Home
  By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | HTML | PDF ]

Look for this book on Amazon


We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: Philosophiae Naturalis Principia Mathematica
Author: Newton, Isaac, Sir, 1642-1727
Language: Latin
As this book started as an ASCII text book there are no pictures available.
Copyright Status: Not copyrighted in the United States. If you live elsewhere check the laws of your country before downloading this ebook. See comments about copyright issues at end of book.

*** Start of this Doctrine Publishing Corporation Digital Book "Philosophiae Naturalis Principia Mathematica" ***

This book is indexed by ISYS Web Indexing system to allow the reader find any word or number within the document.



Transcriber's note: A few typographical errors have been corrected: they
are listed at the end of the text.

{Braces} are inserted by the Transcriber to clarify the meaning of maths
expressions. Overlining is the method of grouping used in the original and
is marked [=like this]. In Lib. I. Lemma XVIII. & XX. [r] is upright r
distinguished from italics, in Lemma XVIII. [s] is long-s distinguished
from short-s, and in Prop. XXII. [D] is small-caps distinguished from
normal font size.

       *       *       *       *       *


PHILOSOPHIÆ

NATURALIS

PRINCIPIA

MATHEMATICA

       *       *       *       *       *


Autore _IS. NEWTON_, _Trin. Coll. Cantab. Soc._ Matheseos
Professore _Lucasiano_, & Societatis Regalis Sodali.

       *       *       *       *       *


IMPRIMATUR.

S. PEPYS, _Reg. Soc._ PRÆSES.

_Julii 5. 1686._

       *       *       *       *       *


_LONDINI,_

Jussu _Societatis Regiæ_ ac Typis _Josephi Streater_. Prostat apud
plures Bibliopolas. _Anno_ MDCLXXXVII.

       *       *       *       *       *


ILLUSTRISSIMÆ

SOCIETATI REGALI

a Serenissimo

REGE CAROLO II.

AD

PHILOSOPHIAM PROMOVENDAM

FUNDATÆ,

ET AUSPICIIS

POTENTISSIMI MONARCHÆ

JACOBI II.

FLORENTI.

Tractatum hunc humillime _D.D.D._

_IS. NEWTON._

       *       *       *       *       *


PRÆFATIO

AD

LECTOREM.

_Cum Veteres _Mechanicam_ (uti Author est _Pappus_) in verum Naturalium
investigatione maximi fecerint, & recentiores, missis formis
substantialibus & qualitatibus occultis, Phænomena Naturæ ad leges
Mathematicas revocare aggressi sint: Visum est in hoc Tractatu _Mathesin_
excolere quatenus ea ad _Philosophiam_ spectat. _Mechanicam_ vero duplicem
Veteres constituerunt: _Rationalem_ quæ per Demonstrationes accurate
procedit, & _Practicam_. Ad practicam spectant Artes omnes Manuales, a
quibus utiq; _Mechanica_ nomen mutuata est. Cum autem Artifices parum
accurate operari soleant, fit ut _Mechanica_ omnis a _Geometria_ ita
distinguatur, ut quicquid accuratum sit ad _Geometriam_ referatur, quicquid
minus accuratum ad _Mechanicam_. Attamen errores non sunt Artis sed
Artificum. Qui minus accurate operatur, imperfectior est Mechanicus, & si
quis accuratissime operari posset, hic foret Mechanicus omnium
perfectissimus. Nam & Linearum rectarum & Circulorum descriptiones in
quibus _Geometria_ fundatur, ad _Mechanicam_ pertinent. Has lineas
describere _Geometria_ non docet sed postulat. Postulat enim ut Tyro easdem
accurate describere prius didicerit quam limen attingat _Geometriæ_; dein,
quomodo per has operationes Problemata solvantur, docet. Rectas & circulos
describere Problemata sunt sed non Geometrica. Ex _Mechanica_ postulatur
horum solutio, in _Geometria_ docetur solutorum usus. Ac gloriatur
_Geometria_ quod tam paucis principiis aliunde petitis tam multa præstet.
Fundatur igitur _Geometria_ in praxi Mechanica, & nihil aliud est quam
_Mechanicæ universalis_ pars illa quæ artem mensurandi accurate proponit ac
demonstrat. Cum autem artes Manuales in corporibus movendis præcipue
versentur, fit ut _Geometria_ ad magnitudinem, _Mechanica_ ad motum vulgo
reseratur. Quo sensu _Mechanica rationalis_ erit Scientia Motuum qui ex
viribus quibuscunq; resultant, & virium quæ ad motus quoscunq; requiruntur,
accurate proposita ac demonstrata. Pars hæc _Mechanicæ_ a Veteribus in
_Potentiis quinque_ ad artes manuales spectantibus exculta fuit, qui
Gravitatem (cum potentia manualis non sit) vix aliter quam in ponderibus
per potentias illas movendis considerarunt. Nos autem non Artibus sed
Philosophiæ consulentes, deq; potentiis non manualibus sed naturalibus
scribentes, ea maxime tractamus quæ ad Gravitatem, levitatem, vim
Elasticam, resistentiam Fluidorum & ejusmodi vires seu attractivas seu
impulsivas spectant: Et ea propter hæc nostra tanquam Philosophiæ principia
Mathematica proponimus. Omnis enim Philosophiæ difficultas in eo versari
videtur, ut a Phænomenis motuum investigemus vires Naturæ, deinde ab his
viribus demonstremus phænomena reliqua. Et hac spectant Propositiones
generales quas Libro primo & secundo pertractavimus. In Libro autem tertio
exemplum hujus rei proposuimus per explicationem Systematis mundani. Ibi
enim, ex phænomenis cælestibus, per Propositiones in Libris prioribus
Mathematice demonstratas, derivantur vires gravitatis quibus corpora ad
Solem & Planetas singulos tendunt. Deinde ex his viribus per Propositiones
etiam Mathematicas deducuntur motus Planetarum, Cometarum, Lunæ & Maris.
Utinam cætera Naturæ phænomena ex principiis Mechanicis eodem argumentandi
genere derivare liceret. Nam multa me movent ut nonnihil suspicer ea omnia
ex viribus quibusdam pendere posse, quibus corporum particulæ per causas
nondum cognitas vel in se mutuo impelluntur & secundum figuras regulares
cohærent, vel ab invicem fugantur & recedunt: quibus viribus ignotis,
Philosophi hactenus Naturam frustra tentarunt. Spero autem quod vel huic
Philosophandi modo, vel veriori alicui, Principia hic posita lucem aliquam
præbebunt._

_In his edendis, Vir acutissimus & in omni literarum genere eruditissimus
_Edmundus Halleius_ operam navavit, nec solum Typothetarum Sphalmata
correxit & Schemata incidi curavit, sed etiam Author fuit ut horum
editionem aggrederer. Quippe cum demonstratam a me figuram Orbium cælestium
impetraverat, rogare non destitit ut eadem cum _Societate Regali_
communicarem, Quæ deinde hortatibus & benignis suis auspiciis effecit ut de
eadem in lucem emittenda cogitare inciperem. At postquam Motuum Lunarium
inæqualitates aggressus essem, deinde etiam alia tentare cæpissem quæ ad
leges mensuras Gravitatis & aliarum virium, ad figuras a corporibus
secundum datas quascunque leges attractis describendas, ad motus corporum
plurium inter se, ad motus corporum in Mediis resistentibus, ad vires,
densitates & motus Mediorum, ad Orbes Cometarum & similia spectant,
editionem in aliud tempus differendam esse putavi, ut cætera rimarer & una
in publicum darem. Quæ ad motus Lunares spectant, (imperfecta cum sint,) in
Corollariis Propositionis _LXVI._ simul complexus sum, ne singula methodo
prolixiore quam pro rei dignitate proponere, & sigillatim demonstrare
tenerer, & seriem reliquarum Propositionum interrumpere. Nonnulla sero
inventa locis minus idoneis inserere malui, quam numerum Propositionum &
citationes mutare. Ut omnia candide legantur, & defectus, in materia tam
difficili non tam reprehendantur, quam novis Lectorum conatibus
investigentur, & benigne suppleantur, enixe rogo._

       *       *       *       *       *


IN

VIRI PRÆSTANTISSIMI

D. ISAACI NEWTONI

OPUS HOCCE

MATHEMATICO-PHYSICUM

_Sæculi Gentisque nostræ Decus egregium._

  En tibi norma Poli, & divæ libramina Molis,
  Computus atque Jovis; quas, dum primordia rerum
  Pangeret, omniparens Leges violare Creator
  Noluit, æternique operis fundamina fixit.
  Intima panduntur victi penetralia cæli,
  Nec latet extremos quæ Vis circumrotat Orbes.
  Sol solio residens ad se jubet omnia prono
  Tendere descensu, nec recto tramite currus
  Sidereos patitur vastum per inane moveri;
  Sed rapit immotis, se centro, singula Gyris.
  Jam patet horrificis quæ sit via flexa Cometis;
  Jam non miramur barbati Phænomena Astri.
  Discimus hinc tandem qua causa argentea Phoebe
  Passibus haud æquis graditur; cur subdita nulli
  Hactenus Astronomo numerorum fræna recuset:
  Cur remeant Nodi, curque Auges progrediuntur.
  Discimus & quantis refluum vaga Cynthia Pontum
  Viribus impellit, dum fractis fluctibus Ulvam
  Deserit, ac Nautis suspectas nudat arenas;
  Alternis vicibus suprema ad littora pulsans.
  Quæ toties animos veterum torsere Sophorum,
  Quæque Scholas frustra rauco certamine vexant
  Obvia conspicimus nubem pellente Mathesi.
  Jam dubios nulla caligine prægravat error
  Queis Superum penetrare domos atque ardua Coeli
  Scandere sublimis Genii concessit acumen.

  Surgite Mortales, terrenas mittite curas
  Atque hinc coeligenæ vires dignoscite Mentis
  A pecudum vita longe lateque remotæ.
  Qui scriptis jussit Tabulis compescere Cædes
  Furta & Adulteria, & perjuræ crimina Fraudis;
  Quive vagis populis circumdare moenibus Urbes
  Autor erat; Cererisve beavit munere gentes;
  Vel qui curarum lenimen pressit ab Uva;
  Vel qui Niliaca monstravit arundine pictos
  Consociare sonos, oculisque exponere Voces;
  Humanam sortem minus extulit; utpote pauca
  Respiciens miseræ solummodo commoda vitæ.
  Jam vero Superis convivæ admittimur, alti
  Jura poli tractare licet, jamque abdita coecæ
  Claustra patent Terræ rerumque immobilis ordo,
  Et quæ præteriti latuerunt sæcula mundi.

  Talia monstrantem mecum celebrate Camænis,
  Vos qui coelesti gaudetis nectare vesci,
  _NEWTONVM_ clausi reserantem scrinia Veri,
  _NEWTONVM_ Musis charum, cui pectore puro
  Phoebus adest, totoque incessit Numine mentem:
  Nec fas est propius Mortali attingere Divos.

                  _EDM. HALLEY._

       *       *       *       *       *


PHILOSOPHIÆ

NATURALIS

Principia

MATHEMATICA.

       *       *       *       *       *


Definitiones.

       *       *       *       *       *


Def. I.

_Quantitas Materiæ est mensura ejusdem orta ex illius Densitate &
Magnitudine conjunctim._

Aer duplo densior in duplo spatio quadruplus est. Idem intellige de Nive et
Pulveribus per compressionem vel liquefactionem condensatis. Et par est
ratio corporum omnium, quæ per causas quascunq; diversimode condensantur.
Medii interea, si quod fuerit, interstitia partium libere pervadentis, hic
nullam rationem habeo. Hanc autem quantitatem sub nomine corporis vel Massæ
in sequentibus passim intelligo. Innotescit ea per corporis cujusq; pondus.
Nam ponderi proportionalem esse reperi per experimenta pendulorum
accuratissime instituta, uti posthac docebitur.

Def. II.

_Quantitas motus est mensura ejusdem orta ex Velocitate et quantitate
Materiæ conjunctim._

Motus totius est summa motuum in partibus singulis, adeoq; in corpore duplo
majore æquali cum Velocitate duplus est, et dupla cum Velocitate
quadruplus.

Def. III.

_Materiæ vis insita est potentia resistendi, qua corpus unumquodq;, quantum
in se est, perseverat in statu suo vel quiescendi vel movendi uniformiter
in directum._

Hæc semper proportionalis est suo corpori, neq; differt quicquam ab inertia
Massæ, nisi in modo concipiendi. Per inertiam materiæ fit ut corpus omne de
statu suo vel quiescendi vel movendi difficulter deturbetur. Unde etiam vis
insita nomine significantissimo vis inertiæ dici possit. Exercet vero
corpus hanc vim solummodo in mutatione status sui per vim aliam in se
impressam facta, estq; exercitium ejus sub diverso respectu et Resistentia
et Impetus: Resistentia quatenus corpus ad conservandum statum suum
reluctatur vi impressæ; Impetus quatenus corpus idem, vi resistentis
obstaculi difficulter cedendo, conatur statum ejus mutare. Vulgus
Resistentiam quiescentibus et Impetum moventibus tribuit; sed motus et
quies, uti vulgo concipiuntur, respectu solo distinguuntur ab invicem, neq;
semper vere quiescunt quæ vulgo tanquam quiescentia spectantur.

Def. IV.

_Vis impressa est actio in corpus exercita, ad mutandum ejus statum vel
quiescendi vel movendi uniformiter in directum._

Consistit hæc vis in actione sola, neq; post actionem permanet in corpore.
Perseverat enim corpus in statu omni novo per solam vim inertiæ. Est autem
vis impressa diversarum originum, ut ex ictu, ex pressione, ex vi
centripeta.

Def. V.

_Vis centripeta est qua corpus versus punctum aliquod tanquam ad centrum
trahitur, impellitur, vel utcunq; tendit._

Hujus generis est gravitas, qua corpus tendit ad centrum Terræ: Vis
magnetica, qua ferrum petit centrum Magnetis, et vis illa, quæcunq; sit,
qua Planetæ perpetuo retrahuntur a motibus rectilineis, et in lineis curvis
revolvi coguntur. Est autem vis centripetæ quantitas trium generum,
absoluta, acceleratrix et motrix.

Def. VI.

_Vis centripetæ quantitas absoluta est mensura ejusdem major vel minor pro
efficacia causæ eam propagantis a centro per regiones in circuitu._

Uti virtus Magnetica major in uno magnete, minor in alio.

Def. VII.

_Vis centripetæ quantitas acceleratrix est ipsius mensura Velocitati
proportionalis, quam dato tempore generat._

Uti Virtus Magnetis ejusdem major in minori Distantia, minor in majori: vel
vis gravitans major in Vallibus, minor in cacuminibus præaltorum montium
(ut experimento pendulorum constat) atq; adhuc minor (ut posthac patebit)
in majoribus distantiis a Terra; in æqualibus autem distantiis eadem undiq;
propterea quod corpora omnia cadentia (gravia an levia, magna an parva)
sublata Aeris resistentia, æqualiter accelerat.

Def. VIII.

_Vis centripetæ quantitas motrix est ipsius mensura proportionalis motui,
quem dato tempore generat._

Uti pondus majus in majori corpore, minus in minore; inq; corpore eodem
majus prope terram, minus in cælis. Hæc vis est corporis totius
centripetentia seu propensio in centrum & (ut ita dicam) pondus, &
innotescit semper per vim ipsi contrariam & æqualem, qua descensus corporis
impediri potest.

Hasce virium quantitates brevitatis gratia nominare licet vires absolutas,
acceleratrices & motrices, & distinctionis gratia referre ad corpora, ad
corporum loca, & ad centrum virium: Nimirum vim motricem ad corpus, tanquam
conatum & propensionem totius in centrum, ex propensionibus omnium partium
compositum; & vim acceleratricem ad locum corporis, tanquam efficaciam
quandam, de centro per loca singula in circuitu diffusam, ad movenda
corpora quæ in ipsis sunt; vim autem absolutam ad centrum, tanquam causa
aliqua præditum, sine qua vires motrices non propagantur per regiones in
circuitu; sive causa illa sit corpus aliquod centrale (quale est Magnes in
centro vis Magneticæ vel Terra in centro vis gravitantis) sive alia aliqua
quæ non apparet. Mathematicus saltem est hic conceptus. Nam virium causas &
sedes physicas jam non expendo.

Est igitur vis acceleratrix ad vim motricem ut celeritas ad motum. Oritur
enim quantitas motus ex celeritate ducta in quantitatem Materiæ, & vis
motrix ex vi acceleratrice ducta in quantitatem ejusdem materiæ. Nam summa
actionum vis acceleratricis in singulas corporis particulas est vis motrix
totius. Unde juxta Superficiem Terræ, ubi gravitas acceleratrix seu vis
gravitans in corporibus universis eadem est, gravitas motrix seu pondus est
ut corpus: at si in regiones ascendatur ubi gravitas acceleratrix fit
minor, pondus pariter minuetur, eritq; semper ut corpus in gravitatem
acceleratricem ductum. Sic in regionibus ubi gravitas acceleratrix duplo
minor est, pondus corporis duplo vel triplo minoris erit quadruplo vel
sextuplo minus.

Porro attractiones et impulsus eodem sensu acceleratrices & motrices
nomino. Voces autem attractionis, impulsus vel propensionis cujuscunq; in
centrum, indifferenter et pro se mutuo promiscue usurpo, has vires non
physice sed Mathematice tantum considerando. Unde caveat lector ne per
hujusmodi voces cogitet me speciem vel modum actionis causamve aut rationem
physicam alicubi definire, vel centris (quæ sunt puncta Mathematica) vires
vere et physice tribuere, si forte aut centra trahere, aut vires centrorum
esse dixero.

_Scholium._

Hactenus voces minus notas, quo in sensu in sequentibus accipiendæ sunt,
explicare visum est. Nam tempus, spatium, locum et motum ut omnibus
notissima non definio. Dicam tamen quod vulgus quantitates hasce non aliter
quam ex relatione ad sensibilia concipit. Et inde oriuntur præjudicia
quædam, quibus tollendis convenit easdem in absolutas & relativas, veras &
apparentes, Mathematicas et vulgares distingui.

I. Tempus absolutum verum & Mathematicum, in se & natura sua absq;
relatione ad externum quodvis, æquabiliter fluit, alioq; nomine dicitur
Duratio; relativum apparens & vulgare est sensibilis & externa quævis
Durationis per motum mensura, (seu accurata seu inæquabilis) qua vulgus
vice veri temporis utitur; ut Hora, Dies, Mensis, Annus.

II. Spatium absolutum natura sua absq; relatione ad externum quodvis semper
manet similare & immobile; relativum est spatii hujus mensura seu dimensio
quælibet mobilis, quæ a sensibus nostris per situm suum ad corpora
definitur, & a vulgo pro spatio immobili usurpatur: uti dimensio spatii
subterranei, aerei vel cælestis definita per situm suum ad Terram. Idem
sunt spatium absolutum & relativum, specie & magnitudine, sed non permanent
idem semper numero. Nam si Terra, verbi gratia, movetur, spatium Aeris
nostri quod relative & respectu Terræ semper manet idem, nunc erit una pars
spatii absoluti in quam Aer transit, nunc alia pars ejus, & sic absolute
mutabitur perpetuo.

III. Locus est pars spatii quam corpus occupat, estq; pro ratione spatii
vel absolutus vel relativus. Partem dico spatii, non situm corporis vel
superficiem ambientem. Nam solidorum æqualium æquales semper sunt loci;
Superficies autem ob dissimilitudinem figurarum ut plurimum inæquales sunt;
situs vero proprie loquendo quantitatem non habent, neq; tam sunt loca quam
affectiones locorum. Motus totius idem est cum summa motuum partium, hoc
est, translatio totius de ipsius loco eadem cum summa translationum partium
de locis suis, adeoq; locus totius idem cum summa locorum partium, &
propterea internus & in corpore toto.

IV. Motus absolutus est translatio corporis de loco absoluto in locum
absolutum, relativus de relativo in relativum. Sic in Navi quæ velis passis
fertur, relativus corporis locus est navis regio illa in qua corpus
versatur, seu cavitatis totius pars illa quam corpus implet, quæq; adeo
movetur una cum Navi; & Quies relativa est permansio corporis in eadem illa
navis regione vel parte cavitatis. At Quies vera est permansio corporis in
eadem parte spatii illius immoti in qua Navis ipsa una cum cavitate sua &
contentis universis movetur. Unde si Terra vere quiescit, corpus quod
relative quiescit in Navi, movebitur vere et absolute ea cum Velocitate qua
Navis movetur in Terra. Sin Terra etiam movetur, orietur verus et absolutus
corporis motus partim ex Terræ motu vero in spatio immoto, partim ex Navis
motu relativo in Terra; et si corpus etiam movetur relative in Navi,
orietur verus ejus motus partim ex vero motu Terræ in spatio immoto, partim
ex relativis motibus tum Navis in Terra, tum corporis in Navi, et ex his
motibus relativis orietur corporis motus relativus in Terra. Ut si Terræ
pars illa ubi Navis versatur moveatur vere in Orientem, cum Velocitate
partium 10010, et velis ventoq; feratur Navis in Occidentem cum Velocitate
partium decem, Nauta autem ambulet in Navi Orientem versus cum Velocitatis
parte una, movebitur Nauta vere et absolute in spatio immoto cum
Velocitatis partibus 10001 in Orientem, et relative in Terra Occidentem
versus cum Velocitatis partibus novem.

Tempus absolutum a relativo distinguitur in Astronomia per Æquationem
Temporis vulgi. Inæquales enim sunt dies Naturales, qui vulgo tanquam
æquales pro Mensura Temporis habentur. Hanc inæqualitatem corrigunt
Astronomi ut ex veriore Tempore mensurent motus cælestes. Possibile est ut
nullus sit motus æquabilis quo Tempus accurate mensuretur. Accelerari &
retardari possunt motus omnes, sed fluxus Temporis absoluti mutari nequit.
Eadem est duratio seu perseverantia existentiæ rerum, sive motus sint
celeres, sive tardi, sive nulli; proinde hæc a mensuris suis sensibilibus
merito distinguitur, & ex ijsdem colligitur per Æquationem Astronomicam.
Hujus autem æquationis in determinandis Phænomenis necessitas, tum per
experimentum Horologii oscillatorii, tum etiam per Eclipses Satellitum
Jovis evincitur.

Ut partium Temporis ordo est immutabilis, sic etiam ordo partium Spatii.
Moveantur hæ de locis suis, & movebuntur (ut ita dicam) de seipsis. Nam
Tempora & Spatia sunt sui ipsorum & rerum omnium quasi loca. In Tempore
quoad ordinem successionis; in Spatio quoad ordinem situs locantur
universa. De illorum Essentia est ut sint loca, & loca primaria moveri
absurdum est. Hæc sunt igitur absoluta loca, & solæ translationes de his
locis sunt absoluti motus.

Verum quoniam hæ spatii partes videri nequeunt, & ab invicem per sensus
nostros distingui, earum vice adhibemus mensuras sensibiles. Ex
positionibus enim & distantiis rerum a corpore aliquo, quod spectamus ut
immobile, definimus loca universa; deinde etiam & omnes motus æstimamus cum
respectu ad prædicta loca, quatenus corpora ab iisdem transferri
concipimus. Sic vice locorum & motuum absolutorum relativis utimur, nec
incommode in rebus humanis: in Philosophicis autem abstrahendum est a
sensibus. Fieri etenim potest ut nullum revera quiescat corpus, ad quod
loca motusq; referantur.

Distinguuntur autem Quies & Motus absoluti & relativi ab invicem per eorum
proprietates, causas & effectus. Quietis proprietas est, quod corpora vere
quiescentia quiescunt inter se. Ideoq; cum possibile sit ut corpus aliquod
in regionibus fixarum, aut longe ultra, quiescat absolute; sciri autem non
possit ex situ corporum ad invicem in regionibus nostris, utrum horum
aliquod ad longinquum illud datam positionem servet, quies vera ex horum
situ inter se definiri nequit.

Motus proprietas est, quod partes quæ datas servant positiones ad tota,
participant motus eorundem totorum. Nam gyrantium partes omnes conantur
recedere de axe motus, et progredientium impetus oritur ex conjuncto impetu
partium singularum. Igitur motis corporibus ambientibus, moventur quæ in
ambientibus relative quiescunt. Et propterea motus verus et absolutus
definiri nequit per translationem e vicinia corporum, quæ tanquam
quiescentia spectantur. Debent corpora externa non solum tanquam
quiescentia spectari, sed etiam vere quiescere. Alioquin inclusa omnia,
præter translationem e vicinia ambientium, participabunt etiam ambientium
motus veros, et sublata illa translatione non vere quiescent, sed tanquam
quiescentia solummodo spectabuntur; sunt enim ambientia ad inclusa ut
totius pars exterior ad partem interiorem, vel ut cortex ad nucleum. Moto
autem cortice, nucleus etiam, absq; translatione de vicinia corticis, ceu
pars totius, movetur.

Præcedenti proprietati affinis est, quod moto loco movetur una locatum,
adeoq; corpus, quod de loco moto movetur, participat etiam loci sui motum.
Igitur motus omnes, qui de locis motis fiunt, sunt partes solummodo motuum
integrorum et absolutorum, et motus omnis integer componitur ex motu
corporis de loco suo primo, et motu loci hujus de loco suo, et sic
deinceps, usq; dum perveniatur ad locum immotum, ut in exemplo Nautæ supra
memorato. Unde motus integri et absoluti non nisi per loca immota definiri
possunt, et propterea hos ad loca immota, relativos ad mobilia supra
retuli: Loca autem immota non sunt, nisi quæ omnia ab infinito in infinitum
datas servant positiones ad invicem, atq; adeo semper manent immota,
spatiumq; constituunt quod immobile appello.

Causæ, quibus motus veri et relativi distinguuntur ab invicem, sunt vires
in corpora impressæ ad motum generandum. Motus verus nec generatur nec
mutatur nisi per vires in ipsum corpus motum impressas: at motus relativus
generari et mutari potest absq; viribus impressis in hoc corpus. Sufficit
enim ut imprimantur in alia solum corpora ad quæ fit relatio, ut ijs
cedentibus mutetur relatio illa in qua hujus quies vel motus relativus
consistit. Rursus motus verus a viribus in corpus motum impressis semper
mutatur, at motus relativus ab his viribus non mutatur necessario. Nam si
eædem vires in alia etiam corpora, ad quæ fit relatio, sic imprimantur ut
situs relativus conservetur, conservabitur relatio in qua motus relativus
consistit. Mutari igitur potest motus omnis relativus ubi verus
conservatur, et conservari ubi verus mutatur; et propterea motus verus in
ejusmodi relationibus minime consistit.

Effectus quibus motus absoluti et relativi distinguuntur ab invicem, sunt
vires recedendi ab axe motus circularis. Nam in motu circulari nude
relativo hæ vires nullæ sunt, in vero autem et absoluto majores vel minores
pro quantitate motus. Si pendeat situla a filo prælongo, agaturq; perpetuo
in orbem donec filum a contorsione admodum rigescat, dein impleatur aqua,
et una cum aqua quiescat; tum vi aliqua subitanea agatur motu contrario in
orbem, et filo se relaxante, diutius perseveret in hoc motu: superficies
aquæ sub initio plana erit, quemadmodum ante motum vasis, at postquam, vi
in aquam paulatim impressa, effecit vas, ut hæc quoq; sensibiliter revolvi
incipiat, recedet ipsa paulatim e medio, ascendetq; ad latera vasis,
figuram concavam induens, (ut ipse expertus sum) et incitatiore semper motu
ascendet magis & magis, donec revolutiones in æqualibus cum vase temporibus
peragendo, quiescat in eodem relative. Indicat hic ascensus conatum
recedendi ab axe motus, & per talem conatum & innotescit & mensuratur motus
aquæ circularis verus & absolutus, motuiq; relativo hic omnino contrarius.
Initio ubi maximus erat aquæ motus relativus in vase, motus ille nullum
excitabat conatum recedendi ab axe: Aqua non petebat circumferentiam
ascendendo ad latera vasis, sed plana manebat, & propterea motus illius
circularis verus nondum inceperat. Postea vero ut aquæ motus relativus
decrevit, ascensus ejus ad latera vasis indicabat conatum recedendi ab axe,
atq; hic conatus monstrabat motum illius circularem verum perpetuo
crescentem, ac tandem maximum factum ubi aqua quiescebat in vase relative.
Igitur conatus iste non pendet a translatione aquæ respectu corporum
ambientium, & propterea motus circularis verus per tales translationes
definiri nequit. Unicus est corporis cujusq; revolventis motus vere
circularis, conatui unico tanquam proprio & adæquato effectui respondens;
motus autem relativi pro varijs relationibus ad externa innumeri sunt, &
relationum instar, effectibus veris omnino destituuntur, nisi quatenus de
vero illo & unico motu participant. Unde & in Systemate eorum qui Cælos
nostros infra Cælos fixarum in orbem revolvi volunt, & Planetas secum
deferre; Planetæ & singulæ Cælorum partes, qui relative quidem in Cælis
suis proximis quiescunt, moventur vere. Mutant enim positiones suas ad
invicem (secus quam fit in vere quiescentibus) unaq; cum cælis delati
participant eorum motus, & ut partes revolventium totorum, ab eorum axibus
recedere conantur.

Igitur quantitates relativæ non sunt eæ ipsæ quantitates quarum nomina præ
se ferunt, sed earum mensuræ illæ sensibiles (veræ an errantes) quibus
vulgus loco mensuratarum utitur. At si ex usu definiendæ sunt verborum
significationes; per nomina illa Temporis, Spatij, Loci & Motus proprie
intelligendæ erunt hæ mensuræ; & sermo erit insolens & pure Mathematicus si
quantitates mensuratæ hic subintelligantur. Proinde vim inferunt Sacris
literis qui voces hasce de quantitatibus mensuratis ibi interpretantur.
Neq; minus contaminant Mathesin & Philosophiam qui quantitates veras cum
ipsarum relationibus & vulgaribus mensuris confundunt.

Motus quidem veros corporum singulorum cognoscere, & ab apparentibus actu
discriminare, difficillimum est; propterea quod partes spatij illius
immobilis in quo corpora vere moventur, non incurrunt in sensus. Causa
tamen non est prorsus desperata. Nam suppetunt argumenta partim ex motibus
apparentibus, qui sunt motuum verorum differentiæ, partim ex viribus quæ
sunt motuum verorum causæ & effectus. Ut si globi duo ad datam ab invicem
distantiam filo intercedente connexi, revolverentur circa commune
gravitatis centrum; innotesceret ex tensione fili conatus globorum
recedendi ab axe motus, & inde quantitas motus circularis computari posset.
Deinde si vires quælibet æquales in alternas globorum facies ad motum
circularem augendum vel minuendum simul imprimerentur, innotesceret ex
aucta vel diminuta fili tensione augmentum vel decrementum motus; & inde
tandem inveniri possent facies globorum in quas vires imprimi deberent, ut
motus maxime augeretur, id est facies posticæ, sive quæ in motu circulari
sequuntur. Cognitis autem faciebus quæ sequuntur & faciebus oppositis quæ
præcedunt, cognosceretur determinatio motus. In hunc modum inveniri posset
& quantitas & determinatio motus hujus circularis in vacuo quovis immenso,
ubi nihil extaret externum & sensibile, quocum globi conferri possent. Si
jam constituerentur in spatio illo corpora aliqua longinqua datam inter se
positionem servantia, qualia sunt stellæ fixæ in regionibus nostris: sciri
quidem non posset ex relativa globorum translatione inter corpora, utrum
his an illis tribuendus esset motus. At si attenderetur ad filum &
inveniretur tensionem ejus illam ipsam esse quam motus globorum requireret;
concludere liceret motum esse globorum, & tum demum ex translatione
globorum inter corpora, determinationem hujus motus colligere. Motus autem
veros ex eorum causis, effectibus & apparentibus differentijs colligere, &
contra, ex motibus seu veris seu apparentibus, eorum causas & effectus,
docebitur fusius in sequentibus. Hunc enim in finem Tractatum sequentem
composui.

       *       *       *       *       *


AXIOMATA

SIVE

LEGES MOTUS

       *       *       *       *       *


Lex. I.

    _Corpus omne perseverare in statu suo quiescendi vel movendi
    uniformiter in directum, nisi quatenus a viribus impressis cogitur
    statum illum mutare._

Projectilia perseverant in motibus suis nisi quatenus a resistentia aeris
retardantur & vi gravitatis impelluntur deorsum. Trochus, cujus partes
cohærendo perpetuo retrahunt sese a motibus rectilineis, non cessat rotari
nisi quatenus ab aere retardatur. Majora autem Planetarum & Cometarum
corpora motus suos & progressivos & circulares in spatiis minus
resistentibus factos conservant diutius.

Lex. II.

    _Mutationem motus proportionalem esse vi motrici impressæ, & fieri
    secundum lineam rectam qua vis illa imprimitur._

Si vis aliqua motum quemvis generet, dupla duplum, tripla triplum
generabit, sive simul & semel, sive gradatim & successive impressa suerit.
Et hic motus quoniam in eandem semper plagam cum vi generatrice
determinatur, si corpus antea movebatur, motui ejus vel conspiranti
additur, vel contrario subducitur, vel obliquo oblique adjicitur, & cum eo
secundum utriusq; determinationem componitur.

Lex. III.

    _Actioni contrariam semper & æqualem esse reactionem: sive corporum
    duorum actiones in se mutuo semper esse æquales & in partes contrarias
    dirigi._

Quicquid premit vel trahit alterum, tantundem ab eo premitur vel trahitur.
Siquis lapidem digito premit, premitur & hujus digitus a lapide. Si equus
lapidem funi allegatum trahit, retrahetur etiam & equus æqualiter in
lapidem: nam funis utrinq; distentus eodem relaxandi se conatu urgebit
Equum versus lapidem, ac lapidem versus equum, tantumq; impediet progressum
unius quantum promovet progressum alterius. Si corpus aliquod in corpus
aliud impingens, motum ejus vi sua quomodocunq; mutaverit, idem quoque
vicissim in motu proprio eandem mutationem in partem contrariam vi alterius
(ob æqualitatem pressionis mutuæ) subibit. His actionibus æquales fiunt
mutationes non velocitatum sed motuum, (scilicet in corporibus non aliunde
impeditis:) Mutationes enim velocitatum, in contrarias itidem partes factæ,
quia motus æqualiter mutantur, sunt corporibus reciproce proportionales.

Corol. I.

[Illustration]

    _Corpus viribus conjunctis diagonalem parallelogrammi eodem tempore
    describere, quo latera separatis._

Si corpus dato tempore, vi sola M, ferretur ab A ad B, & vi sola N, ab A ad
C, compleatur parallelogrammum ABDC, & vi utraq; feretur id eodem tempore
ab A ad D. Nam quoniam vis N agit secundum lineam AC ipsi BD parallelam,
hæc vis nihil mutabit velocitatem accedendi ad lineam illam BD a vi altera
genitam. Accedet igitur corpus eodem tempore ad lineam BD sive vis N
imprimatur, sive non, atq; adeo in fine illius temporis reperietur alicubi
in linea illa BD. Eodem argumento in fine temporis ejusdem reperietur
alicubi in linea CD, & idcirco in utriusq; lineæ concursu D reperiri
necesse est.

Corol. II.

    _Et hinc patet compositio vis directæ AD ex viribus quibusvis obliquis
    AB & BD, & vicissim resolutio vis cujusvis directæ AD in obliquas
    quascunq; AB & BD. Quæ quidem Compositio & resolutio abunde confirmatur
    ex Mechanica._

[Illustration]

Ut si de rotæ alicujus centro O exeuntes radij inæquales OM, ON filis MA,
NP sustineant pondera A & P, & quærantur vires ponderum ad movendam rotam:
per centrum O agatur recta KOL filis perpendiculariter occurrens in K & L,
centroq; O & intervallorum OK, OL majore OL describatur circulus occurrens
filo MA in D: & actæ rectæ OD parallela sit AC & perpendicularis DC.
Quoniam nihil refert utrum filorum puncta K, L, D affixa sint vel non
affixa ad planum rotæ, pondera idem valebunt ac si suspenderentur a punctis
K & L vel D & L. Ponderis autem A exponatur vis tota per lineam AD, & hæc
resolvetur in vires AC, CD, quarum AC trahendo radium OD directe a centro
nihil valet ad movendam rotam; vis autem altera DC, trahendo radium DO
perpendiculariter, idem valet ac si perpendiculariter traheret radium OL
ipsi OD æqualem; hoc est idem atq; pondus P, quod sit ad pondus A ut vis DC
ad vim DA, id est (ob similia triangula ADC, DOK,) ut OK ad OD seu OL.
Pondera igitur A & P, quæ sunt reciproce ut radii in directum positi OK &
OL, idem pollebunt & sic consistent in æquilibrio: (quæ est proprietas
notissima Libræ, Vectis & Axis in Peritrochio:) sin pondus alterutrum sit
majus quam in hac ratione, erit vis ejus ad movendam rotam tanto major.

Quod si pondus p ponderi P æquale partim suspendatur silo Np, partim
incumbat plano obliquo pG: agantur pH, NH, prior horizonti, posterior plano
pG perpendicularis; & si vis ponderis p deorsum tendens, exponatur per
lineam pH, resolvi potest hæc in vires pN, HN. Si filo pN perpendiculare
esset planum aliquod pQ secans planum alterum pG in linea ad horizontem
parallela; & pondus p his planis pQ, pG solummodo incumberet; urgeret illud
hæc plana viribus pN, HN perpendiculariter, nimirum planum pQ vi pN &
planum pG vi HN. Ideoque si tollatur planum pQ ut pondus tendat filum,
quoniam filum sustinendo pondus, jam vicem præstat plani sublati, tendetur
illud eadem vi pN, qua planum antea urgebatur. Unde tensio fili hujus
obliqui erit ad tensionem fili alterius perpendicularis PN, ut pN ad pH.
Ideoq; si pondus p sit ad pondus A in ratione quæ componitur ex ratione
reciproca minimarum distantiarum filorum suorum AM, pN a centro rotæ, &
ratione directa pH ad pN; pondera idem valebunt ad rotam movendam, atq;
adeo se mutuo sustinebunt, ut quilibet experiri potest.

Pondus autem p planis illis duobus obliquis incumbens, rationem habet cunei
inter corporis fissi facies internas: & inde vires cunei & mallei
innotescunt: utpote cum vis qua pondus p urget planum pQ sit ad vim, qua
idem vel gravitate sua vel ictu mallei impellitur secundum lineam pH in
plano, ut pN ad pH; atq; ad vim qua urget planum alterum pG ut pN ad NH.
Sed & vis Cochleæ per similem virium divisionem colligitur; quippe quæ
cuneus est a vecte impulsus. Usus igitur Corollarij hujus latissime patet,
& late patendo veritatem ejus evincit, cum pendeat ex jam dictis Mechanica
tota ab Authoribus diversimode demonstrata. Ex hisce enim facile derivantur
vires Machinarum, quæ ex Rotis, Tympanis, Trochleis, Vectibus, radijs
volubilibus, nervis tensis & ponderibus directe vel oblique ascendentibus,
cæterisq; potentijs Mechanicis componi solent, ut & vires Nervorum ad
animalium ossa movenda.

Corol. III.

    _Quantitas motus quæ colligitur capiendo summam motuum factorum ad
    eandem partem, & differentiam factorum ad contrarias, non mutatur ab
    actione corporum inter se._

Etenim actio eiq; contraria reactio æquales sunt per Legem 3, adeoq; per
legem 2, æquales in motibus efficiunt mutationes versus contrarias partes.
Ergo si motus fiunt ad eandem partem, quicquid additur motui corporis
fugientis subducetur motui corporis insequentis sic, ut summa maneat eadem
quæ prius. Sin corpora obviam eant, æqualis erit subductio de motu
utriusq;, adeoq; differentia motuum factorum in contrarias partes manebit
eadem.

Ut si corpus sphæricum A sit triplo majus corpore sphærico B, habeatq; duas
velocitatis partes, et B sequatur in eadem recta cum velocitatis partibus
decem, adeoq; motus ipsius A sit ad motum ipsius B ut sex ad decem;
ponantur motus illis esse partium sex & decem, & summa erit partium
sexdecim. In corporum igitur concursu, si corpus A lucretur motus partes
tres vel quatuor vel quinq; corpus B amittet partes totidem, adeoq; perget
corpus A post reflexionem cum partibus novem vel decem vel undecim; & B cum
partibus septem vel sex vel quinq; existente semper summa partium sexdecim
ut prius. Sin corpus A lucretur partes novem vel decem vel undecim vel
duodecim, adeoq; progrediatur post concursum cum partibus quindecim vel
sexdecim vel septendecim vel octodecim; corpus B amittendo, tot partes quot
A lucratur, vel progredietur cum una parte, amissis partibus novem, vel
quiescet amisso motu suo progressivo partium decem, vel regredietur cum una
parte amisso motu suo & (ut ita dicam) una parte amplius, vel regredietur
cum partibus duabus ob detractum motum progressivum partium duodecim. Atq;
ita summæ motuum conspirantium 15 + 1 vel 16 + 0, differentiæ contrariorum
17 - 1 & 18 - 2 semper erunt partium sexdecim ut ante concursum &
reflexionem. Cognitis autem motibus quibuscum corpora post reflexionem
pergent, invenietur cujusq; velocitas ponendo eam esse ad velocitatem ante
reflexionem ut motus post ad motum ante. Ut in casu ultimo, ubi corporis A
motus erat partium sex ante reflexionem; partium octodecim postea, &
velocitas partium duarum ante reflexionem; invenietur ejus velocitas
partium sex post reflexionem, dicendo, ut motus partes sex ante reflexionem
ad motus partes octodecim postea, ita velocitatis partes duæ ante
reflexionem ad velocitatis partes sex postea.

Quod si corpora vel non Sphærica vel diversis in rectis moventia incidant
in se mutuo oblique, & requirantur eorum motus post reflexionem,
cognoscendus est situs plani a quo corpora concurrentia tanguntur in puncto
concursus; dein corporis utriusq; motus (per Corol. 2.) distinguendus est
in duos, unum huic plano perpendicularem, alterum eidem parallelum: motus
autem paralleli, propterea quod corpora agant in se invicem secundum lineam
huic plano perpendicularem, retinendi sunt iidem post reflexionem atq;
antea, & motibus perpendicularibus mutationes æquales in partes contrarias
tribuendæ sunt sic, ut summa conspirantium & differentia contrariorum
maneat eadem quæ prius. Ex hujusmodi reflexionibus oriri etiam solent motus
circulares corporum circa centra propria. Sed hos casus in sequentibus non
considero, & nimis longum esset omnia huc spectantia demonstrare.

Corol. IIII.

    _Commune gravitatis centrum ab actionibus corporum inter se non mutat
    statum suum vel motus vel quietis, & propterea corporum omnium in se
    mutuo agentium (exclusis actionibus & impedimentis externis) commune
    centrum gravitatis vel quiescit vel movetur uniformiter in directum._

Nam si puncta duo progrediantur uniformi cum motu in lineis rectis &
distantia eorum dividatur in ratione data, punctum dividens vel quiescet
vel progredietur uniformiter in linea recta, Hoc postea in Lemmate xxiii
demonstratur in plano, & eadem ratione demonstrari potest in loco solido.
Ergo si corpora quotcunq; moventur uniformiter in lineis rectis, commune
centrum gravitatis duorum quorumvis, vel quiescit vel progreditur
uniformiter in linea recta, propterea quod linea horum corporum centra in
rectis uniformiter progredientia jungens, dividitur ab hoc centro communi
in ratione data: similiter & commune centrum horum duorum & tertii cujusvis
vel quiescit vel progreditur uniformiter in linea recta, propterea quod ab
eo dividitur distantia centri communis corporum duorum & centri corporis
tertii in data ratione. Eodem modo & commune centrum horum trium & quarti
cujusvis vel quiescit vel progreditur uniformiter in linea recta, propterea
quod ab eo dividitur distantia inter centrum commune trium & centrum quarti
in data ratione, & sic in infinitum. Igitur in systemate corporum quæ
actionibus in se invicem, alijsq; omnibus in se extrinsecus impressis,
omnino vacant, adeoq; moventur singula uniformiter in rectis singulis,
commune omnium centrum gravitatis vel quiescit vel movetur uniformiter in
directum.

Porro in systemate duorum corporum in se invicem agentium, cum distantiæ
centrorum utriusq; a communi gravitatis centro sint reciproce ut corpora,
erunt motus relativi corporum eorundem vel accedendi ad centrum illud vel
ab eodem recedendi, æquales inter se. Proinde centrum illud a motuum
æqualibus mutationibus in partes contrarias factis, atq; adeo ab actionibus
horum corporum inter se, nec promovetur nec retardatur nec mutationem
patitur in statu suo quoad motum vel quietem. In systemate autem corporum
plurium, quoniam duorum quorumvis in se mutuo agentium commune gravitatis
centrum ob actionem illam nullatenus mutat statum suum; & reliquorum,
quibuscum actio illa non intercedit, commune gravitatis centrum nihil inde
patitur; distantia autem horum duorum centrorum dividitur, a communi
corporum omnium centro, in partes summis totalibus corporum, quorum sunt
centra, reciproce proportionales, adeoq; centris illis duobus statum suum
movendi vel quiescendi servantibus, commune omnium centrum servat etiam
statum suum; manifestum est quod commune illud omnium centrum, ob actiones
binorum corporum inter se, nunquam mutat statum suum quoad motum & quietem.
In tali autem systemate actiones omnes corporum inter se, vel inter bina
sunt corpora, vel ab actionibus inter bina compositæ, & propterea communi
omnium centro mutationem in statu motus ejus vel Quietis nunquam inducunt.
Quare cum centrum illud ubi corpora non agunt in se invicem, vel quiescit,
vel in recta aliqua progreditur uniformiter, perget idem, non obstantibus
corporum actionibus inter se, vel semper quiescere, vel semper progredi
uniformiter in directum, nisi a viribus in systema extrinsecus impressis
deturbetur de hoc statu. Est igitur systematis corporum plurium Lex eadem
quæ corporis solitarii, quoad perseverantiam in statu motus vel quietis.
Motus enim progressivus seu corporis solitarii seu systematis corporum ex
motu centri gravitatis æstimari semper debet.

Corol. V.

    _Corporum dato spatio inclusorum ijdem sunt motus inter se, sive
    spatium illud quiescat, sive moveatur idem uniformiter in directum
    absq; motu circulari._

Nam differentiæ motuum tendentium ad eandem partem, & summæ tendentium ad
contrarias, eadem sunt sub initio in utroq; casu (ex hypothesi) & ex his
summis vel differentiis oriuntur congressus & impetus quibus corpora se
mutuo feriunt. Ergo per Legem 2 æquales erunt congressuum effectus in
utroq; casu, & propterea manebunt motus inter se in uno casu æquales
motibus inter se in altero. Idem comprobatur experimento luculento. Motus
omnes eodem modo se habent in Navi, sive ea quiescat, sive moveatur
uniformiter in directum.

Corol. VI.

    _Si corpora moveantur quomodocunq; inter se & a viribus
    acceleratricibus æqualibus secundum lineas parallelas urgeantur;
    pergent omnia eodem modo moveri inter se ac si viribus illis non essent
    incitata._

Nam vires illæ æqualiter (pro quantitatibus movendorum corporum) & secundum
lineas parallelas agendo, corpora omnia æqualiter (quoad velocitatem)
movebunt (per Legem 2.) adeoq; nunquam mutabunt positiones & motus eorum
inter se.

_Scholium_

[Illustration]

Hactenus principia tradidi a Mathematicis recepta & experientia multiplici
confirmata. Per leges duas primas & Corollaria duo prima adinvenit
_Galilæus_ descensum gravium esse in duplicata ratione temporis, & motum
projectilium fieri in Parabola, conspirante experientia, nisi quatenus
motus illi per aeris resistentiam aliquantulum retardantur. Ab ijsdem
Legibus & Corollariis pendent demonstrata de temporibus oscillantium
Pendulorum, suffragante Horologiorum experientia quotidiana. Ex his ijsdem
& Lege tertia _D. Christopherus Wrennus_ Eques auratus, _Johannes Wallisius
S.T.D._ & _D. Christianus Hugenius_, hujus ætatis Geometrarum facile
Principes, regulas congressuum & reflexionum duorum corporum seorsim
adinvenerunt, & eodem fere tempore cum _Societate Regia_ communicarunt,
inter se (quoad has leges) omnino conspirantes; Et primus quidem _D.
Wallisius_ dein _D. Wrennus_ & _D. Hugenius_ inventum prodidit. Sed &
veritas comprobata est a _D. Wrenno_ coram _Regia Societate_ per
experimentum Pendulorum, quod etiam _Clarissimus Mariottus_ Libro integro
exponere mox dignatus est. Verum ut hoc experimentum cum Theorijs ad
amussim congruat, habenda est ratio tum resistentiæ aeris, tum etiam vis
Elasticæ concurrentium corporum. Pendeant corpora A, B filis parallelis AC,
BD a centris C, D. His centris & intervallis describantur semicirculi EAF,
GBH radijs CA, DB bisecti. Trahatur corpus A ad arcus EAF punctum quodvis
R, & (subducto corpore B) demittatur inde, redeatq; post unam oscillationem
ad punctum V. Est RV retardatio ex resistentia aeris. Hujus RV fiat ST pars
quarta sita in medio, & hæc exhibebit retardationem in descensu ab S ad A
quam proxime. Restituatur corpus B in locum suum. Cadat corpus A de puncto
S, & velocitas ejus in loco reflexionis A, absq; errore sensibili, tanta
erit ac si in vacuo cecidisset de loco T. Exponatur igitur hæc velocitas
per chordam arcus TA. Nam velocitatem Penduli in puncto infimo esse ut
chorda arcus quem cadendo descripsit, Propositio est Geometris notissima.
Post reflexionem perveniat corpus A ad locum s, & corpus B ad locum k.
Tollatur corpus B & inveniatur locus v, a quo si corpus A demittatur & post
unam oscillationem redeat ad locum r, sit st pars quarta ipsius rv sita in
medio, & per chordam arcus tA exponatur velocitas quam corpus A proxime
post reflexionem habuit in loco A. Nam t erit locus ille verus & correctus
ad quem corpus A, sublata aeris resistentia, ascendere debuisset. Simili
methodo corrigendus erit locus k, ad quem corpus B ascendit, & inveniendus
locus l, ad quem corpus illud ascendere debuisset in vacuo. Hoc pacto
experiri licet omnia perinde ac si in vacuo constituti essemus. Tandem
ducendum erit corpus A in chordam arcus TA (quæ velocitatem ejus exhibet)
ut habeatur motus ejus in loco A proxime ante reflexionem, deinde in
chordam arcus tA ut habeatur motus ejus in loco A proxime post reflexionem.
Et sic corpus B ducendum erit in chordam arcus Bl, ut habeatur motus ejus
proxime post reflexionem. Et simili methodo ubi corpora duo simul
demittuntur de locis diversis, inveniendi sunt motus utriusq; tam ante,
quam post reflexionem; & tum demum conferendi sunt motus inter se &
colligendi effectus reflexionis. Hoc modo in Pendulis pedum decem rem
tentando, idq; in corporibus tam inæqualibus quam æqualibus, & faciendo ut
corpora de intervallis amplissimis, puta pedum octo, duodecim vel sexdecim
concurrerent, reperi semper sine errore trium digitorum in mensuris, ubi
corpora sibi mutuo directe occurrebant quod in partes contrarias mutatio
motus erat corpori utriq; illata, atq; adeo quod actio & reactio semper
erant æquales. Ut si corpus A incidebat in corpus B cum novem partibus
motus, & amissis septem partibus pergebat post reflexionem cum duabus,
corpus B resiliebat cum partibus istis septem. Si corpora obviam ibant, A
cum duodecim partibus & B cum sex & redibat A cum duabus, redibat B cum
octo, facta detractione partium quatuordecim utrinque. De motu ipsius A
subducantur partes duodecim & restabit nihil; subducantur aliæ partes duæ &
fiet motus duarum partium in plagam contrariam. & sic de motu corporis B
partium sex subducendo partes quatuordecim, fiunt partes octo in plagam
contrariam. Quod si corpora ibant ad eandem plagam, A velocius cum partibus
quatuordecim & B tardius cum partibus quinq; & post reflexionem pergebat A
cum quinq; partibus, pergebat B cum quatuordecim, facta translatione
partium novem de A in B. Et sic in reliquis. A congressu & collisione
corporum nunquam mutabatur quantitas motus quæ ex summa motuum
conspirantium & differentia contrariorum colligebatur. Namq; errorem digiti
unius & alterius in mensuris tribuerim difficultati peragendi singula satis
accurate. Difficile erat tum pendula simul demittere sic, ut corpora in se
mutuo impingerent in loco infimo AB, tum loca s, k, notare ad quæ corpora
ascendebant post concursum. Sed & in ipsis pilis inæqualis partium
densitas, & textura aliis de causis irregularis, errores inducebant.

