By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | HTML | PDF ]

Look for this book on Amazon

We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

´╗┐Title: From Xylographs to Lead Molds; A.D. 1440-A.D. 1921
Author: Forster, H. C.
Language: English
As this book started as an ASCII text book there are no pictures available.
Copyright Status: Not copyrighted in the United States. If you live elsewhere check the laws of your country before downloading this ebook. See comments about copyright issues at end of book.

*** Start of this Doctrine Publishing Corporation Digital Book "From Xylographs to Lead Molds; A.D. 1440-A.D. 1921" ***

This book is indexed by ISYS Web Indexing system to allow the reader find any word or number within the document.

A.D. 1440-A.D. 1921***

      which includes the original illustrations and illuminations.

AD 1440         AD 1921

Copyright, 1921
The Rapid Electrotype Company
Cincinnati, Ohio


Printing has been called "the art preservative of all arts." The
invention of individual movable cast-metal type, between A. D. 1440
and 1446, made printing a commercial possibility.

The subsequent rapid spread of the art, in the hands of students and
craftsmen, may be said to have been the centrifugal force of the
Renaissance and the Revival of Learning, which age, if it can be
chronologically delimited, began A. D. 1453.

Printing divulged to the masses the ancient classics which had been
locked up in monasteries and accessible only to clerics and the
nobility. The common people began to read. Education became

This brochure is a brief history of the evolution from xylographs to
the methods used today for duplicating a typographical printing
surface in a solid piece.


The art of writing, and that of printing from wooden blocks, and all
the subsidiary arts of illuminating, decorating and binding
manuscripts and books, had long passed out of the exclusive hands of
the monasteries into the hands of students and artisans, before
printing with individual movable cast-metal type was invented. This
epoch making invention came into practical use between A. D. 1440 and

When, therefore, Johannes Koelhoff of Lubeck, Germany, printed the
"Cologne Chronicle" in 1499, he used individual movable cast-metal
type. Typographic printing had long before superseded Xylographic
printing, that is, printing from a solid block of wood on which type
of an entire page were cut individually by hand.

Between the invention of individual movable cast-metal type and the
perfection by the Earl of Stanhope of his printing-press, (a period of
about three hundred and sixty years), very few improvements had been
made in the mechanics of printing. Everything we know today about the
art has come into use since 1799, and if Koelhoff had come to life in
1799 and been permitted to resume his occupation of printer, he would
have found himself practically familiar with the mechanical equipment
of his craft as used in the establishment of the Stanhope Press in
that last year of the eighteenth century.

Centuries before 1440 printing is believed to have been attempted in
China; presumably about the beginning of the Christian era. It is said
that in the year A. D. 175 the text of the Chinese classics was cut
into tablets which were erected outside the national university at
Peking, and that impressions--probably rubbings--were taken of them.
Some of these fac-simile impressions are still in existence, it is

Xylography was also practiced in China long before Europe knew the
art. It can be traced as far back as the sixth century, when the
founder of the Suy dynasty is said to have had the remains of the
Chinese classics engraved on wood, though it was not until the tenth
century that printed books became common in China.

The authorities of the British Museum also report that Chinese writers
give the name of a certain Pi Sheng who, in the eleventh century,
invented movable type, and the Department of Oriental Printed Books
and Manuscripts of the same institution possesses a copy of the Wen
hsien tung Kao, a Chinese encyclopedia printed in Korea from movable
type in A. D. 1337.

To the Koreans also is attributed the invention of copper type in the
beginning of the 15th century, and the inspection of books bearing the
dates of that period seems to show that they used such type, even if
they did not invent them.

The first authentic European printing produced from individual movable
type of which we have any recorded impression, bears the date of A. D.
1454. These documents are two different editions of the same Letters
of Indulgence issued in that year by Pope Nicholas V. in behalf of the
Kingdom of Cyprus. We do not know, however, whether they were printed
from metal or wood type.


As to the _exact_ date of the invention of printing from individual
movable type in Europe, we know only that it was some time prior to
A. D. 1454. Where and by whom the invention came about, a dispute has
been waged for more than four hundred years; one of the most hotly
contested questions in history. In short, Koelhoff was in part
responsible for starting this dispute. He published in his "Cologne
Chronicle" a statement by Ulrich Zell, a printer of Mainz in Germany
and a contemporary of Gutenberg, that Gutenberg _had improved_, but
_not invented_ the art, which he attributes to Coster of Haarlem, in
the Netherlands, in the year 1440. Gutenberg stole Coster's type,
according to Zell, and printed from them in 1442. Other unrefutable
evidence shows that Gutenberg could not have begun printing at Mainz
before the end of 1450.

In addition to Gutenberg and Coster we also find Waldfoghel of
Avignon, in France, and Castaldi of Felte, in Italy, mentioned as
claimants of this invention. The value of their respective pretensions
has been summed up by one well known authority in the words, "Holland
has books, but no documents. France has documents, but no books. Italy
has neither books, nor documents, while Germany has both books and

As the case stands at present, after careful and impartial examination
of all available evidence, no choice is left but to attribute the
invention of printing with individual movable cast-metal type to
Lourens Janszoon Coster of Haarlem in the Netherlands between the
years 1440 and 1446 and not to Gutenberg of Mainz in Germany.

Zell's statement in the "Cologne Chronicle" of 1499 is further
substantiated by Hadrianus Junius in his "Batavia." Junius stated that
printing from individual movable type was invented by Coster in
Haarlem, and that the "Speculum Humanae Salvationes" was one of his
first productions. These two statements were made independently of
each other and both are corroborated by books to which they refer.

The "Speculum Humanae Salvationes," attributed to Coster by Junius was
partly a folio Latin block-book, and partly typographically printed.
From this and other records it has been clearly established that
Coster began as a xylographer and ended as a typographical printer,
and before 1472 he had manufactured and extensively used at least
seven different styles of primitive looking individual movable
cast-metal type.

According to tradition, while he was walking in a wood near Haarlem,
Coster cut some letters in the bark of a beech tree, and with them,
reversely impressed one by one on paper, he composed one or two lines
as an example for the children of his son-in-law.

Junius does not say it, but clearly implies that, in this way, Coster
came to the idea of the movability of the characters, the first step
in the invention of typography. He perceived the advantage and utility
of such insulated characters, which hitherto he had been cutting
together on one block, and so the invention of printing with
individual movable type was made.

The questions as to whether he continued to print with movable
"wooden" type, or even printed books with them, cannot be answered,
because no such books or fragments of them have come down to us.
Junius' words on this point are ambiguous, and yet, upon the
examination of the first edition of the Dutch Spiegel (of which two
copies are preserved at Haarlem) no one would deny that there are
grounds for this belief. The dancing condition of the lines and
letters make it almost impossible to think that they are impressions
from metal type. But for how long and to what extent movable wooden
type were employed, if at all, cannot be positively stated.

However, this idea of movability, and the accidental way in which it
was discovered, form together the pith of the Haarlem tradition as
told by Junius. Nothing seems more natural than that a block-printer
should cut such separate letters as Coster did on the bark of a tree
and thereupon perceive that they could be used over and over again for
a variety of words on different pages, while those which he used to
cut in a solid block only served him for one page and for one purpose.

It is equally clear from the Haarlem tradition that the art of casting
metal type was the second stage in the invention, a development or
outcome of the primary idea of "movable letters," for Junius says that
Coster "afterwards changed the beechen characters into leaden, and the
latter again into tin ones."

Theod. Bibliander, in 1548, was the first to speak of movable wooden
type and to describe them. First they cut their letters, he reports,
on wood blocks the size of an entire page; but because the labor and
cost of that way was so great, they devised movable wooden type,
perforated and joined one to another by a thread.

Bibliander does not say that he had ever seen such type himself, but
Dan Speckle or Specklin (d. 1589) who ascribed the invention to
Mentelin, asserts that he saw some of these wooden type at
Straussburg; and Angelo Roccho asserted in 1591 that he had seen at
Venice type perforated and joined one to another by a thread, but he
does not state whether they were of wood or of metal.

There is a theory also that between block-printing and printing with
movable cast-metal type there was an intermediate stage of printing
with "sculpto-fusi" type; that is, a type of which the shank had to be
cast in a quadrilateral mold and the characters or letters engraved
afterwards by hand. This theory was suggested by some one who could
not believe in wooden type and yet wished to account for the marked
irregularities of the type used to print the earliest books.

Granting that all the earlier works of typography preserved to us are
impressions of cast-metal type, there are still differences of
opinion, especially among practical printers and type-founders, as to
the probable methods employed to cast them. It is considered unlikely,
although not impossible, that the invention of printing passed all at
once from xylography to the perfect typography of the punch, matrix,
and mold.

The types that Coster made and used were supposed to have been
manufactured in one of three or four probable ways.

Bernard believed that the first movable cast-metal type were molded in
sand, since that method of casting was known to the silversmiths and
trinket-makers of the fifteenth century. In substantiation of his
theory he exhibits a specimen of a word cast as a unit for him by this
process, roughly similar to a modern linotype slug.

A second suggested mode was that of casting in clay molds, by a method
very similar to that used in the sand process, and resulting in like
peculiarities and variations in the type.

Ottley, in his "Invention of Printing," was the chief exponent of this
theory. He believed that type were made by pouring molten lead into
molds of clay or plaster, after the ordinary manner used from time
immemorial in casting statues and other articles of metal.

The imperfections in the type cast by the sand and clay processes--the
difficulty of uneven heights in the various type--is supposed to have
been surmounted either by locking up the form with the type-face
downward on the composing stone, or by perforating the type, either at
the time of casting or afterwards, and holding them in their places by
means of a wire or thread through the perforations.


To this cause has been attributed the numerous misprints in those
early specimens of the printers' art, to correct which would have
involved the unthreading of every line in which a typographical error

A striking proof that the lines were put into the form one by one, as
a piece, instead of type by type, is shown in a blunder in the
"Speculum" of Coster where the whole of a last reference line is
"turned." It is as if a modern linotype slug were put in the form

A third suggestion as to the method by which the type of those early
days of printing may have been produced is described as a system that
the type-founders of about 1800 called Polytypage, which is a cast
facsimile copy of an engraved block of type matter. Lambinet, who is
responsible for this suggestion, explains that this method really
means an early adoption of the stereotyping process.

Lambinet thought that the early printers may have discovered a way of
molding in cooling metal so as to get a matrix-plate impression of an
entire page. Upon this matrix they would pour molten lead or tin and
by the aid of a roller, press the fused metal evenly so as to make it
penetrate into all the hollows and corners of the letters. This tablet
of lead or tin, when cooled, being easily detached from the matrix,
would then reveal the letters of the alphabet reversed and in relief,
similar to a present day stereotype. The individual letters, of
course, could easily be cut apart by a sharp tool, and the molding
operation could be repeated, using the same matrix. The metal type
faces so produced would be fixed on wooden shanks, type high, and the
font would be complete.

It is impossible to suppose, however, that the Mainz psalter of 1457,
which Lambinet points to as a specimen of this mode of execution, is
the impression, not of type at all, but a collection of "casts"
mounted on wood.

Yet another theory has been proposed by Dr. Ch. Enschede, head of the
celebrated type foundry of that name in Haarlem. Enschede concludes
that the Costerian type were produced from leaden matrices and the
latter from brass patrices. Their bad, irregular condition was due to
the tools being imperfect, and Coster in the first practice of his
invention was inexperienced and therefore bound to produce such
imperfections as are found in the Speculum. Coster's type were cast in
one tempo, that is, the character itself and the shank cast at the
same time in one piece.

Gutenberg's patrices, according to Enschede, were made like
bookbinders' stamps, of yellow copper, i. e., brass. With such
patrices only lead matrices could be made, but the latter could be
produced in two ways. Molten lead could be poured over the patrices or
the patrices could be pressed into cold lead. The first mode is
somewhat complex, but the matrix would have a smooth surface and need
no further adjustment.

The second mode is more simple, but required great force, although
lead is a soft metal. Moreover the surface of the matrix would have to
be trimmed, as the impression forces the metal downwards and
sidewards, which makes the surface uneven, though by this pressure the
lead becomes firmer and more compact, to the advantage of the

Enschede thinks that Gutenberg obtained his matrices by the second
mode. He arrives at this conclusion by reason of the fact that
Gutenberg's types were sharper in their impressions than Coster's.
Developing this theory, he believes that Gutenberg had each letter
engraved on a brass plate 2 mm. thick, therefore a mere letter without
anything underneath it. This brass letter patrix was pressed, by means
of a small flat plate, so far into the lead that its back formed an
unbroken plane with the top surface of the lead, and was then removed.

After the matrix had been made this way, the type were cast, which was
done, not by pouring metal into the matrix, but by pressing the latter
into semi-fused metal. In this way a great many letters could be cast
from one matrix without any injury to it. Gutenberg's method was to
cast in two tempos, according to Enschede, that is, the character was
cast first and the shank was cast by another operation joining it to
the character.

Enschede warns us, however, that his theories are simply those of a
practical founder and not a bibliographer's. But since no tools used
by those early printers and type-founders have come to light to prove
or disprove him, his theory is as valuable as any others advanced as
to the methods used for casting type in those primitive days of

The shape of the type used as early as 1470 does not seem to differ
materially from those of the present day. This is evident from old
type which were discovered in 1878 in the bed of the river Saone, near
Lyons, opposite the site of one of the fifteenth century
printing-houses of that city.

Also a page in Joh. Neider's "Lepra Moralis" printed by Conrad
Homburch in Cologne in 1476 shows the accidental impression of a type
pulled up from its place in the course of printing by the ink-ball,
and laid at length on the face of the form, leaving its exact profile
indented upon the page.

This accidental imprint shows a small circle, and it is presumed that
the type were pierced latterly by a circular hole, which did not
penetrate the whole thickness of the letter, and served, like the nick
in modern type, to enable the compositor to tell by touch which way to
set the letter in his stick.

The fact that a letter was pulled out of the form seems to show that
the type composing the line could not have been threaded together, as
set forth by Ottley in his theory of clay molds for casting type. It
is to be remembered, however, that in the early days of printing,
every printer was his own type-founder. The method of casting type had
not been standardized and each printer had his own individual ideas
both as to the kind of characters and the method used in casting them.
Some may have threaded their type together in lines and others may
have simply locked them up in the form face downward in the composing
stone to overcome any irregularities caused by crude methods of

Vinc. Fineschi, of Florence, in Italy, gives an extract from the
cost-book of the Ripoli press, about 1480, which shows that steel,
brass, copper, tin, lead and iron were all used in the manufacture of
type at that period.

Today we have the wizardry of mechanical production in the manufacture
of type. The linotype and monotype machines, uncanny in their
operations, have also come into common practice. Without them printing
would seem almost as primitive, in typography, as it was in its


About the beginning of the eighteenth century a certain Van der Meyer,
of Antwerp, made the next step towards a definite improvement in
typography, the first that had been attempted since the invention of
printing from movable, cast-metal type. Van der Meyer prepared the
composed pages of the Bible by soldering together the bottom of the
type in the form. This was the first "stereotype," a term derived from
two Greek words meaning literally "solidtype."

This method met one requirement. It prevented the "pi-ing" of the
type, but it had the disadvantage of holding in comparative idleness a
large and costly mass of type useless for any other purpose, and it
was not generally practiced.

This was followed in 1730, by William Ged, a goldsmith of Edinburgh,
who is credited with casting printing-plates in plaster-of-paris molds
for the University of Cambridge Bible. These plates, however, were
destroyed by jealous printers and thrown aside, resulting in the
process being abandoned for many years.

