tempered alike, 105, 106
  tempering of, 79, 104

Final inspection, 172

Fischer System of temperament, diagram of, 82

Flanges, 25
  repairing of, 59


Guide pins, 23


Hammer, butt, refelting, 51
  capping with buckskin, 59
  felts, cleaning, 34
    gluing, 54
    hardening, 54
    softening, 54
    trimming, 60
    voicing, 54, 104
  head 29
  rail, 29, 33
  shank or stem, 29, 53
    broken, 63
    renewing, 53
  spring, 52
  sticking, 52

Hitch-pins, 16, 17


Instrumental attachments, removal of, 118

Intervals flattened, 157
  sharpened, 157

Ivories, regluing, 64


Jack, 26
  repairing of, 50, 58
  sluggish, 57
  -spring broken, 58


Key, defects in, 47, 48
  leads, 22
  organ, sticking, 185, 186
  removing, square piano, 56
  squeaking, 64
  sticking, 46


Lead, in keys, 22
  black, use of, 64
  loose in key, 64

Length, tension, and weight of strings, 75

Loud pedal, 19, 30


Main rail, 25

Mathematics of tempered scale, 126

Metal plates, 15

Mute, continuous, 89, 90

Mutes, setting in upright piano, 117-120
  in bass, 121
  beyond temperament, 120
  in square piano, 122
  on nodal points, 161


Octave, dividing into major thirds, 134
  into minor thirds, 140
    perfect fifths, 142

Octaves, relative vibration of, 78

Organ, reed, tuning and repairing the, 178
  bellows, leaks in, 187
  capabilities of, 179
  cleaning, 180
  examination, 183
  keys sticking, 185, 186
  pallets, 186
  pedal defects, 188
  reeds, to find, 184
    tuning, 190
  stops, 182
    disconnected, 184
  sympathetic vibration, 189

Over-tension, 114


Panel, removing of, 75

Parts of grand action, 38
  of square action, 34

Pendulum to aid in judgment of a second of time, 104

Piano frame, 15
  tuner, requisites of, 7, 70

Pianos, special use of, 85, 86

Pitch, concert, 127
  international, 81, 127

Pitch, left to tuner's judgment, 86, 87, 89
  to determine most favorable, 85

Professional hints, 193


Questions asked by owners, 211


Ratio of intervals, 132

Reed organ. See _Organ_.

Regulating button, 26, 51
  rail, 26, 36

Repairing small wooden parts, 63

Repetition of stroke, 18, 27


Searching for articles on sound board, 44

Seasons for tuning, 198

Soft pedal, 29, 36, 38

Sound board, 16
    split, 44
    unglued, 45
  waves, interference of, 78, 150

Splicing piano wire, 176

Spring rail, 29

Stringing of upright, 16, 17

Strings growing sharper, 88
  putting in new, 174, 175
  rendering through bridges, 112, 114
  splicing, 176

Study and practice of tuning, 66

Sustaining pedal, 30
  squeaking of, 55

Sympathetic rattle, 43

Syntonic comma, 132

Systems of temperament, various, 163

System A, 165
  B, 166
  C, 167, 168


Tables of relative string length, 131, 136, 140, 143

Temperament, advantages of the two-octave, 171
  equal, 97, 144
  Fischer system, 74
  finishing up, 156
  introductory remarks on, 68, 72
  rationale of, 128, 139
  requisites of, 133
  setting, specific instructions, 85
  theory of, 97
  unequal, 98
  various systems, 163-168

Tension, equalization of, 111, 112

Terms to express tone qualities, 193-196

Testing by thirds and tenths, 170

Tests, chords, 94, 99, 103

Third, excessive sharpness of, 95, 103

Thirds, major, 135
  major, sharper than perfect, 135
  minor, flatter than perfect, 141

Tones, harmonic, 120, 130

Touch, altering the, 48

Treble, extreme, sharper than perfect, 159

Tuning, instructions for first experiments in, 92-95
  hammer, manipulation of, 110, 115, 116
  pins, marking of in square, 122
    loose, 173
    setting of, 112-114
  the bass, 160
  the treble, 157, 159


Vibration numbers, comparison of, 137, 146, 147, 148


Watchmaker's screwdriver, use of in piano repairing, 63

Wippen, 25

Wire splicing, 176

Wooden parts, shrinking, rattling, 59
  repairing of small, 63


    [Transcriber's note:

    1. Bold text is enclosed in tilde (~) characters.

    2. On page 197, 'tones' has been misspelt in the original text as
    'tonse'.]





*** End of this Doctrine Publishing Corporation Digital Book "Piano Tuning - A Simple and Accurate Method for Amateurs" ***

Doctrine Publishing Corporation provides digitized public domain materials.
Public domain books belong to the public and we are merely their custodians.
This effort is time consuming and expensive, so in order to keep providing
this resource, we have taken steps to prevent abuse by commercial parties,
including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the files We designed Doctrine Publishing
Corporation's ISYS search for use by individuals, and we request that you
use these files for personal, non-commercial purposes.

+ Refrain from automated querying Do not send automated queries of any sort
to Doctrine Publishing's system: If you are conducting research on machine
translation, optical character recognition or other areas where access to a
large amount of text is helpful, please contact us. We encourage the use of
public domain materials for these purposes and may be able to help.

+ Keep it legal -  Whatever your use, remember that you are responsible for
ensuring that what you are doing is legal. Do not assume that just because
we believe a book is in the public domain for users in the United States,
that the work is also in the public domain for users in other countries.
Whether a book is still in copyright varies from country to country, and we
can't offer guidance on whether any specific use of any specific book is
allowed. Please do not assume that a book's appearance in Doctrine Publishing
ISYS search  means it can be used in any manner anywhere in the world.
Copyright infringement liability can be quite severe.

About ISYS® Search Software
Established in 1988, ISYS Search Software is a global supplier of enterprise
search solutions for business and government.  The company's award-winning
software suite offers a broad range of search, navigation and discovery
solutions for desktop search, intranet search, SharePoint search and embedded
search applications.  ISYS has been deployed by thousands of organizations
operating in a variety of industries, including government, legal, law
enforcement, financial services, healthcare and recruitment.



Home