Porro nequis objiciat Regulam ad quam probandam inventum est hoc
experimentum præsupponere corpora vel absolute dura esse, vel saltem
perfecte elastica, cujusmodi nulla reperiuntur in compositionibus
naturalibus; addo quod experimenta jam descripta succedunt in corporibus
mollibus æque ac in duris, nimirum a conditione duritiei neutiquam
pendentia. Nam si conditio illa in corporibus non perfecte duris tentanda
est, debebit solummodo reflexio minui in certa proportione pro quantitate
vis Elasticæ. In Theoria _Wrenni_ & _Hugenij_ corpora absolute dura redeunt
ab invicem cum velocitate congressus. Certius id affirmabitur de perfecte
Elasticis. In imperfecte Elasticis velocitas reditus minuenda est simul cum
vi Elastica; propterea quod vis illa, (nisi ubi partes corporum ex
congressu læduntur, vel extensionem aliqualem quasi sub malleo patiuntur,)
certa ac determinata sit (quantum sentio) faciatq; corpora redire ab
invicem cum velocitate relativa quæ sit ad relativam velocitatem concursus
in data ratione. Id in pilis ex lana arcte conglomerata & fortiter
constricta sic tentavi. Primum demittendo Pendula & mensurando reflexionem,
inveni quantitatem vis Elasticæ; deinde per hanc vim determinavi
reflexiones in aliis casibus concursuum, & respondebant experimenta.
Redibant semper pilæ ab invicem cum velocitate relativa, quæ esset ad
velocitatem relativam concursus ut 5 ad 9 circiter. Eadem fere cum
velocitate redibant pilæ ex chalybe: aliæ ex subere cum paulo minore. In
vitreis autem proportio erat 15 ad 16 circiter. Atq; hoc pacto Lex tertia
quoad ictus & reflexiones per Theoriam comprobata est, quæ cum experientia
plane congruit.

In attractionibus rem sic breviter ostendo. Corporibus duobus quibusvis A,
B se mutuo trahentibus, concipe obstaculum quodvis interponi quo congressus
eorum impediatur. Si corpus alterutrum A magis trahitur versus corpus
alterum B, quam illud alterum B in prius A, obstaculum magis urgebitur
pressione corporis A quam pressione corporis B; proindeq; non manebit in
æquilibrio. Prævalebit pressio fortior, facietq; systema corporum duorum &
obstaculi moveri in directum in partes versus B, motuq; in spatiis liberis
semper accelerato abire in infinitum. Quod est absurdum & Legi primæ
contrarium. Nam per Legem primam debebit systema perseverare in statu suo
quiescendi vel movendi uniformiter in directum, proindeq; corpora æqualiter
urgebunt obstaculum, & idcirco æqualiter trahentur in invicem. Tentavi hoc
in Magnete & ferro. Si hæc in vasculis propriis sese contingentibus seorsim
posita, in aqua stagnante juxta fluitent, neutrum propellet alterum, sed
æqualitate attractionis utrinq; sustinebunt conatus in se mutuos, ac tandem
in æquilibrio constituta quiescent.

Ut corpora in concursu & reflexione idem pollent, quorum velocitates sunt
reciproce ut vires insitæ: sic in movendis Instrumentis Mechanicis agentia
idem pollent & conatibus contrariis se mutuo sustinent, quorum velocitates
secundum determinationem virium æstimatæ, sunt reciproce ut vires. Sic
pondera æquipollent ad movenda brachia Libræ, quæ oscillante Libra, sunt
reciproce ut eorum velocitates sursum & deorsum: hoc est pondera, si recta
ascendunt & descendunt, æquipollent, quæ sunt reciproce ut punctorum a
quibus suspenduntur distantiæ ab axe Libræ; sin planis obliquis aliisve
admotis obstaculis impedita ascendunt vel descendunt oblique, æquipollent
quæ sunt ut ascensus & descensus quatenus facti secundum perpendiculum: id
adeo ob determinationem gravitatis deorsum. Similiter in Trochlea seu
Polyspasto vis manus funem directe trahentis, quæ sit ad pondus vel directe
vel oblique ascendens ut velocitas ascensus perpendicularis ad velocitatem
manus funem trahentis, sustinebit pondus. In horologiis & similibus
instrumentis, quæ ex rotulis commissus constructa sunt, vires contrariæ ad
motum rotularum promovendum & impediendum si sunt reciproce ut velocitates
partium rotularum in quas imprimuntur, sustinebunt se mutuo. Vis Cochleæ ad
premendum corpus est ad vim manus manubrium circumagentis, ut circularis
velocitas Manubrii ea in parte ubi a manu urgetur, ad velocitatem
progressivam Cochleæ versus corpus pressum. Vires quibus cuneus urget
partes duas ligni fissi est ad vim mallei in cuneum, ut progressus cunei
secundum determinationem vis a malleo in ipsum impressæ, ad velocitatem qua
partes ligni cedunt cuneo, secundum lineas faciebus cunei perpendiculares.
Et par est ratio Machinarum omnium.

Harum efficacia & usus in eo solo consistit ut diminuendo velocitatem
augeamus vim, & contra: Unde solvitur in omni aptorum instrumentorum genere
Problema; _Datum pondus data vi movendi_, aliamve datam resistentiam vi
data superandi. Nam si Machinæ ita formentur ut velocitates Agentis &
Resistentis sint reciproce ut vires, Agens resistentiam sustinebit, &
majori cum velocitatum disparitate eandem vincet. Certe si tanta sit
velocitatum disparitas ut vincatur etiam resistentia omnis, quæ tam ex
contiguorum & inter se labentium corporum attritione, quam ex continuorum &
ab invicem separandorum cohæsione & elevandorum ponderibus oriri solet;
superata omni ea resistentia, vis redundans accelerationem motus sibi
proportionalem, partim in partibus Machinæ, partim in corpore resistente
producet. Cæterum Mechanicam tractare non est hujus instituti. Hisce volui
tantum ostendere quam late pateat, quamq; certa sit Lex tertia motus. Nam
si æstimetur Agentis actio ex ejus vi & velocitate conjunctim; &
Resistentis reactio ex ejus partium singularum velocitatibus & viribus
resistendi ab earum attritione, cohæsione, pondere & acceleratione
oriundis; erunt actio & reactio, in omni instrumentorum usu, sibi invicem
semper æquales. Et quatenus actio propagatur per instrumentum & ultimo
imprimitur in corpus omne resistens, ejus ultima determinatio
determinationi reactionis semper erit contraria.

       *       *       *       *       *


DE MOTU CORPORUM

       *       *       *       *       *

Liber PRIMUS

       *       *       *       *       *

SECT. I.

_De Methodo Rationum primarum & ultimarum, cujus ope sequentia
demonstrantur._

       *       *       *       *       *

LEMMA I.

    _Quantitates, ut & quantitatum rationes, quæ ad æqualitatem dato
    tempore constanter tendunt & eo pacto propius ad invicem accedere
    possunt quam pro data quavis differentia; fiunt ultimo æquales._

Si negas, sit earum ultima differentia D. Ergo nequeunt propius ad
æqualitatem accedere quam pro data differentia D: contra hypothesin.

Lemma II.

[Illustration]

    _Si in figura quavis AacE rectis Aa, AE, & curva acE comprehensa,
    inscribantur parallelogramma quotcunq; Ab, Bc, Cd, &c. sub basibus AB,
    BC, CD, &c. æqualibus, & lateribus Bb, Cc, Dd, &c. figuræ lateri Aa
    parallelis contenta; & compleantur parallelogramma aKbl, bLcm, cMdn,
    &c. Dein horum parallelogrammorum latitudo minuatur, & numerus augeatur
    in infinitum: dico quod ultimæ rationes, quas habent ad se invicem
    figura inscripta AKbLcMdD, circumscripta AalbmcndoE, & curvilinea
    AabcdE, sunt rationes æqualitatis._

Nam figuræ inscriptæ & circumscriptæ differentia est summa
parallelogrammorum Kl + Lm + Mn + Do, hoc est (ob æquales omnium bases)
rectangulum sub unius basi Kb & altitudinum summa Aa, id est rectangulum
ABla. Sed hoc rectangulum, eo quod latitudo ejus AB in infinitum minuitur,
sit minus quovis dato. Ergo, per Lemma I, figura inscripta & circumscripta
& multo magis figura curvilinea intermedia fiunt ultimo æquales.
_Q. E. D._

Lemma III.

    _Eædem rationes ultimæ sunt etiam æqualitatis, ubi parallelogrammorum
    latitudines AB, BC, CD, _&c._ sunt inæquales, & omnes minuuntur in
    infinitum._

Sit enim AF æqualis latitudini maximæ & compleatur parallelogrammum FAaf.
Hoc erit majus quam differentia figuræ inscriptæ & figuræ circumscripta, at
latitudine sua AF in infinitum diminuta, minus fiet quam datum quodvis
rectangulum.

_Corol. 1._ Hinc summa ultima parallelogrammorum evanescentium coincidit
omni ex parte cum figura curvilinea.

_Corol. 2._ Et multo magis figura rectilinea, quæ chordis evanescentium
arcuum ab, bc, cd, _&c._ comprehenditur, coincidit ultimo cum figura
curvilinea.

_Corol. 3._ Ut & figura rectilinea quæ tangentibus eorundem arcuum
circumscribitur.

_Corol. 4._ Et propterea hæ figuræ ultimæ (quoad perimetros acE,) non sunt
rectilineæ, sed rectilinearum limites curvilinei.

Lemma IV.

    _Si in duabus figuris AacE, PprT, inscribantur (ut supra) duæ
    parallelogrammorum series, sitq; idem amborum numerus, & ubi
    latitudines in infinitum diminuitur, rationes ultimæ parallelogrammorum
    in una figura ad parallelogramma in altera, singulorum ad singula, sint
    eædem; dico quod figuræ duæ AacE, PprT, sunt ad invicem in eadem illa
    ratione._

[Illustration]

Etenim ut sunt parallelogramma singula ad singula, ita (componendo) fit
summa omnium ad summam omnium, & ita figura ad figuram; existente nimirum
figura priore (per Lemma III.) ad summam priorem, & posteriore figura ad
summam posteriorem in ratione æqualitatis.

_Corol._ Hinc si duæ cujuscunq; generis quantitates in eundem partium
numerum utcunq; dividantur, & partes illæ, ubi numerus earum augetur &
magnitudo diminuitur in infinitum, datam obtineant rationem ad invicem,
prima ad primam, secunda ad secundam cæteræq; suo ordine ad cæteras; erunt
tota ad invicem in eadem illa data ratione. Nam si in Lemmatis hujus
figuris sumantur parallelogramma inter se ut partes, summæ partium semper
erunt ut summæ parallelogrammorum; atq; adeo, ubi partium &
parallelogrammorum numerus augetur & magnitudo diminuitur in infinitum, in
ultima ratione parallelogrammi ad parallelogrammum, id est (per hypothesin)
in ultima ratione partis ad partem.

Lemma V.

    _Similium figurarum latera omnia, quæ sibi mutuo respondent, sunt
    proportionalia, tam curvilinea quam rectilinea, & areæ sunt in
    duplicata ratione laterum._

Lemma VI.

[Illustration]

    _Si arcus quilibet positione datus AB subtendatur chorda AB, & in
    puncto aliquo A, in medio curvaturæ continuæ, tangatur a recta utrinq;
    producta AD; dein puncta A, B ad invicem accendant & coeant; dico quod
    angulus BAD sub chorda & tangente contentus minuetur in infinitum &
    ultimo evanescet._

Nam producatur AB ad b & AD ad d, & punctis A, B coeuntibus, nullaq; adeo
ipsius Ab parte AB jacente amplius intra curvam, manifestum esi quod hæc
recta Ab, vel coincidet cum tangente Ad, vel ducetur inter tangentem &
curvam. Sed casus posterior est contra naturam Curvaturæ, ergo prior
obtinet.   _Q. E. D._

Lemma VII.

    _Iisdem positis, dico quod ultima ratio arcus, chordæ & tangentis ad
    invicem est ratio æqualitatis. Vide _Fig._ Lem. 6 & 8 vi._

Nam producantur AB & AD ad b & d secanti BD parallela agatur bd. Sitq;
arcus Ab similis arcui AB. Et punctis A, B coeuntibus, angulus dAb, per
Lemma superius, evanescet; adeoq; rectæ Ab, Ad arcus intermedius Ab
coincident, & propterea æquales erunt. Unde & hisce semper proportionales
rectæ AB, AD, & arcus intermedius AB rationem ultimam habebunt æqualitatis.
_Q. E. D._

[Illustration]

_Corol. 1._ Unde si per B ducatur tangenti parallela BF rectam quamvis AF
per A transeuntem perpetuo secans in F, hæc ultimo ad arcum evanescentem AB
rationem habebit æqualitatis, eo quod completo parallelogrammo AFBD,
rationem semper habet æqualitatis ad AD.

_Corol. 2._ Et si per B & A ducantur plures rectæ BE, BD, AF, AG, secantes
tangentem AD & ipsius parallelam BF, ratio ultima abscissarum omnium AD,
AE, BF, BG, chordæq; & arcus AB ad invicem erit ratio æqualitatis.

_Corol. 3._ Et propterea hæ omnes lineæ in omni de rationibus ultimis
argumentatione pro se invicem usurpari possunt.

Lemma VIII.

[Illustration]

    _Si rectæ datæ AR, BR cum arcu AB, chorda AB & tangente AD, triangula
    tria ARB, ARB, ARD constituunt, dein puncta A, B accedunt ad invicem:
    dico quod ultima forma triangulorum evanescentium est similitudinis, &
    ultima ratio æqualitatis._

Nam producantur AB, AD, AR ad b, d & r. Ipsi RD agatur parallela rbd, &
arcui AB similis ducatur arcus Ab. Coeuntibus punctis A, B, angulus bAd
evanescet, & propterea triangula tria rAb, rAb, rAd coincident, suntq; eo
nomine similia & æqualia. Unde & hisce semper similia & proportionalia RAB,
RAB, RAD fient ultimo sibi invicem similia & æqualia.   _Q. E. D._

_Corol._ Et hinc triangula illa in omni de rationibus ultimis
argumentatione pro se invicem usurpari possunt.

Lemma IX.

[Illustration]

    _Si recta AE & Curva AC positione datæ se mutuo secent in angulo dato
    A, & ad rectam illam in alio dato angulo ordinatim applicentur BD, EC,
    curvæ occurrentes in B, C; dein puncta B, C accedant ad punctum A: dico
    quod areæ triangulorum ADB, AEC erunt ultimo ad invicem in duplicata
    ratione laterum._

Etenim in AD producta capiantur Ad, Ae ipsis AD, AE proportionales, &
erigantur ordinatæ db, ec ordinatis DB, EC parallelæ & proportionales.
Producatur AC ad c, ducatur curva Abc ipsi ABC similis, & recta Ag tangatur
curva utraq; in A; & secantur ordinatim applicatæ in F, G, f, g. Tum coeant
puncta B, C cum puncto A, & angulo cAg evanescente, coincident areæ
curvilineæ Abd, Ace cum rectilineis Afd, Age, adeoq; per Lemma V, erunt in
duplicata ratione laterum Ad, Ae: Sed his areis proportionales semper sunt
areæ ABD, ACE, & his lateribus latera AD, AE. Ergo & areæ ABD, ACE sunt
ultimo in duplicata ratione laterum AD, AE.   _Q. E. D._

Lemma X.

    _Spatia, quæ corpus urgente quacunq; vi regulari describit, sunt ipso
    motus initio in duplicata ratione temporum._

Exponantur tempora per lineas AD, AE, & velocitates genitæ per ordinatas
DB, EC, & spatia his velocitatibus descripta erunt ut areæ ABD, ACE his
ordinatis descriptæ, hoc est ipso motus initio (per Lemma IX) in duplicata
ratione temporum AD, AE.   _Q. E. D._

_Corol. 1._ Et hinc facile colligitur, quod corporum similes similium
figurarum partes temporibus proportionalibus describentium errores, qui
viribus æqualibus in partibus istis ad corpora similiter applicatis
generantur, & mensurantur a locis figurarum, ad quæ corpora temporibus
ijsdem proportionalibus absq; viribus istis pervenirent, sunt ut quadrata
temporum in quibus generantur quam proxime.

_Corol. 2._ Errores autem qui viribus proportionalibus similiter applicatis
generantur, sunt ut vires & quadrata temporum conjunctim.

Lemma XI.

    _Subtensa evanescens anguli contactus est ultimo in ratione duplicata
    subtensæ arcus contermini._

[Illustration]

_Cas. 1._ Sit arcus ille AB, tangens ejus AD, subtensa anguli contactus ad
tangentem perpendicularis BD, subtensa arcus AB. Huic subtensæ AB &
tangenti AD perpendiculares erigantur AG, BG, concurrentes in G; dein
accedant puncta D, B, G, ad puncta d, b, g, sitq; J intersectio linearum
BG, AG ultimo facta ubi puncta D, B accedunt usq; ad A. Manifestum est quod
distantia GJ minor esse potest quam assignata quævis. Est autem (ex natura
circulorum per puncta ABG, Abg transeuntium) AB quad. æquale AG × BD & Ab
quad. æquale Ag × bd, adeoq; ratio AB quad. ad Ab quad. componitur ex
rationibus AG ad Ag & BD ad bd. Sed quoniam JG assumi potest minor
longitudine quavis assignata, fieri potest ut ratio AG ad Ag minus differat
a ratione æqualitatis quam pro differentia quavis assignata, adeoq; ut
ratio AB quad. ad Ab quad. minus differat a ratione BD ad bd quam pro
differentia quavis assignata. Est ergo, per Lemma I, ratio ultima AB quad.
ad Ab quad. æqualis rationi ultimæ BD ad bd.   _Q. E. D._

_Cas. 2._ Inclinetur jam BD ad AD in angulo quovis dato, & eadem semper
erit ratio ultima BD ad bd quæ prius, adeoq; eadem ac AB quad. ad Ab quad.
_Q. E. D._

_Cas. 3._ Et quamvis angulus D non detur, tamen anguli D, d ad æqualitatem
semper vergent & propius accedent ad invicem quam pro differentia quavis
assignata, adeoq; ultimo æquales erunt, per Lem. I. & propterea lineæ BD,
bd in eadem ratione ad invicem ac prius.   _Q. E. D._

_Corol. 1._ Unde cum tangentes AD, Ad, arcus AB, Ab & eorum sinus BC, bc
fiant ultimo chordis AB, Ab æquales; erunt etiam illorum quadrata ultimo ut
subtensæ BD, bd.

_Corol. 2._ Triangula rectilinea ADB, Adb sunt ultimo in triplicata ratione
laterum AD, Ad, inq; sesquiplicata laterum DB, db: Utpote in composita
ratione laterum AD & DB, Ad & db existentia. Sic & triangula ABC, Abc sunt
ultimo in triplicata ratione laterum BC, bc.

_Corol. 3._ Et quoniam DB, db sunt ultimo parallelæ & in duplicata ratione
ipsarum AD, Ad; erunt areæ ultimæ curvilineæ ADB, Adb (ex natura Parabolæ)
duæ tertiæ partes triangulorum rectilineorum ADB, Adb, & segmenta AB, Ab
partes tertiæ eorundem triangulorum. Et inde hæ areæ & hæc segmenta erunt
in triplicata ratione tum tangentium AD, Ad; tum chordarum & arcuum AB, Ab.

_Scholium._

Cæterum in his omnibus supponimus angulum contactus nec infinite majorem
esse angulis contactuum, quos circuli continent cum tangentibus suis, nec
iisdem infinite minorem; hoc est curvaturam ad punctum A, nec infinite
parvam esse nec infinite magnam, seu intervallum AJ finitæ esse
magnitudinis. Capi enim potest DB ut AD^3: quo in casu circulus nullus per
punctum A inter tangentem AD & curvam AB duci potest, proindeq; angulus
contactus erit infinite minor circularibus. Et simili argumento si fiat DB
successive ut AD^4, AD^5, AD^6, AD^7, &c. habebitur series angulorum
contactus pergens in infinitum, quorum quilibet posterior est infinite
minor priore. Et si fiat DB successive ut AD^2, AD^{3/2}, AD^{4/3},
AD^{5/4}, AD^{6/5}, AD^{7/6}, &c. habebitur alia series infinita angulorum
contactus, quorum primus est ejusdem generis cum circularibus, secundus
infinite major, & quilibet posterior infinite major priore. Sed & inter
duos quosvis ex his angulis potest series utrinq; in infinitum pergens
angulorum intermediorum inseri, quorum quilibet posterior erit infinite
major priore. Ut si inter terminos AD^2 & AD^3 inseratur series AD^{13/6},
AD^{11/5}, AD^{9/4}, AD^{7/3}, AD^{5/2}, AD^{8/3}, AD^{11/4}, AD^{14/5},
AD^{17/6}, &c. Et rursus inter binos quosvis angulos hujus seriei inseri
potest series nova angulorum intermediorum ab invicem infinitis intervallis
differentium. Neq; novit natura limitem.

Quæ de curvis lineis deq; superficiebus comprehensis demonstrata sunt,
facile applicantur ad solidorum superficies curvas & contenta. Præmisi vero
hæc Lemmata ut effugerem tædium deducendi perplexas demonstrationes, more
veterum Geometrarum, ad absurdum. Contractiores enim redduntur
demonstrationes per methodum indivisibilium. Sed quoniam durior est
indivisibilium Hypothesis; & propterea Methodus illa minus Geometrica
censetur, malui demonstrationes rerum sequentium ad ultimas quantitatum
evanescentium summas & rationes, primasq; nascentium, id est, ad limites
summarum & rationum deducere, & propterea limitum illorum demonstrationes
qua potui breuitate præmittere. His enim idem præstatur quod per methodum
indivisibilium, & principiis demonstratis jam tutius utemur. Proinde in
sequentibus, siquando quantitates tanquam ex particulis constantes
consideravero, vel si pro rectis usurpavero lineolas curvas, nolim
indivisibilia sed evanescentia divisibilia, non summas & rationes partium
determinatarum, sed summarum & rationum limites semper intelligi, vimq;
talium demonstrationum ad methodum præcedentium Lemmatum semper revocari.

Objectio est, quod quantitatum evanescentium nulla sit ultima proportio;
quippe quæ, antequam evanuerunt, non est ultima, ubi evanuerunt, nulla est.
Sed & eodem argumento æque contendi posset nullam esse corporis ad certum
locum pergentis velocitatem ultimam. Hanc enim, antequam corpus attingit
locum, non esse ultimam, ubi attigit, nullam esse. Et responsio facilis
est. Per velocitatem ultimam intelligi eam, qua corpus movetur neq;
antequam attingit locum ultimum & motus cessat, neq; postea, sed tunc cum
attingit, id est illam ipsam velocitatem quacum corpus attingit locum
ultimum & quacum motus cessat. Et similiter per ultimam rationem
quantitatum evanescentium intelligendam esse rationem quantitatum non
antequam evanescunt, non postea, sed quacum evanescunt. Pariter & ratio
prima nascentium est ratio quacum nascuntur. Et summa prima & ultima est
quacum esse (vel augeri & minui) incipiunt & cessant. Extat limes quem
velocitas in fine motus attingere potest, non autem transgredi. Hæc est
velocitas ultima. Et par est ratio limitis quantitatum & proportionum
omnium incipientium & cessantium. Cumq; hic limes sit certus & definitus,
Problema est vere Geometricum eundem determinare. Geometrica vero omnia in
aliis Geometricis determinandis ac demonstrandis legitime usurpantur.

Contendi etiam potest, quod si dentur ultimæ quantitatum evanescentium
rationes, dabuntur & ultimæ magnitudines; & sic quantitas omnis constabit
ex indivisibilibus, contra quam _Euclides_ de incommensurabilibus, in libro
decimo Elementorum, demonstravit. Verum hæc Objectio falsæ innititur
hypothesi. Ultimæ rationes illæ quibuscum quantitates evanescunt, revera
non sunt rationes quantitatum ultimarum, sed limites ad quos quantitatum
sine limite decrescentium rationes semper appropinquant, & quas propius
assequi possunt quam pro data quavis differentia, nunquam vero transgredi,
neq; prius attingere quam quantitates diminuuntur in infinitum. Res clarius
intelligetur in infinite magnis. Si quantitates duæ quarum data est
differentia augeantur in infinitum, dabitur harum ultima ratio, nimirum
ratio æqualitatis, nec tamen ideo dabuntur quantitates ultimæ seu maximæ
quarum ista est ratio. Igitur in sequentibus, siquando facili rerum
imaginationi consulens, dixero quantitates quam minimas, vel evanescentes
vel ultimas, cave intelligas quantitates magnitudine determinatas, sed
cogita semper diminuendas sine limite.

       *       *       *       *       *


SECT. II.

_De Inventione Virium Centripetarum._

Prop. I. Theorema. I.

    _Areas quas corpora in gyros acta radiis ad immobile centrum virium
    ductis describunt, & in planis immobilibus consistere, & esse
    temporibus proportionales._

[Illustration]

Dividatur tempus in partes æquales, & prima temporis parte describat corpus
vi insita rectam AB. Idem secunda temporis parte, si nil impediret, recta
pergeret ad c, (per Leg. I) describens lineam Bc æqualem ipsi AB, adeo ut
radiis AS, BS, cS ad centrum actis, consectæ forent æquales areæ ASB, BSc.
Verum ubi corpus venit ad B, agat vis centripeta impulsu unico sed magno,
faciatq; corpus a recta Bc deflectere & pergere in recta BC. Ipsi BS
parallela agatur cC occurrens BC in C, & completa secunda temporis parte,
corpus (per Legum Corol. I) reperietur in C, in eodem plano cum triangulo
ASB. Junge SC, & triangulum SBC, ob parallelas SB, Cc, æquale erit
triangulo SBc, atq; adeo etiam triangulo SAB. Simili argumento si vis
centripeta successive agat in C, D, E, &c. faciens ut corpus singulis
temporis particulis singulas describat rectas CD, DE, EF, &c. jacebunt hæ
in eodem plano, & triangulum SCD triangulo SBC & SDE ipsi SCD & SEF ipsi
SDE æquale erit. Æqualibus igitur temporibus æquales areæ in plano immoto
describuntur: & componendo, sunt arearum summæ quævis SADS, SAFS inter se,
ut sunt tempora descriptionum. Augeatur jam numerus & minuatur latitudo
triangulorum in infinitum, & eorum ultima perimeter ADF, (per Corollarium
quartum Lemmatis tertii) erit linea curva; adeoq; vis centripeta qua corpus
de tangente hujus curvæ perpetuo retrahitur, aget indesinenter; areæ vero
quævis descriptæ SADS, SAFS temporibus descriptionum semper proportionales,
erunt iisdem temporibus in hoc casu proportionales.   _Q. E. D._

_Corol. 1._ In mediis non resistentibus, si areæ non sunt temporibus
proportionales, vires non tendunt ad concursum radiorum.

_Corol. 2._ In mediis omnibus, si arearum descriptio acceleratur, vires non
tendunt ad concursum radiorum, sed inde declinant in consequentia.

Pro. II. Theor. II.

    _Corpus omne quod, cum movetur in linea aliqua curva, & radio ducto ad
    punctum vel immobile, vel motu rectilineo uniformiter progrediens,
    describit areas circa punctum illud temporibus proportionales, urgetur
    a vi centripeta tendente ad idem punctum._

_Cas. 1._ Nam corpus omne quod movetur in linea curva, detorquetur de cursu
rectilineo per vim aliquam in ipsum agentem. (per Leg. I.) Et vis illa qua
corpus de cursu rectilineo detorquetur & cogitur triangula quam minima SAB,
SBC, SCD &c. circa punctum immobile S, temporibus æqualibus æqualia
describere, agit in loco B secundum lineam parallelam ipsi cC (per Prop. 40
Lib. I Elem. & Leg. II.) hoc est secundum lineam BS & in loco C secundum
lineam ipsi dD parallelam, hoc est secundum lineam CS, &c. Agit ergo semper
secundum lineas tendentes ad punctum illud immobile S.   _Q. E. D._

_Cas. 2._ Et, per Legum Corollarium quintum, perinde est sive quiescat
superficies in qua corpus describit figuram curvilineam, sive moveatur
eadem una cum corpore, figura descripta & puncto suo S uniformiter in
directum.

_Scholium._

Urgeri potest corpus a vi centripeta composita ex pluribus viribus. In hoc
casu sensus Propositionis est, quod vis illa quæ ex omnibus componitur,
tendit ad punctum S. Porro si vis aliqua agat secundum lineam superficiei
descriptæ perpendicularem, hæc faciet corpus deflectere a plano sui motus,
sed quantitatem superficiei descriptæ nec augebit nec minuet, & propterea
in compositione virium negligenda est.

Prop. III. Theor. III.

    _Corpus omne quod, radio ad centrum corporis alterius utcunq; moti
    ducto, describit areas circa centrum illud temporibus proportionales,
    urgetur vi composita ex vi centripeta tendente ad corpus alterum & ex
    vi omni acceleratrice, qua corpus alterum urgetur._

Nam (per Legum Corol. 6.) si vi nova, quæ æqualis & contraria sit illi qua
corpus alterum urgetur, urgeatur corpus utrumq; secundum lineas parallelas,
perget corpus primum describere circa corpus alterum areas easdem ac prius:
vis autem qua corpus alterum urgebatur, jam destruetur per vim sibi æqualem
& contrariam, & propterea (per Leg. 1.) corpus illud alterum vel quiescet
vel movebitur uniformiter in directum, & corpus primum, urgente differentia
virium, perget areas temporibus proportionales circa corpus alterum
describere. Tendit igitur (per Theor. 2.) differentia virium ad corpus
illud alterum ut centrum.   _Q. E. D._

_Corol. 1._ Hinc si corpus unum radio ad alterum ducto describit areas
temporibus proportionales, atq; de vi tota (sive simplici, sive ex viribus
pluribus, juxta Legum Corollarium secundum, composita,) qua corpus prius
urgetur, subducatur (per idem Legum Corollarium) vis tota acceleratrix qua
corpus alterum urgetur; vis omnis reliqua qua corpus prius urgetur tendet
ad corpus alterum ut centrum.

_Corol. 2._ Et si areæ illæ sunt temporibus quamproxime proportionales, vis
reliqua tendet ad corpus alterum quamproxime.

_Corol. 3._ Et vice versa, si vis reliqua tendit quamproxime ad corpus
alterum, erunt areæ illæ temporibus quamproxime proportionales.

_Corol. 4._ Si corpus radio ad alterum corpus ducto describit areas quæ,
cum temporibus collatæ, sunt valde inæquales, & corpus illud alterum vel
quiescit vel movetur uniformiter in directum; actio vis centripetæ ad
corpus illud alterum tendentis, vel nulla est, vel miscetur & componitur
cum actionibus admodum potentibus aliarum virium: Visq; tota ex omnibus, si
plures sunt vires, composita, ad aliud (sive immobile sive mobile) centrum
dirigitur, circum quod æquabilis est arearum descriptio. Idem obtinet ubi
corpus alterum motu quocunq; movetur, si modo vis centripeta sumatur, quæ
restat post subductionem vis totius agentis in corpus illud alterum.

_Scholium_

Quoniam æquabilis arearum descriptio Index est centri quod vis illa
respicit qua corpus maxime afficitur, corpus autem vi ad hoc centrum
tendente retinetur in orbita sua, & motus omnis circularis recte dicitur
circa centrum illud fieri, cujus vi corpus retrahitur de motu rectilineo &
retinetur in Orbita: quidni usurpemus in sequentibus æquabilem arearum
descriptionem ut Indicem centri circum quod motus omnis circularis in
spatiis liberis peragitur?

Prop. IV. Theor. IV.

    _Corporum quæ diversos circulos æquabili motu describunt, vires
    centripetas ad centra eorundem circulorum tendere, & esse inter se ut
    arcuum simul descriptorum quadrata applicata ad circulorum radios._

[Illustration]

Corpora B, b in circumferentiis circulorum BD, bd gyrantia, simul
describant arcus BD, bd. Quoniam sola vi insita describerent tangentes BC,
bc his arcubus æquales, manifestum est quod vires centripetæ sunt quæ
perpetuo retrahunt corpora de tangentibus ad circumferentias circulorum,
atq; adeo hæ sunt ad invicem in ratione prima spatiorum nascentium CD, cd:
tendunt vero ad centra circulorum per Theor. II, propterea quod areæ radiis
descriptæ ponuntur temporibus proportionales. Fiat figura tkb figuræ DCB
similis, & per Lemma V, lineola CD erit ad lineolam kt ut arcus BD ad arcum
bt: nec non, per Lemma XI, lineola nascens tk ad lineolam nascentem dc ut
bt quad. ad bd quad. & ex æquo lineola nascens DC ad lineolam nascentem dc
ut BD × bt ad bd quad. seu quod perinde est, ut BD × bt ÷ Sb ad bd quad. ÷
Sb, adeoq; (ob æquales rationes bt ÷ Sb & BD ÷ SB) ut BD quad. ÷ SB ad bd
quad. ÷ Sb   _Q. E. D._

_Corol. 1._ Hinc vires centripetæ sunt ut velocitatum quadrata applicata ad
radios circulorum.

_Corol. 2._ Et reciproce ut quadrata temporum periodicorum applicata ad
radios ita sunt hæ vires inter se. Id est (ut cum Geometris loquar) hæ
vires sunt in ratione composita ex duplicata ratione velocitatum directe &
ratione simplici radiorum inverse: necnon in ratione composita ex ratione
simplici radiorum directe & ratione duplicata temporum periodicorum
inverse.

_Corol. 3._ Unde si tempora periodica æquantur, erunt tum vires centripetæ
tum velocitates ut radii, & vice versa.

_Corol. 4._ Si quadrata temporum periodicorum sunt ut radii, vires
centripetæ sunt æquales, & velocitates in dimidiata ratione radiorum: Et
vice versa.

_Corol. 5._ Si quadrata temporum periodicorum sunt ut quadrata radiorum,
vires centripetæ sunt reciproce ut radii, & velocitates æquales; Et vice
versa.

_Corol. 6._ Si quadrata temporum periodicorum sunt ut cubi radiorum, vires
centripeta: sunt reciproce ut quadrata radiorum; velocitates autem in
radiorum dimidiata ratione: Et vice versa.

_Corol. 7._ Eadem omnia de temporibus, velocitatibus & viribus, quibus
corpora similes figurarum quarumcunq; similium, centraq; similiter posita
habentium, partes describunt, consequuntur ex Demonstratione præcedentium
ad hosce casus applicata.

_Scholium._

Casus Corollarii sexti obtinet in corporibus cælestibus (ut seorsum
colligerunt etiam nostrates _Wrennus, Hookius & Halleus_) & propterea quæ
spectant ad vim centripetam decrescentem in duplicata ratione distantiarum
a centris decrevi fusius in sequentibus exponere.

Porro præcedentis demonstrationis beneficio colligitur etiam proportio vis
centripetæ ad vim quamlibet notam, qualis est ea gravitatis. Nam cum vis
illa, quo tempore corpus percurrit arcum BC, impellat ipsum per spatium CD,
quod ipso motus initio æquale est quadrato arcus illius BD ad circuli
diametrum applicato; & corpus omne vi eadem in eandem semper plagam
continuata, describat spatia in duplicata ratione temporum: Vis illa, quo
tempore corpus revolvens arcum quemvis datum describit, efficiet ut corpus
idem recta progrediens describat spatium quadrato arcus illius ad circuli
diametrum applicato æquale; adeoq; est ad vim gravitatis ut spatium illud
ad spatium quod grave cadendo eodem tempore describit. Et hujusmodi
Propositionibus _Hugenius_, in eximio suo Tractatu de Horologio
oscillatorio, vim gravitatis cum revolventium viribus centrifugis contulit.

Demonstrari etiam possunt præcedentia in hunc modum. In circulo quovis
describi intelligatur Polygonum laterum quotcunq; Et si corpus in Polygoni
lateribus data cum velocitate movendo, ad ejus angulos singulos a circulo
reflectatur; vis qua singulis reflexionibus impingit in circulum erit ut
ejus velocitas, adeoq; summa virium in dato tempore erit ut velocitas illa
& numerus reflexionum conjunctim, hoc est (si Polygonum detur specie) ut
longitudo dato illo tempore descripta & longitudo eadem applicata ad Radium
circuli, id est ut quadratum longitudinis illius applicatum ad Radium;
adeoq; si Polygonum lateribus infinite diminutis coincidat cum circulo, ut
quadratum arcus dato tempore descripti applicatum ad radium. Hæc est vis
qua corpus urget circulum, & huic æqualis est vis contraria qua circulus
continuo repellit corpus centrum versus.

Prop. V. Prob. I.

[Illustration]

    _Data quibuscunq; in locis velocitate, qua corpus figuram datam viribus
    ad commune aliquod centrum tendentibus describit, centrum illud
    invenire._

Figuram descriptam tangant rectæ tres PT, TQV, VR in punctis totidem P, Q,
R, concurrentes in T & V. Ad tangentes erigantur perpendicula PA, QB, RC,
velocitatibus corporis in punctis illis P, Q, R a quibus eriguntur
reciproce proportionalia; id est ita ut sit PA ad QB ut velocitas in Q ad
velocitatem in P, & QB ad RC ut velocitas in R ad velocitatem in Q. Per
perpendiculorum terminos A, B, C ad angulos rectos ducantur AD, DBE, EC
concurrentia in D & E: Et actæ TD, VE concurrent in centro quæsito S.

Nam cum corpus in P & Q radiis ad centrum ductis areas describat temporibus
proportionales, sintq; areæ illæ simul descriptæ ut velocitates in P & Q
ductæ respective in perpendicula a centro in tangentes PT, QT demissa:
Erunt perpendicula illa ut velocitates reciproce, adeoq; ut perpendicula
AP, BQ directe, id est ut perpendicula a puncto D in tangentes demissa.
Unde facile colligitur quod puncta S, D, T sunt in una recta. Et simili
argumento puncta S, E, V sunt etiam in una recta; & propterea centrum S in
concursu rectarum TD, VE versatur.   _Q. E. D._

Pro. VI. Theor. V.

    _Si corpus P revolvendo circa centrum S, describat lineam quamvis
    curvam APQ, tangat vero recta ZPR curvam illam in puncto quovis P, & ad
    tangentem ab alio quovis curvæ Q agatur QR distantiæ SP parallela, ac
    demittatur QT perpendicularis ad distantiam SP: Dico quod vis
    centripeta sit reciproce ut solidum SP quad. × QT quad. ÷ QR, si modo
    solidi illius ea semper sumatur quantitas quæ ultimo fit ubi coeunt
    puncta P & Q._

[Illustration]

Namq; in figura indefinite parva QRPT lineola nascens QR, dato tempore, est
ut vis centripeta (per Leg. II.) & data vi, ut quadratum temporis (per Lem.
X.) atq; adeo, neutro dato, ut vis centripeta & quadratum temporis
conjunctim, adeoq; vis centripeta ut lineola QR directe & quadratum
temporis inverse. Est autem tempus ut area SPQ, ejus dupla SP × QT, id est
ut SP & QT conjunctim, adeoq; vis centripeta ut QR directe atq; SP quad. in
QT quad. inverse, id est ut SP quad. × QT quad. ÷ QR inverse.   _Q. E. D._

_Corol._ Hinc si detur figura quævis, & in ea punctum ad quod vis
centripeta dirigitur; inveniri potest lex vis centripetæ quæ corpus in
figuræ illius perimetro gyrari faciet. Nimirum computandum est solidum SP
quad. × QT quad. ÷ QR huic vi reciproce proportionale. Ejus rei dabimus
exempla in problematis sequentibus.

Prop. VII. Prob. II.

[Illustration]

    _Gyretur corpus in circumferentia circuli, requiritur lex vis
    centripetæ tendentis ad punctum aliquod in circumferentia datum._

Esto circuli circumferentia SQPA, centrum vis centripetæ S, corpus in
circumferentia latum P, locus proximus in quem movebitur Q. Ad diametrum SA
& rectam SP demitte perpendiculi PK, QT, & per Q ipsi SP parallelam age LR
occurrentem circulo in L & tangenti PR in R, & coeant TQ, PR in Z. Ob
similitudinem triangulorum ZQR, ZTP, SPA erit RP quad. (hoc est QRL) ad QT
quad. ut SA quad. ad SP quad. Ergo QRL × SP quad. ÷ SA quad. æquatur QT
quad. Ducantur hæc æqualia in SP quad. ÷ QR, & punctis P & Q coeuntibus,
scribatur SP pro RL. Sic fiet SP qc. ÷ SAq. æquale QTq. × SPq. ÷ QR. Ergo
(per Corol. Theor. V.) vis centripeta reciproce est ut SP qc. ÷ SAq., id
est (ob datum SA quad.) ut quadrato-cubus distantiæ SP. Quod erat
inveniendum.

Prop. VIII. Prob. III.

[Illustration]

    _Moveatur corpus in circulo PQA: ad hunc effectum requiritur lex vis
    centripetæ tendentis ad punctum adeo longinquum, ut lineæ omnes PS, RS
    ad id ductæ, pro parallelis haberi possint._

A circuli centro C agatur semidiameter CA parallelas istas
perpendiculariter secans in M & N, & jungantur CP. Ob similia triangula
CPM, & TPZ, vel (per Lem. VIII.) TPQ, est CPq. ad PMq. ut PQq. vel (per
Lem. VII.) PRq. ad QTq. & ex natura circuli rectangulum QR × RN + QN æquale
est PR quadrato. Coeuntibus autem punctis P, Q fit RN + QN æqualis 2PM.
Ergo est CP quad. ad PM quad. ut QR × 2PM ad QT quad. adeoq; QT quad. ÷ QR
æquale 2PM cub. ÷ CP quad., & QT quad. × SP quad. ÷ QR æquale 2PM cub. × SP
quad. ÷ CP quad. Est ergo (per Corol. Theor. V.) vis centripeta reciproce
ut 2PM cub. × SP quad. ÷ CP quad. hoc est (neglecta ratione determinata 2SP
quad. ÷ CP quad.) reciproce ut PM cub.   _Q. E. I._

_Scholium._

Et simili argumento corpus movebitur in Ellipsi vel etiam in Hyperbola vel
Parabola, vi centripeta quæ sit reciproce ut cubus ordinatim applicatæ ad
centrum virium maxime longinquum tendentis.

Prop. IX. Prob. IV.

[Illustration]

    _Gyretur corpus in spiral PQS secante radios omnes SP, SQ, &c. in
    angulo dato: Requiritur lex vis centripetæ tendentis ad centrum
    spiralis._

Detur angulus indefinite parvus PSQ, & ob datos omnes angulos dabitur
specie figura SPQRT. Ergo datur ratio QT ÷ RQ estq; QT quad. ÷ QR ut QT,
hoc est ut SP. Mutetur jam utcunq; angulus PSQ, & recta QR angulum
contactus QPR subtendens mutabitur (per Lemma XI.) in duplicata ratione
ipsius PR vel QT. Ergo manebit QT quad. ÷ QR eadem quæ prius, hoc est ut
SP. Quare QTq. × SPq. ÷ QR est ut SP cub. id est (per Corol. Theor. V.) vis
centripeta ut cubus distantiæ SP.   _Q. E. I._

Lemma XII.

    _Parallelogramma omnia circa datam Ellipsin descripta esse inter se
    æqualia. Idem intellige de Parallelogrammis in Hyperbola circum
    diametros ejus descriptis._

Constat utrumq; ex Conicis.

Prop. X. Prob. V.

    _Gyretur corpus in Ellipsi: requiritur lex vis centripetæ tendentis ad
    centrum Ellipseos._

[Illustration]

Sunto CA, CB semiaxes Ellipseos; GP, DK diametri conjugatæ; PF, Qt,
perpendicula ad diametros; Qv ordinatim applicata ad diametrum GP; & si
compleatur parallelogrammum QvRP, erit (ex Conicis) PvG ad Qv quad. ut PC
quad. ad CD quad. & (ob similia triangula Qvt, PCF) Qv quad. est ad Qt
quad. ut PC quad. ad PF quad. & conjunctis rationibus, PvG ad Qt quad. ut
PC quad. ad CD quad. & PC quad. ad PF quad. id est vG ad Qt quad. ÷ Pv ut
PC quad. ad CDq. × PFq. ÷ PCq.. Scribe QR pro Pv, & (per Lemma xii.) BC ×
CA pro CD × PF, nec non (punctis P & Q coeuntibus) 2PC pro vG, & ductis
extremis & medijs in se mutuo, fiet QTq. × PCq. ÷ QR æquale 2BCq. × CAq. ÷
PC. Est ergo (per Corol. Theor. V.) vis centripeta reciproce ut 2BCq. ×
CAq. ÷ PC, id est (ob datum 2BCq. × CAq.) ut 1 ÷ PC, hoc est, directe ut
distantia PC.   _Q. E. I._

_Corol. 1._ Unde vicissim si vis sit ut distantia, movebitur corpus in
Ellipsi centrum habente in centro virium, aut forte in circulo, in quem
Ellipsis migrare potest.

_Corol. 2._ Et æqualia erunt revolutionum in Figuris universis circa
centrum idem factarum periodica tempora. Nam tempora illa in Ellipsibus
similibus æqualia sunt per Corol. 3 & 7 Prop. IV: In Ellipsibus autem
communem habentibus axem majorem, sunt ad invicem ut Ellipseon areæ totæ
directe & arearum particulæ simul descriptæ inverse; id est ut axes minores
directe & corporum velocitates in verticibus principalibus inverse, hoc est
ut axes illi directe & ordinatim applicatæ ad axes alteros inverse, &
propterea (ob æqualitatem rationum directarum & inversarum) in ratione
æqualitatis.

_Scholium._

Si Ellipsis, centro in infinitum abeunte, vertatur in Parabolam, corpus
movebitur in hac Parabola, & vis ad centrum infinite distans jam tendens,
evadet æquabilis. Hoc est Theorema _Galilei_. Et si Conisectio Parabolica,
inclinatione plani ad conum sectum mutata, vertatur in Hyperbolam,
movebitur corpus in hujus perimetro, vi centripeta in centrifugam versa.

       *       *       *       *       *


SECT. III.

_De motu Corporum in Conicis Sectionibus excentricis._

Prop. XI. Prob. VI.

    _Revolvatur corpus in Ellipsi: Requiritur lex vis centripetæ tendentis
    ad umbilicum Ellipseos._

[Illustration]

Esto Ellipseos superioris umbilicus S. Agatur SP secans Ellipseos tum
diametrum DK in E, tum ordinatim applicatam Qv in x, & compleatur
parallelogrammum QxPR. Patet EP æqualem esse semiaxi majori AC, eo quod
acta ab altero Ellipseos umbilico H linea HI ipsi EC parallela, (ob æquales
CS, CH) æquentur ES, EI, adeo ut EP semisumma sit ipsarum PS, PI, id est
(ob parallelas HI, PR & angulos æquales IPR, HPZ) ipsorum PS, PH, quæ
conjunctim axem totum 2AC adæquant. Ad SP demittatur perpendicularis QT, &
Ellipseos latere recto principali (seu 2BC quad. ÷ AC) dicto L, erit L × QR
ad L × Pv ut QR ad Pv; id est ut PE (seu AC) ad PC; & L × Pv ad GvP ut L ad
Gv; & GvP ad Qv quad. ut CP quad. ad CD quad.; & (per Lem. VIII.) Qv quad.
ad Qx quad. punctis Q & P coeuntibus, est ratio æqualitatis, & Qx quad. seu
Qv quad. est ad QT quad. ut EP quad. ad PF quad., id est ut CA quad. ad PF
quad. sive (per Lem. XII.) ut CD quad. ad CB quad. Et conjunctis his
omnibus rationibus, L × QR fit ad QT quad. ut AC ad PC + L ad Gv + CPq. ad
CDq. + CDq. ad CBq. id est ut AC × L (seu 2CBq.) × CPq. ad PC × Gv × CBq.
sive ut 2PC ad Gv. Sed punctis Q & P coeuntibus, æquantur 2PC & Gv. Ergo &
his proportionalia L × QR & QT quad. æquantur. Ducantur hæc aqualia in SPq.
÷ QR & fiet L × SPq. æquale SPq. × QTq. ÷ QR. Ergo (per Corol. Theor. V.)
vis centripeta reciproce est ut L × SPq. id est reciproce in ratione
duplicata distantiæ SP.   _Q. E. I._

Eadem brevitate qua traduximus Problema quintum ad Parabolam, & Hyperbolam,
liceret idem hic facere: verum ob dignitatem Problematis & usum ejus in
sequentibus, non pigebit casus cæteros demonstratione confirmare.

Prop. XII. Prob. VII.

    _Moveatur corpus in Hyperbola: requiritur lex vis centripetæ tendentis
    ad umbilicum figuræ._

[Illustration]

Sunto CA, CB semi-axes Hyperbolæ; PG, KD diametri conjugatæ; PF, Qt
perpendicula ad diametros; & Qv ordinatim applicata ad diametrum GP. Agatur
SP secans tum diametrum DK in E, tum ordinatim applicatam Qv in x, &
compleatur parallelogrammum QRPx. Patet EP æqualem esse semi-axi transverso
AC, eo quod, acta ab altero Hyperbolæ umbilico H linea HI ipsi EC
parallela, ob æquales CS, CH, æquentur ES, EI; adeo ut EP semidifferentia
sit ipsarum PS, PI, id est (ob parallelas HI, PR & angulos æquales IPR,
HPZ) ipsarum PI, PH, quarum differentia axem totum 2AC adæquat. Ad SP
demittatur perpendicularis QT. Et Hyperbolæ latere recto principali (seu
2BCq. ÷ AC) dicto L, erit L × QR ad L × Pv ut QR ad Pv, id est, ut PE (seu
AC) ad PC; Et L × Pv ad GvP ut L ad Gv; & GvP ad Qvq. ut CPq. ad CDq.; &
(per Lem. VIII.) Qvq. ad Qxq., punctis Q & P coeuntibus fit ratio
æqualitatis; & Qxq. seu Qvq. est ad QTq. ut EPq. ad PFq., id est ut CAq. ad
PFq., sive (per Lem. XII.) ut CDq. ad CBq.: & conjunctis his omnibus
rationibus L × QR fit ad QTq. ut AC ad PC + L ad Gv + CPq. ad CDq. + CDq.
ad CBq.: id est ut AC × L (seu 2BCq.) × PCq. ad PC × Gv × CB quad. sive ut
2PC ad Gv, sed punctis Q & P coeuntibus æquantur 2PC & Gv. Ergo & his
proportionalia L × QR & QTq. æquantur. Ducantur hæc æqualia in SPq. ÷ QR &
fiet L × SPq. æquale SPq. × QTq. ÷ QR. Ergo (per Corol. Theor. V.) vis
centripeta reciproce est ut L × SPq. id est in ratione duplicata distantiæ
SP.   _Q. E. I._

Eodem modo demonstratur quod corpus, hac vi centripeta in centrifugam
versa, movebitur in Hyperbola conjugata.

Lemma XIII.

    _Latus rectum Parabolæ ad verticem quemvis pertinens, est quadruplum
    distantiæ verticis illius ab umbilico figuræ._ Patet ex Conicis.

Lemma XIV.

[Illustration]

    _Perpendiculum quod ab umbilico Parabolæ ad tangentem ejus demittitur,
    medium est proportionale inter distantias umbilici a puncto contactus &
    a vertice principali figuræ._

Sit enim APQ Parabola, S umbilicus ejus, A vertex principalis, P punctum
contactus, PO ordinatim applicata ad diametrum principalem, PM tangens
diametro principali occurrens in M, & SN linea perpendicularis ab umbilico
in tangentem. Jungatur AN, & ob æquales MS & SP, MN & NP, MA & AO,
parallelæ erunt rectæ AN & OP, & inde triangulum SAN rectangulum erit ad A
& simile triangulis æqualibus SMN, SPN. Ergo PS est ad SN ut SN ad SA.
_Q. E. D._

Corol. 1. PSq. est ad SNq. ut PS ad SA.

Corol. 2. Et ob datam SA, est SNq. ut PS.

Corol. 3. Et concursus tangentis cujusvis PM cum recta SN quæ ab umbilico
in ipsam perpendicularis est, incidit in rectam AN, quæ Parabolam tangit in
vertice principali.

Prop. XIII. Prob. VIII.

    _Moveatur corpus in perimetro Parabolæ: requiritur Lex vis centripetæ
    tendentis ad umbilicum hujus figuræ._

[Illustration]

Maneat constructio Lemmatis, sitq; P corpus in perimetro Parabolæ, & a loco
Q in quem corpus proxime movetur, age ipsi SP Parallelam QR &
perpendicularem QT, necnon Qv tangentiparallelam & occurrentem tum diametro
YPG in v, tum distantiæ SP in x. Jam ob similia triangula Pxv, MSP &
æqualia unius latera SM, SP, æqualia sunt alterius latera Px seu QR & Pv.
Sed, ex Conicis, quadratum ordinatæ Qv æquale est rectangulo sub latere
recto & segmento diametri Pv, id est (per Lem. XIII.) rectangulo 4PS × Pv
seu 4PS × QR; & punctis P & Q coeuntibus, ratio Qv ad Qx (per Lem. 8.) fit
æqualitatis. Ergo Qxq. eo in casu, æquale est rectangulo 4PS × QR. Est
autem (ob æquales angulos QxT, MPS, PMO) Qxq. ad QTq. ut PSq. ad SNq. hoc
est (per Corol. I. Lem. XIV.) ut PS ad AS, id est ut 4PS × QR ad 4AS × QR,
& inde (per Prop. 9. Lib. V. Elem.) QTq. & 4AS × QR æquantur. Ducantur hæc
æqualia in SPq. ÷ QR, & fiet SPq. × QTq. ÷ QR æquale SPq. × 4AS: &
propterea (per Corol. Theor. V.) vis centripeta est reciproce ut SPq. ×
4AS, id est, ob datam 4AS, reciproce in duplicata ratione distantiæ SP.
_Q. E. I._

_Corol. I._ Ex tribus novissimis Proportionibus consequens est, quod si
corpus quodvis P, secundum lineam quamvis rectam PR, quacunq; cum
velocitate exeat de loco P, & vi centripeta quæ sit reciproce
proportionalis quadrato distantiæ a centro, simul agitetur; movebitur hoc
corpus in aliqua sectionum Conicarum umbilicum habente in centro virium; &
contra.

_Corol. II._ Et si velocitas, quacum corpus exit de loco suo P, ea sit, qua
lineola PR in minima aliqua temporis particula describi possit, & vis
centripeta potis sit eodem tempore corpus idem movere per spatium QR:
movebitur hoc corpus in Conica aliqua sectione cujus latus rectum est
quantitas illa QTq. ÷ QR quæ ultimo fit ubi lineolæ PR, QR in infinitum
diminuuntur. Circulum in his Corollariis refero ad Ellipsin, & casum
excipio ubi corpus recta descendit ad centrum.

Prop. XIV. Theor. VI.

    _Si corpora plura revolvantur circa centrum commune, & vis centripeta
    decrescat in duplicata ratione distantiarum a centro; dico quod Orbium
    Latera recta sunt in duplicata ratione arearum quas corpora, radiis ad
    centrum ductis, eodem tempore describunt._

Nam per Corol. II. Prob. VIII. Latus rectum L æquale est quantitati QTq. ÷
QR quæ ultimo fit ubi coeunt puncta P & Q. Sed linea minima QR, dato
tempore, est ut vis centripeta generans, hoc est (per Hypothesin) reciproce
ut SPq. Ergo QTq. ÷ QR est ut QTq. × SPq. hoc est, latus rectum L in
duplicata ratione areæ QT × SP.   _Q. E. D._

Corol. Hinc Ellipseos area tota, eiq; proportionale rectangulum sub axibus,
est in ratione composita ex dimidiata ratione lateris recti & integra
ratione temporis periodici.

Prop. XV. Theor. VII.

    _Iisdem positis, dico quod tempora periodica in Ellipsibus sunt in
    ratione sesquiplicata transversorum axium._

Namq; axis minor est medius proportionalis inter axem majorem (quem
transversum appello) & latus rectum, atq; adeo rectangulum sub axibus est
in ratione composita ex dimidiata ratione lateris recti & sesquiplicata
ratione axis transversi. Sed hoc rectangulum, per Corollarium Theorematis
Sexti, est in ratione composita ex dimidiata ratione lateris recti &
integra ratione periodici temporis. Dematur utrobiq; dimidiata ratio
lateris recti & manebit sesquiplicata ratio axis transversi æqualis rationi
periodici temporis.   _Q. E. D._

Corol. Sunt igitur tempora periodica in Ellipsibus eadem ac in circulis,
quorum diametri æquantur majoribus axibus Ellipseon.

Prop. XVI. Theor. VIII.

    _Iisdem positis, & actis ad corpora lineis rectis, quæ ibidem tangant
    orbitas, demissisq; ab umbilico communi ad has tangentes
    perpendicularibus: dico quod velocitates corporum sunt in ratione
    composita ex ratione perpendiculorum inverse & dimidiata ratione
    laterum rectorum directe._ Vide Fig. Prop. X. &. XI.

Ab umbilico S ad tangentem PR demitte perpendiculum SY & velocitas corporis
P erit reciproce in dimidiata ratione quantitatis SYq. ÷ L. Nam velocitas
illa est ut arcus quam minimus PQ in data temporis particula descriptus,
hoc est (per Lem. VII.) ut tangens PR, id est (ob proportionales PR ad QT &
SP ad SY) ut SP × QT ÷ SY, sive ut SY reciproce & SP × QT directe; estq; SP
× QT ut area dato tempore descripta, id est, per Theor. VI. in dimidiata
ratione lateris recti   _Q. E. D._

_Corol. 1._ Latera recta sunt in ratione composita ex duplicata ratione
perpendiculorum & duplicata ratione velocitatum.

_Corol. 2._ Velocitates corporum in maximis & minimis ab umbilico communi
distantiis, sunt in ratione composita ex ratione distantiarum inverse &
dimidiata ratione laterum rectorum directe. Nam perpendicula jam sunt ipsæ
distantiæ.

_Corol. 3._ Ideoq; velocitas in Conica sectione, in minima ab umbilico
distantia, est ad velocitatem in circulo in eadem a centro distantia, in
dimidiata ratione lateris recti ad distantiam illam duplicatam.

_Corol. 4._ Corporum in Ellipsibus gyrantium velocitates in mediocribus
distantiis ab umbilico communi sunt eædem quæ corporum gyrantium in
circulis ad easdem distantias, hoc est (per Corol. VI. Theor. IV.)
reciproce in dimidiata ratione distantiarum. Nam perpendicula jam sunt
semi-axes minores, & hi sunt ut mediæ proportionales inter distantias &
latera recta. Componatur hæc ratio inverse cum dimidiata ratione laterum
rectorum directe, & fiet ratio dimidiata distantiarum inverse.

_Corol. 5._ In eadem vel æqualibus figuris, vel etiam in figuris
inæqualibus, quarum latera recta sunt æqualia, velocitas corporis est
reciproce ut perpendiculum demissum ab umbilico ad tangentem.

_Corol. 6._ In Parabola, velocitas est reciproce in dimidiata ratione
distantiæ corporis ab umbilico figuræ, in Ellipsi minor est, in Hyperbola
major quam in hac ratione. Nam (per Corol. 2 Lem. XIV.) perpendiculum
demissum ab umbilico ad tangentem Parabolæ est in dimidiata ratione
distantiæ.

_Corol. 7._ In Parabola, velocitas ubiq; est ad velocitatem corporis
revolventis in circulo ad eandem distantiam, in dimidiata ratione numeri
binarii ad unitatem; in Ellipsi minor est, in Hyperbola major quam in hac
ratione. Nam per hujus Corollarium secundum, velocitas in vertice Parabolæ
est in hac ratione, & per Corollaria sexta hujus & Theorematis quarti,
servatur eadem proportio in omnibus distantiis. Hinc etiam in Parabola
velocitas ubiq; æqualis est velocitati corporis revolventis in circulo ad
dimidiam distantiam, in Ellipsi minor est, in Hyperbola major.

_Corol. 8._ Velocitas gyrantis in Sectione quavis Conica est ad velocitatem
gyrantis in circulo in distantia dimidii lateris recti Sectionis, ut
distantia illa ad perpendiculum ab umbilico in tangentem Sectionis
demissum. Patet per Corollarium quintum.

_Corol. 9._ Unde cum (per Corol. 6. Theor. IV.) velocitas gyrantis in hoc
circulo sit ad velocitatem gyrantis in circulo quovis alio, reciproce in
dimidiata ratione distantiarum; fiet ex æquo velocitas gyrantis in Conica
sectione ad velocitatem gyrantis in circulo in eadem distantia, ut media
proportionalis inter distantiam illam communem & semissem lateris recti
sectionis, ad perpendiculum ab umbilico communi in tangentem sectionis
demissum.

Prop. XVII. Prob. IX.

    _Posito quod vis centripeta sit reciproce proportionalis quadrato
    distantiæ a centro, & quod vis illius quantitas absoluta sit cognita;
    requiritur linea quam corpus describit, de loco dato cum data
    velocitate secundum datam rectam egrediens._

[Illustration]

Vis centripeta tendens ad punctum S ea sit quæ corpus p in orbita quavis
data pq gyrare faciat, & cognoscatur hujus velocitas in loco p. De loco P
secundum lineam PR exeat corpus P cum data velocitate, & mox inde, cogente
vi centripeta, deflectat illud in Conisectionem PQ. Hanc igitur recta PR
tanget in P. Tangat itidem recta aliqua pr orbitam pq in p, & si ab S ad
eas tangentes demitti intelligantur perpendicula, erit (per Corol. 1.
Theor. VIII.) latus rectum Conisectionis ad latus rectum orbitæ datæ, in
ratione composita ex duplicata ratione perpendiculorum & duplicata ratione
velocitatum, atq; adeo datur. Sit istud L. Datur præterea Conisectionis
umbilicus S. Anguli RPS complementum ad duos rectos fiat angulus RPH, &
dabitur positione linea PH, in qua umbilicus alter H locatur. Demisso ad PH
perpendiculo SK, & erecto semiaxe conjugato BC, est SPq. - 2KPH + PHq. (per
Prop. 13. Lib. II. Elem.) = SHq. = 4CHq. = 4BHq. - 4BCq. = {SP + PH} quad.
- L × {SP + PH} = SPq. + 2SPH + PHq. - L × {SP + PH}. Addantur utrobiq;
2KPH + L × {SP + PH} - SPq. - PHq. & fiet L × {SP + PH} = 2SPH + 2KPH, seu
SP + PH ad PH ut 2SP + 2KP ad L. Unde datur PH tam longitudine quam
positione. Nimirum si ea sit corporis in P velocitas, ut latus rectum L
minus fuerit quam 2SP + 2KP, jacebit PH ad eandem partem tangentis PR cum
linea PS, adeoq; figura erit Ellipsis, & ex datis umbilicis S, H, & axe
principali SP + PH, dabitur: Sin tanta sit corporis velocitas ut latus
rectum L æquale fuerit 2SP + 2KP, longitudo PH infinita erit, & propterea
figura erit Parabola axem habens SH parallelum lineæ PK, & inde dabitur.
Quod si corpus majori adhuc cum velocitate de loco suo P exeat, capienda
erit longitudo PH ad alteram partem tangentis, adeoq; tangente inter
umbilicos pergente, figura erit Hyperbola axem habens principalem æqualem
differentiæ linearum SP & PH, & inde dabitur.   _Q. E. I._

_Corol. 1._ Hinc in omni Conisectione ex dato vertice principali D, latere
recto L, & umbilico S, datur umbilicus alter H capiendo DH ad DS ut est
latus rectum ad differentiam inter latus rectum & 4DS. Nam proportio SP +
PH ad PH ut 2SP ad L, in casu hujus Corollarii, fit DS + DH ad DH ut 4DS ad
L, & divisim DS ad DH ut 4DS - L ad L.

_Corol. 2._ Unde si datur corporis velocitas in vertice principali D,
invenietur Orbita expedite, capiendo scilicet latus rectum ejus, ad duplam
distantiam DS, in duplicata ratione velocitatis hujus datæ ad velocitatem
corporis in circulo ad distantiam DS gyrantis: (Per Corol. 3. Theor. VIII.)
dein DH ad DS ut latus rectum ad differentiam inter latus rectum & 4DS.

_Corol. 3._ Hinc etiam si corpus moveatur in Sectione quacunq; Conica, & ex
orbe suo impulsu quocunq; exturbetur; cognosci potest orbis in quo postea
cursum suum peraget. Nam componendo proprium corporis motum cum motu illo
quem impulsus solus generaret, habebitur motus quocum corpus de dato
impulsus loco, secundum rectam positione datam, exibit.

_Corol. 4._ Et si corpus illud vi aliqua extrinsecus impressa continuo
perturbetur, innotescet cursus quam proxime, colligendo mutationes quas vis
illa in punctis quibusdam inducit, & ex seriei analogia, mutationes
continuas in locis intermediis æstimando.

       *       *       *       *       *


SECT. IV.

_De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex
umbilico dato._

[Illustration]

_Lemma XV._

    _Si ab Ellipseos vel Hyperbolæ cujusvis umbilicis duobus S, H, ad
    punctum quodvis tertium V inflectantur rectæ duæ SV, HV, quarum una HV
    æqualis sit axi transverso figuræ, altera SV a perpendiculo TR in se
    demisso bisecetur in T; perpendiculum illud TR sectionem Conicam
    alicubi tangit: & contra, si tangit, erit VH æqualis axi figuræ._

Secet enim VH sectionem conicam in R, & jungatur SR. Ob æquales rectas TS,
TV, æquales erunt anguli TRS, TRV. Bisecat ergo RT angulum VRS & propterea
figuram tangit: & contra.   _Q. E. D._

Prop. XVIII. Prob. X.

    _Datis umbilico & axibus transversis describere Trajectorias Ellipticas
    & Hyperbolicas, quæ transibunt per puncta data, & rectas positione
    datas contingent._

[Illustration]

Sit S communis umbilicus figuraram; AB longitudo axis transversi
Trajectoriæ cujusvis; P punctum per quod Trajectoria debet transire; & TR
recta quam debet tangere. Centro P intervallo AB - SP, si orbita sit
Ellipsis, vel AB + SP, si ea sit Hyperbola, describatur circulus HG. Ad
tangentem TR demittatur perpendiculum ST, & producatur ea ad V ut sit TV
æqualis ST; centroq; V & intervallo AB describatur circulus FH. Hac methodo
sive dentur duo puncta P, p, sive duæ tangentes TR, tr, sive punctum P &
tangens TR, describendi sunt circuli duo. Sit H eorum intersectio communis,
& umbilicis S, H, axe illo dato describatur Trajectoria. Dico factum. Nam
Trajectoria descripta (eo quod PH + SP in Ellipsi, & PH - SP in Hyperbola
æquatur axi) transibit per punctum P, & (per Lemma superius) tanget rectam
TR. Et eodem argumento vel transibit eadem per puncta duo P, p, vel tanget
rectas duas TR, tr.   _Q. E. F._

Prop. XIX. Prob. XI.

    _Circa datum umbilicum Trajectoriam Parabolicam describere, quæ
    transibit per puncta data, & rectas positione datas continget._

[Illustration]

Sit S umbilicus, P punctum & TR tangens trajectoriæ describendæ. Centro P,
intervallo PS describe circulum FG. Ab umbilico ad tangentem demitte
perpendicularem ST, & produc eam ad V, ut sit TV æqualis ST. Eodem modo
describendus est alter circulus fg, si datur alterum punctum p; vel
inveniendum alterum punctum v, si datur altera tangens tr; dein ducenda
recta IF quæ tangat duos circulos FG, fg si dantur duo puncta P, p; vel
transeat per duo puncta V, v, si dantur duæ tangentes TR, tr, vel tangat
circulum FG & transeat per punctum V, si datur punctum P & tangens TR. Ad
FI demitte perpendicularem SI, eamq; biseca in K, & axe SK, vertice
principali K describatur Parabola. Dico factum. Nam Parabola ob æquales SK
& IK, SP & FP transibit per punctum P; & (per Lemmatis XIV. Corol. 3.) ob
æquales ST & TV & angulum rectum STR, tanget rectam TR.   _Q. E. F._

Prop. XX. Prob. XII.

[Illustration]

    _Circa datum umbilicum Trajectoriam quamvis specie datam describere,
    quæ per data puncta transibit & rectas tanget positione datas._

_Cas. 1._ Dato umbilico S, describenda sit Trajectoria ABC per puncta duo
B, C. Quoniam Trajectoria datur specie, dabitur ratio axis transversi ad
distantiam umbilicorum. In ea ratione cape KB ad BS, & LC ad CS. Centris B,
C, intervallis BK, CL, describe circulos duos, & ad rectam KL, quæ tangat
eosdem in K & L, demitte perpendiculum SG, idemq; seca in A & a, ita ut sit
SA ad AG & Sa ad aG, ut est SB ad BK, & axe Aa, verticibus A, a,
describatur Trajectoria. Dico factum. Sit enim H umbilicus alter figuræ
descriptæ, & cum sit SA ad AG ut Sa ad aG, erit divisim Sa - SA seu SH ad
aG - AG seu Aa in eadem ratione, adeoq; in ratione quam habet axis
transversus figuræ describendæ ad distantiam umbilicorum ejus; & propterea
figura descripta est ejusdem speciei cum describenda. Cumq; sint KB ad BS &
LC ad CS in eadem ratione, transibit hæc Figura per puncta B, C, ut ex
Conicis manifestum est.

[Illustration]

_Cas. 2._ Dato umbilico S, describenda sit Trajectoria quæ rectas duas TR,
tr alicubi contingat. Ab umbilico in tangentes demitte perpendicula ST, St
& produc eadem ad V, v, ut sint TV, tv æquales TS, ts. Biseca Vv in O, &
erige perpendiculum infinite OH, rectamq; VS infinite productam seca in K &
k ita, ut sit VK ad KS & Vk ad kS ut est Trajectoriæ describendæ axis
transversus ad umbilicorum distantiam. Super diametro Kk describatur
circulus secans rectam OH in H; & umbilicis S, H, axe transverso ipsam VH
æquante, describatur Trajectoria. Dico factum. Nam biseca Kk in X, & junge
HX, HS, HV, Hv. Quoniam est VK ad KS ut Vk ad kS; & composite ut VK + Vk ad
KS + kS; divisimq; ut Vk - VK ad kS - KS id est ut 2VX ad 2KX & 2KX ad 2SX,
adeoq; ut VX ad HX & HX ad SX, similia erunt triangula VXH, HXS, &
propterea VH erit ad SH ut VX ad XH, adeoq; ut VK ad KS. Habet igitur
Trajectoria; descriptæ axis transversus VH eam rationem ad ipsius
umbilicorum distantiam SH, quam habet Trajectoriæ describendæ axis
transversus ad ipsius umbilicorum distantiam, & propterea ejusdem est
speciei. Insuper cum VH, vH æquentur axi transverso, & VS, vS a rectis TR,
tr perpendiculariter bisecentur, liquet, ex Lemmate XV, rectas illas
Trajectoriam descriptam tangere.   _Q. E. F._

[Illustration]

_Cas. 3._ Dato umbilico S describenda sit Trajectoria quæ rectam TR tanget
in puncto dato R. In rectam TR demitte perpendicularem ST, & produc eandem
ad V, ut sit TV æqualis ST. Junge VR, & rectam VS infinite productam seca
in K & k, ita ut sit VK ad SK & Vk ad Sk ut Ellipseos describendæ axis
transversus ad distantiam umbilicorum; circuloq; super diametro Kk
descripto, secetur producta recta VR in H, & umbilicis S, H, axe transverso
rectam HV æquante, describatur Trajectoria. Dico factum. Namq; VH esse ad
SH ut VK ad SK, atq; adeo ut axis transversus Trajectoriæ describendæ ad
distantiam umbilicorum ejus, patet ex demonstratis in Casu secundo, &
propterea Trajectoriam descriptam ejusdem esse speciei cum describenda:
rectam vero TR qua angulus VRS bisecatur, tangere Trajectoriam in puncto R,
patet ex Conicis.   _Q. E. F._

[Illustration]

_Cas. 4._ Circa umbilicum S describenda jam sit Trajectoria APB, quæ tangat
rectam TR, transeatq; per punctum quodvis P extra tangentem datum, quæq;
similis sit figuræ apb, axe transverso ab & umbilicis s, h descriptæ. In
tangentem TR demitte perpendiculum ST, & produc idem ad V, ut sit TV
æqualis ST. Angulis autem VSP, SVP fac angulos hsq, shq æquales; centroq; q
intervallo quod sit ad ab ut SP ad VS describe circulum secantem figuram
apb in p. Junge sp & age SH quæ sit ad sh ut est SP ad sp quæq; angulum PSH
angulo psh & angulum VSH angulo psq æquales constituat. Deniq; umbilicis S,
H, axe distantiam VH æquante, describatur sectio conica.

Dico factum. Nam si agatur sv quæ sit ad sp ut est sh ad sq, quæq;
constituat angulum vsp angulo hsq & angulum vsh angulo psq æquales,
triangula svh, spq erunt similia, & propterea vh erit ad pq ut est sh ad
sq, id est (ob similia triangula VSP, hsq) ut est VS ad SP seu ab ad pq.
Æquantur ergo vh & ab. Porro ob similia triangula VSH, vsh est VH ad SH ut
vh ad sh, id est, axis Conicæ actionis jam descripta: ad illius umbilicorum
intervallum, ut axis ab ad umbilicorum intervallum sh, & propterea figura
jam descripta similis est figuræ apb. Transit autem hæc figura per punctum
P, eo quod triangulum PSH simile sit triangulo psh; & quia VH æquatur
ipsius axi & VS bisecatur perpendiculariter a recta TR tangit eadem rectam
TR.   _Q. E. F._

Lemma XVI.

    _A datis tribus punctis ad quartum non datum inflectere tres rectas
    quarum differentiæ vel dantur vel nullæ sunt._

[Illustration]

_Cas. 1._ Sunto puncta illa data A, B, C & punctum quartum Z, quod invenire
oportet: Ob datam differentiam linearum AZ, BZ, locabitur punctum Z in
Hyperbola cujus umbilici sunt A & B, & axis transversus differentia illa
data. Sit axis ille MN. Cape PM ad MA ut est MN ad AB, & erecto PR
perpendiculari ad AB, demissoq; ZR perpendiculari ad PR, erit ex natura
hujus Hyperbolæ ZR ad AZ ut est MN ad AB. Simili discursu punctum Z
locabitur in alia Hyperbola, cujus umbilici sunt A, C & axis transversus
differentia inter AZ & CZ, duciq; potest QS ipsi AC perpendicularis, ad
quam si ab Hyperbolæ hujus puncto quovis Z demittatur normalis ZS, hæc
fuerit ad AZ ut est differentia inter AZ & CZ ad AC. Dantur ergo rationes
ipsarum ZR & ZS ad AZ, & idcirco datur earundem ZR & ZS ratio ad invicem;
adeoq; rectis RP, SQ concurrentibus in T, locabitur punctum Z in recta TZ
positione data. Eadem Methodo per Hyperbolam tertiam, cujus umbilici sunt B
& C & axis transversus differentia rectarum BZ, CZ, inveniri potest alia
recta in qua punctum Z locatur. Habitis autem duobus locis rectilineis,
habetur punctum quæsitum Z in earum intersectione,   _Q. E. I._

_Cas. 2._ Si duæ ex tribus lineis, puta AZ & BZ æquantur, punctum Z
locabitur in perpendiculo bisecante distantiam AB, & locus alius
rectilineus invenietur ut supra.   _Q. E. I._

_Cas. 3._ Si omnes tres æquantur, locabitur punctum Z in centro circuli per
puncta A, B, C transeuntis.   _Q. E. I._

Solvitur etiam hoc Lemma problematicum per Librum. Tactionum _Apollonii_ a
_Vieta_ restitutum.

Prop. XXI. Prob. XIII.

[Illustration]

    _Trajectoriam circa datum umbilicum describere, quæ transibit per
    puncta data & rectas positione datas continget._

Detur umbilicus S, punctum P, & tangens TR, & inveniendus sit umbilicus
alter H. Ad tangentem demitte perpendiculum ST, & produc idem ad Y, ut sit
TY æqualis ST, & erit YH æqualis axi transverso. Junge SP, HP & erit SP
differentia inter HP & axem transversum. Hoc modo si dentur plures
tangentes TR, vel plura puncta P, devenietur semper ad lineas totidem YH,
vel PH, a dictis punctis Y vel P ad umbilicum H ductas, quæ vel æquantur
axibus, vel datis longitudinibus SP differunt ab iisdem, atq; adeo quæ vel
æquantur sibi invicem, vel datas habent differentias; & inde, per Lemma
superius, datur umbilicus ille alter H. Habitis autem umbilicis una cum
axis longitudine (quæ vel est YH, vel si Trajectoria Ellipsis est, PH + SP;
sin Hyperbola PH - SP) habetur Trajectoria.   _Q. E. I._

_Scholium._

[Illustration]

Casus ubi dantur tria puncta sic solvitur expeditius. Dentur puncta B, C,
D. Junctas BC, CD produc ad E, F, ut sit EB ad EC ut SB ad SC, & FC ad FD
ut SC ad SD. Ad EF ductam & productam demitte normales SG, BH, inq; GS
infinite producta cape GA ad AS & Ga ad aS ut est HB ad BS; & erit A
vertex, & Aa axis transversus Trajectoriæ: quæ, perinde ut GA minor,
æqualis vel major fuerit quam AS, erit Ellipsis, Parabola vel Hyperbola;
puncto a in primo casu cadente ad eandem partem lineæ GK cum puncto A; in
secundo casu abeunte in infinitum; in tertio cadente ad contrariam partem
lineæ GK. Nam si demittantur ad GF perpendicula CI, DK, erit IC ad HB ut EC
ad EB, hoc est ut SC ad SB; & vicissim IC ad SC ut HB ad SB, seu GA ad SA.
Et simili argumento probabitur esse KD ad SD in eadem ratione. Jacent ergo
puncta B, C, D in Conisectione circa umbilicum S ita descripta, ut rectæ
omnes ab umbilico S ad singula Sectionis puncta ductæ, sint ad perpendicula
a punctis iisdem ad rectam GK demissa in data illa ratione.

Methodo haud multum dissimili hujus problematis solutionem tradit
Clarissimus Geometra _De la Hire_, Conicorum suorum Lib. VIII. Prop. XXV.

       *       *       *       *       *


SECT. V.

_Inventio orbium ubi umbilicus neuter datur._

_Lemma XVII._

[Illustration]

    _Si a datæ conicæ sectionis puncto quovis P, ad Trapezii alicujus ABCD,
    in Conica illa sectione inscripti, latera quatuor infinite producta AB,
    CD, AC, DB, totidem rectæ PQ, PR, PS, PT in datis angulis ducantur,
    singulæ ad singula: rectangulum ductarum ad opposita duo latera PQ ×
    PR, erit ad rectangulum ductarum ad alia duo latera opposita PS × PT in
    data ratione._

_Cas. 1._ Ponamus imprimis lineas ad opposita latera ductas parallelas esse
alterutri reliquorum laterum, puta PQ & PR lateri AC, & PS ac PT lateri AB.
Sintq; insuper latera duo ex oppositis, puta AC & BD, parallela. Et recta
quæ bisecat parallela illa latera erit una ex diametris Conicæ sectionis, &
bisecabit etiam RQ. Sit O punctum in quo RQ bisecatur, & erit PO ordinatim
applicata ad diametrum illam. Produc PO ad K ut sit OK æqualis PO, & erit
OK ordinatim applicata ad contrarias partes diametri. Cum igitur puncta A,
B, P & K sint ad Conicam sectionem, & PR secet AB in dato angulo, erit (per
Prop. 17 & 18 Lib. III _Apollonii_) rectangulum PQK ad rectangulum AQB in
data ratione. Sed QK & PR æquales sunt, utpote æqualium OK, OP, & OQ, OR
differentiæ, & inde etiam rectangula PQK & PQ × PR æqualia sunt; atq; adeo
rectangulum PQ × PR est ad rectangulum AQB, hoc est ad rectangulum PS × PT
in data ratione.   _Q. E. D._

[Illustration]

_Cas. 2._ Ponamus jam Trapezii latera opposita AC & BD non esse parallela.
Age Bd parallelam AC & occurrentem tum rectæ ST in t, tum Conicæ sectioni
in d. Junge Cd secantem PQ in r, & ipsi PQ parallelam age DM secantem Cd in
M & AB in N. Jam ob similia triangula BTt, DBN, est Bt seu PQ ad Tt ut DN
ad NB. Sic & Rr est ad AQ seu PS ut DM ad AN. Ergo ducendo antecedentes in
antecedentes & consequentes in consequentes, ut rectangulum PQ in Rr est ad
rectangulum Tt in PS, ita rectangulum NDM est ad rectangulum ANB, & (per
Cas. 1) ita rectangulum QPr est ad rectangulum SPt, ac divisim ita
rectangulum QPR est ad rectangulum PS × PT.   _Q. E. D._

[Illustration]

_Cas. 3._ Ponamus deniq; lineas quatuor PQ, PR, PS, PT non esse parallelas
lateribus AC, AB, sed ad ea utcunq; inclinatas. Earum vice age Pq, Pr
parallelas ipsi AC; & Ps, Pt parallelas ipsi AB; & propter datos angulos
triangulorum PQq, PRr, PSs, PTt, dabuntur rationes PQ ad Pq, PR ad Pr, PS
ad Ps & PT ad Pt, atq; adeo rationes compositæ PQ in PR ad Pq in Pr, & PS
in PT ad Ps in Pt. Sed per superius demonstrata, ratio Pq in Pr ad Ps in Pt
data est: Ergo & ratio PQ in PR ad PS in PT.   _Q. E. D._

_Lemma XVIII._

    _Iisdem positis, si rectangulum ductarum ad opposita duo latera
    Trapezii PQ × PR sit ad rectangulum ductarum ad reliqua duo latera PS ×
    PT in data ratione; punctum P, a quo lineæ ducuntur, tanget Conicam
    sectionem circa Trapezium descriptam._

[Illustration]

Per puncta A, B, C, D & aliquod infinitorum punctorum P, puta p, concipe
Conicam sectionem describi: dico punctum P hanc semper tangere. Si negas,
junge AP secantem hanc Conicam sectionem alibi quam in P si fieri potest,
puta in b. Ergo si ab his punctis p & b ducantur in datis angulis ad latera
Trapezii rectæ pq, pr, ps, pt & bk, b[r], b[s], bd; erit ut bk × b[r] ad bd
× b[s] ita (per Lemma XVII) pq × pr ad ps × pt & ita (per hypoth.) PQ × PR
ad PS × PT. Est & propter similitudinem Trapeziorum bkA[s], PQAS, ut bk ad
b[s] ita PQ ad PS. Quare applicando terminos prioris propositionis ad
terminos correspondentes hujus, erit b[r] ad bd ut PR ad PT. Ergo Trapezia
æquiangula D[r]bd, DRPT similia sunt, & eorum diagonales Db, DP propterea
coincidunt. Incidit itaq; b in intersectionem rectarum AP, DP adeoq;
coincidit cum puncto P. Quare punctum P, ubicunq; sumatur, incidit in
assignatam Conicam sectionem.   _Q. E. D._

_Corol._ Hinc si rectæ tres PQ, PR, PS a puncto communi P ad alias totidem
positione datas rectas AB, CD, AC, singulæ ad singulas, in datis angulis
ducantur, sitq; rectangulum sub duabus ductis PQ × PR ad quadratum tertii,
PS quad. in data ratione: punctum P, a quibus rectæ ducuntur, locabitur in
sectione Conica quæ tangit lineas AB, CD in A & C & contra. Nam coeat linea
BD cum linea AC manente positione trium AB, CD, AC; dein coeat etiam linea
PT cum linea PS: & rectangulum PS × PT evadet PS quad. rectæq; AB, CD quæ
curvam in punctis A & B, C & D secabant, jam Curvam in punctis illis
coeuntibus non amplius secare possunt sed tantum tangent.

_Scholium._

Nomen Conicæ sectionis in hoc Lemmate late sumitur, ita ut sectio tam
rectilinea per verticem Coni transiens, quam circularis basi parallela
includatur. Nam si punctum p incidit in rectam, qua quævis ex punctis
quatuor A, B, C, D junguntur, Conica sectio vertetur in geminas rectas,
quarum una est recta illa in quam punctum p incidit, & altera recta qua
alia duo ex punctis quatuor junguntur. Si trapezii anguli duo oppositi
simul sumpti æquentur duobus rectis, & lineæ quatuor PQ, PR, PS, PT
ducantur ad latera ejus vel perpendiculariter vel in angulis quibusvis
æqualibus, sitq; rectangulum sub duabus ductis PS × PR æquale rectangulo
sub duabus aliis PS × PT, Sectio conica evadet Circulus. Idem fiet si lineæ
quatuor ducantur in angulis quibusvis & rectangulum sub duabus ductis PQ ×
PR sit ad rectangulum sub aliis duabus PS × PT ut rectangulum sub sinubus
angulorum S, T, in quibus duæ ultimæ PS, PT ducuntur, ad rectangulum sub
sinubus angulorum Q, R, in quibus duæ primæ PQ, PR ducuntur. Cæteris in
casibus Locus puncti P erit aliqua trium figurarum quæ vulgo nominantur
Sectiones Conicæ. Vice autem Trapezii ABCD substitui potest quadrilaterum
cujus latera duo opposita se mutuo instar diagonalium decussant. Sed & e
punctis quatuor A, B, C, D possunt unum vel duo abire in infinitum, eoq;
pacto latera figuræ quæ ad puncta illa convergunt, evadere parallela: quo
in casu sectio conica transibit per cætera puncta, & in plagas parallelarum
abibit in infinitum.

Lemma XIX.

[Illustration]

    _Invenire punctum P, a quo si rectæ quatuor PQ, PR, PS, PT ad alias
    totidem positione datas rectas AB, CD, AC, BD singulæ ad singulas in
    datis angulis ducantur, rectangulum sub duabus ductis, PQ × PR, sit ad
    rectangulum sub aliis duabus, PS × PT, in data ratione._

Lineæ AB, CD, ad quas rectæ duæ PQ, PR, unum rectangulorum continentes
ducuntur, conveniant cum aliis duabus positione datis lineis in punctis A,
B, C, D. Ab eorum aliquo A age rectam quamlibet AH, in qua velis punctum P
reperiri. Secet ea lineas oppositas BD, CD, nimirum BD in H & CD in I, & ob
datos omnes angulos figuræ, dabuntur rationes PQ ad PA & PA ad PS, adeoq;
ratio PQ ad PS. Auferendo hanc a data ratione PQ × PR ad PS × PT, dabitur
ratio PR ad PT, & addendo datas rationes PI ad PR, & PT ad PH dabitur ratio
PI ad PH atq; adeo punctum P.   _Q. E. I._

_Corol. 1._ Hinc etiam ad Loci punctorum infinitorum P punctum quodvis D
tangens duci potest. Nam chorda PD ubi puncta P ac D conveniunt, hoc est,
ubi AH ducitur per punctum D, tangens evadit. Quo in casu, ultima ratio
evanescentium IP & PH invenietur ut supra. Ipsi igitur AD duc parallelam
CF, occurrentem BD in F, & in ea ultima ratione sectam in E, & DE tangens
erit, propterea quod CF & evanescens IH parallelæ sunt, & in E & P
similiter sectæ.

[Illustration]

_Corol. 2._ Hinc etiam Locus punctorum omnium P definiri potest. Per
quodvis punctorum A, B, C, D, puta A, duc Loci tangentem AE, & per aliud
quodvis punctum B duc tangenti parallelam BF occurrentem Loco in F.
Invenietur autem punctum F per Lemma superius. Biseca BF in G, & acta AG
diameter erit ad quam BG & FG ordinatim applicantur. Hæc AG occurrat Loco
in H, & erit AH latus transversum, ad quod latus rectum est ut BGq. ad AGH.
Si AG nullibi occurrit Loco, linea AH existente infinita, Locus erit
Parabola & latus rectum ejus BGq. ÷ AG. Sin ea alicubi occurrit, Locus
Hyperbola erit ubi puncta A & H sita sunt ad easdem partes ipsius G: &
Ellipsis, ubi G intermedium est, nisi forte angulus AGB rectus sit &
insuper BG quad. æquale rectangulo AGH, quo in casu circulus habebitur.

Atq; ita Problematis veterum de quatuor lineis ab _Euclide_ incæpti & ab
_Apollonio_ continuati non calculus, sed compositio Geometrica, qualem
Veteres quærebant, in hoc Corollario exhibetur.

Lemma XX.

    _Si parallelogrammum quodvis ASPQ angulis duobus oppositis A & P tangit
    sectionem quamvis Conicam in punctis A & P, & lateribus unius angulorum
    illorum infinite productis AQ, AS occurrit eidem sectioni Conicæ in B &
    C; a punctis autem occursuum B & C ad quintum quodvis sectionis Conicæ
    punctum D agantur rectæ duæ BD, CD occurrentes alteris duobus infinite
    productis parallelogrammi lateribus PS, PQ in T & R: erunt semper
    abscissæ laterum partes PR & PT ad invicem in data ratione. Et contra,
    si partes illæ abscissæ sunt ad invicem in data ratione, punctum D
    tanget Sectionem Conicam per puncta quatuor A, B, P, C transeuntem._

[Illustration]

_Cas. 1._ Jungantur BP, CP & a puncto D agantur rectæ duæ DG, DE, quarum
prior DG ipsi AB parallela sit & occurrat PB, PQ, CA in H, I, G; altera DE
parallela sit ipsi AC & occurrat PC, PS, AB in F, K, E: & erit (per Lemma
XVII.) rectangulum DE × DF ad rectangulum DG × DH in ratione data. Sed est
PQ ad DE seu IQ, ut PB ad HB, adeoq; ut PT ad DH; & vicissim PQ ad PT ut DE
ad DH. Est & PR ad DF ut RC ad DC, adeoq; ut IG vel PS ad DG, & vicissim PR
ad PS ut DF ad DG; & conjunctis rationibus fit rectangulum PQ × PR ad
rectangulum PS × PT ut rectangulum DE × DF ad rectangulum DG × DH, atq;
adeo in data ratione. Sed dantur PQ & PS & propterea ratio PR ad PT datur.
_Q. E. D._

_Cas. 2._ Quod si PR & PT ponantur in data ratione ad invicem, tunc simili
ratiocinio regrediendo, sequetur esse rectangulum DE × DF ad rectangulum DG
× DH in ratione data, adeoq; punctum D (per Lemma XVIII.) contingere
Conicam sectionem transeuntem per puncta A, B, P, C.   _Q. E. D._

_Corol. 1._ Hinc si agatur BC secans PQ in r, & in PT capiatur Pt in
ratione ad Pr quam habet PT ad PR, erit Bt Tangens Conicæ sectionis ad
punctum B. Nam concipe punctum D coire cum puncto B ita ut, chorda BD
evanescente, BT Tangens evadet; & CD ac BT coincident cum CB & Bt.

_Corol. 2._ Et vice versa si Bt sit Tangens, & ad quodvis Conicæ sectionis
punctum D conveniant BD, CD erit PR ad PT ut Pr ad Pt. Et contra, si sit PR
ad PT ut Pr ad Pt, convenient BD, CD ad Conicæ sectionis punctum aliquod D.

_Corol. 3._ Conica sectio non secat Conicam sectionem in punctis pluribus
quam quatuor. Nam, si fieri potest, transeant duæ Conicæ sectiones per
quinq; puncta A, B, C, D, P, easq; secet recta BD in punctis D, d, & ipsam
PQ secet recta Cd in r. Ergo PR est ad PT ut P[r] ad PT, hoc est, PR & P[r]
sibi invicem æquantur, contra Hypothesin.

Lemma XXI.

[Illustration]

    _Si recta duæ mobiles & infinitæ BM, CM per data puncta B, C, ceu polos
    ductæ, concursu suo M describant tertiam positione datam rectam MN; &
    aliæ duæ infinitæ rectæ BD, CD cum prioribus duabus ad puncta illa data
    B, C, datos angulos MBD, MCD efficientes ducantur; dico quod hæ duæ BD,
    CD concursu suo D describent sectionem Conicam. Et vice versa, si rectæ
    BD, CD concursu suo D describant Sectionem Conicam per puncta B, C, A
    transeuntem, & harum concursus tunc incidit in ejus punctum aliquod A,
    cum alteræ duæ BM, CM coincidunt cum linea BC, punctum M continget
    rectam positione datam._

Nam in recta MN detur punctum N, & ubi punctum mobile M incidit in immotum
N, incidat punctum mobile D in immotum P. Junge CN, BN, CP, BP, & a puncto
P age rectas PT, PR occurrentes ipsis BD, CD in T & R, & facientes angulum
BPT æqualem angulo BNM & angulum CPR æqualem angulo CNM. Cum ergo (ex
Hypothesi) æquales sint anguli MBD, NBP, ut & anguli MCD, NCP: aufer
communes NBD & MCP, & restabunt æquales NBM & PBT, NCM & PCR: adeoq;
triangula NBM, PBT similia sunt, ut & triangula NCM, PCR. Quare PT est ad
NM ut PB ad NB, & PR ad NM ut PC ad NC. Ergo PT & PR datam habent rationem
ad NM, proindeq; datam rationem inter se, atq; adeo, per Lemma XX, punctum
P (perpetuus rectarum mobilum BT & CR concursus) contingit sectionem
Conicam.   _Q. E. D._

Et contra, si punctum D contingit sectionem Conicam transeuntem per puncta
B, C, A, & ubi rectæ BM, CM coincidunt cum recta BC, punctum illud D
incidit in aliquod sectionis punctum A; ubi vero punctum D incidit
successive in alia duo quævis sectionis puncta p, P, punctum mobile M
incidit successive in puncta immobilia n, N: per eadem n, N agatur recta
nN, & hæc erit Locus perpetuus puncti illius mobilis M. Nam, si fieri
potest, versetur punctum M in linea aliqua curva. Tanget ergo punctum D
sectionem Conicam per puncta quinq; C, p, P, B, A, transeuntem, ubi punctum
M perpetuo tangit lineam curvam. Sed & ex jam demonstratis tanget etiam
punctum D sectionem Conicam per eadem quinq; puncta C, p, P, B, A,
transeuntem, ubi punctum M perpetuo tangit lineam rectam. Ergo duæ
sectiones Conicæ transibunt per eadem quinq; puncta, contra Corol. 3. Lem.
XX. Igitur punctum M versari in linea curva absurdum est.   _Q. E. D._

Prop. XXII. Prob. XIV.

    _Trajectoriam per data quinq; puncta describere._

[Illustration]

Dentur puncta quinq; A, B, C, D, P. Ab eorum aliquo A ad alia duo quævis B,
C, quæ poli nominentur, age rectas AB, AC hisq; parallelas TPS, PRQ per
punctum quartum P. Deinde a polis duobus B, C age per punctum quintum D
infinitas duas BDT, CRD, novissime ductis TPS, PRQ (priorem priori &
posteriorem posteriori) occurrentes in T & R. Deniq; de rectis PT, PR, acta
recta tr ipsi TR parallela, abscinde quasvis Pt, Pr ipsis PT, PR
proportionales, & si per earum terminos t, r & polos B, C actæ Bt, Cr
concurrant in d, locabitur punctum illud d in Trajectoria quæsita. Nam
punctum illud d (per Lem. XX) versatur in Conica Sectione per puncta
quatuor A, B, P, C transeunte; & lineis Rr, Tt evanescentibus, coit punctum
d cum puncto D. Transit ergo sectio Conica per puncta quinq; A, B, C, D, P.
_Q. E. D._

_Idem aliter._

[Illustration]

E punctis datis junge tria quævis A, B, C, & circum duo eorum B, C ceu
polos, rotando angulos magnitudine datos ABC, ACB, applicentur crura BA, CA
primo ad punctum D deinde ad punctum P, & notentur puncta M, N in quibus
altera crura BL, CL casu utroq; se decussant. Agatur recta infinita MN, &
rotentur anguli illi mobiles circum polos suos B, C, ea lege ut crurum BL,
CL vel BM, CM intersectio, quæ jam sit m, incidat semper in rectam illam
infinitam MN, & crurum BA, CA, vel BD, CD intersectio, quæ jam sit d,
Trajectoriam quæsitam PADdB delineabit. Nam punctum d per Lem. XXI
continget sectionem Conicam per puncta B, C transeuntem & ubi punctum m
accedit ad puncta L, M, N, punctum d (per constructionem) accedet ad puncta
A, D, P. Describetur itaq; sectio Conica transiens per puncta quinq; A, B,
C, D, P.   _Q. E. F._

_Corol. 1._ Hinc rectæ expedite duci possunt quæ trajectoriam in punctis
quibusvis datis B, C tangent. In casu utrovis accedat punctum d ad punctum
C & recta Cd evadet tangens quæsita.

_Corol. 2._ Unde etiam Trajectoriarum centra, diametri & latera recta
inveniri possunt, ut in Corollario secundo Lemmatis XIX.

_Schol._

Constructio in casu priore evadet paulo simplicior jungendo BP, & in ea si
opus est producta, capiendo Bp ad BP ut est PR ad PT, & per p agendo rectam
infinitam p[D] ipsi SPT parallelam, inq; ea capiendo semper p[D] æqualem
Pr, & agendo rectas B[D], Cr concurrentes in d. Nam cum sint Pr ad Pt, PR
ad PT, pB ad PB, p[D] ad Pt in eadem ratione, erunt p[D] & Pr semper
æquales. Hac methodo puncta Trajectoriæ inveniuntur expeditissime, nisi
mavis Curvam, ut in casu secundo, describere Mechanice.

Prop. XXIII. Prob. XV.

    _Trajectoriam describere quæ per data quatuor puncta transibit, &
    rectam continget positione datam._

_Cas. 1._ Dentur tangens HB, punctum contactus B, & alia tria puncta C, D,
P. Junge BC, & agendo PS parallelam BH, & PQ parallelam BC, comple
parallelogrammum BSPQ. Age BD secantem SP in T, & CD secantem PQ in R.
Deniq; agendo quamvis tr ipsi TR parallelam, de PQ, PS abscinde Pr, Pt
ipsis PR, PT proportionales respective; & actarum Cr, Bt concursus d (per
Corol. 2. Lem. XX) incidet semper in Trajectoriam describendam.

[Illustration]

_Idem aliter._

Revolvatur tum angulus magnitudine datus CBH circa polum B, tum radius
quilibet rectilineus & utrinq; productus DC circa polum C. Notentur puncta
M, N in quibus anguli crus BC secat radium illum ubi crus alterum BH
concurrit cum eodem radio in punctis D & P. Deinde ad actam infinitam MN
concurrant perpetuo radius ille CP vel CD & anguli crus CB, & cruris
alterius BH concursus cum radio delineabit Trajectoriam quæsitam.

[Illustration]

[Illustration]

Nam si in constructionibus Problematis superioris accedat punctum A ad
punctum B, lineæ CA & CB coincident, & linea AB in ultimo suo situ fiet
tangens BH, atq; adeo constructiones ibi positæ evadent eædem cum
constructionibus hic descriptis. Delineabit igitur cruris BH concursus cum
radio sectionem Conicam per puncta C, D, P transeuntem, & rectam BH
tangentem in puncto B.   _Q. E. F._

_Cas. 2._ Dentur puncta quatuor B, C, D, P extra tangentem HI sita. Junge
bina BD, CP concurrentia in G, tangentiq; occurrentia in H & I. Secetur
tangens in A, ita ut sit HA ad AI, ut est rectangulum sub media
proportionali inter BH & HD & media proportionali inter CG & GP, ad
rectangulum sub media proportionali inter PI & IC & media proportionali
inter DG & GB, & erit A punctum contactus. Nam si rectæ PI parallela HX
trajectoriam secet in punctis quibusvis X & Y: erit (ex Conicis) HA quad.
ad AI quad. ut rectangulum XHY ad rectangulum BHD (seu rectangulum CGP ad
rectangulum DGB) & rectangulum BHD ad rectangulum PIC conjunctim. Invento
autem contactus puncto A, describetur Trajectoria ut in casu primo.
_Q. E. F._   Capi autem potest punctum A vel inter puncta H & I, vel extra;
& perinde Trajectoria dupliciter describi.

Prop. XXIV. Prob. XVI.

    _Trajectoriam describere quæ transibit per data tria puncta & rectas
    duas positione datas continget._

[Illustration]

Dentur tangentes HI, KL & puncta B, C, D. Age BD tangentibus occurrentem in
punctis H, K & CD tangentibus occurrentem in punctis I, L. Actas ita seca
in R & S, ut sit HR ad KR ut est media proportionalis inter BH & HD ad
mediam proportionalem inter BK & KD; & IS ad LS ut est media proportionalis
inter CI & ID ad mediam proportionalem inter CL & LD. Age RS secantem
tangentes in A & P, & erunt A & P puncta contactus. Nam si A & P sint
Puncta contactuum ubivis in tangentibus sita, & per punctorum H, I, K, L
quodvis I agatur recta IY tangenti KL parallela & occurrens curvæ in X & Y,
& in ea sumatur IZ media proportionalis inter IX & IY: erit, ex Conicis,
rectangulum XIY (seu IZ quad.) ad LP quad. ut rectangulum CID ad
rectangulum CLD; id est (per constructionem) ut SI quad. ad SL quad. atq;
adeo IZ ad LP ut SI ad SL. Jacent ergo puncta S, P, Z in una recta. Porro
tangentibus concurrentibus in G, erit (ex Conicis) rectangulum XIY (seu IZ
quad.) ad IA quad. ut GP quad. ad GA quad., adeoq; IZ ad IA ut GP ad GA.
Jacent ergo puncta P, Z & A in una recta, adeoq; puncta S, P & A sunt in
una recta. Et eodem argumento probabitur quod puncta R, P & A sunt in una
recta. Jacent igitur puncta contactus A & P in recta SR. Hisce autem
inventis, Trajectoria describetur ut in casu primo Problematis superioris.
_Q. E. F._

Lemma XXII.

    _Figuras in alias ejusdem generis figuras mutare._

[Illustration]

Transmutanda sit figura quævis HGI. Ducantur pro lubitu rectæ duæ parallelæ
AO, BL tertiam quamvis positione datam AB secantes in A & B, & a figuræ
puncto quovis G, ad rectam AB ducatur GD, ipsi OA parallela. Deinde a
puncto aliquo O in linea OA dato ad punctum D ducatur recta OD, ipsi BL
occurrens in d; & a puncto occursus erigatur recta gd, datum quemvis
angulum cum recta BL continens, atq; eam habens rationem ad Od quam habet
GD ad OD; & erit g punctum in figura nova hgi puncto G respondens. Eadem
ratione puncta singula figuræ primæ dabunt puncta totidem figuræ novæ.
Concipe igitur punctum G motu continuo percurrere puncta omnia figuræ
primæ, & punctum g motu itidem continuo percurret puncta omnia figuræ novæ
& eandem describet. Distinctionis gratia nominemus DG ordinatam primam, dg
ordinatam novam; BD abscissam primam, Bd abscissam novam; O polum, OD
radium abscindentem, OA radium ordinatum primum & Oa (quo parallelogrammum
OABa completur) radium ordinatum novum.

Dico jam quod si punctum G tangit rectam lineam positione datam, punctum g
tanget etiam lineam rectam positione datam. Si punctum G tangit Conicam
sectionem, punctum g tanget etiam conicam sectionem. Conicis sectionibus
hic circulum annumero. Porro si punctum G tangit lineam tertii ordinis
Analytici, punctum g tanget lineam tertii itidem ordinis; & sic de curvis
lineis superiorum ordinum: Lineæ duæ erunt ejusdem semper ordinis Analytici
quas puncta G, g tangunt. Etenim ut est ad ad OA ita sunt Od ad OD, dg ad
DG, & AB ad AD; adeoq; AD æqualis est OA × AB ÷ ad & DG æqualis est OA × dg
÷ ad. Jam si punctum D tangit rectam lineam, atq; adeo in æquatione quavis,
qua relatio inter abscissam AD & ordinatam DG habetur, indeterminatæ illæ
AD & DG ad unicam tantum dimensionem ascendunt, scribendo in hac æquatione
OA × AB ÷ ad pro AD, & OA × dg ÷ ad pro DG, producetur æquatio nova, in qua
abscissa nova ad & ordinata noua dg ad unicam tantum dimensionem ascendent,
atq; adeo quæ designat lineam rectam. Sin AD & DG (vel earum alterutra)
ascendebant ad duas dimensiones in æquatione prima, ascendent itidem ad &
dg ad duas in æquatione secunda. Et sic de tribus vel pluribus
dimensionibus. Indeterminatæ ad, dg in æquatione secunda & AD, DG in prima
ascendent semper ad eundem dimensionum numerum, & propterea lineæ, quas
puncta G, g tangunt, sunt ejusdem ordinis Analytici.

Dico præterea quod si recta aliqua tangat lineam curvam in figura prima;
hæc recta translata tanget lineam curvam in figura nova: & contra. Nam si
Curvæ puncta quævis duo accedunt ad invicem & coeunt in figura prima,
puncta eadem translata coibunt in figura nova, atq; adeo rectæ, quibus hæc
puncta junguntur simul, evadent curvarum tangentes in figura utraq;.
Componi possent harum assertionum Demonstrationes more magis Geometrico.
Sed brevitati consulo.

Igitur si figura rectilinea in aliam transmutanda est, sufficit rectarum
intersectiones transferre, & per easdem in figura nova lineas rectas
ducere. Sin curvilineam transmutare oportet, transferenda sunt puncta,
tangentes & aliæ rectæ quarum ope Curva linea definitur. Inservit autem hoc
Lemma solutioni difficiliorum Problematum, transmutando figuras propositas
in simpliciores. Nam rectæ quævis convergentes transmutantur in parallelas,
adhibendo pro radio ordinato primo AO lineam quamvis rectam, quæ per
concursum convergentium transit; id adeo quia concursus ille hoc pacto abit
in infinitum, lineæ autem parallelæ sunt quæ ad punctum infinite distans
tendunt. Postquam autem Problema solvitur in figura nova, si per inversas
operationes transmutetur hæc figura in figuram primam, habebitur Solutio
quæsita.

Utile est etiam hoc Lemma in solutione Solidorum problematum. Nam quoties
duæ sectiones conicæ obvenerint, quarum intersectione Problema solvi
potest, transmutare licet unum earum in circulum. Recta item & sectio
Conica in constructione planorum problematum vertuntur in rectam &
circulum.

Prop. XXV. Prob. XVII.

    _Trajectoriam describere quæ per data duo puncta transibit & rectas
    tres continget positione datas._

[Illustration]

Per concursum tangentium quarumvis duarum cum se invicem, & concursum
tangentis tertiæ cum recta illa, quæ per puncta duo data transit, age
rectam infinitam; eaq; adhibita pro radio ordinato primo, transmutetur
figura, per Lemma superius, in figuram novam. In hac figura tangentes illæ
duæ evadent parallelæ, & tangens tertia fiet parallela rectæ per puncta duo
transeunti. Sunto hi, kl tangentes duæ parallelæ, ik tangens tertia, & hl
recta huic parallela transiens per puncta illa a, b, per quæ Conica sectio
in hac figura nova transire debet, & parallelogrammum hikl complens.
Secentur rectæ hi, ik, kl in c, d & e, ita ut sit hc ad latus quadratum
rectanguli ahb, ic ad id, & ke ad kd ut est summa rectarum hi & kl ad
summam trium linearum quarum prima est recta ik, & alteræ duæ sunt latera
quadrata rectangulorum ahb & alb: Et erunt c, d, e puncta contactus.
Etenim, ex Conicis, sunt hc quadratum ad rectangulum ahb, & ic quadratum ad
id quadratum, & ke quadratum ad kd quadratum, & el quadratum ad alb
rectangulum in eadem ratione, & propterea hc ad latus quadratum ipsius ahb,
ic ad id, ke ad kd & el ad latus quadratum ipsius alb sunt in dimidiata
illa ratione, & composite, in data ratione omnium antecedentium hi & kl ad
omnes consequentes, quæ sunt latus quadratum rectanguli ahb & recta ik &
latus quadratum rectanguli alb. Habentur igitur ex data illa ratione puncta
contactus c, d, e, in figura nova. Per inversas operationes Lemmatis
novissimi transferantur hæc puncta in figuram primam & ibi, per casum
primum Problematis XIV, describetur Trajectoria.   _Q. E. F._   Cæterum
perinde ut puncta a, b jacent vel inter puncta h, l, vel extra, debent
puncta c, d, e vel inter puncta h, i, k, l capi, vel extra. Si punctorum a,
b alterutrum cadit inter puncta h, l, & alterum extra, Problema impossibile
est.

Prop. XXVI. Prob. XVIII.

    _Trajectoriam describere quæ transibit per punctum datum & rectas
    quatuor positione datas continget._

Ab intersectione communi duarum quarumlibet tangentium ad intersectionem
communem reliquarum duarum agatur recta infinita, & eadem pro radio
ordinato primo adhibita, transmutetur figura (per Lem. XXII) in figuram
novam, & Tangentes binæ, quæ ad radium ordinatum concurrebant, jam evadent
parallelæ. Sunto illæ hi & kl, ik & hl continentes parallelogrammum hikl.
Sitq; p punctum in hac nova figura, puncto in figura prima dato respondens.
Per figuræ centrum O agatur pq, & existente Oq æquali Op erit q punctum
alterum per quod sectio Conica in hac figura nova transire debet. Per
Lemmatis XXII operationem inversam transferatur hoc punctum in figuram
primam, & ibi habebuntur puncta duo per quæ Trajectoria describenda est.
Per eadem vero describi potest Trajectoria illa per Prob. XVII.
_Q. E. F._

Lemma XXIII.

[Illustration]

    _Si rectæ duæ positione datæ AC, BD ad data puncta A, B terminentur,
    datamq; habeant rationem ad invicem, & recta CD, qua puncta
    indeterminata C, D junguntur secetur in ratione data in K: dico quod
    punctum K locabitur in recta positione data._

Concurrant enim rectæ AC, BD in E, & in BE capiatur BG ad AE ut est BD ad
AC, sitq; FD æqualis EG, & erit EC ad GD, hoc est ad EF ut AC ad BD, adeoq;
in ratione data, & propterea dabitur specie triangulum EFC. Secetur CF in L
in ratione CK ad CD, & dabitur etiam specie triangulum EFL, proindeq;
punctum L locabitur in recta EL positione data. Junge LK, & ob datam FD &
datam rationem LK ad FD, dabitur LK. Huic æqualis capiatur EH, & erit ELKH
parallelogrammum. Locatur igitur punctum K in parallelogrammi latere
positione dato HK.   _Q. E. D._

Lemma XXIV.

    _Si rectæ tres tangant quamcunq; conisectionem, quarum duæ parallelæ
    sint ac dentur positione; dico quod sectionis semidiameter hisce duabus
    parallela, sit media proportionalis inter harum segmenta, punctis
    contactum & tangenti tertiæ interjecta._

[Illustration]

Sunto AF, GB parallelæ duæ Conisectionem ADB tangentes in A & B; EF recta
tertia Conisectionem tangens in I, & occurrens prioribus tangentibus in F &
G; sitq; CD semidiameter Figuræ tangentibus parallela: Dico quod AF, CD, BG
sunt continue proportionales.

Nam si diametri conjugatæ AB, DM tangenti FG occurrant in E & H, seq; mutuo
secent in C, & compleatur parallelogrammum IKCL; erit ex natura sectionum
Conicarum, ut EC ad CA ita CA ad LC, & ita divisim EC - CA ad CA - CL seu
EA ad AL, & composite EA ad EA + AL seu EL ut EC ad EC + CA seu EB; adeoq;
(ob similitudinem triangulorum EAF, ELI, ECH, EBG) AF ad LI ut CH ad BG.
Est itidem ex natura sectionum Conicarum LI seu CK ad CD ut CD ad CH atq;
adeo ex æquo perturbate AF ad CD ut CD ad BG.   _Q. E. D._

_Corol. 1._ Hinc si tangentes duæ FG, PQ tangentibus parallelis AF, BG
occurrant in F & G, P & Q, seq; mutuo secent in O, erit (ex æquo
perturbate) AF ad BQ ut AP ad BG, & divisim ut FP ad GQ, atq; adeo ut FO ad
OG.

_Corol. 2._ Unde etiam rectæ duæ PG, FQ per puncta P & G, F & Q ductæ,
concurrent ad rectam ACB per centrum figuræ & puncta contactuum A, B
transeuntem.

Lemma XXV.

    _Si parallelogrammi latera quattuor infinite producta tangant sectionem
    quamcunq; Conicam & abscindantur ad tangentem quamvis quintam; sumantur
    autem abscisse terminate ad angulos oppositos parallelogrammi: dico
    quod abscissa unius lateris ad latus illud, ut pars lateris contermini
    inter punctum contactus & latus tertium, ad abscissam lateris hujus
    contermini._

[Illustration]

Tangant parallelogrammi MIKL latera quatuor ML, IK, KL, MI sectionem
Conicam in A, B, C, D, & secet tangens quinta FQ hæc latera in F, Q, H & E:
dico quod sit ME ad MI ut BK ad KQ & KH ad KL ut AM ad MF. Nam per
Corollarium Lemmatis superioris, est ME ad EI ut AM seu BK ad BQ, &
componendo ME ad MI ut BK ad KQ.   Q. E. D. Item KH ad HL ut BK seu AM ad
AF, & dividendo KH ad KL ut AM ad MF.   _Q. E. D._

_Corol. 1._ Hinc si parallelogrammum IKLM datur, dabitur rectangulum KQ ×
ME, ut & huic æquale rectangulum KH × MF. Æquantur enim rectangula illa ob
similitudinem triangulorum KQH, MFE.

_Corol. 2._ Et si sexta ducatur tangens eq tangentibus KI, MI occurrens in
e & q, rectangulum KQ × ME æquabitur rectangulo Kq × Me, eritq; KQ ad Me ut
Kq ad ME, & divisim ut Qq ad Ee.

_Corol. 3._ Unde etiam si Eq, eQ jungantur & bisecentur, & recta per puncta
bisectionum agatur, transibit hæc per centrum Sectionis Conicæ. Nam cum sit
Qq ad Ee ut KQ ad Me, transibit eadem recta per medium omnium Eq, eQ, MK;
(per Lemma XXIII) & medium rectæ MK est centrum Sectionis.

Prop. XXVII. Prob. XIX.

[Illustration]

    _Trajectoriam describere quæ rectas quinq; positione datas continget._

Dentur positione tangentes ABG, BCF, GCD, FDE, EA. Figuræ quadrilateræ sub
quatuor quibusvis contentæ ABFE diagonales AF, BE biseca, & (per Cor. 3.
Lem. XXV) recta per puncta bisectionum acta transibit per centrum
Trajectoriæ. Rursus figuræ quadrilateræ BGDF, sub alijs quibusvis quatuor
tangentibus contentæ, diagonales (ut ita dicam) BD, GF biseca, & recta per
puncta bisectionum acta transibit per centrum sectionis. Dabitur ergo
centrum in concursu bisecantium. Sit illud O. Tangenti cuivis BC parallelam
age KL, ad eam distantiam ut centrum O in medio inter parallelas locetur, &
acta KL tanget trajectoriam describendam. Secet hæc tangentes alias quasvis
duas CD, FDE in L & K. Per tangentium non parallelarum CL, FK cum
parallelis CF, KL concursus C & K, F & L age CK, FL concurrentes in R, &
recta OR ducta & producta secabit tangentes parallelas CF, KL in punctis
contactuum. Patet hoc per Corol. 2. Lem. XXIV. Eadem methodo invenire licet
alia contactuum puncta, & tum demum per Casum 1. Prob. XIV. Trajectoriam
describere.   _Q. E. F._

_Schol._

Problemata, ubi dantur Trajectoriarum vel centra vel Asymptoti includuntur
in præcedentibus. Nam datis punctis & tangentibus una cum centro, dantur
alia totidem puncta aliæq; tangentes a centro ex altera ejus parte
æqualiter distantes. Asymptotos autem pro tangente habenda est, & ejus
terminus infinite distans (si ita loqui fas sit) pro puncto contactus.
Concipe tangentis cujusvis punctum contactus abire in infinitum, & tangens
vertetur in Asymptoton, atq; constructiones Problematis XV & Casus primi
Problematis XIV vertentur in constructiones Problematum ubi Asymptoti
dantur.

[Illustration]

Postquam Trajectoria descripta est, invenire licet axes & umbilicos ejus
hac methodo. In constructione & Figura Lemmatis XXI, fac ut angulorum
mobilium PBN, PCN crura BP, CP quorum concursu Trajectoria describebatur
sint sibi invicem parallela, eumq; servantia situm revolvantur circa polos
suos B, C in figura illa. Interea vero describant altera angulorum illorum
crura CN, BN concursu suo K vel k, circulum IBKGC. Sit circuli hujus
centrum O. Ab hoc centro ad Regulam MN, ad quam altera illa crura CN, BN
interea concurrebant dum Trajectoria describebatur, demitte normalem OH
circulo occurrentem in K & L. Et ubi crura illa altera CK, BK concurrant ad
punctum istud K quod Regulæ proprius est, crura prima CP, BP parallela
erunt axi majori & perpendicularia minori; & contrarium eveniet si crura
eadem concurrunt ad punctum remotius L. Unde si detur Trajectoriæ centrum,
dabuntur axes. Hisce autem datis, umbilici sunt in promptu.



Axium vero quadrata sunt ad invicem ut KH ad LH, & inde facile est
Trajectoriam specie datam per data quatuor puncta describere. Nam si duo ex
punctis datis constituantur poli C, B, tertium dabit angulos mobiles PCK,
PBK. Tum ob datam specie Trajectoriam, dabitur ratio OH ad OK, centroq; O &
intervallo OH describendo circulum, & per punctum quartum agendo rectam quæ
circulum illum tangat, dabitur regula MN cujus ope Trajectoria describatur.
Unde etiam vicissim Trapezium specie datum (si casus quidam impossibiles
excipiantur) in data quavis sectione Conica inscribi potest.



Sunt & alia Lemmata quorum ope Trajectoriæ specie datæ, datis punctis &
tangentibus, describi possunt. Ejus generis est quod, si recta linea per
punctum quodvis positione datum ducatur, quæ datam Conisectionem in punctis
duobus intersecet, & intersectionum intervallum bisecetur, punctum
bisectionis tanget aliam Conisectionem ejusdem speciei cum priore, atq;
axes habentem prioris axibus parallelos. Sed propero ad magis utilia.

Lemma XXVI.

[Illustration]

    _Trianguli specie & magnitudine dati tres angulos ad rectas totidem
    positione datas, quæ non sunt omnes parallelæ, singulos ad singulas
    ponere._

Dantur positione tres rectæ infinitæ AB, AC, BC, & oportet triangulum DEF
ita locare, ut angulus ejus D lineam AB, angulus E lineam AC, & angulus F
lineam BC tangat. Super DE, DF & EF describe tria circulorum segmenta DRE,
DGF, EMF, quæ capiant angulos angulis BAC, ABC, ACB æquales respective.
Describantur autem hæc segmenta ad eas partes linearum DE, DF, EF ut literæ
DRED eodem ordine cum literis BACB, literæ DGFD eodem cum literis ABCA, &
literæ EMFE eodem cum literis ACBA in orbem redeant: deinde compleantur hæc
[Illustration] segmenta in circulos. Secent circuli duo priores se mutuo in
G, sintq; centra eorum P & Q. Junctis GP, PQ, cape Ga ad AB ut est GP ad
PQ, & centro G, intervallo Ga describe circulum, qui secet circulum primum
DGE in a. Jungatur tum aD secans circulum secundum DFG in b, tum aE secans
circulum tertium GEc in c. Et compleatur figura ABCdef similis & æqualis
figuræ abcDEF. Dico factum.

Agatur enim Fc ipsi aD occurrens in n. Jungantur aG, bG, PD, QD &
producatur PQ ad R. Ex constructione est angulus EaD æqualis angulo CAB, &
angulus EcF æqualis angulo ACB, adeoq; triangulum anc triangulo ABC
æquiangulum. Ergo angulus anc seu FnD angulo ABC, adeoq; angulo FbD æqualis
est, & propterea punctum n incidit in punctum b. Porro angulus GPQ, qui
dimidius est anguli ad centrum GPD, æqualis est angulo ad circumferentiam
GaD; & angulus GQR, qui dimidius est complementi anguli ad centrum GQD,
æqualis est angulo ad circumferentiam GbD, adeoq; eorum complementa PQG,
abG æquantur, suntq; ideo triangula GPQ, Gab similia, & Ga est ad ab ut GP
ad PQ; id est (ex constructione) ut Ga ad AB. Æquantur itaq; ab & AB, &
propterea triangula abc, ABC, quæ modo similia esse probavimus, sunt etiam
æqualia. Unde cum tangant insuper trianguli DEF anguli D, E, F trianguli
abc latera ab, ac, bc respective, compleri potest figura ABCdef figuræ
abcDEF similis & æqualis, atq; eam complendo solvetur Problema.
_Q. E. F._

_Corol._ Hinc recta duci potest cujus partes longitudine datæ rectis tribus
positione datis interjacebunt. Concipe Triangulum DEF, puncto D ad latus EF
accedente, & lateribus DE, DF in directum positis, mutari in lineam rectam,
cujus pars data DE, rectis positione datis AB, AC, & pars data DF rectis
positione datis AB, BC interponi debet; & applicando constructionem
præcedentem ad hunc casum solvetur Problema.

Prop. XXVIII. Prob. XX.

    _Trajectoriam specie & magnitudine datam describere, cujus partes datæ
    rectis tribus positione datis interjacebunt._

Describenda sit Trajectoria quæ sit similis & æqualis lineæ curvæ DEF,
quæq; a rectis tribus AB, AC, BC positione datis, in partes datis hujus
partibus DE & EF similes & æquales secabitur.

[Illustration]

Age rectas DE, EF, DF, & trianguli hujus DEF pone angulos D, E, F ad rectas
illas positione datas: (per Lem. XXVI) Dein circa triangulum describe
Trajectoriam curvæ DEF similem & æqualem.   _Q. E. F._

Lemma XXVII.

    _Trapezium specie datum describere cujus anguli ad rectas quatuor
    positione datas (quæ neq; omnes parallelæ sunt, neq; ad commune punctum
    convergunt) singuli ad singulas consistent._

[Illustration]

Dentur positione rectæ quatuor ABC, AD, BD, CE, quarum prima secet secundam
in A, tertiam in B, & quartam in C: & describendum sit Trapezium fghi quod
sit Trapezio FGHI simile, & cujus angulus f, angulo dato F æqualis, tangat
rectam ABC cæteriq; anguli g, h, i cæteris angulis datis G, H, I æquales
tangant cæteras lineas AD, BD, CE respective. Jungatur FH, & super FG, FH,
FI describantur totidem circulorum segmenta FSG, FTH, FVI; quorum primum
FSG capiat angulum æqualem angulo BAD, secundum FTH capiat angulum æqualem
angulo CBE; ac tertium FVI capiat angulum æqualem angulo ACE. Describi
autem debent segmenta ad eas partes linearum FG, FH, FI, ut literarum FSGF
idem sit ordo circularis qui literarum BADB, utq; literæ FTHF eodem ordine
cum literis CBEC, & literæ FVIF eodem cum literis ACEA in orbem redeant.
Compleantur segmenta in circulos, sitq; P centrum circuli primi FSG, & Q
centrum secundi FTH. Jungatur & utrinq; producatur PQ, & in ea capiatur QR
in ea ratione ad PQ quam habet BC ad AB. Capiatur autem QR ad eas partes
puncti Q ut literarum P, Q, R idem sit ordo circularis atq; literarum A, B,
C: centroq; R & intervallo RF describatur circulus quartus FNc secans
circulum tertium FVI in c. Jungatur Fc secans circulum primum in a &
secundum in b. Agantur aG, bH, cI, & figuræ abcFGHI similis constituatur
figura ABCfghi: Eritq; Trapezium fghi illud ipsum quod constituere
oportuit.

Secent enim circuli duo primi FSG, FTH se mutuo in K. Jungantur PK, QK, RK,
aK, bK, cK & producatur QP ad L. Anguli ad circumferentias FaK, FbK, FcK,
sunt semisses angulorum FPK, FQK, FRK ad centra, adeoq; angulorum illorum
dimidiis LPK, LQK, LRK æquales. Est ergo figura PQRK figuræ abcK æquiangula
& similis, & propterea ab est ad bc ut PQ ad QR, id est ut AB ad BC.
Angulis insuper FaG, FbH, FcI æquantur fAg, fBh, fCi per constructionem.
Ergo figuræ abcFGHI figura similis ABCfghi compleri potest. Quo facto
Trapezium fghi constituetur simile Trapezio FGHI & angulis suis f, g, h, i
tanget rectas AB, AD, BD, CE.   _Q. E. F._

_Corol._ Hinc recta duci potest cujus partes, rectis quatuor positione
datis dato ordine interjectæ, datam habebunt proportionem ad invicem.
Augeantur anguli FGH, GHI usq; eo, ut rectæ FG, GH, HI in directum jaceant,
& in hoc casu construendo Problema, ducetur recta fghi cujus partes fg, gh,
hi, rectis quatuor positione datis AB & AD, AD & BD, BD & CE interjectæ,
erunt ad invicem ut lineæ FG, GH, HI, eundemq; servabunt ordinem inter se.
Idem vero sic fit expeditius.

Producantur AB ad K, & BD ad L, ut sit BK ad AB ut HI ad GH; & DL ad BD ut
GI ad FG; & jungatur KL occurrens rectæ CE in i. Producatur iL ad M, ut sit
LM ad iL ut GH ad HI, & agatur tum MQ ipsi LB parallela rectæq; AD
occurrens in g, tum gi secans AB, BD in f, h. Dico factum.

[Illustration]

Secet enim Mg rectam AB in Q, & AD rectam KL in S, & agatur AP, quæ sit
ipsi BD parallela & occurrat iL in P, & erunt Mg ad Lh (Mi ad Li, gi ad hi,
AK ad BK) & AP ad BL in eadem ratione. Secetur DL in R ut sit DL ad RL in
eadem illa ratione, & ob proportionales gS ad gM, AS ad AP & DS ad DL, erit
ex æquo ut gS ad Lh ita AS ad BL & DS ad RL; & mixtim, BL - RL ad Lh - BL
ut AS - DS ad gS - AS. Id est BR ad Bh ut AD ad Ag, adeoq; ut BD ad gQ. Et
vicissim BR ad BD ut Bh ad gQ seu fh ad fg. Sed ex constructione est BR ad
BD ut FH ad FG. Ergo fh est ad fg ut FH ad FG. Cum igitur sit etiam ig ad
ih ut Mi ad Li, id est, ut IG ad IH, patet lineas FI, fi in g & h, G & H
similiter sectas esse.   _Q. E. F._

In constructione Corollarii hujus postquam ducitur LK secans CE in i,
producere licet iE ad V, ut sit EV ad iE ut FH ad HI, & agere Vf parallelam
ipsi BD. Eodem recidit si centro i, intervallo IH describatur circulus
secans BD in X, producatur iX ad Y, ut sit iY æqualis IF, & agatur Yf ipsi
BD parallela.

Prop. XXIX. Prob. XIX.

    _Trajectoriam specie datam describere, quæ a rectis quatuor positione
    datis in partes secabitur, ordine, specie & proportione datas._

[Illustration]

Describenda sit Trajectoria fghi, quæ similis sit lineæ curvæ FGHI, & cujus
partes fg, gh, hi illius partibus FG, GH, HI similes & proportionales,
rectis AB & AD, AD & BD, BD & EC positione datis, prima primis, secunda
secundis, tertia tertiis interjaceant. Actis rectis FG, GH, HI, FI,
describatur Trapezium fghi quod sit Trapezio FGHI simile & cujus anguli f,
g, h, i tangant rectas illas positione datas AB, AD, BD, CE singuli
singulas dicto ordine. Dein (per Lem. XXVII) circa hoc Trapezium
describatur Trajectoria curvæ lineæ FGHI consimilis.

_Scholium._

[Illustration]

Construi etiam potest hoc Problema ut sequitur. Junctis FG, GH, HI, FI
produc GF ad V, jungeq; FH, IG, & angulis FGH, VFH fac angulos CAK, DAL
æquales. Concurrant AK, AL cum recta BD in K & L, & inde aguntur KM, LN,
quarum KM constituat angulum AKM æqualem angulo GHI, sitq; ad AK ut est HI
ad GH; & LN constituat angulum ALN æqualem angulo FHI, sitq; ad AL ut HI ad
FH. Ducantur autem AK, KM, AL, LN ad eas partes linearum AD, AK, AL, ut
literæ CAKMC, ALK, DALND eodem ordine cum literis FGHIF in orbem redeant, &
acta MN occurrat rectæ CE in i. Fac angulum iEP æqualem angulo IGF, sitq;
PE ad Ei ut FG ad GI; & per P agatur QPf, quæ cum recta AED contineat
angulum PQE æqualem angulo FIG, rectæq; AB occurrat in f, & jungatur fi.
Agantur autem PE & PQ ad eas partes linearum CE, PE, ut literarum PEiP &
PEQP idem sit ordo circularis qui literarum FGHIF, & si super linea fi
eodem quoq; literarum ordine constituatur Trapezium fghi Trapezio FGHI
simile, & circumscribatur Trajectoria specie data, solvetur Problema.

Hactenus de orbibus inveniendis. Superest ut motus corporum orbibus
inventis determinemus.

       *       *       *       *       *


SECT. VI.

_De inventione motuum in Orbibus datis._

Prop. XXX. Prob. XXII.

[Illustration]

    _Corporis in data Trajectoria Parabolica moventis, invenire locum ad
    tempus assignatum._

Sit S umbilicus & A vertex principalis Parabolæ, sitq; 4AS × M area
Parabolica APS, quæ radio SP, vel post excessum corporis de vertice
descripta fuit, vel ante appulsum ejus ad verticem describenda est.
Innotescit area illa ex tempore ipsi proportionali. Biseca AS in G, erigeq;
perpendiculum GH æquale 3M, & circulus centro H, intervallo HS descriptus
secabit Parabolam in loco quæsito P. Nam demissa ad axem perpendiculari PO,
est HGq. + GSq. (= HSq. = HPq. = GOq. + {PO - HG}q.) = GOq. + HGq. - 2HG ×
PO + POq. Et deleto utrinq; HGq. fiet GSq. = GOq. - 2HG × PO + POq. seu 2HG
× PO (= GOq. + POq. - GSq. = AOq. - 2GAO + POq.) = AOq. + ¾POq. Pro AOq.
scribe AO × POq. ÷ 4AS, & applicatis terminis omnibus ad 3PO, ductisq; in
2AS, fiet 4/3GH × AS (= 1/6AO × PO + ½AS × PO = {AO + 3AS} ÷ 6 × PO = {4AO
- 3SO} ÷ 6 × PO = areæ APO - SPO) = areæ APS. Sed GH erat 3M, & inde 4/3HG
× AS est 4AS × M. Ergo area APS æqualis est 4AS × M.   _Q. E. D._

_Corol. 1._ Hinc GH est ad AS, ut tempus quo corpus descripsit arcum AP ad
tempus quo corpus descripsit arcum inter verticem A & perpendiculum ad axem
ab umbilico S erectum.

_Corol. 2._ Et circulo ASP per corpus movens perpetuo transeunte, velocitas
puncti H est ad velocitatem quam corpus habuit in vertice A, ut 3 ad 8;
adeoq; in ea etiam ratione est linea GH ad lineam rectam quam corpus
tempore motus sui ab A ad P, ea cum velocitate quam habuit in vertice A,
describere posset.

_Corol. 3._ Hinc etiam viceversa inveniri potest tempus quo corpus
descripsit arcum quemvis assignatum AP. Junge AP & ad medium ejus punctum
erige perpendiculum rectæ GH occurrens in H.

Lemma XXVIII.

    _Nulla extat figura Ovalis cujus area, rectis pro lubitu abscissa,
    possit per æquationes numero terminorum ac dimensionum finitas
    generaliter inveniri._

Intra Ovalem detur punctum quodvis, circa quod ceu polum revolvatur
perpetuo linea recta, & interea in recta illa exeat punctum mobile de polo,
pergatq; semper ea cum velocitate, quæ sit ut rectæ illius intra Ovalem
longitudo. Hoc motu punctum illud describet Spiralem gyris infinitis. Jam
si area Oualis per finitam æquationem inveniri potest, invenietur etiam per
eandem æquationem distantia puncti a polo; quæ huic areæ proportionalis
est, adeoq; omnia Spiralis puncta per æquationem finitam inveniri possunt:
& propterea rectæ cujusvis positione datæ intersectio cum spirali inveniri
etiam potest per æquationem finitam. Atqui recta omnis infinite producta
spiralem secat in punctis numero infinitis, & æquatio, qua intersectio
aliqua duarum linearum invenitur, exhibet earum intersectiones omnes
radicibus totidem, adeoq; ascendit ad tot dimensiones quot sunt
intersectiones. Quoniam circuli duo se mutuo secant in punctis duobus,
intersectio una non invenitur nisi per æquationem duarum dimensionum, qua
intersectio altera etiam inveniatur. Quoniam duarum sectionum Conicarum
quatuor esse possunt intersectiones, non potest aliqua earum generaliter
inveniri nisi per æquationem quatuor dimensionum, qua omnes simul
inveniantur. Nam si intersectiones illæ seorsim quærantur, quoniam eadem
est omnium lex & conditio, idem erit calculus in casu unoquoq; & propterea
eadem semper conclusio, quæ igitur debet omnes intersectiones simul
complecti & indifferenter exhibere. Unde etiam intersectiones Sectionum
Conicarum & curvarum tertiæ potestatis, eo quod sex esse possunt, simul
prodeunt per æquationes sex dimensionum, & intersectiones duarum curvarum
tertiæ potestatis, quia novem esse possunt, simul prodeunt per æquationes
dimensionum novem. Id nisi necessario fieret, reducere liceret Problemata
omnia Solida ad Plana, & plusquam solida ad solida. Eadem de causa
intersectiones binæ rectarum & sectionum Conicarum prodeunt semper per
æquationes duarum dimensionum; ternæ rectarum & curvarum tertiæ potestatis
per æquationes trium, quaternæ rectarum & curvarum quartæ potestatis per
æquationes dimensionum quatuor, & sic in infinitum. Ergo intersectiones
numero infinitæ rectarum, propterea quod omnium eadem est lex & idem
calculus, requirunt æquationes numero dimensionum & radicum infinitas,
quibus omnes possunt simul exhiberi. Si a polo in rectam illam secantem
demittatur perpendiculum, & perpendiculum una cum secante revolvatur circa
polum, intersectiones spiralis transibunt in se mutuo, quæq; prima erat seu
proxima, post unam revolutionem secunda erit, post duas tertia, & sic
deinceps: nec interea mutabitur æquatio nisi pro mutata magnitudine
quantitatum per quas positio secantis determinatur. Unde cum quantitates
illæ post singulas revolutiones redeunt ad magnitudines primas, æquatio
redibit ad formam primam, adeoq; una eademq; exhibebit intersectiones
omnes, & propterea radices habebit numero infinitas, quibus omnes exhiberi
possunt. Nequit ergo intersectio rectæ & spiralis per æquationem finitam
generaliter inveniri, & idcirco nulla extat Ovalis cujus area, rectis
imperatis abscissa, possit per talem æquationem generaliter exhiberi.

Eodem argumento, si intervallum poli & puncti, quo spiralis describitur,
capiatur Ovalis perimetro abscissæ proportionale, probari potest quod
longitudo perimetri nequit per finitam æquationem generaliter exhiberi.

_Corollarium._

Hinc area Ellipseos, quæ radio ab umbilico ad corpus mobile ducto
describitur, non prodit ex dato tempore, per æquationem finitam; &
propterea per descriptionem Curuarum Geometrice rationalium determinari
nequit. Curvas Geometrice rationales appello quarum puncta omnia per
longitudines æquationibus definitas, id est, per longitudinum rationes
complicatas, determinari possunt; cæterasq; (ut Spirales, Quadratrices,
Trochoides) Geometrice irrationales. Nam longitudines quæ sunt vel non sunt
ut numerus ad numerum (quemadmodum in decimo Elementorum) sunt Arithmetice
rationales vel irrationales. Aream igitur Ellipseos tempori proportionalem
abscindo per Curvam Geometrice irrationalem ut sequitur.

Prop. XXXI. Prob. XXIII.

    _Corporis in data Trajectoria Elliptica moventis invenire locum ad
    tempus assignatum._

[Illustration]

Ellipseos APB sit A vertex principalis, S umbilicus, O centrum, sitq; P
corporis locus inveniendus. Produc OA ad G ut sit OG ad OA ut OA ad OS.
Erige perpendiculum GH, centroq; O & intervallo OG describe circulum EFG, &
super regula GH, ceu fundo, progrediatur rota GEF revolvendo circa axem
suum, & interea puncto suo A describendo Trochoidem ALI. Quo facto, cape GK
in ratione ad rotæ perimetrum GEFG, ut est tempus quo corpus progrediendo
ab A descripsit arcum AP, ad tempus revolutionis unius in Ellipsi. Erigatur
perpendiculum KL occurrens Trochoidi in L, & acta LP ipsi KG parallela
occurret Ellipsi in corporis loco quæsito P.

Nam centro O intervallo OA describatur semicirculus AQB, & arcui AQ
occurrat LP producta in Q, junganturq; SQ, OQ. Arcui EFG occurrat OQ in F,
& in eandem OQ demittatur perpendiculum SR. Area APS est ut area AQS, id
est, ut differentia inter sectorem OQA & triangulum OQS, sive ut
differentia rectangulorum ½Q × AQ & ½OQ × SR, hoc est, ob datam ½OQ, ut
differentia inter arcum AQ & rectam SR, adeoq; (ob æqualitatem rationum SR
ad sinum arcus AQ, OS ad OA, OA ad OG, AQ ad GF, & divisim AQ - SR ad GF -
sin. arc. AQ) ut GK differentia inter arcum GF & sinum arcus AQ.
_Q. E. D._

_Scholium._

[Illustration]

Cæterum ob difficultatem describendi hanc curvam præstat constructiones
vero proximas in praxi Mechanica adhibere. Ellipseos cujusvis APB sit AB
axis major, O centrum, S umbilicus, OD semiaxis minor, & AK dimidium
lateris recti. Secetur AS in G, ut sit AG ad AS ut BO ad BS; & quæratur
longitudo L, quæ sit ad ½GK ut est AO quad. ad rectangulum AS × OD.
Bisecetur OG in C, centroq; C & intervallo CG describatur semicirculus GFO.
Deniq; capiatur angulus GCF in ea ratione ad angulos quatuor rectos, quam
habet tempus datum, quo corpus descripsit arcum quæsitum AP, ad tempus
periodicum seu revolutionis unius in Ellipsi: Ad AO demittatur normalis FE,
& producatur eadem versus F ad usq; N, ut sit EN ad longitudinem L, ut
anguli illius sinus EF ad radium CF; centroq; N & intervallo AN descriptus
circulus secabit Ellipsin in corporis loco quæsito P quam proxime.

Nam completo dimidio temporis periodici, corpus P semper reperietur in
Apside summa B, & completo altero temporis dimidio, redibit ad Apsidem
imam, ut oportet. Ubi vero proxime abest ab Apsidibus, ratio prima
nascentium sectorum ASP, GCF, & ratio ultima evanescentium BSP & OCF, eadem
est rationi Ellipseos totius ad circulum totum. Nam punctis P, F & N
incidentibus in loca p, f & n axi AB quam proximis; ob æquales An, pn,
recta nq, quæ ad arcum Ap perpendicularis est, adeoq; concurrit cum axe in
puncto K, bisecat arcum Ap. Proinde est ½Ap ad Gn ut AK ad GK, & Ap ad Gn
ut 2AK ad GK. Est & Gn ad Gf ut EN ad EF, seu L ad CF, id est, ut {GK ×
AOq.} ÷ {2AS × OD} ad CF, seu GK × AOq. ad 2AS × OD × CF, & ex æquo Ap ad
Gf ut 2AK ad GK + GK × AOq. ad 2AS × OD × CF, id est, ut AK × AOq. ad AS ×
OD × CF, hoc est, ob æqualia AK × AO × ODq. ut AO × OD ad AS × CF. Proinde
Ap × ½AS est ad Gf × ½GC ut AO × OD × AS ad AS × CF × GC, seu AO × OD ad
CGq. id est, sector nascens ASp ad sectorem nascentem GCf ut AO × OD ad
CGq. & propterea ut area Ellipseos totius ad aream circuli totius.
_Q. E. D._   Argumento prolixiore probari potest analogia ultima in
Sectoribus evanescentibus BSP, OCF: ideoq; locus puncti P prope Apsides
satis accurate inventus est. In quadraturis error quasi quingentesimæ
partis areæ Ellipseos totius vel paulo major obvenire solet: qui tamen
propemodum evanescet per ulteriorem Constructionem sequentem.

Per puncta G, O, duc arcum circularem GTO justæ magnitudinis; dein produc
EF hinc inde ad T & N ut sit EN ad FT ut ½L ad CF; centroq; N & intervallo
AN describe circulum qui secet Ellipsin in P, ut supra. Arcus autem GTO
determinabitur quærendo ejus punctum aliquod T; quod constructionem in illo
casu accuratam reddet.

Si Ellipseos latus transversum multo majus sit quam latus rectum, & motus
corporis prope verticem Ellipseos desideretur, (qui casus in Theoria
Cometarum incidit,) educere licet e puncto G rectam GI axi AB
perpendicularem, & in ea ratione ad GK quam habet area AVPS ad rectangulum
AK × AS; dein centro I & intervallo AI circulum describere. Hic enim
secabit Ellipsim in corporis loco quæsito P quamproxime. Et eadem
constructione (mutatis mutandis) conficitur Problema in Hyperbola. Hæ autem
constructiones demonstrantur ut supra, & si Figura (vertice ulteriore B in
infinitum abeunte) vertatur in Parabolam, migrant in accuratam illam
constructionem Problematis XXII.

[Illustration]

Si quando locus ille P accuratius determinandus sit, inveniatur tum angulus
quidam B, qui sit ad angulum graduum 57,29578 quem arcus radio æqualis
subtendit, ut est umbilicorum distantia SH ad Ellipseos diametrum AB; tum
etiam longitudo quædam L, quæ sit ad radium in eadem ratione inverse.
Quibus semel inventis, Problema deinceps confit per sequentem Analysin. Per
constructionem superiorem (vel utcunq; conjecturam faciendo) cognoscatur
corporis locus P quam proxime. Demissaq; ad axem Ellipseos ordinatim
applicata PR, ex proportione diametrorum Ellipseos, dabitur circuli
circumscripti AQB ordinatim applicata RQ, quæ sinus est anguli ACQ
existente AC radio. Sufficit angulum illum rudi calculo in numeris proximis
invenire. Cognoscatur etiam angulus tempori proportionalis, id est, qui sit
ad quatuor rectos ut est tempus quo corpus descripsit arcum AP, ad tempus
revolutionis unius in Ellipsi. Sit angulus iste N. Tum capiatur & angulus D
ad angulum B, ut est sinus iste anguli ACQ ad Radium, & angulus E ad
angulum N - ACQ + D, ut est longitudo L ad longitudinem eandem L cosinu
anguli ACQ + ½D diminutam, ubi angulus iste recto minor est, auctam ubi
major. Postea capiatur tum angulus F ad angulum B, ut est sinus anguli ACQ
+ E ad radium, tum angulus G ad angulum N - ACQ - E + F ut est longitudo L
ad Longitudinem eandem cosinu anguli ACQ + E + ½F diminutam ubi angulus
iste recto minor est, auctam ubi major. Tertia vice capiatur angulus H ad
angulum B, ut est sinus anguli ACQ + E + G ad radium; & angulus I ad
angulum N - ACQ - E - G + H, ut est longitudo L ad eandem longitudinem
cosinu anguli ACQ + E + G + ½H diminutam, ubi angulus iste recto minor est,
auctam ubi major. Et sic pergere licet in infinitum. Deniq; capiatur
angulus ACq æqualis angulo ACQ + E + G + I &c. & ex cosinu ejus Cr &
ordinata pr, quæ est ab sinum qr ut Ellipseos axis minor ad axem majorem,
habebitur corporis locus correctus p. Siquando angulus N - ACQ + D
negativus est, debet signum + ipsius E ubiq; mutari in -, & signum - in +.
Idem intelligendum est de signis ipsorum G & I, ubi anguli N - ACQ - E + F,
& N - ACQ - E - G + H negative prodeunt. Convergit autem series infinita
ACQ + E + G + I quam celerrime, adeo ut vix unquam opus fuerit ultra
progredi quam ad terminum secundum E. Et fundatur calculus in hoc
Theoremate, quod area APS sit ut differentia inter arcum AQ & rectam ab
umbilico S in Radium CQ perpendiculariter demissam.

[Illustration]

Non dissimili calculo conficitur Problema in Hyperbola. Sit ejus centrum C,
Vertex A, Umbilicus S & Asymptotos CK. Cognoscatur quantitas areæ APS
tempori proportionalis. Sit ea A, & fiat conjectura de positione rectæ SP,
quæ aream illam abscindat quamproxime. Jungatur CP, & ab A & P ad
Asymptoton agantur AI, PK Asymptoto alteri parallelæ, & per Tabulam
Logarithmorum dabitur Area AIKP, eiq; æqualis area CPA, quæ subducta de
triangulo CPS relinquet aream APS. Applicando arearum A & APS
semidifferentiam ½APS - ½A vel ½A - ½APS ad lineam SN, quæ ab umbilico S in
tangentem PT perpendicularis est, orietur longitudo PQ. Capiatur autem PQ
inter A & P, si area APS major sit area A, secus ad puncti P contrarias
partes: & punctum Q erit locus corporis accuratius. Et computatione
repetita invenietur idem accuratius in perpetuum.

Atq; his calculis Problema generaliter confit Analytice. Verum usibus
Astronomicis accommodatior est calculus particularis qui sequitur.
Existentibus AO, OB, OD semiaxibus Ellipseos, (_Vide fig. pag. 109. 110._)
& L ipsius latere recto, quære tum angulum Y, cujus Tangens sit ad Radium
ut est semiaxium differentia AO - OD ad eorum summam AO + OD; tum angulum
Z, cujus tangens sit ad Radium ut rectangulum sub umbilicorum distantia SH
& semiaxium differentia AO - OD ad triplum rectangulum sub OQ semiaxe
minore & AO - ¼L differentia inter semiaxem majorem & quartam partem
lateris recti. His angulis semel inventis, locus corporis sic deinceps
determinabitur. Sume angulum T proportionalem tempori quo arcus BP
descriptus est, seu motui medio (ut loquuntur) æqualem; & angulum V (primam
medii motus æquationem) ad angulum Y (æquationem maximam primam) ut est
sinus anguli T duplicati ad radium; atq; angulum X (æquationem secundam) ad
angulum Z (æquationem maximam secundam) ut est sinus versus anguli T
duplicati ad radium duplicatum, vel (quod eodem recidit) ut est quadratum
sinus anguli T ad quadratum Radii. Angulorum T, V, X vel summæ T + X + V,
si angulus T recto minor est, vel differentiæ T + X - V, si is recto major
est rectisq; duobus minor, æqualem cape angulum BHP (motum medium æquatum;)
& si HP occurrat Ellipsi in P, acta SP abscindet aream BSP tempori
proportionalem quamproxime. Hæc Praxis satis expedita videtur, propterea
quod angulorum perexiguorum V & X (in minutis secundis, si placet,
positorum) figuras duas tresve primas invenire sufficit. Invento autem
angulo motus medii æquati BHP, angulus veri motus HSP & distantia SP in
promptu sunt per methodum notissimam Dris. _Sethi Wardi_ Episcopi
_Salisburiensis_ mihi plurimum colendi.

Hactenus de motu corporum in lineis curvis. Fieri autem potest ut mobile
recta descendat vel recta ascendat, & quæ ad istiusmodi motus spectant,
pergo jam exponere.

       *       *       *       *       *


SECT. VII.

_De Corporum Ascensu & Descensu Rectilineo._

Prop. XXXII. Prob. XXIV.

[Illustration]

    _Posito quod vis centripeta sit reciproce proportionalis quadrato
    distantiæ locorum a centro, spatia definire quæ corpus recta cadendo
    datis temporibus describit._

_Cas. 1._ Si corpus non cadit perpendiculariter describet id sectionem
aliquam Conicam cujus umbilicus inferior congruit cum centro. Id ex
Propositionibus XI, XII, XIII & earum Corollariis constat. Sit sectio illa
Conica ARPB & umbilicus inferior S. Et primo si Figura illa Ellipsis est,
super hujus axe majore AB describatur semicirculus ADB, & per corpus
decidens transeat recta DPC perpendicularis ad axem; actisq; DS, PS erit
area ASD areæ ASP atq; adeo etiam tempori proportionalis. Manente axe AB
minuatur perpetuo latitudo Ellipseos, & semper manebit area ASD tempori
proportionalis. Minuatur latitudo illa in infinitum, & orbe APB jam
coincidente cum axe AB & umbilico S cum axis termino B, descendet corpus in
recta AC, & area ABD evadet tempori proportionalis. Dabitur itaq; spatium
AC, quod corpus de loco A perpendiculariter cadendo tempore dato describit,
si modo tempori proportionalis capiatur area ABD, & a puncto D ad rectam AB
demittatur perpendicularis DC.   _Q. E. I._

[Illustration]

_Cas. 2._ Sin figura superior RPB Hyperbola est, describatur ad eandem
diametrum principalem AB Hyperbola rectangula BD: & quoniam areæ CSP, CBfP,
SPfB sunt ad areas CSD, CBED, SDEB, singulæ ad singulas, in data ratione
altitudinum CP, CD; & area SPfB proportionalis est tempori quo corpus P
movebitur per arcum PB, erit etiam area SDEB eidem tempori proportionalis.
Minuatur latus rectum Hyperbolæ RPB in infinitum manente latere transverso,
& coibit arcus PB cum recta CB, & umbilicus S cum vertice B & recta SD cum
recta BD. Proinde area BDEB proportionalis erit tempori quo corpus C recto
descensu describit lineam CB.   _Q. E. I._

_Cas. 3._ Et simili argumento si figura RPB Parabola est, & eodem vertice
principali B describatur alia Parabola BED, quæ semper maneat data, interea
dum Parabola prior in cujus perimetro corpus P movetur, diminuto & in
nihilum redacto ejus Latere recto, conveniat cum linea CB, fiet segmentum
Parabolicum BDEB proportionale tempori quo corpus illud P vel C descendet
ad centrum B.   _Q. E. I._

Prop. XXXIII. Theor. IX.

    _Positis jam inventis, dico quod corporis cadentis velocitas in loco
    quovis C est ad velocitatem corporis centro B intervallo BC circulum
    describentis, in dimidiata ratione quam CA, distantia corporis a
    Circuli vel Hyperbolæ vertice ulteriore A, habet ad figuræ
    semidiametrum principalem ½AB._

[Illustration]

Namq; ob proportionales CD, CP, linea AB communis est utriusq; figuræ RPB,
DEB diameter. Bisecetur eadem in O, & agatur recta PT quæ tangat figuram
RPB in P, atq; etiam secet communem illam diametrum AB (si opus est
productam) in T; sitq; SY ad hanc rectam & BQ ad hanc diametrum
perpendicularis, atq; figuræ RPB latus rectum ponatur L. Constat per Cor.
9. Theor. VIII. quod corporis in linea RPB circa centrum S moventis
velocitas in loco quovis P sit ad velocitatem corporis intervallo SP circa
idem centrum circulum describentis in dimidiata ratione rectanguli ½L × SP
ad SY quadratum. Est autem ex Conicis ACB ad CPq. ut 2AO ad L, adeoq; 2CPq.
× AO ÷ ACB æquale L. Ergo velocitates illæ sunt ad invicem in dimidiata
ratione CPq. × AO × SP ÷ ACB ad SY quad. Porro ex Conicis est CO ad BO ut
BO ad TO, & composite vel divisim ut CB ad BT. Unde dividendo vel
componendo fit BO - uel + CO ad BO ut CT ad BT, id est AC ad AO ut CP ad
BQ; indeq; CPq. × AO × SP ÷ ACB æquale est BQq. × AC × SP ÷ {AO × BC}.
Minuatur jam in infinitum figuræ RPB latitudo CP, sic ut punctum P coeat
cum puncto C, punctumq; S cum puncto B, & linea SP cum linea BC, lineaq; SY
cum linea BQ; & corporis jam recta descendentis in linea CB velocitas fiet
ad velocitatem corporis centro B interuallo BC circulum describentis, in
dimidiata ratione ipsius BQq. × AC × SP ÷ {AO × BC} ad SYq. hoc est
(neglectis æqualitatis rationibus SP ad BC & BQq. ad SYq.) in dimidiata
ratione AC ad AO.   _Q. E. D._

_Corol._ Punctis B & S coeuntibus, fit TC ad ST ut AC ad AO.

Prop. XXXIV. Theor. X.

    _Si figura BED Parabola est, dico quod corporis cadentis velocitas in
    loco quovis C æqualis est velocitati qua corpus centro B dimidio
    intervalli sui BC circulum uniformiter describere potest._

[Illustration]

Nam corporis Parabolam RPB circa centrum S describentis velocitas in loco
quovis S (per Corol. 7. Theor. VIII) æqualis est velocitati corporis
dimidio intervalli SP circulum circa idem S uniformiter describentis.
Minuatur Parabolæ latitudo CP in infinitum eo, ut arcus Parabolicus PfB cum
recta CB, centrum S cum vertice B, & interuallum SP cum intervallo BP
coincidat, & constabit Propositio.   _Q. E. D._

Prop. XXXV. Theor. XI.

    _Iisdem positis, dico quod area figuræ DES, radio indefinito SD
    descripta, æqualis sit areæ quam corpus, radio dimidium lateris recti
    figuræ DES æquante, circa centrum S uniformiter gyrando, eodem tempore
    describere potest._

[Illustration]

Nam concipe corpus C quam minima temporis particula lineolam Cc cadendo
describere, & interea corpus aliud K, uniformiter in circulo OKk circa
centrum S gyrando, arcum Kk describere. Erigantur perpendicula CD, cd
occurrentia figuræ DES in D, d. Jungantur SD, SK, Sk & ducatur Dd axi AS
occurrens in T, & ad eam demittatur perpendiculum SY.

_Cas. 1._ Jam si figura DES Circulus est vel Hyperbola, bisecetur ejus
transversa diameter AS in O, & erit SO dimidium Lateris recti. Et quoniam
est TC ad TD ut Cc ad Dd, & TD ad TS ut CD ad SY, erit ex æquo TC ad TS ut
CD × Cc ad SY × Dd. Sed per Corol. Prop. 33. est TC ad ST ut AC ad AO, puta
si in coitu punctorum D, d capiantur linearum rationes ultimæ. Ergo AC est
ad AO, id est ad SK, ut CD × Cc ad SY × Dd. Porro corporis descendentis
velocitas in C est ad velocitatem corporis circulum intervallo SC circa
centrum S describentis in dimidiata ratione AC ad AO vel SK (per Theor.
IX.) Et hæc velocitas ad velocitatem corporis describentis circulum OKk in
dimidiata ratione SK ad SC per Cor. 6. Theor. IV. & ex æquo velocitas prima
ad ultimam, hoc est lineola Cc ad arcum Kk in dimidiata ratione AC ad SC,
id est in ratione AC ad CD. Quare est CD × Cc æquale AC × Kk, & propterea
AC ad SK ut AC × Kk ad SY × Dd, indeq; SK × Kk æquale SY × Dd, & ½SK × Kk
æquale ½SY × Dd, id est area KSk æqualis areæ SDd. Singulis igitur temporis
particulis generantur arearum duarum particulæ KSk, SDd, quæ, si magnitudo
earum minuatur & numerus augeatur in infinitum, rationem obtinent
æqualitatis, & propterea (per Corollarium Lemmatis IV) areæ totæ simul
genitæ sunt semper æquales.   _Q. E. D._

[Illustration]

_Cas. 2._ Quod si figura DES Parabola sit, invenietur ut supra CD × Cc esse
ad SY × Dd ut TC ad ST, hoc est ut 2 ad 1, adeoq; ¼CD × Cc æqualem esse ½SY
× Dd. Sed corporis cadentis velocitas in C æqualis est velocitati qua
circulus intervallo ½SC uniformiter describi possit (per Theor. X.) Et hæc
velocitas ad velocitatem qua circulus radio SK describi possit, hoc est,
lineola Cc ad arcum Kk est in dimidiata ratione SK ad ½Sc, id est, in
ratione SK ad ½CD, per Corol. 6. Theorem. IV. Quare est ½SK × Kk æquale ¼CD
× Cc, adeoq; æquale ½SY × Dd, hoc est, area KSk æqualis Areæ SDd, ut supra.
_Quod erat demonstrandum._

Prop. XXXVI. Prob. XXV.

[Illustration]

    _Corporis de loco dato A cadentis determinare tempora descensus._

Super diametro AS (distantia corporis a centro sub initio) describe
semicirculum ADS, ut & huic æqualem semicirculum OKH circa centrum S. De
corporis loco quovis C erige ordinatim applicatam CD. Junge SD, & areæ ASD
æqualem constitue Sectionem OSK. Patet per Theor. XI, quod corpus cadendo
describet spatium AC eodem tempore quo corpus aliud uniformiter circa
centrum S gyrando, describere potest arcum OK. _Quod erat faciendum._

Prop. XXXVII. Prob. XXVI.

    _Corporis de loco dato sursum vel deorsum projecti definire tempora
    ascensus vel descensus._

[Illustration]

Exeat corpus de loco dato G secundum lineam ASG cum velocitate quacunq;. In
duplicata ratione hujus velocitatis ad uniformem in circulo velocitatem,
qua corpus ad intervallum datum SG circa centrum S revolvi posset, cape CA
ad ½AS. Si ratio illa est numeri binarii ad unitatem, punctum A cadet ad
infinitam distantiam, quo in casu Parabola uertice S, axe SC, latere quovis
recto describenda est. Patet hoc per Theorema X. Sin ratio illa minor vel
major est quam 2 ad 1, priore casu Circulus, posteriore Hyperbola
rectangula super diametro SA describi debet. Patet per Theorema IX. Tum
centro S, intervallo æquante dimidium lateris recti, describatur circulus
HKk, & ad corporis ascendentis vel descendentis loca duo quævis G, C,
erigantur perpendicula GI, CD occurrentia Conicæ Sectioni vel circulo in I
ac D. Dein junctis SI, SD, fiant segmentis SEIS, SEDS Sectores HSK, HSk
æquales, & per Theorema XI. corpus G describet spatium GC eodem tempore quo
corpus K describere potest arcum Kk.   Q. E. F.

Prop. XXXVIII. Theor. XII.

    _Posito quod vis centripeta proportionalis sit altitudini seu distantiæ
    locorum a centro, dico quod cadentium tempora, velocitates & spatia
    descripta sunt arcubus arcuumq; sinibus versis & sinibus rectis
    respective proportionales._

[Illustration]

Cadat corpus de loco quovis A secundum rectam AS; & centro virium S,
intervallo AS, describatur circuli quadrans AE, sitq; CD sinus rectus arcus
cujusvis AD, & corpus A, tempore AD, cadendo describet spatium AC, inq;
loco C acquisierit velocitatem CD. Demonstratur eodem modo ex Propositione
X. quo Propositio XXXII. ex Propositione XI. demonstrata fuit.   Q. E. D.

_Corol. 1._ Hinc æqualia sunt tempora quibus corpus unum de loco A cadendo
provenit ad centrum S, & corpus aliud revolvendo describit arcum
quadrantalem ADE.

_Corol. 2._ Proinde æqualia sunt tempora omnia quibus corpora de locis
quibusvis ad usq; centrum cadunt. Nam revolventium tempora omnia periodica
(per Corol. 3. Prop. IV.) æquantur.

Prop. XXXIX. Prob. XXVII.

    _Posita cujuscunq; generis vi centripeta, & concessis figurarum
    curvilinearum quadraturis, requiritur corporis recta ascendentis vel
    descendentis tum velocitas in locis singulis, tum tempus quo corpus ad
    locum quemvis perveniet: Et contra._

[Illustration]

De loco quovis A in recta ADEC cadat corpus E, deq; loco ejus E erigatur
semper perpendicularis EG, vi centripetæ in loco illo ad centrum C tendenti
proportionalis: Sitq; BFG linea curva quam punctum G perpetuo tangit.
Coincidat autem EG ipso motus initio cum perpendiculari AB, & erit corporis
velocitas in loco quovis E ut areæ curvilineæ ABGE latus quadratum.
_Q. E. I._   In EG capiatur EM lateri quadrato areæ ABGE reciproce
proportionalis, & sit ALM linea curva quam punctum M perpetuo tangit, &
erit tempus quo corpus cadendo describit lineam AE ut area curvilinea ALME.
_Quod erat Inveniendum._

Etenim in recta AE capiatur linea quam minima DE datæ longitudinis, sitq;
DLF locus lineæ EMG ubi corpus versabatur in D; & si ea sit vis centripeta,
ut area ABGE latus quadratum sit ut descendentis velocitas, erit area ipsa
in duplicata ratione velocitatis, id est, si pro velocitatibus in D & E
scribantur V & V + I, erit area ABFD ut V^2, & area ABGE ut V^2 + 2VI +
I^2, & divisim area DFGE ut 2VI + I^2, adeoq; DFGE ÷ DE ut {2I × V + ½I} ÷
DE, id est, si primæ quantitatum nascentium rationes sumantur, longitudo DF
ut quantitas 2I × V ÷ DE, adeoq; etiam ut quantitatis hujus dimidium I × V
÷ DE. Est autem tempus quo corpus cadendo describit lineolam DE, ut lineola
illa directe & velocitas V inverse, estq; vis ut velocitatis incrementum I
directe & tempus inverse, adeoq; si primæ nascentium rationes sumantur, ut
I × V ÷ DE, hoc est, ut longitudo DF. Ergo vis ipsi DF vel EG
proportionalis facit corpus ea cum velocitate descendere quæ sit ut areæ
ABGE latus quadratum.   Q. E. D.

Porro cum tempus, quo quælibet longitudinis datæ lineola DE describatur,
sit ut velocitas, adeoq; ut areæ ABFD latus quadratum inverse; sitq; DL,
atq; adeo areæ nascens DLME, ut idem latus quadratum inverse: erit tempus
ut area DLME, & summa omnium temporum ut summa omnium arearum, hoc est (per
Corol. Lem. IV.) tempus totum quo linea AE describitur ut area tota AME.
Q. E. D.

_Corol. 1._ Si P sit locus de quo corpus cadere debet, ut, urgente aliqua
uniformi ui centripeta nota (qualis vulgo supponitur gravitas) velocitatem
acquirat in loco D æqualem velocitati quam corpus aliud vi quacunq; cadens
acquisivit eodem loco D, & in perpendiculari DF capiatur DR, quæ sit ad DF
ut vis illa uniformis ad vim alteram in loco D, & compleatur rectangulum
PDRQ, eiq; æqualis abscindatur area ABFD; erit A locus de quo corpus
alterum cecidit. Namq; completo rectangulo EDRS, cum sit area ABFD ad aream
DFGE ut VV ad 2V × I, adeoq; ut ½V ad I, id est, ut semissis velocitatis
totius ad incrementum velocitatis corporis vi inæquabili cadentis; &
similiter area PQRD ad aream DRSE ut semissis velocitatis totius ad
incrementum velocitatis corporis uniformi vi cadentis; sintq; incrementa
illa (ob æqualitatem temporum nascentium) ut vires generatrices, id est ut
ordinatim applicatæ DF, DR, adeoq; ut areæ nascentes DFGE, DRSE; erunt (ex
æquo) areæ totæ ABFD, PQRD ad invicem ut semisses totarum velocitatum, &
propterea (ob æqualitatem velocitatum) æquantur.

_Corol. 2._ Unde si corpus quodlibet de loco quocunq; D data cum velocitate
vel sursum vel deorsum projiciatur, & detur lex vis centripetæ, invenietur
velocitas ejus in alio quovis loco e, erigendo ordinatam eg, & capiendo
velocitatem illam ad velocitatem in loco D ut est latus quadratum
rectanguli PQRD area curvilinea DFge vel aucti, si locus e est loco D
inferior, vel diminuti, si is superior est, ad latus quadratum rectanguli
solius PQRD, id est ut [sqrt]{PQRD + vel - DFge} ad [sqrt]PQRD.

_Corol. 3._ Tempus quoq; innotescet erigendo ordinatam em reciproce
proportionalem lateri quadrato ex PQRD + vel - DFge, & capiendo tempus quo
corpus descripsit lineam De ad tempus quo corpus alterum vi uniformi
cecidit a P & cadendo pervenit ad D, ut area curvilinea DLme ad rectangulum
2PD × DL. Namq; tempus quo corpus vi uniformi descendens descripsit lineam
PD est ad tempus quo corpus idem descripsit lineam PE in dimidiata ratione
PD ad PE, id est (lineola DE jamjam nascente) in ratione PD ad PD + ½DE seu
2PD ad 2PD + DE, & divisim, ad tempus quo corpus idem descripsit lineolam
DE ut 2PD ad DE, adeoq; ut rectangulum 2PE × DL ad aream DLME; estq; tempus
quo corpus utrumq; descripsit lineolam DE ad tempus quo corpus alterum
inæquabili motu descripsit lineam De ut area DLME ad aream DLme, & ex æquo
tempus primum ad tempus ultimum ut rectangulum 2PD × DL ad aream DLme.

       *       *       *       *       *


SECT. VIII.

_De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis
agitata revolventur._

Prop. XL. Theor. XIII.

    _Si corpus, cogente vi quacunq; centripeta, moveatur utcunq;, & corpus
    aliud recta ascendat vel descendat, sintq; eorum velocitates in aliquo
    æqualium altitudinum casu æquales, velocitates eorum in omnibus
    æqualibus altitudinibus erunt æquales._

[Illustration]

Descendat corpus aliquod ab A per D, E, ad centrum C, & moveatur corpus
aliud a V in linea curva VIKk. Centro C intervallis quibusvis describantur
circuli concentrici DI, EK rectæ AC in D & E, curvæq; VIK in I & K
occurrentes. Jungatur IC occurrens ipsi KE in N; & in IK demittatur
perpendiculum NT; sitq; circumferentiarum circulorum intervallum DE vel IN
quam minimum, & habeant corpora in D & I velocitates æquales. Quoniam
distantiæ CD, CI æquantur, erunt vires centripetæ in D & I æquales.
Exponantur hæ vires per æquales lineolas DE, IN; & si vis una IN, per Legum
Corol. 2. resolvatur in duas NT & IT, vis NT, agendo secundum lineam NT
corporis cursui ITK perpendicularem, nil mutabit velocitatem corporis in
cursu illo, sed retrahet solummodo corpus a cursu rectilineo, facietq;
ipsum de Orbis tangente perpetuo deflectere, inq; via curvilinea ITKk,
progredi. In hoc effectu producendo vis illa tota consumetur: vis autem
altera IT, secundum corporis cursum agendo, tota accelerabit illud, ac dato
tempore quam minimo accelerationem generabit sibi ipsi proportionalem.
Proinde corporum in D & I accelerationes æqualibus temporibus factæ (si
sumantur linearum nascentium DE, IN, IK, IT, NT rationes primæ) sunt ut
lineæ DE, IT: temporibus autem inæqualibus ut lineæ illæ & tempora
conjunctim. Tempora ob æqualitatem velocitatum sunt ut viæ descriptæ DE &
IK, adeoq; accelerationes, in cursu corporum per lineas DE & IK, sunt ut DE
& IT, DE & IK conjunctim, id est ut DE quad. & IT × IK rectangulum. Sed
rectangulum IT × IK æquale est IN quadrato, hoc est, æquale DE quadrato &
propterea accelerationes in transitu corporum a D & I ad E & K æquales
generantur. Æquales igitur sunt corporum velocitates in E & K & eodem
argumento semper reperientur æquales in subsequentibus æqualibus
distantiis.   Q. E. D.   Sed & eodem argumento corpora æquivelocia &
æqualiter a centro distantia, in ascensu ad æquales distantias æqualiter
retardabuntur.   Q. E. D.

_Corol. 1._ Hinc si corpus vel funipendulum oscilletur, vel impedimento
quovis politissimo & perfecte lubrico cogatur in linea curva moveri, &
corpus aliud recta ascendat vel descendat, sintq; velocitates eorum in
eadem quacunq; altitudine æquales: erunt velocitates eorum in aliis
quibuscunq; æqualibus altitudinibus æquales. Namq; impedimento vasis
absolute lubrici idem præstatur quod vi transversa NT. Corpus eo non
retardatur, non acceleratur, sed tantum cogitur de cursu rectilineo
discedere.

_Corol. 2._ Hinc etiam si quantitas P sit maxima a centro distantia, ad
quam corpus vel oscillans vel in Trajectoria quacunq; revolvens, deq;
quovis trajectoriæ puncto, ea quam ibi habet velocitate sursum projectum
ascendere possit; sitq; quantitas A distantia corporis a centro in alio
quovis Orbis puncto, & vis centripeta semper sit ut ipsius A dignitas
quælibet A^{n - 1}, cujus Index n - 1 est numerus quilibet n unitate
diminutus; velocitas corporis in omni altitudine A erit ut [sqrt]{nP^n -
nA^n}, atq; adeo datur. Namq; velocitas ascendentis ac descendentis (per
Prop. XXXIX.) est in hac ipsa ratione.

Prop. XLI. Prob. XXVIII.

    _Posita cujuscunq; generis vi centripeta & concessis figurarum
    curvilinearum quadraturis, requiruntur tum Trajectoriæ in quibus
    corpora movebuntur, tum tempora motuum in Trajectoriis inventis._

[Illustration]

Tendat vis quælibet ad centrum C & invenienda sit Trajectoria VITKk. Detur
circulus VXY centro C intervallo quovis CV descriptus, centroq; eodem
describantur alii quivis circuli ID, KE trajectoriam secantes in I & K
rectamq; CV in D & E. Age tum rectam CNIX secantem circulos KE, VY in N &
X, tum rectam CKY occurrentem circulo VXY in Y. Sint autem puncta I & K
sibi invicem vicinissima, & pergat corpus ab V per I, T & K ad k; sitq; A
altitudo illa de qua corpus aliud cadere debet ut in loco D velocitatem
acquirat æqualem velocitati corporis prioris in I; & stantibus quæ in
Propositione XXXIX, quoniam lineola IK, dato tempore quam minimo descripta,
est ut velocitas atq; adeo ut latus quadratum areæ ABFD, & triangulum ICK
tempori proportionale datur, adeoq; KN est reciproce ut altitudo IC, id
est, si detur quantitas aliqua Q, & altitudo IC nominetur A, ut Q ÷ A; quam
nominemus Z. Ponamus eam esse magnitudinem ipsius Q ut sit [sqrt]ABFD in
aliquo casu ad Z ut est IK ad KN, & erit semper [sqrt]ABFD ad Z ut IK ad
KN, & ABFD ad ZZ ut IK quad. ad KN quad. & divisim ABFD - ZZ ad ZZ ut IN
quad. ad KN quad. adeoq; [sqrt]{ABFD - ZZ} ad Z ut IN ad KN, & propterea A
× KN æquale Q × IN ÷ [sqrt]{ABFD - ZZ}. Unde cum YX × XC sit ad A × KN in
duplicata ratione YC ad KC, erit rectang. YX × XC æquale Q × IN × CX quad.
÷ AA [sqrt]{ABFD - ZZ}. Igitur si in perpendiculo DF capiantur semper Db,
Dc ipsis Q ÷ 2[sqrt]{ABFD - ZZ} & Q × CX quad. ÷ 2 AA [sqrt]{ABFD - ZZ}
æquales respective, & describantur curvæ lineæ ab, cd quas puncta b, c
perpetuo tangunt; deq; puncto V ad lineam AC erigatur perpendiculum Vad
abscindens areas curvilineas VDba, VDdc, & erigantur etiam ordinatæ Ez, Ex:
quoniam rectangulum Db × IN seu DbzE æquale est dimidio rectanguli A × KN,
seu triangulo ICK; & rectangulum Dc × IN seu Dc × E æquale est dimidio
rectanguli YX in CX, seu triangulo XCY; hoc est, quoniam arearum VDba, VIC
æquales semper sunt nascentes particulæ DbzE, ICK, & arearum VDcd, VCX
æquales semper sunt nascentes particulæ DExc, XCY, erit area genita VDba
æqualis areæ genitæ, VIC, adeoq; tempori proportionalis, & area genita VDdc
æqualis Sectori genito VCX. Dato igitur tempore quovis ex quo corpus
discessit de loco V, dabitur area ipsi proportionalis VDba, & inde dabitur
corporis altitudo CD vel CI; & area VDcd, eiq; æqualis Sector VCX una cum
ejus angulo VCI. Datis autem angulo VCI & altitudine CI datur locus I, in
quo corpus completo illo tempore reperietur.   Q. E. I.

_Corol. 1._ Hinc maximæ minimæq; corporum altitudines, id est Apsides
Trajectoriarum expedite inveniri possunt. Incidunt enim Apsides in puncta
illa in quibus recta IC per centrum ducta incidit perpendiculariter in
Trajectoriam VIK: id quod fit ubi rectæ IK & NK æquantur, adeoq; ubi area
ABFD æqualis est ZZ.

_Corol. 2._ Sed & angulus KIN, in quo Trajectoria alibi secat lineam illam
IC, ex data corporis altitudine IC expedite invenitur, nimirum capiendo
sinum ejus ad radium ut KN ad IK, id est ut Z ad latus quadratum areæ ABFD.

[Illustration]

_Corol. 3._ Si centro C & vertice principali V describatur sectio quælibet
Conica VRS, & a quovis ejus puncto R agatur Tangens RT occurrens axi
infinite producto CV in puncto T; dein juncta CR ducatur recta CP, quæ
æqualis sit abscissæ CT, angulumq; VCP Sectori VCR proportionalem
constituat; tendat autem ad centrum C vis centripeta cubo distantiæ locorum
a centro reciproce proportionalis, & exeat corpus de loco V justa cum
velocitate secundum lineam rectæ CV perpendicularem: progredietur corpus
illud in Trajectoria quam punctum P perpetuo tangit; adeoq; si conica
sectio CVRS Hyperbola sit, descendet idem ad centrum: Sin ea Ellipsis sit,
ascendet illud perpetuo & abibit in infinitum. Et contra, si corpus
quacunq; cum velocitate exeat de loco V, & perinde ut incæperit vel oblique
descendere ad centrum, vel ab eo oblique ascendere, figura CVRS vel
Hyperbola sit vel Ellipsis, inveniri potest Trajectoria augendo vel
minuendo angulum VCP in data aliqua ratione. Sed et vi centripeta in
centrifugam versa, ascendet corpus oblique in Trajectoria VPQ quæ invenitur
capiendo angulum VCP Sectori Elliptico CVRC proportionalem, & longitudinem
CP longitudini CT æqualem: ut supra. Consequuntur hæc omnia ex Propositione
præcedente, per Curvæ cujusdam quadraturam, cujus inventionem ut satis
facilem brevitatis gracia missam facio.

Prop. XLII. Prob. XXIX.

    _Data lege vis centripetæ, requiritur motus corporis de loco dato data
    cum velocitate secundum datam rectam egressi._

Stantibus quæ in tribus Propositionibus præcedentibus: exeat corpus de loco
I secundum lineolam IT, ea cum velocitate quam corpus aliud, vi aliqua
uniformi centripeta, de loco P cadendo acquirere posset in D: sitq; hæc vis
uniformis ad vim qua corpus primum urgetur in I, ut DR ad DF. Pergat autem
corpus versus k; centroq; C & intervallo Ck describatur circulus ke
occurrens rectæ PD in e, & erigantur curvarum ALMm, BFGg, abzv, dcxw
ordinatim applicatæ em, eg, ev, ew. Ex dato rectangulo PDRQ, dataq; lege
vis centripetæ qua corpus primum agitatur, dantur curvæ lineæ BFGg, ALMm,
per constructionem Problematis XXVIII. & ejus _Corol. 1._ Deinde ex dato
angulo CIT datur proportio nascentium IK, KN & inde, per constructionem
Prob. XXVIII, datur quantitas Q, una cum curvis lineis abzv, dcxw: adeoq;
completo tempore quovis Dbve, datur tum corporis altitudo Ce vel Ck, tum
area Dcwe, eiq; æqualis Sector XCy, angulusq; XCy & locus k in quo corpus
tunc versabitur.   Q. E. I.

Supponimus autem in his Propositionibus vim centripetam in recessu quidem a
centro variari secundum legem quamcunq; quam quis imaginari potest, in
æqualibus autem a centro distantiis esse undiq; eandem. Atq; hactenus
corporum in Orbibus immobilibus consideravimus. Superest ut de motu eorum
in Orbibus qui circa centrum virium revolvuntur adjiciamus pauca.

       *       *       *       *       *


SECT. IX.

_De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum._

Prop. XLIII. Prob. XXX.

    _Efficiendum est ut corpus in Trajectoria quacunq; circa centrum virium
    revolvente perinde moveri possit, atq; corpus aliud in eadem
    Trajectoria quiescente._

In Orbe VPK positione dato revolvatur corpus P pergendo a V versus K. A
centro C agatur semper Cp, quæ sit ipsi CP æqualis, angulumq; VCp angulo
VCP proportionalem constituat; & area quam linea Cp describit erit ad aream
VCP quam linea CP describit, ut velocitas lineæ describentis Cp ad
velocitatem lineæ describentis CP; hoc est, ut angulus VCp ad angulum VCP,
adeoq; in data ratione, & propterea tempori proportionalis. Cum area
tempori proportionalis sit quam linea Cp in plano immobili describit,
manifestum est quod corpus, cogente justæ quantitatis vi centripeta,
revolvi possit una cum puncto p in curva illa linea quam punctum idem p
ratione jam exposita describit in plano immobili. Fiat angulus VCv angulo
PCp, & linea Cv lineæ CV, atq; figura vCp figuræ VCP æqualis, & corpus in p
[Illustration] semper existens movebitur in perimetro figuræ revolventis
vCp, eodemq; tempore describet arcum ejus vp quo corpus aliud P arcum ipsi
similem & æqualem VP in figura quiescente VPK describere potest. Quæratur
igitur, per Corollarium Propositionis VI, vis centripeta qua corpus revolvi
possit in curva illa linea quam punctum p describit in plano immobili, &
solvetur Problema.   Q. E. F.

Prop. XLIV. Theor. XIV.

    _Differentia virium, quibus corpus in Orbe quiescente, & corpus aliud
    in eodem Orbe revolvente æqualiter moveri possunt, est in triplicata
    ratione communis altitudinis inverse._

Partibus orbis quiescentis VP, PK sunto similes & æquales orbis revolventis
partes vp, pk. A puncto k in rectam, pC demitte perpendiculum kr, idemq;
produc ad m, ut sit mr ad kr ut angulus VCp ad angulum VCP. Quoniam
corporum altitudines PC & pC, KC & kC semper æquantur, manifestum est quod
si corporum in locis P & p existentium distinguantur motus singuli (per
Legum Corol. 2.) in binos, (quorum hi versus centrum, sive secundum lineas
PC, pC; alteri prioribus transversi secundum lineas ipsis PC, pC
perpendiculares determinantur) motus versus centrum erunt æquales, & motus
transversus corporis p erit ad motum transversum corporis P, ut motus
angularis lineæ pC ad motum angularem lineæ PC, id est ut angulus VCp ad
angulum VCP. Igitur eodem tempore quo corpus P motu suo utroq; pervenit ad
punctum K, corpus p æquali in centrum motu æqualiter movebitur a P versus
C, adeoq; completo illo tempore reperietur alicubi in linea mkr, quæ per
punctum k in lineam pC perpendicularis est; & motu transverso acquiret
distantiam a linea pC, quæ sit ad distantiam quam corpus alterum acquirit a
linea PC, ut est hujus motus transversus ad motum transversum alterius.
Quare cum kr æqualis sit distantiæ quam corpus alterum acquirit a linea pC,
sitq; mr ad kr ut angulus VCp ad angulum VCP, hoc est, ut motus transversus
corporis p ad motum transversum corporis P, manifestum est quod corpus p
completo illo tempore reperietur in loco m. Hæc ita se habebunt ubi corpora
P & p æqualiter secundum lineas pC & PC moventur, adeoq; æqualibus viribus
secundum lineas illas urgentur. Capiatur autem angulus pCn ad angulum pCk
ut est angulus VCp ad angulum VCP, sitq; nC æqualis kC, & corpus p completo
illo tempore revera reperietur in n; adeoq; vi majore urgetur, si modo
angulus mCp angulo kCp major est, id est si orbis Vpk movetur in
consequentia, & minore, si orbis regreditur; estq; virium differentia ut
locorum intervallum mn, per quod corpus illud p ipsius actione, dato illo
temporis spatio transferri debet. Centro C intervallo Cn vel Ck describi
intelligetur circulus secans lineas mr, mn productas in s & t, & erit
rectangulum mn × mt æquale rectangulo mk × ms, adeoq; mn æquale mk × ms ÷
mt. Cum autem triangula pCk, pCn dentur magnitudine, sunt kr & mr, earumq;
differentia mk & summa ms reciproce ut altitudo pC, adeoq; rectangulum mk ×
ms est reciproce ut quadratum altitudinis pC. Est & mt directe ut ½mt, id
est ut altitudo pC. Hæ sunt primæ rationes linearum nascentium; & hinc fit
mk × ms ÷ mt, id est lineola nascens mn, eiq; proportionalis virium
differentia reciproce ut cubus altitudinis pC.   Q. E. D.

_Corol. 1._ Hinc differentia virium in locis P & p vel K & k est ad vim qua
corpus motu circulari revolvi posset ab r ad k, eodem tempore quo corpus P
in orbe immobili describit arcum PK, ut mk × ms ad rk quadratum; hoc est si
capiantur datæ quantitates F, G in ea ratione ad invicem quam habet angulus
VCP ad angulum VCp, ut Gq. - Fq. ad Fq. Et propterea, si centro C
intervallo quovis CP vel Cp describatur Sector circularis æqualis areæ toti
VPC, quam corpus P tempore quovis in orbe immobili revolvens radio ad
centrum ducto descripsit, differentia virium, quibus corpus P in orbe
immobili & corpus p in orbe mobili revolvuntur, erit ad vim centripetam qua
corpus aliquod radio ad centrum ducto Sectorem illum, eodem tempore quo
descripta sit area VPC, uniformiter describere potuisset, ut Gq. - Fq. ad
Fq. Namq; sector ille & area pCk sunt ad invicem ut tempora quibus
describuntur.

_Corol. 2._ Si orbis VPK Ellipsis sit umbilicum habens C & Apsidem summam
V; eiq; similis & æqualis ponatur Ellipsis vpk, ita ut sit semper pc
æqualis PC, & angulus VCp sit ad angulum VCP in data ratione G ad F; pro
altitudine autem PC vel pc scribatur A, & pro Ellipseos latere recto
ponatur 2R: erit vis qua corpus in Ellipsi mobili revolvi potest, ut Fq. ÷
Aq. + {RGq. - RFq.} ÷ A cub. & contra. Exponatur enim vis qua corpus
revolvatur in immota Ellipsi per quantitatem Fq. ÷ Aq., & vis in V erit Fq.
÷ CV quad. Vis autem qua corpus in circulo ad distantiam CV ea cum
velocitate revolvi posset quam corpus in Ellipsi revolvens habet in V, est
ad vim qua corpus in Ellipsi revolvens urgetur in Apside V, ut dimidium
lateris recti Ellipseos ad circuli semidiametrum CV, adeoq; valet RFq. ÷ CV
cub.: & vis quæ sit ad hanc ut Gq. - Fq. ad Fq., valet {RGq. - RFq.} ÷ CV
cub.: estq; hæc vis (per hujus Corol. 1.) differentia virium quibus corpus
P in Ellipsi immota VPK, & corpus p in Ellipsi mobili vpk revolvuntur. Unde
cum (per hanc Prop.) differentia illa in alia quavis altitudine A sit ad
seipsam in altitudine CV ut 1 ÷ A cub. ad 1 ÷ CV cub., eadem differentia in
omni altitudine A valebit {RGq. - RFq.} ÷ A cub. Igitur ad vim Fq. ÷ Aq.
qua corpus revolvi potest in Ellipsi immobili VPK, addatur excessus {RGq. -
RFq.} ÷ A cub. & componetur vis tota Fq. ÷ Aq. + {RGq. - RFq.} ÷ A cub. qua
corpus in Ellipsi mobili vpk iisdem temporibus revolvi possit.

_Corol. 3._ Ad eundem modum colligetur quod, si orbis immobilis VPK
Ellipsis sit centrum habens in virium centro C; eiq; similis, æqualis &
concentrica ponatur Ellipsis mobilis vpk, sitq; 2R Ellipseos hujus latus
rectum, & 2T latus transversum atq; angulus VCp semper sit ad angulum VCP
ut G ad F; vires quibus corpora in Ellipsi immobili & mobili temporibus
æqualibus revolvi possunt, erunt ut Fq.A ÷ T cub. & Fq.A ÷ T cub. + {RGq. -
RFq.} ÷ A cub. respective.

[Illustration]

_Corol. 4._ Et universaliter, si corporis altitudo maxima CV nominetur T, &
radius curvaturæ quam Orbis VPK habet in V, id est radius circuli æqualiter
curvi, nominetur R, & vis centripeta qua corpus in Trajectoria quacunq;
immobili VPK revolvi potest, in loco V dicatur {Fq. ÷ Tq.} V, atq; aliis in
locis P indefinite dicatur X, altitudine CP nominata A, & capiatur G ad F
in data ratione anguli VCp ad angulum VCP: erit vis centripeta qua corpus
idem eosdem motus in eadem Trajectoria vpk circulariter mota temporibus
iisdem peragere potest, ut summa virium X + {VRGq. - VRFq.} ÷ A cub.

_Corol. 5._ Dato igitur motu corporis in Orbe quocunq; immobili, augeri vel
minui potest ejus motus angularis circa centrum virium in ratione data, &
inde inveniri novi orbes immobiles in quibus corpora novis viribus
centripetis gyrentur.

_Corol. 6._ Igitur si ad rectam CV positione datam erigatur perpendiculum
VP longitudinis indeterminatæ, jungaturq; PC, & ipsi æqualis agatur Cp,
constituens angulum VCp, qui sit ad angulum VCP in data ratione; vis qua
corpus gyrari potest in Curva illa Vpk quam punctum p perpetuo tangit, erit
reciproce ut cubus altitudinis Cp. Nam corpus P, per vim inertiæ, nulla
alia vi urgente, uniformiter progredi potest in recta VP. Addatur vis in
centrum C, cubo altitudinis CP vel Cp reciproce proportionalis, & (per jam
demonstrata) detorquebitur motus ille rectilineus in lineam curvam Vpk. Est
autem hæc Curva Vpk eadem cum Curva illa VPQ in Corol. 3. Prop. XLI
inventa, in qua ibi diximus corpora hujusmodi viribus attracta oblique
ascendere.

Prop. XLV. Prob. XXXI.

    _Orbium qui sunt Circulis maxime finitimi requiruntur motus Apsidum._

Problema solvitur Arithmetice faciendo ut orbis, quem corpus in Ellipsi
mobili, ut in Propositionis superioris Corol. 2. vel 3. revolvens,
describit in plano immobili, accedat ad formam orbis cujus Apsides
requiruntur, & quærendo Apsides orbis quem corpus illud in plano immobili
describit. Orbes autem eandem acquirent formam, si vires centripetæ quibus
describuntur, inter se collatæ, in æqualibus altitudinibus reddantur
proportionales. Sit punctum V Apsis summa, & scribantur T pro altitudine
maxima CV, A pro altitudine quavis alia CP vel Cp, & X pro altitudinum
differentia CV - CP; & vis qua corpus in Ellipsi circa umbilicum ejus C (ut
in Corollario 2.) revolvente movetur, quæq; in Corollario 2. erat ut Fq. ÷
Aq. + {RGq. - RFq.} ÷ A cub. id est ut {Fq. A + RGq. - RFq.} ÷ A cub.,
substituendo T - X pro A, erit ut {RGq. - RFq. + TFq. - Fq.X} ÷ A cub.
Reducenda similiter est vis alia quævis centripeta ad fractionem cujus
denominator sit A cub. & numeratores, facta homologorum terminorum
collatione, statuendi sunt analogi. Res Exemplis parebit.

_Exempl. 1._ Ponamus vim centripetam uniformem esse, adeoq; ut A cub. ÷ A
cub., sive (scribendo T - X pro A in Numeratore) ut {T cub. - 3Tq.X + 3TXq.
- X cub.} ÷ A cub.; & collatis Numeratorum terminis correspondentibus,
nimirum datis cum datis & non datis cum non datis, fiet RGq. - RFq. + TFq.
ad T cub. ut -Fq.X ad -3Tq.X + 3TXq. - X cub. sive ut -Fq. ad -3Tq. + 3TX -
Xq. Jam cum Orbis ponatur circulo quam maxime finitimus, coeat orbis cum
circulo; & ob factas R, T æquales, atq; X in infinitum diminutam, rationes
ultimæ erunt RGq. ad T cub. ut -Fq. ad -3Tq. seu Gq. ad Tq. ut Fq. ad 3Tq.
& vicissim G quadrat. ad F quadrat. ut T quad. ad 3T quad. id est, ut 1 ad
3; adeoq; G ad F, hoc est angulus VCp ad angulum VCP ut 1 ad [sqrt]3. Ergo
cum corpus in Ellipsi immobili, ab Apside summa ad Apsidem imam descendendo
conficiat angulum VCP (ut ita dicam) graduum 180; corpus aliud in Ellipsi
mobili, atq; adeo in orbe immobili de quo agimus, ab Abside summa ad
Apsidem imam descendendo conficiet angulum VCp graduum 180 ÷ [sqrt]3: id
adeo ob similitudinem orbis hujus, quem corpus agente uniformi vi
centripeta describit, & orbis illius quem corpus in Ellipsi revolvente
gyros peragens describit in plano quiescente. Per superiorem terminorum
collationem similes redduntur hi orbes, non universaliter, sed tunc cum ad
formam circularem quam maxime appropinquant. Corpus igitur uniformi cum vi
centripeta in orbe propemodum circulari revolvens, inter Apsidem summam &
Apsidem imam conficiet semper angulum 180 ÷ [sqrt]3 graduum, seu 103 gr. 55
m. ad centrum; perveniens ab Apside summa ad Apsidem imam, ubi semel
confecit hunc angulum, & inde ad Apsidem summam rediens, ubi iterum
confecit eundem angulum, & sic deinceps in infinitum.

_Exempl. 2._ Ponamus vim centripetam esse ut altitudinis A dignitas
quælibet A^{n - 3} seu A^n ÷ A^3: ubi n - 3 & n significant dignitatum
indices quoscunq; integros vel fractos, rationales vel irrationales,
affirmativos vel negativos. Numerator ille A^n seu {T - X}^n in seriem
indeterminatam per Methodum nostram Serierum convergentium reducta, evadit
T^n - nXT^{n - 1} + {nn - n}÷2 Xq.T^{n - 2} &c. Et collatis hujus terminis
cum terminis Numeratoris alterius RGq. - RFq. + TFq. - Fq.X, fit RGq. -
RFq. + TFq. ad T^n ut -Fq. ad -nT^{n - 1} + {nn - n}÷2 XT^{n - 2} &c. Et
sumendo rationes ultimas ubi orbes ad formam circularem accedunt, fit RGq.
ad T^n ut -Fq. ad -nT^{n - 1}, seu Gq. ad T^{n - 1} ut Fq. ad nT^{n - 1}, &
vicissim Gq. ad Fq. ut T^{n - 1} ad nT^{n - 1} id est ut 1 ad n; adeoq; G
ad F, id est angulus VCp ad angulum VCP, ut 1 ad [sqrt]n. Quare cum angulus
VCP, in descensu corporis ab Apside summa ad Apsidem imam in Ellipsi
confectus, sit graduum 180, conficietur angulus VCp, in descensu corporis
ab Apside summa ad Apsidem imam in Orbe propemodum circulari, quem corpus
quodvis vi centripeta dignitati A^{n - 3} proportionali describit, æqualis
angulo graduum 180 ÷ [sqrt]n; & hoc angulo repetito corpus redibit ab
Apside ima ad Apsidem summam, & sic deinceps in infinitum. Ut si vis
centripeta sit ut distantia corporis a centro, id est ut A seu A^4 ÷ A^3,
erit n æqualis 4 & [sqrt]4 æqualis 2; adeoq; angulus inter Apsidem summam &
Apsidem imam æqualis 180 ÷ 2 gr. seu 90 gr. Completa igitur quarta parte
revolutionis unius corpus perveniet ad Apsidem imam, & completa alia quarta
parte ad Apsidem summam, & sic deinceps per vices in infinitum. Id quod
etiam ex Propositione X. manifestum est. Nam corpus urgente hac vi
centripeta revolvetur in Ellipsi immobili, cujus centrum est in centro
virium. Quod si vis centripeta sit reciproce ut distantia, id est directe
ut 1 ÷ A seu A^2 ÷ A^3, erit n = 2, adeoq; inter Apsidem summam & imam
angulus erit graduum 180 ÷ [sqrt]2 seu 127 gr. 17 min. & propterea corpus
tali vi revolvens, perpetua anguli hujus repetitione, vicibus alternis ab
Apside summa ad imam & ab ima ad summam perveniet in æternum. Porro si vis
centripeta sit reciproce ut Latus quadrato-quadratum undecimæ dignitatis
Altitudinis, id est reciproce ut A^{11/4}, adeoq; directe ut 1 ÷ A^{11/4}
seu ut A^¼ ÷ A^3 erit n æqualis ¼, & 180 ÷ [sqrt]n gr. æqualis 360 gr. &
propterea corpus de Apside summa discedens & subinde perpetuo descendens,
perveniet ad Apsidem imam ubi complevit revolutionem integram, dein
perpetuo ascensu complendo aliam revolutionem integram, redibit ad Apsidem
summam: & sic per vices in æternum.

_Exempl. 3._ Assumentes m & n pro quibusvis indicibus dignitatum
Altitudinis, & b, c pro numeris quibusvis datis, ponamus vim centripetam
esse ut {bA^m + cA^n} ÷ A cub. id est ut {b in [=T - X]^m + c in [=T -
X]^n} ÷ A cub. seu (per eandem Methodum nostram Serierum convergentium) ut

                      mm-m                                  nn-n
  bT^m - mbXT^{m-1} + ----bX^2T^{m-2} + cT^n - ncXT^{n-1} + ----cX^2T^{n-2}
                        2                                     2         &c.
  -------------------------------------------------------------------------
                                       A cub.

& collatis numeratorum terminis, fiet RGq. - RFq. + TFq. ad bT^m + cT^n, ut
-Fq. ad -mbT^{m - 1} - ncT^{n - 1} + {mm - m}÷2 XT^{m - 2} + {nn - n}÷2
XT^{n - 2} &c. Et sumendo rationes ultimas quæ prodeunt ubi orbes ad formam
circularem accedunt, fit Gq. ad bT^{m - 1} + cT^{n - 1}, ut Fq. ad mbT^{m -
1} + ncT^{n - 1}, & vicissim Gq. ad Fq. ut bT^{m - 1} + cT^{n - 1} ad
mbT^{m - 1} + ncT^{n - 1}. Quæ proportio, exponendo altitudinem maximam CV
seu T Arithmetice per unitatem, fit Gq. ad Fq. ut b + c ad mb + nc, adeoq;
ut 1 ad {mb + nc} ÷ {b + c}. Unde est G ad F, id est angulus VCp ad angulum
VCP, ut 1 ad [sqrt]{{mb + nc} ÷ {b + c}}. Et propterea cum angulus VCP
inter Apsidem summam & Apsidem imam in Ellipsi immobili sit 180 gr. erit
angulus VCp inter easdem Apsides, in Orbe quem corpus vi centripeta
quantitati {bA^m + cA^n} ÷ A cub. proportionali describit, æqualis angulo
graduum 180 [sqrt]{{b + c} ÷ {mb + nc}}. Et eodem argumento si vis
centripeta sit ut {bA^m - cA^n} ÷ A cub., angulus inter Apsides invenietur
180 [sqrt]{{b - c} ÷ {mb - nc}} graduum. Nec secus resolvetur Problema in
casibus difficilioribus. Quantitas cui vis centripeta proportionalis est,
resolvi semper debet in series convergentes denominatorem habentes A cub.
Dein pars data Numeratoris hujus RGq. - RFq. + TFq. - Fq.X ad partem non
datam in eadem ratione ponendæ sunt: Et quantitates superfluas delendo,
scribendoq; unitatem pro T, obtinebitur proportio G ad F.

_Corol. 1._ Hinc si vis centripeta sit ut aliqua altitudinis dignitas,
inveniri potest dignitas illa ex motu Apsidum; & contra. Nimirum si motus
totus angularis, quo corpus redit ad Apsidem eandem, sit ad motum angularem
revolutionis unius, seu graduum 360, ut numerus aliquis m ad numerum alium
n, & altitudo nominetur A: erit vis ut altitudinis dignitas illa A^{nn÷mm -
3}, cujus Index est nn÷mm - 3. Id quod per Exempla secunda manifestum est.
Unde liquet vim illam in majore quam triplicata altitudinis ratione
decrescere non posse: Corpus tali vi revolvens deq; Apside discedens, si
cæperit descendere, nunquam perveniet ad Apsidem imam seu altitudinem
minimam, sed descendet usq; ad centrum, describens curvam illam lineam de
qua egimus in Corol. 3. Prop. XLI. Sin cæperit illud de Apside discedens
vel minimum ascendere, ascendet in infinitum, neq; unquam perveniet ad
Apsidem summam. Describet enim curvam illam lineam de qua actum est in
eodem Corol. & in Corol. 6. Prop. XLIV. Sic & ubi vis in recessu a centro
decrescit in majori quam triplicata ratione altitudinis, corpus de Apside
discedens, perinde ut cæperit descendere vel ascendere, vel descendet ad
centrum usq; vel ascendet in infinitum. At si vis in recessu a centro vel
decrescat in minori quam triplicata ratione altitudinis, vel crescat in
altitudinis ratione quacunq; Corpus nunquam descendet ad centrum usq; sed
ad Apsidem imam aliquando perveniet: & contra, si corpus de Apside ad
Apsidem alternis vicibus descendens & ascendens nunquam appellat ad
centrum, Vis in recessu a centro aut augebitur, aut in minore quam
triplicata altitudinis ratione decrescet: & quo citius corpus de Apside ad
Apsidem redierit, eo longius ratio virium recedet a ratione illa
triplicata. Ut si corpus revolutionibus 8 vel 4 vel 2 vel 1½ de Apside
summa ad Apsidem summam alterno descensu & ascensu redierit, hoc est, si
fuerit m ad n ut 8 vel 4 vel 2 vel 1½ ad 1, adeoq; {nn ÷ mm} - 3 ualeat
1/64 - 3 vel 1/16 - 3 vel 1/4 - 3 vel 4/9 - 3, erit vis ut A^{1/64 - 3}
vel A^{1/16 - 3} vel A^{1/4 - 3} vel A^{4/9 - 3}, id est reciproce ut A^{3
- 1/64} vel A^{3 - 1/16} vel A^{3 - 1/4} vel A^{3 - 4/9}. Si corpus
singulis revolutionibus redierit ad Apsidem eandem immotam, erit m ad n ut
1 ad 1, adeoq; A^{nn÷mm - 3} æqualis A^{-2} seu 1 ÷ A^2, & propterea
decrementum virium in ratione duplicata altitudinis, ut in præcedentibus
demonstratum est. Si corpus partibus revolutionis unius vel tribus quartis,
vel duabus tertiis, vel una tertia, vel una quarta, ad Apsidem eandem
redierit, erit m ad n ut 3/4 vel 2/3 vel 1/3 vel 1/4 ad 1, adeoq;
A^{nn÷mm - 3} æqualis A^{16/9 - 3} vel A^{9/4 - 3} vel A^{9 - 3} vel A^{16
- 3} & propterea Vis aut reciproce ut A^{11/9} vel A^{3/4}, aut directe ut
A^6 vel A^{13}. Deniq; si Corpus pergendo ab Apside summa ad Apsidem summam
confecerit revolutionem integram, & præterea gradus tres, adeoq; Apsis illa
singulis corporis revolutionibus confecerit in Consequentia gradus tres,
erit m ad n ut 363gr. ad 360gr. adeoq; A^{nn÷mm - 3} erit æquale
A^{-265707÷131769}, & propterea Vis centripeta reciproce ut
A^{265707÷131769} seu A^{2-4/243}. Decrescit igitur Vis centripeta in
ratione paulo majore quam duplicata, sed quæ vicibus 60¾ propius ad
duplicatam quam ad triplicatam accedit.

_Corol. 2._ Hinc etiam si corpus, vi centripeta quæ sit reciproce ut
quadratum altitudinis, revolvatur in Ellipsi umbilicum habente in centro
virium, & huic vi centripetæ addatur vel auferatur vis alia quævis
extranea; cognosci potest (per Exempla tertia) motus Apsidum qui ex vi illa
extranea orietur: & contra. Ut si vis qua corpus revolvitur in Ellipsi sit
ut 1 ÷ A^2, & vis extranea ablata ut cA, adeoq; vis reliqua ut {A - cA^4} ÷
A^3; erit (in Exemplis tertiis) A æqualis 1 & n æqualis 4, adeoq; angulus
revolutionis inter Apsides æqualis angulo graduum 180[sqrt]{{1 - c} ÷ {1 -
4c}}. Ponatur vim illam extraneam esse 357,45 vicibus minorem quam vis
altera qua corpus revolvitur in Ellipsi, id est c esse 100 ÷ 35745, &
180[sqrt]{{1 - c} ÷ {1 - 4c}} evadet 180[sqrt]{35645 ÷ 35345} seu 180,7602,
id est 180gr. 45m. 37s. Igitur corpus de Apside summa discedens, motu
angulari 180gr. 45m. 37s. perveniet ad Apsidem imam, & hoc motu duplicato
ad Apsidem summam redibit: adeoq; Apsis summa singulis revolutionibus
progrediendo conficiet 1gr. 31m. 14s.

Hactenus de motu corporum in orbibus quorum plana per centrum virium
transeunt. Superest ut motus etiam determinemus in planis excentricis. Nam
Scriptores qui motum gravium tractant, considerare solent ascensus &
descensus ponderum, tam obliquos in planis quibuscunq; datis, quam
perpendiculares: & pari jure motus corporum viribus quibuscunq; centra
petentium, & planis excentricis innitentium hic considerandus venit. Plana
autem supponimus esse politissima & absolute lubrica ne corpora retardent.
Quinimo in his demonstrationibus, vice planorum quibus corpora incumbunt
quasq; tangunt incumbendo, usurpamus plana his parallela, in quibus centra
corporum moventur & orbitas movendo describunt. Et eadem lege motus
corporum in superficiebus curvis peractos subinde determinamus.

       *       *       *       *       *


SECT. X.

_De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu
reciproco._

Prop. XLVI. Prob. XXXII.

    _Posita cujuscunq; generis vi centripeta, datoq; tum virium centro tum
    plano quocunq; in quo corpus revolvitur, & concessis Figurarum
    curvilinearum quadraturis: requiritur motus corporis de loco dato data
    cum velocitate secundum Rectam in Plano illo datam egressi._

[Illustration]

Sit S centrum virium, SC distantia minima centri hujus a plano dato, P
corpus de loco P secundum rectam PZ egrediens, Q corpus idem in Trajectoria
sua revolvens, & PQR Trajectoria illa in plano dato descripta, quam
invenire oportet. Jungantur CQ, QS, & si in QS capiatur SV proportionalis
vi centripetæ qua corpus trahitur versus centrum S, & agatur VT quæ sit
parallela CQ & occurrat SC in T: Vis SV resolvetur (per Legum Corol. 2.) in
vires ST, TV; quarum ST trahendo corpus secundum lineam plano
perpendicularem, nil mutat motum ejus in hoc plano. Vis autem altera TV,
agendo secundum positionem plani, trahit corpus directe versus punctum C in
plano datum, adeoq; facit illud in hoc plano perinde moveri ac si vis ST
tolleretur, & corpus vi sola TV revolveretur circa centrum C in spatio
libero. Data autem vi centripeta TV qua corpus Q in spatio libero circa
centrum datum C revolvitur, datur per Prop. XLII. tum Trajectoria PQR quam
corpus describit, tum locus Q in quo corpus ad datum quodvis tempus
versabitur, tum deniq; velocitas corporis in loco illo Q; & contra.
Q. E. I.

Prop. XLVII. Theor. XV.

    _Posito quod vis centripeta proportionalis sit distantiæ corporis a
    centro; corpora omnia in planis quibuscunq; revolventia describent
    Ellipses, & revolutiones temporibus æqualibus peragent; quæq; moventur
    in lineis rectis ultro citroq; discurrendo, singulas eundi & redeundi
    periodos iisdem temporibus absolvent._

Nam stantibus quæ in superiore Propositione; vis SV qua corpus Q in plano
quovis PQR revolvens trahitur versus centrum S est ut distantia SQ; atq;
adeo ob proportionales SV & SQ, TV & CQ, vis TV qua corpus trahitur versus
punctum C in Orbis plano datum, est ut distantia CQ. Vires igitur, quibus
corpora in plano PQR versantia trahuntur versus punctum C, sunt pro ratione
distantiarum æquales viribus quibus corpora unaquaq; trahuntur versus
centrum S; & propterea corpora movebuntur iisdem temporibus in iisdem
figuris in plano quovis PQR circa punctum C, atq; in spatiis liberis circa
centrum S, adeoq; (per Corol. 2. Prop. X. & Corol. 2. Prop. XXXVIII.)
temporibus semper æqualibus, vel describent Ellipses in plano illo circa
centrum C, vel periodos movendi ultro citroq; in lineis rectis per centrum
C in plano illo ductis, complebunt.   Q. E. D.

_Scholium._

His affines sunt ascensus ac descensus corporum in superficiebus curvis.
Concipe lineas curvas in plano describi, dein circa axes quosvis datos per
centrum virium transeuntes revolvi, & ea revolutione superficies curvas
describere; tum corpora ita moveri ut eorum centra in his superficiebus
perpetuo reperiantur. Si corpora illa oblique ascendendo & descendendo
currant ultro citroq; peragentur eorum motus in planis per axem
transeuntibus, atq; adeo in lineis curvis quarum revolutione curvæ illæ
superficies genitæ sunt. Istis igitur in casibus sufficit motum in his
lineis curvis considerare.

Prop. XLVIII. Theor. XVI.

    _Si rota globo extrinsecus ad angulos rectos insistat, & more rotarum
    revolvendo progrediatur in circulo maximo; longitudo itineris
    curvilinei, quod punctum quodvis in rotæ perimetro datum, ex quo globum
    tetigit, confecit, erit ad duplicatum sinum versum arcus dimidii qui
    globum ex eo tempore inter eundem tetigit, ut summa diametrorum globi &
    rotæ ad semidiametrum globi._

Prop. XLIX. Theor. XVII.

    _Si rota globo concavo ad rectos angulos intrinsecus insistat &
    revolvendo progrediatur in circulo maximo; longitudo itineris
    curvilinei quod punctum quodvis in Rotæ Perimetro datum, ex quo globum
    tetigit, confecit, erit ad duplicatum sinum versum arcus dimidii qui
    globum toto hoc tempore inter eundum tetigit, ut differentia
    diametrorum globi & rotæ ad semidiametrum globi._

[Illustration]

Sit ABL globus, C centrum ejus, BPV rota ei insistens, E centrum rotæ, B
punctum contactus, & P punctum datum in perimetro rotæ. Concipe hanc Rotam
pergere in circulo maximo ABL ab A per B versus L, & inter eundum ita
revolvi ut arcus AB, PB sibi invicem semper æquentur, atq; punctum illud P
in Perimetro rotæ datum interea describere viam curvilineam AP. Sit autem
AP via tota curvilinea descripta ex quo Rota globum tetigit in A, & erit
viæ hujus longitudo AP ad duplum sinum versum arcus ½PB, ut 2CE ad CB. Nam
recta CE (si opus est producta) occurrat Rotæ in V, junganturq; CP, BP, EP,
VP, & in CP productam demittatur Normalis VF. Tangant PH, VH circulum in P
& V concurrentes in H, secetq; PH ipsam VF in G, & ad VP demittantur
Normales GI, HK. Centro item C & intervallo quovis describatur circulus nom
secans rectam CP in n, Rotæ perimetrum Bp in o & viam curvilineam AP in m,
centroq; V & intervallo Vo describatur circulus secans VP productam in q.

Quoniam Rota eundo semper revolvitur circa punctum contactus B, manifestum
est quod recta BP perpendicularis est ad lineam illam curvam AP, quam Rotæ
punctum P describit, atq; adeo quod recta VP tanget hanc curvam in puncto
P. Circuli nom radius sensim auctus æquetur tandem distantiæ CP, & ob
similitudinem figuræ evanescentis Pnomq & figuræ PFGVI, ratio ultima
lineolarum evanescentium Pm, Pn, Po, Pq, id est ratio incrementorum
momentaneorum curvæ AP, rectæ CP & arcus circularis BP, ac decrementi rectæ
VP, eadem erit quæ linearum PV, PF, PG, PI respective. Cum autem VF ad CF &
VH ad CV perpendiculares sunt, anguliq; HVG, VCF propterea æquales; &
angulus VHP, (ob angulos quadrilateri HVEP ad V & P rectos,) complet
angulum VEP ad duos rectos, adeoq; angulo CEP æqualis est, similia erunt
triangula VHG, CEP; & inde fiet ut EP ad CE ita HG ad HV seu HP, & ita KI
ad KP, & divisim ut CB ad CE ita PI ad PK, & duplicatis consequentibus ut
CB ad 2CE ita PI ad PV. Est igitur decrementum lineæ VP, id est incrementum
lineæ BV - VP, ad incrementum lineæ curvæ AP in data ratione CB ad 2CE, &
propterea (per Corol. Lem. IV.) longitudines BV - VP & AP incrementis illis
genitæ sunt in eadem ratione. Sed existente BV radio, est VP cosinus anguli
VPB seu ½BEP, adeoq; BV - VP sinus versus ejusdem anguli, & propterea in
hac Rota cujus radius est ½BV, erit BV - VP duplus sinus versus arcus ½BP.
Ergo AP est ad duplum sinum versum arcus ½BP ut 2CE ad CB.   Q. E. D.

Lineam autem AP in Propositione priore Cycloidem extra Globum, alteram in
posteriore Cycloidem intra Globum distinctionis gratia nominabimus.

_Corol. 1._ Hinc si describatur Cyclois integra ASL & bisecetur ea in S,
erit longitudo partis PS ad longitudinem VP (quæ duplus est sinus anguli
VBP, existente EB radio) ut 2CE ad CB atq; adeo in ratione data.

_Corol. 2._ Et longitudo semiperimetri Cycloidis AS æquabitur lineæ rectæ,
quæ est ad Rotæ diametrum BV ut 2CE ad CB.

_Corol. 3._ Ideoq; longitudo illa est ut rectangulum BEC, si modo Globi
detur semidiameter.

Prop. L. Prob. XXXIII.

[Illustration]

    _Facere ut Corpus pendulum oscilletur in Cycloide data._

Intra Globum QVS centro C descriptum detur Cyclois QRS bisecta in R &
punctis suis extremis Q & S superficiei Globi hinc inde occurrens. Agatur
CR bisecans arcum QS in O, & producatur ea ad A, ut sit CA ad CO ut CO ad
CR. Centro C intervallo CA describatur Globus exterior ABD, & intra hunc
globum Rota, cujus diameter sit AO, describantur duæ semicycloides AQ, AS,
quæ globum interiorem tangant in Q & S & globo exteriori occurrant in A. A
puncto illo A, filo APT longitudinem AR æquante, pendeat corpus T, & ita
intra semicycloides AQ, AS oscilletur, ut quoties pendulum digreditur a
perpendiculo AR, filum parte sui superiore AP applicetur ad semicycloidem
illam APS, versus quam peragitur motus, & circum eam ceu obstaculum
flectatur, parteq; reliqua PT cui semicyclois nondum objicitur, protendatur
in lineam rectam; & pondus T oscillabitur in Cycloide data QRS.   Q. E. F.

Occurrat enim filum PT tum Cycloidi QRS in T, tum circulo QOS in V,
agaturq; CV occurrens circulo ABD in B; & ad fili partem rectam PT, e
punctis extremis P ac T, erigantur perpendicula PB, TW, occurrentia rectæ
CV in B & W. Patet enim ex genesi Cycloidis, quod perpendicula illa PB, TW,
abscindent de CV longitudines VB, VW rotarum diametris OA, OR æquales, atq;
adeo quod punctum B incidet in circulum ABD. Est igitur TP ad VP (duplum
sinum anguli VBP existente ½BV radio) ut BW ad BV, seu AO + OR ad AO, id
est (cum sint CA ad CO, CO ad CR & divisim AO ad OR proportionales,) ut CA
+ CO seu 2CE ad CA. Proinde per Corol. 1. Prop. XLIX. longitudo PT æquatur
Cycloidis arcui PS, & filum totum APT æquatur Cycloidis arcui dimidio APS,
hoc est (per Corollar. 2. Prop. XLIX) longitudini AR. Et propterea vicissim
si filum manet semper æquale longitudini AR movebitur punctum T in Cycloide
QRS.   Q. E. D.

_Corol._ Filum AR æquatur Cycloidis arcui dimidio APS.

Prop. LI. Theor. XVIII.

    _Si vis centripeta tendens undiq; ad Globi centrum C sit in locis
    singulis ut distantia loci cujusq; a centro, & hac sola vi agente
    Corpus T oscilletur (modo jam descripto) in perimetro Cycloidis QRS:
    dico quod oscillationum utcunq; inæqualium æqualia erunt Tempora._

Nam in Cycloidis tangentem TW infinite productam cadat perpendiculum CX &
jungatur CT. Quoniam vis centripeta qua corpus T impellitur versus C est ut
distantia CT, (per Legum Corol. 2.) resolvitur in partes CX, TX, quarum CX
impellendo corpus directe a P distendit filum PT & per cujus resistentiam
tota cessat, nullum alium edens effectum; pars autem altera TX urgendo
corpus transversim seu versus X, directe accelerat motum ejus in Cycloide;
manifestum est quod corporis acceleratio huic vi acceleratrici
proportionalis sit singulis momentis ut longitudo TX, id est, ob datas CV,
WV iisq; proportionales TX, TW, ut longitudo TW, hoc est (per Corol. 1.
Prop. XLIX.) ut longitudo arcus Cycloidis TR. Pendulis igitur duabus APT,
Apt de perpendiculo AR inæqualiter deductis & simul dimissis,
accelerationes eorum semper erunt ut arcus describendi TR, tR. Sunt autem
partes sub initio descriptæ ut accelerationes, hoc est ut totæ sub initio
describendæ, & propterea partes quæ manent describendæ & accelerationes
subsequentes his partibus proportionales sunt etiam ut totæ; & sic
deinceps. Sunt igitur accelerationes atq; adeo velocitates genitæ & partes
his velocitatibus descriptæ partesq; describendæ, semper ut totæ; &
propterea partes describendæ datam servantes rationem ad invicem simul
evanescent, id est corpora duo oscillantia simul pervenient ad
perpendiculum AR. Cumq; vicissim ascensus perpendiculorum de loco infimo R,
per eosdem arcus Trochoidales motu retrogrado facti, retardentur in locis
singulis a viribus iisdem a quibus descensus accelerabantur, patet
velocitates ascensuum ac descensuum per eosdem arcus factorum æquales esse,
atq; adeo temporibus æqualibus fieri; & propterea, cum Cycloidis partes duæ
RS & RQ ad utrumq; perpendiculi latus jacentes sint similes & æquales,
pendula duo oscillationes suas tam totas quam dimidias iisdem temporibus
semper peragent.   Q. E. D.

Prop. LII. Prob. XXXIV.

    _Definire & velocitates Pendulorum in locis singulis, & Tempora quibus
    tum oscillationes totæ, tum singulæ oscillationum partes peraguntur._

[Illustration]

Centro quovis G, intervallo GH Cycloidis arcum RS æquante, describe
semicirculum HKMG semidiametro GK bisectum. Et si vis centripeta distantiis
locorum a centro proportionalis tendat ad centrum G, sitq; ea in perimetro
HIK æqualis vi centripetæ in perimetro globi QOS (_Vide Fig. Prop. L. &
LI._) ad ipsius centrum tendente; & eodem tempore quo pendulum T dimittitur
e loco supremo S, cadat corpus aliquod L ab H ad G: quoniam vires quibus
corpora urgentur sunt æquales sub initio & spatiis describendis TR, GL
semper proportionales, atq; adeo, si æquantur TR & LG, æquales in locis T &
L; patet corpora illa describere spatia ST, HL æqualia sub initio, adeoq;
subinde pergere æqualiter urgeri, & æqualia spatia describere. Quare, per
Prop. XXXVIII., tempus quo corpus describit arcum ST est ad tempus
oscillationis unius, ut arcus HI (tempus quo corpus H perveniet ad L) ad
semicirculum HKM (tempus quo corpus H perveniet ad M.) Et velocitas
corporis penduli in loco T est ad velocitatem ipsius in loco infimo R, (hoc
est velocitas corporis H in loco L ad velocitatem ejus in loco G, seu
incrementum momentaneum lineæ HL ad incrementum momentaneum lineæ HG,
arcubus HI, HK æquabili fluxu crescentibus) ut ordinatim applicata LI ad
radium GK, sive ut [sqrt]{SRq. - TRq.} ad SR. Unde cum in Oscillationibus
inæqualibus describantur æqualibus temporibus arcus totis Oscillationum
arcubus proportionales, habentur ex datis temporibus & velocitates & arcus
descripti in Oscillationibus universis. Quæ erant primo invenienda.

[Illustration]

Oscillentur jam funipendula duo corpora in Cycloidibus inæqualibus & earum
semiarcubus æquales capiantur rectæ GH, gh, centrisq; G, g & intervallis
GH, gh describantur semicirculi HZKM, hzkm. In eorum diametris HM, hm
capiantur lineolæ æquales HY, hy, & erigantur normaliter YZ, yz
circumferentiis occurrentes in Z & z. Quoniam corpora pendula sub initio
motus versantur in circumferentia globi QOS, adeoq; a viribus æqualibus
urgentur in centrum, incipiuntq; directe versus centrum moveri, spatia
simul consecta æqualia erunt sub initio. Urgeantur igitur corpora H, h a
viribus iisdem in H & h, sintq; HY, hy spatia æqualia ipso motus initio
descripta, & arcus HZ, hz denotabunt æqualia tempora. Horum arcuum
nascentium ratio prima duplicata est eadem quæ rectangulorum GHY, ghy, id
est, eadem quæ linearum GH, gh adeoq; arcus capti in dimidiata ratione
semidiametrorum denotant æqualia tempora. Est ergo tempus totum in circulo
HKM, Oscillationi in una Cycloide respondens, ad tempus totum in circulo
hkm Oscillationi in altera Cycloide respondens, ut semiperiferia HKM ad
medium proportionale inter hanc semiperiferiam & semiperiferiam circuli
alterius hkm, id est in dimidiata ratione diametri HM ad diametrum hm, hoc
est in dimidiata ratione perimetri Cycloidis primæ ad perimetrum Cycloidis
alterius, adeoq; tempus illud in Cycloide quavis est (per Corol. 3. Prop.
XLIX.) ut latus quadratum rectanguli BEC contenti sub semidiametro Rotæ,
qua Cyclois descripta fuit, & differentia inter semidiametrum illam &
semidiametrum globi.   Q. E. I.   Est & idem tempus (per Corol. Prop. L.)
in dimidiata ratione longitudinis fili AR.   Q. E. I.

Porro si in globis concentricis describantur similes Cycloides: quoniam
earum perimetri sunt ut semidiametri globorum & vires in analogis
perimetrorum locis sunt ut distantiæ locorum a communi globorum centro, hoc
est ut globorum semidiametri, atq; adeo ut Cycloidum perimetri &
perimetrorum partes similes, æqualia erunt tempora quibus perimetrorum
partes similes Oscillationibus similibus describuntur, & propterea
Oscillationes omnes erunt Isochronæ. Cum igitur Oscillationum tempora in
Globo dato sint in dimidiata ratione longitudinis AR, atq; adeo (ob datam
AC) in dimidiata ratione numeri AR ÷ AC, id est in ratione integra numeri
[sqrt]{AR ÷ AC}; & hic numerus [sqrt]{AR ÷ AC} servata ratione AR ad AC (ut
fit in Cycloidibus similibus) idem semper maneat, & propterea in globis
diversis, ubi Cycloides sunt similes, sit ut tempus: manifestum est quod
Oscillationum tempora in alio quovis globo dato, atq; adeo in globis
omnibus concentricis sunt ut numerus [sqrt]{AR ÷ AC}, id est, in ratione
composita ex dimidiata ratione longitudinis fili AR directe & dimidiata
ratione semidiametri globi AC inverse.   Q. E. I.

Deniq; si vires absolutæ diversorum globorum ponantur inæquales,
accelerationes temporibus æqualibus factæ, erunt ut vires. Unde si tempora
capiantur in dimidiata ratione virium inverse, velocitates erunt in eadem
dimidiata ratione directe, & propterea spatia erunt æqualia quæ his
temporibus describuntur. Ergo Oscillationes in globis & Cycloidibus
omnibus, quibuscunq; cum viribus absolutis factæ, sunt in ratione quæ
componitur ex dimidiata ratione longitudinis Penduli directe, & dimidiata
ratione distantiæ inter centrum Penduli & centrum globi inverse, &
dimidiata ratione vis absolutæ etiam inverse, id est, si vis illa dicatur
V, in ratione numeri [sqrt]{AR ÷ {AC × V}}.   Q. E. I.

_Corol. 1._ Hinc etiam Oscillantium, cadentium & revolventium corporum
tempora possunt inter se conferri. Nam si Rotæ, qua Cyclois intra globum
describitur, diameter constituatur æqualis semidiametro globi, Cyclois
evadet linea recta per centrum globi transiens, & Oscillatio jam erit
descensus & subsequens ascensus in hac recta. Unde datur tum tempus
descensus de loco quovis ad centrum, tum tempus huic æquale quo corpus
uniformiter circa centrum globi ad distantiam quamvis revolvendo arcum
quadrantalem describit. Est enim hoc tempus (per Casum secundum) ad tempus
semioscillationis in Trochoide quavis APS ut ½BC ad [sqrt]BEC.

_Corol. 2._ Hinc etiam consectantur quæ _D. C. Wrennus_ & _D. C. Hugenius_
de Cycloide vulgari adinvenerunt. Nam si globi diameter augeatur in
infinitum, mutabitur ejus superficies Sphærica in planum, visq; centripeta
aget uniformiter secundum lineas huic plano perpendiculares, & Cyclois
nostra abibit in Cycloidem vulgi. Isto autem in casu, longitudo arcus
Cycloidis, inter planum illud & punctum describens, æqualis evadet
quadruplicato sinui verso dimidii arcus Rotæ inter idem planum & punctum
describens; ut invenit _D. C. Wrennus_: Et pendulum inter duas ejusmodi
Cycloides in simili & æquali Cycloide temporibus æqualibus Oscillabitur, ut
demonstravit _Hugenius_. Sed & descensus gravium, tempore Oscillationis
unius, is erit quem _Hugenius_ indicavit.

Aptantur autem Propositiones a nobis demonstratæ ad veram constitutionem
Terræ, quatenus Rotæ eundo in ejus circulis maximis describunt motu
clavorum Cycloides extra globum; & Pendula inferius in fodinis & cavernis
Terra suspensa, in Cycloidibus intra globos Oscillari debent, ut
Oscillationes omnes evadant Isochronæ. Nam Gravitas (ut in Libro tertio
docebitur) decrescit in progressu a superficie Terræ, sursum quidem in
duplicata ratione distantiarum a centro ejus, deorsum vero in ratione
simplici.

Prop. LIII. Prob. XXXV.

    _Concessis figurarum curvilinearum Quadraturis, invenire vires quibus
    corpora in datis curvis lineis Oscillationes semper Isochronas
    peragent._

[Illustration]

Oscilletur corpus T in curva quavis linea STRQ, cujus axis sit OR transiens
per virium centrum C. Agatur TX quæ curvam illam in corporis loco quovis T
contingat, inq; hac Tangente TX capiatur TY æqualis arcui TR. Nam longitudo
arcus illius ex figurarum Quadraturis per Methodos vulgares innotescit. De
puncto Y educatur recta YZ Tangenti perpendicularis. Agatur CT
perpendiculari illi occurrens in Z, & erit vis centripeta proportionalis
rectæ TZ.   Q. E. I.

Nam si vis, qua corpus trahitur de T versus C, exponatur per rectam TZ
captam ipsi proportionalem, resolvetur hæc in vires TY, YZ; quarum YZ
trahendo corpus secundum longitudinem fili PT, motum ejus nil mutat, vis
autem altera TY motum ejus in curva STRQ directe accelerat vel directe
retardat. Proinde cum hæc sit ut via describenda TR, accelerationes
corporis vel retardationes in Oscillationum duarum (majoris & minoris)
partibus proportionalibus describendis, erunt semper ut partes illæ, &
propterea facient ut partes illæ simul describantur. Corpora autem quæ
partes totis semper proportionales simul describunt, simul describent
totas.   Q. E. D.

_Corol. 1._ Hinc si corpus T filo rectilineo AT a centro A pendens,
describat arcum circularem STRQ, & interea urgeatur secundum lineas
parallelas deorsum a vi aliqua, quæ sit ad vim uniformem gravitatis, ut
arcus TR ad ejus sinum TN: æqualia erunt Oscillationum singularum tempora.
Etenim ob parallelas TZ, AR, similia erunt triangula ANT, TYZ; & propterea
TZ erit ad AT ut TY ad TN; hoc est, si gravitatis vis uniformis exponatur
per longitudinem datam AT, vis TZ, qua Oscillationes evadent Isochronæ,
erit ad vim gravitatis AT, ut arcus TR ipsi TY æqualis ad arcus illius
sinum TN.

_Corol. 2._ Igitur in Horologiis, si vires a Machina in Pendulum ad motum
conservandum impressæ ita cum vi gravitatis componi possint, ut vis tota
deorsum semper sit ut linea quæ oritur applicando rectangulum sub arcu TR &
radio AR, ad sinum TN, Oscillationes omnes erunt Isochronæ.

Prop. LIV. Prob. XXXVI.

    _Concessis figurarum curvilinearum quadraturis, invenire tempora quibus
    corpora vi qualibet centripeta in lineis quibuscunq; curvis in plano
    per centrum virium transeunte descriptis, descendent & ascendent._

[Illustration]

Descendat enim corpus de loco quovis S per lineam quamvis curvam STtR in
plano per virium centrum C transeunte datam. Jungatur CS & dividatur eadem
in partes innumeras æquales, sitq; Dd partium illarum aliqua. Centro C,
intervallis CD, Cd describantur circuli DT, dt, Lineæ curvæ STtR
occurrentes in T & t. Et ex data tum lege vis centripetæ, tum altitudine CS
de qua corpus cecidit; dabitur velocitas corporis in alia quavis altitudine
CT, per Prop. XXXIX. Tempus autem, quo corpus describit lineolam Tt, est ut
lineolæ hujus longitudo (id est ut secans anguli tTC) directe, & velocitas
inverse. Tempori huic proportionalis sit ordinatim applicata DN ad rectam
CS per punctum D perpendicularis, & ob datam Dd erit rectangulum Dd × DN,
hoc est area DNnd, eidem tempori proportionale. Ergo si SNn sit curva illa
linea quam punctum N perpetuo tangit, erit area SNDS proportionalis tempori
quo corpus descendendo descripsit lineam ST; proindeq; ex inventa illa area
dabitur tempus.   Q. E. I.

Prop. LV. Theor. XIX.

    _Si corpus movetur in superficie quacunq; curva, cujus axis per centrum
    virium transit, & a corpore in axem demittatur perpendicularis, eiq;
    parallela & æqualis ab axis puncto quovis ducatur: dico quod parallela
    illa aream tempori proportionalem describet._

[Illustration]

Sit BSKL superficies curva, T corpus in ea revolvens, STtR Trajectoria quam
corpus in eadem describit, S initium Trajectoriæ, OMNK axis superficiei
curvæ, TN recta a corpore in axem perpendicularis, OP huic parallela &
æqualis a puncto O quod in axe datur educta, AP vestigium Trajectoriæ a
puncto P in lineæ volubilis OP plano AOP descriptum, A vestigii initium
puncto S respondens, TC recta a corpore ad centrum ducta; TG pars ejus vi
centripetæ qua corpus urgetur in centrum C proportionalis; TM recta ad
superficiem curvam perpendicularis; TI pars ejus vi pressionis qua corpus
urget superficiem, vicissimq; urgetur versus M a superficie,
proportionalis; PHTF recta axi parallela per corpus transiens, & GF, IH
rectæ a punctis G & I in parallelam illam PHTF perpendiculariter demissæ.
Dico jam quod area AOP, radio OP ab initio motus descripta, sit tempori
proportionalis. Nam vis TG (per Legum Corol. 2.) resolvitur in vires TF,
FG; & vis TI in vires TH, HI: Vires autem TF, TH agendo secundum lineam PF
plano AOP perpendicularem mutant solummodo motum corporis quatenus huic
plano perpendicularem. Ideoq; motus ejus quatenus secundum positionem plani
factus, hoc est motus puncti P, quo Trajectoriæ vestigium AP in hoc plano
describitur, idem est ac si vires TF, TH tollerentur, & corpus solis
viribus FG, HI agitaretur, hoc est idem ac si corpus in plano AOP vi
centripeta ad centrum O tendente & summam virium FG & HI æquante,
describeret curvam AP. Sed vi tali describetur area AOP (per Prop. I.)
tempori proportionalis.   Q. E. D.

_Corol._ Eodem argumento si corpus a viribus agitatum ad centra duo vel
plura in eadem quavis recta CO data tendentibus, describeret in spatio
libero lineam quamcunq; curvam ST, foret area AOP tempori semper
proportionalis.

Prop. LVI. Prob. XXXVII.

    _Concessis figurarum curvilinearum Quadraturis, datisq; tum lege vis
    centripetæ ad centrum datum tendentis, tum superficie curva cujus axis
    per centrum illud transit; invenienda est Trajectoria quam corpus in
    eadem superficie describet, de loco dato, data cum velocitate versus
    plagam in superficie illa datam egressum._

Stantibus quæ in superiore Propositione constructa sunt, exeat corpus de
loco S in Trajectoriam inveniendam STtR & ex data ejus velocitate in
altitudine SC dabitur ejus velocitas in alia quavis altitudine TC. Ea cum
velocitate, dato tempore quam minimo, describat corpus Trajectoriæ suæ
particulam Tt, sitq; Pp vestigium ejus plano AOP descriptum. Jungatur Op, &
circelli centro T intervallo Tt in superficie curva descripti sit PpQ
vestigium Ellipticum in eodem plano OAPp descriptum. Et ob datum
magnitudine & positione circellum, dabitur Ellipsis illa PpQ. Cumq; area
POp sit tempori proportionalis, atq; adeo ex dato tempore detur, dabitur Op
positione, & inde dabitur communis ejus & Ellipseos intersectio p, una cum
angulo OPp, in quo Trajectoriæ vestigium APp secat lineam OP. Inde autem
invenietur Trajectoriæ vestigium illud APp, eadem methodo qua curva linea
VIKk in Propositione XLI. ex similibus datis inventa fuit. Tum ex singulis
vestigii punctis P erigendo ad planum AOP perpendicula PT superficiei curvæ
occurrentia in T, dabuntur singula Trajectoriæ puncta T.   Q. E. I.

       *       *       *       *       *


SECT. XI.

_De Motu Corporum Sphæricorum viribus centripetis se mutuo petentium._

Hactenus exposui motus corporum attractorum ad centrum immobile, quale
tamen vix extat in rerum natura. Attractiones enim fieri solent ad corpora;
& corporum trahentium & attractorum actiones semper mutuæ sunt & æquales,
per Legem tertiam: adeo ut neq; attrahens possit quiescere neq; attractum,
si duo sint corpora, sed ambo (per Legum Corollarium quartum) quasi
attractione mutua, circum gravitatis centrum commune revolvantur: & si
plura sint corpora (quæ vel ab unico attrahantur vel omnia se mutuo
attrahant) hæc ita inter se moveri debeant, ut gravitatis centrum commune
vel quiescat vel uniformiter moveatur in directum. Qua de causa jam pergo
motum exponere corporum se mutuo trahentium, considerando vires centripetas
tanquam Attractiones, quamvis fortasse, si physice loquamur, verius
dicantur Impulsus. In Mathematicis enim jam versamur, & propterea missis
disputationibus Physicis, familiari utimur sermone, quo possimus a
Lectoribus Mathematicis facilius intelligi.

Prop. LVII. Theor. XX.

    _Corpora duo se invicem trahentia describunt, & circum commune centrum
    gravitatis, & circum se mutuo, figuras similes._

Sunt enim distantiæ a communi gravitatis centro reciproce proportionales
corporibus, atq; adeo in data ratione ad invicem, & componendo, in data
ratione ad distantiam totam inter corpora. Feruntur autem hæ distantiæ
circum terminos suos communi motu angulari, propterea quod in directum
semper jacentes non mutant inclinationem ad se mutuo. Lineæ autem rectæ,
quæ sunt in data ratione ad invicem, & æquali motu angulari circum terminos
suos feruntur, figuras circum eosdem terminos (in planis quæ una cum his
terminis vel quiescunt vel motu quovis non angulari moventur) describunt
omnino similes. Proinde similes sunt figuræ quæ his distantiis circumactis
describuntur.   Q. E. D.

Prop. LVIII. Theor. XXI.

    _Si corpora duo viribus quibusvis se mutuo trahunt, & interea
    revolvuntur circa gravitatis centrum commune: dico quod figuris, quas
    corpora sic mota describunt circum se mutuo, potest figura similis &
    æqualis, circum corpus alterutrum immotum, viribus iisdem describi._

Revolvantur corpora S, P circa commune gravitatis centrum C, pergendo de S
ad T deq; P ad Q. A dato puncto s ipsis SP, TQ æquales & parallelæ ducantur
semper sp, sq; & curva pqv quam punctum p, revolvendo circum punctum
immotum s, describit, erit similis & æqualis curvis quas corpora S, P
describunt circum se mutuo: proindeq; (per Theor. XX.) similis curvis ST &
PQV, quas eadem corpora describunt circum commune gravitatis centrum C: id
adeo quia proportiones linearum SC, CP & SP vel sp ad invicem dantur.

[Illustration]

_Cas. 1._ Commune illud gravitatis centrum C, per Legum Corollarium
quartum, vel quiescit vel movetur uniformiter in directum. Ponamus primo
quod id quiescit, inq; s & p locentur corpora duo, immobile in s, mobile in
p, corporibus S & P similia & æqualia. Dein tangant rectæ PR & pr Curvas PQ
& pq in P & p, & producantur CQ & sq ad R & r. Et ob similitudinem
figurarum CPRQ, sprq, erit RQ ad rq ut CP ad sp, adeoq; in data ratione.
Proinde si vis qua Corpus P versus Corpus S, atq; adeo versus centrum
intermedium C attrahitur, esset ad vim qua corpus p versus centrum s
attrahitur in eadem illa ratione data, hæ vires æqualibus temporibus
attraherent semper corpora de tangentibus PR, pr ad arcus PQ, pq, per
intervalla ipsis proportionalia RQ, rq; adeoq; vis posterior efficeret ut
corpus p gyraretur in curva pqv, quæ similis esset curvæ PQV, in qua vis
prior efficit ut corpus P gyretur, & revolutiones iisdem temporibus
complerentur. At quoniam vires illæ non sunt ad invicem in ratione CP ad
sp, sed (ob similitudinem & æqualitatem corporum S & s, P & p, &
æqualitatem distantiarum SP, sp) sibi mutuo æquales, corpora æqualibus
temporibus æqualiter trahentur de Tangentibus; & propterea ut corpus
posterius p trahatur per intervallum majus rq, requiritur tempus majus,
idq; in dimidiata ratione intervallorum; propterea quod, per Lemma decimum,
spatia ipso motus initio descripta sunt in duplicata ratione temporum.
Ponatur igitur velocitas corporis p esse ad velocitatem corporis P in
dimidiata ratione distantiæ sp ad distantiam CP, eo ut temporibus quæ sint
in eadem dimidiata ratione describantur arcus PQ, pq, qui sunt in ratione
integra: Et corpora P, p viribus æqualibus semper attracta describent
circum centra quiescentia C & s figuras similes PQV, pqv, quarum posterior
pqv similis est & æqualis figuræ quam corpus P circum corpus mobile S
describit.   Q. E. D.

_Cas. 2._ Ponamus jam quod commune gravitatis centrum, una cum spatio in
quo corpora moventur inter se, progreditur uniformiter in directum; &, per
Legum Corollarium sextum, motus omnes in hoc spatio peragentur ut prius,
adeoq; corpora describent circum se mutuo figuras easdem ac prius, &
propterea figuræ pqv similes & æquales.   Q. E. D.

_Corol. 1._ Hinc corpora duo viribus distantiæ suæ proportionalibus se
mutuo trahentia, describunt (per Prop. X.) & circum commune gravitatis
centrum, & circum se mutuo, Ellipses concentricas: & vice versa, si tales
figuræ describuntur, sunt vires distantiæ proportionales.

_Corol. 2._ Et corpora duo viribus quadrato distantiæ suæ reciproce
proportionalibus describunt (per Prop. XI, XII, XIII.) & circum commune
gravitatis centrum, & circum se mutuo sectiones conicas umbilicos habentes
in centro circum quod figuræ describuntur. Et vice versa, si tales figuræ
describuntur, vires centripetæ sunt quadrato distantiæ reciproce
proportionales.

_Corol. 3._ Corpora duo quævis circum gravitatis centrum commune gyrantia,
radiis & ad centrum illud & ad se mutuo ductis, describunt areas temporibus
proportionales.

Prop. LIX. Theor. XXII.

    _Corporum duorum S & P circa commune gravitatis centrum C revolventium
    tempus periodicum esse ad tempus periodicum corporis alterutrius P,
    circa alterum immotum S gyrantis & figuris quæ corpora circum se mutuo
    describunt figuram similem & æqualem describentis, in dimidiata ratione
    corporis alterius S, ad summam corporum S + P._

Namq; ex demonstratione superioris Propositionis, tempora quibus arcus
quivis similes PQ & pq describuntur, sunt in dimidiata ratione distantiarum
CP & SP vel sp, hoc est, in dimidiata ratione corporis S ad summam corporum
S + P. Et componendo, summæ temporum quibus arcus omnes similes PQ & pq
describuntur, hoc est tempora tota quibus figuræ totæ similes describuntur,
sunt in eadem dimidiata ratione.   Q. E. D.

Prop. LX. Theor. XXIII.

    _Si corpora duo S & P, viribus quadrato distantiæ suæ reciproce
    proportionalibus se mutuo trahentia, revolvuntur circa gravitatis
    centrum commune: dico quod Ellipseos, quam corpus alterutrum P hoc motu
    circa alterum S describit, Axis transversus erit ad axem transversum
    Ellipseos, quam corpus idem P circa alterum quiescens S eodem tempore
    periodico describere posset, ut summa corporum duorum S + P ad primam
    duarum medie proportionalium inter hanc summam & corpus illud alterum
    S._

Nam si descriptæ Ellipses essent sibi invicem æquales, tempora periodica,
per Theorema superius, forent in dimidiata ratione corporis S ad summam
corporum S + P. Minuatur in hac ratione tempus periodicum in Ellipsi
posteriore, & tempora periodica evadent æqualia, Ellipseos autem axis
transversus per Theorema VII. minuetur in ratione cujus hæc est
sesquiplicata, id est in ratione, cujus ratio S ad S + P est triplicata;
adeoq; ad axem transversum Ellipseos alterius, ut prima duarum medie
proportionalium inter S + P & S ad S + P. Et inverse, axis transversus
Ellipseos circa corpus mobile descriptæ erit ad axem transversum descriptæ
circa immobile, ut S + P ad primam duarum medie proportionalium inter S + P
& S.   Q. E. D.

Prop. LXI. Theor. XXIV.

    _Si corpora duo viribus quibusvis se mutuo trahentia, neq; alias
    agitata vel impedita, quomodocunq; moveantur; motus eorum perinde se
    habebunt ac si non traherent se mutuo, sed utrumq; a corpore tertio in
    communi gravitatis centro constituto viribus iisdem traheretur: Et
    Virium trahentium eadem erit Lex respectu distantiæ corporum a centro
    illo communi atq; respectu distantiæ totius inter corpora._

Nam vires illæ, quibus corpora se mutuo trahunt, tendendo ad corpora,
tendunt ad commune gravitatis centrum intermedium, adeoq; eædem sunt ac si
a corpore intermedio manarent.   Q. E. D.

Et quoniam data est ratio distantiæ corporis utriusvis a centro illo
communi ad distantiam corporis ejusdem a corpore altero, dabitur ratio
cujusvis potestatis distantiæ unius ad eandem potestatem distantiæ
alterius; ut & ratio quantitatis cujusvis, quæ ex una distantia &
quantitatibus datis utcunq; derivatur, ad quantitatem aliam, quæ ex altera
distantia & quantitatibus totidem datis datamq; illam distantiarum rationem
ad priores habentibus similiter derivatur. Proinde si vis, qua corpus unum
ab altero trahitur, sit directe vel inverse ut distantia corporum ab
invicem; vel ut quælibet hujus distantiæ potestas; vel deniq; ut quantitas
quævis ex hac distantia & quantitatibus datis quomodocunq; derivata: erit
eadem vis, qua corpus idem ad commune gravitatis centrum trahitur, directe
itidem vel inverse ut corporis attracti distantia a centro illo communi,
vel ut eadem distantiæ hujus potestas, vel deniq; ut quantitas ex hac
distantia & analogis quantitatibus datis similiter derivata. Hoc est Vis
trahentis eadem erit Lex respectu distantiæ utriusq;.   Q. E. D.

Prop. LXII. Prob. XXXVIII.

    _Corporum duorum quæ viribus quadrato distantiæ suæ reciproce
    proportionalibus se mutuo trahunt, ac de locis datis demittuntur,
    determinare motus._

Corpora, per Theorema novissimum, perinde movebuntur, ac si a corpore
tertio in communi gravitatis centro constituto traherentur; & centrum illud
ipso motus initio quiescet (per Hypothesin) & propterea (per Legum Corol.
4.) semper quiescet. Determinandi sunt igitur motus Corporum (per Probl.
XXV.) perinde ac si a viribus ad centrum illud tendentibus urgerentur, &
habebuntur motus corporum se mutuo trahentium.   Q. E. I.

Prop. LXIII. Prob. XXXIX.

    _Corporum duorum quæ viribus quadrato distantiæ suæ reciproce
    proportionalibus se mutuo trahunt, deq; locis datis, secundum datas
    rectas, datis cum velocitatibus exeunt, determinare motus._

Ex datis corporum motibus sub initio, datur uniformis motus centri communis
gravitatis, ut & motus spatii quod una cum hoc centro movetur uniformiter
in directum, nec non corporum motus initiales respectu hujus spatii. Motus
autem subsequentes (per Legum Corollarium quintum & Theorema novissimum)
perinde fiunt in hoc spatio, ac si spatium ipsum una cum communi illo
gravitatis centro quiesceret, & corpora non traherent se mutuo, sed a
corpore tertio sito in centro illo traherentur. Corporis igitur alterutrius
in hoc spatio mobili de loco dato, secundum datam rectam, data cum
velocitate exeuntis, & vi centripeta ad centrum illud tendente correpti,
determinandus est motus per Problema nonum & vicesimum sextum: & habebitur
simul motus corporis alterius e regione. Cum hoc motu componendus est
uniformis ille Systematis spatii & corporum in eo gyrantium motus
progressivus supra inventus, & habebitur motus absolutus corporum in spatio
immobili.   Q. E. I.

Prop. LXIV. Prob. XL.

    _Viribus quibus Corpora se mutuo trahunt crescentibus in simplici
    ratione distantiarum a centris: requiruntur motus plurium Corporum
    inter se._

Ponantur imprimis corpora duo T & L commune habentia gravitatis centrum D.
Describent hæc per Corollarium primum Theorematis XXI. Ellipses centra
habentes in D, quarum magnitudo ex Problemate V. innotescit.

[Illustration]

Trahat jam corpus tertium S priora duo T & L viribus acceleratricibus ST,
SL, & ab ipsis vicissim trahatur. Vis ST per Legum Corol. 2. resolvitur in
vires SD, DT; & vis SL in vires SD, DL. Vires autem DT, DL, quæ sunt ut
ipsarum summa TL, atq; adeo ut vires acceleratrices quibus corpora T & L se
mutuo trahunt, additæ his viribus corporum T & L, prior priori & posterior
posteriori, componunt vires distantiis DT ac DL proportionales, ut prius,
sed viribus prioribus majores; adeoq; (per Corol. 1. Prop. X. & Corol. 1 &
7. Prop. IV.) efficiunt ut corpora illa describant Ellipses ut prius, sed
motu celeriore. Vires reliquæ acceleratrices SD & SD, actionibus motricibus
SD × T & SD × L, quæ sunt ut corpora, trahendo corpora illa æqualiter &
secundum lineas TI, LK, ipsi DS parallelas, nil mutant situs earum ad
invicem, sed faciunt ipsa æqualiter accedere ad lineam IK; quam ductam
concipe per medium corporis S, & lineæ DS perpendicularem. Impedietur autem
iste ad lineam IK accessus faciendo ut Systema corporum T & L ex una parte,
& corpus S ex altera, justis cum velocitatibus, gyrentur circa commune
gravitatis centrum C. Tali motu corpus S (eo quod summa virium motricium SD
× T & SD × L, distantiæ CS proportionalium, trahitur versus centrum C)
describit Ellipsin circa idem C; & punctum D ob proportionales CS, CD
describet Ellipsin consimilem, e regione. Corpora autem T & L viribus
motricibus SD × T & SD × L, (prius priore, posterius posteriore) æqualiter
& secundum lineas parallelas TI & LK (ut dictum est) attracta, pergent (per
Legum Corollarium quintum & sextum) circa centrum mobile D Ellipses suas
describere, ut prius.   Q. E. I.

Addatur jam corpus quartum V, & simili argumento concludetur hoc & punctum
C Ellipses circa omnium commune centrum gravitatis B describere; manentibus
motibus priorum corporum T, L & S circa centra D & C, sed paulo
acceleratis. Et eadem methodo corpora plura adjungere licebit.   Q. E. I.

Hæc ita se habent ubi corpora T & L trahunt se mutuo viribus
acceleratricibus majoribus vel minoribus quam trahunt corpora reliqua pro
ratione distantiarum. Sunto mutuæ omnium attractiones acceleratrices ad
invicem ut distantiæ ductæ in corpora trahentia, & ex præcedentibus facile
deducetur quod corpora omnia æqualibus temporibus periodicis Ellipses
varias, circa omnium commune gravitatis centrum B, in plano immobili
describunt.   Q. E. I.

Prop. LXV. Theor. XXV.

    _Corpora plura quorum vires decrescunt in duplicata ratione
    distantiarum ab eorundem centris, moveri posse inter se in Ellipsibus,
    & radiis ad umbilicos ductis Areas describere temporibus proportionales
    quam proxime._

In Propositione superiore demonstratus est casus ubi motus plures
peraguntur in Ellipsibus accurate. Quo magis recedit lex virium a lege ibi
posita, eo magis corpora perturbabunt mutuos motus, neq; fieri potest ut
corpora secundum legem hic positam se mutuo trahentia moveantur in
Ellipsibus accurate, nisi servando certam proportionem distantiarum ab
invicem. In sequentibus autem casibus non multum ab Ellipsibus errabitur.

_Cas. 1._ Pone corpora plura minora circa maximum aliquod ad varias ab eo
distantias revolvi, tendantq; ad singula vires absolutæ proportionales
iisdem corporibus. Et quoniam omnium commune gravitatis centrum (per Legum
Corol. quartum.) vel quiescet vel movebitur uniformiter in directum,
fingamus corpora minora tam parva esse, ut corpus maximum nunquam distet
sensibiliter ab hoc centro: & maximum illud vel quiescet vel movebitur
uniformiter in directum, absq; errore sensibili; minora autem revolventur
circa hoc maximum in Ellipsibus, atq; radiis ad idem ductis describent
areas temporibus proportionales; nisi quatenus errores inducuntur, vel per
errorem maximi a communi illo gravitatis centro, vel per actiones minorum
corporum in se mutuo. Diminui autem possunt corpora minora usq; donec error
iste & actiones mutuæ sint datis quibusvis minores, atq; adeo donec orbes
cum Ellipsibus quadrent, & areæ respondeant temporibus, absq; errore qui
non sit minor quovis dato.   Q. E. O.

_Cas. 2._ Fingamus jam Systema corporum minorum modo jam descripto circa
maximum revolventium, aliudve quodvis duorum circum se mutuo revolventium
corporum Systema progredi uniformiter in directum, & interea vi corporis
alterius longe maximi & ad magnam distantiam siti urgeri ad latus. Et
quoniam æquales vires acceleratrices, quibus corpora secundum lineas
parallelas urgentur, non mutant situs corporum ad invicem, sed ut Systema
totum, servatis partium motibus inter se, simul transferatur efficiunt:
manifestum est quod ex attractionibus in corpus maximum, nulla prorsus
orietur mutatio motus attractorum inter se, nisi vel ex attractionum
acceleratricum inæqualitate, vel ex inclinatione linearum ad invicem,
secundum quas attractiones fiunt. Pone ergo attractiones omnes
acceleratrices in corpus maximum esse inter se reciproce ut quadrata
distantiarum, & augendo corporis maximi distantiam, donec rectarum ab hoc
ad reliqua ductarum minores sint differentiæ & inclinationes ad invicem
quam datæ quævis, perseverabunt motus partium Systematis inter se absq;
erroribus qui non sint quibusvis datis minores. Et quoniam, ob exiguam
partium illarum ab invicem distantiam, Systema totum ad modum corporis
unius attrahitur, movebitur idem hac attractione ad modum corporis unius;
hoc est, centro suo gravitatis describet circa corpus maximum, Sectionem
aliquam Conicam (_viz._ Hyperbolam vel Parabolam attractione languida,
Ellipsim fortiore,) & Radio ad maximum ducto, verret areas temporibus
proportionales, absq; ullis erroribus, nisi quas partium distantiæ
(perexiguæ sane & pro lubitu minuendæ) valeant efficere.   Q. E. O.

Simili argumento pergere licet ad casus magis compositos in infinitum.

_Corol. 1._ In casu secundo; quo propius accedit corpus omnium maximum ad
Systema duorum vel plurium, eo magis turbabuntur motus partium Systematis
inter se, propterea quod linearum a corpore maximo ad has ductarum jam
major est inclinatio ad invicem, majorq; proportionis inæqualitas.

_Corol. 2._ Maxime autem turbabuntur, ponendo quod attractiones
acceleratrices partium Systematis versus corpus omnium maximum, non sint ad
invicem reciproce ut quadrata distantiarum a corpore illo maximo; præsertim
si proportionis hujus inæqualitas major sit quam inæqualitas proportionis
distantiarum a corpore maximo: Nam si vis acceleratrix, æqualiter &
secundum lineas parallelas agendo, nil perturbat motus inter se, necesse
est ut ex actionis inæqualitate perturbatio oriatur, majorq; sit vel minor
pro majore vel minore inæqualitate. Excessus impulsuum majorum agendo in
aliqua corpora & non agendo in alia, necessario mutabunt situm eorum inter
se. Et hæc perturbatio addita perturbationi, quæ ex linearum inclinatione &
inæqualitate oritur, majorem reddet perturbationem totam.

_Corol. 3._ Unde si Systematis hujus partes in Ellipsibus vel Circulis sine
perturbatione insigni moveantur, manifestum est, quod eædem a viribus
acceleratricibus ad alia corpora tendentibus, aut non urgentur nisi
levissime, aut urgentur æqualiter & secundum lineas parallelas quamproxime.

Prop. LXVI. Theor. XXVI.

    _Si corpora tria, quorum vires decrescunt in duplicata ratione
    distantiarum, se mutuo trahant, & attractiones acceleratrices binorum
    quorumcunq; in tertium sint inter se reciproce ut quadrata
    distantiarum; minora autem circa maximum in plano communi revolvantur:
    Dico quod interius circa intimum & maximum, radiis ad ipsum ductis,
    describet areas temporibus magis proportionales, & figuram ad formam
    Ellipseos umbilicum in concursu radiorum habentis magis accedentem, si
    corpus maximum his attractionibus agitetur, quam si maximum illud vel a
    minoribus non attractum quiescat, vel multo minus vel multo magis
    attractum aut multo minus aut multo magis agitetur._

Liquet fere ex demonstratione Corollarii secundi Propositionis præcedentis;
sed argumento magis distincto & latius cogente sic evincitur.

[Illustration]

_Cas. 1._ Revolvantur corpora minora P & Q in eodem plano circa maximum S,
quorum P describat orbem interiorem PAB, & Q exteriorem QE. Sit QK
mediocris distantia corporum P & Q; & corporis P versus Q attractio
acceleratrix in mediocri illa distantia exponatur per eandem. In duplicata
ratione QK ad QP capiatur QL ad QK, & erit QL attractio acceleratrix
corporis P versus Q in distantia quavis QP. Junge PS, eiq; parallelam age
LM occurrentem QS in M, & attractio QL resolvetur (per Legum Corol. 2.) in
attractiones QM, LM. Et sic urgebitur corpus P vi acceleratrice triplici:
una tendente ad S & oriunda a mutua attractione corporum S & P. Hac vi sola
corpus P, circum corpus S sive immotum, sive hac attractione agitatum,
describere deberet & areas, radio PS temporibus proportionales, & Ellipsin
cui umbilicus est in centro corporis S. Patet hoc per Prob. VI. &
Corollaria Theor. XXI. Vis altera est attractionis LM, quæ quoniam tendit a
P ad S, superaddita vi priori coincidet cum ipsa, & sic faciet ut areæ
etiamnum temporibus proportionales describantur per Corol. 3. Theor. XXI.
At quoniam non est quadrato distantiæ PS reciproce proportionalis, componet
ea cum vi priore vim ab hac proportione aberrantem, idq; eo magis quo major
est proportio hujus vis ad vim priorem, cæteris paribus. Proinde cum (per
Corol. 1. Prob. VIII. & Corol. 2. Theor. XXI.) vis qua Ellipsis circa
umbilicum S describitur tendere debeat ad umbilicum illum, & esse quadrato
distantiæ PS reciproce proportionalis; vis illa composita aberrando ab hac
proportione, faciet ut Orbis PAB aberret a forma Ellipseos umbilicum
habentis in S; idq; eo magis quo major est aberratio ab hac proportione;
atq; adeo etiam quo major est proportio vis secundæ LM ad vim primam,
cæteris paribus. Jam vero vis tertia QM, trahendo corpus P secundum lineam
ipsi QS parallelam, componet cum viribus prioribus vim quæ non amplius
dirigitur a P in S, quæq; ab hac determinatione tanto magis aberrat, quanto
major est proportio hujus tertiæ vis ad vires priores, cæteris paribus;
atq; adeo quæ faciet ut corpus P, radio SP, areas non amplius temporibus
proportionales describet, atq; aberratio ab hac proportionalitate ut tanto
major sit, quanto major est proportio vis hujus tertiæ ad vires cæteras.
Orbis vero PAB aberrationem a forma Elliptica præfata hæc vis tertia
duplici de causa adaugebit, tum quod non dirigitur a P ad S, tum etiam quod
non sit proportionalis quadrato distantiæ PS. Quibus intellectis,
manifestum est quod areæ temporibus tum maxime fiunt proportionales, ubi
vis tertia, manentibus viribus cæteris, fit minima; & quod Orbis PAB tum
maxime accedit ad præfatam formam Ellipticam, ubi vis tam secunda quam
tertia, sed præcipue vis tertia, fit minima, vi prima manente.

Exponatur corporis S attractio acceleratrix versus Q per lineam QN; & si
attractiones acceleratrices QM, QN æquales essent, hæ trahendo corpora S &
P æqualiter & secundum lineas parallelas, nil mutarent situm eorum ad
invicem. Iidem jam forent corporum illorum motus inter se (par Legum Corol.
6.) ac si hæ attractiones tollerentur. Et pari ratione si attractio QN
minor esset attractione QM, tolleret ipsa attractionis QM partem QN, &
maneret pars sola MN, qua temporum & arearum proportionalitas & Orbitæ
forma illa Elliptica perturbaretur. Et similiter si attractio QN major
esset attractione QM, oriretur ex differentia sola MN perturbatio
proportionalitatis & Orbitæ. Sic per attractionem QN reducitur semper
attractio tertia superior QM ad attractionem MN, attractione prima &
secunda manentibus prorsus immutatis: & propterea areæ ac tempora ad
proportionalitatem, & Orbita PAB ad formam præfatam Ellipticam tum maxime
accedunt, ubi attractio MN vel nulla est, vel quam fieri possit minima; hoc
est ubi corporum P & S attractiones acceleratrices, factæ versus corpus Q,
accedunt quantum fieri potest ad æqualitatem; id est ubi attractio QN non
est nulla, neq; minor minima attractionum omnium QM, sed inter attractionum
omnium QM maximam & minimam quasi mediocris, hoc est, non multo major neq;
multo minor attractione QK.   Q. E. D.

_Cas. 2._ Revolvantur jam corpora minora P, Q circa maximum S in planis
diversis, & vis LM, agendo secundum lineam PS in plano Orbitæ PAB sitam,
eundem habebit effectum ac prius, neq; corpus P de plano Orbitæ suæ
deturbabit. At vis altera NM, agendo secundum lineam quæ ipsi QS parallela
est, (atq; adeo, quando corpus Q versatur extra lineam Nodorum, inclinatur
ad planum Orbitæ PAB;) præter perturbationem motus in longitudinem jam ante
expositam, inducet perturbationem motus in latitudinem, trahendo corpus P
de plano suæ Orbitæ. Et hæc perturbatio in dato quovis corporum P & S ad
invicem situ, erit ut vis illa generans MN, adeoq; minima evadet ubi MN est
minima, hoc est (uti jam exposui) ubi attractio QN non est multo major neq;
multo minor attractione QK.   Q. E. D.

_Corol. 1._ Ex his facile colligitur quod si corpora plura minora P, Q, R
&c. revolvantur circa maximum S: motus corporis intimi P minime
perturbabitur attractionibus exteriorum, ubi corpus maximum S pariter a
cæteris, pro ratione virium acceleratricum, attrahitur & agitatur atq;
cæteri a se mutuo.

_Corol. 2._ In Systemate vero trium corporum S, P, Q; si attractiones
acceleratrices binorum quorumcunq; in tertium sint ad invicem reciproce ut
quadrata distantiarum, corpus P radio PS aream circa corpus S velocius
describet prope conjunctionem A & oppositionem B, quam prope quadraturas C,
D. Namq; vis omnis qua corpus P urgetur & corpus S non urgetur, quæq; non
agit secundum lineam PS, accelerat vel retardat descriptionem areæ, perinde
ut ipsa in antecedentia vel in consequentia dirigitur. Talis est vis NM.
Hæc in transitu corporis P a C ad A tendit in antecedentia, motumq;
accelerat; dein usq; ad D in consequentia, & motum retardat; tum in
antecedentia usq; ad B, & ultimo in consequentia transeundo a B ad C.

_Corol. 3._ Et eodem argumento patet quod corpus P, cæteris paribus,
velocius movetur in Conjunctione & Oppositione quam in Quadraturis.

_Corol. 4._ Orbita corporis P cæteris paribus curvior est in quadraturis
quam in Conjunctione & Oppositione. Nam corpora velociora minus deflectunt
a recto tramite. Et præterea vis NM, in Conjunctione & Oppositione,
contraria est vi qua corpus S trahit corpus P, adeoq; vim illam minuit;
corpus autem P minus deflectet a recto tramite, ubi minus urgetur in corpus
S.

_Corol. 5._ Unde corpus P, cæteris paribus, longius recedet a corpore S in
quadraturis, quam in Conjunctione & Oppositione. Hæc ita se habent excluso
motu Excentricitatis. Nam si Orbita corporis P excentrica sit,
Excentricitas ejus (ut mox in hujus Corol. 9. ostendetur) evadet maxima ubi
Apsides sunt in Syzygiis; indeq; fieri potest ut corpus P, ad Apsidem
summam appellans, absit longius a corpore S in Syzygiis quam in
Quadraturis.

_Corol. 6._ Quoniam vis centripeta corporis centralis S, qua corpus P
retinetur in Orbe suo, augetur in quadraturis per additionem vis LM, ac
diminuitur in Syzygiis per ablationem vis KL, & ob magnitudinem vis KL,
magis diminuitur quam augeatur, est autem vis illa centripeta (per Corol.
2, Prop. IV.) in ratione composita ex ratione simplici radii SP directe &
ratione duplicata temporis periodici inverse: patet hanc rationem
compositam diminui per actionem vis KL, adeoq; tempus periodicum, si maneat
Orbis radius SP, augeri, idq; in dimidiata ratione qua vis illa centripeta
diminuitur: auctoq; adeo vel diminuto hoc Radio, tempus periodicum augeri
magis, vel diminui minus quam in Radii hujus ratione sesquiplicata, per
Corol. 6. Prop. IV. Si vis illa corporis centralis paulatim languesceret,
corpus P minus semper & minus attractum perpetuo recederet longius a centro
S; & contra, si vis illa augeretur, accederet propius. Ergo si actio
corporis longinqui Q, qua vis illa diminuitur, augeatur ac diminuatur per
vices, augebitur simul ac diminuetur Radius SP per vices, & tempus
periodicum augebitur ac diminuetur in ratione composita ex ratione
sesquiplicata Radii & ratione dimidiata qua vis illa centripeta corporis
centralis S per incrementum vel decrementum actionis corporis longinqui Q
diminuitur vel augetur.

_Corol. 7._ Ex præmissis consequitur etiam quod Ellipseos a corpore P
descriptæ axis seu Apsidum linea, quoad motum angularem progreditur &
regreditur per vices, sed magis tamen progreditur, & in singulis corporis
revolutionibus per excessum progressionis fertur in consequentia. Nam vis
qua corpus P urgetur in corpus S in Quadraturis, ubi vis MN evanuit,
componitur ex vi LM & vi centripeta qua corpus S trahit corpus P. Vis prior
LM, si augeatur distantia PS, augetur in eadem fere ratione cum hac
distantia, & vis posterior decrescit in duplicata illa ratione, adeoq;
summa harum virium decrescit in minore quam duplicata ratione distantiæ PS,
& propterea, per Corol. 1. Prop. XLV. facit Augem seu Apsidem summam
regredi. In Conjunctione vero & Oppositione, vis qua corpus P urgetur in
corpus S differentia est inter vim qua corpus S trahit corpus P & vim KL; &
differentia illa, propterea quod vis KL augetur quamproxime in ratione
distantiæ PS, decrescit in majore quam duplicata ratione distantiæ PS,
adeoq; per Corol. 1. Prop. XLV. facit Augem progredi. In locis inter
Syzygias & Quadraturas, pendet motus Augis ex causa utraq; conjunctim, adeo
ut pro hujus vel alterius excessu progrediatur ipsa vel regrediatur. Unde
cum vis KL in Syzygiis sit quasi duplo major quam vis LM in quadraturis,
excessus in tota revolutione erit penes vim KL, transferetq; Augem singulis
revolutionibus in consequentia. Veritas autem hujus & præcedentis
Corollarii facilius intelligetur concipiendo Systema corporum duorum S, P
corporibus pluribus Q, Q, Q &c. in Orbe QE consistentibus, undiq; cingi.
Namq; horum actionibus actio ipsius S minuetur undiq;, decrescetq; in
ratione plusquam duplicata distantiæ.

_Corol. 8._ Cum autem pendeat Apsidum progressus vel regressus a decremento
vis centripetæ facto in majori vel minori quam duplicata ratione distantiæ
SP, in transitu corporis ab Apside ima ad Apsidem summam; ut & a simili
incremento in reditu ad Apsidem imam; atq; adeo maximus sit ubi proportio
vis in Apside summa ad vim in Apside ima maxime recedit a duplicata ratione
distantiarum inversa: manifestum est quod Apsides in Syzygiis suis, per vim
ablatitiam KL seu NM - LM, progredientur velocius, inq; Quadraturis suis
tardius recedent per vim addititiam LM. Ob diuturnitatem vero temporis quo
velocitas progressus vel tarditas regressus continuatur, fit hæc
inæqualitas longe maxima.

_Corol. 9._ Si corpus aliquod vi reciproce proportionali quadrato distantiæ
suæ a centro, revolveretur circa hoc centrum in Ellipsi, & mox, in descensu
ab Apside summa seu Auge ad Apsidem imam, vis illa per accessum perpetuum
vis novæ augeretur in ratione plusquam duplicata distantiæ diminutæ:
Manifestum est quod corpus, perpetuo accessu vis illius novæ impulsum
semper in centrum, magis vergeret in hoc centrum, quam si urgeretur vi sola
crescente in duplicata ratione distantiæ diminutæ, adeoq; Orbem describeret
Orbe Elliptico interiorem, & in Apside ima propius accederet ad centrum
quam prius. Orbis igitur, accessu hujus vis novæ, fiet magis excentricus.
Si jam vis, in recessu corporis ab Apside ima ad Apsidem summam,
decresceret iisdem gradibus quibus ante creverat, rediret corpus ad
distantiam priorem, adeoq; si vis decrescat in majori ratione, corpus jam
minus attractum ascendet ad distantiam majorem & sic Orbis Excentricitas
adhuc magis augebitur. Igitur si ratio incrementi & decrementi vis
centripetæ singulis revolutionibus augeatur, augebitur semper
Excentricitas; & e contra, diminuetur eadem si ratio illa decrescat. Jam
vero in Systemate corporum S, P, Q, ubi Apsides orbis PAB sunt in
quadraturis, ratio illa incrementi ac decrementi minima est, & maxima fit
ubi Apsides sunt in Syzygiis. Si Apsides constituantur in quadraturis ratio
prope Apsides minor est, & prope Syzygias major quam duplicata
distantiarum, & ex ratione illa majori oritur Augis motus velocissimus, uti
jam dictum est. At si consideretur ratio incrementi vel decrementi totius
in progressu inter Apsides, hæc minor est quam duplicata distantiarum. Vis
in Apside ima est ad vim in Apside summa in minore quam duplicata ratione
distantiæ Apsidis summæ ab umbilico Ellipseos ad distantiam Apsidis imæ ab
eodem umbilico: & e contra, ubi Apsides constituuntur in Syzygiis, vis in
Apside ima est ad vim in Apside summa in majore quam duplicata ratione
distantiarum. Nam vires LM in Quadraturis additæ viribus corporis S
componunt vires in ratione minore, & vires KL in Syzygiis subductæ viribus
corporis S relinquunt vires in ratione majore. Est igitur ratio decrementi
& incrementi totius in transitu inter Apsides, minima in quadraturis,
maxima in Syzygiis: & propterea in transitu Apsidum a quadraturis ad
Syzygias perpetuo augetur, augetq; Excentricitatem Ellipseos; inq; transitu
a Syzygiis ad quadraturas perpetuo diminuitur, & Excentricitatem diminuit.

_Corol. 10._ Ut rationem ineamus errorum in latitudinem, fingamus planum
Orbis QES immobile manere; & ex errorum exposita causa manifestum est, quod
ex viribus NM, ML, quæ sunt causa illa tota, vis ML agendo semper secundum
planum Orbis PAB, nunquam perturbat motus in latitudinem, quodq; vis NM ubi
Nodi sunt in Syzygiis, agendo etiam secundum idem Orbis planum, non
perturbat hos motus; ubi vero sunt in Quadraturis eos maxime perturbat,
corpusq; P de plano Orbis sui perpetuo trahendo, minuit inclinationem plani
in transitu corporis a quadraturis ad Syzygias, augetq; vicissim eandem in
transitu a Syzygiis ad quadraturas. Unde fit ut corpore in Syzygiis
existente inclinatio evadat omnium minima, redeatq; ad priorem magnitudinem
circiter, ubi corpus ad Nodum proximum accedit. At si Nodi constituantur in
Octantibus post quadraturas, id est inter C & A, D & B, intelligetur ex
modo expositis quod, in transitu corporis P a Nodo alterutro ad gradum inde
nonagesimum, inclinatio plani perpetuo minuitur; deinde in transitu per
proximos 45 gradus, usq; ad quadraturam proximam, inclinatio augetur, &
postea denuo in transitu per alios 45 gradus, usq; ad nodum proximum,
diminuitur. Magis itaq; diminuitur inclinatio quam augetur, & propterea
minor est semper in nodo subsequente quam in præcedente. Et simili
ratiocinio inclinatio magis augetur quam diminuitur, ubi nodi sunt in
Octantibus alteris inter A & D, B & C. Inclinatio igitur ubi Nodi sunt in
Syzygiis est omnium maxima. In transitu eorum a Syzygiis ad quadraturas, in
singulis corporis ad Nodos appulsibus, diminuitur, fitq; omnium minima ubi
nodi sunt in quadraturis & corpus in Syzygiis: dein crescit iisdem gradibus
quibus antea decreverat, Nodisq; ad Syzygias proximas appulsis ad
magnitudinem primam revertitur.

_Corol. 11._ Quoniam corpus P ubi nodi sunt in quadraturis perpetuo
trahitur de plano Orbis sui, idq; in partem versus Q, in transitu suo a
nodo C per Conjunctionem A ad nodum D; & in contrariam partem in transitu a
nodo D per Oppositionem B ad nodum C; manifestum est quod in motu suo a
nodo C, corpus perpetuo recedit ab Orbis sui plano primo CD, usq; dum
perventum est ad nodum proximum; adeoq; in hoc nodo, longissime distans a
plano illo primo CD, transit per planum Orbis QES, non in plani illius Nodo
altero D, sed in puncto quod inde vergit ad partes corporis Q, quodq;
proinde novus est Nodi locus in anteriora vergens. Et simili argumento
pergent Nodi recedere in transitu Corporis de hoc nodo in nodum proximum.
Nodi igitur in quadraturis constituti perpetuo recedunt, in Syzygiis (ubi
motus in latitudinem nil perturbatur) quiescunt; in locis intermediis
conditionis utriusq; participes recedunt tardius, adeoq; semper vel
retrogradi vel stationarii singulis revolutionibus feruntur in
antecedentia.

_Corol. 12._ Omnes illi in his Corollariis descripti errores sunt paulo
majores in conjunctione Corporum P, Q quam in eorum Oppositione, idq; ob
majores vires generantes NM & ML.

_Corol. 13._ Cumq; rationes horum Corollariorum non pendeant a magnitudine
corporis Q, obtinent præcedentia omnia, ubi corporis Q tanta statuitur
magnitudo ut circa ipsum revolvatur corporum duorum S & P Systema. Et ex
aucto corpore Q, auctaq; adeo ipsius vi centripeta, a qua errores corporis
P oriuntur, evadent errores illi omnes (paribus distantiis) majores in hoc
casu quam in altero, ubi corpus Q circum Systema corporum P & S revolvitur.

_Corol. 14._ Cum autem vires NM, ML, ubi corpus Q longinquum est, sint
quamproxime ut vis QK & ratio PS ad QS conjunctim, hoc est, si detur tum
distantia PS, tum corporis Q vis absoluta, ut QS cub. reciproce; sint autem
vires illæ NM, ML causæ errorum & effectuum omnium de quibus actum est in
præcedentibus Corollariis: manifestum est quod effectus illi omnes, stante
corporum S & P Systemate, sint quamproxime in ratione composita ex ratione
directa vis absolutæ corporis Q & ratione triplicata inversa distantiæ QS.
Unde si Systema corporum S & P revolvatur circa corpus longinquum Q, vires
illæ NM, ML & earum effectus erunt (per Corol. 2. & 6. Prop. IV.) reciproce
in duplicata ratione temporis periodici. Et inde si magnitudo corporis Q
proportionalis sit ipsius vi absolutæ, erunt vires illæ NM, ML & earum
effectus directe ut cubus diametri apparentis longinqui corporis Q e
corpore S spectati, & vice versa. Namq; hæ rationes eædem sunt atq; ratio
superior composita.

_Corol. 15._ Et quoniam si, manentibus Orbium QE & PAB forma,
proportionibus & inclinatione ad invicem, mutetur eorum magnitudo, & si
corporum Q & S vel maneant vel mutentur vires in data quavis ratione, hæ
vires (hoc est vis corporis S, qua corpus P de recto tramite in Orbitam PAB
deflectere, & vis corporis Q, qua corpus idem P de Orbita illa deviare
cogitur) agunt semper eodem modo & eadem proportione: necesse est ut
similes & proportionales sint effectus omnes & proportionalia effectuum
tempora; hoc est, ut errores omnes lineares sint ut Orbium diametri,
angulares vero iidem qui prius, & errorum linearium similium vel angularium
æqualium tempora ut Orbium tempora periodica.

_Corol. 16._ Unde, si dentur Orbium formæ & inclinatio ad invicem, &
mutentur utcunq; corporum magnitudines, vires & distantiæ; ex datis
erroribus & errorum temporibus in uno Casu colligi possunt errores &
errorum tempora in alio quovis, quam proxime: Sed brevius hac Methodo.
Vires NM, ML cæteris stantibus sunt ut Radius SP, & harum effectus
periodici (per Corol. 2, Lem. X) ut vires & quadratum temporis periodici
corporis P conjunctim. Hi sunt errores lineares corporis P; & hinc errores
angulares e centro S spectati (id est tam motus Augis & Nodorum, quam omnes
in longitudinem & latitudinem errores apparentes) sunt in qualibet
revolutione corporis P, ut quadratum temporis revolutionis quam proxime.
Conjungantur hæ rationes cum rationibus Corollarii 14. & in quolibet
corporum S, P, Q Systemate, ubi P circum S sibi propinquum, & S circum Q
longinquum revolvitur, errores angulares corporis P, de centro S
apparentes, erunt, in singulis revolutionibus corporis illius P, ut
quadratum temporis periodici corporis P directe & quadratum temporis
periodici corporis S inverse. Et inde motus medius Augis erit in data
ratione ad motum medium Nodorum; & motus uterq; erit ut tempus periodicum
corporis P directe & quadratum temporis periodici corporis S inverse.
Augendo vel minuendo Excentricitatem & Inclinationem Orbis PAB non mutantur
motus Augis & Nodorum sensibiliter, nisi ubi eædem sunt nimis magnæ.

_Corol. 17._ Cum autem linea LM nunc major si nunc minor quam radius PS,
Exponatur vis mediocris LM per radium illum PS, & erit hæc ad vim mediocrem
QK vel QN (quam exponere licet per QS) ut longitudo PS ad longitudinem QS.
Est autem vis mediocris QN vel QS, qua corpus retinetur in orbe suo circum
Q, ad vim qua corpus P retinetur in Orbe suo circum S, in ratione composita
ex ratione radii QS ad radium PS, & ratione duplicata temporis periodici
corporis P circum S ad tempus periodicum corporis S circum Q. Et ex æquo,
vis mediocris LM, ad vim qua corpus P retinetur in Orbe suo circum S (quave
corpus idem P eodem tempore periodico circum punctum quodvis immobile S ad
distantiam PS revolvi posset) est in ratione illa duplicata periodicorum
temporum. Datis igitur temporibus periodicis una cum distantia PS, datur
vis mediocris LM; & ea data datur etiam vis MN quamproxime per analogiam
linearum PS, MN.

_Corol. 18._ Iisdem legibus quibus corpus P circum corpus S revolvitur,
fingamus corpora plura fluida circum idem S ad æquales ab ipso distantias
moveri; deinde ex his contiguis factis conflari annulum fluidum, rotundum
ac corpori S concentricum; & singulæ annuli partes, motus suos omnes ad
legem corporis P peragendo, propius accedent ad corpus S, & celerius
movebuntur in Conjunctione & Oppositione ipsarum & corporis Q, quam in
Quadraturis. Et Nodi annuli hujus seu intersectiones ejus cum plano Orbitæ
corporis Q vel S, quiescent in Syzygiis; extra Syzygias vero movebuntur in
antecedentia, & velocissime quidem in Quadraturis, tardius aliis in locis.
Annuli quoq; inclinatio variabitur, & axis ejus singulis revolutionibus
oscillabitur, completaq; revolutione ad pristinum situm redibit, nisi
quatenus per præcessionem Nodorum circumfertur.

_Corol. 19._ Fingas jam globum corporis S ex materia non fluida constantem
ampliari & extendi usq; ad hunc annulum, & alveo per circuitum excavato
continere Aquam, motuq; eodem periodico circa axem suum uniformiter
revolvi. Hic liquor per vices acceleratus & retardatus (ut in superiore
Lemmate) in Syzygiis velocior erit, in Quadraturis tardior quam superficies
Globi, & sic fluet in alveo refluetq; ad modum Maris. Aqua revolvendo circa
Globi centrum quiescens, si tollatur attractio Q, nullum acquiret motum
fluxus & refluxus. Par est ratio Globi uniformiter progredientis in
directum & interea revolventis circa centrum suum (per Legum Corol. 5) ut &
Globi de cursa rectilineo uniformiter tracti (per Legum Corol. 6.) Accedat
autem corpus Q, & ab ipsius inæquabili attractione mox turbabitur Aqua.
Etenim major erit attractio aquæ propioris, minor ea remotioris. Vis autem
LM trahet aquam deorsum in Quadraturis, facietq; ipsam descendere usq; ad
Syzygias; & vis KL trahet eandem sursum in Syzygiis, sistetq; descensum
ejus & faciet ipsam ascendere usq; ad Quadraturas.

_Corol. 20._ Si annulus jam rigeat & minuatur Globus, cessabit motus
fluendi & refluendi; sed Oscillatorius ille inclinationis motus & præcessio
Nodorum manebunt. Habeat Globus eundem axem cum annulo, gyrosq; compleat
iisdem temporibus, & superficie sua contingat ipsum interius, eiq;
inhæreat; & participando motum ejus, compages utriusq; Oscillabitur & Nodi
regredientur. Nam Globus, ut mox dicetur, ad suscipiendas impressiones
omnes indifferens est. Annuli Globo orbati maximus inclinationis angulus
est ubi Nodi sunt in Syzygiis. Inde in progressu Nodorum ad Quadraturas
conatur is inclinationem suam minuere, & isto conatu motum imprimit Globo
toti. Retinet Globus motum impressum usq; dum annulus conatu contrario
motum hunc tollat, imprimatq; motum novum in contrariam partem: Atq; hac
ratione maximus decrescentis inclinationis motus fit in Quadraturis
Nodorum, & minimus inclinationis angulus in Octantibus post Quadraturas;
dein maximus reclinationis motus in Syzygiis & maximus angulus in
Octantibus proximis. Et eadem est ratio Globi annulo nudati, qui in
regionibus æquatoris vel altior est paulo quam juxta polos, vel constat ex
materia paulo densiore. Supplet enim vicem annuli iste materiæ in æquatoris
regionibus excessus. Et quanquam, aucta utcunq; Globi hujus vi centripeta,
tendere supponantur omnes ejus partes deorsum, ad modum gravitantium
partium telluris, tamen Phænomena hujus & præcedentis Corollarii vix inde
mutabuntur.

_Corol. 21._ Eadem ratione qua materia Globi juxta æquatorem redundans
efficit ut Nodi regrediantur, atq; adeo per hujus incrementum augetur iste
regressus, per diminutionem vero diminuitur & per ablationem tollitur; si
materia plusquam redundans tollatur, hoc est, si Globus juxta æquatorem vel
depressior reddatur vel rarior quam juxta polos, orietur motus Nodorum in
consequentia.

_Corol. 22._ Et inde vicissim ex motu Nodorum innotescit constitutio Globi.
Nimirum si Globus polos eosdem constanter servat & motus fit in
antecedentia, materia juxta æquatorem redundat; si in consequentia,
deficit. Pone Globum uniformem & perfecte circinatum in spatiis liberis
primo quiescere; dein impetu quocunq; oblique in superficiem suam facto
propelli, & motum inde concipere partim circularem, partim in directum.
Quoniam Globus iste ad axes omnes per centrum suum transeuntes
indifferenter se habet, neq; propensior est in unum axem, unumve axis
situm, quam in alium quemvis; perspicuum est quod is axem suum axisq;
inclinationem vi propria nunquam mutabit. Impellatur jam Globus oblique in
eadem illa superficiei parte qua prius, impulsu quocunq; novo; & cum citior
vel serior impulsus effectum nil mutet, manifestum est quod hi duo impulsus
successive impressi eundem producent motum ac si simul impressi fuissent,
hoc est eundem ac si Globus vi simplici ex utroq; (per Legum Corol. 2.)
composita impulsus fuisset, atq; adeo simplicem, circa axem inclinatione
datum. Et par est ratio impulsus secundi facti in locum alium quemvis in
æquatore motus primi; ut & impulsus primi facti in locum quemvis in
æquatore motus, quem impulsus secundus absq; primo generaret; atq; adeo
impulsuum amborum factorum in loca quæcunq;: Generabunt hi eundem motum
circularem ac si simul & semel in locum intersectionis æquatorum motuum
illorum, quos seorsim generarent, fuissent impressi. Globus igitur
homogeneus & perfectus non retinet motus plures distinctos, sed impressos
omnes componit & ad unum reducit, & quatenus in se est, gyratur semper motu
simplici & uniformi circa axem unicum inclinatione semper invariabili
datum. Sed nec vis centripeta inclinationem axis, aut rotationis
velocitatem mutare potest. Si Globus plano quocunq; per centrum suum &
centrum in quod vis dirigitur transeunte dividi intelligatur in duo
hemisphæria, urgebit semper vis illa utrumq; hemisphærium æqualiter, &
propterea Globum quoad motum rotationis nullam in partem inclinabit.
Addatur vero alicubi inter polum & æquatorem materia nova in formam montis
cumulata, & hæc, perpetuo conatu recedendi a centro sui motus, turbabit
motum Globi, facietq; polos ejus errare per ipsius superficiem, & circulos
circum se punctumq; sibi oppositum perpetuo describere. Neq; corrigetur
ista vagationis enormitas, nisi locando montem illum vel in polo alterutro,
quo in Casu, per Corol. 21, Nodi æquatoris progredientur; vel in æquatore,
qua ratione, per Corol. 20, Nodi regredientur; vel deniq; ex altera axis
parte addendo materiam novam, qua mons inter movendum libretur: & hoc pacto
Nodi vel progredientur, vel recedent, perinde ut mons & hæcce nova materia
sunt vel polo vel æquatori propiores.

Prop. LXVII. Theor. XXVII.

    _Positis iisdem attractionum legibus, dico quod corpus exterius Q,
    circa interiorum P, S commune Gravitatis centrum C, radiis ad centrum
    illud ductis, describit areas temporibus magis proportionales & Orbem
    ad formam Ellipseos umbilicum in centro eodem habentis magis
    accedentem, quam circa corpus intimum & maximum S, radiis ad ipsum
    ductis, describere potest._

Nam corporis Q attractiones versus S & P componunt ipsius attractionem
absolutam, quæ magis dirigitur in corporum S & P commune gravitatis centrum
C, quam in corpus maximum S, quæq; quadrato distantiæ QC magis est
proportionalis reciproce, quam quadrato distantiæ QS: ut rem perpendenti
facile constabit.

Prop. LXVIII. Theor. XXVIII.

    _Positis iisdem attractionum legibus, dico quod corpus exterius Q circa
    interiorum P & S commune gravitatis centrum C, radiis ad centrum illud
    ductis, describit areas temporibus magis proportionales, & Orbem ad
    formam Ellipseos umbilicum in centro eodem habentis magis accedentem,
    si corpus intimum & maximum his attractionibus perinde atq; cætera
    agitetur, quam si id vel non attractum quiescat, vel multo magis aut
    multo minus attractum aut multo magis aut multo minus agitetur._

[Illustration]

Demonstratur eodem fere modo cum Prop. LXVI, sed argumento prolixiore, quod
ideo prætereo. Suffecerit rem sic æstimare. Ex demonstratione Propositionis
novissimæ liquet centrum in quod corpus Q conjunctis viribus urgetur,
proximum esse communi centro gravitatis illorum duorum. Si coincideret hoc
centrum cum centro illo communi, & quiesceret commune centrum gravitatis
corporum trium; describerent corpus Q ex una parte, & commune centrum
aliorum duorum ex altera parte, circa commune omnium centrum quiescens,
Ellipses accuratas. Liquet hoc per Corollarium secundum Propositionis
LVIII. collatum cum demonstratis in Prop. LXIV. & LXV. Perturbatur iste
motus Ellipticus aliquantulum per distantiam centri duorum a centro in quod
tertium Q attrahitur. Detur præterea motus communi trium centro, &
augebitur perturbatio. Proinde minima est perturbatio, ubi commune trium
centrum quiescit, hoc est ubi corpus intimum & maximum S lege cæterorum
attrahitur: fitq; major semper ubi trium commune illud centrum, minuendo
motum corporis S, moveri incipit & magis deinceps magisq; agitatur.

_Corol._ Et hinc si corpora plura minora revolvantur circa maximum,
colligere licet quod Orbitæ descriptæ propius accedent ad Ellipticas, &
arearum descriptiones fient magis æquabiles, si corpora omnia viribus
acceleratricibus, quæ sunt ut eorum vires absolutæ directe & quadrata
distantiarum inverse, se mutuo trahant agitentq;, & Orbitæ cujusq;
umbilicus collocetur in communi centro gravitatis corporum omnium
interiorum (nimirum umbilicus Orbitæ primæ & intimæ in centro gravitatis
corporis maximi & intimi; ille Orbitæ secundæ, in communi centro gravitatis
corporum duorum intimorum; iste tertiæ, in communi centro gravitatis trium
interiorum & sic deinceps) quam si corpus intimum quiescat & statuatur
communis umbilicus orbitarum Omnium.

Prop. LXIX. Theor. XXIX.

    _In Systemate corporum plurium A, B, C, D &c. si corpus aliquod A
    trahit cætera omnia B, C, D &c. viribus acceleratricibus quæ sunt
    reciproce ut quadrata distantiarum a trahente; & corpus aliud B trahit
    etiam cætera A, C, D &c. viribus quæ sunt reciproce ut quadrata
    distantiarum a trahente: erunt absolutæ corporum trahentium A, B vires
    ad invicem, ut sunt ipsa corpora A, B, quorum sunt vires._

Nam attractiones acceleratrices corporum omnium B, C, D versus A, paribus
distantiis, sibi invicem æquantur ex hypothesi, & similiter attractiones
acceleratrices corporum omnium versus B, paribus distantiis, sibi invicem
æquantur. Est autem absoluta vis attractiva corporis A ad vim absolutam
attractivam corporis B, ut attractio acceleratrix corporum omnium versus A
ad attractionem acceleratricem corporum omnium versus B, paribus
distantiis; & ita est attractio acceleratrix corporis B versus A, ad
attractionem acceleratricem corporis A versus B. Sed attractio acceleratrix
corporis B versus A est ad attractionem acceleratricem corporis A versus B,
ut massa corporis A ad massam corporis B; propterea quod vires motrices,
quæ (per Definitionem secundam, septimam & octavam) ex viribus
acceleratricibus in corpora attracta ductis oriuntur, sunt (per motus Legem
tertiam) sibi invicem æquales. Ergo absoluta vis attractiva corporis A est
ad absolutam vim attractivam corporis B, ut massa corporis A ad massam
corporis B.   Q. E. D.

_Corol. 1._ Hinc si singula Systematis corpora A, B, C, D, &c. seorsim
spectata trahant cætera omnia viribus acceleratricibus quæ sint reciproce
ut Quadrata distantiarum a trahente; erunt corporum illorum omnium vires
absolutæ ad invicem ut sunt ipsa corpora.

_Corol. 2._ Eodem argumento, si singula Systematis corpora A, B, C, D &c.
seorsim spectata trahant cætera omnia viribus acceleratricibus quæ sunt vel
reciproce vel directe in ratione dignitatis cujuscunq; distantiarum a
trahente, quæve secundum legem quamcunq; communem ex distantiis ab unoquoq;
trahente definiuntur; constat quod corporum illorum vires absolutæ sunt ut
corpora.

_Corol. 3._ In Systemate corporum, quorum vires decrescunt in ratione
duplicata distantiarum, si minora circa maximum in Ellipsibus umbilicum
communem in maximi illius centro habentibus quam fieri potest
accuratissimis revolvantur, & radiis ad maximum illud ductis describant
areas temporibus quam maxime proportionales: erunt corporum illorum vires
absolutæ ad invicem, aut accurate aut quamproxime in ratione corporum; &
contra. Patet per Corol. Prop. LXVIII. collatum cum hujus Corol. 1.

_Scholium._

His Propositionibus manuducimur ad analogiam inter vires centripetas &
corpora centralia, ad quæ vires illæ dirigi solent. Rationi enim
consentaneum est, ut vires quæ ad corpora diriguntur pendeant ab eorundem
natura & quantitate, ut fit in Magneticis. Et quoties hujusmodi casus
incidunt, æstimandæ erunt corporum attractiones, assignando singulis eorum
particulis vires proprias, & colligendo summas virium. Vocem attractionis
hic generaliter usurpo pro corporum conatu quocunq; accedendi ad invicem;
sive conatus iste fiat ab actione corporum vel se mutuo petentium, vel per
Spiritus emissos se invicem agitantium, sive is ab actione Ætheris aut
Aeris mediive cujuscunq; seu corporei seu incorporei oriatur corpora
innatantia in se invicem utcunq; impellentis. Eodem sensu generali usurpo
vocem impulsus, non species virium & qualitates physicas, sed quantitates &
proportiones Mathematicas in hoc Tractatu expendens; ut in Definitionibus
explicui. In Mathesi investigandæ sunt virium quantitates & rationes illæ,
quæ ex conditionibus quibuscunq; positis consequentur: deinde ubi in
Physicam descenditur, conferendæ sunt hæ rationes cum Phænomenis, ut
innotescat quænam virium conditiones singulis corporum attractivorum
generibus competant. Et tum demum de virium speciebus, causis & rationibus
physicis tutius disputare licebit. Videamus igitur quibus viribus corpora
Sphærica, ex particulis modo jam exposito attractivis constantia, debeant
in se mutuo agere, & quales motus inde consequantur.

       *       *       *       *       *


SECT. XII.

_De Corporum Sphæricorum Viribus attractivis._

Prop. LXX. Theor. XXX.

[Illustration]

    _Si ad Sphæricæ superficiei puncta singula tendant vires æquales
    centripetæ decrescentes in duplicata ratione distantiarum a punctis:
    dico quod corpusculum intra superficiem constitutum his viribus nullam
    in partem attrahitur._

Sit HIKL superficies illa Sphærica, & P corpusculum intus constitutum. Per
P agantur ad hanc superficiem lineæ duæ HK, IL, arcus quam minimos HI, KL
intercipientes; & ob triangula HPI, LPK (per Corol. 3. Lem. VII.) similia,
arcus illi erunt distantiis HP, LP proportionales, & superficiei Sphæricæ
particulæ quævis, ad HI & KL rectis per punctum P transeuntibus undiq;
terminatæ, erunt in duplicata illa ratione. Ergo vires harum particularum
in corpus P exercitæ sunt inter se aquales. Sunt enim ut particulæ directe
& quadrata distantiarum inverse. Et hæ duæ rationes componunt rationem
æqualitatis. Attractiones igitur in contrarias partes æqualiter factæ se
mutuo destruunt. Et simili argumento attractiones omnes per totam Sphæricam
superficiem a contrariis attractionibus destruuntur. Proinde corpus P
nullam in partem his attractionibus impellitur.   Q. E. D.

Prop. LXXI. Theor. XXXI.

    _Iisdem positis, dico quod corpusculum extra Sphæricam superficiem
    constitutum attrahitur ad centrum Sphæræ, vi reciproce proportionali
    quadrato distantiæ suæ ab eodem centro._

[Illustration]

Sint AHKB, ahkb æquales duæ superficies Sphæricæ, centris S, s, diametris
AB, ab descriptæ, & P, p corpuscula sita extrinsecus in diametris illis
productis. Agantur a corpusculis lineæ PHK, PIL, phk, pil, auferentes a
circulis maximis AHB, ahb, æquales arcus quam minimos HK, hk & HL, hl: Et
ad eas demittantur perpendicula SD, sd; SE, se; IR, ir; quorum SD, sd
secent PL, pl in F & f. Demittantur etiam ad diametros perpendicula IQ, iq;
& ob æquales DS & ds, ES & es, & angulos evanescentes DPE & dpe, lineæ PE,
PF & pe, pf & lineolæ DF, df pro æqualibus habeantur: quippe quarum ratio
ultima, angulis illis DPE, dpe simul evanescentibus, est æqualitatis. His
itaq; constitutis, erit PI ad PF ut RI ad DF, & pf ad pi ut DF vel df ad
ri; & ex æquo PI × pf ad PF × pi ut RI ad ri, hoc est (per Corol. 3. Lem.
VII.) ut arcus IH ad arcum ih. Rursus PI ad PS ut IQ ad SE, & ps ad pi ut
SE vel se ad iq; & ex æquo PI × ps ad PS × pi ut IQ ad iq. Et conjunctis
rationibus PI quad. × pf × ps ad pi quad. × PF × PS, ut IH × IQ ad ih × iq;
hoc est, ut superficies circularis, quam arcus IH convolutione semicirculi
AKB circa diametrum AB describet, ad superficiem circularem, quam arcus ih
convolutione semicirculi akb circa diametrum ab describet. Et vires, quibus
hæ superficies secundum lineas ad se tendentes attrahunt corpuscula P & p,
sunt (per Hypothesin) ut ipsæ superficies applicatæ ad quadrata
distantiarum suarum a corporibus, hoc est, ut pf × ps ad PF × PS. Suntq; hæ
vires ad ipsarum partes obliquas quæ (facta per Legum Corol. 2 resolutione
virium) secundum lineas PS, ps ad centra tendunt, ut PI ad PQ, & pi ad pq;
id est (ob similia triangula PIQ & PSF, piq & psf) ut PS ad PF & ps ad pf.
Unde ex æquo fit attractio corpusculi hujus P versus S ad attractionem
corpusculi p versus s, ut PF × pf × ps ÷ PS ad pf × PF × PS ÷ ps, hoc es ut
ps quad. ad PS quad. Et simili argumento vires, quibus superficies
convolutione arcuum KL, kl descriptæ trahunt corpuscula, erunt ut ps quad.
ad PS quad.; inq; eadem ratione erunt vires superficierum omnium
circularium in quas utraq; superficies Sphærica, capiendo semper sd = SD &
se = SE, distingui potest. Et per Compositionem, vires totarum
superficierum Sphæricarum in corpuscula exercitæ erunt in eadem ratione.
_Q. E. D._

Prop. LXXII. Theor. XXXII.

    _Si ad Spheræ cujusvis puncta singula tendant vires æquales centripetæ
    decrescentes in duplicata ratione distantiarum a punctis, ac detur
    ratio diametri Spheræ ad distantiam corpusculi a centro ejus; dico quod
    vis qua corpusculum attrahitur proportionalis erit semi-diametro
    Sphæræ._

Nam concipe corpuscula duo seorsim a Sphæris duabus attrahi, & distantias a
centris proportionales esse diametris, Sphæras autem resolvi in particulas
similes & similiter positas ad corpuscula. Hinc attractiones corpusculi
unius, factæ versus singulas particulas Sphæræ unius, erunt ad attractiones
alterius versus analogas totidem particulas Sphæræ alterius, in ratione
composita ex ratione particularum directe & ratione duplicata distantiarum
inverse. Sed particulæ sunt ut Sphæræ, hoc est in ratione triplicata
diametrorum, & distantiæ sunt ut diametri, & ratio prior directe una cum
ratione posteriore bis inverse est ratio diametri ad diametrum.   Q. E. D.

_Corol. 1._ Hinc si corpuscula in circulis circa Sphæras ex materia
æqualiter attractiva constantes revolvantur, sintq; distantiæ a centris
Sphærarum proportionales earundem diametris; tempora periodica erunt
æqualia.

_Corol. 2._ Et vice versa, si tempora periodica sunt æqualia; distantiæ
erunt proportionales diametris. Constant hæc duo per Corol. 3. Theor. IV.

Prop. LXXIII. Theor. XXXIII.

[Illustration]

    _Si ad sphæræ alicujus datæ puncta singula tendant æquales vires
    centripetæ decrescentes in duplicata ratione distantiarum a punctis:
    dico quod corpusculum intra Sphæram constitutum attrahitur vi
    proportionali distantiæ suæ ab ipsius centro._

In Sphæra ABCD, centro S descripta, locetur corpusculum P, & centro eodem S
intervallo SP concipe Sphæram interiorem PEQF describi. Manifestum est, per
Theor. XXX. quod Sphæricæ superficies concentricæ, ex quibus Sphærarum
differentia AEBF componitur, attractionibus per attractiones contrarias
destructis, nil agunt in corpus P. Restat sola attractio Sphæræ interioris
PEQF. Et per Theor. XXXII, hæc est ut distantia PS.   Q. E. D.

_Scholium._

Superficies ex quibus solida componuntur, hic non sunt pure Mathematicæ,
sed Orbes adeo tenues ut eorum crassitudo instar nihili sit; nimirum Orbes
evanescentes ex quibus Sphæra ultimo constat, ubi Orbium illorum numerus
augetur & crassitudo minuitur in infinitum, juxta Methodum sub initio in
Lemmatis generalibus expositam. Similiter per puncta, ex quibus lineæ,
superficies & solida componi dicuntur, intelligendæ sunt particulæ æquales
magnitudinis contemnendæ.

Prop. LXXIV. Theor. XXXIV.

    _Iisdem positis, dico quod corpusculum extra Sphæram constitutum
    attrahitur vi reciproce proportionali quadrato distantiæ suæ ab ipsius
    centro._

Nam distinguatur Sphæra in superficies Sphæricas innumeras concentricas, &
attractiones corpusculi a singulis superficiebus oriundæ erunt reciproce
proportionales quadrato distantiæ corpusculi a centro, per Theor. XXXI. Et
componendo, fiet summa attractionum, hoc est attractio Sphæræ totius, in
eadem ratione.   Q. E. D.

_Corol. 1._ Hinc in æqualibus distantiis a centris homogenearum Sphærarum,
attractiones sunt ut Sphæræ. Nam per Theor. XXXII. si distantiæ sunt
proportionales diametris Sphærarum, vires erunt ut diametri. Minuatur
distantia major in illa ratione, & distantiis jam factis æqualibus,
augebitur attractio in duplicata illa ratione, adeoq; erit ad attractionem
alteram in triplicata illa ratione, hoc est in ratione Sphærarum.

_Corol. 2._ In distantiis quibusvis attractiones sunt ut Sphæræ applicatæ
ad quadrata distantiarum.

_Corol. 3._ Si corpusculum extra Sphæram homogeneam positum trahitur vi
reciproce proportionali quadrato distantiæ suæ ab ipsius centro, constet
autem Sphæra ex particulis attractivis; decrescet vis particulæ cujusq; in
duplicata ratione distantiæ a particula.

Prop. LXXV. Theor. XXXV.

    _Si ad Sphæræ datæ puncta singula tendant vires æquales centripetæ
    decrescentes in duplicata ratione distantiarum a punctis, dico quod
    Sphæra quævis alia similaris attrahitur vi reciproce proportionali
    quadrato distantiæ centrorum._

Nam particulæ cujusvis attractio est reciproce ut quadratum distantiæ ejus
a centro Sphæræ trahentis, (per Theor. XXXI,) & propterea eadem est ac si
vis tota attrahens manaret de corpusculo unico sito in centro hujus Sphæræ.
Hæc autem attractio tanta est quanta foret vicissim attractio corpusculi
ejusdem, si modo illud a singulis Sphæræ attractæ particulis eadem vi
traheretur qua ipsas attrahit. Foret autem illa corpusculi attractio (per
Theor. XXXIV) reciproce proportionalis quadrato distantiæ ejus a centro
Sphæræ; adeoq; huic æqualis attractio Sphæræ est in eadem ratione.
Q. E. D.

_Corol. 1._ Attractiones Sphærarum, versus alias Sphæras homogeneas, sunt
ut Sphæræ trahentes applicatæ ad quadrata distantiarum centrorum suorum a
centris earum quas attrahunt.

_Corol. 2._ Idem valet ubi Sphæra attracta etiam attrahit. Namq; hujus
puncta singula trahent singula alterius, eadem vi qua ab ipsis vicissim
trahuntur, adeoq; cum in omni attractione urgeatur (per Legem 3.) tam
punctum attrahens, quam punctum attractum, geminabitur vis attractionis
mutuæ, conservatis proportionibus.

_Corol. 3._ Eadem omnia, quæ superius de motu corporum circa umbilicum
Conicarum Sectionum demonstrata sunt, obtinent ubi Sphæra attrahens locatur
in umbilico & corpora moventur extra Sphæram.

_Corol. 4._ Ea vero quæ de motu corporum circa centrum Conicarum Sectionum
demonstrantur, obtinent ubi motus peraguntur intra Sphæram.

Prop. LXXVI. Theor. XXXVI.

    _Si Sphæræ in progressu a centro ad circumferentiam (quod materiæ
    densitatem & vim attractivam) utcunq; dissimilares, in progressu vero
    per circuitum ad datam omnem a centro distantiam sunt undiq; similares,
    & vis attractiva puncti cujusq; decrescit in duplicata ratione
    distantiæ corporis attracti: dico quod vis tota qua hujusmodi Sphæra
    una attrahit aliam sit reciproce proportionalis quadrato distantiæ
    centrorum._

[Illustration]

Sunto Sphæræ quotcunq; concentricæ similares AB, CD, EF &c. quarum
interiores additæ exterioribus componant materiam densiorem versus centrum,
vel subductæ relinquant tenuiorem; & hæ, per Theor. XXXV, trahent Sphæras
alias quotcunq; concentricas similares GH, IK, LM, &c. singulæ singulas,
viribus reciproce proportionalibus quadrato distantiæ SP. Et componendo vel
dividendo, summa virium illarum omnium, vel excessus aliquarum supra alias,
hoc est, vis qua Sphæra tota ex concentricis quibuscunq; vel concentricarum
differentiis composita AB, trahit totam ex concentricis quibuscunq; vel
concentricarum differentiis compositam GH, erit in eadem ratione. Augeatur
numerus Sphærarum concentricarum in infinitum sic, ut materiæ densitas una
cum vi attractiva, in progressu a circumferentia ad centrum, secundum Legem
quamcunq; crescat vel decrescat: & addita materia non attractiva compleatur
ubivis densitas deficiens, eo ut Sphæræ acquirant formam quamvis optatam; &
vis qua harum una attrahet alteram erit etiamnum (per argumentum superius)
in eadem illa distantiæ quadratæ ratione inversa.   Q. E. D.

_Corol. 1._ Hinc si ejusmodi Sphæræ complures sibi invicem per omnia
similes se mutuo trahant; attractiones acceleratrices singularum in
singulas erunt in æqualibus quibusvis centrorum distantiis ut Sphæræ
attrahentes.

_Corol. 2._ Inq; distantiis quibusvis inæqualibus, ut Sphæræ attrahentes
applicatæ ad quadrata distantiarum inter centra.

_Corol. 3._ Attractiones vero motrices, seu pondera Sphærarum in Sphæras
erunt, in æqualibus centrorum distantiis, ut Sphæræ attrahentes & attractæ
conjunctim, id est, ut contenta sub Sphæris per multiplicationem producta.

_Corol. 4._ Inq; distantiis inæqualibus, ut contenta illa applicata ad
quadrata distantiarum inter centra.

_Corol. 5._ Eadem valent ubi attractio oritur a Sphæræ utriusq; virtute
attractiva, mutuo exercita in Sphæram alteram. Nam viribus ambabus
geminatur attractio, proportione servata.

_Corol. 6._ Si hujusmodi Sphæræ aliquæ circa alias quiescentes revolvantur,
singulæ circa singulas, sintq; distantiæ inter centra revolventium &
quiescentium proportionales quiescentium diametris; æqualia erunt tempora
periodica.

_Corol. 7._ Et vicissim, si tempora periodica sunt æqualia, distantiæ erunt
proportionales diametris.

_Corol. 8._ Eadem omnia, quæ superius de motu corporum circa umbilicos
Conicarum Sectionum demonstrata sunt, obtinent ubi Sphæra attrahens, formæ
& conditionis cujusvis jam descriptæ, locatur in umbilico.

_Corol. 9._ Ut & ubi gyrantia sunt etiam Sphæræ attrahentes, conditionis
cujusvis jam descriptæ.

Prop. LXXVII. Theor. XXXVII.

    _Si ad singula Sphærarum puncta tendant vires centripetæ proportionales
    distantiis punctorum a corporibus attractis: dico quod vis composita,
    qua Sphæræ duæ se mutuo trahent, est ut distantia inter centra
    Sphærarum._

[Illustration]

_Cas. 1._ Sit ACBD Sphæra, S centrum ejus, P corpusculum attractum, PASB
axis Sphæræ per centrum corpusculi transiens, EF, ef plana duo quibus
Sphæra secatur, huic axi perpendicularia, & hinc inde æqualiter distantia a
centro Sphæræ; Gg intersectiones planorum & axis, & H punctum quodvis in
plano EF. Puncti H vis centripeta in corpusculum P secundum lineam PH
exercita est ut distantia PH, & (per Legum Corol. 2.) secundum lineam PG,
seu versus centrum S, ut longitudo PG. Igitur punctorum omnium in plano EF,
hoc est plani totius vis, qua corpusculum P trahitur versus centrum S, est
ut numerus punctorum ductus in distantiam PG: id est ut contentum sub plano
ipso EF & distantia illa PG. Et similiter vis plani ef, qua corpusculum P
trahitur versus centrum S, est ut planum illud ductum in distantiam suam
Pg; sive ut huic æquale planum EF ductum in distantiam illam Pg; & summa
virium plani utriusq; ut planum EF ductum in summam distantiarum PG + Pg,
id est, ut planum illud ductum in duplam centri & corpusculi distantiam PS,
hoc est, ut duplum planum EF ductum in distantiam PS, vel ut summa æqualium
planorum EF + ef ducta in distantiam eandem. Et simili argumento, vires
omnium planorum in Sphæra tota, hinc inde æqualiter a centro Sphæræ
distantium, sunt ut summa planorum ducta in distantiam PS, hoc est, ut
Sphæra tota ducta in distantiam centri sui S a corpusculo P.   Q. E. D.

_Cas. 2._ Trahat jam corpusculum P Sphæram ACBD. Et eodem argumento
probabitur quod vis, qua Sphæra illa trahitur, erit ut distantia PS.
Q. E. D.

_Cas. 3._ Componatur jam Sphæra altera ex corpusculis innumeris P; &
quoniam vis, qua corpusculum unumquodq; trahitur, est ut distantia
corpusculi a centro Sphæræ primæ ducta in Sphæram eandem, atq; adeo eadem
est ac si prodiret tota de corpusculo unico in centro Sphæræ; vis tota qua
corpuscula omnia in Sphæra secunda trahuntur, hoc est, qua Sphæra illa tota
trahitur, eadem erit ac si Sphæra illa traheretur vi prodeunte de
corpusculo unico in centro Sphæræ primæ, & propterea proportionalis est
distantiæ inter centra Sphærarum.   Q. E. D.

_Cas. 4._ Trahant Sphæræ se mutuo, & vis geminata proportionem priorem
servabit.   Q. E. D.

_Cas. 5._ Locetur jam corpusculum p intra Sphæram ACBD, & quoniam vis plani
ef in corpusculum est ut contentum sub plano illo & distantia pg; & vis
contraria plani EF ut contentum sub plano illo & distantia pG; erit vis ex
utraq; composita ut differentia contentorum, hoc est, ut summa æqualium
planorum ducta in semissem differentiæ distantiarum, id est, ut summa illa
ducta in pS, distantiam corpusculi a centro Sphæræ. Et simili argumento
attractio planorum omnium EF, ef in Sphæra tota, hoc est attractio Sphæræ
totius, est ut summa planorum omnium, seu Sphæra tota, ducta in pS
distantiam corpusculi a centro Sphæræ.   Q. E. D.

_Cas. 6._ Et si ex corpusculis innumeris p componatur Sphæra nova intra
Sphæram priorem ACBD sita, probabitur ut prius, quod attractio, sive
simplex Sphæræ unius in alteram, sive mutua utriusq; in se invicem, erit ut
distantia centrorum pS.   Q. E. D.

Prop. LXXVIII. Theor. XXXVIII.

    _Si Sphæræ in progressu a centro ad circumferentiam sint utcunq;
    dissimilares & inæquabiles, in progressu vero per circuitum ad datam
    omnem a centro distantiam sint undiq; similares; & vis attractiva
    puncti cujusq; sit ut distantia corporis attracti: dico quod vis tota
    qua hujusmodi Sphæræ duæ se mutuo trahunt sit proportionalis distantiæ
    inter centra Sphærarum._

Demonstratur ex Propositione præcedente, eodem modo quo Propositio LXXVII.
ex Propositione LXXV. demonstrata fuit.

_Corol._ Quæ superius in Propositionibus X. & LXIV. de motu corporum circa
centra Conicarum Sectionum demonstrata sunt, valent ubi attractiones omnes
fiunt vi Corporum Sphæricorum, conditionis jam descriptæ, suntq; corpora
attracta Sphæræ conditionis ejusdem.

_Scholium._

Attractionum Casus duos insigniores jam dedi expositos; nimirum ubi vires
centripetæ decrescunt in duplicata distantiarum ratione, vel crescunt in
distantiarum ratione simplici; efficientes in utroq; Casu ut corpora
gyrentur in Conicis Sectionibus, & componentes corporum Sphæricorum vires
centripetas eadem lege in recessu a centro decrescentes vel crescentes cum
seipsis. Quod est notatu dignum. Casus cæteros, qui conclusiones minus
elegantes exhibent, sigillatim percurrere longum esset: Malim cunctos
methodo generali simul comprehendere ac determinare, ut sequitur.

Lemma XXIX.

    _Si describantur centro S circulus quilibet AEB,_ (Vide Fig. Prop.
    sequentis) _& centro P circuli duo EF, ef, secantes priorem in E, e,
    lineamq; PS in F, f; & ad PS demittantur perpendicula ED, ed: dico quod
    si distantia arcuum EF, ef in infinitum minui intelligatur, ratio
    ultima lineæ evanescentis Dd ad lineam evanescentem Ff ea sit, quæ
    lineæ PE ad lineam PS._

Nam si linea Pe secet arcum EF in q; & recta Ee, quæ cum arcu evanescente
Ee coincidit, producta occurrat rectæ PS in T; & ab S demittatur in PE
normalis SG: ob similia triangula EDT, edt, EDS; erit Dd ad Ee, ut DT ad ET
seu DE ad ES, & ob triangula Eqe, ESG (per Lem. VIII. & Corol. 3. Lem.
VII.) similia, erit Ee ad qe seu Ff, ut ES ad SG, & ex æquo Dd ad Ff ut DE
ad SG; hoc est (ob similia triangula PDE, PGS) ut PE ad PS.   Q. E. D.

Prop. LXXIX. Theor. XXXIX.

    _Si superficies ob latitudinem infinite diminutam jamjam evanescens
    EFfe, convolutione sui circa axem PS, describat solidum Sphæricum
    concavo-convexum, ad cujus particulas singulas æquales tendant æquales
    vires centripetæ: dico quod vis, qua solidum illud trahit corpusculum
    situm in P, est in ratione composita ex ratione solidi DEq. × Ff &
    ratione vis qua particula data in loco Ff traheret idem corpusculum._

[Illustration]

Nam si primo consideremus vim superficiei Sphæricæ FE, quæ convolutione
arcus FE generatur, & linea de ubivis secatur in r; erit superficiei pars
annularis, convolutione arcus rE genita, ut lineola Dd, manente Sphæræ
radio PE, (uti demonstravit Archimedes in Lib. de Sphæra & Cylindro.) Et
hujus vis secundum lineas PE vel Pr undiq; in superficie conica sitas
exercita, ut hæc ipsa superficiei pars annularis; hoc est, ut lineola Dd,
vel quod perinde est, ut rectangulum sub dato Sphæræ radio PE & lineola
illa Dd: at secundum lineam PS ad centrum S tendentem minor, in ratione PD
ad PE, adeoq; ut PD × Dd. Dividi jam intelligatur linea DF in particulas
innumeras æquales, quæ singulæ nominentur Dd; & superficies FE dividetur in
totidem æquales annulos, quorum vires erunt ut summa omnium PD × Dd, hoc
est, cum lineolæ omnes Dd sibi invicem æquentur, adeoq; pro datis haberi
possint, ut summa omnium PD ducta in Dd, id est, ut ½PFq. - ½PDq. sive
½PEq. - ½PDq. vel ½DEq. ductum in Dd; hoc est, si negligatur data ½Dd, ut
DE quad. Ducatur jam superficies FE in altitudinem Ff; & fiet solidi EFfe
vis exercita in corpusculum P ut DEq. × Ff: puta si detur vis quam
particula aliqua data Ff in distantia PF exercet in corpusculum P. At si
vis illa non detur, fiet vis solidi EFfe ut solidum DEq. × Ff & vis illa
non data conjunctim.   Q. E. D.

Prop. LXXX. Theor. XL.

    _Si ad Sphæræ alicujus AEB, centro S descriptæ, particulas singulas
    æquales tendant æquales vires centripetæ, & ad Sphæræ axem AB, in quo
    corpusculum aliquod P locatur, erigantur de punctis singulis D
    perpendicula DE, Sphæræ occurrentia in E, & in ipsis capiantur
    longitudines DN, quæ sint ut quantitas DEq. × PS ÷ PE & vis quam Sphæræ
    particula sita in axe ad distantiam PE exercet in corpusculum P
    conjunctim: dico quod vis tota, qua corpusculum P trahitur versus
    Sphæram, est ut area comprehensa sub axe Sphæræ AB & linea curva ANB,
    quam punctum N perpetuo tangit._

Etenim stantibus quæ in Lemmate & Theoremate novissimo constructa sunt,
concipe axem Sphæræ AB dividi in particulas innumeras æquales Dd, & Sphæram
totam dividi in totidem laminas Sphæricas concavo-convexas EFfe; & erigatur
perpendiculum dn. Per Theorema superius, vis qua lamina EFfe trahit
corpusculum P est ut DEq. × Ff & vis particulæ unius ad distantiam PE vel
PF exercita conjunctim. Est autem per Lemma novissimum, Dd ad Ff ut PE ad
PS, & inde Ff æqualis PS × Dd ÷ PE; & DEq. × Ff æquale Dd in DEq. × PS ÷
PE, & propterea vis laminæ EFfe est ut Dd in DEq. × PS ÷ PE & vis particulæ
ad distantiam PF exercita conjunctim, hoc est (ex Hypothesi) ut DN × Dd,
seu area evanescens DNnd. Sunt igitur laminarum omnium vires in corpus P
exercitæ, ut areæ omnes DNnd, hoc est Sphæræ vis tota ut area tota ABNA.
Q. E. D.

_Corol. 1._ Hinc si vis centripeta, ad particulas singulas tendens, eadem
semper maneat in omnibus distantiis, & fiat DN ut DEq. × PS ÷ PE: erit vis
tota qua corpusculum a Sphæra attrahitur, ut area ABNA.

_Corol. 2._ Si particularum vis centripeta sit reciproce ut distantia
corpusculi a se attracti, & fiat DN ut DEq. × PS ÷ PEq.: erit vis qua
corpusculum P a Sphæra tota attrahitur ut area ABNA.

_Corol. 3._ Si particularum vis centripeta sit reciproce ut cubus distantiæ
corpusculi a se attracti, & fiat DN ut DEq. × PS ÷ PEqq.: erit vis qua
corpusculum a tota Sphæra attrahitur ut area ABNA.

_Corol. 4._ Et universaliter si vis centripeta ad singulas Sphæræ
particulas tendens ponatur esse reciproce ut quantitas V, fiat autem DN ut
{DEq. × PS} ÷ {PE × V}; erit vis qua corpusculum a Sphæra tota attrahitur
ut area ABNA.

Prop. LXXXI. Prob. XLI.

[Illustration]

    _Stantibus jam positis, mensuranda est Area ABNA._

A puncto P ducatur recta PH Sphæram tangens in H, & ad axem PAB demissa
Normali HI, bisecetur PI in L; & erit (per Prop. 12, Lib. 2. Elem.) PEq.
æquale PSq. + SEq. + 2PSD. Est autem SEq. seu SHq. (ob similitudinem
triangulorum SPH, SHI) æquale rectangulo PSI. Ergo PEq. æquale est contento
sub PS & PS + SI + 2SD, hoc est, sub PS & 2LS + 2SD, id est, sub PS & 2LD.
Porro DE quad. æquale est SEq. - SDq. seu SEq. - LSq. + 2SLD - LDq. id est,
SLD - LDq. - ALB. Nam LSq. - SEq. seu LSq. - SAq. (per Prop. 6 Lib. 2.
Elem) æquatur rectangulo ALB. Scribatur itaq; 2SLD - LDq. - ALB pro DEq. &
quantitas {DEq. × PS} ÷ {PE × V}, quæ secundum Corollarium quartum
Propositionis præcedentis est ut longitudo ordinatim applicatæ DN, resolvet
sese in tres partes

  2SLD × PS   LDq. × PS   ALB × PS
  ­-------- - ­-------- - ­--------:
   PE × V      PE × V      PE × V

[Illustration]

ubi si pro V scribatur ratio inversa vis centripetæ, & pro PE medium
proportionale inter PS & 2LD; tres illæ partes evadent ordinatim applicatæ
linearum totidem curvarum, quarum areæ per Methodos vulgatas innotescunt.
Q. E. F.

_Exempl. 1._ Si vis centripeta ad singulas Sphæræ particulas tendens sit
reciproce ut distantia; pro V scribe distantiam PE, dein 2PS × LD pro PEq.,
& fiet DN ut SL - ½LD - ALB ÷ 2LD. Pone DN æqualem duplo ejus 2SL - LD -
ALB ÷ LD: & ordinatæ pars data 2SL ducta in longitudinem AB describet aream
rectangulam 2SL × AB; & pars indefinita LD ducta normaliter in eandem
longitudinem per motum continuum, ea lege ut inter movendum crescendo vel
decrescendo æquetur semper longitudini LD, describet aream {LBq. - LAq.} ÷
2, id est, aream SL × AB; quæ subducta de area priore 2SL × AB relinquit
aream SL × AB. Pars autem tertia ALB ÷ LD ducta itidem per motum localem
normaliter in eandem longitudinem, describet aream Hyperbolicam; quæ
subducta de area SL × AB relinquet aream quæsitam ABNA. Unde talis emergit
Problematis constructio. Ad puncta L, A, B erige perpendicula Ll, Aa, Bb,
quorum Aa ipsi LB, & Bb ipsi LA æquetur. Asymptotis Ll, LB, per puncta a, b
describatur Hyperbola ab. Et acta chorda ba claudet aream aba areæ quæsitæ
ABNA æqualem.

[Illustration]

_Exempl. 2._ Si vis centripeta ad singulas Sphæræ particulas tendens sit
reciproce ut cubus distantiæ, vel (quod perinde est) ut cubus ille
applicatus ad planum quodvis datum; scribe PE cub. ÷ 2ASq. pro V, dein 2PS
× LD pro PEq.; & fiet DN ut

  SL × ASq.  ASq.   ALB × ASq.
  -------- - ---- - ----------
   PS × LD   2PS    2PS × LDq.

id est (ob continue proportionales PS, AS, SI) ut

  LSI           ALB × SI
  --- - 1/2SI - --------.
  LD              2LDq.

Si ducantur hujus partes tres in longitudinem AB, prima LSI ÷ LD generabit
aream Hyperbolicam; secunda ½SI aream ½AB × SI; tertia ALB × SI ÷ 2LDq.
aream

  ALB × SI   ALB × SI
  -------- - --------,
    2LA        2LB

id est ½AB × SI. De prima subducatur summa secundæ ac tertiæ, & manebit
area quæsita ABNA. Unde talis emergit Problematis constructio. Ad puncta L,
A, S, B erige perpendicula Ll, Aa, Ss, Bb, quorum Ss ipsi SI æquetur, perq;
punctum s Asymptotis Ll, LB describatur Hyperbola asb occurrens
perpendiculis Aa, Bb in a & b; & rectangulum 2ASI subductum de area
Hyperbolica AasbB relinquet aream quæsitam ABNA.

_Exempl. 3._ Si Vis centripeta, ad singulas Sphæræ particulas tendens,
decrescit in quadruplicata ratione distantiæ a particulis, scribe PE^4 ÷
2AS^3 pro V, dein [sqrt]2PS × LD pro PE, & fiet DN ut

    SL × SI^{3/2}           SI^{3/2}           ALB × SI^{3/2}
  ------------------ - ------------------- - -------------------.
  [sqrt]2 × LD^{3/2}   2[sqrt]2 × LD^{1/2}   2[sqrt]2 × LD^{5/2}

Cujus tres partes ductæ in longitudinem AB, producunt Areas totidem, _viz._

  [sqrt]2 × SL × SI^{3/2}   [sqrt]2 × SL × SI^{3/2}
  ----------------------- - -----------------------,
          LA^{1/2}                  LB^{1/2}

  LB^{1/2} × SI^{3/2} - LA^{1/2} - SI^{3/2}
  ----------------------------------------- &
                   [sqrt]2

     ALB × SI^{3/2}        ALB × SI^{3/2}
  ------------------- - -------------------.
  3[sqrt]2 × LA^{3/2}   3[sqrt]2 × LB^{3/2}

Et hæ post debitam reductionem, subductis posterioribus de priori, evadunt
8SI cub. ÷ 3LI. Igitur vis tota, qua corpusculum P in Sphæræ centrum
trahitur, est ut SI cub. ÷ PI, id est reciproce ut PS cub. × PI.   Q. E. I.

Eadem Methodo determinari potest attractio corpusculi siti intra Sphæram,
sed expeditius per Theorema sequens.

Prop. LXXXII. Theor. XLI.

    _In Sphæra centro S intervallo SA descripta, si capiantur SI, SA, SP
    continue proportionales: dico quod corpusculi intra Sphæram in loco
    quovis I attractio est ad attractionem ipsius extra Sphæram in loco P,
    in ratione composita ex dimidiata ratione distantiarum a centro IS, PS
    & dimidiata ratione virium centripetarum, in locis illis P & I, ad
    centrum tendentium._

[Illustration]

Ut si vires centripetæ particularum Sphæræ sint reciproce ut distantiæ
corpusculi a se attracti; vis, qua corpusculum situm in I trahitur a Sphæra
tota, erit ad vim qua trahitur in P, in ratione composita ex dimidiata
ratione distantiæ SI ad distantiam SP & ratione dimidiata vis centripetæ in
loco I, a particula aliqua in centro oriundæ, ad vim centripetam in loco P
ab eadem in centro particula oriundam, id est, ratione dimidiata
distantiarum SI, SP ad invicem reciproce. Hæ duæ rationes dimidiatæ
componunt rationem æqualitatis, & propterea attractiones in I & P a Sphæra
tota factæ æquantur. Simili computo, si vires particularum Sphæræ sunt
reciproce in duplicata ratione distantiarum, colligetur quod attractio in I
sit ad attractionem in P, ut distantia SP ad Sphæræ semidiametrum SA: Si
vires illæ sunt reciproce in triplicata ratione distantiarum, attractiones
in I & P erunt ad invicem ut SP quad. ad SA quad.; si in quadruplicata, ut
SP cub. ad SA cub. Unde cum attractio in P, in hoc ultimo casu, inventa
fuit reciproce ut PS cub. × PI, attractio in I erit reciproce ut SA cub. ×
PI, id est (ob datum SA cub.) reciproce ut PI. Et similis est progressus in
infinitum. Theorema vero sic demonstratur.

Stantibus jam ante constructis, & existente corpore in loco quovis P,
ordinatim applicata DN inventa fuit ut {DEq. × PS} ÷ {PE × V}. Ergo si
agatur IE, ordinata illa ad alium quemvis locum I, mutatis mutandis, evadet
ut {DEq. × IS} ÷ {IE × V}. Pone vires centripetas, e Sphæræ puncto quovis E
manantes, esse ad invicem in distantiis IE, PE, ut PE^n ad IE^n, (ubi
numerus n designet indicem potestatum PE & IE) & ordinatæ illæ fient ut
{DEq. × PS} ÷ {PE × PE^n} & {DEq. × IS} ÷ {IE × IE^n}, quarum ratio ad
invicem est ut PS × IE × IE^n ad IS × PE × PE^n. Quoniam ob similia
triangula SPE, SEI, fit IE ad PE ut IS ad SE vel SA; pro ratione IE ad PE
scribe rationem IS ad SA; & ordinatarum ratio evadet PS × IE^n ad SA ×
PE^n. Sed PS ad SA dimidiata est ratio distantiarum PS, SI; & IE^n ad PE^n
dimidiata est ratio virium in distantiis PS, IS. Ergo ordinatæ, & propterea
areæ quas ordinatæ describunt, hisq; proportionales attractiones, sunt in
ratione composita ex dimidiatis illis rationibus.   Q. E. D.

Prop. LXXXIII. Prob. XLII.

[Illustration]

    _Invenire vim qua corpusculum in centro Sphæræ locatum ad ejus
    segmentum quodcunq; attrahitur._

Sit P corpus in centro Sphæræ, & RBSD segmentum ejus plano RDS & superficie
Sphærica RBS contentum. Superficie Sphærica EFG centro P descripta secetur
DB in F, ac distinguatur segmentum in partes BREFGS, FEDG. Sit autem
superficies illa non pure Mathematica, sed Physica, profunditatem habens
quam minimam. Nominetur ista profunditas O, & erit hæc superficies (per
demonstrata Archimedis) ut PF × DF × O. Ponamus præterea vires attractivas
particularum Sphæræ esse reciproce ut distantiarum dignitas illa cujus
Index est n; & vis qua superficies FE trahit corpus P erit ut DF × O ÷
PF^{n - 1}. Huic proportionale sit perpendiculum FN ductum in O; & area
curvilinea BDLIB, quam ordinatim applicata FN in longitudinem DB per motum
continuum ducta describit, erit ut vis tota qua segmentum totum RBSD trahit
corpus P.   Q. E. I.

Prop. LXXXIV. Prob. XLIII.

    _Invenire vim qua corpusculum, extra centrum Sphæræ in axe segmenti
    cujusvis locatum, attrahitur ab eodem segmento._

A segmento EBK trahatur corpus P (_Vide Fig. Prop. 79. 80. 81._) in ejus
axe ADB locatum. Centro P intervallo PE describatur superficies Sphærica
EFK, qua distinguatur segmentum in partes duas EBKF & EFKD. Quæratur vis
partis prioris per Prop. LXXXI. & vis partis posterioris per Prop.
LXXXIII.; & summa virium erit vis segmenti totius EBKD.   Q. E. I.

_Scholium._

Explicatis attractionibus corporum Sphæricorum, jam pergere liceret ad
leges attractionum aliorum quorundam ex particulis attractivis similiter
constantium corporum; sed ista particulatim tractare minus ad institutum
spectat. Suffecerit Propositiones quasdam generaliores de viribus hujusmodi
corporum, deq; motibus inde oriundis, ob eorum in rebus Philosophicis
aliqualem usum, subjungere.

       *       *       *       *       *


SECT. XIII.

_De Corporum etiam non Sphæricorum viribus attractivis._

Prop. LXXXV. Theor. XLII.

    _Si corporis attracti, ubi attrahenti contiguum est, attractio longe
    fortior sit, quam cum vel minimo intervallo separantur ab invicem:
    vires particularum trahentis, in recessu corporis attracti, decrescunt
    in ratione plusquam duplicata distantiarum a particulis._

Nam si vires decrescunt in ratione duplicata distantiarum a particulis;
attractio versus corpus Sphæricum, propterea quod (per Prop. LXXIV.) sit
reciproce ut quadratum distantiæ attracti corporis a centro Sphæræ, haud
sensibiliter augebitur ex contactu; atq; adhuc minus augebitur ex contactu,
si attractio in recessu corporis attracti decrescat in ratione minore.
Patet igitur Propositio de Sphæris attractivis. Et par est ratio Orbium
Sphæricorum concavorum corpora externa trahentium. Et multo magis res
constat in Orbibus corpora interius constituta trahentibus, cum
attractiones passim per Orbium cavitates ab attractionibus contrariis (per
Prop. LXX.) tollantur, ideoq; vel in ipso contactu nullæ sunt. Quod si
Sphæris hisce Orbibusq; Sphæricis partes quælibet a loco contactus remotæ
auferantur, & partes novæ ubivis addantur: mutari possunt figuræ horum
corporum attractivorum pro lubitu, nec tamen partes additæ vel subductæ,
cum sint a loco contactus remotæ, augebunt notabiliter attractionis
excessum qui ex contactu oritur. Constat igitur Propositio de corporibus
figurarum omnium.   Q. E. D.

Prop. LXXXVI. Theor. XLIII.

    _Si particularum, ex quibus corpus attractivum componitur, vires in
    recessu corporis attracti decrescunt in triplicata vel plusquam
    triplicata ratione distantiarum a particulis: attractio longe fortior
    erit in contactu, quam cum attrahens & attractum intervallo vel minimo
    separantur ab invicem._

Nam attractionem in accessu attracti corpusculi ad hujusmodi Sphæram
trahentem augeri in infinitum, constat per solutionem Problematis XLI. in
Exemplo secundo ac tertio exhibitam. Idem, per Exempla illa & Theorema XLI
inter se collata, facile colligitur de attractionibus corporum versus Orbes
concavo-convexos, sive corpora attracta collocentur extra Orbes, sive intra
in eorum cavitatibus. Sed & addendo vel auferendo his Sphæris & Orbibus
ubivis extra locum contactus materiam quamlibet attractivam, eo ut corpora
attractiva induant figuram quamvis assignatam, constabit Propositio de
corporibus universis.   Q. E. D.

Prop. LXXXVII. Theor. XLIV.

    _Si corpora duo sibi invicem similia & ex materia æqualiter attractiva
    constantia seorsim attrahant corpuscula sibi ipsis proportionalia & ad
    se similiter posita: attractiones acceleratrices corpusculorum in
    corpora tota erunt ut attractiones acceleratrices corpusculorum in
    eorum particulas totis proportionales & in totis similiter positas._

Nam si corpora distinguantur in particulas, quæ sint totis proportionales &
in totis similiter sitæ; erit, ut attractio in particulam quamlibet unius
corporis ad attractionem in particulam correspondentem in corpore altero,
ita attractiones in particulas singulas primi corporis ad attractiones in
alterius particulas singulas correspondentes; & componendo, ita attractio
in totum primum corpus ad attractionem in totum secundum.   Q. E. D.

_Corol. 1._ Ergo si vires attractivæ particularum, augendo distantias
corpusculorum attractorum, decrescant in ratione dignitatis cujusvis
distantiarum: attractiones acceleratrices in corpora tota erunt ut corpora
directe & distantiarum dignitates illæ inverse. Ut si vires particularum
decrescant in ratione duplicata distantiarum a corpusculis attractis,
corpora autem sint ut A cub. & B cub. adeoq; tum corporum latera cubica,
tum corpusculorum attractorum distantiæ a corporibus, ut A & B:
attractiones acceleratrices in corpora erunt ut A cub. ÷ A quad. & B cub. ÷
B quad. id est, ut corporum latera illa cubica A & B. Si vires particularum
decrescant in ratione triplicata distantiarum a corpusculis attractis;
attractiones acceleratrices in corpora tota erunt ut A cub. ÷ A cub. & B
cub. ÷ B cub. id est, æquales. Si vires decrescant in ratione
quadruplicata, attractiones in corpora erunt ut A cub. ÷ Aqq. & B cub. ÷
Bqq. id est, reciproce ut latera cubica A & B. Et sic in cæteris.

_Corol. 2._ Unde vicissim, ex viribus quibus corpora similia trahunt
corpuscula ad se similiter posita, colligi potest ratio decrementi virium
particularum attractivarum in recessu corpusculi attracti; si modo
decrementum illud sit directe vel inverse in ratione aliqua distantiarum.

Prop. LXXXVIII. Theor. XLV.

    _Si particularum æqualium corporis cujuscunq; vires attractivæ sint ut
    distantiæ locorum a particulis: vis corporis totius tendet ad ipsius
    centrum gravitatis; & eadem erit cum vi globi ex materia consimili &
    æquali constantis & centrum habentis in ejus centro gravitatis._

[Illustration]

Corporis RSTV particulæ A, B trahant corpusculum aliquod Z viribus quæ, si
particulæ æquantur inter se, sint ut distantiæ AZ, BZ; sin particulæ
statuantur inæquales, sint ut hæ particulæ in distantias suas AZ, BZ
respective ductæ. Et exponantur hæ vires per contenta illa A × AZ & B × BZ.
Jungatur AB, & secetur ea in G ut sit AG ad BG ut particula B ad particulam
A; & erit G commune centrum gravitatis particularum A & B. Vis A × AZ per
Legum Corol. 2. resolvitur in vires A × GZ & A × AG, & vis B × BZ in vires
B × GZ & B × BG. Vires autem A × AG & B × BG, ob proportionales A ad B & BG
ad AG, æquantur, adeoq;, cum dirigantur in partes contrarias, se mutuo
destruunt. Restant vires A × GZ & B × GZ. Tendunt hæ ab Z versus centrum G,
& vim A + B × GZ componunt; hoc est, vim eandem ac si particulæ attractivæ
A & B consisterent in eorum communi gravitatis centro G, globum ibi
componentes.

Eodem argumento si adjungatur particula tertia C; & componatur hujus vis
cum vi A + B × GZ tendente ad centrum G, vis inde oriunda tendet ad commune
centrum gravitatis globi illius G & particulæ C; hoc est, ad commune
centrum gravitatis trium particularum A, B, C; & eadem erit ac si globus &
particula C consisterent in centro illo communi, globum majorem ibi
componentes. Et sic pergitur in infinitum. Eadem est igitur vis tota
particularum omnium corporis cujuscunq; RSTV ac si corpus illud, servato
gravitatis centro, figuram globi indueret.   Q. E. D.

_Corol._ Hinc motus corporis attracti Z idem erit ac si corpus attrahens
RSTV esset Sphæricum: & propterea si corpus illud attrahens vel quiescat,
vel progrediatur uniformiter in directum, corpus attractum movebitur in
Ellipsi centrum habente in attrahentis centro gravitatis.

Prop. LXXXIX. Theor. XLVI.

    _Si Corpora sint plura ex particulis æqualibus constantia, quarum vires
    sunt ut distantiæ locorum a singulis: vis ex omnium viribus composita,
    qua corpusculum quodcunq; trahitur, tendet ad trahentium commune
    centrum gravitatis, & eadem erit ac si trahentia illa, servato
    gravitatis centro communi, coirent & in globum formarentur._

Demonstratur eodem modo, atq; Propositio superior.

_Corol._ Ergo motus corporis attracti idem erit ac si corpora trahentia,
servato communi gravitatis centro, coirent & in globum formarentur. Ideoq;
si corporum trahentium commune gravitatis centrum vel quiescit, vel
progreditur uniformiter in linea recta, corpus attractum movebitur in
Ellipsi, centrum habente in communi illo trahentium centro gravitatis.

Prop. XC. Prob. XLIV.

    _Si ad singula circuli cujuscunq; puncta tendant vires centripetæ
    decrescentes in quacunq; distantiarum ratione: invenire vim qua
    corpusculum attrahitur ubivis in recta quæ ad planum circuli per
    centrum ejus perpendicularis consistit._

[Illustration]

Centro A intervallo quovis AD, in plano cui recta AP perpendicularis est,
describi intelligatur circulus; & invenienda sit vis qua corpus quodvis P
in eundem attrahitur. A circuli puncto quovis E ad corpus attractum P
agatur recta PE: In recta PA capiatur PF ipsi PE æqualis, & erigatur
Normalis FK, quæ sit ut vis qua punctum E trahit corpusculum P. Sitq; IKL
curva linea quam punctum K perpetuo tangit. Occurrat eadem circuli plano in
L. In PA capiatur PH æqualis PD, & erigatur perpendiculum HI curvæ prædictæ
occurrens in I; & erit corpusculi P attractio in circulum ut area AHIL
ducta in altitudinem AP.   Q. E. I.

Etenim in AE capiatur linea quam minima Ee. Jungatur Pe, & in PA capiatur
Pf ipsi Pe æqualis. Et quoniam vis, qua annuli punctum quodvis E trahit ad
se corpus P, ponitur esse ut FK, & inde vis qua punctum illud trahit corpus
P versus A est ut AP × FK ÷ PE, & vis qua annulus totus trahit corpus P
versus A, ut annulus & AP × FK ÷ PE conjunctim; annulus autem iste est ut
rectangulum sub radio AE & latitudine Ee, & hoc rectangulum (ob
proportionales PE & AE, Ee & cE) æquatur rectangulo PE × cE seu PE × Ff;
erit vis qua annulus iste trahit corpus P versus A ut PE × Ff & AP × FK ÷
PE conjunctim, id est, ut contentum Ff × AP × FK, sive ut area FKkf ducta
in AP. Et propterea summa virium, quibus annuli omnes in circulo, qui
centro A & intervallo AD describitur, trahunt corpus P versus A, est ut
area tota AHIKL ducta in AP.   Q. E. D.

_Corol. 1._ Hinc si vires punctorum decrescunt in duplicata distantiarum
ratione, hoc est, si sit FK ut 1 ÷ PF quad., atq; adeo area AHIKL ut {1 ÷
PA} - {1 ÷ PH}; erit attractio corpusculi P in circulum 1 - {PA ÷ PH}, id
est, ut AH ÷ PH.

_Corol. 2._ Et universaliter, si vires punctorum ad distantias D sint
reciproce ut distantiarum dignitas quælibet D^n, hoc est, si sit FK ut 1 ÷
D^n, adeoq; area AHIKL ut {1 ÷ PA^{n - 1}} - {1 ÷ PH^{n - 1}}; erit
attractio corpusculi P in circulum ut {1 ÷ PA^{n - 2}} - {PA ÷ PH^{n - 1}}.

_Corol. 3._ Et si diameter circuli augeatur in infinitum, & numerus n sit
unitate major; attractio corpusculi P in planum totum infinitum erit
reciproce ut PA^{n - 2}, propterea quod terminus alter PA ÷ PH^{n - 1}
evanescet.

Prop. XCI. Prob. XLV.

    _Invenire attractionem corpusculi siti in axe solidi, ad cujus puncta
    singula tendunt vires centripetæ in quacunq; distantiarum ratione
    decrescentes._

[Illustration]

In solidum ADEFG trahatur corpusculum P, situm in ejus axe AB. Circulo
quolibet RFS ad hunc axem perpendiculari secetur hoc solidum, & in ejus
diametro FS, in plano aliquo PALKB per axem transeunte, capiatur (per Prop.
XC.) longitudo FK vi qua corpusculum P in circulum illum attrahitur
proportionalis. Tangat autem punctum K curvam lineam LKI, planis extimorum
circulorum AL & BI occurrentem in A & B; & erit attractio corpusculi P in
solidum ut area LABI.   Q. E. D.

_Corol. 1._ Unde si solidum Cylindrus sit, parallelogrammo ADEB circa axem
AB revoluto descriptus, & vires centripetæ in singula ejus puncta tendentes
sint reciproce ut quadrata distantiarum a punctis: erit attractio
corpusculi P in hunc Cylindrum ut BA - PE + PD. Nam ordinatim applicata FK
(per Corol. 1. Prop. XC.) erit ut 1 - PF ÷ PR. Hujus pars 1 ducta in
longitudinem AB, describit aream 1 × AB; & pars altera PF ÷ PR ducta in
longitudinem PB, describit aream 1 in {PE - AD} (id quod ex curvæ LKI
quadratura facile ostendi potest:) & similiter pars eadem ducta in
longitudinem PA describit aream 1 in PD - AD, ductaq; in ipsarum PB, PA
differentiam AB describit arearum differentiam 1 in {PE - PD}. De contento
primo 1 × AB auferatur contentum postremum 1 in PE - PD, & restabit area
LABI æqualis 1 in AB - PE + PD. Ergo vis huic areæ proportionalis est ut AB
- PE + PD.

[Illustration]

_Corol. 2._ Hinc etiam vis innotescit qua Sphærois AGBCD attrahit corpus
quodvis P, exterius in axe suo AB situm. Sit NKRM Sectio Conica cujus
ordinatim applicata ER, ipsi PE perpendicularis, æquetur semper longitudini
PD, quæ ducitur ad punctum illud D, in quo applicata ista Sphæroidem secat.
A Sphæroidis verticibus A, B ad ejus axem AB erigantur perpendicula AK, BM
ipsis AP, BP æqualia respective, & propterea Sectioni Conicæ occurrentia in
K & M; & jungantur KM auferens ab eadem segmentum KMRK. Sit autem
Sphæroidis centrum S & semidiameter maxima SC: & vis qua Sphærois trahit
corpus P erit ad vim qua Sphæra, diametro AB descripta, trahit idem corpus,
ut

  AS × CSq. - PS × KMRK     AS cub.
  --------------------- ad ---------.
   PSq. + CSq. - ASq.      3PS quad.

Et eodem computando fundamento invenire licet vires segmentorum Sphæroidis.

[Illustration]

_Corol. 3._ Quod si corpusculum intra Sphæroidem in data quavis ejusdem
diametro collocetur; attractio erit ut ipsius distantia a centro. Id quod
facilius colligetur hoc argumento. Sit AGOF Sphærois attrahens, S centrum
ejus & P corpus attractum. Per corpus illud P agantur tum semidiameter SPA,
tum rectæ duæ quævis DE, FG Sphæroidi hinc inde occurrentes in D & E, F &
G: Sintq; PCM, HLN superficies Sphæroidum duarum interiorum, exteriori
similium & concentricarum, quarum prior transeat per corpus P & secet
rectas DE & FG in B & C, posterior secet easdem rectas in H, I & K, L.
Habeant autem Sphæroides omnes axem communem, & erunt rectarum partes hinc
inde interceptæ DP & BE, FP & CG, DH & IE, FK & LG sibi mutuo æquales;
propterea quod rectæ DE, PB & HI bisecantur in eodem puncto, ut & rectæ FG,
PC & KL. Concipe jam DPF, EPG designare Conos oppositos, angulis
verticalibus DPF, EPG infinite parvis descriptos, & lineas etiam DH, EI
infinite parvas esse; & Conorum particulæ Sphæroidum superficiebus abscissæ
DHKF, GLIE, ob æqualitatem linearum DH, EI, erunt ad invicem ut quadrata
distantiarum suarum a corpusculo P, & propterea corpusculum illud æqualiter
trahent. Et pari ratione, si superficiebus Sphæroidum innumerarum similium
concentricarum & axem communem habentium dividantur spatia DPF, EGCB in
particulas, hæ omnes utrinq; æqualiter trahent corpus P in partes
contrarias. Æquales igitur sunt vires coni DPF & segmenti Conici EGCB, &
per contrarietatem se mutuo destruunt. Et par est ratio virium materiæ
omnis extra Sphæroidem intimam PCBM. Trahitur igitur corpus P a sola
Sphæroide intima PCBM, & propterea (per Corol. 3. Prop. LXXII.) attractio
ejus est ad vim, qua corpus A trahitur a Sphæroide tota AGOD, ut distantia
PS ad distantiam AS.   Q. E. I.

Prop. XCII. Prob. XLVI.

    _Dato corpore attractivo, invenire rationem decrementi virium
    centripetarum in ejus puncta singula tendentium._

E corpore dato formanda est Sphæra vel Cylindrus aliave figura regularis,
cujus lex attractionis, cuivis decrementi rationi congruens (per Prop.
LXXX. LXXXI. & XCI.) inveniri potest. Dein factis experimentis invenienda
est vis attractionis in diversis distantiis, & lex attractionis in totum
inde patefacta dabit rationem decrementi virium partium singularum, quam
invenire oportuit.

Prop. XCIII. Theor. XLVII.

    _Si solidum ex una parte planum, ex reliquis autem partibus infinitum,
    constet ex particulis æqualibus æqualiter attractivis, quarum vires in
    recessu a solido decrescunt in ratione potestatis cujusvis distantiarum
    plusquam quadraticæ, & vi solidi totius corpusculum ad utramvis plani
    partem constitutum trahatur: dico quod solidi vis illa attractiva, in
    recessu ab ejus superficie plana, decrescet in ratione potestatis,
    cujus latus est distantia corpusculi a plano, & Index ternario minor
    quam Index potestatis distantiarum._

[Illustration]

_Cas. 1._ Sit LGl planum quo Solidum terminatur. Jaceat autem solidum ex
parte plani hujus versus I, inq; plana innumera mHM, nIN &c. ipsi GL
parallela resolvatur. Et primo collocetur corpus attractum C extra solidum.
Agatur autem CGHI planis illis innumeris perpendicularis, & decrescant
vires attractivæ punctorum solidi in ratione potestatis distantiarum, cujus
index sit numerus n ternario non minor. Ergo (per Corol. 3. Prop. XC) vis
qua planum quodvis mHM trahit punctum C est reciproce ut CH^{n - 2}. In
plano mHM capiatur longitudo HM ipsi CH^{n - 2} reciproce proportionalis, &
erit vis illa ut HM. Similiter in planis singulis lGL, nIN, oKO &c.
capiantur longitudines GL, IN, KO &c. ipsis CG^{n - 2}, CI^{n - 2}, CK^{n -
2} &c. reciproce proportionales; & vires planorum eorundem erunt ut
longitudines captæ, adeoq; summa virium ut summa longitudinum, hoc est, vis
solidi totius ut area GLOK in infinitum versus OK producta. Sed area illa
per notas quadraturarum methodos est reciproce ut CG^{n - 3}, & propterea
vis solidi totius est reciproce ut CG^{n - 3} Q. E. D.

_Cas. 2._ Collocetur jam corpusculum C ex parte plani lGL intra solidum, &
capiatur distantia CK æqualis distantiæ CG. Et solidi pars LGloKO, planis
parallelis lGL, oKO terminata, corpusculum C in medio situm nullam in
partem trahet, contrariis oppositorum punctorum actionibus se mutuo per
æqualitatem tollentibus. Proinde corpusculum C sola vi solidi ultra planum
OK siti trahitur. Hæc autem vis (per Casum primum) est reciproce ut CK^{n -
3}, hoc est (ob æquales CG, CK) reciproce ut CG^{n - 3}.   Q. E. D.

_Corol. 1._ Hinc si solidum LGIN planis duobus infinitis parallelis LG, IN
utrinq; terminetur; innotescit ejus vis attractiva, subducendo de vi
attractiva solidi totius infiniti LGKO vim attractivam partis ulterioris
NIKO, in infinitum versus KO productæ.

_Corol. 2._ Si solidi hujus infiniti pars ulterior, quando attractio ejus
collata cum attractione partis citerioris nullius pene est momenti,
rejiciatur: attractio partis illius citerioris augendo distantiam decrescet
quam proxime in ratione potestatis CG^{n - 3}.

_Corol. 3._ Et hinc si corpus quodvis finitum & ex una parte planum trahat
corpusculum e regione medii illius plani, & distantia inter corpusculum &
planum collata cum dimensionibus corporis attrahentis perexigua sit,
constet autem corpus attrahens ex particulis homogeneis, quarum vires
attractivæ decrescunt in ratione potestatis cujusvis plusquam quadruplicatæ
distantiarum; vis attractiva corporis totius decrescet quamproxime in
ratione potestatis, cujus latus sit distantia illa perexigua, & Index
ternario minor quam Index potestatis prioris. De corpore ex particulis
constante, quarum vires attractivæ decrescunt in ratione potestatis
triplicatæ distantiarum, assertio non valet, propterea quod, in hoc casu,
attractio partis illius ulterioris corporis infiniti in Corollario secundo,
semper est infinite major quam attractio partis citerioris.

_Scholium._

Si corpus aliquod perpendiculariter versus planum datum trahatur, & ex data
lege attractionis quæratur motus corporis: Solvetur Problema quærendo (per
Prop. XXVII.) motum corporis recta descendentis ad hoc planum, & (per Legum
Corol. 2.) componendo motum istum cum uniformi motu, secundum lineas eidem
plano parallelas facto. Et contra, si quæratur Lex attractionis in planum
secundum lineas perpendiculares factæ ea conditione ut corpus attractum in
data quacunq; curva linea moveatur, solvetur Problema operando ad exemplum
Problematis tertii.

Operationes autem contrahi solent resolvendo ordinatim applicatas in series
convergentes. Ut si ad basem A in angulo quovis dato ordinatim applicetur
longitudo B, quæ sit ut basis dignitas quælibet A^{m÷n}; & quæratur vis qua
corpus, secundum positionem ordinatim applicatæ, vel in basem attractum vel
a basi fugatum, moveri possit in curva linea quam ordinatim applicata
termino suo superiore semper attingit; Suppono basem augeri parte quam
minima O, & ordinatim applicatam {A + O}^{m÷n} resolvo in Seriem infinitam

  A^{m÷n} + m ÷ n OA^{{m - n}÷n} + {mm - mn} ÷ 2nn O^2 A^{{m - 2n}÷n} &c.

atq; hujus termino in quo O duarum est dimensionum, id est termino {mm -
mn} ÷ 2nn O^2 A^{(m - 2n)÷n} vim proportionalem esse suppono. Est igitur
vis quæsita ut {mm - mn} ÷ nn A^{(m - 2n)÷n}, vel quod perinde est, ut {mm
- mn} ÷ nn B^{(m - 2n)÷m}. Ut si ordinatim applicata Parabolam attingat,
existente m = 2, & n = 1: fiet vis ut data 2B^0, adeoq; dabitur. Data
igitur vi corpus movebitur in Parabola, quemadmodum _Galilæus_
demonstravit. Quod si ordinatim applicata Hyperbolam attingat, existente m
= 0 - 1, & n = 1; fiet vis ut 2B^3: adeoq; vi, quæ sit ut cubus ordinatim
applicatæ, corpus movebitur in Hyperbola. Sed missis hujusmodi
Propositionibus, pergo ad alias quasdam de motu, quas nondum attigi.

       *       *       *       *       *


SECT. XIV.

_De motu corporum minimorum, quæ viribus centripetis ad singulas magni
alicujus corporis partes tendentibus agitantur._

Prop. XCIV. Theor. XLVIII.

[Illustration]

    _Si media duo similaria, spatio planis parallelis utrinq; terminato,
    distinguantur ab invicem, & corpus in transitu per hoc spatium
    attrahatur vel impellatur perpendiculariter versus medium alterutrum,
    neq; ulla alia vi agitetur vel impediatur; Sit autem attractio, in
    æqualibus ab utroq; plano distantiis ad eandem ipsius partem captis,
    ubiq; eadem: dico quod sinus incidentiæ in planum alterutrum erit ad
    sinum emergentiæ ex plano altero in ratione data._

_Cas. 1._ Sunto Aa, Bb plana duo parallela. Incidat corpus in planum prius
Aa secundam lineam GH, ac toto suo per spatium intermedium transitu
attrahatur vel impellatur versus medium incidentiæ, eaq; actione describat
lineam curvam HI, & emergat secundum lineam IK. Ad planum emergentiæ Bb
erigatur perpendiculum IM, occurrens tum lineæ incidentiæ GH productæ in M,
tum plano incidentiæ Aa in R; & linea emergentiæ KI producta occurrat HM in
L. Centro L intervallo LI describatur circulus, secans tam HM in P & Q,
quam MI productam in N; & primo si attractio vel impulsus ponatur
uniformis, erit (ex demonstratis _Galilæi_) curva HI Parabola, cujus hæc
est proprietas, ut rectangulum sub dato latere recto & linea IM æquale sit
HM quadrato; sed & linea HM bisecabitur in L. Unde si ad MI demittatur
perpendiculum LO, æquales erunt MO, OR; & additis æqualibus IO, ON, fient
totæ æquales MN, IR. Proinde cum IR detur, datur etiam MN, estq;
rectangulum NMI ad rectangulum sub latere recto & IM, hoc est, ad HMq., in
data ratione. Sed rectangulum NMI æquale est rectangulo PMQ, id est,
differentiæ quadratorum MLq. & PLq. seu LIq.; & HMq. datam rationem habet
ad sui ipsius quartam partem LMq.: ergo datur ratio MLq. - LIq. ad MLq., &
divisim, ratio LIq. ad MLq., & ratio dimidiata LI ad ML. Sed in omni
triangulo LMI, sinus angulorum sunt proportionales lateribus oppositis.
Ergo datur ratio sinus anguli incidentiæ LMR ad sinum anguli emergentiæ
LIR.   Q. E. D.

[Illustration]

_Cas. 2._ Transeat jam corpus successive per spatia plura parallelis planis
terminata, AabB, BbcC &c. & agitetur vi quæ sit in singulis separatim
uniformis, at in diversis diversa; & per jam demonstrata, sinus incidentiæ
in planum primum Aa erit ad sinum emergentiæ ex plano secundo Bb, in data
ratione; & hic sinus, qui est sinus incidentiæ in planum secundum Bb, erit
ad sinum emergentiæ ex plano tertio Cc, in data ratione; & hic sinus ad
sinum emergentiæ ex plano quarto Dd, in data ratione; & sic in infinitum: &
ex æquo sinus incidentiæ in planum primum ad sinum emergentiæ ex plano
ultimo in data ratione. Minuatur jam planorum intervalla & augeatur numerus
in infinitum, eo ut attractionis vel impulsus actio secundum legem
quamcunq; assignatam continua reddatur; & ratio sinus incidentiæ in planum
primum ad sinum emergentiæ ex plano ultimo, semper data existens, etiamnum
dabitur.   Q. E. D.

Prop. XCV. Theor. XLIX.

    _Iisdem positis; dico quod velocitas corporis ante incidentiam est ad
    ejus velocitatem post emergentiam, ut sinus emergentiæ ad sinum
    incidentiæ._

Capiantur AH, Id æquales, & erigantur perpendicula AG, dK occurrentia
lineis incidentiæ & emergentiæ GH, IK, in G & K. In GH capiatur TH æqualis
IK, & ad planum Aa demittatur normaliter Tv. Et per Legum Corol. 2.
distinguatur motus corporis in duos, unum planis Aa, Bb, Cc &c.
perpendicularem, alterum iisdem parallelum. Vis attractionis vel impulsus
agendo secundum lineas perpendiculares nil mutat motum secundum parallelas,
& propterea corpus hoc motu conficiet æqualibus temporibus æqualia illa
secundum parallelas intervalla, quæ sunt inter lineam AG & punctum H,
interq; punctum I & lineam dK; hoc est, æqualibus temporibus describet
lineas GH, IK. Proinde velocitas ante incidentiam est ad velocitatem post
emergentiam, ut GH ad IK vel TH, id est, ut AH vel Id ad vH, hoc est
(respectu radii TH vel IK) ut sinus emergentiæ ad sinum incidentiæ.
Q. E. D.

Prop. XCVI. Theor. L.

    _Iisdem positis & quod motus ante incidentiam velocior sit quam postea:
    dico quod corpus, inclinando lineam incidentiæ, reflectetur tandem, &
    angulus reflexionis fiet æqualis angulo incidentiæ._

[Illustration]

Nam concipe corpus inter plana parallela Aa, Bb, Cc &c. describere arcus
Parabolicos, ut supra; sintq; arcus illi HP, PQ, QR, &c. Et sit ea lineæ
incidentiæ GH obliquitas ad planum primum Aa, ut sinus incidentiæ sit ad
radium circuli, cujus est sinus, in ea ratione quam habet idem sinus
incidentiæ ad sinum emergentiæ ex plano Dd, in spatium DdeE: & ob sinum
emergentiæ jam factum æqualem radio, angulus emergentiæ erit rectus, adeoq;
linea emergentiæ coincidet cum plano Dd. Perveniat corpus ad hoc planum in
puncto R; & quoniam linea emergentiæ coincidit cum eodem plano, perspicuum
est quod corpus non potest ultra pergere versus planum Ee. Sed nec potest
idem pergere in linea emergentiæ Rd, propterea quod perpetuo attrahitur vel
impellitur versus medium incidentiæ. Revertetur itaq; inter plana Cc, Dd
describendo arcum Parabolæ QRq, cujus vertex principalis (juxta demonstrata
_Galilæi_) est in R; secabit planum Cc in eodem angulo in q, ac prius in Q;
dein pergendo in arcubus parabolicis qp, ph &c. arcubus prioribus QP, PH
similibus & æqualibus, secabit reliqua plana in iisdem angulis in p, h &c.
ac prius in P, H &c. emergetq; tandem eadem obliquitate in h, qua incidit
in H. Concipe jam planorum Aa, Bb, Cc, Dd, Ee intervalla in infinitum minui
& numerum augeri, eo ut actio attractionis vel impulsus secundum legem
quamcunq; assignatam continua reddatur; & angulus emergentiæ semper angulo
incidentiæ æqualis existens, eidem etiamnum manebit æqualis.   Q. E. D.

_Scholium._

[Illustration]

Harum attractionum haud multum dissimiles sunt Lucis reflexiones &
refractiones, factæ secundum datam Secantium rationem, ut invenit
_Snellius_, & per consequens secundum datam Sinuum rationem, ut exposuit
_Cartesius_. Namq; Lucem successive propagari & spatio quasi decem
minutorum primorum a Sole ad Terram venire, jam constat per Phænomena
Satellitum _Jovis_, Observationibus diversorum Astronomorum confirmata.
Radii autem in aere existentes (uti dudum _Grimaldus_, luce per foramen in
tenebrosum cubiculum admissa, invenit, & ipse quoq; expertus sum) in
transitu suo prope corporum vel opacorum vel perspicuorum angulos (quales
sunt nummorum ex auro, argento & ære cusorum termini rectanguli circulares,
& cultrorum, lapidum aut fractorum vitrorum acies) incurvantur circum
corpora, quasi attracti in eadem; & ex his radiis, qui in transitu illo
propius accedunt ad corpora incurvantur magis, quasi magis attracti, ut
ipse etiam diligenter observavi. In figura designat s aciem cultri vel
cunei cujusvis AsB; & gowog, fnvnf, emtme, dlsld sunt radii, arcubus owo,
nvn, mtm, lsl versus cultrum incurvati; idq; magis vel minus pro distantia
eorum a cultro. Cum autem talis incurvatio radiorum fiat in aere extra
cultrum, debebunt etiam radii, qui incidunt in cultrum, prius incurvari in
aere quam cultrum attingunt. Et par est ratio incidentium in vitrum. Fit
igitur refractio, non in puncto incidentiæ, sed paulatim per continuam
incurvationem radiorum, factam partim in aere antequam attingunt vitrum,
partim (ni fallor) in vitro, postquam illud ingressi sunt: uti in radiis
ckzkc, biyib, ahxha incidentibus ad r, q, p, & inter k & z, i & y, h & x
incurvatis, delineatum est. Igitur ob analogiam quæ est inter propagationem
radiorum lucis & progressum corporum, visum est Propositiones sequentes in
usus opticos subjungere; interea de natura radiorum (utrum sint corpora
necne) nihil omnino disputans, sed trajectorias corporum trajectoriis
radiorum persimiles solummodo determinans.

Prop. XCVII. Prob. XLVII.

    _Posito quod sinus incidentiæ in superficiem aliquam sit ad sinum
    emergentiæ in data ratione, quodq; incurvatio viæ corporum juxta
    superficiem illam fiat in spatio brevissimo, quod ut punctum
    considerari possit; determinare superficiem quæ corpuscula omnia de
    loco dato successive manantia convergere faciat ad alium locum datum._

[Illustration]

Sit A locus a quo corpuscula divergunt; B locus in quem convergere debent;
CDE curva linea quæ circa axem AB revoluta describat superficiem quæsitam;
D, E curvæ illius puncta duo quævis; & EF, EG perpendicula in corporis vias
AD, DB demissa. Accedat punctum D ad punctum E; & lineæ DF qua AD augetur,
ad lineam DG qua DB diminuitur, ratio ultima erit eadem quæ sinus
incidentiæ ad sinum emergentiæ. Datur ergo ratio incrementi lineæ AD ad
decrementum lineæ DB; & propterea si in axe AB sumatur ubivis punctum C,
per quod curva CDE transire debet, & capiatur ipsius AC incrementum CM, ad
ipsius BC decrementum CN in data ratione; centrisq; A, B, & intervallis AM,
BN describantur circuli duo se mutuo secantes in D: punctum illud D tanget
curvam quæsitam CDE, eandemq; ubivis tangendo determinabit.   Q. E. I.

_Corol. 1._ Faciendo autem ut punctum A vel B nunc abeat in infinitum, nunc
migret ad alteras partes puncti C, habebuntur figuræ illæ omnes quas
_Cartesius_ in Optica & Geometria ad refractiones exposuit. Quarum
inventionem cum _Cartesius_ maximi fecerit & studiose celaverit, visum fuit
hic propositione exponere.

[Illustration]

_Corol. 2._ Si corpus in superficiem quamvis CD, secundum lineam rectam AD
lege quavis ductam incidens, emergat secundum aliam quamvis rectam DK, & a
puncto C duci intelligantur lineæ curvæ CP, CQ ipsis AD, DK semper
perpendiculares: erunt incrementa linearum PD, QD, atq; adeo lineæ ipsæ PD,
QD, incrementis istis genitæ, ut sinus incidentiæ & emergentiæ ad invicem:
& contra.

Prop. XCVIII. Prob. XLVIII.

    _Iisdem positis, & circa axem AB descripta superficie quacunq;
    attractiva CD, regulari vel irregulari, per quam corpora de loco dato A
    exeuntia transire debent: invenire superficiem secundam attractivam EF,
    quæ corpora illa ad locum datum B convergere faciat._

Juncta AB secet superficiem primam in C & secundam in E, puncto D utcunq;
assumpto. Et posito sinu incidentiæ in superficiem primam ad sinum
emergentiæ ex eadem, & sinu emergentiæ e superficie secunda ad sinum
incidentiæ in eandem, ut quantitas aliqua data M ad aliam datam N; produc
tum AB ad G ut sit BG ad CE ut M - N ad N, tum AD ad H ut sit AH æqualis
AG, tum etiam DF ad K ut sit DK ad DH ut N ad M. Junge KB, & centro D
intervallo DH describe circulum occurrentem KB productæ in L, ipsiq; DL
parallelam age BF: & punctum F tanget lineam EF, quæ circa axem AB revoluta
describet superficiem quæsitam.   Q. E. F.

Nam concipe lineas CP, CQ ipsis AD, DF respective, & lineas ER, ES ipsis
FB, FD ubiq; perpendiculares esse, adeoq; QS ipsi CE semper æqualem; & erit
(per Corol. 2. Prop. XCVII.) PD ad QD ut M ad N, adeoq; ut DL ad DK vel FB
ad FK; & divisim ut DL - FB seu PH - PD - FB ad FD seu FQ - QD; & composite
ut HP - FB ad FQ, id est (ob æquales HP & CG, QS & CE) CE + BG - FR ad CE -
FS. Verum (ob proportionales BG ad CE & M - N ad N) est etiam CE + BG ad CE
ut M ad N: adeoq; divisim FR ad FS ut M ad N, & propterea per Corol. 2.
Prop. XCVII. superficies EF cogit corpus in se secundum lineam DF incidens
pergere in linea FR, ad locum B.   Q. E. D.

_Scholium._

Eadem methodo pergere liceret ad superficies tres vel plures. Ad usus autem
Opticos maxime accommodatæ sunt figuræ Sphæricæ. Si Perspicillorum vitra
Objectiva ex vitris duobus Sphærice figuratis & Aquam inter se claudentibus
conflentur, fieri potest ut a refractionibus aquæ errores refractionum, quæ
fiunt in vitrorum superficiebus extremis, satis accurate corrigantur. Talia
autem vitra Objectiva vitris Ellipticis & Hyperbolicis præferenda sunt, non
solum quod facilius & accuratius formari possint, sed etiam quod penicillos
radiorum extra axem vitri sitos accuratius refringant. Verum tamen diversa
diversorum radiorum refrangibilitas impedimento est, quo minus Optica per
figuras vel Sphæricas vel alias quascunq; perfici possit. Nisi corrigi
possint errores illinc oriundi, labor omnis in cæteris corrigendis imperite
collocabitur.

       *       *       *       *       *


DE MOTU CORPORUM

       *       *       *       *       *

Liber SECUNDUS

       *       *       *       *       *

SECT. I.

_De Motu corporum quibus resistitur in ratione velocitatis._

Prop. I. Theor. I.

    _Corporis, cui resistitur in ratione velocitatis, motus ex resistentia
    amissus est ut spatium movendo confectum._

Nam cum motus singulis temporis particulis amissus sit ut velocitas, hoc
est ut itineris confecti particula: erit componendo motus toto tempore
amissus ut iter totum.   Q. E. D.

_Corol._ Igitur si corpus gravitate omni destitutum in spatiis liberis sola
vi insita moveatur, ac detur tum motus totus sub initio, tum etiam motus
reliquus post spatium aliquod confectum, dabitur spatium totum quod corpus
infinito tempore describere potest. Erit enim spatium illud ad spatium jam
descriptum ut motus totus sub initio ad motus illius partem amissam.

Lemma I.

    _Quantitates differentiis suis proportionales, sunt continue
    proportionales._

Sit A ad A - B ut B ad B - C & C ad C - D &c. & dividendo fiet A ad B ut B
ad C & C ad D &c.   Q. E. D.

Prop. II. Theor. II.

    _Si corpori resistitur in ratione velocitatis, & sola vi insita per
    Medium similare moveatur, sumantur autem tempora æqualia: velocitates
    in principiis singulorum temporum sunt in progressione Geometrica, &
    spatia singulis temporibus descripta sunt ut velocitates._

_Cas. 1._ Dividatur tempus in particulas æquales, & si ipsis particularum
initiis agat vis resistentiæ impulsu unico, quæ sit ut velocitas, erit
decrementum velocitatis singulis temporis particulis ut eadem velocitas.
Sunt ergo velocitates differentiis suis proportionales, & propterea (per
Lem. I. Lib. II.) continue proportionales. Proinde si ex æquali
particularum numero componantur tempora quælibet æqualia, erunt velocitates
ipsis temporum initiis, ut termini in progressione continua, qui per saltum
capiuntur, omisso passim æquali terminorum intermediorum numero.
Componuntur autem horum terminorum rationes ex æqualibus rationibus
terminorum intermediorum æqualiter repetitis, & propterea sunt æquales.
Igitur velocitates his terminis proportionales, sunt in progressione
Geometrica. Minuantur jam æquales illæ temporum particulæ, & augeatur earum
numerus in infinitum, eo ut resistentiæ impulsus reddatur continuus, &
velocitates in principiis æqualium temporum, semper continue
proportionales, erunt in hoc etiam Casu continue proportionales.   Q. E. D.

[Illustration]

_Cas. 2._ Et divisim velocitatum differentiæ, hoc est earum partes singulis
temporibus amissæ, sunt ut totæ: Spatia autem singulis temporibus descripta
sunt ut velocitatum partes amissæ, (per Prop. I. Lib. II.) & propterea
etiam ut totæ.   Q. E. D.

_Corol._ Hinc si Asymptotis rectangulis ADC, CH describatur Hyperbola BG,
sintq; AB, DG ad Asymptoton AC perpendiculares, & exponatur tum corporis
velocitas tum resistentia Medii, ipso motus initio, per lineam quamvis
datam AC, elapso autem tempore aliquo per lineam indefinitam DC: exponi
potest tempus per aream ABGD, & spatium eo tempore descriptum per lineam
AD. Nam si area illa per motum puncti D augeatur uniformiter ad modum
temporis, decrescet recta DC in ratione Geometrica ad modum velocitatis, &
partes rectæ AC æqualibus temporibus descriptæ decrescent in eadem ratione.

Prop. III. Prob. I.

[Illustration]

    _Corporis, cui dum in Medio similari recta ascendit vel descendit,
    resistitur in ratione velocitatis, quodq; ab uniformi gravitate
    urgetur, definire motum._

Corpore ascendente, exponatur gravitas per datum quodvis rectangulum BC, &
resistentia Medii initio ascensus per rectangulum BD sumptum ad contrarias
partes. Asymptotis rectangulis AC, CH, per punctum B describatur Hyperbola
secans perpendicula DE, de in G, g; & corpus ascendendo, tempore DGgd,
describet spatium EGge, tempore DGBA spatium ascensus totius EGB, tempore
AB2G2D spatium descensus BF2G, atq; tempore 2D2G2g2d spatium descensus
2GF2e2g: & velocitates corporis (resistentiæ Medii proportionales) in horum
temporum periodis erunt ABED, ABed, nulla, ABF2D, AB2e2d respective; atq;
maxima velocitas, quam corpus descendendo potest acquirere, erit BC.

[Illustration]

Resolvatur enim rectangulum AH in rectangula innumera Ak, Kl, Lm, Mn, &c.
quæ sint ut incrementa velocitatum æqualibus totidem temporibus facta; &
erunt nihil, Ak, Al, Am, An, &c. ut velocitates totæ, atq; adeo (per
Hypothesin) ut resistentia Medii in principio singulorum temporum æqualium.
Fiat AC ad AK vel ABHC ad ABkK, ut vis gravitatis ad resistentiam in
principio temporis secundi, deq; vi gravitatis subducantur resistentiæ, &
manebunt ABHC, KkHC, LlHC, NnHC, &c. ut vires absolutæ quibus corpus in
principio singulorum temporum urgetur, atq; adeo (per motus Legem II.) ut
incrementa velocitatum, id est, ut rectangula Ak, Kl, Lm, Mn &c; &
propterea (per Lem. I. Lib. II.) in progressione Geometrica. Quare si rectæ
Kk, Ll, Mm, Nn &c. productæ occurrant Hyperbolæ in q, r, s, t &c. erunt
areæ ABqK, KqrL, LrsM, MstN &c. æquales, adeoq; tum temporibus tum viribus
gravitatis semper æqualibus analogæ. Est autem area ABqK (per Corol. 3.
Lem. VII. & Lem. VIII. Lib. I.) ad aream Bkq ut Kq ad ½kq seu AC ad ½AK,
hoc est ut vis gravitatis ad resistentiam in medio temporis primi. Et
simili argumento areæ qKLr, rLMs, sMNt, &c. sunt ad areas qklr, rlms, smnt
&c. ut vires gravitatis ad resistentias in medio temporis secundi, tertii,
quarti, &c. Proinde cum areæ æquales BAKq, qKLr, rLMs, sMNt, &c. sint
viribus grauitatis analogæ, erunt areæ Bkq, qklr, rlms, smnt, &c.
resistentiis in mediis singulorum temporum, hoc est, (per Hypothesin)
velocitatibus, atq; adeo descriptis spatiis analogæ. Sumantur analogarum
summæ, & erunt areæ Bkq, Blr, Bms, Bnt, &c. spatiis totis descriptis
analogæ; necnon areæ ABqK, ABrL, ABsM, ABtN, &c. temporibus. Corpus igitur
inter descendendum, tempore quovis ABrL, describit spatium Blr, & tempore
LrtN spatium rlnt.   Q. E. D.   Et similis est demonstratio motus expositi
in ascensu.   Q. E. D.

_Corol. 1._ Igitur velocitas maxima, quam corpus cadendo potest acquirere,
est ad velocitatem dato quovis tempore acquisitam, ut vis data gravitatis
qua perpetuo urgetur, ad excessum vis hujus supra vim qua in fine temporis
illius resistitur.

_Corol. 2._ Tempore autem aucto in progressione Arithmetica, summa
velocitatis illius maximæ ac velocitatis in ascensu (atq; etiam earundem
differentia in descensu) decrescit in progressione Geometrica.

_Corol. 3._ Sed & differentiæ spatiorum, quæ in æqualibus temporum
differentiis describuntur, decrescunt in eadem progressione Geometrica.

_Corol. 4._ Spatium vero a corpore descriptum differentia est duorum
spatiorum, quorum alterum est ut tempus sumptum ab initio descensus, &
alterum ut velocitas, quæ etiam ipso descensus initio æquantur inter se.

Prop. IV. Prob. II.

    _Posito quod vis gravitatis in Medio aliquo similari uniformis sit, ac
    tendat perpendiculariter ad planum Horizontis; definire motum
    Projectilis, in eodem resistentiam velocitati proportionalem
    patientis._

[Illustration]

E loco quovis D egrediatur Projectile secundum lineam quamvis rectam DP, &
per longitudinem DP exponatur ejusdem velocitas sub initio motus. A puncto
P ad lineam Horizontalem DC demittatur perpendiculum PC, & secetur DC in A
ut sit DA ad AC ut resistentia Medii ex motu in altitudinem sub initio
orta, ad vim gravitatis; vel (quod perinde est) ut sit rectangulum sub DA &
DP ad rectangulum sub AC & CP ut resistentia tota sub initio motus ad vim
Gravitatis. Describatur Hyperbola quævis GTBS secans erecta perpendicula
DG, AB in G & B; & compleatur parallelogrammum DGKC, cujus latus GK secet
AB in Q. Capiatur linea N in ratione ad QB qua DC sit ad CP; & ad rectæ DC
punctum quodvis R erecto perpendiculo RT, quod Hyperbolæ in T, & rectis GK,
DP in t & V occurrat; in eo cape Vr æqualem tGT ÷ N, & Projectile tempore
DRTG perveniet ad punctum r, describens curvam lineam DraF, quam punctum r
semper tangit; perveniens autem ad maximam altitudinem a in perpendiculo
AB, & postea semper appropinquans ad Asymptoton PLC. Estq; velocitas ejus
in puncto quovis r ut Curvæ Tangens rL.   Q. E. I.

Est enim N ad QB ut DC ad CP seu DR ad RV, adeoq; RV æqualis DR × QB ÷ N, &
Rr (id est RV - Vr seu {DR × QB - tGT} ÷ N) æqualis {DR × AB - RDGT} ÷ N.
Exponatur jam tempus per aream RDGT, & (per Legum Corol. 2.) distinguatur
motus corporis in duos, unum ascensus, alterum ad latus. Et cum resistentia
sit ut motus, distinguetur etiam hæc in partes duas partibus motus
proportionales & contrarias: ideoq; longitudo a motu ad latus descripta
erit (per Prop. II. hujus) ut linea DR, altitudo vero (per Prop. III.
hujus) ut area DR × AB - RDGT, hoc est, ut linea Rr. Ipso autem motus
initio area RDGT æqualis est rectangulo DR × AQ, ideoq; linea illa Rr (seu
{DR × AB - DR × AQ} ÷ N) tunc est ad DR ut AB - AQ (seu QB) ad N, id est ut
CP ad DC; atq; adeo ut motus in altitudinem ad motum in longitudinem sub
initio. Cum igitur Rr semper sit ut altitudo, ac DR semper ut longitudo,
atq; Rr ad DR sub initio ut altitudo ad longitudinem: necesse est ut Rr
semper sit ad DR ut altitudo ad longitudinem, & propterea ut corpus
moveatur in linea DraF, quam punctum r perpetuo tangit.   Q. E. D.

_Corol. 1._ Hinc si vertice D, Diametro DE deorsum producta, & latere recto
quod sit ad 2DP ut resistentia tota, ipso motus initio, ad vim gravitatis,
Parabola construatur: velocitas quacum corpus exire debet de loco D
secundum rectam DP, ut in Medio uniformi resistente describat Curvam DraF,
ea ipsa erit quacum exire debet de eodem loco D, secundum eandem rectam DR,
ut in spatio non resistente describat Parabolam. Nam Latus rectum Parabolæ
hujus, ipso motus initio, est DV quad. ÷ Vr & Vr est tGT ÷ N seu DR × Tt ÷
2N. Recta autem, quæ, si duceretur, Hyperbolam GTB tangeret in G, parallela
est ipsi DK, ideoq; Tt est CK × DR ÷ DC, & N erat QB × DC ