By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | HTML | PDF ]

Look for this book on Amazon

We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: Scientific American Supplement No. 822, October 3, 1891
Author: Various
Language: English
As this book started as an ASCII text book there are no pictures available.
Copyright Status: Not copyrighted in the United States. If you live elsewhere check the laws of your country before downloading this ebook. See comments about copyright issues at end of book.

*** Start of this Doctrine Publishing Corporation Digital Book "Scientific American Supplement No. 822, October 3, 1891" ***

This book is indexed by ISYS Web Indexing system to allow the reader find any word or number within the document.



NEW YORK, October 3, 1891

Scientific American Supplement. Vol. XXXII, No. 822.

Scientific American established 1845

Scientific American Supplement, $5 a year.

Scientific American and Supplement, $7 a year.

       *       *       *       *       *


I.    ANTHROPOLOGY.--The Study of Mankind.--A review of Prof.
      Max Muller's recent address before the British Association.  13141

II.   CHEMISTRY.--Standards and Methods for the Polarimetric
      Estimation of Sugars.--A U.S. internal revenue report on
      the titular subject.--2 illustrations.                       13138

      The Formation of Starch in Leaves.--An interesting
      examination into the physiological _role_ of leaves.--1
      illustration.                                                13138

      The Water Molecule.--By A. GANSWINDT.--A very interesting
      contribution to structural chemistry.                        13137

III.  CIVIL ENGINEERING.--Demolition of Rocks under Water
      without Explosives.--Lobnitz System.--By EDWARD S.
      CRAWLEY.--A method of removing rocks by combined
      dredging and ramming as applied on the Suez Canal.--3
      illustrations.                                               13128

IV.   ELECTRICITY.--Electrical Standards.--The English Board of
      Trade commission's standards of electrical measurements.     13129

      The London-Paris Telephone.--By W.H. PREECE,
      F.R.S.--Details of the telephone between London and
      Paris and its remarkable success.--6 illustrations.          13131

      The Manufacture of Phosphorus by Electricity.--A new
      industry based on dynamic electricity.--Full details.        13132

      The Two or Three Phase Alternating Current Systems.--By
      CARL HERING.--A new industrial development in electricity
      fully described and graphically developed.--15
      illustrations.                                               13130

      Labrador.--The Bowdoin College exploring expedition and
      its adventures and discoveries in Labrador.                  13140

VI.   MECHANICAL ENGINEERING.--Improved Changeable Speed
      Gearing.--An ingenious method of obtaining different speeds
      at will from a single driving shaft.--2 illustrations.       13129

      Progress in Engineering.--Notes on the progress of the last
      decade.                                                      13129

VII.  MEDICINE AND HYGIENE.--Eyesight.--Its Care during Infancy
      and Youth.--By L. WEBSTER FOX, M.D.--A very timely
      article on the preservation of sight and its deterioration
      among civilized people.                                      13135

      The Use of Compressed Air in Conjunction with Medicinal
      Solutions in the Treatment of Nervous and Mental
      Affections.--By J. LEONARD CORNING.--The enhancement of
      the effects of remedies by subsequent application of
      compressed air.                                              13134

VIII. MINERALOGY.--A Gem-Bearing Granite Vein in Western
      Connecticut.--By L.P. GRATACAP.--A most interesting
      mineral fissure yielding mica and gems recently opened.      13141

      interesting presentation of the economy of ants.             13140

X.    NAVAL ENGINEERING.--Armor Plating on Battleships--France
      and Great Britain.--A comparison of the protective systems
      of the French and English navies.--5 illustrations.          13127

      The Redoutable.--An important member of the French
      Mediterranean fleet described and illustrated.--1
      illustration.                                                13127

XI.   TECHNOLOGY.--New Bleaching Apparatus.--A newly invented
      apparatus for bleaching pulp.--2 illustrations.              13133

       *       *       *       *       *


The central battery and barbette ship Redoutable, illustrated this
week, forms part of the French Mediterranean squadron, and although
launched as early as 1876 is still one of its most powerful ships.
Below are some of the principal dimensions and particulars of this

    Length           318 ft. 2 in.
    Beam              64 "   8 "
    Draught           25 "   6 "
    Displacement    9200 tons.
    Crew             706 officers and men.


The Redoutable is built partly of iron and partly of steel and is
similar in many respects to the ironclads Devastation and Courbet of
the same fleet, although rather smaller. She is completely belted with
14 in. armor, with a 15 in. backing, and has the central battery
armored with plates of 9½ in. in thickness.

The engines are two in number, horizontal, and of the compound two
cylinder type, developing a horse power of 6,071, which on the trial
trip gave a speed of 14.66 knots per hour. Five hundred and ten tons
of coal are carried in the bunkers, which at a speed of 10 knots
should enable the ship to make a voyage of 2,800 knots. Torpedo
defense netting is fitted, and there are three masts with military
tops carrying Hotchkiss revolver machine guns.

The offensive power of the ship consists of seven breechloading rifled
guns of 27 centimeters (10.63 in.), and weighing 24 tons each, six
breechloading rifled guns of 14 centimeters (5.51 in.), and
quick-firing and machine guns of the Hotchkiss systems. There are in
addition four torpedo discharge tubes, two on each side of the ship.
The positions of the guns are as follows: Four of 27 centimeters in
the central battery, two on each broadside; three 27 centimeter guns
on the upper deck in barbettes, one on each side amidships, and one
aft. The 14 centimeter guns are in various positions on the
broadsides, and the machine guns are fitted on deck, on the bridges,
and in the military tops, four of them also being mounted on what is
rather a novelty in naval construction, a gallery running round the
outside of the funnel, which was fitted when the ship was under
repairs some months ago.

There are three electric light projectors, one forward on the upper
deck, one on the bridge just forward of the funnel, and one in the
mizzen top.--_Engineering._

       *       *       *       *       *


The visit of the French squadron under Admiral Gervais to England has
revived in many a nautical mind the recollection of that oft-repeated
controversy as to the relative advantages of armored belts and
citadels. Now that a typical French battleship of the belted class has
been brought so prominently to our notice, it may not be considered an
inappropriate season to dwell shortly upon the various idiosyncrasies
of thought which have produced, in our two nations, types of war
vessels differing so materially from each other as to their protective
features. In order to facilitate a study of these features, the
accompanying sketch has been prepared, which shows at a glance the
relative quantities of armored surface that afford protection to the
Nile, the Camperdown, the Marceau, the Royal Sovereign, and the Dupuy
de Lôme; the first three of these vessels having been actually present
at the review on the 21st of August and the two others having been
selected as the latest efforts of shipbuilding skill in France and
Great Britain. Nothing but the armored surface in each several class
is shown, the same scale having been adhered to in all cases.

[Illustration: Armored Surface for Various Ships]

Two impressions cannot fail to be made upon our minds, both as to
French and British armor plate disposition. These two impressions, as
regards Great Britain, point to the Royal Sovereign as embodying the
idea of two protected stations with a narrow and partial connecting
belt; and to the Nile as embodying the idea of a vast and absolutely
protected raft. For France, we have the Marceau as representing the
wholly belted type with four disconnected but protected stations; and
the Dupuy de Lôme, in which the armor plating is thinned out to a
substance of only 4 in., so as entirely to cover the sides of the
vessel down to 5 ft, below the water line; this thickness of plating
being regarded as sufficient to break up upon its surface the dreaded
mélinite or guncotton shell, but permitting the passage of
armor-piercing projectiles right through from side to side; provision
being made to prevent damage from these latter to engines and vitals
by means of double-armored decks below, with a belt of cellulose
between them. Thus, as we have explained, two prominent ideas are
present in the disposition of armor upon the battleships of Great
Britain, as well as in that of the battleships of France. But, while
in our country these two ideas follow one another in the natural
sequence of development, from the Inflexible to the Royal Sovereign,
the citadel being gradually extended into two redoubts, and space
being left between the redoubts for an auxiliary battery--this latter
being, however, singularly placed above the armored belt, and _not
within its shelter_--in France, on the other hand, we find the second
idea to be a new departure altogether in armored protection, or rather
to be a return to the original thought which produced the Gloire and
vessels of her class. In point of fact, while we have always clung to
the armored citadel, France has discarded the belt altogether, and
gone in for speed and light armor, as well as for a much lighter class
of armament. Time alone, and the circumstances of actual warfare, can
prove which nation has adopted the wisest alternative.

A glance at the engraving will show the striking contrast between the
existing service types as to armored surface. The Marceau appears
absolutely naked by the side of the solidly armed citadel of the Nile.
The contrast between the future types will be, of course, still more
striking, for the reasons given in the last paragraph. But while
remarking upon the paucity of heavy plating as exhibited in the
service French battleships, we would say one word for the angle at
which it is placed. The receding sides of the great vessels of France
give two very important attributes in their favor. In the first place,
a much broader platform at the water line is afforded to secure
steadiness of the ship and stable equilibrium, and the angle at which
the armor rests is so great as to present a very oblique surface to
the impact of projectiles. The trajectory of modern rifled guns is so
exceedingly flat that the angle of descent of the shot or shell is
practically _nil_. Were the sides of the Royal Sovereign to fall back
like those of the Marceau or Magenta, we seriously doubt whether any
projectile, however pointed, would effect penetration at all. We
conclude, then, that a comparison of the Marceau with the Nile as
regards protective features is so incontestably in favor of the
latter, that they cannot be classed together for a moment. In speed,
moreover, though this is not a point under consideration, the Nile has
the advantage. It is impossible, however, to avoid the conviction that
the Dupuy de Lôme would be a most powerful and disagreeable enemy for
either of the eight great ironclads of Great Britain now building to
encounter on service. The Hood and Royal Sovereign have many
vulnerable points. At any position outside of the dark and light
colored portions of armor plate indicated in our drawing, they could
be hulled with impunity with the lightest weapons. It is true that gun
detachments and ammunition will be secure within the internal
"crinolines," but how about the other men and _matériel_ between
decks? Now, the Dupuy de Lôme may be riddled through and through bf a
13½ in. shell if a Royal Sovereign ever succeeds in catching her; but
from lighter weapons her between decks is almost secure. We cannot
help feeling a sneaking admiration for the great French cruising
battleship, with her 6,300 tons and 14,000 horse power, giving an easy
speed of 20 knots in almost any weather, and protected by a complete 4
in. steel panoply, which will explode the shells of most of our
secondary batteries on impact, or prevent their penetration. In fact,
there is little doubt that the interior of the Trafalgar, whether as
regards the secondary batteries or the unarmored ends, would be
probably found to be a safer and pleasanter situation, in the event of
action with a Dupuy de Lôme, than either of the naked batteries or the
upper works of the Royal Sovereign. This is what Sir E.J. Reed was so
anxious to point out at the meeting of naval architects in 1889, when
he described the modern British battleship as a "spoiled Trafalgar."
There was perhaps some reason in what he said.--_The Engineer._

       *       *       *       *       *


[Footnote 1: Read before the Engineer's Club, Philadelphia. Translated
from _Nouvelles Anodes de la Construction,_ March, 1890.]


The methods of demolishing rocks by the use of explosives are always
attended by a certain amount of danger, while at the same time there
is always more or less uncertainty in regard to the final result of
the operation. Especially is this the case when the work must be
carried on without interrupting navigation and in the vicinity of
constructions that may receive injury from the explosions.

Such were the conditions imposed in enlarging the Suez Canal in
certain parts where the ordinary dredges could not be used.

Mr. Henry Lobnitz, engineer at Renfrew, has contrived a new method of
procedure, designed for the purpose of enlarging and deepening the
canal in those parts between the Bitter Lakes and Suez, where it runs
over a rocky bed. It was necessary to execute the work without
interrupting or obstructing traffic on the canal.

The principle of the system consists in producing a shattering of the
rock by the action of a heavy mass let fall from a convenient height,
and acting like a projectile of artillery upon the wall of a fortress.

From experiments made in the quarry of Craigmiller, near Edinburgh,
with a weight of two tons shod with a steel point, it was found that
with a fall of about 5.5 meters (18.04 ft.) there was broken up on an
average more than 0.113 cubic meter (0.148 cubic yard) of hard rock
per blow. The first blow, delivered 90 centimeters (2 ft. 11½ in.)
from the wall face, produced an almost imperceptible rent, a second or
a third blow applied at the same place extended this opening often to
a length of 1.50 meters (4 ft. 11 in.) and to a depth of from 90 to
120 centimeters (2 ft. 11 in. to 3 ft. 11 in.) The next blow opened
the fissure and detached the block of rock.

The application of the same system under water upon an unknown surface
would obviously modify the conditions of the experiment. Nevertheless,
the results obtained with the "Derocheuse," the first dredging machine
constructed upon this principle, have realized the hopes of the

This dredging machine was launched on the Clyde and reached Port Said
in twenty days. It measures 55 meters (180 ft. 5 in.) in length, 12.20
meters (40 ft. 1 in.) in breadth, and 3.65 meters (12 ft.) in depth.
Its mean draught of water is 2.75 meters (9 ft. 2½ in.) It is divided
into eighteen watertight compartments. Five steel-pointed battering
rams, each of four tons weight, are arranged in line upon each side of
the chain of buckets of the dredging machine. See Figs. 1 and 2. The
battering rams, suspended by chains, are raised by hydraulic power to
a height varying from 1.50 to 6 meters (4 ft. 11 in. to 19 ft. 8 in.),
and are then let fall upon the rock. The mechanism of the battering
rams is carried by a metallic cage which can be moved forward or
backward by the aid of steam as the needs of the work require. A
series of five battering rams gives from 200 to 300 blows per hour.

[Illustration: FIG. 1.--LONGITUDINAL SECTION.]

[Illustration: FIG. 2.--PLAN]

A dredging machine combined with the apparatus just described, raises
the fragments of rock as they are detached from the bottom. A guide
wheel is provided, which supports the chain carrying the buckets, and
thus diminishes the stress upon the axles and bearings. With this
guide wheel or auxiliary drum there is no difficulty in dredging to a
depth of 12 meters (39 ft. 4 in.), while without this accessory it is
difficult to attain a depth of 9 meters (29 ft. 6 in.)

A compound engine, with four cylinders of 200 indicated horse power,
drives, by means of friction gear, the chain, which carries the
buckets. If the buckets happen to strike against the rock, the
friction gear yields until the excess of resistance has disappeared.

Fig. 3 indicates the manner in which the dredge is operated during the
work. It turns alternately about two spuds which are thrust
successively into the bottom and about which the dredge describes a
series of arcs in a zigzag fashion. These spuds are worked by
hydraulic power.

A three ton hand crane is placed upon the bridge for use in making
repairs to the chain which carries the buckets. A six ton steam crane
is placed upon the top of the cage which supports the hydraulic
apparatus for raising the battering rams, thus permitting them to be
easily lifted and replaced.

The dredging machine is also furnished with two screws driven by an
engine of 300 indicated horse power, as well as with two independent
boilers. Two independent series of pumps, with separate connections,
feed the hydraulic lifting apparatus, thus permitting repairs to be
made when necessary, without interrupting the work. A special machine
with three cylinders drives the pumps of the condenser. An accumulator
regulates the hydraulic pressure and serves to raise or lower the

At the end of the Suez Canal next to the Red Sea, the bottom consists
of various conglomerates containing gypsum, sandstone and sometimes
shells. It was upon a bed of this nature that the machine was first
put to work. The mean depth of water, originally 8.25 meters (26 ft. 3
in.), was for a long time sufficient for the traffic of the canal; but
as the variations in level of the Red Sea are from 1.8 to 3 meters (5
ft. 11 in. to 9 ft. 10 in.), the depth at the moment of low water is
scarcely adequate for the constantly increasing draught of water of
the steamers. Attempts were made to attack the rocky surface of the
bottom with powerful dredges, but this method was expensive because it
necessitated constant repairs to the dredges.

[Illustration: FIG. 3.--DREDGE MOVEMENT.]

These last, although of good construction, seldom raised more than 153
cubic meters (200 cubic yards) in from eight to fifteen days. Their
daily advance was often only from sixty to ninety centimeters (about 2
to 3 ft.), while with the "Derocheuse" it was possible to advance ten
times as rapidly in dredging to the same depth. The bottom upon which
the machine commenced its work was clean and of a true rocky nature.
It was soon perceived that this conglomerate, rich in gypsum,
possessed too great elasticity for the pointed battering rams to have
their proper effect upon it. Each blow made a hole of from fifteen to
sixty centimeters (6 in. to 2. ft.) in depth. A second blow, given
even very near to the first, formed a similar hole, leaving the bed of
the rock to all appearances intact between the two holes. This result,
due entirely to the special nature of the rock, led to the fear that
the action of the battering rams would be without effect. After some
experimentation it was found that the best results were obtained by
arranging the battering rams very near to the chain of buckets and by
working the dredge and battering rams simultaneously. The advance at
each oscillation was about 90 centimeters (about 3 ft.)

The results obtained were as follows: At first the quantity extracted
varied much from day to day; but at the end of some weeks, on account
of the greater experience of the crew, more regularity was obtained.
The nature of the conglomerate was essentially variable, sometimes
hard and tenacious, like malleable iron, then suddenly changing into
friable masses surrounded by portions more elastic and richer in

During the last five weeks at Port Tewfik, the expense, including the
repairs, was 8,850 francs ($1,770.00) for 1,600 cubic meters (2,093
cubic yards) extracted. This would make the cost 5.52 francs per cubic
meter, or $0.84 per cubic yard, not including the insurance, the
interest and the depreciation of the plant.

After some improvements in details, suggested by practice, the machine
was put in operation at Chalouf upon a hard rock, from 1.50 to 3
meters (4 ft. 11 in. to 9 ft. 10 in.) thick. The battering rams were
given a fall of 1.80 meters (5 ft. 11 in.). To break the rock into
fragments small enough not to be rejected by the buckets of the
dredge, the operations of dredging and of disintegration were carried
on separately, permitting the battering rams to work at a greater
distance from the wall face. The time consumed in thus pulverizing the
rock by repeated blows was naturally found to be increased. It was
found more convenient to use only a single row of battering rams. The
production was from about seven to eleven cubic meters (9.2 to 14.4
cubic yards) per hour. Toward the close of September, after it had
been demonstrated that the "Derocheuse" was capable of accomplishing
with celerity and economy the result for which it was designed, it was
purchased by the Suez Canal Company.

During the month of September, an experiment, the details of which
were carefully noted, extending over a period of sixteen days, gave
the following results:

  Crew (33 men), 140 hours.                 2,012.50 francs    $402.50
  Coal, @ 87.50 francs ($7.50) per ton        787.50 francs     157.50
  Oil and supplies                            220.00 francs      44.00
  Fresh water, 16 days                        210.00 francs      42.00
  Sundries                                     42.50 francs       8.50
                                            ----------------  ---------
  Total expense for removing 764
  cubic meters (999.2 cubic yards),          3,272.50 francs   $654.50

Average, 4.28 francs per cubic meter ($0.65 per cubic yard).

This result cannot be taken as a universal basis, because after a
year's use there are numerous repairs to make to the plant, which
would increase the average net cost. This, besides, does not include
the cost of removal of the dredged material, nor the depreciation, the
interest and the insurance.

It should be added on the other hand, however, that the warm season
was far from being favorable to the energy and perseverance necessary
to carry on successfully experiments of this kind. The temperature,
even at midnight, was often 38° C. (100.4° F.). Still further, the work
was constantly interrupted by the passage of ships through the canal.
On an average not more than forty minutes' work to the hour was
obtained. Notwithstanding this, there were extracted at Chalouf, on an
average, 38.225 cubic meters (50 cubic yards) per day without
interrupting navigation. At Port Tewfik, where there was much less
inconvenience from the passage of ships, the work was carried on from
eight to eleven hours per day and the quantity extracted in this time
was generally more than 76 cubic meters (99.4 cubic yards).

In most cases the system could be simplified. The engine which works
the dredge could, when not thus employed, be used to drive the pumps.
The propelling engine could also be used for the same purpose.

The results obtained at Suez indicate the appreciable advantages
arising from the application of this system to the works of ports,
rivers and canals, and ever, to the work of cutting in the
construction of roads and railroads.

       *       *       *       *       *


Mr. T. Forster Brown, in his address to the Mechanical Science Section
of the British Association, said that great progress had been made in
mechanical science since the British Association met in the
principality of Wales eleven years ago; and some of the results of
that progress were exemplified in our locomotives, and marine
engineering, and in such works as the Severn Tunnel, the Forth and Tay
Bridges, and the Manchester Ship Canal, which was now in progress of
construction. In mining, the progress had been slow, and it was a
remarkable fact that, with the exception of pumping, the machinery in
use in connection with mining operations in Great Britain had not, in
regard to economy, advanced so rapidly as had been the case in our
manufactures and marine. This was probably due, in metalliferous
mining, to the uncertain nature of the mineral deposits not affording
any adequate security to adventurers that the increased cost of
adopting improved appliances would be reimbursed; while in coal
mining, the cheapness of fuel, the large proportion which manual labor
bore to the total cost of producing coal, and the necessity for
producing large outputs with the simplest appliances, explained the
reluctance with which high pressure steam compound engines, and other
modes embracing the most modern and approved types of economizing
power had been adopted. Metalliferous mining, with the exception of
the working of iron ore, was not in a prosperous condition; but in
special localities, where the deposits of minerals were rich and
profitable, progress had been made within a recent period by the
adoption of more economical and efficient machinery, of which the
speaker quoted a number of examples. Reference was also made to the
rapid strides made in the use of electricity as a motive power, and to
the mechanical ventilation of mines by exhaustion of the air.


Summarizing the position of mechanical science, as applied to the coal
mining industry in this country, Mr. Brown observed that there was a
general awakening to the necessity of adopting, in the newer and
deeper mines, more economical appliances. It was true it would be
impracticable, and probably unwise, to alter much of the existing
machinery, but, by the adoption of the best known types of electrical
plant, and air compression in our new and deep mines, the consumption
of coal per horse power would be reduced, and the extra expense, due
to natural causes, of producing minerals from greater depths would be
substantially lessened. The consumption of coal at the collieries of
Great Britain alone probably exceeded 10,000,000 tons per annum, and
the consumption per horse power was probably not less than 6 lb. of
coal, and it was not unreasonable to assume that, by the adoption of
more efficient machinery than was at present in general use, at least
one-half of the coal consumed could be saved. There was, therefore, in
the mines of Great Britain alone a wide and lucrative field for the
inventive ingenuity of mechanical engineers in economizing fuel, and
especially in the successful application of new methods for dealing
with underground haulage, in the inner workings of our collieries,
more especially in South Wales, where the number of horses still
employed was very large.


Considerable progress had within recent years been made in the
mechanical appliances intended to replace horses on our public tram
lines. The steam engine now in use in some of our towns had its
drawbacks as as well as its good qualities, as also had the endless
rope haulage, and in the case of the latter system, anxiety must be
felt when the ropes showed signs of wear. The electrically driven
trams appeared to work well. He had not, however, seen any published
data bearing on the relative cost per mile of these several systems,
and this information, when obtained, would be of interest. At the
present time, he understood, exhaustive trials were being made with an
ammonia gas engine, which, it was anticipated, would prove both more
economical and efficient than horses for tram roads. The gas was said
to be produced from the pure ammonia, obtained by distillation from
commercial ammonia, and was given off at a pressure varying from 100
to 150 lb. per square inch. This ammonia was used in specially
constructed engines, and was then exhausted into a tank containing
water, which brought it back into its original form of commercial
ammonia, ready for redistillation, and, it was stated, with a
comparatively small loss.

       *       *       *       *       *


This is the invention of Lawrence Heath, of Macedon, N.Y., and relates
to that class of changeable speed gearing in which a center pinion
driven at a constant rate of speed drives directly and at different
rates of speed a series of pinions mounted in a surrounding revoluble
case or shell, so that by turning the shell one or another of the
secondary pinions may be brought into operative relation to the parts
to be driven therefrom.

The aim of my invention is to so modify this system of gearing that
the secondary pinions may receive a very slow motion in relation to
that of the primary driving shaft, whereby the gearing is the better
adapted for the driving of the fertilizer-distributers of grain drills
from the main axle, and for other special uses.

Fig. 1 is a side elevation. Fig. 2 is a vertical cross section.

[Illustration: FIG. 1.]

[Illustration: FIG. 2.]

A represents the main driving shaft or axle, driven constantly and at
a uniform speed, and B is the pinion-supporting case or shell, mounted
loosely on and revoluble around the axle, but held normally at rest by
means of a locking bolt, C, or other suitable locking device adapted
to enter notches, _c_, in the shell.

D is the primary driving pinion, fixed firmly to the axle and
constantly engaging the pinion, E, mounted on a stud in the shell. The
pinion, E, is formed integral with or firmly secured to the smaller
secondary pinion, F, which in turn constantly engages and drives the
center pinion, G, mounted to turn loosely on the axle within the
shell, so that it is turned in the same direction as the axle, but at
a slower speed.

F', F_{2}, F_{3}, F_{4}, etc., represent additional secondary pinions
grouped around the center pinion, mounted on studs in the shell, and
made of different diameters, so that they are driven by the center
pinion at different speeds. Each of the secondary pinions is formed
with a neck or journal, _f_, projected out through the side of the
shell, so that the external pinion, H, may be applied to any one of
the necks at will in order to communicate motion thence to the gear,
I, which occupies a fixed position, and from which the fertilizer or
other mechanism is driven.