In the meantime several other improvements along this line were
undergoing experiment. Firmin Didot, (1764-1836), a printer of Paris,
cast type of a hard alloy, and when his book-pages were composed, made
an impression of them on a sheet of soft lead, thus forming a mold.
Molten metal was then poured into a shallow tray, and just as this was
on the point of solidifying, but still plastic, the lead-mold of the
book-page was pressed on the soft metal in the tray. This process
called Polytypage, was but partly successful; it could be used only
for small pages, and the plates were too often defective. A process
similar to this is what Lambinet thought the printers of the latter
half of the fifteenth century might have used as one of the probable
methods to cast their metal types.

These and other experiments, however, were leading to the real
stereotyping process which developed later.

Early in the nineteenth century, Earl Stanhope, of England,
re-introduced Ged's stereotyping process with many improvements.

One or more pages of type were locked in a chase, the surface of the
type being oiled to prevent the subsequent mold from sticking. The
mold was made by pouring a semi-fluid composition of plaster-of-paris
mixed with a little fine salt to make the plaster settle solidly.
While the plaster was still soft, it was carefully pressed down and
rolled smooth on top to give a uniform thickness to the mold and to
expel any air there might be in the plaster. When the plaster became
solid, it formed a perfect matrix of the type pages.

The moisture in those early plaster molds was expelled by baking them
in an oven for three or four hours. A later method for drying was
practiced by suspending the mold directly over the metal-pots or to
float them on the surface of the molten metal. By this means the
drying could be accomplished in a half-hour or so.

In the process of casting, several of these plaster molds were placed
side by side face downward in a special casting-pan. The pan was one
and three-quarters or two inches deep, and a lid on the pan screwed
down on the back of the molds. By means of a crane the casting pan
with its molds was then lowered into the pot of molten metal which ran
into the pan at the corners and sides. The mold was allowed to remain
ten minutes or so in the metal-pot, or until the face of the inverted
mold was entirely filled with the metal.


A later method of casting from a plaster mold was to place it in a
frame with a smooth, flat plate opposite the face of the mold and to
enclose the open space at one end and on the two sides. The casting
space thus formed was then turned with the open end up and metal was
poured in with a ladle, in a manner similar to the method still
employed for casting job-work stereotypes. The distance between the
flat plate and the mold was adjusted to make a stereotype plate of the
required thickness.

After the removal and cooling of the casting pan, the plates were
freed from the plaster and the surplus metal cut off. Only one cast
could be made, as the mold was usually destroyed in removing the cast.
The stereotype was then sent to the finishing department, where the
face was cleaned and examined for defective letters, then trimmed on
the sides and planed off uniformly on the back to the desired
thickness, in the same manner as a stereotype is treated today. A
defective letter could be mortised out of the plate and a good type
inserted in its place. In cases where a whole line or other part was
imperfect, another mold was made of as much of the form as was
necessary and the new cast inserted and soldered to the plate.

There were many and varied experiments made in the earlier development
of this idea of producing a duplicate printing form in a single piece.
That such a process was highly desirable was universally recognized,
and the conviction that some practicable and economical method was
feasible was a continual incentive which gradually led to better


Although credit is given to John Watts, an Englishman then working in
America, for making the first stereotype plates here, the real
introduction of the process into the United States was by David Bruce.
This was in 1813. Bruce had learned the printer's trade in Edinburgh
and later came to America, where after a few years he was joined by
his brother George in establishing the firm of D. & G. Bruce,
printers. Hearing of the new process of stereotyping in England, he
went over there to learn about it. He could get very little
information about the process there, but came back with some practical
ideas which he proceeded to carry out. Bruce and his brother also
began type-founding about this time, and abandoned the business of
printing. Later they gave up the work of stereotyping.


The first book stereotyped in the United States was the New Testament,
in 1814. Bibles and school books were the first works to be
stereotyped; then came other books which were demanded in many
editions, such as the works of popular authors.


The papier-mache (literally, mashed paper) matrix was first
successfully used for casting stereotypes for book pages in France in
1848. Charles Craske, an engraver of New York, introduced the method
into the stereotype trade of the United States in 1850, and in 1854 he
stereotyped a page of the "_New York Herald_" and later made
stereotypes for other New York newspapers.

The modern wet stereotype "flong," in common use today, consists of
several layers of special paper pasted together to form a thick sheet.
The base is a sheet of special soft stock similar to firm
blotting-paper, such as is used between leaves of small blank books.
Three or four sheets of strong, white tissue are next added, each
sheet except the last being uniformly covered with the paste. The
pasting must be done with great care so as to cover the entire surface
of each sheet and at the same time to press out all air bubbles. The
sheets must then be pressed smoothly but not squeezed so hard as to
force the paste out and must be kept moist until used. In newspaper
syndicate plants, the "flong" is made automatically by a specially
devised machine into which the various kinds of paper used are fed
from rolls, the pasting and cutting into sheets being mechanical.

In molding a papier-mache matrix, the moist "flong" is laid on the
original molding form to be duplicated, the molding form being in
place on the table of the molding press. The "flong" is covered with
several blankets of thick felt and the table of the molding press is
then automatically moved in under a powerful roller which squeezes the
moist flong down into the form. At the end of its travel the table is
automatically brought back again under the rollers to the position
from which it started. The speed of the roller and the table is
synchronized to obviate any possibility of the mat becoming wrinkled
by sliding.

The molded matrix and the pattern with the blanket still on it is then
transferred to the drying press, in which under a hot platten it is
again squeezed and allowed to remain for a few minutes until the
moisture is completely expelled from the molded flong. The drying
press is kept at a high temperature, usually by steam heat.

The matrix thus dried out to a thick, flexible cardboard is then ready
for the casting of the stereotype, which is done by pouring molten
stereotype metal against the face of the matrix placed in a
casting-box designed for this purpose. A successive number of
stereotypes can be cast for the same mat before it is injured by the
hot metal. For job-work stereotyping the casting-box is flat, and the
molten metal is either poured by hand or automatically pumped in the

After the stereotype is cast it is flattened, rough shaved, smooth
shaved, bevelled or blocked on wood; the wood base trimmed and then
planed type-high for printing press use.

The large daily papers cast the full-page stereotype from which the
paper is printed in an automatic casting machine which forms a curved
plate, trimmed and bevelled, to fit the cylinder of the press.

Stereotyping was for many years the chief means of making plates for
books and also for commercial printing. It has several advantages. The
first, obviously, is the advantage which it shares with several other
methods of providing a solid printing plate made by molding from an
original form of type or engraving. Its peculiar advantage, however,
is that it is the quickest method of producing a duplicate plate from
an original.

In comparison with electrotyping, however, it has two distinct
disadvantages. One is that it is not adapted for reproducing the fine
lines of engravings and type faces. In addition it is comparatively
shallow and does not possess a sharp, clean printing face. The other
disadvantage is that a stereotype is relatively soft and quickly worn.

Stereotypes have been made more durable, to withstand the wear of
printing, by the deposition of a film of harder metal--copper or
nickel--on the face of the plate after it has been cast. This,
however, is not satisfactory, as it involves not only another
operation, but also makes an already shallow printing plate that much
shallower and increases the probability of it printing "dirty," which
is one of the chief objections to the stereotype in itself. This
practice is not recommended.


In 1799, Allesandro Volta, of Pavia, in Italy, constructed the first
electric battery, which came to be called the Voltaic pile.
Improvements in the form of Volta's battery were made almost
immediately by William Cruickshank, in England, who discovered in
experimenting with it that he could by its power electrolyze or
chemically decompose the salts of certain metals in solution. Both
copper and silver, he found, could be precipitated from their salt
solutions and deposited upon a plate immersed in the solution.

This observation was the first step in the process of electroplating,
which is electrotyping when applied to the art of typography.

In 1837, thirty-eight years after Volta's discovery, Mr. Thomas
Spencer of Liverpool, England, accidentally stumbled upon the first
realization of the electrotyping process.

While experimenting with a modification of a Daniell battery, he used
an English copper penny as one of the poles instead of a plain piece
of copper. A deposition of copper from the solution in the battery
took place upon the penny, and upon removing the wire which attached
the penny to the zinc plate a portion of the copper deposit was pulled
off the penny also.

