Home
  By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | HTML | PDF ]

Look for this book on Amazon


We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: The 1893 Duryea Automobile In the Museum of History and Technology
Author: Berkebile, Donald H.
Language: English
As this book started as an ASCII text book there are no pictures available.
Copyright Status: Not copyrighted in the United States. If you live elsewhere check the laws of your country before downloading this ebook. See comments about copyright issues at end of book.

*** Start of this Doctrine Publishing Corporation Digital Book "The 1893 Duryea Automobile In the Museum of History and Technology" ***

This book is indexed by ISYS Web Indexing system to allow the reader find any word or number within the document.



  CONTRIBUTIONS FROM
  THE MUSEUM OF HISTORY AND TECHNOLOGY:
  PAPER 34


  THE 1893 DURYEA AUTOMOBILE
  IN THE MUSEUM OF HISTORY AND TECHNOLOGY

  _Don H. Berkebile_



  EARLY AUTOMOTIVE EXPERIENCE       5

  CONSTRUCTION BEGINS               6

  DESCRIPTION OF THE AUTOMOBILE    16



[Illustration: FIGURE 1.--DURYEA AUTOMOBILE in the Museum of History and
Technology, from an 1897 photograph. The gear-sprockets were already
missing when this was taken, and the chain lies loosely on the pinion.
Shown at the right, the Duryea vehicle following the recent restoration
(Smithsonian photo 34183).]



  _Don H. Berkebile_
  THE 1893 DURYEA AUTOMOBILE
  _In the Museum of History and Technology_


     _During the last decade of the nineteenth century a number of
     American engineers and mechanics were working diligently to develop
     a practical self-propelled vehicle employing an internal-combustion
     engine as the motive force. Among these men were Charles and Frank
     Duryea, who began work on this type of vehicle about 1892. This
     carriage was operated on the streets of Springfield, Massachusetts,
     in 1893, where its trials were noted in the newspapers. Now
     preserved in the Museum of History and Technology, it is a prized
     exhibit in the collection of early automobiles._

     _It is the purpose of this paper to present some of the facts
     discovered during the restoration of the vehicle, to show the
     problems that faced its builders, and to describe their solutions.
     An attempt also has been made to correlate all this information
     with reports of the now almost legendary day-to-day experiences of
     the Duryeas, as published by the brothers in various booklets, and
     as related by Frank Duryea during two interviews, recorded on tape
     in 1956 and 1957, while he was visiting the Smithsonian._

     THE AUTHOR: _Don H. Berkebile is on the staff of the Museum of
     History and Technology, in the Smithsonian Institution's United
     States National Museum._


Of the numerous American automotive pioneers, perhaps among the best
known are Charles and Frank Duryea. Beginning their work of automobile
building in Springfield, Massachusetts, and after much rebuilding, they
constructed their first successful vehicle in 1892 and 1893. No sooner
was this finished than Frank, working alone, began work on a second
vehicle having a two-cylinder engine. With this automobile, sufficient
capital was attracted in 1895 to form the Duryea Motor Wagon Company in
which both brothers were among the stockholders and directors. A short
time after the formation of the company this second automobile was
entered by the company in the Chicago Times-Herald automobile race on
Thanksgiving Day, November 28, 1895, where Frank Duryea won a victory
over the other five contestants--two electric automobiles and three Benz
machines imported from Germany.

In the year following this victory Frank, as engineer in charge of
design and construction, completed the plans begun earlier for a more
powerful automobile. During 1896 the company turned out thirteen
identical automobiles, the first example of mass production in American
automotive history.[1] Even while these cars were under construction
Frank was planning a lighter vehicle, one of which was completed in
October of 1896. This machine was driven to another victory by Frank
Duryea on November 14, 1896, when he competed once again with
European-built cars in the Liberty-Day Run from London to Brighton. The
decision to race and demonstrate their autos abroad was the result of
the company's desire to interest foreign capital, yet Frank later felt
they might better have used their time and money by concentrating on
building cars and selling them to the local market. Subsequently, in the
fall of 1898, Frank arranged for the sale of his and Charles' interest
in the company, and thereafter the brothers pursued separate careers.


[Illustration: FIGURE 2.--WORKMEN IN THE DURYEA FACTORY in Springfield,
Mass., working on some of the thirteen 1896 motor wagons. (Smithsonian
photo 44062.)]


Frank, in 1901, entered into a contract with the J. Stevens Arms and
Tool Company, of Chicopee Falls, Massachusetts, which built automobiles
under his supervision. This association led in 1904 to the formation of
the Stevens-Duryea Company, of which Irving Page was president and Frank
Duryea was vice president and chief engineer. This company produced
during its 10-year existence a number of popular and well-known models,
among them a light six known as the Model U, in 1907; a larger
4-cylinder called the Model X, in 1908; and a larger six, the Model Y,
in 1909. In 1914 when Stevens withdrew from the company, Frank obtained
control. The following year he sold the plants and machinery, liquidated
the company, and, due to ill health, retired.

Charles, in the meantime, located in Reading, Pennsylvania, where he
built autos under the name of the Duryea Power Company.[2] Here, and
later in Philadelphia under the name of the Duryea Motor Corporation and
other corporate names, he continued for a number of years to build
automobiles, vacuum cleaners and other mechanical devices. Until the
time of his death in 1938, he practiced as a consulting engineer.


= Department of the Interior
  U.S. PATENT OFFICE,
  April 1, 1887
  Admit Mr. Charles E. Duryea
  to this Office on all business days
  between the hours of 2 and 4 P.M.
  until otherwise ordered.

  [Signature]
  Chief Clerk

  Countersigned,
  [Signature]=

[Illustration: FIGURE 3.--ADMITTANCE CARD of C. E. Duryea to the
U.S. Patent Office, 1887. (Gift of Rhea Duryea Johnson.)]



Early Automotive Experience

Born in 1861 near Canton, Illinois, Charles E. Duryea had learned the
trade of a mechanic following his graduation from high school, and
subsequently turned his interests to bicycle repair. He and his brother
James Frank, eight years younger, eventually left Illinois and moved to
Washington D.C., where they were employed in the bicycle shop of H. S.
Owen, one of that city's leading bicycle dealers and importers. While in
Washington, Charles became a regular reader of the Patent Office
Gazette,[3] an act which undoubtedly influenced his later work with
automobiles. A short time later, probably in 1889, Charles contracted
with a firm in Rockaway, New Jersey, to construct bicycles for him, but
their failure to make delivery as promised caused him to go to Chicopee,
Massachusetts, where he contracted with the Ames Manufacturing Company
to do his work. Moving there in 1890, he obtained for his brother a
position as toolmaker with the Ames Company. Thus, Frank Duryea, as he
was later known, also became located in Chicopee, a northern suburb of
Springfield.


[Illustration: FIGURE 4.--CHARLES E. DURYEA, about 1894, as drawn by
George Giguere from a photograph. (Smithsonian photo 48335-A.)]


During the summer, 1891, Charles found the bicycle business left him
some spare time, and the gasoline-powered carriages he had read of
earlier came constantly into his mind in these periods of idleness.[4]
He and Frank studied several books on gasoline engines, among them one
by an English writer (title and author now unknown);[5] this described
the Otto 4-stroke cycle as now used. Some engineers, however, were
concerned because this engine, on the completion of the exhaust stroke,
had not entirely evacuated all of the products of combustion. The
Atkinson engine, patented in 1887, was one of the attempts to solve this
as well as several other problems, thus creating a more efficient cycle.
This engine was designed so that the exhaust stroke carried the piston
all the way to the head of the engine, while the compression stroke only
moved the piston far enough to sufficiently compress the mixture. The
unusual linkage necessary to create these unequal strokes in the
Atkinson engine made it seem impractical for a carriage engine, where
compactness was desired.


=_Agents Want{d}_

SYLPH CYCLES RUN EASY

Pneumatics not enough; springs necessary for comfort & safety Sylph
spring frame saves muscle & nerves & is perfection. All users delighted.
Investigate. We also make a 30 lb. rigid Sylph. Cata. free.

Rouse-Duryea Cycle Co. _Mfrs._ 16 G st., Peoria, Ill.=

[Illustration: FIGURE 5.--ADVERTISEMENT of Duryea bicycle company,
_Scientific American_, September 9, 1893.]


Going to Hartford, Connecticut, possibly on business relating to his
bicycle work, Charles visited the Hartford Machine Screw Company where
the Daimler-type engine was being produced,[6] but after examining it he
felt it was too heavy and clumsy for his purpose. Also in Hartford he
talked over the problem of a satisfactory engine with C. E. Hawley, an
employee of the Pope Manufacturing Company, makers of the Columbia
bicycle. Hawley, searching for a way to construct an engine that would
perform in a manner similar to the Atkinson, yet would have the
lightness and compactness necessary for a carriage engine, suggested an
idea that Charles believed had some merit. This idea, involving the use
of what the Duryeas later called a "free piston," was eventually to be
incorporated in their first engine.[7]


[Illustration: FIGURE 6.--J. FRANK DURYEA, about 1894, as drawn by George
Giguere from a photograph. (Smithsonian photo 48335.)]



Construction Begins

Back in Chicopee again, Charles began planning his first horseless
carriage. Frank later stated that they leaned heavily on the Benz
patents in their work;[8] but while the later engine and transmission
show evidence of this, only the Benz manner of placing the engine and
the flywheel seem to have been employed in the original Duryea plan.
Charles reversed the engine so that the flywheel was to the front,
rather than to the rear as in the Benz patent, but made use of Benz'
vertical crankshaft so that the flywheel rotated in a horizontal plane.
Previously most engines had used vertical flywheels; Benz, believing
that this practice would cause difficulty in steering a propelled
carriage, explained his reason for changing this feature in his U.S.
patent 385087, issued June 26, 1888:

     In motors hitherto used the fly-wheels have been attached to a
     horizontal shaft or axle, and have thus been made to revolve in a
     vertical plane, since the horizontal shaft is best adapted to the
     transmission of power. If, however, in this case we should use a
     heavy rotating mass, corresponding to the power employed and
     revolving rapidly in a vertical plane, the power to manage the
     vehicle or boat would become very much lessened, as the flywheel
     continues to revolve in its plane. I therefore so design the
     apparatus that its crank shaft x has a vertical position and its
     fly-wheel y revolves in a horizontal plane.... By this means the
     vehicle is not only easily controlled, but also the greatest safety
     is attained against capsizing.

To the Duryea plan, Benz may also have contributed the idea for
positioning the countershaft, though its location is sufficiently
obvious that Charles may have had no need for copying Benz. Charles
wisely differed from Benz in placing the flywheel forward, thus
eliminating the need for the long driving belt of the Benz carriage. Yet
he did reject the bevel gears used by Benz, which might well have been
retained, as Frank was later to prove by designing a workable
transmission that incorporated such bevel gears. The initial plan, as
conceived by Charles, also included the details of the axles, steering
gear, countershaft with its friction-drum, the 2-piece angle-iron frame
upon which the countershaft bearings were mounted, and the free piston
engine with its ignition tube, since hot-tube ignition was to be
employed. No provision was made, however, for a burner to heat the tube;
nor had a carburetor been designed, though it had been decided not to
use a surface tank carburetor. The plans called for no muffler or
starting arrangement.[9] Many engines of the period were started simply
by turning the flywheel with the hands, and Charles felt this method was
sufficient for his carriage.


[Illustration: FIGURE 7.--DRAWING SHOWING PRINCIPLE of the Atkinson
engine; this feature is what the Duryeas were trying to achieve with
their free-piston engine, by substituting the free piston for the
unusual linkage of the Atkinson. (Smithsonian photo H3263-A.)]

[Illustration: FIGURE 8.--DRAWING OF 1885 BENZ engine, showing
similarity in general appearance to Duryea engine. From Karl Benz und
sein Lebenswerk, Stuttgart, 1953. (Daimler-Benz Company publication.)]


The Ames plant customarily had a summer shutdown during August; thus,
during August of 1891 Charles and Frank had access to a nearly empty
plant in which they could carry on experiments and make up working
drawings of the proposed vehicle. It cannot now be conclusively stated
whether any parts were made for the car during August or the remainder
of the year. It is more likely that the brothers attempted to complete a
set of drawings. Frank Harrington, chief draftsman at Ames, may have
helped out at this time; from Charles' statement of April 14, 1937, it
is learned that he did prepare drawings during 1892.


=C. BENZ.

SELF PROPELLING VEHICLE.

No. 385,087. Patented June 26, 1888.=

[Illustration: FIGURE 9.--ILLUSTRATION FROM U.S. patent 385087, issued
to Carl Benz, showing the horizontal plane of the flywheel, a feature
utilized by the Duryeas in their machine.]


The first contemporary record of any work on vehicles is a bill, dated
January 21, 1892, for a drawing made by George W. Howard & Company. This
drawing was made in the fall of 1891 by Charles A. Bartlett, a member of
the Howard firm and a neighbor of Charles Duryea, according to a
statement by Charles in the _Automobile Trade Journal_ of Jan. 10, 1925.
He was then also of the opinion that this drawing may not have had
anything to do with the carriage they were about to assemble, but a
notation found by Charles at a later date has led him to believe that it
possibly concerned a business type vehicle he had discussed with an
unidentified Mr. Snow.

By early 1892 Charles needed capital to finance his venture, an old
carriage to attach his inventions to, a place to work, and a mechanic to
do the work. On March 26, he stopped by the Smith Carriage Company and
looked over a selection of used buggies and phaetons. He finally decided
on a rather well-used ladies' phaeton which he purchased for $70. The
leather dash was in so deplorable a state it would have to be recovered
before the carriage went onto the road, and the leather fenders it once
possessed had previously been removed; yet the upholstery appeared to be
in satisfactory condition, and the candle lamps were intact.


[Illustration: FIGURE 10.--PHANTOM ILLUSTRATION of Benz' first automobile.
(From _Carl Benz, Father of the Automobile Industry_, by L. M. Fanning,
New York, 1955.)]


Two days later, Charles was able to interest Erwin F. Markham, of
Springfield, sufficiently to obtain his financial aid in the project. A
contract was drawn up between the two men, which stated that Mr.
Markham was to put up $1000 for which he received a five-tenths share of
the venture. When the $1000 had been used, he then had the option to
continue his aid until the project had been carried to a successful
climax, and retain his half share, or to refuse further funds and
relinquish four of his five-tenths interest in the business.[10] Had he
eventually chosen the latter, Charles would obviously have had to seek
assistance elsewhere.


[Illustration: FIGURE 11.--THE HOWARD & CO. BILL showing the first work
performed toward a motor vehicle. While this may not refer specifically
to the machine now in the museum, it is evidence of early work.]

[Illustration: FIGURE 12.--THE SHOP OF JOHN RUSSELL & SONS. It was on
the second floor of this building that Charles and Frank Duryea built
their first motor vehicle. (Courtesy of the _Springfield Union_.)]


That same day, March 28, Charles found working space and machinery
available at John W. Russell & Sons Company in Springfield.[11] The
Russells had recently completed a large government order of shells for
the famous dynamite guns later used on board the cruiser _Vesuvius_ in
the Spanish-American War, and this left an entire second floor,
approximately 35 × 85 feet, virtually unoccupied, according to an
affidavit of William J. Russell of April 30, 1926. Now ready to begin
the actual work, Charles hired his brother Frank to start construction.
Frank started about the first of April, receiving a raise of about 10
percent over the salary he had received at Ames. Before the vehicle was
completed a number of other men performed work on some of the parts,
among them William Deats who had been hired by Charles primarily to work
on bicycles in the same area, but who occasionally assisted on the
carriage. Russell Company records show time charged against Charles
Duryea by six other Russell employees: W. J. Russell, P. Colgan, C. E.
Merrick, T. Shea, L. J. Parmelee, and A. A. Poissant.


[Illustration: FIGURE 13.--J. FRANK DURYEA looking over the Russell shop
lathe on which he turned parts for the first Duryea vehicle. Photo taken
about 1944. (Courtesy of the _Springfield Union_.)]


It is Frank Duryea's remembrance that he started work on Monday, April
4. He first removed the body, with its springs, and placed it on a pair
of wooden horses where it remained until the summer of the following
year. The next step was to remove the rear axle and take it to a
blacksmith shop where the old axle spindles were cut off and welded to a
new drop-center axle. Following this the front axle spindles were
removed, the ends of the axle slotted, and a webbed, C-shaped piece
carrying the kingpin bearings was fitted into each slot, braced from
underneath by short brackets which were riveted and brazed in place. The
old spindles then were welded to the center of offset kingpins which in
turn were mounted in their bearings in a manner similar to that in which
the frame of the Columbia high-wheeled bicycle was mounted in its fork.
Arms welded to the lower end of the kingpins were connected by the tie
rods to an arm on the lower end of the vertical steering column, located
on the center of the axle.


[Illustration: FIGURE 14.--A PORTION of the Russell shop records showing
charges made against Charles Duryea during 1893-1894.]


While work on the running gear advanced, some progress was made in the
construction of the engine. Patterns for the castings were fabricated,
most of them by Charles Marshall on Taylor Street,[12] and castings were
poured. The body or main casting of the engine resembled a length of
cast-iron pipe: it had no bosses or lugs cast on, nor any water jacket,
for they thought the engine would be kept cool merely by being placed in
the open air. The front end of the engine was secured to the vehicle by
four bolts which passed through the halves of the bearings and onto four
projections on the open end of the engine. As the crankshaft of this
engine was retained in constructing the present engine, it is logical
to assume that the bearings were the same also. The head was cast as a
thick disc, with both intake and exhaust valves located therein, and was
bolted onto the flanged head end of the engine.

Inside the cylinder was the strange arrangement previously suggested by
C. E. Hawley. To the connecting rod was attached a rather ordinary
ringed piston, over which was fitted a free, ringless piston, machined
to fit closely the cylinder bore. This floating piston could move freely
a distance equal to the compression space. The intention was that on the
intake stroke, suction would open the intake valve, which had no
positive opening arrangement, and draw in the mixture which then was
compressed as in a regular Otto engine. Fired by the hot-tube ignition
system, the force of the explosion would drive both pistons down,
forcing the outer one tight against the head of the smaller one, and at
the end of the stroke the longer wall of the outer piston would strike
an arm projecting into the cylinder near the open end, moving forward
the exhaust valve rod to which the arm was attached, thus pushing open
the valve in the head.[13] On the exhaust stroke the unrestrained outer
piston moved all the way to the head, expelling all of the products of
combustion and pushing the exhaust valve shut again. With a bore of four
inches or less, this engine, Charles believed, should develop about
three horsepower and run at a speed between 350 to 400 revolutions per
minute.[14]

As no ignition system had yet been provided, they prepared a 4-1/2-inch
length of one-quarter inch iron pipe, closed at one end, and screwed the
open end into the head. Heating this tube with an alcohol burner would
cause ignition of the mixture when a portion of it was forced into the
heated tube toward the end of the compression stroke. No attempt was
made at this time to use the electrical make-and-break circuit used in
their second engine, as the free piston would have wrecked the igniter
parts on the exhaust stroke, and the push rod located on the end of the
piston would have prevented the piston from closing the exhaust valve.

After keying the flywheel to the lower end of the crankshaft, Charles
and Frank decided to make an attempt to run the engine. Carrying it
into a back room, probably during July or August, 1892, they blocked it
up on horses. A carburetor had not yet been constructed, so they
attempted to start the engine by spinning the flywheel by hand, at the
same time spraying gasoline through the intake valve with a perfume
atomizer previously purchased at a drugstore in the Massasoit House.
Repeated efforts of the two men to start the engine resulted in failure.


[Illustration: FIGURE 15.--CONJECTURAL drawing of the free-piston engine
used in the Museum vehicle prior to the present engine. (Drawing by A. A.
Balunek.)]


In the belief that the defects, whatever they might be, could be
remedied after the engine was installed, the Duryeas went ahead and
mounted the engine in the carriage. To do this they shortened the
original reach of the carriage, allowing the engine itself to become the
rear continuation of the reach. The four ears on the front, or open end
of the engine, were bolted to the centrally located frame, with the
bearing blocks in between. This frame, the same one now in the vehicle,
was constructed of two pieces of angle iron, riveted and brazed
together. Greater rigidity was obtained by a number of half-inch iron
rods running from the frame to both front and rear axles. Because of the
absence of any mounting brackets on the engine casting itself, a wooden
block with a trough on top to receive the body of the engine was fitted
between the engine and the axle, while two U-shaped rods secured it with
clip bars and nuts underneath.

Beneath the flywheel was mounted the friction transmission of Charles'
design. This consisted of a large drum, perhaps 12 inches in diameter,
equal in length to the diameter of the flywheel and keyed to a shaft
directly under the center of the crankshaft and parallel to the axles.
(Diameter of drum estimated by examination of existing features.) In
view of the four projections of the frame extending downward and just in
front of the jackshaft position, it is likely that these supported the
four jackshaft bearings. Being a bicycle manufacturer, Charles saw the
need for a differential or balance gear. Accordingly, he purchased from
the Pope Manufacturing Company a very light unit of the type formerly
used on Columbia tricycles, and installed it somewhere on the jackshaft.
A small sprocket on each end of the shaft carried a chain from the
larger sprockets clamped to the spokes of each rear wheel. The lower
surface of the flywheel had been machined so as to form a friction disc,
with a one-quarter inch depression 3 inches in diameter turned in the
center. The drum was positioned so that its upper surface was
one-quarter inch below the face of the flywheel. Hanging loosely around
the drum was an endless belt, one and one-half inches wide, first made
of rather soft rubber packing material. The belt lay on the drum surface
between the fingers of a shipper fork. While it lay under the 3-inch
depression in the center of the flywheel, the belt and the drum were at
rest, but when it was moved away from that depression the belt wedged
itself tightly between the drum and flywheel, the resulting friction
causing the drum to turn and setting the vehicle into motion. The
farther the belt was moved toward the outer edge of the wheel, the
faster the drum and the vehicle moved.

In September 1892, Charles, who had contracted with a Peoria, Illinois,
firm to have bicycle parts manufactured, decided to move to that city.
Departing on the 22d of September, he did not return to Springfield for
over two years, and thus was not able to participate in the completion
and testing of the carriage. At the time of his departure several units
on the carriage were incomplete. A carburetor had not been built, nor
had a satisfactory burner or belt-shifting device. Charles had
experimented with various shifting levers just before leaving
Springfield: however, as he reported later, he did not succeed in
designing a workable mechanism.[15] Frank Duryea, now left to finish the
work unassisted, continued the experiments with the belt shifter. He
finally worked out a fork mounted on a carriage that was supported by
two rods, each of which slid in two bearings. Although the short
distance between the two bearings caused the shifter carriage to bind
occasionally, the device was thought to be sufficient and was installed
just in front of the frame. Connected to a system of cables, arms, and
rods, possibly similar to the present cam-bar shifter, the shipper-fork
carriage was moved from side to side by raising or lowering the tiller.


[Illustration: FIGURE 16.--DRAWING of the carburetor used on both Duryea
engines, 1893-1894, showing sight feed on left and choke mechanism on
right. (Smithsonian photo 13455.)]


Turning now to an efficient burner for heating the ignition tube, Frank
started with an ordinary wick-type kerosene lamp with a small metal
tank. Wishing to use gasoline in the lamp, he found it necessary to
fabricate a number of burner units before he found a type that gave him
a clean blue flame. He then found the flame to be very sensitive to
drafts and easily extinguished, and devised a small shield or chimney to
afford it some protection.

Early in October, while still working with the burner, Frank developed a
severe headache. He felt the fumes of the lamp had probably caused it,
and went to his room in the home of a Mr. and Mrs. Patrick on Front
Street in Chicopee. After he noticed no improvement, a doctor's
examination showed he had typhoid fever, and on October 5 he was
admitted to the Springfield Hospital. Here he remained for one month,
being discharged on November 5. Returning to his room he was informed
that because of the fear that he might be a typhoid carrier, the
Patricks preferred him to find other lodgings. He readily accepted the
invitation of Mr. and Mrs. D. H. Nesbitt of Chicopee to take a room with
them. After several weeks recuperation in their home, he left
Springfield to visit his mother in Wyoming, Illinois.

After a restful visit at home Frank Duryea returned to Springfield and
finished the work on his burner. Now only the lack of a carburetor
prevented a trial of the vehicle. He recalls that he studied several
gasoline-engine catalogs and in one of them, a Fairbanks catalog he
believes,[16] he saw a design that seemed to suit his needs. He decided
to simplify the construction and operation of his carburetor and had a
small bronze casting made to form the body of it. Inside was a gasoline
chamber with two tapped openings, one to receive a pipe from the
2-gallon gasoline tank mounted above the engine, the other taking a pipe
to the overflow tank underneath the engine, thus maintaining the
gasoline level without the use of a float valve. This latter tank had a
hand pump on one end so that the overflow gasoline could at times be
pumped again into the main tank. Gasoline passed from the carburetor
chamber through a needle valve, adjusted by a knob on top, then through
a tiny tube that entered the pipe leading to the intake valve. It is not
certain whether this intake pipe was at first fitted with the choke
arrangement later used with the second engine.

Frank, hoping at last to be rewarded for his efforts by the sound of
explosions from the engine, was ready to give the carriage an indoor
trial. Standing astraddle of the reach and facing to the rear, he spun
the flywheel with both hands, taking care not to get his hands caught
between the wheel and the frame. His efforts were in vain, as there was
complete failure to obtain ignition. He then made a new ignition tube,
nearly twice as long as the original 4-1/2-inch tube, and turned down
its wall as thin as he thought safety allowed. The thinner wall did not
conduct the heat off so rapidly and thus kept the tube hot enough to
permit ignition. After this slight change, he was able to get a few
occasional explosions but he does not now believe that the engine ever
operated continuously. Each explosion was accompanied by a loud knock,
due, undoubtedly, to the movement of the free piston. Had the engine
operated continuously, it is likely that the action of the free piston
would have shortly wrecked the engine. Further efforts appeared
unwarranted until alterations could be made.


= ALL AGREEMENTS CONTINGENT UPON STRIKES, ACCIDENTS AND OTHER CAUSES
                     BEYOND OUR CONTROL

  CABL ADDRESS "MOTODURYEA," PHILADELPHIA      WESTINGHOUSE AND W. U. CODES

  DURYEA LABORATORIES                          CHAS. E. DURYEA, CONSULTING
                                                   ENG'R
  WE SOLV MECHANICAL AND OTHER PROBLEMS        TESTS, SEARCHES, OPINIONS,
                                                   EXPERT IN PATENT SUITS.
  DEVELOP INVENTIONS, ASSIST INVENTORS         35 YRS EXPERIENS. HEATING,
                                                   GAS ENGIN, AUTO, ETC.
  FOR THINGS TO MAKE OR SEL CONSULT US         A PRIDEWORTHY RECORD OF
                                                   THINGS ACCOMPLISHT

                            PHILADELPHIA, PA.
                            3528 N. 18TH ST.

  Dear Mr Mitman                                  24 Nov 1920

On the train I had some time to puzzle over that car. Been working
nights to make up time lost in the day so did not hav much.

I made a sketch for you but did not show the spring that holds the
circuit breaker in contact with the spark point. That thin finger was
part of it. A spring was wound spirally--not helically--around the
projecting end of the breaker pivot and the end of the spring hookt over
the thin finger. See sketch herwith.

Just how the central end of the spring wire was fastened to the square
of the pivot I do not kno. We did in some cases bore a hole thru and
simply stick the spring thru but this put most of the action right at
the bend in the wire and it broke quickly. So in other cases we fitted a
light grooved spool or pulley and wound the spring around this and so
avoided a sharp bend. If this was used it has been lost with the spring.
A couple generations of boys playing in that barn was too many.

The Haynes steering sketch also worries me. If that vertical post came
up thru that slot in the floor the crank had to be long as the sketch
shows in order to get over to the driver conveniently. Then if he tried
to make a complete circle with it he could not reach far enuf forward to
do it easily. And he had to make a turn or two be cause H shows bevel
gears of about same size so the post had to make same number of turns
the worm made. Sketch herewith to illustrate my thought.

  Yrs for the historical facts
         Chas. E. Duryea=


[Illustration: FIGURE 17.--LETTER EXPLAINING the circuit breaker spring
and the brass projection on top of the ignition chamber. Mr. Mitman was,
at the time, curator of engineering in the U.S. National Museum.]


The two pistons were first pinned together into a single unit which was
probably ringless, since it is believed the walls of the outer piston
were too thin to admit rings. Because the piston no longer struck the
exhaust valve, a short rod had to be screwed into the pistonhead; this
pushed the valve shut at the completion of the exhaust stroke. The
remaining problem, the opening of the exhaust valve, was solved by
screwing a device to the side of the cylinder which operated from the
sidewise motion of the connecting rod. This device shifted a small
spacer between the piston and the striker arm of the exhaust-valve rod,
permitting the piston to push open the exhaust valve. On alternating
strokes the spacer shifted back out of the cylinder; therefore, no
contact was made between piston and striker arm. Sometime in February
1893, the altered engine was successfully started.

At last the transmission could be tested. Will Russell had come upstairs
to watch the trial, and according to a statement by him, given April 30,
1926, Frank, standing to the right of the engine and behind the rear
axle, reached forward and with the combination tiller-belt-shifter,
moved the belt into driving position. The carriage started forward, but
as it approached the wall of the building Frank discovered that he could
not get the belt back into the neutral position. In desperation, he
grasped the rear axle with both hands and was dragged a short distance,
attempting to stop the machine, before it struck the wall. He had,
however, sufficiently retarded it so that no damage was done.

This short trial demonstrated some of the weaknesses in the friction
transmission. Since the speed of the surface of the flywheel, in feet
per second, increased in proportion to the distance of the point of
contact from the center, the outer edge of the belt attempted to run
faster than the inner edge. This conflict of forces not only put an
undue load on the motor causing a great loss of power, but it also
created a tendency for the belt to work towards the outer edge of the
flywheel. Conversely, when the operator desired to return the belt to
neutral, it strongly resisted any efforts to slide it toward the center
of the wheel, as Frank had learned from the wall-bumping incident.
Furthermore, the rubber belt on the friction drum had worn so badly
that it had to be replaced at least once during the brief experiments.


[Illustration: FIGURE 18.--IGNITION CHAMBER, switch, and breaker contacts
of the present Duryea engine.]


At this point, Frank and Markham felt that the carriage was anything but
satisfactory. While they were trying to decide what steps should be
taken next, Frank added one last improvement to the engine. Fearing that
the uncooled cylinder might suffer damage from the excessive heat, he
constructed a copper water jacket in two halves, drew them together
around the cylinder with clamping rings and soldered the seams. Asbestos
packing sealed the end joints where the jacket contacted the cylinder.
Thinking back, Frank does not recall that he ever used a water tank with
this engine, though he does remember adding water through the upper
jacket opening. The engine was run only for a few brief periods
following this addition.

Obviously this collection of patchwork could not fulfill their needs for
an engine. First, it would be next to impossible to start if the body
was placed on the running gear, as the flywheel then would be
practically inaccessible. The absence of rings on the piston caused a
further loss of power to the already overloaded engine. The flywheel was
too light. The absence of any form of governor left the operator with no
control over the engine speed. Ignition was poor, partly owing to the
hot-tube arrangement, and partly to the excessive distance between the
engine and the carburetor. Frank wrote his brother Charles on February
6[17] that in his opinion the mixing chamber was so far from the engine
that the gasoline could not be drawn into the cylinder as liquid, and it
was too cold to vaporize and go in as gas. Thus he had difficulty in
getting the engine started. When it did start the explosions were
unmuffled. Less important to him than these defects, however, was the
awkward and unsightly wooden engine mount.



Description of the Automobile


Sometime in the early part of March, Frank convinced Markham that he
could construct a new and practical engine, using only previously tried
mechanical principles.[18] Drawing up new plans for this engine, he took
them to Charles Marshall who began work on the patterns for the new
engine castings. After the patterns had been delivered to the foundry,
Frank left Springfield for a short vacation in Groton, Connecticut,
where he visited with his fiancée. On May 17, 1893, several weeks after
his return to Springfield, they were married.

The engine castings were undoubtedly received from the foundry prior to
Frank Duryea's marriage, and the work of machining and assembling the
parts went on through the spring and summer. This engine, still on the
carriage in the Museum of History and Technology, is cased with a water
jacket, and has bases on top to support the front and rear bearings of
the starting crankshaft, and a base with port on the upper right side
where the exhaust-valve housing was to be bolted. On the underside are
two flanges, forming a base for seating the engine on the axle. A
separate combustion chamber is cast and bolted to the head. Inside this
chamber are located the igniter parts of Frank's electric ignition
system. The fixed part, an insulated electrode, is screwed into the
right side of the chamber and is connected with the ignition switch
outside, to which one of the ignition wires is attached. A breaker arm
inside is pinned to a small shaft extending through the top of the
chamber. Around the breaker-arm shaft is a small coil spring (originally
a spiral spring, according to the letter of Charles Duryea shown in fig.
17), anchored below to a thin brass finger extending toward the right
side of the car, and above to a nut screwed tightly onto the shaft. This
nut is also the terminal for the other ignition wire. The action of the
spring keeps the breaker arm and the electrode in constant contact until
the push rod on the end of the piston strikes the arm and separates the
two parts. Breaking contact then produces the ignition spark. Since the
mechanism would spark at the end of both the exhaust and compression
strokes, the battery current is conserved by a contact strip, on the
underside of the larger exhaust-valve gear, by means of which the flow
of current is cut off during the greater part of the cycle.

On the left side of the combustion chamber is bolted the housing
containing the tiny intake valve. A comparatively weak spring seats this
valve in order that the suction created by the piston can easily pull it
open. Clamped onto the valve housing is the intake pipe, enclosing the
choke and carrying the carburetor on its forward side. The choke
consists of two discs which block the pipe, each with four holes at the
edges and one in the center. Turning one disc by means of a small handle
outside, so that the four outer holes cannot coincide with those in the
other disc, decreases the flow of air and causes all air to rush through
the center hole, where the tiny carburetor tube passes through. The
present carburetor was transferred over from the first engine. When
Frank later installed the engine on the carriage he noticed the close
proximity of the intake pipe to the open end of the muffler. Believing
that the fumes might choke the engine, he attached a long sheet-metal
tube to the intake pipe so that fresh air would be drawn in from a point
farther forward on the vehicle.

Moving to the right side of the engine brings the exhaust-valve assembly
into view. This valve is contained in a casting bolted over the exhaust
port in the side of the cylinder, and from the casting a pipe leads to
the muffler underneath. The valve is pushed open by a rod connected to a
crank which is pinned to the lower end of a shaft carrying an iron gear
on top. This gear is in mesh with a fiber gear, keyed to the upper end
of the crankshaft, with half the number of teeth. This ratio permits the
opening of the exhaust valve on every other revolution.

The crankshaft of the first engine was retained for the new engine, thus
giving the two engines the same stroke of 5-3/8 inches, but the bore was
increased slightly to 4-3/8 inches. With this larger bore and with the
engine speed increased to 500 rpm, Frank rated this engine at 4 hp.[19]
A heavier flywheel, with a governor resting in the upper recess, was
pressed onto the crankshaft. As the operator of the vehicle had no
control over the carburetor once he climbed into the seat, this governor
was necessary to maintain regular engine speed. Its function was to move
a slide on the exhaust-valve unit to prevent the valve from closing.
Thus the engine, with the suction broken, could not draw a charge on the
next revolution. During the recent restoration of this carriage it was
found that while most parts are still intact, nearly all of the
governor parts are missing. A description of them must therefore be
based on the recollections of Frank Duryea, along with certain evidences
seen on the engine.


[Illustration: FIGURE 19.--UNDER SIDE of exhaust valve mechanism showing
electrical contacts that give spark only on every other revolution.]


Just on top of the flywheel, and surrounding the crankshaft, rest two
rings, 3-7/8 inches in diameter. Into the opposing surfaces of these
rings are cut a series of small inclined planes, appertinent to each
other. On the outer circumference of the upper ring two pins pass
through a pair of lugs mounted in the flywheel, causing the ring to
rotate with the flywheel, yet permitting vertical movement. Underneath,
the other ring is allowed to turn slightly when, by means of two
connecting links, the arms of the governor push against them. These two
arms, each constructed like a right angle and pivoted at the apex, are
arranged directly opposite each other far out in the flywheel recess. As
a weight on one angle of the arm presses outward by centrifugal force
against a spring, the other angle presses inward against the connecting
link mentioned above. The turning of the lower set of inclined planes
against the fixed set above raises the upper ring and the fork resting
on it. The upward movement of this fork, which is a continuation of an
arm pivoted to a bracket midway between the crankshaft and the slide
carrying the exhaust valve stop, causes the other end of the arm to
drop, pulling the slide down with it. In this manner the closing of the
exhaust valve is blocked, preventing the intake of the next charge, and
therefore the engine misses one or more explosions until it slows to its
normal speed.

A starting shaft is mounted above the engine casting by a cast-iron
bracket on either end. The front end of the shaft has a bevel gear which
is held by a coil spring behind the front bracket, just out of contact
with a bevel gear pressed onto the upper end of the crankshaft. The
short rear portion of the shaft is a tube which slides over the main
shaft. Fitting the removable handcrank to the squared end of the hollow
shaft and turning the crank clockwise, will advance the forward section
of shaft through the medium of a pair of inclined collars. With the
bevel gears now engaged the engine may be cranked. When ignition begins,
the inclined collars slide back down each other's surfaces, the shaft is
again shortened, and its bevel gear springs free of the one on the
crankshaft.


[Illustration: FIGURE 20.--PISTON AND CONNECTING ROD of second engine.
Screw on rod is where oil is poured into connecting rod to lubricate wrist
pin and crankshaft.]


While Frank worked on his engine, he realized that certain parts of the
old running gear would need to be altered or replaced. In view of the
heavier and more powerful engine, he felt the old wheels, probably
having compressed band hubs, were inadequate. He procured a set of new,
heavier wheels[20] with Warner-type, cast-iron reinforced hubs. The
angle iron frame, apparently sturdy enough to carry the added weight,
was retained, but it was decided to install a heavier rear axle.[21] The
front axle assembly was at first allowed to remain unchanged, as was the
steering apparatus. A short time later when the engine and friction
transmission were bolted in place on the running gear, Frank saw that
the rigidity of the framework had an undesirable effect. When the
vehicle passed over any unevenness in the shop floor, the framework was
distorted and caused the jackshaft bearings to bind tightly enough on
the shaft to prevent its being turned by hand. In order to provide the
3-point suspension necessary to eliminate this distortion, Frank
attached the forward parts of the framework to an extra wooden spring
bar, installing between this bar and the front axle a vertical fifth
wheel of the type ordinarily used in a horizontal position in any light
carriage.

Frank next calculated that with the faster running engine the speed of
the vehicle would be about 15 miles an hour, too much for the heavily
loaded wheels. As he intended to make use of the original transmission,
he decided to decrease the speed by increasing the size of the friction
drum. He accomplished this by sliding a heavy fiber tube over the
original drum, bringing its diameter to approximately 14 inches. The
original shipper fork carriage was improved by separating the original
bearings to a greater distance, and eliminating one of the two bearings
on one end. This permitted a smooth and free operation of the small
sliding carriage.

In August 1893, possibly as a result of indoor experiments, Frank
discovered that the chains running from the small 5-tooth[22] jackshaft
sprockets to the large, bronze, wheel sprockets were tight at some times
and loose at others. This caused considerable unnecessary noise. The
difficulty apparently was the result of the sprockets being cast and not
machined. The patternmaker had said he believed he could make the
pattern accurately enough so that no machining of the castings would be
necessary. Nice castings were produced, but "these sprockets were the
reason why an unusual construction was put on the crankshaft [meaning
jackshaft]," explained Frank Duryea during an interview at the National
Museum on November 9, 1956. Elaborating further, in reply to the queries
of E. A. Battison, of the Museum's division of engineering, Duryea told
of the problem and the solution when he explained that the sprockets had
places where the shrinkage was not even. The hot metal, contracting as
it cooled, did not seem to contract uniformly, creating slightly unequal
distances between teeth. This resulted in the chain hanging quite loose
in some places and in others the tightness prevented adjustment. He
contacted Will Russell, foreman of the Russell shop, where the
automobile was made, and Russell showed him a device, built by George
Warwick, who had made the Warwick bicycle. It was an internal-cut gear,
according to Duryea's description, with sprocket teeth on its periphery.
With sprockets outside and normal teeth inside, the wheels were about 6
inches in diameter, externally.

These little internal-gear sprockets were hung on double-shrouded
pinions secured to each end of the jackshaft. A solid disc or housing
fitted against both ends of the pinion to prevent the internal gear
from working off sideways. Duryea explained the function of these
unique little parts: "as soon as tension came on that ring gear that we
talked about, it not only tightened the chain hanging on this sprocket
on the upper side, but it tightened it on both sides. [The sprocket]
rocks right out: both sides of the chain are tight."

This feature is one rarely encountered elsewhere, and Duryea, later in
the interview said, "To tell you the truth, I think I was just a little
bit ashamed about the thing, because I had to pull it off. I didn't like
the looks of it after I got it on."

Two small tanks, each with a capacity of approximately two gallons, were
mounted over the engine in the positions they still occupy, the one on
the left for gasoline,[23] the other for water. The small fitting under
the gasoline tank has a thumbscrew shutoff and a glass-sight feed tube,
leading to the carburetor. The water tank, an inch longer than the
gasoline tank, communicates with the water jacket of the engine through
two pieces of half-inch pipe, entering the jacket from above and below.
The overflow tank, holding just over a gallon, is suspended between the
rear axle and the flywheel.

A number of mufflers were constructed for the engine.[24] The first
experimental one was built of wood, being a box 6 × 6 × 15 inches with a
hole for the exhaust pipe in one end and a series of small holes in the
opposite end. Inside, Frank arranged metal plates which were somewhat
shorter than the depth of the box. Every other one was attached to the
bottom of the box; the intermediate plates were fastened to the top.
This contrivance muffled the sound considerably, but, as might be
expected, soon began to smoke. There can be little doubt that it was
replaced before any of the outdoor trials began. Another type consisted
of a cylindrical metal shell, perhaps six inches in diameter and ten or
twelve inches long. Here a series of perforated baffle plates were
inserted, with alternating solid plates having parts of their external
edges cut away. Two bolts running the length of the muffler held on the
cast-iron heads in a manner quite similar to the Model-T Ford mufflers
of later years. Though partially satisfactory, Frank, in a November 6,
1957, interview, complained that it made a metallic sound. Perhaps this
was the muffler he used from September to November 1893.


[Illustration: FIGURE 21.--ILLUSTRATION OF THE NO. 2 SAMSON BATTERY used
by the Duryeas in their vehicle. (Smithsonian photo 46858.)]


On August 28 Frank wrote to Charles saying the carriage was almost ready
for the road and that he hoped to take it out for a test on the coming
Saturday, "off somewhere so no one will see us...."[25] There is no
evidence showing whether the amount of remaining work permitted the
proposed trial on September 2. The body was finally replaced on the
running gear, at which time it was found necessary to raise the seat
cushion several inches by the insertion of a framework made of old
crating boards. This allowed sufficient room between the seat and the
frame to suspend the batteries and coil. Six no. 2 Samson batteries were
contained in this space, three on each side, in rows parallel to the
side of the vehicle. The Samson battery consisted of a glass jar
containing a solution of ammonia salts and water, with a carbon rod in
the center, housing a zinc rod. It is difficult to understand why they
used Samson batteries rather than dry cells; perhaps they were concerned
with the mounting cost of the machine and were making use of parts
already on hand.[26] A coil, possibly from an old gaslight igniter
system, accompanied the Samson batteries under the seat. This original
coil is now missing.

The iron dash frame, previously recovered and provided with a rain apron
to be pulled up over the knees in the event a heavy rain blew in under
the carriage top, was bolted back in place. Frank and Mr. Markham gave
the carriage a quick painting; later Frank admitted, "the machine never
had a good job of painting."[27] Before the motor wagon actually got
onto the road, a reporter on the _Springfield Evening Union_ got some
statistics on it and an item appeared on September 16, giving the first
public notice of the machine.


=NO USE FOR HORSES.

Springfield Mechanics Devise a New Mode of Travel.

Ingenious Wagon Now Being Made in This City for Which the Makers Claim
Great Things.

A new motor carriage, which, if the preliminary tests prove successful
as is expected, will revolutionize the mode of travel on highways, and
do away with the horse as a means of transportation, is being made in
this city. It is quite probable that within a short time one may be able
to see an ordinary carriage in almost every respect, running along the
streets or climbing country hills without visible means of propulsion.
The carriage is being built by J. F. Duryea, the designer and B. F.
Markham, who have been at work on it for over a year. The vehicle was
designed by C. E. Duryea, a bicycle manufacturer of Peoria, Ill., and he
communicated his scheme to his brother, who is a practical machanic in
this city.

The propelling power is furnished by a two-horse power gasoline motor
situated near the rear axle and which, when started, runs continuously
to the end of the trip, notwithstanding the number of times the carriage
may be stopped. The speed of the motor is uniform, being about 500
revolutions a minute, and is so arranged that it gives a multiplied
power for climbing hills and the lower the rate of speed the greater
power is furnished by the motor. The slowest that the carriage can be
driven is three miles an hour and the speed can be increased to fourteen
or fifteen miles an hour. The power is transferred from the driving
wheel of the motor, which runs horizontally with the main shaft by an
endless friction belt running on a drum wheel. The belt is controlled by
a lever within easy reach of the driver and is shifted along the drum
wheel to increase or decrease the speed. The driving wheel is about
twenty inches in diameter, having in its center a depression to which
the belt is shifted to stop the carriage.

The carriage can be reversed by shifting the belt from the end of the
drum, which gives the forward motion to the opposite side beyond the
depression in the driving wheel. The power which has been transferred to
the driving shaft from the motor is in turn transferred to the two rear
wheels of the carriage by a combination gear and sprockets. An endless
chain connects the sprockets on the carriage wheels to the sprocket
wheels on the driving shaft. All of the motive power is located under
the body of an ordinary phaeton, the hight of which is not increased by
the machinery. The motor is started by a crank which is easily applied
to a shaft in the rear of the carriage and the gasoline is ignited in
the cylinder by electricity. An automatic device stops the flow of
gasoline into the cylinder when the motor ceases running. The gasoline
is carried in tanks, which hold about two gallons, and which will run
the carriage for about eight hours. The wagon is guided by a bicycle
bar, and the speed is also controlled by this bar.

The method employed in this is as follows: To start the carriage press
the lever down; to reverse it throw the lever up and to guide the wagon
turn the lever either to the right or left. The front axle instead of
turning horizontally plays up and down, in order that the machinery may
be on a level with the rear wheels, while the front wheels are set on
the axle by a pivotal joint and are connected with the guiding lever by
bars with ball bearings. The carriage complete weighs about 220 pounds,
and the essential features are already covered by patents while others
are pending.

It is estimated that the carriages can be sold for about $400, and a
stock company will probably be formed to manufacture them.=

[Illustration: FIGURE 22.--FROM THE _Springfield Evening Union_,
September 16, 1893.]


Toward the latter part of the following week, Frank was ready to give
the product of his labors its first road trial. On September 21 the
completed carriage was rolled onto the elevator at Russell's shop.
Seeing that the running gear was too long for the elevator, they raised
the front of the machine, resting the entire weight of 750 pounds on the
rear wheels. Once outside the building, they pushed it into an area
between the Russell and Stacy buildings. After dark, "so no one will
see," Will Bemis, Mr. Markham's son-in-law, brought a horse and they
pulled the phaeton out to his barn on Spruce Street.[28] There, on
Spruce and Florence Streets the first tests were made. The next day
Frank wrote his brother saying, "Have tried it (the carriage) finally
and thoroughly and quit trying until some changes are made. Belt
transmission very bad.[29] Engine all right." He did admit the engine
seemed to be well loaded most of the time. He also had an idea in mind
to replace the poor transmission, explaining the plan to Charles: "The
three gears[30] on secondary shaft have friction clutches, the two bevel
gears on same shaft are controlled by a clutch which frees one and
clutches the other at will. This provides a reverse."


=PRIMARY SPARK COILS.

 FOR ELECTRIC GAS LIGHTING.

 Cat. No. 48304.  8 inch                      Price, each, $3 20
    "     50304. 10   "                            "        3 70
    "     52304. 12   "                            "        4 30
    "     54304. Detached Gas Lighting Relays      "        2 75

 For Spark Coils with Relay Attachment, add $2.50 to price for Spark Coil.=

[Illustration: FIGURE 23.--TYPE OF SPARK COIL the Duryeas are believed to
have used in their electrical circuit, as shown in a catalog illustration.
(Smithsonian photo 46858-A.)]


The _Springfield Evening Union_ of September 22 carried a notice of the
trial. This report, too, commented on the faulty transmission and the
plan already in Frank's mind for the new transmission.

     ... The friction belt allowed of the speed being steadily increased
     or diminished at the will of the driver and caused no sudden
     forward motion of the carriage, but while this arrangement has many
     advantages it uses up the power so that the two-horse power
     furnished by the motor [somewhat less than the rating Frank gave
     the engine] was reduced to less than three-fourths horse power on
     reaching the main shaft. This would not be sufficient to propel the
     carriage up steep grades but would be sufficient to run the
     carriage on level road.

     The inventors will do away with this belt in favor of a clamp gear
     and will make the drum wheel smaller. By this means there will be
     very little power lost in transmission to the shaft and by a
     patented arrangement the carriage may be started gradually but the
     speed must be increased by shifting the clamp gear to a succession
     of gears on the driving wheel of the motor. The speed of the
     carriage will be fixed permanently according to the size of the
     gear that the smaller one is shifted to. The test of the machine
     with the gear arrangement will be made soon.


In October Frank decided on another vacation and went to Chicago to see
the Columbian Exposition. Charles had come up from Peoria to see the
fair and the two talked over the progress on their motor wagon, and
discussed the transmission problem. They gave particular attention to
everything relating to engines and motor carriages, and Frank recalls
seeing a Daimler quadricycle that impressed him with its performance.[31]
Just what decisions the two might have made there are unknown, yet it is
likely that they agreed to give the old transmission one more chance to
prove itself.

Returning to Springfield, probably in the first week of November, Frank
gave the friction drive its final test, this time substituting a leather
belt for the rubber one first used.[32] Mr. Markham, though intensely
interested in the experiments, apparently was dubious concerning the
safety of the carriage. It had no brakes, and fearing failure of the
transmission on a downgrade, he was reluctant to ride in the machine. On
November 9 he asked Will Bemis to try it for him. The following day the
_Springfield Morning Union_ gave a description of the run:

     Residents in the vicinity of Florence street flocked to the windows
     yesterday afternoon astonished to see gliding by in the roadway a
     common top carriage with no shafts and no horse attached. The
     vehicle is operated by gasoline and is the invention of Erwin
     Markham and J. F. Duryea. It has been previously described in The
     Union and the trial yesterday was simply to ascertain the practical
     value of a leather friction surface which has been substituted for
     the rubber one previously used. The vehicle, which was operated by
     Mr. Bemis, started from the corner of Hancock avenue and Spruce
     street and went up the avenue, up Hancock street and started down
     Florence street, working finely, but when about half-way down the
     latter street it stopped short, refusing to move. Investigation
     showed that the bearing had been worn smooth by the friction and a
     little water sprinkled upon it put it in running condition again.
     The rest of the trip was made down Florence and down Spruce street,
     to the residence of the inventors. They hope to have the vehicle in
     good working condition soon.


[Illustration: FIGURE 24.--RUNNING GEAR OF DURYEA VEHICLE, showing the
second engine and other parts as used in January 1894.]


The same evening, the late edition ran a brief paragraph stating that
"the test was made to determine the value of a leather friction surface
for propelling the wagon, that had been substituted in place of the
rubber surface, used in the former test." Bemis, according to Frank
Duryea's recollection, was not impressed with the performance of the
machine, saying "the thing is absolutely useless," and for a time it
appeared that further support from Markham would not be forthcoming.
Frank, believing eventual success to be near, drew up plans showing his
geared transmission, and with these managed to gain Markham's partial
support. Money for material and use of the shop was to continue, but
Frank was to complete the work on his own time.

Now receiving no salary, Frank worked hurriedly on the transmission
throughout late November, December, and the first two weeks of January.
First discarding the old friction drum and shaft, and the shipper-fork
carriage, he bolted a rawhide bevel gear to the lower surface of the
flywheel. This turns two bevel gears, in opposite directions, on a
countershaft directly underneath, approximately in the position of the
old jackshaft. The right bevel gear is secured to the main countershaft
on which two clutches are mounted, one on each side of the crankshaft.
On a sleeve turning freely around the countershaft is mounted the
reverse bevel gear and clutch. Three free-running clutch drums, the
right one carrying the high-speed gear, the two on the left carrying the
combination low speed and reverse gear between them, complete the
countershaft assembly. The clutch assemblies are of Frank Duryea's
design, having internal arms, expanding outward to press leather-faced
shoes against the inner surface of the drum, thus securing the drum and
its gear to the shaft. Behind this machinery is the jackshaft with its
small differential on the right, two laminated rawhide gears[33] meshing
with the iron gears of the countershaft, and the internal-gear sprockets
hanging on the small pinions at either end. A sliding cam bar, mounted
nearly in the position of the former shipper-fork carriage, is operated
by the vertical movement of the tiller handle to engage any one of the
three clutches. With the tiller depressed, the vehicle is in reverse.
Elevating it slightly puts it into low gear, and raising it still higher
runs the machine at its highest speed.


[Illustration: FIGURE 25.--HALF OF JACKSHAFT, showing rawhide gears,
double shrouded pinion and half of the Columbia differential.]

[Illustration: FIGURE 26.--HALF OF JACKSHAFT showing double-shrouded
pinion and half of the Columbia differential.

[Illustration: FIGURE 27.--CAM BAR IN FOREGROUND, operated by tiller,
actuates the various clutches of the transmission. The overflow gasoline
tank with the hand pump can be seen in the rear.]


= UNITED STATES PATENT OFFICE.


  CHARLES E. DURYEA, OF PEORIA, ILLINOIS.

  ROAD-VEHICLE.


  SPECIFICATION forming part of Letters Patent No. 540,648, dated
    June 11, 1895.

  Application filed April 30, 1894. Serial No. 509,466. (No model.)


  _To all whom it may concern_:

  Be it known that I, CHARLES E. DURYEA, a
  citizen of the United States, residing at Peoria,
  in the county of Peoria and State of Illinois,
  have invented new and useful Improvements                     5
  in Road-Vehicles, of which the following is a
  specification.

  The object of this invention is to produce a
  road vehicle which shall be self-propelled, not
  unduly heavy, simple and easy of control and                 10
  comparatively inexpensive, together with
  such minor objects as will become hereinafter
  apparent.

  The invention more particularly relates to
  the construction and arrangement of parts for                15
  constituting the driving gearing and to the
  means for controlling the action thereof; to
  an improved manner of mounting the front,
  or steering, wheels upon the front axle, and
  of mounting the said axle relative to the running            20
  gear frame, and to the means for effecting
  the steering; to the appliances for the support
  of the motor and driving mechanism in
  an advantageous and efficient manner, and,
  generally, to improved and simplified details                25
  of construction throughout the vehicle, all as
  will hereinafter be rendered more apparent,
  and the invention consists in constructions
  and combinations of parts, all substantially
  as will hereinafter fully appear and be set                  30
  forth in the claims.

  Reference is to be had to the accompanying
  drawings, in which--

  Figure 1 is a sectional elevation from front
  to rear of the improved road-vehicle. Fig. 2 is              35
  a plan view of the running and driving gear,
  the vehicle-body being understood as removed.
  Fig. 3 is a front elevation of the vehicle. Fig.
  4 is a perspective view of the support and suspension
  devices for the driving mechanism.                           40
  Fig. 5 is a vertical sectional view, longitudinally,
  through the shiftable driving-gear, the
  controlling devices employed in conjunction
  with this mechanism being seen in side elevation.
  Figs. 6 and 7 show the above-mentioned                       45
  controlling devices as in operative relations
  differing the one from the other and
  also from that of Fig. 5.

  Similar letters of reference indicate corresponding
  parts in all of the views.                                   50

  The parts will now be described in detail
  with reference to said drawings, and A represents
  the body which is spring supported
  on the frame, B, of the running gear. This
  frame, as shown, is rectangular, and has the                 55
  body-supporting springs, B{2}, similar to those
  found in common carriages. This frame has,
  affixed thereto, at its rear ends, sleeves, _a_, _a_,
  which loosely embrace the rear wheel axle, D,
  which is the driven axle of the vehicle. The                 60
  axle, E, for the front wheels is centrally secured
  to the running gear frame, B, by the
  horizontal king-bolt, _b_, whereby such axle
  may have a swinging movement relative to
  the frame in a vertical plane, but it has no                 65
  swinging movement horizontally, the wheels
  being swivel-mounted on the ends of this axle
  peculiarly, as will shortly hereinafter be set
  forth.

  The body, as shown, is in the form of an                     70
  inverted box, the motor, H, and driving gear
  being accommodated within the downwardly
  opening inclosure constituted thereby, and
  the body also has the upwardly open box-like
  forward extension, or pit, A{2}, for the accommodation      75
  of the feet of the rider, the rider's
  seat being constituted by the top forward portion
  of the box body. Some other suitable
  design of body may, of course, be used in lieu
  of this one shown.                                           80

  The front wheels, _d_, _d_, are hung to the front
  axle, E, so that the center of each wheel base
  is in a line coincident with the axis of the pivotal
  connection which is provided between the
  journals for the wheels and the axle, which                  85
  arrangement practically destroys any tendency
  to deflection from the course that might
  otherwise arise from striking an obstacle,
  and so renders the steering easier. In order
  to effect this the axle is formed with yoked                 90
  ends, the yoke members, _f_, _f_, being above and
  below the longitudinal line of the axle. The
  short journal, _g_, shown for each wheel, has at
  its inner end an upwardly and downwardly
  extended arm, _h_, which is return-bent to be                95
  loosely embraced by the axle yoke, _f_, _f_. The
  cone pointed screws, _c_, passed through the
  yoke members, _f_, and into sockets therefor in
  the arms, _h_, of the journals, _g_, constitute the
  means for the swivel connection between said                100
  parts. The lock-nuts, _c_{2}, manifestly, are employed
  with utility in this connection.

  It will be perceived that inasmuch as in the
  arrangement shown, the pivotal connections=


= (No Model.)      4 Sheets--Sheet 2.

  C. E. DURYEA.
  ROAD VEHICLE.

  No. 540,648.    Patented June 11, 1895.


  _Fig. 2._


  _Witnesses_:
  J. D. Garfield
  K. I. Clemons

  _Inventor_,
  Chas. E. Duryea
  by Chaprictlo Attys.=

[Illustration: FIGURE 28.--A DRAWING AND THE FIRST PAGE of the
specifications of the first patent issued to C. E. Duryea. It can be
readily seen that this drawing was not made after the plan of the first
vehicle.]


As the work moved nearer completion Frank realized that the final tests
would have to be conducted on roads made icy by falling snows. He had
considerable doubt whether the narrow iron tires would have enough
traction to move the phaeton. Soon he devised an expedient for this
situation, communicating to Charles on December 22 that he was "having
Jack Swaine [a local blacksmith] make a couple of clutch rims so we can
get over this snow and ice.... Our detachable rims referred to will be
of 1/8 iron 1-3/4 wide and drawn together at one point by two screws,
one on either side of felloe. It will be studded with calks in two
rows."[34]


[Illustration: FIGURE 29.--MR. AND MRS. FRANK DURYEA examining vehicle
in the Smithsonian Institution before restoration.]


January 18, 1894, was a day of triumph for Frank Duryea. Writing Charles
about his success the next day he said, "Took out carriage again last
night and gave it another test about 9 o'clock." The only difficulty he
mentioned was a slight irregularity in the engine, caused by the tiny
leather pad in the exhaust-valve mechanism falling out.[35] Speaking of
this trip, Frank recalled in 1956:

     When I got this car ready to run one night, I took it out and I had
     a young fellow with me; I thought I might need him to help push in
     case the car didn't work.... We ran from the area of the shop where
     it was built down on Taylor Street. We started out and ran up
     Worthington Street hill,[36] on top of what you might call "the
     Bluff" in Springfield. Then we drove along over level roads from
     there to the home of Mr. Markham who lived with his son-in-law,
     Will Bemis, and there we refilled this tank with water. [At this
     point he was asked if it was pretty well emptied by then.] Yes, I
     said in my account of it that when we got up there the water was
     boiling furiously. Well, no doubt it was. We refilled it and then
     we turned it back and drove down along the Central Street hill and
     along Maple, crossed into State Street, dropped down to Dwight,
     went west along Dwight to the vicinity where we had a shed that we
     could put the car in for the night. During that trip we had run, I
     think, just about six miles, maybe a little bit more. That was the
     first trip with this vehicle. It was the first trip of anything
     more than a few hundred yards that the car had ever made.


= DURYEA AUTOMOBILE
  BUILT BY J. F. AND C. E. DURYEA
          1893
  U.S. NATIONAL MUSEUM CAT. #307,199
  SMITHSONIAN INSTITUTION
  SEPT. 1960       A. A. BALUNEK=


Now Frank could give demonstration rides with the motor carriage, hoping
to encourage more investors to back future work. Cautious Mr. Markham
finally got his ride, though Frank had to assure him that the engine of
the brakeless vehicle would hold them back on any hill they would
descend. The carriage on which he had spent so many hours was to see
little use after that. Its total mileage is probably less than a hundred
miles. Little additional work is known to have been performed on the
carriage after January 1894; there is, however, a letter[37] Frank sent
his brother on January 19 which tells of contemplated muffler
improvements. Another message was dispatched to Charles on March 22,
mentioning the good performance of the phaeton on Harrison Avenue
hill.[38] This was possibly the last run of the machine, for no further
references have been discovered.

Frank spent the months of February and March in preparing drawings, some
of which accompanied their first patent application,[39] while others
were to be used in the construction of an improved, 2-cylinder carriage.
Work on the new machine started in April. The old phaeton, in the
absence of used-car lots, was put into storage in the Bemis barn.[40]
Later, on the formation of the Duryea Motor Wagon Company in 1895, it
was removed to the barn of D. A. Reed, treasurer of the company.[41]
There it remained until 1920, when it was obtained by Inglis M. Uppercu
and presented to the U.S. National Museum.



U.S. GOVERNMENT PRINTING OFFICE: 1967

For sale by the Superintendent of Documents, U.S. Government
Printing Office Washington, D.C. 20402--Price 30 cents



Footnotes:

[1] S. H. OLIVER, _Automobiles and Motorcycles in the U.S. National
Museum_ (U.S. National Museum Bulletin 213, Washington: Smithsonian
Institution, 1957), p. 24.

[2] G. R. DOYLE, _The World's Automobiles_ (London: Temple Press
Limited, 1959), p. 67.

[3] Recorded interview with Frank Duryea in the U.S. National Museum,
November 9, 1956.

[4] Charles Duryea's statement to _Springfield Daily Republican_, April
14, 1937.

[5] FRANK DURYEA, _America's First Automobile_ (Springfield, Mass.:
Donald Macaulay, 1942), p. 4.

[6] Letter from Charles Duryea to Alfred Reeves, March 25, 1920; copy in
Museum files.

[7] History notes dictated by Charles E. Duryea in the office of David
Beecroft, editor of _Automobile Trade Journal_, on January 10, 1925.
Copy in Museum files. Hereinafter, these notes are referred to as
"history."

[8] Frank Duryea in statement made to the Senate Committee on Public
Administration of Massachusetts, February 9, 1952.

[9] DURYEA, op. cit. (footnote 5), p. 6.

[10] Copy of contract in Museum files.

[11] Affidavit of William Rattman, March 19, 1943, states that the
Russell ledgers give that date.

[12] Recorded interview with Frank Duryea in U.S. National Museum,
November 6, 1957.

[13] Letter from Frank Duryea to David Beecroft, November 15, 1924; copy
in Museum files.

[14] Letter from Charles Duryea to C. W. Mitman, March 21, 1922; copy in
Museum files.

[15] See "history" (footnote 7), p. 6.

[16] DURYEA, op. cit. (footnote 5), p. 8.

[17] Copy of letter in Museum files.

[18] DURYEA, op. cit. (footnote 5), p. 12.

[19] Letter from Frank Duryea to Charles Duryea, November 3, 1893,
states that the engine could be run at 700 as well as 500 rpm. Copy in
Museum files.

[20] DURYEA, op. cit. (footnote 5), p. 14. Also in letter from Charles
Duryea to C. W. Mitman, January 11, 1922; copy in Museum files.

[21] Letter from Charles Duryea to C. W. Mitman, January 11, 1922; also
letter from Frank Duryea to David Beecroft, November 15, 1924. Copies in
Museum files.

[22] Letter from Charles Duryea to F. A. Taylor, December 5, 1936, says
he "thought" they had five teeth. Copy in Museum files.

[23] Frank later wrote his brother, January 1894, that he fixed the tank
so it would not draw sediment from the bottom. Copy of letter in Museum
files.

[24] The number of mufflers Frank Duryea constructed is not known. He
wrote Charles, December 22, 1893, that he "will try a new muffler also."

[25] Selden Patent Evidence, vol. 9, p. 110.

[26] See "history" (footnote 7), p. 2. Charles wrote, "Some parts of
these [referring to the batteries], like the jars, I had on hand for six
or eight years, and did not need to buy."

[27] Ibid., p. 15.

[28] Ibid., p. 15

[29] Frank stated in this letter that the friction drum originally had
two belts, forward and reverse, but since they tended to foul each
other, he removed the reverse belt and left the other to serve for both
directions. How the shipper fork might have handled two belts is not
understood.

[30] As actually constructed there are only two gears on the secondary
shaft. He obviously discovered that one gear secured to two clutches
would serve for both forward and reverse. Space was also limited.

[31] Recorded interview with Frank Duryea in U.S. National Museum,
November 9, 1956.

[32] Letter from Frank Duryea to Charles Duryea, November 8, 1893. Copy
in Museum files.

[33] Frank Duryea, in a recorded interview in the U.S. National Museum
on November 6, 1957, said that he believed these had been purchased from
Rochester Rawhide Company.

[34] Letter from Frank Duryea to Charles Duryea, December 22, 1893. Also
letter from Frank Duryea to David Beecroft, November 15, 1924. Copies in
Museum files.

[35] Telling of the first use of the car in later days, Frank Duryea
mentions the many noises and vibrations that accompanied the trip: the
vibrating tiller, the tinny sounding muffler, the clattering chains. He
later reported speeds of 3 mph in low gear and 8 mph in high gear.

[36] Letter from Frank Duryea to Charles Duryea, Jan. 19, 1894, says
they went up hill via Summer and Armor Streets, then out Walnut to
Bemis' at Central Street School.

[37] The letter read: "I have designed a new muffler and we will proceed
to make it before long, in a day or two. Instead of one shell 1/8-inch
thick I shall put a shell 1/16-inch thick inside another of equal
thickness, but about 1 inch greater diameter i.e., one chamber within
another so as to cause sound to turn corners to get out. Still another
shell will be added if it prove insufficient, making it turn about
again--taking care in each case to give ample room for expansion--outer
one need not be more than 1/32 inch possibly. Will let two threaded rods
with nuts hold heads on both or on three cases, if the 3d be essential."

[38] This letter gives further proof that the car never had a brake.
Frank said the car came back down the hill with no brake, but that the
engine held the vehicle back.

[39] DURYEA, op. cit. (footnote 5), p. 37.

[40] It is possible that a few parts were removed at this time to be
used on the two-cylinder car. The muffler may have been one of these,
and even more likely, the governor parts. Charles Duryea wrote to C. W.
Mitman December 27, 1921, stating that his younger brother Otho and a
Henry Wells had put in a battery and gasoline in 1897 and started the
engine. Because the chains were not on the car they could not attempt to
operate it; but the engine ran too fast, and finally something broke,
probably the engine frame, found to be broken during the recent
restoration. Charles thought the engine ran too fast because some of the
governor parts were already missing.

[41] Recorded interview with Frank Duryea in the U.S. National Museum,
November 9, 1956. On the formation of the Duryea Motor Wagon Company,
Mr. Markham was rewarded for his part of the venture. He had invested
nearly $3000 in the work, and sold out his rights in the company for
approximately a $2000 profit.



Transcriber's Notes:

  Passages in italics are indicated by _underscore_.

  The text contained in several of the illustrations, which has been
  transcribed for this text file, is indicated by =text=.

  Superscript characters are enclosed in brackets {x}.

  Additional spacing after some of the quotes is intentional to indicate
  both the end of a quotation and the beginning of a new paragraph as
  presented in the original text.

  Letters printed upside down were corrected silently.

  Misprint " he" corrected to "the" (page 8).





*** End of this Doctrine Publishing Corporation Digital Book "The 1893 Duryea Automobile In the Museum of History and Technology" ***

Doctrine Publishing Corporation provides digitized public domain materials.
Public domain books belong to the public and we are merely their custodians.
This effort is time consuming and expensive, so in order to keep providing
this resource, we have taken steps to prevent abuse by commercial parties,
including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the files We designed Doctrine Publishing
Corporation's ISYS search for use by individuals, and we request that you
use these files for personal, non-commercial purposes.

+ Refrain from automated querying Do not send automated queries of any sort
to Doctrine Publishing's system: If you are conducting research on machine
translation, optical character recognition or other areas where access to a
large amount of text is helpful, please contact us. We encourage the use of
public domain materials for these purposes and may be able to help.

+ Keep it legal -  Whatever your use, remember that you are responsible for
ensuring that what you are doing is legal. Do not assume that just because
we believe a book is in the public domain for users in the United States,
that the work is also in the public domain for users in other countries.
Whether a book is still in copyright varies from country to country, and we
can't offer guidance on whether any specific use of any specific book is
allowed. Please do not assume that a book's appearance in Doctrine Publishing
ISYS search  means it can be used in any manner anywhere in the world.
Copyright infringement liability can be quite severe.

About ISYS® Search Software
Established in 1988, ISYS Search Software is a global supplier of enterprise
search solutions for business and government.  The company's award-winning
software suite offers a broad range of search, navigation and discovery
solutions for desktop search, intranet search, SharePoint search and embedded
search applications.  ISYS has been deployed by thousands of organizations
operating in a variety of industries, including government, legal, law
enforcement, financial services, healthcare and recruitment.



Home