In order to drive the gear, I, at one speed or another, as may be
demanded, it is only necessary to apply the pinion, H, to the neck of
that secondary pinion which is turning at the appropriate speed and
then turn the shell bodily around the axle until the external pinion
is carried into engagement with gear I, when the shell is again locked
fast. The axle communicates motion through D, E, and P to the center
pinion, which in turn drives all the secondary pinions except F. If
the external pinion is applied to F, it will receive motion directly
therefrom; but if applied to either of the secondary pinions, it will
receive motion through or by way of the center pinion. It will be seen
that all the pinions are sustained and protected within the shell.

The essence of the invention lies in the introduction of the pinions D
and E between the axle and the series of secondary pinions to reduce
the speed.

       *       *       *       *       *


_Nature_ states that the Queen's Printers are now issuing the Report
(dated July 23, 1891) to the President of the Board of Trade, of the
Committee appointed to consider the question of constructing standards
for the measurement of electricity. The committee included Mr.
Courtenay Boyle, C.B., Major P. Cardew, R.E., Mr. E. Graves, Mr. W.H.
Preece, F.R.S., Sir W. Thomson, F.R.S., Lord Rayleigh, F.R.S., Prof.
G. Carey Foster, F.R.S., Mr. R.T. Glazebrook, F.R. S., Dr. John
Hopkinson, F.R.S., Prof. W.E. Ayrton, F.R.S.

In response to an invitation, the following gentlemen attended and
gave evidence: On behalf of the Association of Chambers of Commerce,
Mr. Thomas Parker and Mr. Hugh Erat Harrison; on behalf of the London
Council, Prof. Silvanus Thompson; on behalf of the London Chamber of
Commerce, Mr. R. E. Crompton. The Committee were indebted to Dr. J.A.
Fleming and Dr. A. Muirhead for valuable information and assistance;
and they state that they had the advantage of the experience and
advice of Mr. H. J. Chaney, the Superintendent of Weights and
Measures. The Secretary to the Committee was Sir T.W. P. Blomefield,

The following are the resolutions of the Committee:


(1) That it is desirable that new denominations of standards for the
measurement of electricity should be made and approved by Her Majesty
in Council as Board of Trade standards.

(2) That the magnitudes of these standards should be determined on the
electro-magnetic system of measurement with reference to the
centimeter as unit of length, the gramme as unit of mass, and the
second as unit of time, and that by the terms centimeter and gramme
are meant the standards of those denominations deposited with the
Board of Trade.

(3) That the standard of electrical resistance should be denominated
the ohm, and should have the value 1,000,000,000 in terms of the
centimeter and second.

(4) That the resistance offered to an unvarying electric current by a
column of mercury of a constant cross sectional area of 1 square
millimeter, and of a length of 106.3 centimeters at the temperature of
melting ice may be adopted as 1 ohm.

(5) That the value of the standard of resistance constructed by a
committee of the British Association for the Advancement of Science in
the years 1863 and 1864, and known as the British Association unit,
may be taken as 0.9866 of the ohm.

(6) That a material standard, constructed in solid metal, and verified
by comparison with the British Association unit, should be adopted as
the standard ohm.

(7) That for the purpose of replacing the standard, if lost,
destroyed, or damaged, and for ordinary use, a limited number of
copies should be constructed, which should be periodically compared
with the standard ohm and with the British Association unit.

(8) That resistances constructed in solid metal should be adopted as
Board of Trade standards for multiples and sub-multiples of the ohm.

(9) That the standard of electrical current should be denominated the
ampere, and should have the value one-tenth (0.1) in terms of the
centimeter, gramme, and second.

(10) That an unvarying current which, when passed through a solution
of nitrate of silver in water, in accordance with the specification
attached to this report, deposits silver at the rate of 0.001118 of a
gramme per second, may be taken as a current of 1 ampere.

(11) That an alternating current of 1 ampere shall mean a current such
that the square root of the time-average of the square of its strength
at each instant in amperes is unity.

(12) That instruments constructed on the principle of the balance, in
which, by the proper disposition of the conductors, forces of
attraction and repulsion are produced, which depend upon the amount of
current passing, and are balanced by known weights, should be adopted
as the Board of Trade standards for the measurement of current,
whether unvarying or alternating.

(13) That the standard of electrical pressure should be denominated
the volt, being the pressure which, if steadily applied to a conductor
whose resistance is 1 ohm, will produce a current of 1 ampere.

(14) That the electrical pressure at a temperature of 62° F. between
the poles or electrodes of the voltaic cell known as Clark's cell may
be taken as not differing from a pressure of 1.433 volts by more than
an amount which will be determined by a sub-committee appointed to
investigate the question, who will prepare a specification for the
construction and use of the cell.

(15) That an alternating pressure of 1 volt shall mean a pressure such
that the square root of the time average of the square of its value at
each instant in volts is unity.

(16) That instruments constructed on the principle of Sir W. Thomson's
quadrant electrometer used idiostatically, and for high pressure
instruments on the principle of the balance, electrostatic forces
being balanced against a known weight, should be adopted as Board of
Trade standards for the measurement of pressure, whether unvarying or

We have adopted the system of electrical units originally defined by
the British Association for the Advancement of Science, and we have
found in its recent researches, as well as in the deliberations of the
International Congress on Electrical Units, held in Paris, valuable
guidance for determining the exact magnitudes of the several units of
electrical measurement, as well as for the verification of the
material standards.

We have stated the relation between the proposed standard ohm and the
unit of resistance originally determined by the British Association,
and have also stated its relation to the mercurial standard adopted by
the International Conference.

We find that considerations of practical importance make it
undesirable to adopt a mercurial standard; we have, therefore,
preferred to adopt a material standard constructed in solid metal.

It appears to us to be necessary that in transactions between buyer
and seller, a legal character should henceforth be assigned to the
units of electrical measurement now suggested; and with this view,
that the issue of an Order in Council should be recommended, under the
Weights and Measures Act, in the form annexed to this report.

_Specification referred to in Resolution 10._

In the following specification the term silver voltameter means the
arrangement of apparatus by means of which an electric current is
passed through a solution of nitrate of silver in water. The silver
voltameter measures the total electrical quantity which has passed
during the time of the experiment, and by noting this time the time
average of the current, or if the current has been kept constant, the
current itself, can be deduced.

In employing the silver voltameter to measure currents of about 1
ampere, the following arrangements should be adopted. The kathode on
which the silver is to be deposited should take the form of a platinum
bowl not less than 10 cm. in diameter, and from 4 to 5 cm. in depth.

The anode should be a plate of pure silver some 30 square cm. in area
and 2 or 3 millimeters in thickness.

This is supported horizontally in the liquid near the top of the
solution by a platinum wire passed through holes in the plate at
opposite corners. To prevent the disintegrated silver which is formed
on the anode from falling on to the kathode, the anode should be
wrapped round with pure filter paper, secured at the back with sealing

The liquid should consist of a neutral solution of pure silver
nitrate, containing about 15 parts by weight of the nitrate to 85
parts of water.

The resistance of the voltameter changes somewhat as the current
passes. To prevent these changes having too great an effect on the
current, some resistance besides that of the voltameter should be
inserted in the circuit. The total metallic resistance of the circuit
should not be less than 10 ohms.

_Method of making a Measurement._--The platinum bowl is washed with
nitric acid and distilled water, dried by heat, and then left to cool
in a desiccator. When thoroughly dry, it is weighed carefully.

It is nearly filled with the solution, and connected to the rest of
the circuit by being placed on a clean copper support, to which a
binding screw is attached. This copper support must be insulated.

The anode is then immersed in the solution, so as to be well covered
by it, and supported in that position; the connections to the rest of
the circuit are made.

Contact is made at the key, noting the time of contact. The current is
allowed to pass for not less than half an hour, and the time at which
contact is broken is observed. Care must be taken that the clock used
is keeping correct time during this interval.

The solution is now removed from the bowl, and the deposit is washed
with distilled water and left to soak for at least six hours. It is
then rinsed successively with distilled water and absolute alcohol,
and dried in a hot-air bath at a temperature of about 160° C. After
cooling in a desiccator, it is weighed again. The gain in weight gives
the silver deposited.

To find the current in amperes, this weight, expressed in grammes,
must be divided by the number of seconds during which the current has
been passed, and by 0.001118.

The result will be the time average of the current, if during the
interval the current has varied.

In determining by this method the constant of an instrument the
current should be kept as nearly constant as possible, and the
readings of the instrument taken at frequent observed intervals of
time. These observations give a curve from which the reading
corresponding to the mean current (time average of the current) can be
found. The current, as calculated by the voltameter, corresponds to
this reading.

       *       *       *       *       *



The occasion of the transmission of power from Lauffen to Frankfort
has brought to the notice of the profession more than ever before the
two or three phase alternating current system, described as early as
1887-88 by various electricians, among whom are Tesla, Bradley,
Haselwander and others. As to who first invented it, we have nothing
to say here, but though known for some years it has not until quite
recently been of any great importance in practice.

Within the last few years, however, Mr. M. Von Dolivo-Dobrowolsky,
electrical engineer of the Allgemeine Elektricitats Gesellschaft, of
Berlin, has occupied himself with these currents. His success with
motors run with such currents was the origin of the present great
transmission of power exhibit at Frankfort, the greatest transmission
ever attempted. His investigation in this new sphere, and his ability
to master the subject from a theoretical or mathematical standpoint,
has led him to find the objections, the theoretically best conditions,
etc. This, together with his ingenuity, has led him to devise an
entirely new and very ingenious modification, which will no doubt have
a very great effect on the development of alternating current motors.

It is doubtless well known that if, as in Fig. 1, a Gramme ring
armature is connected to leads at four points as shown and a magnet is
revolved inside of it (or if the ring is revolved in a magnetic field
and the current led off by contact rings instead of a commutator),
there will be two alternating currents generated, which will differ
from each other in their phases only. When one is at a maximum the
other is zero. When such a double current is sent into a similarly
constructed motor it will produce or generate what might be called a
rotary field, which is shown diagrammatically in the six successive
positions in Fig. 2. The winding here is slightly different, but it
amounts to the same thing as far as we are concerned at present. This
is what Mr. Dobrowolsky calls an "elementary" or "simply" rotary
current, as used in the Tesla motors. A similar system, but having
three different currents instead of two, is the one used in the
Lauffen transmission experiment referred to above.

[Illustration: FIG. 1.]

[Illustration: FIG. 2.]

In investigating this subject Mr. Dobrowolsky found that the best
theoretical indications for such a system would be a large number of
circuits instead of only two or three, each differing from the next
one by only a small portion of a wave length; the larger their number
the better theoretically. The reason is that with a few currents the
resulting magnetism generated in the motor by these currents will
pulsate considerably, as shown in Fig. 3, in which the two full lines
show the currents differing by 90 degrees. The dotted line above these
shows how much the resulting magnetism will pulsate. With two such
currents this variation in magnetism will be about 40 degrees above
its lowest value. Now, such a variation in the field is undesirable,
as it produces objectionable induction effects, and it has the evil
effect of interfering with the starting of the motor loaded, besides
affecting the torque considerably if the speed should fall slightly
below that for synchronism. A perfect motor should not have these
faults, and it is designed to obviate them by striving to obtain a
revolving field in which the magnetism is as nearly constant as

[Illustration: FIG. 3.]

If there are two currents differing by 90 degrees, this variation of
the magnetism will be about 40 per cent.; with three currents
differing 60 degrees, about 14 per cent; with six currents differing
30 degrees it will be only about 4 per cent., and so on. It will be
seen, therefore, that by doubling the three-phase system the
pulsations are already very greatly reduced. But this would require
six wires, while the three-phase system requires only three wires (as
each of the three leads can readily be shown to serve as a return lead
for the other two in parallel). It is to combine the advantages of
both that he designed the following very ingenious system. By this
system he can obtain as small a difference of phase as desired,
without increasing the number of wires above three, a statement which
might at first seem paradoxical.

Before explaining this ingenious system, it might be well to call
attention to a parallel case to the above in continuous current
machines and motors. The first dynamos were constructed with two
commutator bars. They were soon found to work much better with four,
and finally still better as the number of commutator bars (or coils)
was increased, up to a practical limit. Just as the pulsations in the
continuous current dynamos were detrimental to proper working, so are
these pulsations in few-phased alternating current motors, though the
objections manifest themselves in different ways--in the continuous
current motors as sparking and in the alternating current motors as
detrimental inductive effects.

The underlying principle of this new system may be seen best in Figs.
4, 5, 6, 7 and 8. In Fig. 4 are shown two currents, I_{1} and I_{2},
which differ from each other by an angle, D. Suppose these two
currents to be any neighboring currents in a simple rotary current
system. Now, if these two currents be united into one, as shown in the
lower part of the figure, the resulting current, I, will be about as
shown by the dotted line; that is, it will lie between the other two
and at its maximum point, and for a difference of phases equal to 90
degrees it will be about 1.4 times as great as the maximum of either
of the others; the important feature is that the phase of this current
is midway between that of the other two. Fig. 5 shows the winding of a
cylinder armature and Fig. 7 that, of a Gramme armature for a simple
three-phase current with three leads, with which system we assume that
the reader is familiar.

[Illustration: FIG. 4.]

[Illustration: FIG. 5.]

[Illustration: FIG. 6.]

[Illustration: FIG. 7.]

[Illustration: FIG. 8.]

The two figures, 4 and 5 (or 7), correspond with each other in so far
as the currents in the three leads, shown in heavy lines, have a phase
between those of the two which compose them. Referring now to Fig. 6
(or 8), which is precisely like Fig. 5 (or 7), except that it has an
additional winding shown in heavy lines, it will be seen that each of
the three leads, shown in heavy lines, is wound around the armature
before leaving it, forming an additional coil lying _between_ the two
coils with which it is in series. The phase of the heavy line currents
was shown in Fig. 4 to lie between the other two. Therefore, in the
armature in Fig. 6 (or 8) there will be six phases, while in Fig. 5
there are only three, the number of leads (three) remaining the same
as before. This is the fundamental principle of this ingenious
invention. To have six phases in Fig. 5 would require six leads, but
in Fig. 6 precisely the same result is obtained with only three leads.
In the same way the three leads in Fig. 6 might again be combined and
passed around the armature again, and so on forming still more phases,
without increasing the number of leads. Figs. 7 and 8 compound with 5
and 6 and show the same system for a Gramme ring instead of a cylinder

As was stated in the early part of this description, the main object
in a rotary current motor is to have a magnetic field which is as
nearly constant in intensity as possible, and which changes only its
position, that is, its axis. But in Fig. 4 it was shown that the
current I (in dotted lines) is greater than the others (about as 1.4
to 1 for a phase difference of 90 degrees). If therefore the coils in
Fig. 6 or 8 were all alike, the magnetism generated by the heavy line
coils would be greater than that generated by the others, and would
therefore produce very undesirable pulsations in the magnetic fields;
but as the magnetism depends on the ampere turns, it is necessary
merely to have correspondingly fewer turns on these coils, as compared
with the others. This is shown diagrammatically in Figs. 6 and 8, in
which the heavy line coils have less windings than the others. In
practice it is not always possible to obtain the exact ratio of 1 to
1.4, for instance, but even if this ratio is obtained only
approximately, it nevertheless reduces the pulsations very materially
below what they would be with half the number of phases. It is
therefore not necessary in practice to have more than an approximation
to the exact conditions.

[Illustration: FIG. 9.]

[Illustration: FIG. 10.]

[Illustration: FIG. 11.]

[Illustration: FIG. 12.]

Fig. 9 shows a multiple phase armature having double the number of
phases as Fig. 1, and would according to the old system, therefore,
require eight leads. Fig. 10 shows the new system with the same number
of phases as in Fig. 9, but requiring only four leads instead of
eight. Figs. 11 and 12 correspond with Figs. 7 and 8 and show the
windings for a multipolar motor in the two systems.

[Illustration: FIG. 13.]

[Illustration: FIG. 14.]

[Illustration: FIG. 15.]

These figures show how a motor may be wound so as to be a multiple
phase motor, although the current entering the motor is a simple,
elementary three or two phase current, which can be transformed by
means of a simple three or two phase current transformer, before
entering the motor, such transformers as are used at present in the
Lauffen-Frankfort transmission. But the same principle as that for the
motor may also be applied to transformers themselves, as shown in
Figs. 13 and 14. Fig. 13 shows a set of transformers which are fed by
a simple three-phase current shown in heavy lines, and which gives in
its secondary circuit a multiple phase rotary current. The connections
for the primary circuit of a transformer with six coils are shown
diagrammatically in Fig. 15, the numbers 1 to 6 representing the
succession of the phases. Fig. 14 shows a transformer for a two-phase
current with four leads, transforming into a multiple phase current of
16 leads. The transformer in this figure is a single "interlocked"
transformer in which the fields are magnetically connected and not
independent of each other as in Fig. 13. This has advantages in the
regulation of currents, which do not exist in Fig. 13, but which need
not be entered into here. The transformers used in the Lauffen-Frankfort
transmission are similar, magnetically, to Fig. 14, only that they are
for a simple three-phase current in both primary and secondary
circuits. Attention is also called to the difference in the
connections of secondary circuits in Figs. 13 and 14; in the former
they are connected in a closed circuit similarly to an ordinary closed
circuit armature, while in Fig. 14 they are independent as far as the
currents themselves are concerned, though magnetically their cores are
connected. It is not the intention to enter into a discussion of the
relative values of these various connections, but merely to draw
attention to the wide range of the number of combinations which this
system admits of.--_Electrical World_.

       *       *       *       *       *


[Footnote 1: Paper read before the British Association.--_Elec.

By W.H. Preece, F.R.S.

1. I have already on two occasions, at Newcastle and at Leeds, brought
this subject before Section G, and have given the details of the
length and construction of the proposed circuit.

I have now to report not only that the line has been constructed and
opened to the public, but that its success, telephonic and commercial,
has exceeded the most sanguine anticipations. Speech has been
maintained with perfect clearness and accuracy. The line has proved to
be much better than it ought to have been, and the purpose of this
paper is to show the reason why.

The lengths of the different sections of the circuit are as follows:

    London to St. Margaret's Bay                84.5 miles.
    St. Margaret's Bay to Sangatte (cable).     23.0   "
    Sangatte to Paris.                         199.0   "
    Paris underground.                           4.8   "
    Total.                                     311.3   "

The resistances are as follows:

    Paris underground.                  70 ohms.
    French line.                       294  "
    Cable.                             143  "
    English line.                      183  "
    Total (R)                          693  "

The capacities are as follows:

    Paris underground.           0.43 microfarads.
    French line.                 3.33    "
    Cable.                       5.52    "
    English line.                1.32    "
    Total (K).                  10.62    "

               693 × 10.62 = 7,359 = K R

a product which indicates that speech should be very good.

2. _Trials of Apparatus._--The preliminary trials were made during the
month of March between the chief telegraph offices of the two
capitals, and the following microphone transmitters were compared:

    Ader.                            Pencil form.
    Berliner.                        Granular form.
    D'Arsonval.                      Pencil    "
    DeJongh.                           "       "
    Gower Bell.                        "       "
    Post office switch instrument.   Granules and lamp filaments.
    Roulez.                          Lamp filaments.
    Turnbull.                        Pencil form.
    Western Electric.                Granular.

The receivers consisted of the latest form of double-pole Bell
telephones with some Ader and D'Arsonval receivers for comparison.
After repeated trials it was finally decided that the Ader,
D'Arsonval, Gower-Bell (with double-pole receivers instead of tubes),
Roulez, and Western Electric were the best, and were approximately

These instruments were, therefore, selected for the further
experiments, which consisted of using local extensions in Paris and
London. The wires were in the first instance extended at the Paris end
to the Observatory through an exchange at the Avenue des Gobelines. The
length of this local line is 7 kms. The wires are guttapercha-covered,
placed underground, and not suitable for giving the best results.

The results were, however, fairly satisfactory. The wires were
extended to the Treasury in London by means of the ordinary
underground system. The distance is about two miles, and although the
volume of sound and clearness of articulation were perceptibly reduced
by these additions to the circuit, conversation was quite practicable.

Further trials were also made from the Avenue des Gobelines on
underground wires of five kilometers long, and also with some renters
in Paris with fairly satisfactory results. The selected telephones
were equally efficient in all cases, which proves that to maintain
easy conversation when the trunk wires are extended to local points it
is only necessary that the local lines shall be of a standard not
lower than that of the trunk line. The experiments also confirm the
conclusion that long-distance speaking is solely a question of the
circuit and its environments, and not one of apparatus. The
instruments finally selected for actual work were Gower-Bell for
London and Roulez for Paris.

3. The results are certainly most satisfactory. There is no circuit in
or out of London on which speech is more perfect than it is between
London and Paris. In fact, it is better than I anticipated, and better
than calculation led me to expect. Speech has been possible not only
to Paris but through Paris to Bruxelles, and even, with difficulty,
through Paris to Marseilles, a distance of over 900 miles. The wires
between Paris and Marseilles are massive copper wires specially
erected for telephone business between those important places.

4. _Business Done._--The charge for a conversation between London and
Paris is 8 s. for three minutes' complete use of the wire. The demand
for the wire is very considerable. The average number of talks per
day, exclusive of Sunday, is 86. The maximum has been 108. We have had
as many as 19 per hour--the average is 15 during the busy hours of the
day. As an instance of what can be done, 150 words per minute have
been dictated in Paris and transcribed in London by shorthand writing.
Thus in three minutes 450 words were recorded, which at 8 s. cost five
words for a penny.

5. _Difficulties._--The difficulties met with in long-distance
speaking are several, and they may be divided into (a) those due to
external disturbances and (b) those due to internal opposition.

(_a._) Every current rising and falling in the neighborhood of a
telephone line within a region, say, of 100 yards, whether the wire
conveying it be underground or overground, induces in the telephone
circuit another current, producing in the telephone a sound which
disturbs speech, and if the neighboring wires are numerous and busy,
as they are on our roads and railways, these sounds became confusing,
noisy, and ultimately entirely preventive of speech. This disturbance
is, however, completely removed by forming the telephone circuit of
two wires placed as near to each other as possible, and twisted around
each other without touching, so as to maintain the mean average
distance of each wire from surrounding conductors the same everywhere.
Thus similar currents are induced in each of the two wires, but being
opposite in direction, as far as the circuit is concerned, they
neutralize each other, and the circuit, therefore, becomes quite

In England we make the two wires revolve completely round each other
in every four poles, but in France it is done in every six poles. The
reason for the change is the fact that in the English plan the actual
crossing of the wires takes place in the span between the poles, while
in the French plan it takes place at the poles. This is supposed to
reduce the liability of the wires to be thrown into contact with each
other by the wind, but, on the other hand, it diminishes the
geometrical symmetry of the wires--so very essential to insure
silence. As a matter of fact, contacts do not occur on well
constructed lines, and I think our English wires, being more
symmetrical, are freer from external disturbance than those in France.

[Illustration: FIG. 1.]

(_b._) The internal opposition arises from the resistance, R, the
capacity, K, and the electromagnetic inertia, L, of the circuit. A
current of electricity takes time to rise to its maximum strength and
time to fall back again to zero. Every circuit has what is called its
time constant, _t_, Fig. 1, which regulates the number of current
waves which can be transmitted through it per second. This is the time
the current takes to rise from zero to its working maximum, and the
time it takes to fall from this maximum to zero again, shown by the
shaded portions of the figure; the duration of the working current
being immaterial, and shown by the unshaded portion.

The most rapid form of quick telegraphy requires about 150 currents
per second, currents each of which must rise and fall in 1/150 of a
second, but for ordinary telephone speaking we must have about 1,500
currents per second, or the time which each current rises from zero to
its maximum intensity must not exceed 1/3000 part of a second. The
time constant of a telephone circuit should therefore not be less than
0.0003 second.

Resistance alone does not affect the time constant. It diminishes the
intensity or strength of the currents only; but resistance, combined
with electromagnetic inertia and with capacity, has a serious
retarding effect on the rate of rise and fall of the currents. They
increase the time constant and introduce a slowness which may be
called retardance, for they diminish the rate at which currents can be
transmitted. Now the retardance due to electromagnetic inertia
increases directly with the amount of electromagnetic inertia present,
but it diminishes with the amount of resistance of the conductor. It
is expressed by the ratio L/R while that due to capacity increases
directly, both with the capacity and with the resistance, and it is
expressed by the product, K R. The whole retardance, and, therefore,
the speed of working the circuit or the clearness of speech, is given,
by the equation

                --- + K R = t

or               L + K R² = R t

Now in telegraphy we are not able altogether to eliminate L, but we
can counteract it, and if we can make Rt = 0, then

               L = - K R²

which is the principle of the shunted condenser that has been
introduced with such signal success in our post office service, and
has virtually doubled the carrying capacity of our wires.

                K R = t

This is done in telephony, and hence we obtain the law of retardance,
or the law by which we can calculate the distance to which speech is
possible. All my calculations for the London and Paris line were based
on this law, which experience has shown it to be true.

How is electromagnetic inertia practically eliminated? First, by the
use of two massive copper wires, and secondly by symmetrically
revolving them around each other. Now L depends on the geometry of the
circuit, that is, on the relative form and position of the different
parts of the circuit, which is invariable for the same circuit, and is
represented by a coefficient, [lambda]. It depends also on the
magnetic qualities of the conductors employed and of the space
embraced by the circuit. This specific magnetic capacity is a variable
quantity, and is indicated by [mu] for the conductor and by [mu]_{0}
for air. It depends also on the rate at which currents rise and fall,
and this is indicated by the differential coefficient dC / dt. It
depends finally on the number of lines of force due to its own current
which cut the conductor in the proper direction; this is indicated by
[beta]. Combining these together we can represent the electromagnetic
inertia of a metallic telephone circuit as

      L = [lambda] ([mu] + [mu]_{0}) dC/dt × [beta]

Now, [lambda] = 2 log (d²/a²) Hence the smaller we make the distance,
_d_, between the wires, and the greater we make their diameter, _a_,
the smaller becomes [lambda]. It is customary to call the value of
[mu] for air, and copper, 1, but this is purely artificial and
certainly not true. It must be very much less than one in every
medium, excepting the magnetic metals, so much so that in copper it
may be neglected altogether, while in the air it does not matter what
it is, for by the method of twisting one conductor round the other,
the magnetization of the air space by the one current of the circuit
rotating in one direction is exactly neutralized by that of the other
element of the circuit rotating in the opposite direction.

Now, [beta], in two parallel conductors conveying currents of the same
sense, that is flowing in the same direction, is retarding, Fig. 2,
and is therefore a positive quantity, but when the currents flow in
opposite directions, as in a metallic loop, Fig. 3, they tend to
assist each other and are of a negative character. Hence in a metallic
telephone circuit we may neglect L _in toto_ as I have done.

[Illustration: Fig 2.]

[Illustration: Fig. 3.]

I have never yet succeeded in tracing any evidence of electromagnetic
inertia in long single copper wires, while in iron wires the value of
L may certainly be taken at 0.005 henry per mile.

In short metallic circuits, say of lengths up to 100 miles, this
negative quantity does not appear, but in the Paris-London circuit
this helpful mutual action of opposite currents comes on in a peculiar
way. The presence of the cable introduces a large capacity practically
in the center of the circuit. The result is that we have in each
branch of the circuit between the transmitter, say, at London and the
cable at Dover, extra currents at the commencement of the operation,
which, flowing in opposite directions, mutually react on each other,
and practically prepare the way for the working currents. The presence
of these currents proved by the fact that when the cable is
disconnected at Calais, as shown in Fig. 5, and telephones are
inserted in series, as shown at D and D', speech is as perfect between
London and St. Margaret's Bay as if the wires were connected across,
or as if the circuit were through to Paris. Their effect is precisely
the same as though the capacity of the aerial section were reduced by
a quantity, M, which is of the same dimension or character as K.
Hence, our retardance equation becomes

                            R (K - M) = t

[Illustration: Fig 4.]

[Illustration: Fig 5.]

Thus it happens that the London-Paris telephone works better than was
expected. The nature of M is probably equivalent to about 0.0075 [phi]
per mile, and therefore K should be also about 0.0075 [phi] instead of
0.0156 [phi] per mile. This helpful action of mutual induction is
present in all long circuits, and it is the reason why we were able to
speak to Brussels and even to Marseilles. It also appears in every
metallic loop, and vitiates the measurements of electromagnetic
inertia and of capacity of loops. Thus, if we measure the capacity of
a loop as compared with a single wire, the amount per mile may be 50
per cent. greater than it ought to be; while if we measure the
capacity of one branch of a circuit under the conditions of the
London-Paris telephone line, it may be 50 per cent. less than it ought
to be. This effect of M is shown by the dotted line in Fig. 1.

Telephonic currents--that is, currents induced in the secondary wire
of an induction coil due to the variation of microphonic currents in
the primary wire--are not alternating currents. They do not follow the
constant periodic law, and they are not true harmonic sine functions
of the time. The microphonic currents are intermittent or pulsatory,
and always flow in the same direction. The secondary currents are also
always of the same sign, as are the currents in a Ruhmkorff coil, and
as are the currents in high vacua with which Crookes has made us so
familiar. Moreover, the frequency of these currents is a very variable
quantity, not only due to the various tones of voices, but to the
various styles of articulation. Hence the laws of periodic alternate
currents following the sine function of the time fail when we come to
consider microphones and telephones. It is important to bear this in
mind, for nearly everything that has hitherto been written on the
subject assumes that telegraphic currents follow the periodic sine
law. The currents derived from Bell's original magneto-transmitters
are alternate, and comply more nearly with the law. The difference
between them and microphones is at once perceptible. Muffling and
disturbance due to the presence of electromagnetic inertia become
evident, which are absent with microphones. I tested this between
London and St. Margaret's, and found the effect most marked.

7. _Lightning._--A metallic telephone circuit may have a static charge
induced upon it by a thunder cloud, as shown in Fig. 6. Such a charge
is an electric strain which is released when the charged cloud flashes
into the earth or into a neighboring cloud. If there be
electromagnetic inertia present, the charge will surge backward and
forward through the circuit until it dies out. If there be no E.M.F.
present it will cease suddenly, and neutrality will be attained at
once. Telephone circuits indicate the operation by peculiar and
characteristic sounds. An iron wire circuit produces a long swish or
sigh, but a copper wire circuit like the Paris-London telephone emits
a short, sharp report, like the crack of a pistol, which is sometimes
startling, and has created fear, but there is no danger or liability
to shock. Indeed, the start has more than once thrown the listener off
his stool, and has led to the belief that he was knocked down by

[Illustration: Fig 6.]

8. The future of telephone working, especially in large cities, is one
of underground wires, and the way to get over the difficulties of this
kind of work is perfectly clear. We must have metallic circuits,
twisted wires, low resistance, and low capacity. In Paris a remarkable
cable, made by Fortin-Herman, gives an exceedingly low capacity--viz.,
only 0.069 [phi] per mile. In the United States they are using a wire
insulated with paper which gives 0.08 [phi] per mile. We are using in
London Fowler-Waring cable giving a capacity of 1.8 [phi] per mile,
the capacity of gutta-covered wire being 3 [phi] per mile.

       *       *       *       *       *


One of the most interesting of the modern applications of electricity
to the manufacture of chemicals is to be found in the recently
perfected process known as the Readman-Parker process, after the
inventors Dr. J.B. Readman, F.R.S.E., etc., of Edinburgh, and Mr.
Thomas Parker; the well known practical electrician, of Wolverhampton.

Before giving an account of this process, which has advanced beyond
the experimental to the industrial stage, it may be well to recall the
fact that for several years past Dr. Readman has been devoting an
enormous expenditure of labor, time and money to the perfection of a
process which shall cheapen the production of phosphorus by dispensing
altogether with the use of sulphuric acid for decomposing the
phosphate of lime which forms the raw material of the phosphorus
manufacturer, and also with the employment of fire clay retorts for
distilling the desiccated mixture of phosphoric acid and carbon which
usually forms the second stage of the operation.

The success of the recent applications of electricity in the
production of certain metals and alloys led Dr. Readman to try this
source of energy in the manufacture of phosphorus, and the results of
the first series of experiments were so encouraging that he took out
provisional protection on October 18, 1888, for preparing this
valuable substance by its means.

The experiments were carried on at this time on a very small scale,
the power at disposal being very limited in amount. Yet the elements
of success appeared to be so great, and the decomposition of the raw
material was so complete, that the process was very soon prosecuted on
the large scale.

After a good deal of negotiation with several firms that were in a
position to supply the electric energy required, Dr. Readman finally
made arrangements with the directors of the Cowles Company, limited,
of Milton, near Stoke-on-Trent, the well known manufacturers of alloys
of aluminum, for a lease of a portion of their works and for the use
of the entire electrical energy they produced for certain portions of
the day.

The experiments on the large scale had not advanced very far before
Dr. Readman became aware that another application for letters patent
for producing phosphorus had been made by Mr. Thomas Parker, of
Wolverhampton, and his chemist, Mr. A.E. Robinson. Their joint patent
is dated December 5, 1888, and was thus applied for only seven weeks
after Dr. Readman's application had been lodged.

It appeared that Mr. Parker had conducted a number of experiments
simultaneously but quite independently of those carried on by Dr.
Readman, and that he was quite unaware--as the latter was unaware--of
any other worker in this field. It was no small surprise, therefore,
to find during an interview which took place between these rival
inventors some time after the date referred to, that the two patents
were on practically the same lines, namely, the production of
phosphorus by electricity.

Their interests lay so much together that, after some delay, they
arranged to jointly work out the process, and the result has been the
formation of a preliminary company and the erection on a large scale
of experimental plant in the neighborhood of Wolverhampton to prove
the commercial success of the new system of manufacturing phosphorus.

Before describing these experimental works it may be as well to see
with what plant Dr. Readman has been working at the Cowles Company's
works. And here we may remark that we are indebted to a paper read by
Dr. Readman at the Philosophical Institution, Edinburgh, a short time
ago; this paper being the third of a series which during the last year
or two have been read by the same scientist on this branch of chemical
industry. Here is an abstract giving a description of the plant. The
works are near the Milton Station, on the North Staffordshire Railway.
The boilers for generating the steam required are of the
Babcock-Wilcox type, and are provided with "mechanical stokers;" the
steam engine is of 600 horse power, and is a compound condensing
horizontal tandem, made by Messrs. Pollitt & Wigzel, of Sowerby
Bridge. The fly wheel of this engine is 20 feet in diameter, and
weighs 30 tons, and is geared to the pulley of the dynamo, so that the
latter makes five revolutions for each revolution of the engine by
rope driving gear, consisting of eighteen ropes. The engine is an
extremely fine specimen of a modern steam engine; it works so silently
that a visitor standing with his back to the engine railings, at the
time the engine is being started, cannot tell whether it is in motion
or not.

With regard to the dynamo, the spindle is of steel, 18 feet long, with
three bearings, one being placed on either side of the driving pulley.
The diameter is 7 inches in the bearings and 10 inches in the part
within the core. This part in the original forgings was 14 inches in
diameter, and was planed longitudinally, so as to leave four
projecting ribs or radial bars on which the core disks are driven,
each disk having four key ways corresponding to these ribs. There are
about 900 of these disks, the external diameter being 20 inches and
the total length of the core 36 inches.

The armature winding consists of 128 copper bars, each 7/8 in. deep,
measured radially, by 3/8 in. wide. These bars are coupled up so as to
form thirty-two conductors only; this arrangement has been adopted to
avoid the heating from the Foucault currents, which, with 1½ in.
conductors, would have been very considerable. The bars are coupled at
the ends of the core across a certain chord and are insulated.

The commutator is 20 inches long, and has sixty-four parts. The
current is collected by eight brushes mounted on a separate ring,
placed concentric to the commutator; and the current is led away from
these brushes by a large number of thin bands of sheet copper strapped
together into convenient groups. The field magnets are of the
horizontal double type.

As this machine is virtually a series wound machine, the magnet coils
each consist of a few turns only of forged copper bars, 1½ in. wide by
1 in. thick, forged to fit the magnet cores.

There is no insulation other than mica wedges to keep the bars from
touching the core.

The dynamo furnishes a current of about 5,000 amperes, with an E.M.F.
of 50 to 60 volts, and three years ago was claimed to be the largest
machine, at least as regards quantity of current, in the world.

The current from the dynamos is led by copper bars to an enormous "cut
out," calculated to fuse at 8,000 amperes. This is probably one of the
largest ever designed, and consists of a framework carrying twelve
lead plates, each 3½ in. × 1/16th in. thick. A current indicator is
inserted in the circuit consisting of a solenoid of nine turns. The
range of this indicator is such that the center circle of 360°=8,000

The electrodes consisted of a bundle of nine carbons, each 2½ in. in
diameter, attached by casting into a head of cast iron. Each carbon
weighs 20 lb, and, when new, is about 48 inches long.

The head of the electrode is screwed to the copper rods or "leads,"
which can be readily connected with the flexible cable supplying the

The electric furnaces are rectangular troughs built of fire brick,
their internal dimensions being 60 in. × 20 in. × 36 in. deep. Into
each end is built a cast iron tube, through which the carbon
electrodes enter the furnace.

The electrodes are so arranged that it is possible by means of
screwing to advance or withdraw them from the furnace.

The whole current generated by the great dynamo of the Cowles Company
was passed through the furnace.

In the experiments raw materials only were used, for it was evident
that it was only by the direct production of phosphorus from the
native minerals which contain it, such as the phosphates of lime,
magnesia, or alumina that there was any hope of superseding, in point
of economy, the existing process of manufacture.

In the furnaces as used at Milton much difficulty was experienced in
distributing the heat over a sufficiently wide area. So locally
intense indeed was the heat within a certain zone, that all the oxygen
contained in the mixture was expelled and alloys of iron, aluminum,
and calcium combined with more or less silicon, and phosphorus were
produced. Some of these were of an extremely interesting nature.

We now turn to a short account of the works and plant which have been
erected near Wolverhampton to prove the commercial success of the new
system of manufacturing phosphorus.

The ground is situated on the banks of a canal and extends to about 10
acres, which are wholly without buildings except those which have been
erected for the purposes of these industrial experiments. These
consist of boiler and engine houses, and large furnace sheds.

There are three Babcock & Wilcox steam boilers of 160 horse power
each, and each capable of evaporating 5,000 lb. of water per hour. The
water tubes are 18 ft. long × 4 inches diameter, and the steam and
water drums 43 in. in diameter and 23½ ft. long, of steel 7/16 ths.
in. thick, provided with a double dead head safety valve, stop valves,
blow-off cock, water gauges, and steam gauge.

The total heating surface on each boiler is 1,619 square feet and the
total grate surface is 30 square feet.

The boilers are worked at 160 lb. pressure.

The engine is a triple compound one of the type supplied for torpedo
boats, and built by the Yarrow Shipbuilding Company. It is fitted with
a Pickering governor for constant speed. The engine is capable of
delivering (with condenser) 1,200 indicated horse power, and without
condenser 250 indicated horse power less.

With steam at 170 lb. pressure the engine worked at 350 revolutions
per minute, but it has been rearranged so as to deliver 700 indicated
horse power with 160 lb. steam pressure without condenser, and at 300
revolutions per minute:

    The high pressure cylinder is 14½ inches diameter.
     " intermediate       "    "  25     "       "
     " low pressure       "    "  32     "       "
     " stroke is 16 inches.

The dynamo for producing the requisite amount of electric current
supplied to the furnaces is one of the well known Elwell-Parker type
of alternating current dynamos, designed to give 400 units of
electrical energy, equivalent to 536 indicated horse power.

The armature in the machine is stationary, with double insulation
between the armature coils and the core, and also between the core and
the frame, and is so arranged that its two halves may be readily
connected in series or in parallel in accordance with the requirements
of the furnaces, e.g., at an electromotive force of 80 volts it will
give 5,000 amperes, and at 160 volts, 2,500 amperes when running at
300 revolutions per minute.

The exciting current of the alternator is produced by an Elwell-Parker
shunt wound machine, driven direct from a pulley on the alternator
shaft, and so arranged as to give 90 amperes at 250 volts when running
at a speed of 800 revolutions per minute. From 60 to 70 amperes are
utilized in the alternator, the remainder being available for lighting
purposes (which is done through accumulators) and general experimental

The process is carried out in the following way: The raw materials,
all intimately and carefully mixed together, are introduced into the
furnace and the current is then turned on. Shortly afterward,
indications of phosphorus make their appearance.

The vapors and gases from the furnace pass away to large copper
condensers--the first of which contains hot and the second cold
water--and finally pass away into the air.

As the phosphorus forms, it distills off from the mixture, and the
residue forms a liquid slag at the bottom of the furnace. Fresh
phosphorus yielding material is then introduced at the top. In this
way the operation is a continuous one, and may be continued for days
without intermission.

The charges for the furnace are made up with raw material, i.e.,
native phosphates without any previous chemical treatment, and the
only manufactured material necessary--if such it may be called--is the
carbon to effect the reduction of the ores.

The crude phosphorus obtained in the condensers is tolerably pure, and
is readily refined in the usual way.

Dr. Readman and Mr. Parker have found that it is more advantageous to
use a series of furnaces instead of sending the entire current through
one furnace. These furnaces will each yield about 1½ cwt. of
phosphorus per day.

Analyses of the slag show that the decomposition of the raw phosphates
is very perfect, for the percentage of phosphorus left in the slag
seldom exceeds 1 per cent.--_Chemical Trade Journal_.

       *       *       *       *       *


The apparatus forming the subject of this invention was designed by
Francis A. Cloudman, Erwin B. Newcomb, and Frank H. Cloudman, of
Cumberland Mills, Me., and comprises a series of tanks or chests, two
or more in number, through which the material to be bleached is caused
to pass, being transferred from one to the next of the series in
order, while the bleaching agent is caused to pass through the series
of chests in the reverse order, and thus acts first and at full
strength upon the materials which have previously passed through all
but the last one of the series of chests and have already been
subjected to the bleaching agent of less strength.

For convenience, the chest in which the material is first introduced
will be called the "first of the series" and the rest numbered in the
order in which the material is passed from one to the other, and it
will be understood that any desired number may be used, two, however,
being sufficient to carry on the process.

The invention is shown embodied in an apparatus properly constructed
for treating pulp used for the manufacture of paper, and for
convenience the material to be bleached will be hereinafter referred
to as the pulp, although it is obvious that similar apparatus might be
used for bleaching other materials, although the apparatus might have
to be modified to adapt it for conveying other materials of different
nature than pulp from one bleaching chest to the other and for
separating out the bleaching liquid and conveying it from one chest to
the other in the reverse order to that in which the material passes
from one chest to the next.

The pulp material with which the apparatus herein illustrated is
intended to be used is retained in suspension in the bleaching liquid
and flows readily through ducts or passages provided for it in the
apparatus in which the pulp to be bleached and the bleaching liquid
are introduced together at the bottom of each chest and flow upward
therethrough, while at the top of each chest there are two conveyors,
one for carrying the pulp from one chest to the next in order, while
the other carries the bleaching liquid from one tank to the next in
the reverse order, the said conveyors also acting to partially
separate the pulp from the liquid in which it has been suspended
during its upward passage through the chest.

Suitable agitators may be employed for thoroughly mixing the materials
in the chest and in the apparatus shown the bleaching agent and
material to be bleached pass through each chest in the same
direction--namely from the bottom to the top--although they are
carried from one chest to the next in the reverse order, the material
to be bleached being primarily introduced into the chest at one end of
the series, while the bleaching agent or solution is introduced
primarily into the chest at the other end of the series.

Fig. 1 is a plan view of an apparatus for bleaching in accordance with
this invention, comprising a series of four chests, and Fig. 2 is a
vertical longitudinal section of a modified arrangement of two chests
in line with one another, and with the conveyor for the material to be
bleached and the passage through which said material passes from the
top of one chest into the bottom of the next chest in the plane of

[Illustration: Fig. 1]

The chests, _a_ _a2_ _a3_ _a4_, may be of any desired shape
and dimensions and any desired number may be used. Each of said chests
is provided with an inlet passage, _b_, opening into the same near its
bottom, and through this passage the materials are introduced. The
unbleached material, which may be paper pulp or material which is
readily held in suspension in a liquid and is capable of flowing or
being conveyed from one point to another in a semi-fluid condition, is
introduced through the inlet passage, _b_, to the first chest, _a_, of
the series, said pulp preferably having had as much as possible of the
liquid in which it was previously suspended removed without, however,
drying it, and, together with the said pulp, the bleaching agent which
has previously passed through the other chests of the series, as will
be hereinafter described, is introduced so that both enter together at
the lower portion of the first chest, _a_, of the series. The said
materials are caused to flow into the chest continuously, so that the
portion at each moment entering tends to displace that which has
already entered, thus causing the materials to rise gradually or flow
upward from the bottom to the top of the chest.

Suitable stirring devices or agitators, _c_, may be employed to keep
the pulp in suspension and to expose it thoroughly and uniformly to
the liquid introduced with it.

[Illustration: Fig. 2]

When the materials (the pulp and the bleaching liquid) arrive at or
near the top of the chest, they are partially separated from one
another and removed from the chest at substantially the same rate that
they are introduced, as follows: Each chest is provided at its upper
part with a liquid conveyor, _d_, having a construction similar to
that of the device known as a "washer" in paper making machinery,
consisting of a rotating drum, the periphery of which is covered with
gauze, which permits the liquid to pass into it, but excludes the pulp
suspended in the liquid, the said drum containing blades or buckets
that raise the liquid which thus enters through the gauze and
discharges it at _d2_ near the axis of said drum. There is one of
these washers in each one of the series of chests, and each discharges
the liquid taken from its corresponding chest into the inlet pipe of
the next preceding chest of the series, the washer in the chest,
_a4_, for example, delivering into the inlet passage, _b_, of the
chest, _a2_, and so on, while the washer of the first chest, _a_,
of the series delivers into a discharge pipe, _e_, through which the
liquid may be permitted to run to waste or conveyed to any suitable
receptacle, if it is desired to subject it to chemical action for the
purpose of renewing its bleaching powers or obtaining the chemical
agents that may be contained within it.

The operation of the washers in removing the liquid from the upper
part of the chest tends to thicken the pulp therein, and the said
thickened pulp is conveyed from one chest to the next in the series by
any suitable conveying device, _f_ (shown in this instance as a worm
working in a trough or case, _f2_), which may be made foraminous
for the purpose of permitting the liquid to drain out of the pulp that
is being carried through by the worm, in order that the pulp may be
introduced into the next chest of the series as free as possible from
the liquid in which it has been suspended while in the chest from
which it is just taken. The pulp is thus conveyed from one chest in
the series to the inlet passage leading to the next chest of the
series, and in the said inlet passage it meets the liquid coming in
the reverse order from the next chest beyond in the series, the pulp
and liquid thus commingling in the inlet pipe and entering the chest
together, and being thoroughly mixed by the agitators in passing
through the chest by the continued action of fresh material entering
and of the conveyors taking the material out from the chests. In the
last of the series of chests into which the pulp is introduced the
fresh or strong bleaching liquid is introduced through a suitable
inlet pipe, _g_, and the pulp conveyor, _f_, that takes the pulp from
the last chest, delivers it into a pipe, _h_, by which it may be
conveyed to any desired point, the said pulp having been sufficiently
bleached before arriving at the said pipe, _h_. It will be seen that
by these means all the pulp is thoroughly and uniformly subjected to
the bleaching agent and that the bleaching is gradually performed in
all parts of the pulp, which is first acted upon by the weaker
bleaching agent that has previously operated upon the pulp before
treated, and that finally, when nearly bleached, the pulp is acted
upon by the bleaching material of full strength, this action being far
more efficient than when the materials are simply mixed together, the
unbleached material with the strong bleaching agent, and allowed to
remain together until the bleaching operation is finished, in which
plan the bleaching agent loses its strength as the bleaching operation
approaches completion, so that when the pulp is nearly bleached it is
operated upon by a very weak bleaching agent. By having the pulp
transferred from one chest to the next in the reverse order to that in
which the liquid is transferred it will be seen that all parts of the
pulp are acted upon uniformly and equally and that the operation may
go on continuously for an indefinite period of time without
necessitating stopping to empty the vats, as is the case when the
liquor only is transferred from one vat to the next. A pump may be
used for lifting the bleaching liquid, as shown, for example, at _k_,
Fig. 1. where said pump is used to raise the liquid delivered from the
chest, _a2_, and discharge it into the trough, _m_, by which the
pulp is carried to the inlet pipe, _b_. By the use of the pump, _h_, a
stronger flow of the liquid into the pipe _b_, of the first chest,
_a_, is effected than if it were taken directly from the washer of the
chest, _a2_, which is desirable, as the pulp is delivered in the
trough, _m_, with but little moisture.

It is obvious that the construction of the apparatus may be varied
considerably without materially changing the essential features of
operation. For example, the washers might be dispensed with and the
liquid permitted to flow through suitable strainers from one chest to
the next in order, by gravity, the successive chests in the order of
the passage of the pulp being placed each at a higher level than the
preceding one, and it is also obvious that the construction of the
pulp conveyors might be widely varied, it being essential only that
means should be provided for removing the pulp from one chest and
delivering it into the next while carrying only a small amount of the
liquid from one chest to the next with the pulp.

       *       *       *       *       *



By J. LEONARD CORNING, A.M., M.D., New York, Consultant in Nervous
Diseases to St. Francis Hospital, St. Mary's Hospital, the Hackensack
Hospital, etc.

To merely facilitate the introduction of medicinal agents into the
system by way of the air passages, in the form of gases, medicated or
non-medicated, has heretofore constituted the principal motive among
physicians for invoking the aid of compressed air. The experiments of
Paul Bert with nitrous oxide and oxygen gas, performed over fourteen
years ago, and the more recent proposals of See, are illustrations in

The objects of which I have been in search are quite different from
the foregoing, and have reference not to the introduction of the
remedy, but to the enhancement of its effects after exhibition. Let me
be more explicit on this point, by stating at once that, in
contradistinction to my predecessors, I shall endeavor to show that by
far the most useful service derivable from compressed air is found in
its ability to enhance and perpetuate the effects of soluble remedies
(introduced hypodermically, by the mouth, or otherwise) upon the
internal organs, and more especially upon the cerebro-spinal axis.
Some chemical affinity between the remedy employed and the protoplasm
of the nerve cell is, of course, assumed to exist; and it is with the
enhancement of this affinity--this bond of union between the medicinal
solution and the nervous element--that we shall chiefly concern
ourselves in the following discussion.

By way of introduction, I may recall the fact that my attention was
directed several years since to the advisability of devising some
means by the aid of which medicinal substances, and more especially
anæsthetics, might be made to localize, intensify, and perpetuate
their action upon the peripheral nerves. The simple problem in
physiology and mechanics involved in this question I was fortunate
enough to solve quite a long time ago; and I must confess that in the
retrospect these undertakings in themselves do not seem to me of great
magnitude, though in their practical application their significance
appears more considerable. Herein lies, it may be, the explanation of
the interest which these studies excited in the profession at the time
of their publication. These things are, however, a part of medical
history; and I merely refer to them at this time because they have led
me to resume the solution of a far greater problem--that of
intensifying, perpetuating, and (to some extent at least) localizing
the effects of remedies upon the brain and spinal cord. I speak of
resuming these studies because, as far back as 1880 and 1882, I made
some attempts--albeit rather abortive--in the same direction.

In constructing the argument for the following study, I am beholden
more especially to three facts, the knowledge of which came to me as
the direct result of experimental tests. One may place confidence,
therefore, in the procedure which I have based upon these premises,
for at no point, I think, in the following argument will mere
affirmation be found to have usurped the place of sound induction.
Without anticipating further, then, let me specify as briefly as may
be the nature of these facts.

PREMISES OF ARGUMENT. _First Fact._--The amount of ether, chloroform,
chloral hydrate, the bromides, strychnine, and many other remedies,
required to produce physiological effects upon the cerebro-spinal
mechanism may be reduced by first securing a ligature around the
central portion of one or several of the limbs of an animal, so as to
interrupt both the arterial and venous circulation.

The proof and explanation of this may be thus presented:

In the first place, it is well known that children and small animals
are affected by much smaller quantities of anæsthetics and other
medicinal substances than are required to produce equal effects in men
and large animals.

At first sight, there appears to exist a certain definite relation
between the weight of the animal and the quantity of medicament
required to produce physiological effects. On closer inquiry, however,
we find behind this proposition the deeper truth that the real
proportion is between the magnitude of the blood-mass and the amount
of medicament. Thus, if we withdraw a considerable amount of blood
from a large dog, we may be able to affect him by much smaller doses
than those required under ordinary circumstances; and, among human
beings, we find the anæmic much more susceptible to remedies than the
full-blooded of equal weight.

The degree of saturation of the blood-mass with the remedy is
obviously, then, the principal thing; the greater the amount of blood,
the more remedy--everything else being equal--we shall have to give in
order to obtain definite results.

If we wish to embody the proposition in a mathematical statement, we
may do so in the following simple manner:

Let a represent the total quantity of blood, _b_, the amount of remedy
exhibited, and _x_ the magnitude of the physiological effect. We shall
then have the simple formula, x = b / a.

Again, if we withdraw a certain quantity of blood from the circulation
by venesection, and call that amount _d_, we shall then have the
formula x = b / (a-d).

But, if we wish to act upon the organs of the trunk, and more
especially upon those contained within the cerebro-spinal canal, it is
not necessary to resort to such a drastic expedient as copious
blood-letting; for, in place of this, we may dam up and effectually
eliminate from the rest of the body a certain amount of blood by
passing a ligature around the central portion of one or several
extremities, so as to interrupt the circulation in both artery and
vein. When this has been done it is clear that we may introduce a
remedy into the system by way of the stomach, or hypodermically into
some portion of the trunk; and it is equally certain that a remedy so
introduced will be diluted only in the ratio of the amount of blood
freely circulating, and more especially by that contained within the
trunk and head. That which is incarcerated behind the ligatures is as
effectually withdrawn from the realm of physiological action as though
it had been abstracted by the surgeon's knife. Elimination by the
knife and elimination by the ligature are, for present purposes, then,
one and the same thing. Hence, if we let _d'_ represent the amount of
blood incarcerated behind the ligatures, _x_ the magnitude of the
physiological effect which we are seeking, _b_ the amount of remedy
exhibited, and a the total amount of blood contained in the whole
organism, we shall have the formula,

                b        b
         x =  ------ = -----
              a - d'   a - d

Several years since, I had an excellent opportunity of proving the
truth of the foregoing, in connection with the administration of ether
in the case of a patient who resisted all attempts to anæsthetize him
in the ordinary way.

The case in question was a man under treatment at the Manhattan Eye
and Ear Hospital, upon whom it was deemed advisable to perform an
operation. As has been said, the ordinary means of inducing anæsthesia
had proved ineffectual, for the man was a confirmed drunkard; and it
was at this juncture that I was called in consultation and requested
by my friend, Dr. David Webster, one of the surgeons of the hospital,
to endeavor to devise some means of getting the man under the
influence of the anæsthetic.

The procedure which I suggested was this:[3] Around the upper part of
each thigh a flat rubber tourniquet was tightly drawn and secured in
place in the usual manner. By this means the sequestration of all the
blood contained in the lower limbs was accomplished; but, inasmuch as
both artery and vein were compressed, only the amount of blood usually
contained in each limb was shut off from the rest of the body--which
would not have been the case had we contented ourselves with merely
compressing the veins, as some have done.

[Footnote 3: On the "Effective and Rapid Induction of General
Anæsthesia," the New York _Medical Journal_, October 22 and December
24, 1887.]

In subsequently commenting on my published report of this case, that
most accomplished writer and physician, Henry M. Lyman--than whom
there is no greater authority on anæsthesia--observes that the plan
proposed and adopted by me on this occasion (that of compressing both
vein and artery) is far preferable to compression of the vein alone.

The reason for this is not far to seek. When we compress the veins
alone there is a rapid accumulation of blood in the extremities
through the accessions derived from the uninterrupted arteries. Now,
as this blood is derived from the trunk, and consequently also from
the organs contained within the cerebro-spinal canal, there is danger
of syncope and even heart failure. When, on the other hand, both
artery and vein are compressed no such derivative action occurs, and
all danger is, consequently, removed. With an apology for this brief
digression, I now return to the interesting case which has given rise
to it.

Having, as previously stated, applied tourniquets to the central
portion of the lower limbs, the ether cap was placed over the mouth
and nose of the patient, and in an incredibly short time he was
unconscious, and the surgeons were able to go on with the operation.

The late Dr. Cornelius R. Agnew and many other members of the staff of
the hospital were present, and gave emphatic expressions of approval.

Dr. F.W. Ring, assistant surgeon to the Manhattan Eye and Ear
Hospital, declared that both the amount of ether and the time consumed
in its administration were infinitesimal when compared with what had
been expended in previous efforts at inducing anæsthesia in the usual
way. The facts brought out on this occasion with regard to the
administration of ether have since been repeatedly verified by
different observers; so that at the present day their validity cannot
be questioned. I will merely add, however, that I have long known that
the dosage of phenacetin, antipyrine, morphine, chloralamid, chloral,
the bromides, and many other remedies might be reduced by resort to
the same procedure; all of which is merely equivalent to stating that
their pharmaco-dynamic energy may be increased in this way. And this
brings us to the second fact, which requires no special elaboration,
and may be stated thus:

_Second Fact._--The duration of the effect of a remedy upon the
cerebro-spinal axis is in the inverse ratio of its volatility; and
this is equally true whether the remedy be given with or without the
precautions previously detailed. For example, the anæsthetic effects
of ether disappear shortly after removal of the inhaler, whether we
apply tourniquets to the extremities or not; but, on the other hand,
the analgesic influence of antipyrin, phenacetin, morphine, and other
like remedies lasts very much longer, and their dose may be reduced,
or--what is the same thing--their pharmaco-dynamic potency may be
enhanced by the sequestration of the blood contained within the
extremities. So far as I know, I was the first to announce this fact.
In so far as a simple expression of the above truth is concerned, we
may employ the following formula:

Let _a_ represent the normal blood-mass contained in the entire body,
_d_ the amount of blood sequestrated by the ligatures, _b_ the amount
of the remedy, _c_ the volatility of the remedy, and _x_ the
pharmaco-dynamic potency of which we are in search; we shall then have

              x =  -----------
                   (a - d') × c

We now arrive at our third fact, which will require more extensive

_Third Fact._--The pharmaco-dynamic potency of stimulants, sedatives,
analgesics, and probably of all remedies which possess a chemical
affinity for nervous matter, is enhanced by exhibiting them (the
remedies) in solution or soluble form--hypodermically, by the mouth,
or per rectum--while the subject remains in a condensed atmosphere.
And, as a corollary, it may be stated that this increase, this
enhancement of the potency of the remedy is, within certain limits, in
the ratio of the atmospheric condensation.

To express this truth mathematically is not difficult. Thus, when a
represents the amount of blood of the whole body, _b_ the amount of
the remedy, _e_ the amount of atmospheric compression, and _x_ the
pharmaco-dynamic potentiality which we are seeking, we shall then have
the simple formula:

                    b x e
              x =   -----

A definite conception of the truth of this proposition will, I think,
be more readily attained by the presentation of the steps which led me
to its discovery.

Let me begin, then, by stating that my attention was attracted several
years ago by that unique complex of symptoms known as the "caisson or
tunnel disease." As most physicians are aware, the caisson disease is
an affection of the spinal cord, due to a sudden transition from a
relatively high atmospheric pressure to one much lower. Hence, those
who work in caissons, or submerged tunnels, under an external pressure
of two atmospheres or even more, are liable to be attacked by the
disease shortly after leaving the tunnel. The seizure never, however,
occurs while the subject is in the caisson, or in other words, while
he remains under pressure. Moreover, when the transition from the
condensed atmosphere to that of ordinary density is gradually
accomplished, which may be done by letting the air escape from the
lock very slowly, the caisson disease is rarely if ever set up. It is
the systematic disregard of this principle by those who work in
compressed air that is responsible, or largely responsible, for the
occurrence of the disease.

The chief clinical features of the caisson disease are pain, which may
be relatively mild, as when confined to a circumscribed area of one
extremity, or of frightful intensity, as when it appears in the ears,
knees, back, or abdomen; anæsthesia and paralysis, usually of
paraplegic type; bladder symptoms, assuming the form of retention or
incontinence; and, more rarely, rectal disturbances (usually

These phenomena, or rather some of them, appear some time within half
an hour after the subject has left the compressed atmosphere. It was
while investigating this most interesting affection as it occurred in
the course of the construction of the Hudson River tunnel, that I was
able, at the same time, to study the effects of compressed air upon
the organism, and especially upon the nervous system, as exhibited in
a large number of persons.

The results of these studies I now submit without hesitation, and in all
candor, to the judgment of the profession, believing, as I certainly do,
that their practical significance from a neuro-therapeutic standpoint is
assured. Without anticipating, however, let me state that the first
thing which impressed me about compressed air was its extraordinary
effect upon cerebral and cerebro-spinal function.

Those who remain for a certain length of time, not too long, however,
in the condensed atmosphere, exhibit a most striking exacerbation of
mental and physical vigor. They go up and down ladders, lift heavy
weights, are more or less exhilarated, and, in short, behave as though
under the influence of a stimulant.

Hardly had I observed these things, which are perfectly well known to
those who have been able to familiarize themselves with the ordinary
effects of compressed air as used in caissons and submarine works of
various kinds, when my attention became attracted by what at first
appeared to be a phenomenon of trivial importance. In a word, I
observed that some of the men exposed to the effects of the compressed
air were more exhilarated by it than others. Upon superficial
reflection one might have supposed that this discrepancy in
physiological effect was to be accounted for merely on the basis of
constitutional idiosyncrasy; maturer thought, however, convinced me
that the exaggerated effects of the condensed air were both too
numerous and too constant to be amenable to such an explanation. This
led me to study the habits of the men; and thus it was that I arrived
at a discovery of real practical value to neurotherapy. To be brief, I
found that a certain percentage of the men, before entering the
compressed air employed in the construction of the Hudson River
tunnel, were in the habit of drinking a quantity of alcohol, usually
in the form of whisky. So long as these men remained outside the
tunnel, where the atmospheric conditions were normal, they were not
visibly affected by their potations. When, however, they entered the
compressed air of the tunnel, but a short time elapsed before they
became exhilarated to an inordinate degree, acting, as one of the
foremen graphically expressed it, "as though they owned the town."

On the other hand, when the customary draught of alcohol was withheld
from them, these same men were no more, if as much, exhilarated on
entering the compressed air as were their fellows.

The effects of alcohol, then, are enhanced by exposing the subject to
the influence of an atmosphere condensed to a considerable degree
beyond that of the normal atmosphere.

Acting on the hint derived from this discovery, I proceeded to
administer absinthe, ether, the wine of coca, vermouth, champagne, and
other stimulants, before exposing the subject to the influence of the
condensed atmosphere, and invariably observed analogous effects, i.e.,
palpable augmentation of the physiological effects of the remedy.

Upon what principle does this augmentation of physiological effect
depend? how is it to be accounted for?

In my opinion, the answer to this question may be given as follows: In
the first place, we know that the primary effect of the compressed air
upon the organism must be to force the blood from the surface of the
body toward the interior, and especially into the cerebro-spinal
canal. Or, to express it more succinctly, the blood will be forced in
the direction of the least resistance, that is, into the soft organs
inclosed by bony walls, which latter completely shut out the element
of counter-pressure. Now, when the blood stream is freighted with a
soluble chemical of some sort--let us say, for the present, with
alcohol--this medicated blood will exert its greatest chemical effect
where the tension--the pressure--is greatest, that is, in the
cerebro-spinal canal. The reason for this is found in the fact that
endosmosis is most pronounced where the blood pressure is greatest.
This explanation of why the effects of alcohol are enhanced by
exposing the individual who has taken it to the effects of a condensed
atmosphere will, I believe, appeal to the physiological conceptions of
most medical men. It was the above course of reasoning which, at this
stage of the argument, led me to the idea that, just as the effects of
stimulating substances are enhanced by exposing the subject to the
influence of compressed air, so, inversely, sedatives and analgesics,
when brought in solution into the blood stream, either hypodermically
or by the stomach, might be greatly enhanced in effect by causing the
subject to remain, while under their influence, in a condensed

When I came to investigate the validity of these predictions, as I did
shortly after the introduction of antipyrin, phenacetin, and the other
members of the same group of compounds, I found my predictions
verified, and, indeed, exceeded. To summarize the whole matter, I
ascertained that not only could therapeutic effects be obtained from
much smaller doses by exposing the subject to the influence of a
condensed atmosphere, but, what was of equal interest, I found that
the analgesic influence of the remedies was much more permanent, was
prolonged, in short, by this mode of administration. When we consider
how great must be the nutritive changes in the nervous system, and
especially in the cerebro-spinal axis, consequent upon increasing the
blood pressure in this way, I hardly think that these things should be
matters of astonishment.

like the foregoing possess, however, much more than a theoretical
interest, and we should be greatly lacking in perspicuity did we not
seek to derive from them something further than a foundation for mere
speculation. Indeed, the whole tenor of these facts is opposed to such
a course, for, view them as we may, the thought inevitably arises that
here are things which contain the germ of some practical acquisition.
This, at least, is the impression which they engendered in my own
mind--an impression which, being unable to rid myself of, I have
allowed to fructify. Nor has regret followed this tenacity of purpose,
since, by the _combination_ of the three principles previously
enunciated, I have been able to devise a procedure which, in my hands,
has yielded flattering results in the treatment of a wide range of
nervous affections, and notably so in melancholia, chorea, insomnia,
neurasthenia, and painful conditions of various kinds.

RECAPITULATION OF ARGUMENT.--The method in question consists, then, in
the combination of the three facts already elucidated. To
recapitulate, they are:

1. That the effects of remedies upon the cerebro-spinal axis may be
enhanced by the sequestration of the blood contained in one or more
extremities, previous to the administration of the medicament. This is
only another way of saying that the quantity of a remedy required to
produce a given physiological effect may be reduced by any expedient
which suspends, or sequestrates, the blood in one or more extremities.
As has been previously said, however, care should be exercised to
avoid dangerous exsanguination of the trunk, and consequently of the
respiratory and cardiac centers contained in the medulla. This may be
done by compressing the central portion of both artery and vein; but I
shall presently indicate a better way of accomplishing the same thing.

2. The duration of the effect of a remedy upon the cerebro-spinal axis
is in the inverse ratio of its volatility. For this reason the
anæsthetic effects of ether disappear shortly after removal of the
inhaler, whereas solutions of antipyrin, phenacetin, morphine, and
other salts possessing an affinity for nervous tissue exert much more
permanent effects upon the cerebro-spinal system.

It is evident, therefore, that the administration of remedies designed
to exert an influence upon the central nervous system in the form of
gases must be far inferior to the exhibition of potent solutions
hypodermically or by the mouth.

3. The pharmaco-dynamic potency of stimulants, sedatives, analgesics,
and probably of all remedies possessing a chemical affinity for
nervous matter, is enhanced by exhibiting them (the remedies) in
solution, or at least in _soluble form while the subject remains in a
condensed atmosphere_.

And, as a corollary to this, it may be stated that this increase--this
enhancement of therapeutic effect--is, within physiological limits, in
the ratio of the atmospheric condensation. By physiological limits we
mean simply that there is a degree of atmospheric condensation beyond
which we cannot go without jeopardizing the well-being of the subject.

(_To be continued_.)

       *       *       *       *       *


[Footnote 1: A lecture delivered before the Franklin Institute,
December 5, 1890.--_From the Journal of the Institute_.]


Medical science, as taught in our medical colleges to-day, has two
objects in view: (1) the prevention of disease; (2) the amelioration
of disease and its cure. Some of our advanced thinkers are suggesting
a new mode of practice, that is the prevention of disease by proper
hygienic measures. Chairs are being established and professors
appointed to deliver lectures on hygiene. Of what value is the
application of therapeutics if the human economy is so lowered in its
vital forces that dissolution is inevitable? Is it not better to
prevent disease than to try the cure after it has become established,
or has honeycombed the constitution?

These few preliminary remarks are _apropos_ to what is to follow in
the subject which I have selected as the topic for discussion this

Vision is the most useful of all the senses. It is the one gift which
we should cherish and guard the most. And at no time in one's life is
it more precious than in infancy and youth.

In infancy, when the child is developing, the one great avenue to the
unfolding, or more properly speaking, the development, of the
intellect is through the eye. The eye at this period holds in abeyance
all the other senses. The child, when insensible to touch, taste,
smell or hearing, will become aroused to action by a bright light or
bright colors, or the movement of any illuminated object, proving to
all that light is essential to the development of the first and most
important sense. Again, the infant of but six days of age will
recognize a candle flame, while its second sense and second in
importance to its development--hearing--will not be recognized for
_six_ weeks to two months. Taste, touch and smell follow in regular
sequence. Inasmuch as light makes thus early an impression on the
delicate organ of vision, how necessary it behooves us to guard the
infant from too bright lights or too much exposure in our bright
climate. Mothers--not only the young mother with her first child, but
also those who have had several children--are too apt to try to quiet
a restless child by placing it near a bright flame; much evil to the
future use of those eyes is the outgrowth of such a pernicious habit.
Light throws into action certain cells of that wonderful structure of
the eye, the retina, and an over stimulus perverts the action of those
cells. The result is that by this over-stimulation the seeds of future
trouble are sown. Let the adult gaze upon the arc of an electric light
or into the sun, and for many moments, nay hours, that individual has
dancing before his vision scintillations and phosphenes. His direct
vision becomes blurred, and as in the case of a certain individual I
have in mind, there may be a permanent loss of sight. Parents should
take the first precaution in the child's life, and not expose it to a
light too bright or glaring. When in the open air let the child's eyes
be protected from the direct rays of the sun. While it is impossible
to give all children the advantage of green fields and outdoor
ramblings, yet nature never intended that civilization should debar
the innocent child from such surroundings.

An anecdote is related of a French ophthalmic surgeon, that a
distinguished patient applied to him for relief from a visual defect;
the surgeon advised him to go into the country and look out upon the
green fields. The green color with its soothing effect soon brought
about a restoration of vision. What I wish to illustrate by this
anecdote is that children should be allowed the green fields as their
best friend in early life. It tones up the system and rests the eye.
After outdoor exercise and plenty of it, we should turn our attention
to the home surroundings of our little ones. The overheated rooms of
the average American home I am sure have more to do with the growing
tendency of weak eyes than we feel like admitting. Look at these frail
hot-house plants, and can any one believe that such bodies nourished
in almost pestilential atmosphere can nourish such delicate organs of
vision, and keep them ready for the enormous amount of work each
little eye performs daily? The brain developing so rapidly wills with
an increasing rapidity the eye to do increasing duties; note the
result--a tendency to impoverished circulation first, and the eye with
its power to give the brain a new picture in an infinitesimal short
space of time means lightning-like circulation--the eye must give way
by its own exhaustion.

Civilization is the progenitor of many eye diseases.

After a boy has grown to that age when it becomes necessary for him to
begin the education prescribed by the wise men, obstacles are placed
in his way to aid again in causing deterioration of vision. It is not
so much the overcrowded condition of our school rooms as the enormous
amount of work that causes deterioration of sight. Our children begin
their school life at a time when they are too young. A child at six
years of age who is forced to study all day or even a part of a day
will not run the same race that one will who commences his studies at
ten--all things being equal. The law prescribes that so much time must
be devoted to study, so many forms must be passed, so many books must
be read, so many pages of composition written--all probably in badly
lighted rooms, or by artificial light. Note the effect. First,
possibly, distant vision gives way; the teacher, sympathizing with the
overburdened child, tries to make the burden lighter by changing his
position in the room or placing him under the cross light from a
window; as the evil progresses, the child is taken to an ophthalmic
surgeon, and the inevitable result, glasses, rightly called "crutches
for the eyes," are given. What would be thought of a cause which would
weaken the legs of that boy so that he would have to use crutches to
carry him through life? If civilization be responsible for an evil,
let our efforts be put forth in finding a remedy for that evil.

A discussion, in a recent number of the _British Medical Journal_,[2]
on "The Claims and Limitations of Physical Education in Schools," has
many valuable hints which should be followed by educators in this
country. Dr. Carter, in the leading paper on this subject, makes the
pregnant remark: "If the hope is entertained of building up a science
of education, the medical profession must combine with the profession
of teaching, in order to direct investigation and to collect material
essential to generalization. Without such co-operation educational
workers must continue to flounder in the morasses of empiricism, and
be content to purchase relative safety at the cost of slow progress,
or no progress at all." In other words, an advisory medical board
should coexist with our board of public education, to try to hold in
check or prevent a further "cruelty in trying to be kind." Private
institutions of education recognize the importance of physical
training and development, and in such institutions the deterioration
of vision is in proportion less than in institutions where physical
training is not considered. In one school of over 200 middle class
girls, Dr. Carter found that, during a period of six years, no fewer
than ten per cent. of the total number of girls admitted during that
time have been compelled to take one or more terms' leave of absence,
and of the present number twenty-eight per cent. have medical
certificates exempting them from gymnastic exercise and 10.25 per
cent. of the total present number wear eye glasses of some kind or
other. From my own experience the same number of students in our
schools would show about the same percentage of visual defects. These
questions are of such growing importance that not only instructors,
but the medical fraternity, should not rest until these evils are

[Footnote 2: Nov. 1, 1890.]

Dr. J.W. Ballantyne, of Edinburgh, in a lecture[3] on diseases of
infancy and childhood, says: "The education of the young people of a
nation is to that nation a subject of vital importance." The same
writer quotes the startling statement made by Prof. Pfluger, that of
45,000 children examined in Germany more than one-half were suffering
from defective eyesight, while in some schools the proportion of the
short sighted was seventy or eighty per cent., and, crowning all, was
the Heidelberg Gymnasium, with 100 per cent. These figures, the result
of a careful examination, are simply startling, and almost make one
feel that it were better to return to the old Greek method of teaching
by word of mouth.

[Footnote 3: _Lancet_. Nov. 1, 1890.]

Prof. Pfluger attributes this large amount of bad sight to
insufficient lighting of school rooms, badly printed books, etc. One
must agree with a certain writer, who says: "Schools are absolute
manufactories of the short sighted, a variety of the human race which
has been created within historic time, and which has enormously
increased in number during the present century." Granting that many
predisposing causes of defective vision cannot be eliminated from the
rules laid down by our city fathers in acquiring an education, it
would be well if the architects of school buildings would bear in mind
that light when admitted into class rooms should not fall directly
into the faces of children, but desks should be so arranged that the
light must be sufficiently strong and fall upon the desk from the left
hand side. My attention has repeatedly been called to the cross lights
in a school room. The light falling directly into the eyes contracts
the pupil which is already contracted by the action of the muscle of
accommodation in its effort to give a clearer picture to the brain.
This has a tendency to elongate the eyeball, and as a permanent result
we have near sightedness. Where the eyeball has an unnatural shortness
this same action manifests itself by headaches, chorea, nausea,
dyspepsia, and ultimately a prematurely breaking down of health. The
first symptom of failing sight is a hyper-secretion of tears, burning
of the eyelids, loss of eyelashes, and congestion either of the
eyelids or the eyeball proper.

The natural condition of aboriginal man is far sighted. His wild life,
his nomadic nature, his seeking for game, his watching for enemies,
his abstention from continued near work, have given him this
protection. Humboldt speaks of the wonderful distant vision of the
South American Indians; another traveler in Russia of the power of
vision one of his guides possessed, who could see the rings of Saturn.
My recent examinations among Indian children of both sexes also
confirm this. While the comparison is not quite admissible, yet the
recent investigations carried on by Lang and Barrett, who examined the
eyes of certain mammalia, found that the larger number were
hypermetropic or far sighted. With all the difficulties which
naturally surround such an examination they found that in fifty-two
eyes of rabbits, thirty-six were hypermetropic and astigmatic, eight
were hypermetropic only, five were myopic and astigmatic, and others
presented mixed astigmatism. In the eyes of the guinea pig about the
same proportion of hypermetropia existed. The eyes of five rats
examined gave the following result: Some were far sighted, others were
hypermetropic and astigmatic, one was slightly myopic and one had
mixed astigmatism. Of six cows, five were hypermetropic and astigmatic
and one was slightly myopic.

Six horses were also examined, of which one had normal sight, three
were hypermetropic and astigmatic, and two had a slight degree of
astigmatism. They also examined other animals, and the same proportion
of hypermetropia existed. These gentlemen found that as an optical
instrument the eye of the horse, cow, cat and rabbit is superior to
that of the rat, mouse and guinea pig.

I have for the last five years devoted considerable attention to the
vision of the Indian children who are pupils at two institutions in
this city. I have at various times made careful records of each
individual pupil and have from time to time compared them. Up to the
present there is a growing tendency toward myopia or short
sightedness, i.e., more pupils from year to year require near sighted
glasses. The natural condition of their eyes is far sighted and the
demands upon them are producing many nervous or reflex symptoms, pain
over the frontal region and headaches. A good illustration of the
latter trouble is showing itself in a young Indian boy, who is at
present undergoing an examination of his vision as a probable cause
for his headaches. This boy is studying music; one year ago he
practiced two hours daily on the piano and studied from three to five
hours besides. This year his work has been increased; he is now
troubled with severe headaches, and after continued near work for some
time letters become blurred and run together. This boy is far sighted
and astigmatic; glasses will correct his defect, and it will be
interesting to note whether his eyes will eventually grow into near
sighted ones. I have several cases where the defective vision has been
due entirely to other causes, such as inflammation of the cornea,
weakening this part of the eye, and the effect in trying to see
producing an elongation of the anterior portion of the eyeball, and
this in turn producing myopia. The eye of the Indian does not differ
materially from that of any deeply pigmented race. The eyeball is
smaller than in the Caucasian, but when we examine the interior we
find the same distribution of the blood vessels and same shape of the
optic nerves. The pigment deposit in the choroid is excessive and
gives, as a background to the retina, a beautiful silvery sheen when
examined with the ophthalmoscope. One thing which I noticed
particularly was the absence of this excessive deposit of pigment and
absence of this watered silk appearance in the half breeds, they
taking after the white race.

Many of the intraocular diseases common among the white children were
also absent, especially those diseases which are the result of near

It is a well known fact among breeders of animals that where animals
are too highly or finely bred, the eye is the organ first to show a
retrogression from the normal. In an examination by myself some years
ago among deaf mutes, I found the offspring of consanguineous
marriages much affected, and while not only were many afflicted with
inflammatory conditions of the choroid and retina, their average
vision was much below the normal.

My quoting Messrs. Lang and Barrett's figures was to bring more
prominently to the notice of my hearers the fact that the eyes of
primitive man resembled the eyes of the lower mammalia and that the
natural eye as an organ of vision was hypermetropic, or far sighted,
and that civilization was the cause of the myopic or near sighted eye.
Nature always compensates in some way. I grant that the present
demands of civilization could not be filled by the far sighted eye,
but the evil which is the outgrowth of present demands does not stop
when we have reached the normal eye, but the cause once excited, the
coats of this eye continue to give way, and myopia or a near sighted
condition is the result.

Among three hundred Indians examined, I found when I got to the
Creeks, a tribe which has been semi-civilized for many years, myopia
to be the prevailing visual defect.

Without going into statistics, I am convinced from my experience that
the State must look into this subject and give our public school
system of education more attention, or we, as a people, will be known
as a "spectacled race."

Myopia or short-sightedness among the Germans is growing at a
tremendous rate. While I do not believe that the German children
perform more work than our own children, there is one cause for this
defect which has never been touched upon by writers, and that is the
shape of the head. The broad, flat face, or German type, as I would
call it, has not the deep orbit of the more narrow, sharp-featured
face of the American type. The eye of the German standing out more
prominently, and, in consequence, less protected, is thereby more
prone to grow into a near-sighted eye. One of the significant results
of hard study was recently brought to my notice by looking over the
statistics on the schools of Munich in 1889. In those schools 2,327
children suffered from defective sight, 996 boys and 1,331 girls.

Of 1,000 boys in the first or elementary class, 36 are short-sighted;
in the second, 49; in the third, 70; in the fourth, 94; in the fifth,
108; in the sixth, 104; and in the last and seventh, 108. The number
of short-sighted boys, therefore, from the first class to the seventh
increases about three-fold. In the case of girls, the increase is from
37 to 119.

These statistics in themselves show us the effects of overwork,
incessant reading or study by defective gas or lamp light, or from an
over-stimulating light, as the arc light, late hours, dissipation, and
frequent rubbing of the eye, also fatigue, sudden changes from
darkness to light, and, what is probably worse than all, reading on
railway trains. The constant oscillations of the car cause an
over-activity of the muscle of accommodation, which soon becomes
exhausted; the brain willing the eye to give it a clear photograph
continues to force the ciliary muscle, which muscle governs the
accommodation, in renewed activity, and the result may easily be

The fond parents finding that the vitiated air of the city is making
their once rosy-cheeked children turn pale, seek a remedy in the fresh
air of the country. The children find their way to city schools; this
necessitates traveling so many miles a day in railway cars. The
children take this opportunity of preparing their studies while _en
route_ to the city, and here is where they get their first eye-strain.
Children have the example set them by their parents or business men,
who read the daily papers on the trains. Children are great imitators,
and when their attention is called to the evil, quote their parents'
example, and they follow it. No wonder each generation is growing more

The light in sick rooms should never fall directly on the eyes, nor
should the rooms be either too dark or too light.

The Esquimaux and Indians long ago noted the fact that sunlight
reflected from freshly fallen snow would soon cause blindness.

The natives of northern Africa blacken themselves around the eyes to
prevent ophthalmia from the glare of the hot sand. In Fiji the
natives, when they go fishing, blacken their faces. My friend. Dr.
Bartelott, presented me with a pair of eye protectors, which he
brought from Alaska. The natives use them to protect themselves from
snow blindness. These snow spectacles, or snow eyes, as they are
called, are usually made out of pine wood, which is washed upon their
shores, drift wood from southern climes.

The posterior surface is deeply excavated, to prevent its obstructing
the free motion of the eye lids; on each side a notch is cut at the
lower margin to allow a free passage for the tears. The upper margin
of the front surface is more prominent than the under, to act as a
shade to the eyes. The inner surface is blackened to absorb the
excessive light. The openings are horizontal slits. The eyes are thus
protected from the dazzling effect of the light.

My friend, Dr. Grady, of Omaha, communicated to me a history of three
hunters who almost lost their eyesight by too long exposure to the
bright rays of the sun falling on snow.

The abuse of tobacco leads to impairment of vision in the growing
youth. Cigarette smoking is an evil. I am inclined to believe that the
poison inhaled arrests the growth of boys; surely it prevents a mental
development, and, when carried to excess, affects vision more by
lessening the power of nerve conduction than acting directly on the

It is not the one cigarette which the boy smokes that does the harm,
but it is the one, two, or three packages smoked daily. This excessive
smoking thoroughly perverts all the functions which should be at their
best to aid this growing youth. First we have failing digestion,
restless nights, suspension of growth, lack of mental development, the
loss of nerve tone, loss of the power of accommodation in vision,
failing sight, headaches, enfeeblement of the heart. Let a man who is
a habitual smoker of cigars attempt to smoke even one package of
cigarettes and he will complain of nausea, dry throat, and loss of
appetite. If a strong man is so much affected by this poison, how much
less can a boy resist the inroads of such poisons? In Germany the law
forbids the sale of cigarettes to growing boys. New York State has a
similar law, and why should our own or any other State be behind in
passing prohibitory laws against this evil?--and this is a growing

I have never seen a case of tobacco amblyopia in boyhood, but such a
condition is not infrequent in adults. In boys the action of nicotine
acts especially upon the heart, the impulse is rendered weaker and
intermittent, and many young boys lay the seeds of organic disease
which sooner or later culminates fatally. Boys should be prohibited
from smoking, first by their parents, second by law, but not such laws
whose enforcement is a failure, third by placing a heavy fine upon
dealers who sell to minors. The pernicious evil of intoxication is no
less an evil upon the nervous system of a youth than is the habit of
cigarette smoking, but, fortunately, this habit is less common. Having
traced from aboriginal man to the present civilized individual the
cause of his myopia, what must we do to prevent a further
deterioration of vision? Unfortunately, the physician of our country
is not, as I am told, like the Japanese physician. Our medical men are
called to attend people who are ill and to try to get them well--the
Japanese physician is paid only to keep his patients in health.

The first effort parents should make is to see that their children
have plenty of outdoor exercise. Good, warm clothing in winter, and
light texture cloth in summer. A great difference of opinion exists as
to the age at which a child should begin its studies. I feel sure that
the boy who commences his studies at ten will far outrun the one who
commences study at six. Every child should commence his lessons in the
best kindergarten, the nursery. Let object lessons be his primer--let
him be taught by word of mouth--then, when his brain is what it should
be for a boy of ten, his eyes will be the better able to bear the
fatigue of the burdens which will be forced upon him. Listen to what
Milton has left on record as a warning to those young boys or girls
who insist upon reading or studying at night with bad illumination.

"My father destined me, from a child, for the pursuits of polite
learning, which I prosecuted with such eagerness that, after I was
twelve years old, I rarely retired to bed, from my lucubrations, till
midnight. This was the first thing which proved pernicious to my eyes,
to the natural weakness of which were added frequent headaches."

Milton went blind when comparatively a young man, and it was always to
him a great grief. Galileo, the great astronomer, also went blind by
overwork. It was written of him, "The noblest eye which ever nature
made is darkened--an eye so privileged, and gifted with such rare
powers, that it may truly be said to have seen more than the eyes of
all that are gone, and to have opened the eyes of all that are to

When the defect of far sightedness or near sightedness exists, we have
but one recourse--_spectacles_.

Some time ago I published, in the _Medical and Surgical Reporter_ an
article on the history of spectacles. The widespread interest which
this paper created has stimulated me to continue the research, and
since this article appeared I have been able to gather other
additional historical data to what has been described as an invention
for "poor old men when their sight grows weak."

The late Wendell Phillips, in his lecture on the "Lost Arts," speaks
of the ancients having magnifying glasses. "Cicero said that he had
seen the entire _Iliad_, which is a poem as large as the New
Testament, written on a skin so that it could be rolled up in the
compass of a nut shell;" it would have been impossible either to have
written this, or to have read it, without the aid of a magnifying

In Parma, a ring 2,000 years old is shown which once belonged to
Michael Angelo. On the stone are engraved the figures of seven women.
You must have the aid of a glass in order to distinguish the forms at
all. Another _intaglio_ is spoken of--the figure is that of the god
Hercules; by the aid of glasses, you can distinguish the interlacing
muscles and count every separate hair on the eyebrows. Mr. Phillips
again speaks of a stone 20 inches long and 10 wide containing a whole
treatise on mathematics, which would be perfectly illegible without
glasses. Now, our author says, if we are unable to read and see these
minute details without glasses, you may suppose the men who did the
engraving had pretty strong spectacles.

"The Emperor Nero, who was short sighted, occupied the imperial box at
the Coliseum, and, to look down into the arena, a space covering six
acres, the area of the Coliseum, was obliged, as Pliny says, to look
through a ring with a gem in it--no doubt a concave glass--to see more
clearly the sword play of the gladiators. Again, we read of Mauritius,
who stood on the promontory of his island and could sweep over the sea
with an optical instrument to watch the ships of the enemy. This tells
us that the telescope is not a modern invention."

Lord Kingsborough, speaking of the ancient Mexicans, says: "They were
acquainted with many scientific instruments of strange invention,
whether the telescope may not have been of the number is uncertain,
but the thirteenth plate of _Dupaix's Monuments_, part second, which
represents a man holding something of a similar nature to his eye,
affords reason to suppose that they knew how to improve the powers of

Our first positive knowledge of spectacles is gathered from the
writings of Roger Bacon, who died in 1292.[3] Bacon says: "This
instrument (a plano-convex glass or large segment of a sphere) is
useful to old men and to those who have weak eyes, for they may see
the smallest letters sufficiently magnified."

[Footnote 3: _Med. and Surg. Reporter_.]

Alexander de Spina, who died in 1313, had a pair of spectacles made
for himself by an optician who had the secret of their invention. De
Spina was so much pleased with them that he made the invention public.

Monsieur Spoon fixes the date of the invention between 1280 and 1311.
In a manuscript written in 1299 by Pissazzo, the author says: "I find
myself so pressed by age that I can neither read nor write without
those glasses they call spectacles, lately invented, to the great
advantage of poor old men when their sight grows weak." Friar Jordan,
who died in Pisa in 1311, says in one of his sermons, which was
published in 1305, that "it is not twenty years since the art of
making spectacles was found out, and is indeed one of the best and
most necessary inventions in the world." In the fourteenth century
spectacles were not uncommon and Italy excelled in their manufacture.
From Italy the art was carried into Holland, then to Nuremberg,
Germany. In a church in Florence is a fresco representing St. Jerome
(1480). Among the several things represented is an inkhorn, pair of
scissors, etc. We also find a pair of spectacles, or _pince-nez_--the
glasses are large and round and framed in bone.

It was not until 1575 that Maurolicus, of Messina, pointed out the
cause of near sightedness and far sightedness and explained how
concave glasses corrected the former and convex glasses the latter

In the wake of advanced, education stalks the spectacle age. Any one
watching a passing crowd cannot fail but note the great number of
people wearing spectacles. Unfortunately it is not limited to adults,
but our youths of both sexes go to make up this army of ametropes.

At what age should children first wear glasses? This is a much
debatable question. Where there is simply a defect of vision I should
never prescribe a pair of glasses for a child under ten years of age.
A child under this age runs many risks of injury to the eyeball by
accident to the glasses, and to cut the eye with glass is a very
serious affair. Rather let a child go without study, or even with
impaired vision, than run the risk of a permanent loss of sight.

Another source of evil I must call your attention to, and that is the
indiscriminate use of glasses given by itinerant venders of spectacles
who claim a thorough knowledge of the eye, who make examination free,
but charge double price for glasses.

Persons, before submitting themselves into the hands of opticians,
should know that they are not suffering from any incipient disease of
their eyes. I do not, for a moment, claim that a practical optician
cannot give you a pair of glasses which will make you see--he does
nothing more than hand you a number of pairs of glasses and you select
the one pair which you think answers the purpose. How can anyone but a
medical man know that the impairment of vision does not arise from
diminished sensibility of the retina? If so, the glasses just
purchased, which may be comfortable for a time, may cause an
irreparable loss of vision. Every ophthalmic surgeon will tell you
that he has had a number of such cases. Do not be misguided by
purchasing cheap spectacles. Glasses advertised as having "remarkable
qualities" are always to be passed by. They have "remarkable
qualities;" they always leave the person wearing them worse at the end
of a few months. Whenever an eye finds relief in a shaded or colored
glass, something is going wrong with the interior of that eye. Seek
advice, but do not trust the eyes of yourself, much less those of your
children, in the hands of the opticians who advertise their
examinations free.

Such individuals should be brought before a tribunal and the matter
sifted as to whether the sense of sight is less to be taken care of
than if that same patient were ill with pneumonia and a druggist were
to prescribe remedies which might or might not aid this patient. If
one man must comply with the law, why should not the other? Our
medical colleges are lengthening the course of studies; the advances
in the various departments of science demand this. It is by the aid of
the ophthalmoscope that many obscure diseases are diagnosed, and while
it is impossible for every young man who obtains a diploma to become
thoroughly proficient in the use of this instrument, yet the eye shows
to him many conditions which guide him to the road of successful
treatment. Think of a case of optic neuritis--inflammation of the
optic nerve--going to an optician and fitting one set of glasses after
another until the patient suddenly discovers that blindness is
inevitable. Many individuals, and very intelligent ones at that, think
that so long as a glass makes them see, that is all they need. When we
know that scarcely two eyes are alike, we can at once feel that it is
very important that each eye should be properly adjusted for a glass;
by this we are sure of having comfort in reading and preserving

There is a very important defect in vision which should be detected as
early in life as possible, and that is color blindness. The boy who is
a color blind will always remain a color blind, and as forty in every
1,000 of the male sex are color blind, it is essential that they know
their defect, and train their course accordingly. It would be to the
advantage of all boys to undergo such an examination once in their
school life; a color blind would be useless where the selection of
color entered into his life work. If a boy had a talent for drawing or
engraving, and were color blind, he would make a success of his life,
whereas if he would attempt to mix paints of different colors he would
be a failure.

I shall not dwell upon the scientific part of color blindness, nor
discuss either the Young-Helmholtz or the Hering theories of color
defect, but shall deal with its practical use in everyday life.

Until the year 1853, very little was known about color blindness, and
much less written about it.

Dr. George Wilson, in 1853, wrote several articles, which were
published in the _Edinburgh Monthly Journal of Medical Science._ These
articles created such an interest in the scientific world that Dr.
Wilson brought out a book, entitled "Researches on Color Blindness,"
two years later. So thoroughly did Dr. Wilson sift this subject that
no writer up to the present day has added anything practical to what
was then known.

Dr. Wilson writes in his preface: "The most practical relation of
color blindness is that which it has to railway and ship signals." He
further states: "The professions for which color blindness most
seriously disqualifies are those of the sailor and railway servant,
who have daily to peril human life and property on the indication
which a colored flag or a lamp seems to give."

Dr. Bickerton, in an article on this same subject, speaking of the
careless way in which lights were used on ships at sea, says: "Until
the year 1852, there were no definite rules regarding the carrying of
lights at night by vessels at sea.... At this time the subject of
color blindness had not awakened the attention of practical observers,
and had the fact been known that between three and four per cent. of
the whole male population are color blind, some other mode might have
been devised to indicate the positions of vessels at night than by
showing red and green lights."

If it is so very important to have sailors with good color perception,
where, at least, four men are on the lookout, how much more important
is it to have our engine drivers with perfect color perception, where
one man alone watches the signal of safety or danger.

The growth of our railway system is constantly increasing. We have
to-day probably 150,000 men employed in this service. The boys
attending public schools to-day in a few years will have to fill the
ranks of these men. How important for these boys to know that they
have not this defect. If the forty boys in every 1,000 are found, what
is to be done with them? The engraver, the wood cut engraver, the
etcher, all wish apprentices. I am also informed that these
occupations pay well. It requires talent to fill them, and here is an
opening for the color blind. Hear what a color blind writes:[4] "I beg
to offer some particulars of my own case, trusting it may be of use to
you. I am an engraver, and strange as it may appear, my defective
vision is, to a certain extent, a useful and valuable quality. Thus,
an engraver has two negative colors to deal with, i.e., white and
black. Now, when I look at a picture, I see it only in white and
black, or light and shade, and any want of harmony in the coloring of
a picture is immediately made manifest by a corresponding discord in
the arrangement of its light and shade or, as artists term it, the
_effect_. I find at times many of my brother engravers in doubt how to
translate certain colors of pictures which to me are matters of
decided certainty and ease. Thus, to me it is valuable." Having
already spoken about the importance of having all boys undergo an
examination for color blindness once in their school lives, we have
two very good reasons for making this suggestion.

[Footnote 4: Wilson, p. 27.]

First, prevent a boy following a trade or occupation where he is
incapacitated, and, secondly, let him be trained for a certain trade
or occupation when the defect exists. The savage races possess the
perception of color to a greater degree than do civilized races. I
have just concluded an examination of 250 Indian children; 100 were
boys. Had I selected 100 white boys from various parts of the United
States I would have found at least five color blinds; among the Indian
boys I did not find a single one. Some years ago I examined 250 Indian
boys and found two color blind, a very low percentage when compared
with the whites. Among the Indian girls I did not find any. When we
know that only two females in every 1,000 among whites are color
blind, it is not surprising that I did not find any examples among the
Indian girls.

The usual tests for color blindness are the matching of wools; the
common error the color blind falls into is matching a bright scarlet
with a green. On one occasion, a color blind gentleman found fault
with his wife for wearing, as he thought, a bright scarlet dress, when
in point of fact she was wearing a bright green. Another color blind
who was very fond of drawing, once painted a red tree in a landscape
without being aware that he had done so.

Among the whites it affects all classes. It is found as relatively
common among the intelligent as the illiterate, and unfortunately, up
to the present, we have not discovered any remedy for this defect.

Without quoting many instances where a color blind man was responsible
for accidents at sea, I must quote a case where an officer on the
watch issued an order to "port" his vessel, which, if his order had
been carried out, would have caused a collision, and a probable
serious loss of life.

The letter was written by Capt. Coburn, and is to be found in the
_Mercantile Marine Reporter_, vol. xiv.

"The steamer Neera was on a voyage from Liverpool to Alexandria. One
night, shortly after passing Gibraltar, at about 10.30 p.m., I went on
the bridge, which was then in charge of the third officer, a man of
about forty-five years of age, and who up to that time I had supposed
to be a trustworthy officer, and competent in every way. I walked up
and down the bridge until about 11 p.m., when the third officer and I
almost simultaneously saw a light at about two points on the starboard
bow. I at once saw it was a green light, and knew that no action was
called for. To my surprise, the third officer called out to the man at
the wheel, 'port,' which he was about to do, when I countermanded the
order, and told him to steady his helm, which he did, and we passed
the other steamer safely about half a mile apart. I at once asked the
third officer why he had ported his helm to a green light on the
starboard bow, but he insisted it was a red light which he had first
seen. I tried him repeatedly after this, and although he sometimes
gave a correct description of the color of the light, he was as often
incorrect, and it was evidently all guesswork. On my return, I applied
to have him removed from the ship, as he was, in my opinion, quite
unfit to have charge of the deck at night, and this application was
granted. After this occurrence I always, when taking a strange officer
to sea, remained on the bridge with him at night until I had tested
his ability to distinguish colors. I cannot imagine anything more
dangerous or more likely to lead to fatal accidents than a color blind
man on a steamer's bridge."

A similar experience is thus related by Capt. Heasley, of Liverpool:
"After passing through the Straits of Gibraltar, the second officer,
who had charge of the deck, gave the order to 'port,' much to my
astonishment, for the lights to be seen about a point on the starboard
bow were a masthead and green light, but he maintained that it was a
masthead and red, and not until both ships were nearly abreast would
he acknowledge his mistake. I may add that during the rest of the
voyage I never saw him making the same mistake. As a practical seaman
I consider a great many accidents at sea arise from color blindness."

Dr. Farquharson has brought this subject before the House of Commons
in England and measures are being taken which will insure to the
traveling public immunity from accidents at sea. I need not mention
that the majority of railways of our country have a system of
examinations which prevents a color blind entering their service.

Dr. Wilson makes the suggestion that he noticed a singular expression
in the eyes of certain of the color blind difficult to describe. "In
some it amounted to a startled expression, as if they were alarmed; in
others, to an eager, aimless glance, as if seeking to perceive
something but unable to find it; and in certain others to an almost
vacant stare, as if their eyes were fixed upon objects beyond the
limit of vision. The expression referred to, which is not at all times
equally pronounced, never altogether leaves the eyes which it seems to

Dr. B. Joy Jeffries, of Boston, has recently written an article on
this same topic, but unfortunately I have not his pamphlet at hand to
quote his views on this subject.

In this lecture I have shown that the normal eye is far sighted. The
mammalia have this kind of an eye; the Indian the same. The white man
is fast becoming near sighted. The civilized Indian is also showing
the effects of continuous near work; and now the question arises. What
are we to do to prevent further deterioration of vision? The fault
lies at our own doors. Let us try to correct these now existing evils,
so that future generations will, instead of censuring us, thank us for
our wisdom.

To aid in a feeble way for the protection of posterity I have
formulated ten rules on the preservation of vision:

(1) Do not allow light to fall upon the face of a sleeping infant.

(2) Do not allow babies to gaze at a bright light.

(3) Do not send children to school before the age of ten.

(4) Do not allow children to keep their eyes too long on a near
object, at any one time.

(5) Do not allow them to study much by artificial light.

(6) Do not allow them to use books with small type.

(7) Do not allow them to read in a railway carriage.

(8) Do not allow boys to smoke tobacco, especially cigarettes.

(9) Do not necessarily ascribe headaches to indigestion. The eyes may
be the exciting cause.

(10) Do not allow the itinerant spectacle vender to prescribe glasses.

       *       *       *       *       *


[Footnote 1: Translated from the _Pharmaceutische Centralhalle_, by
A.G. Vogeler.--_Western Druggist_.]


"Water consists of one atom of oxygen and two atoms of hydrogen." This
proposition will not be disputed in the least by the author; still, it
may be profitable to indulge in a few stereo-chemic speculations as to
the nature of the water molecule and to draw the inevitable

From the time of the discovery, some 110 years ago, that water is a
compound body, made up of oxygen and hydrogen, the notion prevailed up
to within a quarter of a century that it was composed of even
equivalents of the elements named, and all but the youngest students
of chemistry well remember how its formula was written HO, the atomic
weight of oxygen being expressed by 8, making the molecular weight of
water (H=1 + O=8) 9. But the vapor density of water, referred to
air, is 0.635, and this number multiplied by the constant 28.87, gives
18 as the molecular weight of water, or exactly twice that accepted by
chemists. This discrepancy led to closer observations, and it was
eventually found that in decomposing water, by whatever method
(excepting only electrolysis), not more than the eighteenth part in
hydrogen of the water decomposed was ever obtained, or, in other
words, only just one-half the weight deducible from the formula HO =
9. The conclusion was irresistible that in a water molecule two atoms
of hydrogen must be assumed, and, as a natural sequence, followed the
doubling of the molecular weight of water to 18, represented by the
modern formula H_{2}O.

Both the theory and the practice of substitution enable us to further
prove the presence of two hydrogen atoms in a water molecule.
Decomposing water by sodium, only one-half of the hydrogen contained
is eliminated, the other half, together with all of the oxygen,
uniting with the metal to form sodium hydroxide, H_{2}O + Na = H +
NaHO. Doubling the amount of sodium does not alter the result, for
decomposition according to the equation H_{2}O + 2Na = H_{2} + Na_{2}O
never happens. Introducing the ethyl group into the water molecule and
reacting under appropriate conditions with ethyl iodide upon water,
the ethyl group displaces one atom of hydrogen, and, uniting with the
hydroxyl residue, forms ethyl alcohol, thus: H_{2}O + C_{2}H_{5}I =
C_{2}H_{5}OH + HI. Halogens do not act directly on water, hence we may
not properly speak of halogen substitution products. By the action,
however, of phosphorus haloids on water an analogous splitting of the
water molecule is again observed, one-half of the hydrogen uniting
with the halogen to form an acid, the hydroxyl residue then forming a
phosphorus compound, thus: PCl_{3} + 3H_{2}O = 3HCl + P(OH)_{3}.

Now these examples, which might readily be multiplied, prove not only
the presence of _two_ hydrogen atoms in the water molecule, but they
further demonstrate that these two atoms _differ from each other_ in
respect to their form of combination and power of substitution. The
two hydrogen atoms are certainly not of equal value, whence it follows
that the accepted formula for water:

                > O

or as preferred by some: H-O-H, is not in conformity with established
facts. Expressed as here shown, both hydrogen atoms are assigned equal
values, when in fact only _one of the atoms is united to oxygen in
form of hydroxyl_, while the second is loosely attached to the
univalent hydroxyl group. Viewed in this light, water then is
decomposed according to the equation: H_{2}O = H + (OH), never in this
manner: H_{2}O = 2H + O. Hence, water must be considered as a
combination of one hydrogen atom with one molecule of hydroxyl,
expressed by the formula H(OH), and it is this atom of hydrogen _not_
united to oxygen which is eliminated in the generation of oxygen or
substituted by metals and alkyl groups. The hydrogen in the hydroxyl
group cannot be substituted, excepting it be the entire group as such;
this is proved by the action of the halogens, in their phosphorus
compounds, upon water, when the halogen takes the place of the
hydroxyl group, but never that of the hydrogen.

Now as to some logical deductions from the foregoing considerations.
Hydrogen is by many looked upon as a true metal. This theory cannot be
directly proved by the above, but it is certainly greatly strengthened
thereby. To compare. Hydrogen is a powerful reducing agent; it is
similarly affected by the halogens, the hydroxyl group, the acid
radicals, oxygen and sulphur; hydrogen and members of the univalent
alkali metals group are readily interchangeable; it forms superoxides
analogous to the metals; its analogy to the alkali metals as exhibited
in the following:

    H H(OH) HCl HNO_{3}  H_{2}SO_{4}  H_{2}S H_{2}O_{2}
    K K(OH) KCl KNO_{3} Na_{2}SO_{4} Na_{2}S K_{2}O

But if we consider hydrogen as a gasiform metal, we naturally arrive
at the conclusion that _water is the hydroxide of this gasiform
metal_, that is _hydrogen hydroxide_, while gaseous hydrochloric and
hydrosulphuric acids would be looked upon as respectively the chloride
and the sulphide of the metal hydrogen. This would then lead to
curious conclusions concerning the hydroxyl group. This group would,
by this theory, become an oxygenated metal radical similar to the
hypothetical bismuthyl and uranyl, and yet one in which the metallic
character has disappeared as completely as in the ferrocyanic group.

An entirely new light is shed by this view upon the composition of
hydrogen peroxide, which would be looked at as two free hydroxyl
groups joined together thus: (OH)--(OH), analogous to our di-ethyl,
diphenyl, dicyanogen, etc. Considered as dihydroxyl, it would explain
the instability of this compound.

The ethers proper would also be placed in a new light by this new
conception of the constitution of the water molecule. The hydrogen in
the hydroxyl group, as is known, may be substituted by an alkyl group.
For instance, an alkyl may be substituted for the hydroxyl hydrogen in
an alcohol molecule, when an ether results. According to the new
theory this ether will no longer be considered as two alkyl groups
connected by an oxygen atom, but as a compound built up on the type of
water by the union of an alkyl group and an alkoxyl group. Thus
ethylic ether would not be represented by

                        > O,

as heretofore, but by the formula C_{2}H_{5}(OC_{2}H_{5}), which is
ethyl-ethoxol. Acetone would admit of a similar explanation.

Finally the assumption of dissimilarity in character of the hydrogen
atoms in the water molecule possibly may lead to the discovery of a
number of unlocked for isomerides.

Thus, by appropriate methods, it ought to become possible to introduce
the alkyl groups solely into the hydroxyl group (instead of into the
place of the loosely attached H-atom). In that case chemists might
arrive at an isomeride of methyl alcohol of the formula H.(OCH_{3}),
or at methoxyl hydride, a compound not alcoholic in character, or at a
nitroxyl hydride, H(ONO_{2}), not of an acidic nature. Oxychlorides
would be classed with this latter category, that is, they would be
looked on as water in which the free hydrogen atom has been
substituted by the metal, and the hydrogen atom of the hydroxyl by
chlorine. This example, indeed, furnishes a most characteristic
illustration of our theory. In the case just now assumed we arrive at
the oxychloride; when, however, the metal and chlorine change places
in the water molecule, the isomeric hypochlorous salts are the result.
It is true that such cases of isomerism are as yet unknown, but we do
know that certain metals, in our present state of knowledge, yield
oxychlorides only, while others only form hypochlorous salts. This
condition also explains why hypochlorites still possesses the
bleaching power of chlorine, while the same is not true of
oxychlorides. However, it seems needless to multiply examples in
further illustration of the theory.

       *       *       *       *       *


In 1750, Bonnet, a Genevese naturalist, remarked that leaves immersed
in water became covered in the sun with small bubbles of a gas that he
compared to small pearls. In 1772, Priestley, after discovering that
the sojourn of animals in a confined atmosphere renders it
irrespirable, investigated the influence of plants placed in the same
conditions, and he relates, in these words, the discovery that he made
on the subject:

"I put a sprig of mint in a quantity of air in which a candle had
ceased to burn, and I found that, ten days later, another candle was
able to burn therein perfectly well." It is to him, therefore, that is
due the honor of having ascertained that plants exert an action upon
the atmosphere contrary to that exerted by animals. Priestley,
however, was not completely master of his fine experiment; he was
ignorant of the fact, notably, that the oxygen is disengaged by plants
only as long as they are under the influence of light.

This important discovery is due to Ingenhouse. Finally, it was
Sennebier who showed that oxygen is obtained from leaves only when
carbonic acid has been introduced into the atmosphere where they
remain. Later on, T. De Saussure and Boussingault inquired into the
conditions most favorable to assimilation. Boussingault demonstrated,
in addition, that the volume of carbonic acid absorbed was equal to
that of the oxygen emitted. Now we know, through a common chemical
experiment, that carbonic acid contains its own volume of oxygen. It
was supposed, then, that carbonic acid was decomposed by sunlight into
carbon and oxygen. Things, however, do not proceed so simply. In fact,
it is certain that, before the complete decomposition into carbon and
oxygen, there comes a moment in which there is oxygen on the one hand
and oxide of carbon (CO_{2} = O + CO) on the other.

The decomposition, having reached this point, can go no further, for
the oxide of carbon is indecomposable by leaves, as the following
experiment proves.

If we put phosphorus and some leaves into an inert gas, such as
hydrogen, we in the first place observe the formation of the white
fumes of phosphoric acid due to the oxidation of the phosphorus by the
oxygen contained in the leaves. This phosphoric acid dissolves in the
water of the test glass and the latter becomes transparent again. If,
now, we introduce some oxide of carbon, we remark in the sun no
formation of phosphoric acid, and this proves that there is no
emission of oxygen.


This latter hypothesis of the decomposition of carbonic acid into a
half volume of vapor of carbon and one volume of oxygen being
rejected, the idea occurred to consider the carbonic acid in a
hydrated state and to write it CO_{2}HO.

In this case, we should have by the action of chlorophyl: 2CO_{2}HO
(carbonic acid) = 4O (oxygen) + C_{2}H_{2}O_{2} (methylic aldehyde).

This aldehyde is a body that can be polymerized, that is to say, is
capable of combining with itself a certain number of times to form
complexer bodies, especially glucose. This formation of a sugar by
means of methylic aldehyde is not a simple hypothesis, since, on the
one hand, Mr. Loew has executed it by starting from methylic aldehyde,
and, on the other, we find this glucose in leaves by using Fehling's

The glucose formed, it is admissible that a new polymerization with
elimination of water produces starch. The latter, in fact, through the
action of an acid, is capable of regenerating glucose.

It may, therefore, be supposed that the decomposition of carbonic acid
by leaves brings about the formation of starch through the following
transformations: (1) The decomposition of the carbonic acid with
emission of oxygen and production of methylic aldehyde; (2)
polymerization of methylic aldehyde and formation of glucose; (3)
combination of several molecules of glucose with elimination of water;
formation of starch.

Starch is thus the first stable product of chlorophylian activity. Is
there, in fact, starch in leaves? It is easy to reveal its presence by
the blue coloration that it assumes in contact with iodine in a leaf
bleached by boiling alcohol.

Mr. Deherain has devised a nice method of demonstrating that this
formation of starch, and consequently the decomposition of carbonic
acid, can occur only under the influence of sunlight. He pointed it
out to us in his course of lectures at the School of Grignon, and
asked us to repeat the experiment. We succeeded, and now make the
_modus operandi_ known to our readers.

The leaf that gave the best result was that of the _Aristolochia
Sipho_. The leaf, adherent to the plant, is entirely inclosed between
two pieces of perfectly opaque black paper. That which corresponds to
the upper surface of the limb bears cut-out characters, which are here
the initials of Mr. Deherain. The two screens are fastened to the leaf
by means of a mucilage of gum arabic that will easily cede to the
action of warm water at the end of the experiment.

The exposure is made in the morning, before sunrise. At this moment,
the leaf contains no starch; that which was formed during the
preceding day has emigrated during the night toward the interior of
the plant.

After a few hours of a good insolation, the leaf is picked off. Then
the gum which holds the papers together is dissolved by immersion in
warm water. The decolorizing is easily effected through boiling
alcohol, which dissolves the chlorophyl and leaves the leaf slightly
yellowish and perfectly translucent.

There is nothing more to do then but dip the leaf in tincture of
iodine. If the insolation has been good, and if the screens have been
well gummed so that no penumbra has been produced upon the edge of the
letters, a perfectly sharp image will be instantly obtained. The
excess of iodine is removed by washing with alcohol and water, and the
leaf is then dried and preserved between the leaves of a book.

It is well before decolorizing the leaf to immerse it in a solution of
potassa; the chlorophylian starch then swells and success is rendered
easier.--_Lartigue and Malpeaux, in La Nature_.

       *       *       *       *       *


[Footnote 1: Report to the United States Internal Revenue Department
by C.A. Crampton, Chemist of U.S. Internal Revenue; H.W. Wiley, Chief
Chemist of U.S. Department of Agriculture; and O.H. Tittmann,
Assistant in Charge of Weights and Measures, U.S. Coast and Geodetic

Section 1, paragraph 231, of the act entitled "An act to reduce
revenue and equalize duties on imports and for other purposes,"
approved October 1, 1890, provides:

"231. That on and after July 1, eighteen hundred and ninety-one, and
until July 1, nineteen hundred and five, there shall be paid, from any
moneys in the Treasury not otherwise appropriated, under the
provisions of section three thousand six hundred and eighty-nine of
the Revised Statutes, to the producer of sugar testing not less than
ninety degrees by the polariscope, from beets, sorghum, or sugar cane
grown within the United States, or from maple sap produced within the
United States, a bounty of two cents per pound; and upon such sugar
testing less than ninety degrees by the polariscope, and not less than
eighty degrees, a bounty of one and three-fourth cents per pound,
under such rules and regulations as the Commissioner of Internal
Revenue, with the approval of the Secretary of the Treasury, shall

It is the opinion of this Commission that the expression "testing ...
degrees by the polariscope," used with reference to sugar in the act,
is to be considered as meaning the percentage of pure sucrose the
sugar contains, as ascertained by polarimetric estimation.

It is evident that a high degree of accuracy is necessary in the
examination of sugars by the Bureau of Internal Revenue, under the
provisions of this act, inasmuch as the difference of one-tenth of one
per cent. in the amount of sucrose contained in a sugar may, if it is
on the border line of 80°, decide whether the producer is entitled to
a bounty of 1¾ cents per pound (an amount nearly equivalent to the
market value of such sugar) or to no bounty whatever. It is desirable,
therefore, that the highest possible degree of accuracy should be
secured in the work, for while many sugars will doubtless vary far
enough from either of the two standard percentages fixed upon in the
act, viz., 80° and 90°, to admit of a wide margin of error without
material consequences, yet a considerable proportion will approximate
to them so closely that a difference of a few tenths of a degree in
the polarization will change the classification of the sugar.

A very high degree of accuracy may be obtained in the optical
estimation of sugars, if the proper conditions are observed. Such
conditions are (1) accurately graded and adjusted instruments,
weights, flasks, tubes, etc.; (2) skilled and practiced observers; (3)
a proper arrangement of the laboratories in which the work is
performed; and (4) a close adherence to the most approved methods of

On the other hand, if due observance is not paid to these conditions,
the sources of error are numerous, and inaccurate results inevitable.

We will endeavor to point out in this report the best means of meeting
the proper conditions for obtaining the highest degree of accuracy
consistent with fairly rapid work. It would be manifestly impossible
to observe so great a refinement of accuracy in this work as would be
employed in exact scientific research.

This would be unnecessary for the end in view, and impossible on
account of the amount of time that would be required.


It is of the greatest importance that the polariscopes and all
apparatus used in the work shall be carefully and accurately adjusted
and graduated, and upon a single and uniform system of standardization.
Recent investigations of the polarimetric work done in the customs
branch of the Treasury Department have shown that a very considerable
part of the want of agreement in the results obtained at the different
ports was due to a lack of uniformity in the standardization of the
instruments and apparatus.

_(a.) The Polariscope._--There are many different forms of this
instrument used. Some are adapted for use with ordinary white light,
and some with monochromatic light, such as sodium ray. They are
graduated and adjusted upon various standards, all more or less
arbitrary. Some, for example, have their scales based upon the
displacement of the polarized ray produced by a quartz plate of a
certain thickness; others upon the displacement produced by an
arbitrary quantity of pure sucrose, dissolved and made up to a certain
volume and polarized in a certain definite length of column. It would
be very desirable to have an absolute standard set for polariscopic
measurements, to which all instruments could be referred, and in the
terms of which all such work could be stated. This commission has
information that an investigation is now in progress under the
direction of the German imperial government, having for its end and
purpose the determination of such data as will serve for the
establishment of an absolute standard. When this is accomplished it
can easily be made a matter of international agreement, and all future
forms of instruments be based upon it. This commission would suggest
that the attention of the proper authorities should be called to the
desirability of official action by this government with a view to
co-operation with other countries for the adoption of international
standards for polarimetric work. Until this is done, however, it will
be necessary for the Internal Revenue Bureau to adopt, provisionally,
one of the best existing forms of polariscope, and by carefully
defining the scale of this instrument, establish a basis for its
polarimetric work which will be a close approximation to an absolute
standard, and upon which it can rely in case of any dispute arising as
to the results obtained by the officers of the bureau.

For the instrument to be provisionally adopted by the Internal Revenue
Bureau, this commission would recommend the "half shadow" instrument
made by Franz Schmidt & Haensch, Berlin. This instrument is adapted
for use with white light illumination, from coal oil or gas lamps. It
is convenient and easy to read, requiring no delicate discrimination
of colors by the observer, and can be used even by a person who is
color blind.

This form of instrument is adjusted to the Ventzke scale, which, for
the purposes of this report, is defined to be such that 1° of the
scale is the one hundredth part of the rotation produced in the plane
of polarization of white light in a column 200 mm. long by a standard
solution of chemically pure sucrose at 17.5° C. The standard solution
of sucrose in distilled water being such as to contain, at 17.5° C. in
100 c.c., 26.048 grms. of sucrose.

In this definition the weights and volumes are to be considered as
absolute, all weighings being referred to a vacuum.

The definition should properly be supplemented with a statement of the
equivalent circular rotation in degrees, minutes, and seconds that
would be produced by the standard solution of sugar used to read 100°
on the scale. This constant is now a matter of investigation, and it
is thought best not to give any of the hitherto accepted values. When
this is established, it is recommended that it be incorporated in a
revision of the regulations of the internal revenue relative to sugar,
in order to make still more definite and exact the official definition
of the Ventzke scale.

The instruments should be adjusted by means of control quartz plates,
three different plates being used for complete adjustment, one reading
approximately 100° on the scale, one 90°, and one 80°.

These control quartz plates should have their exact values ascertained
in terms of the Ventzke scale by the office of weights and measures by
comparison with the standard quartz plates in possession of that
office, in strict accordance with the foregoing definition, and should
also be accompanied by tables giving their values for temperatures
from 10° to 35°.

_(b.) Weights._--The weights used should be of solid brass, and should
be standardized by the office of weights and measures.

_(c.) Flask._--The flasks used should be of such a capacity as to
contain at 17.5° C. 100.06 cubic centimeters, when filled in such a
manner that the lowest point of the meniscus of the surface of the
liquid just touches the graduation mark. The flasks will be
standardized to contain this volume in order that the results shall
conform to the scale recommended for adoption without numerical
reduction of the weighings to vacuo. They should be calibrated by the
office of weights and measures.

_(d.) Tubes._--The tubes used should be of brass or glass, 200 and 100
millimeters in length, and should be measured by the office of weights
and measures.

_(e.) Balances._--The balances used should be sensitive to at least
one milligramme.


The commission recommends that the work of polarizing sugars be placed
in the hands of chemists, or at least of persons who are familiar with
the use of the polariscope and have some knowledge of the theory of
its construction and of chemical manipulations. To this end we would
suggest that applicants for positions where such work is to be done
should be obliged to undergo a competitive examination in order to
test their fitness for the work that is to be required of them.


The arrangement of the rooms in which polarizations are performed has
an important bearing upon the accuracy of the results obtained.

Polariscopic observations are made more readily and accurately if the
eye of the observer is screened from diffused light; therefore, a
partial darkening of the room, which may be accomplished by means of
curtains or hangings, is an advantage. On the other hand, the
temperature at which the observation is made has a very considerable
influence upon the results obtained, so that the arrangements for
darkening the room must not be such as will interfere with its proper
ventilation. Otherwise the heat from the lamps used, if confined
within a small room, will cause considerable variations in the
temperature of the room from time to time.

The proper conditions will best be met, in our opinion, by placing the
lamps either in a separate room from that in which the instruments
are, and perforating the wall or partition between the two rooms for
the light to reach the end of the instruments, or in a ventilated hood
with the walls perforated in a like manner. By lining the wall or
partition on both sides with asbestos paper, and inserting a plate of
plane glass in the aperture through which the light passes, the
increase of temperature from the radiation of the lamp will be still
further avoided. With the lamps separated from the instruments in this
manner, the space in which the instruments are contained is readily
darkened without much danger of its temperature being unduly raised.

Some light, of course, is necessary for reading the scales, and if
artificial light is employed for this purpose, the sources chosen
should be such that as little heat as possible will be generated by
them. Small incandescent electric lights are best for such purpose.
Refinements of this kind cannot always be used, of course, but the
prime requisite with reference to the avoidance of temperature errors
is that all operations--filling the flasks and tubes, reading the
solutions, controlling the instrument with standard quartz plates,
etc.--should be done at one and the same temperature, and that this
temperature be a constant one, that is, not varying greatly at
different hours of the day. For example, the room should not be
allowed to become cold at night, so that it is at low temperature in
the morning when work is begun, and then rapidly heated up during the
day. The polariscope should not be exposed to the direct rays of the
sun during part of the day, and should not be near artificial sources
of heat, such as steam boilers, furnaces, flues, etc.

The tables upon which the instruments stand should be level.


The methods of manipulation used in the polarization of sugar are of
prime importance. They consist in weighing out the sugar, dissolving
it, clarifying the solution, making it up to standard volume,
filtering, filling the observation tube, regulating the illumination,
and making the polariscopic reading.

The proper conduct of these processes, in connection with the use of
accurately graduated apparatus, is the only surety against the
numerous sources of error which may be encountered. Different sugars
require different treatment in clarification, and much must
necessarily be left to the judgment and experience of the operator.

The following directions are based upon various official procedures
such as the one used in the United States custom houses, the method
prescribed by the German government, etc. They embody also the result
of recent research in regard to sources of error in polarimetric
estimation of sugar:


1.--_Description of Instrument and Manner of Using._

The instrument employed is known as the half shadow apparatus of
Schmidt and Haensch. It is shown in the following cut.


The tube N contains the illuminating system of lenses and is placed
next to the lamp; the polarizing prism is at O, and the analyzing
prism at H. The quartz wedge compensating system is contained in the
portions of the tube marked F, E, G, and is controlled by the milled
head M. The tube J carries a small telescope, through which the field
of the instrument is viewed, and just above is the reading tube K,
which is provided with a mirror and magnifying lens for reading the

The tube containing the sugar solution is shown in position in the
trough between the two ends of the instrument. In using the instrument
the lamp is placed at a distance of at least 200 mm. from the end; the
observer seats himself at the opposite end in such a manner as to
bring his eye in line with the tube J. The telescope is moved in or
out until the proper focus is secured, so as to give a clearly defined
image, when the field of the instrument will appear as a round,
luminous disk, divided into two halves by a vertical line passing
through the center, and darker on one half of the disk than on the
other. If the observer, still looking through the telescope, will now
grasp the milled head M and rotate it, first one way and then the
other, he will find that the appearance of the field changes, and at a
certain point the dark half becomes light, and the light half dark. By
rotating the milled head delicately backward and forward over this
point he will be able to find the exact position of the quartz wedge
operated by it, in which the field is neutral, or of the same
intensity of light on both halves.


The three different appearances presented by the field are best shown
in the above diagram. With the milled head set at the point which
gives the appearance of the middle disk as shown, the eye of the
observer is raised to the reading tube, K, and the position of the
scale is noted. It will be seen that the scale proper is attached to
the quartz wedge, which is moved by the milled head, and attached to
the other quartz wedge is a small scale called a vernier which is
fixed, and which serves for the exact determination of the movable
scale with reference to it. On each side of the zero line of the
vernier a space corresponding to nine divisions of the movable scale
is divided into ten equal parts. By this device the fractional part of
a degree indicated by the position of the zero line is ascertained in
tenths; it is only necessary to count from zero, until a line is found
which makes a continuous line with one on the movable scale.

With the neutral field as indicated above, the zero of the movable
scale should correspond closely with the zero of the vernier unless
the zero point is out of adjustment.

If the observer desires to secure an exact adjustment of the zero of
the scale, or in any case if the latter deviates more than one-half of
a degree, the zero lines are made to coincide by moving the milled
head and securing a neutral field at this point by means of the small
key which comes with the instrument, and which fits into a nipple on
the left hand side of F, the fixed quartz wedge of the compensating
system. This nipple must not be confounded with a similar nipple on
the right hand side of the analyzing prism, H, which it fits as well,
but which must never be touched, as the adjustment of the instrument
would be seriously disturbed by moving it. With the key on the proper
nipple it is turned one way or the other until the field is neutral.
Unless the deviation of the zero be greater than 0.5°, it will not be
necessary to use the key, but only to note the amount of the
deviation, and for this purpose the observer must not be content with
a single setting, but must perform the operation five or six times,
and take the mean of these different readings. If one or more of the
readings show a deviation of more than 0.3° from the general average,
they should be rejected as incorrect. Between each observation the eye
should be allowed 10 to 20 seconds of rest.

The "setting" of the zero having been performed as above, the
determination of the accurate adjustment of the instrument by means of
the "control" quartz plates is proceeded with. Three such plates will
be furnished with each polariscope, which have "sugar values"
respectively approximating 80°, 90°, and 100°. These values may vary
with the temperature, and tables are furnished with them which give
their exact value at different temperatures, from 10° to 35° C.

One of these plates is placed in the instrument, and the field
observed; it will be seen that the uniform appearance of the field is
changed. The milled head is turned to the right until the exact point
of neutrality is re-established, just as described above in setting
the zero. The scale is read, the observation repeated, the reading
taken again, and so on until five or six readings have been made. The
average is taken, readings being rejected which show a divergence of
more than 0.3, and the result corrected for the deviation of the zero
point, if any was found, the deviation being added if it was to the
left, and subtracted if to the right. If the adjustment of the
instrument be correct, the result should be the value of the control
plate used, as ascertained from the table, for the temperature of 20°.
Each of the three plates is read in the instrument in this way. A
variation of 0.3 from the established values may be allowed for errors
of observation, temperature, etc., but in the hands of a careful
observer a deviation greater than this with one of the three plates,
after a careful setting of the zero, shows that the instrument is not
accurately adjusted.

The complete verification of the accurate adjustment of the
polariscope by means of three control plates, as given above, should
be employed whenever it is set up for the first time by the officer
using it, whenever it has sustained any serious shock or injury, and
whenever it has been transported from one place to another. It should
also be done at least once a week while the instrument is in active

After the complete verification has been performed as described,
further checking of the instrument is done by means of one control
plate alone, the one approximating 90°, and the setting of the zero
point is dispensed with, the indication of the scale for sugar
solutions being corrected by the amount of deviation shown in the
reading of the 90° control plate from its established value as
ascertained from the table, at the temperature of the room.

For example: A sugar solution polarizes 80.5; the control plate just
before had given a polarization of 91.4, the temperature of the room
during both observations being 25° C. According to the table the value
of the control plate at 25° C. is 91.7; the reading is, therefore, 0.3
too low, and 0.3 is added to the reading of the sugar solution, making
the corrected result 80.8. The temperature of the room should be
ascertained from a standardized thermometer placed close to the
instrument and in such a position as to be subject to the same


If the sample is not entirely uniform it must be thoroughly mixed
before weighing out, after all the lumps are broken up, best with a
mortar and pestle. Then 26.048 grammes are weighed out on the balance
in the tared German silver dish furnished for this purpose. Care must
be taken that the operations of mixing and weighing out are not unduly
prolonged, otherwise the sample may easily suffer considerable loss of
moisture, especially in a warm room. The portion of sugar weighed out
is washed by means of a jet from a wash bottle into a 100 c.c. flask,
the dish being well rinsed three or four times and the rinsings added
to the contents of the flask. The water used must be either distilled
water or clear water which has been found to have no optical activity.
After the dish has been thoroughly rinsed, enough water is added to
bring the contents of the flask to about 80 c.c. and it is gently
rotated until all the sugar has dissolved. The flask should be held by
the neck with the thumb and finger, and the bulb not handled during
this operation. Care must be taken that no particle of the sugar or
solution is lost. To determine if all the sugar is dissolved, the
flask is held above the level of the eye, in which position any
undissolved crystals can be easily seen at the bottom. The character
of the solution is now observed. If it be colorless or of a very light
straw color, and not opalescent, so that it will give a clear
transparent liquid on filtration through paper, the volume is made up
directly with water to the 100 c.c. mark on the flask. Most sugar
solutions, however, will require the addition of a clarifying or
decolorizing agent in order to render them sufficiently clear and
colorless to polarize. In such case, before making up to the mark, a
saturated solution of subacetate of lead is added.

The quantity of this agent required will vary according to the quality
of the sugar; for sugar which has been grained in the strike pan and
washed in the centrifugals, from 3 to 15 drops will be required; for
sugar grained in the strike pan but not well washed in the
centrifugals, that is, sugar intended for refining purposes, from 15
to 30 drops will be required; for sugar not grained in the strike pan,
that is, "wagon" or "string sugar," "second sugar," etc., from 1 to 3
c.c. will be required. After adding the solution of subacetate of lead
the flask must be gently shaken, so as to mix it with the sugar
solution. If the proper amount has been added, the precipitate will
usually subside rapidly, but if not, the operator may judge of the
completeness of the precipitation by holding the flask above the level
of the eye and allowing an additional drop of subacetate of lead to
flow down the side of the flask into the solution; if this drop leaves
a clear track along the glass through the solution it indicates that
the precipitation is complete; if, on the other hand, all traces of
the drop are lost on entering the solution, it indicates that an
additional small quantity of the subacetate of lead is required. The
operator must learn by experience the point where the addition should
cease; a decided excess of subacetate of lead solution should never be

The use of subacetate of lead should, in all cases, be followed by the
addition of "alumina cream" (aluminic hydrate suspended in water)[2]
in about double the volume of the subacetate solution used, for the
purpose of completing the clarification, precipitating excess of lead,
and facilitating filtration. In many cases of high grade sugars,
especially beet sugars, the use of alumina alone will be sufficient
for clarification without the previous addition of subacetate of lead.

    [Footnote 2: Prepared as follows: Shake up powdered commercial
    alum with water at ordinary temperature until a saturated
    solution is obtained. Set aside a little of the solution, and to
    the residue add ammonia, little by little, stirring between
    additions, until the mixture is alkaline to litmus paper. Then
    drop in additions of the portion left aside, until the mixture
    is just acid to litmus paper. By this procedure a cream of
    aluminum hydroxide is obtained suspended in a solution of
    ammonium sulphate, the presence of which is not at all
    detrimental for sugar work when added after subacetate of lead,
    the ammonium sulphate precipitating whatever excess of lead may
    be present.]

The solution is now made up to the mark by the addition of distilled
water in the following manner. The flask, grasped by the neck between
the thumb and finger, is held before the operator in an upright
position, so that the mark is at the level of the eye, and distilled
water is added drop by drop from a siphon bottle or wash bottle, until
the lowest point of the curve or meniscus formed by the surface of the
liquid just touches the mark. If bubbles hinder the operation, they
may be broken up by adding a single drop of ether, or a spray from an
ether atomizer, before making up to the mark. The mouth of the flask
is now tightly closed with the thumb, and the contents of the flask
are thoroughly mixed by turning and shaking. The entire solution is
now poured upon the filter, using for this purpose a funnel large
enough to contain all the 100 c.c. at once, and a watch glass is
placed over the funnel during filtration to prevent a concentration of
the solution by evaporation.

The funnel and vessel used to receive the filtrate must be perfectly
dry. The first portion of the filtrate, about 20 to 30 c.c., should be
rejected entirely, as its concentration may be affected by a previous
hygroscopic moisture content of the filter paper. It may also be
necessary to return subsequent portions to the filter until the liquid
passes through perfectly clear.

If a satisfactory clarification has not been obtained, the entire
operation must be repeated, since only with solutions that are
entirely clear and bright can accurate polarimetric observations be

When a sufficient quantity of the clear liquid has passed through the
filter, the 200 mm. observation tube is filled with it. The 100 mm.
tube should never be used except in rare cases, when notwithstanding
all the means used to effect the proper decolorization of the
solution, it is still too dark to polarize in the 200 mm. tube. In
such cases the shorter tube may be used, and its reading multiplied by
two. The zero deviation must then be determined and applied to the
product. This will give the reading which would have been obtained if
a 200 mm. tube could have been used, and it only remains to apply the
correction determined by the use of the control plate as previously


     Solution reads in 100 mm. tube       47.0
     Multiplied by 2                       2.0
     Product                              94.0
     Zero reads plus 0.3                   0.3
     Solution would read in 200 mm. tube  93.7

     Reading of control plate             90.4
     Sugar value of control plate         90.5
     Instrument too low by                 0.1
     Add 0.1 to                           93.7
     Correct polarization of solution     93.8

Before filling the tube it must either be thoroughly dried by pushing
a plug of filter paper through it, or it must be rinsed several times
with the solution itself. The cover glasses must also be clean and
dry, and without serious defects or scratches. Unnecessary warming of
the tube by the hand during filling should be avoided; it is closed at
one end with the screw cap and cover glass, and grasped by the other
end with the thumb and finger. The solution is poured into it until
its curved surface projects slightly above the opening, the air
bubbles allowed time to rise, and the cover glass pushed horizontally
over the end of the tube in such a manner that the excess of liquid is
carried over the side, leaving the cover glass exactly closing the
tube with no air bubbles beneath it, and with no portion of the liquid
upon its upper surface. If this result is not attained, the operation
must be repeated, the cover glass being rubbed clean and dry, and the
solution again brought up over the end by adding a few more drops. The
cover glass being in position, the tube is closed by screwing on the
cap. The greatest care must be observed in screwing down the caps that
they do not press too tightly upon the cover glasses; by such pressure
the glasses themselves may become optically active, and cause
erroneous readings when placed in the instrument. It should therefore
be ascertained that the rubber washers are in position over the cover
glasses, and the caps should be screwed on lightly. It must also be
remembered that a cover glass, once compressed, may part with its
acquired optical activity very slowly, and some time must be allowed
to elapse before it is used again.

The polariscopic reading may now be taken, an observation on the 90°
control plate having been made immediately before as previously
described. Then without altering the position of the instrument
relative to the light, or changing the character of the latter in any
way, the tube filled with the sugar solution is substituted for the
control plate. The telescope is adjusted, if necessary, so as to give
a sharply defined field, which must appear round and clear. (This
condition must be fulfilled before the observation is performed, as it
is essential to accuracy.) The milled head is turned until the neutral
point is found, and the reading is taken exactly as previously
described, the operation repeated five or six times, the average taken
with the rejection of aberrant readings, the average figure corrected
for the deviation shown by the control observation from the sugar
value of the control plate at the temperature of observation as given
in the table, and the result taken as the polarization of the sugar.
When a series of successive polarizations is made under the same
conditions as regards temperature, position of the instrument with
relation to the high intensity, of the light, etc., the control
observation need not be made before each polarization, one such
observation being sufficient for the entire series. The control must
be repeated at least once an hour, however, and oftener when the
operator has reason to think that any of the factors indicated above
have been altered, for any such alteration of conditions may change
the zero point of the instrument.

In the polarization of the quartz plates, as also in the polarization
of very white sugars, difficulty may be experienced in obtaining a
complete correspondence of both halves of the field. With a little
practice this may be overcome and the neutral point found, but when it
cannot, the ordinary telescope of the instrument may be replaced by
another, which is furnished with the polariscope and which carries a
yellow plate. This removes the difficulty and renders it possible,
even for one not well accustomed to the instrument, to set it at the
exact point of neutrality.


The following principal sources of error must be especially guarded

1. Drying out of sample during weighing.

2. Excess of subacetate of lead solution in clarification.

3. Incomplete mixing of solution after making up to mark.

4. Imperfect clarification or filtration.

5. Concentration of solution by evaporation during filtration.

6. Undue compression of the cover glass.

7. Alteration of the temperature of room, position of instrument, or
intensity of light while the observation or control observation is
being performed.

8. Performances of polarization with a cloudy, dim, or not completely
round or sharply defined field.

In closing this report the members of this commission hereby signify
their intention to promote uniformity and accuracy by adopting and
using the standards and general plan of procedure recommended in this
report in the polarimetric determinations over which, in their
respective branches of government work, they have control.

       *       *       *       *       *


Hamilton Inlet, or Ionektoke, as the Esquimaus call it, is the outlet
to the largest river on the Labrador Peninsula, and of great
importance to commerce, Rigolet, the headquarters of the Hudson Bay
Company in this region, being situated on its shores. This inlet is
the great waterway to Central Labrador, extending into the interior
for nearly 200 miles.

This immense basin is undoubtedly of glacial origin, evidences of ice
erosion being plainly seen. It is divided into two general basins,
connected by the "narrows," a small strait, through which the water
rushes with frightful rapidity at each tide. Into the head of the
inlet flows the Hamilton, or Grand River, an exploration of which,
though attended with the greatest danger and privation, has enticed
many men to these barren shores. Perhaps the most successful
expedition thus far was that of Mr. Holme, an Englishman, who, in the
summer of 1888, went as far as Lake Waminikapon, where, by failure of
his provisions, he was obliged to turn back, leaving the main object
of the trip, the discovery of the Grand Falls, wholly unaccomplished.

It has been left for Bowdoin College to accomplish the work left
undone by Mr. Holme, to do honor to herself and her country by not
only discovering, measuring, and photographing the falls, but making
known the general features of the inland plateau, the geological
structure of the continent, and the course of the river.

On Sunday, July 26, a party of the Bowdoin expedition, consisting of
Messrs. Cary, Cole, Young, and Smith, equipped with two Rushton boats
and a complement of provisions and instruments, left the schooner at
the head of the inlet for a five weeks' trip into the interior, the
ultimate object being the discovery of the Grand Falls. The mouth of
the river, which is about one mile wide, is blockaded by immense sand
bars, which have been laid down gradually by the erosive power of the
river. These bars extend far out into Goose Bay, at the head of Lake
Melville, and it is impossible to approach the shores except in a
small boat. Twenty-five miles up the river are the first falls, a
descent of the water of twenty-five feet, forming a beautiful sight.
Here a cache of provisions was made, large enough to carry the party
back to the appointed meeting place at Northwest River. The carry
around the first falls is about one and a half miles in length, and
very difficult on account of the steep sides of the river.

From the first falls to Gull Island Lake, forty miles above, the river
is alternately quick and dead water. Part of it is very heavy rapids,
over which it was necessary to track, and in some places to double the
crews. Each boat had a tow line of fifty feet, and in tracking the end
was taken ashore by one of the crew of two, while the boat was kept
off the bank by the other man with an oar. At the Horseshoe Rapids,
ten miles above Gull Island Lake, an accident happened which
threatened to put a stop to further progress of the expedition. While
tracking around a steep point in crossing these rapids the boat which
Messrs. Cary and Smith were tracking was overturned, dumping
barometer, shotgun, and ax into the river, together with nearly
one-half the total amount of provisions. In the swift water of the
rapids all these things were irrevocably lost, a very serious loss at
this stage in the expedition. On this day so great was the force of
the water that only one mile was made, and that only with the greatest

Just above the mouth of the Nimpa River, which enters the Grand River
twenty-five miles above Gull Island Lake, a second cache of provisions
was made, holding enough to carry the party to their first cache at
the first falls. One of the boats was now found to be leaking badly,
and a stop was made to pitch the cracks and repair her, making
necessary the loss of a few hours. From Nimpa River to the Mouni
Rapids, at the entrance to Lake Waminikapon, the water was found to be
fairly smooth, and good progress was made. The change in the scenery,
too, is noticeable, becoming more magnificent and grand. The
mountains, which are bolder and more barren, approach much nearer to
each other on each side of the river, and at the base of these grim
sentinels the river flows silvery and silently. The Mouni Rapids,
through which the water passes from Lake Waminikapon, presented the
next obstacle to further progress, but the swift water here was soon
passed, and well repaid the traveler with the sight here presented
almost unexpectedly to his view.

The lake was entered about 4 o'clock in the afternoon, and, as the
narrow entrance was passed, the sun poured its full rich light on
rocky mountains stretching as far away as the eye could reach, on each
side of the lake, and terminating in rocky cliffs from 600 to 800 feet
in perpendicular height, which formed the shores or confines of the
lake. Across Lake Waminikapon, which is, more properly speaking, not a
lake at all, but rather a widening of the river bed, the progress was
very good, the water having no motion to retard the boats, and forty
miles were made during the day.

Here a misfortune, which had been threatening for several days, came
upon the party. Mr. Young's arm was so swollen, from the shoulder to
finger tips, that he could scarcely move it, the pain being excessive.
It had been brought on doubtless by cold and exposure. Seeing that he
could be of no further use to the party, it was decided to divide
forces, Mr. Smith returning with the sick man to Rigolet for medical
assistance. The separation took place August 8, when the party had
been on the river eleven days. The party were very sorry to return at
this point, since from the best information which they could get in
regard to the distance, the falls were but fifty miles above them.
Under the circumstances, however, there was no help for it. So Smith
and Young, bidding their friends good fortune, started on their return
trip. The mouth of the river was reached in three days, a little less
than one-third the time consumed in going up, and that, too, with only
one man to handle the boat.

On the way down the river another party, composed of Messrs. Bryant
and Kenaston of Philadelphia, was met, who were on the same business
as the Bowdoin party, the discovery of the falls. Mr. Bryant handed to
Mr. Young a twenty-five pound can of flour, which, he said, he had
found in the whirlpool below the first falls. It had been in the boat
which was overturned in the Horseshoe Rapids, and had made the journey
to the first falls, a distance of over fifty miles, without denting or
injuring the can in any way. It was a great relief to the Bryant party
to learn the cause of the mishap, as they had feared a more serious

After the departure of the other two, Messrs. Cary and Cole
encountered much rapid water, so that their progress was necessarily
slow. On the third day, when they had proceeded sixty-five miles above
Lake Waminikapon, and had seen no indications of any falls, the
rapidity of the current forced them to leave the river and make any
further progress on foot. The boat was cached at this point, together
with all that was left of provisions and instruments except the
compass and food for six days. They left just enough provisions to
carry them to their last cache at Ninipi River, and hoped, by careful
use of the remainder, to find the object of their search. If they had
not enough provisions, then they must turn back, leaving reports of
falls as destitute of confirmation as ever.

The land bordering the river at this point was heavily wooded, and in
places where the river shore could not be followed on account of the
cliffs, their progress was necessarily slow. Finding an elevation of
land at no great distance from them, they ascended it for a general
survey of the country. Far away in the distance could be seen the
current of the Grand River flowing sluggishly but majestically on its
course to the sea. Lakes on all sides were visible, most of them
probably of glacial origin. Descending from this mountain, which the
explorers christened Mount Bowdoin, a course was laid on the river
bank, where camp was made that night. Being now somewhat weak from
hard labor and insufficient food, their progress was slow through the
thick wood, but on the next night camp was made on the edge of the
plateau or table land of Labrador.

After proceeding a short distance on the next day, Aug. 13, a loud
roar was heard in the distance, and a course was laid for the river at
the nearest point. The river at this point, about one mile above the
falls, was 500 yards wide, narrowing to fifty yards a short distance
below, where great clouds of spray floating in the air warned the
weary travelers that their object had been attained. Quickly they
proceeded to the scene, and a magnificent sight burst upon their view.

Grand Falls, though not approaching the incredible height attributed
to it by legendary accounts of the Indians, is a grand fall of water.
Its total descent is accomplished in a series of falls aggregating
nearly 500 feet. The greatest perpendicular descent is not over 200
feet. The half dozen falls between this grand descent and the bed of
the river on the plateau vary from ten to twenty-five feet, adding to
the majesty and grandeur of the scene. It was with great difficulty
that the bottom of the falls was reached and a photograph of the scene

After leaving the plateau and plunging over the falls, the waters
enter an immense cañon or gorge, nearly 40 miles long and 300 yards
wide, the perpendicular sides of which rise to a height of from 300 to
500 feet. The sides of this cañon show it to be hollowed out of solid
Archæan rock. Through this cañon the water rushes with terrific
rapidity, making passage by boat wholly impossible. Many erroneous
stories have been told in regard to the height of these falls, all of
them greatly exaggerating the descent of the water. The Indians of
this locality of the tribe of the Nascopee or the race of Crees have
long believed the falls to be haunted by an evil spirit, who punished
with death any one who might dare to look upon them. The height of
land or plateau which constitutes the interior of the Labrador
peninsula is from 2,000 to 2,500 feet above the sea level, fairly
heavily wooded with spruce, fir, hackmatack, and birch, and not at all
the desolate waste it has been pictured by many writers. The
barrenness of Labrador is confined to the coast, and one cannot enter
the interior in any direction without being struck by the latent
possibilities of the peninsula were it not for the abundance of flies
and mosquitoes. Their greed is insatiable, and at times the two men
were weakened from the loss of blood occasioned by these insects.

The object of the expedition being attained, the return trip was
begun, and the sight of the cached boat and provisions eagerly watched
for. On Aug. 15 the camp was sighted, but to their horror they saw
smoke issuing from the spot. It at once flashed upon their minds what
had taken place, and when they arrived they found that their fears had
been all too truly realized. Charred remains of the boat, a burned
octant, and a few unexploded cartridges were all that remained of the
meager outfit upon which they depended to take them to the mouth of
the river, a distance of over 250 miles. The camp fire, not having
been completely extinguished, had burned the boat and destroyed all
their provisions.

It was truly a hard outlook for them, but no time must be lost if
provisions were to be obtained. Hastily a raft was constructed, the
logs being bound together with spruce roots. In this way, by
alternately walking and rafting, the mouth of the river was reached
Aug. 29. On the way down the river five rafts had been made and
abandoned. The only weapon was a small pocket revolver, and with the
products of this weapon, mostly red squirrels and a few fish, they
lived until they reached the different caches. Many a meal was made of
one red squirrel divided between them, and upon such food they were
compelled to make the best time possible. On the way up the river the
shoes of one of the party had given wholly out, and he was obliged to
make a rude pair of slippers from the back of a leather pack. With
torn clothes and hungry bodies they presented a hard sight indeed when
they joined their friends at Rigolet on the 1st of September. The
party composed of Messrs. Bryant and Kenaston was passed by Cary and
Cole while on the way down, but was not seen. Probably this occurred
on Lake Waminikapon, the width of the lake preventing one party from
seeing the other. It seemed a waste of time and energy that two
expeditions in the same summer should be sent upon the same object,
but neither party knew of the intention of the other until it was too
late to turn back.

Grand River has long been a highway for the dependents of the Hudson
Bay Company. The company formerly had a post on Lake Waminikapon, and
another, called Height of Land, on the plateau. Provisions were
carried to these posts, and furs brought from them by way of Grand
River, the parties proceeding as far as the lake, and then, leaving
Grand River some distance below the cañon, no longer being able to
follow it on account of the swiftness of the water, they carried their
canoes across the land to a chain of lakes connecting with the post.
This station has been given up many years, and the river is used now
chiefly be Indians and hunters in the winter.

It has long been known that Hamilton Inlet was of glacial origin, the
immense basin hollowed out by this erosive agent being 150 miles in
length. How much further this immense valley extended has never been
known. Mr. Cary says that the same basin which forms Hamilton Inlet
and enters Lake Melville, the two being connected by twelve miles of
narrows, extends up the Grand River Valley as far as Gull Island Lake,
the whole forming one grand glacial record. From Lake Melville to Gull
Island the bed was being gradually filled in by the deposits of the
river, but the contour of the basin is the same here as below. The bed
of the country here is Archæan rock, and many beautiful specimens of
labradorite dot the shores. In the distance the grim peaks of the
Mealy Mountains stand out in bold relief against the sky.

The country about this interior basin is heavily wooded, and spars of
75 feet can be obtained in generous numbers. Were it not for the
native inhabitants, mosquitoes, and flies, the interior would present
conditions charming enough to tempt any lover of nature. It is the
abundance of these invincible foes which make interior life a burden
and almost an impossibility. To these inhabitants alone Grand Falls
has ceased to chant its melodious tune. Hereafter its melodious ripple
will be heard by Bowdoin College, which, in the name of its explorers,
Cary and Cole, claims the honor of its discovery.--_New York Times_.

       *       *       *       *       *



Astronomy has made us all familiar with the conception of the world
over our heads. We no longer speculate with Epicurus and Anaxagoras
whether the sun may be as large as a quoit, or even as large as
Peloponnesus. We are satisfied that the greater and the lesser lights
are worlds, some of them greatly exceeding our own in magnitude.

In a little poem of Dante Rossetti's, he describes a mood of violent
grief in which, sitting with his head bowed between his knees, he
unconsciously eyes the wood spurge growing at his feet, till from
those terrible moments he carries away the one trivial fact cut into
his brain for all time, that "the wood spurge has a cup of three." In
some such mood of troubled thought, flung perhaps full length on the
turf, have we not as unconsciously and intently watched a little ant,
trudging across our prostrate form, intent upon its glorious polity: a
creature to which we, with our great spiritual world of thought and
emotion and will, have no existence except as a sudden and
inconvenient upheaval of parti-colored earth to be scaled, of unknown
geological formation, but wholly worthless as having no bearing upon
the one great end of their life--the care of larvæ.

If we hold with Mr. Wallace that the chief difference between man and
the lower animals is that of kind and not of degree--that man is
possessed of an intelligent will that appoints its own ends, of a
conscience that imposes upon him a "categorical imperative," of
spiritual faculties that apprehend and worship the invisible--yet we
must admit that his lower animal nature, which forms, as it, were, the
platform of the spiritual, is built up of lower organisms.

If we hold with Professor Allman that thought, will, and conscience,
though only manifesting themselves through the medium of cerebral
protoplasm, are not its properties any more than the invisible earth
elements which lie beyond the violet are the property of the medium
which, by altering their refrangibility, makes them its own--then the
study of the exact nature and properties of the transmitting medium is
equally necessary. Indeed, the whole position can only be finally
established of defining experimentally the necessary limitation of the
medium, and proving the inefficiency of the lower data to account with
the higher.

It is these considerations of the wider issues that give such a
peculiar interest to the patient observations which have recently been
brought to bear upon the habits of the social insects, especially of
ants, which, living in communities, present so many of the conditions
of human life, and the development of the "tribal self" from these
conditions, to which Professor Clifford attributed the genesis of
moral sense.

In order to pass in review these interesting observations and bring
out their significance, I must go over ground which is doubtless
familiar to most of my readers.

The winged ants, which often excite surprise, are simply the virgin
queens and the males. They are entirely dependent upon the workers,
and are reared in the same nest. September is the month usually
selected as the marriage season, and in the early twilight of a warm
day the air will be dark with the winged lovers. After the wedding
trip the female tears off her wings--partly by pulling, but mostly by
contortions of her body--for her life under ground would render wings
not only unnecessary, but cumbersome; while the male is not exposed to
the danger of being eaten by his cannibal spouse, as among spiders,
nor to be set upon and assassinated by infuriated spinsters, as among
bees, but drags out a precarious existence for a few days, and then
either dies or is devoured by insectivorous insects. There is reason
to believe that some females are fertilized before leaving the nest. I
have observed flights of the common _Formica rufa_, in which the
females flew away solitary and to great distances before they
descended. In such cases it is certain that they were fertilized
before their flight.

When a fertilized queen starts a colony it proceeds much in this way:
When a shaft has been sunk deep enough to insure safety, or a
sheltered position secured underneath the trunk of a tree or a stone,
the queen in due time deposits her first eggs, which are carefully
reared and nourished. The first brood consists wholly of workers, and
numbers between twenty-five and forty in some species, but is smaller
in others. The mother ant seeks food for herself and her young till
the initial brood are matured, when they take up the burden of life,
supply the rapidly increasing family with food, as well as the mother
ant, enlarge the quarters, share in the necessary duties, and, in
short, become the _real_ workers of the nest before they are scarcely
out of the shell. The mother ant is seldom allowed to peer beyond her
dark quarters, and then only in company with her body guard. She is
fed and cared for by the workers, and she in turn assists them in the
rearing of the young, and has even been known to give her strength for
the extension of the formicary grounds. Several queens often exist in
one nest, and I have seen workers drag newly fertilized queens into a
formicary to enlarge their resources. As needs be, the quantity of
eggs laid is very great, for the loss of life in the ranks of the
workers is very large; few survive the season of their hatching,
although queens have been known to live eight years. (Lubbock.)

The ant life has four well marked periods: First, the egg; second, the
grub or larva; third, the chrysalis or pupa; fourth, the imago, or
perfect insect. The eggs are small, ovate, yellowish white objects,
which hatch in about fifteen to thirty days. The larvæ are small
legless grubs, quite large at the apex of the abdomen and tapering
toward the head. Both eggs and pupa are incessantly watched and
tended, licked and fed, and carried to a place of safety in time of
danger. The larvæ are ingeniously sorted as regards age and size, and
are never mixed. The larvæ period generally extends through a month,
although often much longer, and in most species when the larvæ pass
into pupæ they spin a cocoon of white or straw color, looking much
like a shining pebble. Other larvæ do not spin a cocoon, but spend the
pupal state naked. When they mature they are carefully assisted from
their shells by the workers, which also assist in unfolding and
smoothing out the legs. The whole life of the formicary centers upon
the young, which proves they have reached a degree of civilization
unknown even in some forms of higher life.

It is curious that, notwithstanding the labor of so many excellent
observers, and though ants swarm in every field and wood, we should
find so much difficulty in the history of these insects, and that so
much obscurity should rest upon some of their habits. Forel and
Ebrard, after repeated observations, maintain that in no single
instance has an isolated female been known to bring her young to
maturity. This is in direct contradiction to Lubbock's theory, who
repeatedly tried introducing a new fertile queen into another nest of
_Lasius flavus_, and always with the result that the workers became
very excited and killed her, even though in one case the nest was
without a queen. Of the other kinds, he isolated two pairs of _Myrmica
ruginodis_, and, though the males died, the queens lived and brought
their offspring to perfection; and nearly a year after their
captivity, Sir John Lubbock watched the first young workers carrying
the larvæ about, thereby proving the accuracy of Huber's statement,
with some species at least. In spite of this convincing testimony,
Lepeletier St. Fargeau is of the opinion that the nests originate with
a solitary queen, as was first given.

The ants indigenous to Leadville, besides feeding on small flies,
insects, and caterpillars--the carcasses of which they may be seen
dragging to their nests--show the greatest avidity for sweet liquids.
They are capable of absorbing large quantities, which they disgorge
into the mouths of their companions. In winter time, when the ants are
nearly torpid and do not require much nourishment, two or three ants
told off as foragers are sufficient to provide for the whole nest. We
all know how ants keep their herds in the shape of aphides, or ant
cows, which supply them with the sweet liquid they exude. I have often
observed an ant gently stroking the back of an aphide with its antennæ
to coax it to give down its sweet fluid, much in the same way as a
dairy maid would induce a cow to give down its milk by a gentle
manipulation of its udders. Some species, principally the masons and
miners, remove their aphides to plants in the immediate vicinity of
their nest, or even introduce them into the ant home. In the interior
of most nests is also found the small blind beetle (_Claviger_)
glistening, and of a uniform red, its mouth of so singular a
conformation that it is incapable of feeding itself. The ants
carefully feed these poor dependent creatures, and in turn lick the
sweet liquid which they secrete and exude. These little _Coleoptera_
are only found in the nests of some species; when introduced into the
nests of others they excite great bewilderment, and, after having been
carefully turned over and examined, are killed in a short time as a
useless commodity. Another active species of _Coleoptera_, of the
family _Staphylini_, is also found in ant nests. I have discovered one
in the nest of _Formica rufa_ in the Jewish cemetery in Leadville.
Furnished with wings, it does not remain in the nest, but is forced to
return thither by the strange incapacity to feed itself. Like the
_Claviger_, it repays its kind nurses by the sweet liquid it exudes,
and which is retained by a tuft of hair on either side of the abdomen
beneath the wings, which the creature lifts in order that the ant may
get at its honeyed recompense. Such mutual services between creatures
in no way allied is a most curious fact in the animal world.--_Popular
Science News._

       *       *       *       *       *



In the county of Litchfield, Conn., in the midst of some of the most
attractive hill country of that region, a very striking mineral
fissure has been opened by Mr. S.L. Wilson, which, in both its
scientific and commercial aspects, is equally important and
interesting. It is a broad crevice, widened at the point of excavation
into something like a pocket and filled, between its inclosing walls
of gneiss, with a granitic mass whose elements have crystallized
separately, so that an almost complete mineralogical separation has
been effected of quartz, mica, and feldspar, while associated
aggregates, as beryl and garnet, have formed under conditions that
make them valuable gem fabrics.

The vein has a strike south of west and north of east and a distinct
dip northwest, by which it is brought below the gneiss rock, which
forms an overhanging wall, on the northerly side of the granitic mass,
while on the southerly edge the same gneiss rock makes an almost
vertical foot wall, and exhibits a sharp surface of demarkation and
contact. The rock has been worked as an open cut through short lateral
"plunges," or tunnels have been used for purposes of exploration in
the upper part of its extent. Its greatest width appears to be
fifty-one feet, and the present exposure of its length three hundred.
It undergoes compression at its upper end, and its complete extinction
upon the surface of the country at that point seems probable. At its
lower end at the foot of the slope wherein the whole mass appears, it
reveals considerable development, and affords further opportunities
for examination, and, possibly, profitable investment. It has been
formed by a powerful thrust coincident with the crumpling of the
entire region, whereby deeply seated beds have become liquefied, and
the magma either forced outward through a longitudinal vent or brought
to the surface by a process of progressive fusion as the heated
complex rose through superincumbent strata dissipated by its entrance
and contributing their substance to its contents. The present exposure
of the vein has been produced by denudation, as the coarsely
crystalline and dismembered condition of the granite, with its large
individuals of garnet and beryl, and the dense, glassy texture of the
latter, indicate a process of slow cooling and complete separation,
and for this result the congealing magma must necessarily have been
sealed in by strata through which its heat was disseminated slowly.

For upon the most cursory inspection of the vein, the eye is arrested
at once by the large masses of crystalline orthoclase, the heavy beds
of a gray, brecciated quartz and the zones and columns of large leaved
mica. It was to secure the latter that Mr. Wilson first exploited this
locality, and only latterly have the more precious contents of the
vein imparted to it a new and more significant character. The mica,
called by Mr. Atwood, the superintendent of the work, "book mica,"
occurs in thick crystals, ranged heterogeneously together in stringers
and "chimneys," and brilliantly reflecting the sunlight from their
diversely commingled laminæ. This mica yields stove sheets of about
two to three by four or five inches, and is of an excellent,
transparent quality. It seems to be a true muscovite, and is seldom
marred by magnetic markings or crystalline inclusions that would
interfere with its industrial use. Seams of decomposition occur, and a
yellowish scaly product, composed of hydrated mica flakes, fills them.
The mica does not everywhere present this coarsely crystalline
appearance, but in flexures and lines of union with the quartz and
orthoclase is degraded to a mica schist upon whose surfaces appear
uranates of lime and copper (autunite and torbernite), and in which
are inclosed garnet crystals of considerable size and beauty. The
enormous masses of clean feldspar made partially "graphic" by quartz
inclosures are a conspicuous feature of the mine. In one part of the
mine, wooden props support an overhanging ledge almost entirely
composed of feldspar, which underneath passes into the gray brecciated
quartz, which again grades into a white, more compact quartz rock. It
is in this gray brecciated quartz that the beryls are found. These
beautiful stones vary extremely in quality and color. Many of the
large crystals are opaque, extensively fractured, and irregular in
grain, but are found to inclose, especially at their centers, cores of
gem-making material.

The colors of the beryls grade from an almost colorless mineral
(goshenite) though faintly green, with blue reflections, yellowish
green of a peculiar oily liquidity (davidsonite), to honey yellows
which form the so-called "golden beryls" of the trade, and which have
a considerable value. These stones have a hardness of 8, and when cut
display much brilliancy. Many assume the true aquamarine tints, and
others seem to be almost identical with the "Diamond of the Rhine,"
which as early as the end of the fifteenth century was used as a
"fraudulent substitute for the true diamond" (King). Few, very few,
belong to the blue grades, and the best of these cannot compare with
those from Royalston, Mass. Those of amber and honey shades are
beautiful objects, and under artificial light have a fascination far
exceeding the olivine or chrysoberyl. These are not as frequent as the
paler varieties, but when found excite the admiration of visitor and
expert. It seems hardly probable that any true emeralds will be
uncovered and the yellow beryls may not increase in number. Their use
in the arts will be improved by combining them with other stones and
by preparing the larger specimens for single stone rings.

Very effective combinations of the aquamarine and blue species with
the yellow may be recommended. Tourmaline appears in some quantity,
forming almost a schist at some points, but no specimens of any value
have been extracted, the color being uniformly black. The garnets are
large trapezohedral-faced crystals of an intense color, but penetrated
with rifts and flaws. Many, no doubt, will afford serviceable gem
material, but their resources have not yet been tested by the

While granite considered as a building stone presents a complex of
quartz, mica, and feldspar so confusedly intercrystallized as to make
a homogeneous composite, in the present mass, like the larger and
similar developments in North Carolina, these elements have excluded
each other in their crystallization, and are found as three separate
groups only sparingly intermingled. The proportions of the constituent
minerals which form granite, according to Prof. Phillips, are twenty
parts of potash feldspar (orthoclase), five parts of quartz, and two
parts of potash mica (muscovite), and a survey of Mr. Wilson's quarry
exhibits these approximate relations with surprising force.

There can be but little doubt that this vein is a capital example of
hydrothermal fusion, whereby in original gneissic strata, at a
moderate temperature and considerable depth, through the action of
contained water, with the physical accompaniment of plication, a
solution of the country rock has been accomplished. And the cooling
and recrystallization has gone on so slowly that the elements of
granite have preserved a physical isolation, while the associated
silicates formed in the midst of this magma have attained a supremely
close and compact texture, owing to the favorable conditions of slow
growth giving them gem consistencies. The further development of the
vein may reveal interesting facts, and especially the following
downward of the rock mass, which we suspect will contract into a
narrower vein. At present the order of crystallization and separation
of the mineralogical units seems to have been feldspar, mica, garnet,
beryl, quartz.

In the artificial preparation of crystals it is invariably found that
perfect and symmetrical crystals, and crystals of large size, are
produced by slow, undisturbed cooling of solutions; the quiet
accretion permits complete molecular freedom and the crystal is built
up with precision. Nor is this all. In mixtures of chemical compounds
it is presumable that the separate factors will disengage themselves
from each other more and more completely, and form in purer masses as
the congelation is slowly carried on. A sort of concretionary affinity
comes into play, and the different chemical units congregate together.
At least such has been the case in the granitic magma of which Mr.
Wilson now possesses the solidified results. The feldspar, the quartz,
the mica, have approximately excluded each other, and appear side by
side in unmixed purity. And does it not seem probable that this
deliberate process of solidification has produced in the beryls, found
in the center of the vein at the points of slowest radiation, the
glassy gem texture which now makes them available for the purposes of
art and decoration?

       *       *       *       *       *


Professor Max Muller, who presided over the Anthropological Section of
the British Association, said that if one tried to recall what
anthropology was in 1847, and then considered what it was now, its
progress seemed most marvelous. These last fifty years had been an age
of discovery in Africa, Central Asia, America, Polynesia, and
Australia, such as could hardly be matched in any previous century.
But what seemed to him even more important than the mere increase of
material was the new spirit in which anthropology had been studied
during the last generation. He did not depreciate the labors of
so-called dilettanti, who were after all lovers of knowledge, and in a
study such as that of anthropology, the labors of these volunteers, or
franc-tireurs, had often proved most valuable. But the study of man in
every part of the world had ceased to be a subject for curiosity only.
It had been raised to the dignity and also the responsibility of a
real science, and was now guided by principles as strict and rigorous
as any other science. Many theories which were very popular fifty
years ago were now completely exploded; nay, some of the very
principles by which the science was then guided had been discarded.
Among all serious students, whether physiologists or philologists, it
was by this time recognized that the divorce between ethnology and
philology, granted if only for incompatibility of temper, had been
productive of nothing but good.


Instead of attempting to classify mankind as a whole, students were
now engaged in classifying skulls, hair, teeth, and skin. Many solid
results had been secured by these special researches; but as yet, no
two classifications, based on these characteristics, had been made to
run parallel. The most natural classification was, no doubt, that
according to the color of the skin. This gave us a black, a brown, a
yellow, a red, and a white race, with several subdivisions. This
classification had often been despised as unscientific; but might
still turn out far more valuable than at present supposed. The next
classification was that by the color of the eyes, as black, brown,
hazel, gray, and blue. This subject had also attracted much attention
of late, and, within certain limits, the results have proved very
valuable. The most favorite classification, however, had always been
that according to the skulls. The skull, as the shell of the brain,
had by many students been supposed to betray something of the
spiritual essence of man; and who could doubt that the general
features of the skull, if taken in large averages, did correspond to
the general features of human character? We had only to look around to
see men with heads like a cannon ball and others with heads like a
hawk. This distinction had formed the foundation for a more scientific
classification into brachycephalic, dolichocephalic, and mesocephalic
skulls. If we examined any large collection of skulls we had not much
difficulty in arranging them under these three classes; but if, after
we had done this, we looked at the nationality of each skull, we found
the most hopeless confusion. Pruner Vey, as Peschel told us in his
"Volkerkunde," had observed brachycephalic and dolichocephalic skulls
in children born of the same mother; and if we consider how many women
had been carried away into captivity by Mongolians in their inroads
into China, India, and Germany, we could not feel surprised if we
found some long heads among the round heads of those Central Asiatic


Only we must not adopt the easy expedient of certain anthropologists
who, when they found dolichocephalic and brachycephalic skulls in the
same tomb, at once jump to the conclusion that they must have belonged
to two different races. When, for instance, two dolichocephalic and
three brachycephalic skulls were discovered in the same tomb at
Alexanderpol, we were told at once that this proved nothing as to the
simultaneous occurrence of different skulls in the same family; nay,
that it proved the very contrary of what it might seem to prove. It
was clear, we were assured, that the two dolichocephalic skulls
belonged to Aryan chiefs and the three brachycephalic skulls to their
non-Aryan slaves, who were killed and buried with their masters,
according to a custom well known to Herodotus. This sounded very
learned, but was it really quite straightforward? Besides the general
division of skulls into dolichocephalic, brachycephalic, and
mesocephalic, other divisions had been undertaken, according to the
height of the skull, and again according to the maxillary and the
facial angles. This latter division gave us orthognatic, prognathic,
and mesognathic skulls. Lastly, according to the peculiar character of
the hair, we might distinguish two great divisions, the people with
woolly hair (Ulotriches) and people with smooth hair (Lissotriches).
The former were subdivided into Lophocomi, people with tufts of hair,
and Eriocomi, or people with fleecy hair. The latter were divided into
Euthycomi, straight haired, and Euplocomi, wavy haired. It had been
shown that these peculiarities of the hair depended on the peculiar
form of the hair tubes, which in cross sections were found to be
either round or elongated in different ways. All these classifications,
to which several more might be added, those according to the orbits of
the eyes, the outlines of the nose, and the width of the pelvis, were
by themselves extremely useful. But few of them only, if any, ran
strictly parallel. Now let them consider whether there could be any
organic connection between the shape of the skull, the facial angle,
the conformation of the hair, or the color of the skin on one side,
and what we called the great families of language on the other.


That we spoke at all might rightly be called a work of nature, _opera
naturale_, as Dante said long ago; but that we spoke thus or thus,
_cosi o cosi_, that, as the same Dante said, depended on our
pleasure--that was our work. To imagine, therefore, that as a matter
of necessity, or as a matter of fact, dolichocephalic skulls had
anything to do with Aryan, mesophalic with Semitic, or brachycephalic
with Turanian speech, was nothing but the wildest random thought. It
could convey no rational meaning whatever; we might as well say that
all painters were dolichocephalic, and all musicians brachycephalic,
or that all lophocomic tribes worked in gold, and all lisocomic tribes
in silver. If anything must be ascribed to prehistoric times, surely
the differentiation of the human skull, the human hair and the human
skin would have to be ascribed to that distant period. No one, he
believed, had ever maintained that a mesocephalic skull was split or
differentiated into a dolichocephalic and a brachycephalic variety in
the bright sunshine of history. Nevertheless, he had felt for years
that knowledge of languages must be considered in future as a _sine
qua non_ for every anthropologist. How few of the books in which we
trusted with regard to the characteristic peculiarities of savage
races had been written by men who had lived among them for ten or
twenty years, and who had learned their languages till they could
speak them as well as the natives themselves. It was no excuse to say
that any traveler who had eyes to see and ears to hear could form a
correct estimate of the doings and sayings of savage tribes.


It was not so, as anthropologists knew from sad experience. Suppose a
traveler came to a camp where he saw thousands of men and women
dancing round the image of a young bull. Suppose that the dancers were
all stark naked, that after a time they began to fight, and that at
the end of their orgies there were three thousand corpses lying about
weltering in their blood. Would not a casual traveler have described
such savages as worse than the negroes of Dahomey? Yet these savages
were really the Jews, the chosen people of God. The image was the
golden calf, the priest was Aaron, and the chief who ordered the
massacre was Moses. We might read the 32d chapter of Exodus in a very
different sense. A traveler who could have conversed with Aaron and
Moses might have understood the causes of the revolt and the necessity
of the massacre. But without this power of interrogation and mutual
explanation, no travelers, however graphic and amusing their stories
might be, could be trusted; no statements of theirs could be used by
the anthropologist for truly scientific purposes. If anthropology was
to maintain its high position as a real science, its alliance with
linguistic studies could not be too close. Its weakest points had
always been those where it trusted to the statements of authorities
ignorant of language and of the science of language. Its greatest
triumphs had been achieved by men such as Dr. Hahn, Bishops Callaway
and Colenso, Dr. W. Gill and last, not least, Mr. Man, who had
combined the minute accuracy of the scholar with the comprehensive
grasp of the anthropologist, and were thus enabled to use the key of
language to unlock the perplexities of savage customs, savage laws and
legends, and, particularly, of savage religions and mythologies. If
this alliance between anthropology and philology became real, then,
and then only, might we hope to see Bunsen's prophecy fulfilled, that
anthropology would become the highest branch of that science for which
the British Association was instituted.

       *       *       *       *       *


Contained in SCIENTIFIC AMERICAN SUPPLEMENT during the past ten years,
sent _free of charge_ to any address. MUNN & CO., 361 Broadway, New

       *       *       *       *       *



$2.50 a Year. Single Copies, 25 cts.

This is a Special Edition of the SCIENTIFIC AMERICAN, issued
monthly--on the first day of the month. Each number contains about
forty large quarto pages, equal to about two hundred ordinary book
pages, forming, practically, a large and splendid MAGAZINE OF
ARCHITECTURE, richly adorned with _elegant plates in colors_ and with
fine engravings, illustrating the most interesting examples of modern
Architectural Construction and allied subjects.

A special feature is the presentation in each number of a variety of
the latest and best plans for private residences, city and country,
including those of very moderate cost as well as the more expensive.
Drawings in perspective and in color are given, together with full
Plans, Specifications, Costs, Bills of Estimate, and Sheets of

No other building paper contains so many plans, details, and
specifications regularly presented as the SCIENTIFIC AMERICAN.
Hundreds of dwellings have already been erected on the various plans
we have issued during the past year, and many others are in process of

Architects, Builders, and Owners will find this work valuable in
furnishing fresh and useful suggestions. All who contemplate building
or improving homes, or erecting structures of any kind, have before
them in this work an almost _endless series of the latest and best
examples_ from which to make selections, thus saving time and money.

Many other subjects, including Sewerage, Piping, Lighting, Warming,
Ventilating, Decorating, Laying out of Grounds, etc., are illustrated.
An extensive Compendium of Manufacturers' Announcements is also given,
in which the most reliable and approved Building Materials, Goods,
Machines, Tools, and Appliances are described and illustrated, with
addresses of the makers, etc.

The fullness, richness, cheapness, and convenience of this work have
won for it the LARGEST CIRCULATION of any Architectural publication in
the world.

A Catalogue of valuable books on Architecture, Building, Carpentry,
Masonry, Heating, Warming, Lighting, Ventilation, and all branches of
industry pertaining to the art of Building, is supplied free of
charge, sent to any address.


       *       *       *       *       *


In connection with the publication of the BUILDING EDITION of the
SCIENTIFIC AMERICAN, Messrs. Munn & Co. furnish plans and
specifications for buildings of every kind, including Churches,
Schools, Stores, Dwellings, Carriage Houses, Barns, etc.

In this work they are assisted by able and experienced architects.
Full plans, details, and specifications for the various buildings
illustrated in this paper can be supplied.

Those who contemplate building, or who wish to alter, improve, extend,
or add to existing buildings, whether wings, porches, bay windows, or
attic rooms, are invited to communicate with the undersigned. Our work
extends to all parts of the country. Estimates, plans, and drawings
promptly prepared. Terms moderate. Address


       *       *       *       *       *




Sent by mail, postage prepaid, to subscribers in any part of the
United States or Canada. Six dollars a year, sent, prepaid, to any
foreign country.

All the back numbers of THE SUPPLEMENT, from the commencement, January
1, 1876, can be had. Price, 10 cents each.

All the back volumes of THE SUPPLEMENT can likewise be supplied. Two
volumes are issued yearly. Price of each volume, $2.50 stitched in
paper, or $3.50 bound in stiff covers.

COMBINED RATES.--One copy of SCIENTIFIC AMERICAN and one copy of
SCIENTIFIC AMERICAN SUPPLEMENT, one year, postpaid, $7.00.

A liberal discount to booksellers, news agents, and canvassers.


       *       *       *       *       *


Manufacturers, Agriculturists, Chemists, Engineers, Mechanics,
Builders, men of leisure, and professional men, of all classes, need
good books in the line of their respective callings. Our post office
department permits the transmission of books through the mails at very
small cost. A comprehensive catalogue of useful books by different
authors, on more than fifty different subjects, has recently been
published, for free circulation, at the office of this paper. Subjects
classified with names of author. Persons desiring a copy have only to
ask for it, and it will be mailed to them. Address,


       *       *       *       *       *


MESSRS. MUNN & CO., in connection with the publication of the
SCIENTIFIC AMERICAN, continue to examine improvements, and to act as
Solicitors of Patents for Inventors.

In this line of business they have had _forty-five years' experience_,
and now have _unequaled facilities_ for the preparation of Patent
Drawings, Specifications, and the prosecution of Applications for
Patents in the United States, Canada, and Foreign Countries. Messrs.
Munn & Co. also attend to the preparation of Caveats, Copyrights for
Books, Labels, Reissues, Assignments, and Reports on Infringements of
Patents. All business intrusted to them is done with special care and
promptness, on very reasonable terms.

A pamphlet sent free of charge, on application, containing full
information about Patents and how to procure them; directions
concerning Labels, Copyrights, Designs, Patents, Appeals, Reissues,
Infringements, Assignments, Rejected Cases. Hints on the Sale of
Patents, etc.

We also send, _free of charge_, a Synopsis of Foreign Patent Laws,
showing the cost and method of securing patents in all the principal
countries of the world.

361 Broadway, New York.

BRANCH OFFICES.--Nos. 622 and 624 F Street, Pacific Building, near 7th
Street, Washington, D.C.

*** End of this Doctrine Publishing Corporation Digital Book "Scientific American Supplement No. 822, October 3, 1891" ***

Doctrine Publishing Corporation provides digitized public domain materials.
Public domain books belong to the public and we are merely their custodians.
This effort is time consuming and expensive, so in order to keep providing
this resource, we have taken steps to prevent abuse by commercial parties,
including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the files We designed Doctrine Publishing
Corporation's ISYS search for use by individuals, and we request that you
use these files for personal, non-commercial purposes.

+ Refrain from automated querying Do not send automated queries of any sort
to Doctrine Publishing's system: If you are conducting research on machine
translation, optical character recognition or other areas where access to a
large amount of text is helpful, please contact us. We encourage the use of
public domain materials for these purposes and may be able to help.

+ Keep it legal -  Whatever your use, remember that you are responsible for
ensuring that what you are doing is legal. Do not assume that just because
we believe a book is in the public domain for users in the United States,
that the work is also in the public domain for users in other countries.
Whether a book is still in copyright varies from country to country, and we
can't offer guidance on whether any specific use of any specific book is
allowed. Please do not assume that a book's appearance in Doctrine Publishing
ISYS search  means it can be used in any manner anywhere in the world.
Copyright infringement liability can be quite severe.

About ISYS® Search Software
Established in 1988, ISYS Search Software is a global supplier of enterprise
search solutions for business and government.  The company's award-winning
software suite offers a broad range of search, navigation and discovery
solutions for desktop search, intranet search, SharePoint search and embedded
search applications.  ISYS has been deployed by thousands of organizations
operating in a variety of industries, including government, legal, law
enforcement, financial services, healthcare and recruitment.