This first copper electrotype shell Spencer found to be an exact
duplicate or mold of part of the head and lettering on the coin. _It
was as smooth and as sharp as the original._

It was some time later, however, before this suggested to him any
useful application of the process. Another accident made him
appreciate the full value of his discovery. This time he carelessly
dropped some varnish on a strip of copper which he was going to use in
the same way he did the penny. Upon removing the copper from the
battery he observed that there was no deposition of copper on those
parts of the strip where the varnish had dropped.

Spencer then conceived the idea of applying this principle to the arts
by coating a piece of copper with varnish or wax and engraving a
design in the coating, thus exposing the copper strip in the engraved
lines. He did this, and then deposited copper in the design so
engraved. Upon removing the coating the design was exposed in relief
on the piece of copper.

On September 13, 1839, Spencer read a paper before the Polytechnic
Institution of Liverpool, which he accompanied with specimens of both
electrotypes made by this process and of printing from these
electrotypes. The publication of this paper acted like an electric
shock upon society.

Developing his process, Spencer first used lead as the plastic medium
in which to mold printing surfaces, and it is to be noted in this
connection that in doing so he anticipated Dr. Albert's lead mold by
considerably over three quarters of a century.

Spencer impressed a form of type on a planed piece of sheet-lead and
subjected both of them to the action of a screw-press. A perfectly
sharp mold of the type form was thus made in the lead. This lead mold
was placed in a battery, and at the end of _eight days_ a copper shell
one eighth of an inch in thickness had been deposited. It was then
removed from the apparatus and the rough edge of the deposited copper
filed off. Being subjected to heat, the copper shell loosened from the
lead-mold. Spencer called this a "copper stereotype."


The next step in developing the electrotyping process, after Spencer
had demonstrated the practical application of the electro-chemical
deposition of a copper shell on a mold, was made by a Mr. Robert
Murray. Mr. Murray was the first to use plumbago, or black-lead, to
give the surface of non-metallic bodies electro-conductive properties.
He discovered that he could coat a mold of bees-wax with black-lead
and deposit thereon a copper shell. This was in 1840.

In the same year Smee's battery was invented. This was a marked
improvement and was a most important step towards making electrotyping
a commercial possibility.

Thus in 1840, four hundred years after the probable date of the
invention of printing from individual movable cast-metal type, and
over forty years after the foundation of electrotyping was laid by
Volta, electrotyping, as a practical method of reproducing a
commercial typographical printing surface, came into existence.

Mr. E. Palmer, in England, using Spencer's method, was the first to
receive a patent for producing a metallic printing plate with the
printing surfaces in relief. This patent is dated 1841. Palmer
followed this in the succeeding year by a further patent for engraving
through a wax-coated matrix-plate to form the printing surfaces in the
_positive_ electrotype taken from it. This process was termed by
Palmer, "Glyphography."

The "whites" or low spots in Palmer's Glyphographs were "built-up" in
the wax mold through adding wax by hand, assisted by various
ingeniously constructed tools which were heated. After "building-up,"
the wax was black-leaded and the copper deposition on the surface of
the wax mold was obtained. This copper deposit, or shell, was then
tinned on the back, backed up with lead, mounted on wood, and trimmed
type-high. These processes are the essentials used today in

One of the earliest works illustrated by the Palmer process is "The
History and Antiquities of Brentford, Ealing, and Chiswick," by T.
Faulkner, published in 1845, and the word "Glyphography" occurs at the
foot of many illustrations contained in it.

In 1839 the first attempt was made at commercial electrotyping in
America. In that year, Joseph A. Adams, a wood-engraver connected with
Harper & Bros. in New York, experimented along lines similar to those
Spencer had pursued, but using a wood-cut from which to mold. His
electrotypes were made by taking an impression from the wood-cut in an
alloy of soft metal of which bismuth was probably the chief
ingredient, and immersing the metal mold in an ordinary Voltaic
battery for the deposition of the copper shell. In making the
impression, however, the wood-cut was destroyed so, that this method
of making an electrotype was not commercially practical.


The year following Adams took advantage of Smee's battery and made an
electrotype which was used in Mape's Magazine in 1841. He also
employed this process for making illustrations for Harper's Family
Bible, issued between 1842 and 1844.

The first successful commercial electrotyper in America was John W.
Wilcox, of Boston. A wood carver named Chandler, told Mr. Wilcox that
if he could repeat what Adams of New York had done with a wood-cut in
1839 that he, Chandler, would lend him the necessary wood-cuts for
experimental purposes. In less than sixty days in 1846, Mr. Wilcox had
put into practical use every essential principle known for the next
twenty-five years in electrotyping.

In 1855, Mr. Gay of New York first used tin-foil for the purpose of
soldering the copper shells to the metal backing.

During the same year, a Mr. Adams of Brooklyn, New York, invented the
dry-brush black-leading machine.

Steven D. Tucker, of New York, developed and patented in 1866 the type
of dry-brush black-leading machine which is in common use today.

In 1871, Silas P. Knight, of Harper & Bros., New York, invented the
wet black-leading process, and in 1872 took out another patent for an
improvement on this process. Mr. Knight's method of wet black-leading
was not generally adopted by the electrotypers of that time and
gradually became almost unknown.

Undoubtedly, the cause of this was that the method of dry
black-leading was good enough for type and woodcut work. The half-tone
had not been invented at that time, and it was only after the
invention of the half-tone that a better method of black-leading
became necessary.

Thirty-seven years after Mr. Knight had successfully used his process
of wet black-leading a patent was granted to Frank L. Learman, of
Buffalo, New York, for a wet black-leader. Since that time numerous
patents have been taken out on different methods of using the wet
process, which is universally recognized today as the best method of
graphiting the surface of a mold.

In 1870, Joseph A. Adams patented a process for covering the surface
of the mold after it had been black-leaded with powdered tin. This was
for the purpose of quickening the deposition of the copper shell when
the molds were in the batteries, and from this undoubtedly came the
oxidizing process of coating the surface of the molds with chemical
copper invented by Silas Knight, which has long been and is now in

Perhaps one of the greatest forward steps in the development of
electrotyping was made when the plating dynamo was invented. The first
adoption of a dynamo in place of Smee's battery took place in 1872.
With the Smee type of battery it required from thirty to forty-eight
hours to deposit a copper shell thick enough for commercial use. With
the invention of the plating dynamo and its improvements, the time of
depositing the shell was reduced so that now two hours is the common
time that a mold is kept in the tubs or batteries. This quickening of
the time required to deposit the shell was one of the most essential
features in the development of commercial electrotyping.

From the first hand-screw presses, which were successfully used for
molding, to the modern high-power, motor-driven, hydraulic presses,
for working either in wax or lead, is a far cry.

The invention of the half-tone, together with the invention of the
modern two-revolution cylinder press which has brought printing into
its present state of perfection, made necessary radical improvements
in the machinery for making electrotypes. These improvements have been
steady in their development, but the fundamental points of the process
are practically those which have been in use from the start of
commercial electrotyping.


An electrotype is a facsimile printing plate duplicated from an
original. The original may be either type, a woodcut, a zinc or a
copper etching such as a line-cut or a half-tone, or it may be a
combination of type-matter and line-cuts or half-tones.

We commonly think of electrotypes as printing plates made of copper,
but any metal which can be electrochemically deposited may be used.
Because of their wearing qualities and economy, however, copper and
nickel are the two metals commercially used for electrotyping.

Briefly, an electrotype is made by taking an impression of the
original in a plastic substance, thus forming a mold or matrix;
depositing copper or nickel on the mold; removing the copper or nickel
shell from the mold and backing it with a semi-hard metal; trimming
the metal to printing-plate thickness, and bevelling, or blocking on
wood, the trimmed plate for printing-press use.

In modern practice more than twenty-five different operations are
necessary to make a finished electrotype ready for the press. They may
be enumerated, as follows:

_1. Case-making._ The flowing of a molding compound composed of
"ozokerite," a resinol-mineral wax, onto the case. The case is of

_2. Flashing the Case._ Passing a flame over the surface of the melted
ozokerite immediately after flowing the case in order to remove

_3. Case-shaving._ The automatic shaving of the top surface of the
flowed case after the ozokerite has hardened to give it a smooth, even
surface for molding.

_4. Graphiting._ Brushing surface of case with molding graphite to
prevent the pattern from sticking to the wax mold.

_5. Molding._ Making an impression from the original zinc line
etching, half-tone or type form in the waxed case. This is done by
means of a hydraulically operated molding press.

_6. Cutting-down._ The levelling off by hand, using a sharp trowel
shaped tool, of the splurge after the impression has been made.
Flashing is also used here to remove the burr left around the letters
after the cutting down process.

_7. Building-up._ The adding of wax by hand to the blank spaces in the
molded case so that in the finished electrotype they will be well
below the printing face.

_8. Black-leading._ Making the face of the molded case electrically
conductive by applying graphite.

_9. Stopping-out._ Insulating with a thin coating of wax the edges and
back of the copper case to prevent copper being deposited except on
the face of the mold.

_10. Pumping-out or Oxidizing._ Coating the face of the molded case
with chemical copper to hasten deposition of copper shell in the bath.

_11. Deposition of Shell._ The molded case is put in the electrolytic
bath for the deposition of shell thereon.

_12. Releasing Shell from Molds._ Stripping the deposited shell from
the waxed mold by dashing hot water on it. The wax is melted off case
and used again.

_13. Washing Copper Shell._ Hot lye-water or steam is used to clean
off any wax sticking to it.

_14. Trimming Copper Shell._ Rough edges of shell outside the guard
line trimmed off.

_15. Aciding Copper Shell._ An application of fluxing medium to back
of copper shell so that tin will adhere.

_16. Tinning Copper Shell._ Tin-foil is melted on the back of the
copper shell. This is the solder between the copper shell and the
metal back, without which the metal backing would not adhere to the

_17. Backing-up._ The flowing of electrotype metal on the back of the
tinned copper shell for the purpose of making a foundation for
printing (electrotype metal is an alloy of 94 per cent lead; 3 per
cent tin for flowing and 3 per cent antimony for hardness).

_18. Scrubbing the Cast._ A power operated scrubbing machine using a
hydro-carbon oil as the cleansing medium to clean the printing face of
the electrotypes.

_19. Cast-sawing._ Sawing off the surplus metal of the cast before

_20. Flattening the Casts._ Hand operation with mallet and flattening
block to take the warp out of the electrotype caused by the
contraction of the metal in cooling.

_21. Rough-shaving._ Planing off superfluous metal from the back of
the electrotype.

_22. Finishing._ Putting the printing surface of the electrotype in
perfect condition for press after leaving the foundry department. This
is done by hand and requires a high degree of skill.

_23. Smooth-shaving._ The finishing shave of metal from back of
electrotype to bring it to the required thickness.

_24. Routing._ Cutting out the high but non-printing surfaces of the
electrotype by a routing machine.

_25. Guard-line Sawing._ Cutting the guard lines or bearers off the
electrotype to practically the finished size before blocking or

_26. Blocking._ Fastening the plate on wood base with brads driven
through the metal.

_27. Trimming._ Trimming the wood mounted electrotype to its exact
finished size.

_28. Type-high Machining._ Used for planing the bottom of the wood
base so that the mounted electrotype is of printing press
requirements, i. e., .918" high.


Electrotypes made by the genuine Dr. Albert Lead Mold Process are
always duplicates of fine-screen half-tones or mezzo-tints used for
the highest class of commercial job-work, such as three and four color
process or duo-tone printing on paper with a highly glazed surface.

The largest press used in lead molding will give a maximum pressure of
two thousand tons per square inch on a thirty inch ram hydraulically
operated. The weight of this press is over thirty thousand pounds.


In the lead mold process the plastic medium used is a soft thin sheet
of what is called "impression lead," .040 inches thick, instead of
wax, and the lead is placed on top of the original to be duplicated,
instead of vice-versa, as in the wax-molding process. No "building-up"
nor "black-leading" is necessary.

In all other respects the consecutive steps towards the completion of
the lead mold plate are identical to those used in the Wax Mold


The age long progress in the development and perfection of
typographical printing surfaces, from the period of Xylographic blocks
on through the successive inventions of individual movable cast-metal
type, stereotyping and electrotyping, by both the wax and lead-molding
processes, reaches its culmination in _Aluminotypes_.

Briefly, it is a method of casting printing plates of aluminum alloy
in molds made from a composition of plaster-of-paris. In its essential
points it is a modern adaptation of the process credited to William
Ged of Edinburgh in 1730 and afterwards modified and improved in the
early 19th century by Earl Stanhope of England.

In practice, the original to be duplicated is placed on a
molding-slab. A molding frame is set upon the slab and enclosing the
original. A special kind of oil is then sprayed on the face of the
original. This is to facilitate the release of the plaster mold so
that it will not "tear" when it is ready to be lifted off the original
after solidifying, and at the same time to retain the sharpness of the

The molding medium of plaster composition in a semi-liquefied state is
then poured on to the original in the molding frame. The surplus
plaster is scraped off flush with the top of the molding frame.

After the plaster matrix in its molding frame has set sufficiently it
is released by means of cams from the working pattern on the

The plaster matrix is then placed in a drying oven, through which a
forced draft of hot air is kept circulating at high pressure. The
thorough drying of the mold takes approximately ninety minutes.

When the plaster mold has become sufficiently dried, a round hole is
cut through the bottom of the matrix in an offset of the molding
frame. This hole is the gate through which the molten aluminum is
forced. The mold is then securely locked upright in a specially
designed casting machine.

The Aluminotype is cast by pressure and not by pouring as in the case
of stereotypes, which depend entirely upon gravity. Fused aluminum
alloy is poured into a hopper on the casting machine. A piston
operated by the agency of compressed air forces the aluminum evenly
into all parts of the plaster matrix.

When the cast is completed the molding frame is taken from the casting
machine and the Aluminotype removed from its plaster-of-paris matrix.


"An Outline of the History of Printing," by R. A. Peddie.

"Typographical Printing Surfaces," by L. A. Legros.

"Manual of Electro-Metallurgy," by Napier.

"The Encyclopedia Brittanica."

"Electrotyping and Stereotyping" Typographical Technical Series, Vol. XV.

The Rapid Electrotype Company.




An advertiser--perhaps one of the largest users of newspaper space in
the country--sprang a surprise recently on his ad-manager. Into the
office he came, one day, grim-visaged, jaw set, fire in his eyes, and
armed with no less than fifty clippings from exchanges.

And on the amazed ad-manager's desk he placed two conglomerate piles
of advertising matter. One represented the national newspaper campaign
of his own industry; the other a collection of newspaper
advertisements, picked at random.

"I think I have conclusive proof," said he, in no mild mood, "that you
fellows are not as efficient as you might be. Here are our
advertisements--from papers everywhere. The illustrations print
abominably! Look at them. The matter has been called to my attention
many times--by the newspapers themselves, by our road representatives
and by local dealers. They say our electro service and our straight
national campaigns are all muddied up with pictures that nobody can
decipher. Here's conclusive proof of it. Not a clean-looking cut in
the series and you can't blame it on paper and press work and all
that--they're _all_ bad!"

The advertising manager glanced casually at the exhibits. The
criticism was valid. Here was a daily newspaper campaign, running into
space valued at approximately sixty thousand dollars, and the
displays, three-fourths illustration, were mussy, involved, smeared
up, and unsatisfactory from a reproductive standpoint. Solid black
backgrounds were a sickly, washed-out gray and in other places
intricate pen work had "run-together."

It was equally true that clippings of competitive advertising and
advertising in general, selected at random, were strangely clean-cut.
The comparison was startling.

"Mr. X," finally observed the ad-manager, "I see what you mean; all of
us in this department have known of it, kept track of it; and the
remarkable part of the entire situation is that these results can be
traced back to you and your personal insistence on a certain type of
pen and ink design, executed in a specific technique. These matters
came up for your supervision and O. K. You did not care for the bold,
simple outline drawings first submitted. You preferred too many, and a
glut of detail. All of which is not compatible with newspaper
printing, even in large space. We were afraid of this and said so at
the time. Our objection was overruled. It's one thing to prefer a
pleasing, perhaps highly artistic pen technique and quite another to
apply it to fast presses, poor ink and hurried make-ready. A great
many things can happen, and _do_ happen, to a newspaper design before
it is printed and in the readers' hands."


Sometimes it is better to come out with the frank, brutal truth. In a
great many instances, poor newspaper reproduction is the direct result
of some executive's marked preference for a certain artist or a
certain technique, regardless of whether the man is qualified to draw
for this field, or whether the technique is fitted for the purpose.

On the other hand, there is, unquestionably, a strange, well nigh
inexcusable disregard of certain fundamentals of the business. There
is too much swivel-chair composure; too much beatific reassurance,
when proofs are submitted on good paper, from a flat-bed
engraver-house press. A newspaper series is very apt to look 100 per
cent when presented on the final electro sheet, or bound into a neat
booklet for the dealer and printed on coated stock. These are ostrich

In certain advertising agencies there is a standing rule in the matter
of newspaper plates that all proofs must be pulled on newspaper
stock--and a very inferior grade. A newspaper press is used, an entire
series coming off at once. There is no make-ready to speak of.

By this process no one is deceived. You see exactly what will happen,
or nearly so, when the series fares forth to newspapers all over the

The executive mentioned above had collected newspapers, big and
little, from the four points of the compass. And he had collected a
liberal number of perfectly satisfactory newspaper advertisements of
the illustrated variety. Blacks were clean black, Ben Day tints held
their own, there was no congestion, no smudging, no mishap of any

If certain rules are followed, any newspaper advertising illustration
can be made "fool-proof." You can be absolutely certain of a printable
result, despite all exigencies, all drawbacks, all hazards.

Failure usually follows a desire to attempt something beyond that
which has been tried and is wholly practical. For the present, at
least, users of newspaper space _must_ bow to the inevitable. They
_must_ realize that there is a well-defined limit to what can be done
mechanically. They must _not_ defiantly experiment, although the
desire to "do something new" and to be original is entirely


If you use half-tones, have them made very coarse screen--nothing
finer than 60 line. Stop out whites and eliminate backgrounds. The
high-light half-tone is a modern development with many virtues. If a
portrait is used, take out all background.

There is a way of retouching photographs that will minimize the danger
of poor printing. The artist strengthens weak contrasts, not with a
brush and paint, but with a pen and waterproof black ink. He also uses
areas of pure white. Successful reproduction is dependent upon
_sharp_, clear, vigorous _contrasts_.

Stippling is one of the best substitutes for the half-tone. This
simply means dotting-in a subject. It is a time-consuming, laborious
process, but it means line plates and the elimination of middle
tones--which are disastrous.

There was a time when certain clever inventions of the paper
manufacturer could be employed for half-tone effects in line. For
example, a Ross Board is manufactured with an assortment of patterned
surfaces. When brush or crayon or pencil is drawn over them, they give
effects that may not be duplicated in straight pen and ink on plain
white drawing board. Some of these papers have a chalk surface. Some
have imitation half-tone patterns, straight-line designs, etc. It is
possible to scratch away certain portions with a sharp knife. _Do not
use them_ as matters now stand in newspaper printing. They will not
"stand reduction" and only very coarse tints reproduce satisfactorily.

_Special Caution_--Do not allow artists to make original drawings for
newspaper use much larger than twice the size. Here is one of the
greatest evils of the day. The artist seems possessed to make his
original on a full sheet of paper, when he knows that the plate is for
two or three newspaper columns. What happens? An illustration which
makes a handsome showing in the original will inevitably fill-in when
reduced to "actual size." Figure it out yourself--look at it through a
reducing glass. Lines that seem wide apart almost touch in the
congestion that follows great reduction. The really wise and shrewd
artist makes his newspaper drawing _actual_ size.

Not more than a dozen Ben Day patterns can be used safely--now--in
newspapers. Do you know the meaning of "Ben Day?" It is a mechanical
tint, printed mechanically either on the plate, by the engraver, or on
the original drawing, from an inked gelatine surface and rubbed on
with a stilus. Magazine reproduction accepts it in all its forms.
Newspaper stock muddies it up when it is too fine. In any event, when
selecting a pattern, see that it is an open one and have it put on the
engraving--not the design. If on the design it means a reduction. If
on the plate it means no reduction, but precisely as shown in the Ben
Day book of patterns.

Avoid complex line treatments and techniques, such as cross-hatching
and the laying in of many very fine 290 pen lines close together. They
look well in the original--they seldom print well on newspaper stock.
They reduce abominably.

Any newspaper illustration should have plenty of white margin to
"relieve it." When a drawing is cramped, packed in, suffocated by side
rules, borders and text, it suffers.

Clear outline drawings, with an occasional dash of black, prove most
efficient for newspaper reproduction. They _can't_ fill in, they
_can't_ smudge, they _can't_ become contaminated by clots of printing
ink or defects in the newspaper stock. Not even fast press work can
damage their printability. But remember, not all outline drawings are
alike--great originality of technique can be secured.


Large areas of solid black are not advisable. Think it over. Ink flows
irregularly on newspaper presses. One copy may show up exactly as in
the original; the next may develop a white halo, a gray tendency, a
smeary, half-baked look. No two impressions will be quite the same.
And it is logical to see that this is apt to be so. Any imperfection
or irregularity in the ink roller will cause it, or the collection of
foreign matter on cut or roller. Any black area larger than two inches
square is a hazard.

Advertisers often think that masses of solid black will make an
advertisement "stand out." They would if they printed a smooth, even
black--which they seldom do. But liberal white margins are far more
potent in attracting attention and in segregating an advertisement
from mixed company than solid blacks.

The _appearance_ of large areas of black may be secured via
subterfuge. One method is to form the background of heavy black lines,
quite close together. The white spaces between save the printing. Look
at straight type through a magnifying glass. Not even type is printed
clear black. Then what chance would an even surface of large
proportion have?

Newspaper cuts should be "routed deep." Routing is merely the
deepening or entire cutting away of extraneous matter on the
engraving--that is, where there is no printing surface. The smudges of
hideous design often seen are really an impression of a metal surface
that has not been routed out properly. Every engraving should be
examined critically for such defects.

Avoid placing a shaded area against a black area. As we have
intimated, the heart and soul of the successful newspaper drawing is

The beginning of every advertisement or series of advertisements is
represented in terms of a first visualization. It is in pencil. These
should be made same size--that is, the actual size they are to
eventually appear. Then no one, the artist least of all, is fooled by
disparity of proportions.


The visualizer should keep one cardinal point in mind. Keep newspaper
advertisements simple. The less there is in them the better.
Thirty-two of the ads selected by our advertising friend, mentioned
earlier in the story, were good because they were simple. Type was
held to blocks, and with as little change in style, size and character
of type as possible.

All of them were characterized by liberal white margins. It is the
best known way of fighting back the opposition of the surrounding
appeals on the same page.

There's a good test possible. Make a photographic print of your
advertisement, the size it is to appear, and paste it on a newspaper
page--not a New York or Chicago paper, but a page in the "Bingville

Before plates are made or even before pen and ink drawings are fully
completed, you can change, rearrange, eliminate, or add to, as the
case may be.

The wise advertiser is the one who in preparing an elaborate and
extensive newspaper campaign keys it in its printing qualities, not to
the best papers on the list, but to the ones that are worst printed.
This may mean the undreamed of thing of 100 per cent perfect!

No advertiser can hope to secure full efficiency from a campaign if it
presents a smudged and confused appearance. Newspapers are trig things
in their own right. Their column rules and their precision of type
make this an arbitrary condition. There is really nothing finer and
cleaner and more pleasing to the human eye than a well-composed
newspaper, hot from the press. Ugly advertisements can make an ugly
newspaper. They can even spoil the set-up and typography in general of
the reading sections.

A newspaper is held responsible if returns from a single advertisement
or a campaign are not satisfactory. It is looked upon as a "poor
medium." Yet how many times the true fault can be traced to the
message itself. Full efficiency in advertising is the result of full
efficiency in the copy....

    (Reprinted by the kind permission of The Bureau of
    Advertising, the American Newspapers Publishers Association,
    Mr. William A. Thompson, Director.)


Mechanical production of any kind is an unsympathetic and inexorable
thing, and the modern large daily newspaper, in its mechanical
production, is unsympathetic and inexorable to the highest degree. It
reproduces exactly and impartially from all the different material
supplied to it.

Your ad-plate is locked into the form with the other matter composing
the page. A hurried lock-up, and the form is molded into a mat and
stereotyped. Fast presses and cheap ink do the rest.

If your ad does not show up well in the first few impressions run off,
the press grinds on just the same, with little or no make-ready. Once
they start, it is too late to stop to allow the press-room foreman to
investigate why a certain ad does not print up well. The "Daily Bugle"
must get on the streets, if possible, before its competitors with the
important scoop that the Beghum of Swat has just died. If you have
supplied the best material for the newspapers to work with, the
clean-cut reproduction of your advertisement is insured. If you have
been penny-wise and pound-foolish in saving a few cents on your
ad-plate, all the dollars you spent on art, typography and white space
for your ad are on the knees of the gods and liable to be spilled off
the said knees, and your ad is messy looking when it appears. The
advertiser invariably blames the newspaper and the newspaper passes
the buck on to the plate-maker. The printed appearance of the ad is
largely determined by the kind of plate furnished to the newspaper.

The large daily newspapers are entirely dependent upon the
stereotyping process for the necessary speed required in production.
They do not print directly from type or cuts. The big advantage of
stereotyping in this connection lies in the fact that it is the
quickest method of producing a solid, duplicate printing plate from an
original molding form. After locking up a page form, it can be molded,
the matrix dried and the plate cast and ready for the press in about
ten minutes.

Therefore, only unmounted plates should be sent to the large daily
papers and not wood mounted, as it takes too long for the heat to pass
through the wood base in drying the mat.

The unmounted plate is placed on a metal base, (because heat passes
through metal quickly in drying the mat) and then locked in the form
with the type and other matter composing the entire page. A mat is
then molded from the complete form and a curved stereotype is cast
from this page mat. It is from this curved full page stereotype that
the large daily newspaper is actually printed.

Since they must duplicate the plates sent to them by the stereotyping
process, your expensively prepared advertisement, if it is to appear
sharp and clean in the valuable space it uses, should be electrotyped
by your plate-maker. A stereotype duplicated from an electrotype will
print cleaner than a stereotype duplicated from a stereotype by reason
of the fact that mats molded by the newspaper from electrotypes are
sharper and deeper than when they are molded from stereotypes.

Electrotypes have a distinctly sharper and harder face and are deeper
than stereotypes. The very nature of the process and materials used in
their manufacture makes this superiority inevitable. Wax is used as
the plastic medium in which to mold electrotypes, whereas for
stereotypes paper is used. Sharpness and depth cannot be molded into
paper as it can into wax.

Neither will stereotype metal poured by gravity against a paper matrix
mold be as sharp and deep as copper deposited electrolytically on a
wax mold.

It follows, therefore, that when an unmounted electrotype is supplied
to the "Chicago Tribune" or the "New York Journal" or the "San
Francisco Call" they are stereotyping your ad in the page form from a
plate molded in wax directly from the original.

On the other hand, when you supply a stereotype of your ad to the
large dailies this stereotype is already one step removed from the
original master plate and means that two paper mats intervene between
the original supplied to the plate-maker and the final stereotype of
the page containing your advertisement. In short, they are duplicating
a stereotype from a stereotype and each duplication means a loss in
sharpness and depth; therefore they should be supplied with a sharp
electrotype from which to make their final page mat.

Obviously when a stereotype is supplied to the large dailies they are
working from a plate that is neither sharp nor deep to start with, as
would be the case if you sent them an electrotype from which to work.
An electrotype is economy in the end and will save you grief, when the
cost of space is considered.

Should you desire economy, order your plate-maker to send mats--copy
considered--to the large dailies. A mat is less expensive than a
stereotype and will reproduce your advertisement equally as well.

When you send them a mat instead of an electro there is one more
duplication for the newspapers to make in producing the final
stereotype from which they print, but the mat which your plate-maker
furnishes them is at least molded directly from the original plate, so
that it is sharper and deeper than the mat the newspapers have to make
when you furnish them a stereotype from which to work. When you
furnish the large dailies with the mat they cast a flat stereotype
first, which is locked up in the form with the other matter composing
the page. This entire form is then molded into a mat and stereotyped.

The small dailies and country newspapers print directly from type and
cuts. They use a flat-bed press. For this reason it is necessary that
the advertising-plate or dealers cut which you furnish to them should
be mounted type-high.

The best plate you can furnish them is none too good; their make-ready
and the general handling of their material is not of the highest order
in efficiency as compared to the large dailies, and it is entirely
probable that even with a good sharp electrotype, your advertisement
may not show to advantage. With a stereotype, the liability of smudgy
printing is greatly enhanced.

The Rapid Electrotype Company knows the mechanical equipment of the
different newspapers throughout the United States. It sends mounted
plates to those papers that print directly from type and cuts, and
unmounted plates to those that stereotype their forms. This detail is
left entirely to their discretion. The names of the towns to which
your advertisement or dealers-cut is to be shipped is all the
information they require in order to determine whether or not to ship
mounted or unmounted plates.


The Rapid Electrotype Company of Cincinnati was organized in July,
1899, and incorporated under the laws of Ohio in May, 1902. It has
been in service over a fifth of a century.

Prior to the organization of The Rapid Electrotype Company,
electrotyping was, on the whole, a localized business. The Rapid
Electrotype Company pioneered in the service of making and
distributing newspaper advertising plates--electrotypes, aluminotypes,
stereotypes, and mats--direct from its factory in Cincinnati to
newspapers and dealers throughout the United States.

The originality of this service, intelligently rendered to advertising
agencies and advertisers, was one of the reasons for the increase of
their capacity from only five thousand square inches of plate matter
daily in 1899 to one million square inches per day in 1921, and from
an organization of only nine men to one of over two hundred and fifty,
working in day and night shifts.

Their new factory is unquestionably the largest of its kind in the
world, especially designed and equipped for the making and
distribution of newspaper ad plates of all kinds. Over forty-five
thousand square feet of floor space is devoted to this service, and
with their highly developed co-operative facilities they occupy a
unique place in the advertising plans of many large national
advertisers and advertising agencies.


Developing and serving an ever increasing volume of business has
brought about a specialization in the factory practice of The Rapid
Electrotype Company. It has kept pace with the demands upon its
production and has made improvements in manufacturing methods designed
to cut-corners in cost of manufacture, to be shared with its
customers, and to make its service truly Rapid for all emergencies,
without sacrificing quality.

Its commercial job-plate department is a separate and distinct unit
from the newspaper advertising-plate department.

The character of the respective requirements of commercial job-plates
and newspaper advertising plates make this departmental production

A lead-molding press, built by The F. Wesel Mfg. Co., weighing over
thirty-thousand pounds, and developing two thousand tons pressure per
square inch on a thirty inch hydraulically operated ram is used in the
job-plate department. On this press are duplicated, from the finest
screen half-tones, the highest quality electrotypes and nickeltypes to
be used in three and four color process printing.

The preponderating volume of its business, however, is the production
of newspaper electrotypes, and it is in this department that The Rapid
Electrotype Company has made distinct improvements in manufacturing
practice by methods and machinery designed and constructed by its own
engineers in its own machine shop.


The Rapid Electrotype Company has built a new type of machine for use
in this important phase of the electrotyping art. It is a combination
Dry-Wet Machine, designed by its own engineering staff.

Those familiar with electrotypes well know the superiority of the wet
black leading process, especially for half-tones, stipple, Ben Day or
fine type, where much of the detail and sharpness is lost in dry black
leading, because of the crushing effect the brushes have on the wax
mold. In this new type of black leading machine this fault is entirely
eliminated, as the brushes never come in contact with the printing
face of the mold; they merely polish the high built-up spots, thereby
insuring better electrical conductivity to the wax, and a more uniform
deposition of the copper shell.

Two of these especially designed machines are in constant operation in
the ad department, which means the highest grade of advertising


Those who are not technically familiar with electrochemistry are prone
to think that the length of time a mold is kept in the electrolytic
bath, i. e., the copper bath, determines the thickness of the shell
deposited thereon. As a matter of fact, one electrotyper may keep his
molds in the copper bath for three hours and get only as thick a shell
as another who keeps his in but two hours. The element of time does
not determine the thickness nor quality of the shell deposited.

The determining factors in this phase of electrotyping are the
composition of the electrolytic bath, its temperature, and the current
density applied. In addition, the purity of the materials, the
cleanliness of the batteries, the perfection of the electrical
connections as well as the distance between the anode and the cathode
are all matters of importance. These factors are all variables and
must be confined between narrow limits.

This important phase of manufacture in The Rapid Electrotype Company
is under the supervision of an electro-chemical engineer.

Plus this fact is the accuracy of mechanical operation in handling wax
molds from the time they are put into the batteries until they are
taken out with the shell deposited thereon and ready for tinning and

The molded cases are suspended at regular intervals of twenty inches
from an endless chain-conveyor operating directly over the batteries.
This conveyor carries the cases edge-wise through the electrolytic
bath between two rows of anodes which are four inches apart. At the
end of each battery the conveyor automatically lifts the cases out and
over into the next battery in the series, of which there are seven.
The eighth tub contains pure running water for washing the case after
the complete deposition of the shell.

The speed of this conveyor is regulated so that when the molded case
has reached the end of its journey through the series of seven
batteries, the other factors also being regulated, a shell of uniform
thickness and texture throughout is deposited thereon.

This automatic handling of the cases in the batteries eliminates the
necessity of the battery-man pulling the case out of the bath by hand
from time to time in order to peel back a corner of the shell to see
if it is thick enough, which is the common practice. In other words,
the element of human guess-work is eliminated, and in addition, the
items of time and handling are greatly reduced.


Backing-up the shells with the metal base, i. e., casting, is done
automatically by The Rapid Electrotype Company.

A rotary casting-table with a capacity of ten pans revolves around its
axis on a plane that brings each pan immediately below a spout through
which the required metal is automatically flowed from the bottom of
the metal pot on the tinned shell placed therein. When the required
metal backing has been flowed, the table turns to bring the next pan
with its shell under the metal-spout. The amount of metal flowed is
exactly regulated. As the casting table completes a circuit, the first
shell backed up has cooled so that it can be removed to the scrubbing

This method, of course, eliminates the hand-ladling of hot metal from
the metal-pot to the casting-table, as is the ordinary practice, and
obviates any possibility of the oxidized metal or dross on the surface
getting into the casts, besides effecting a marked economy in time and
handling. In addition, it casts the plates flat, thereby eliminating
about 75 per cent of the finishing, which, of course, means a better
printing plate. Three of these machines are used.

The Rapid Electrotype Company developed and built these
casting-machines in its own machine shop and owns the patents covering


The development, perfection and introduction of the Aluminotype
Process for duplicating a printing surface in a solid piece is one of
the outstanding accomplishments of The Rapid Electrotype Company, and
marks a distinct step in advance of the other and older methods used
in the graphic arts, for certain classes of printing.

Aluminotypes are much harder than an electrotype or stereotype and
have as sharp and deep a printing face as an electrotype. The
Aluminotype process will reproduce as sharp and clear as the
electrotyping process an eighty line screen half-tone, which is really
too fine a screen for newspaper printing.

A distinct advantage Aluminotypes have is in the item of weight. An
Aluminotype, unmounted, weighs only one quarter as much as an
unmounted electrotype or stereotype of the same size. When mounted on
a wood base an Aluminotype weighs just one half as much as an
electrotype or stereotype of the same size mounted on wood. In a
national advertising campaign where a general list of newspapers is
used Aluminotypes, by reason of their light weight, effect a marked
saving in parcel-post or express charges. This saving in postage is
especially noticeable in the case of foreign country newspaper

In addition, because of their toughness, a saving can be made in
packing Aluminotypes, inasmuch as they do not require the expensive
precautions in packing to avoid injury in transportation that
electrotypes or stereotypes do. They will not bend; their printing
face cannot be injured by the ordinary mishaps attendant upon handling
in transportation. For all practical purposes it can be said that
Aluminotypes are indestructible.


The ordinary practice followed in making mats is to use an electrotype
or stereotype pattern plate made from the original form. Sometimes the
original itself is used.

The first mat molded from an electrotype pattern plate will be sharp.
The next one molded will be a little less sharp than the first. The
third one molded will be slightly less sharp than the second one. In
other words, with every succeeding mold, the electrotype or stereotype
pattern plate is mashed a little by the pressure of the matrix press
until it has to be discarded and a new one used.

The five-thousandth mat made by the Rapid Electrotype Company from the
same pattern plate is as sharp as the first one molded. This is
because an _aluminotype_ pattern is used from which to mold.
_Aluminotypes_ will not mash under the pressure of the matrix press,
as they are much harder than electrotypes.


The shipping department of The Rapid Electrotype Company is one of the
most important and highly systematized in the entire organization, and
in the manner of handling orders for distribution to newspapers in
large campaigns or in making bulk shipment direct to the advertisers
is unique.

It is in this department that the packing and routing of advertising
plates to newspapers or dealers is done. A system of triple checking
each item of all orders precludes, as far as is humanly possible, any
error in filling accurately all specifications.

    _This brochure was compiled by H. C. Forster of
     The Rapid Electrotype Co._

*** End of this Doctrine Publishing Corporation Digital Book "From Xylographs to Lead Molds; A.D. 1440-A.D. 1921" ***

Doctrine Publishing Corporation provides digitized public domain materials.
Public domain books belong to the public and we are merely their custodians.
This effort is time consuming and expensive, so in order to keep providing
this resource, we have taken steps to prevent abuse by commercial parties,
including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the files We designed Doctrine Publishing
Corporation's ISYS search for use by individuals, and we request that you
use these files for personal, non-commercial purposes.

+ Refrain from automated querying Do not send automated queries of any sort
to Doctrine Publishing's system: If you are conducting research on machine
translation, optical character recognition or other areas where access to a
large amount of text is helpful, please contact us. We encourage the use of
public domain materials for these purposes and may be able to help.

+ Keep it legal -  Whatever your use, remember that you are responsible for
ensuring that what you are doing is legal. Do not assume that just because
we believe a book is in the public domain for users in the United States,
that the work is also in the public domain for users in other countries.
Whether a book is still in copyright varies from country to country, and we
can't offer guidance on whether any specific use of any specific book is
allowed. Please do not assume that a book's appearance in Doctrine Publishing
ISYS search  means it can be used in any manner anywhere in the world.
Copyright infringement liability can be quite severe.

About ISYS® Search Software
Established in 1988, ISYS Search Software is a global supplier of enterprise
search solutions for business and government.  The company's award-winning
software suite offers a broad range of search, navigation and discovery
solutions for desktop search, intranet search, SharePoint search and embedded
search applications.  ISYS has been deployed by thousands of organizations
operating in a variety of industries, including government, legal, law
enforcement, financial services, healthcare and recruitment.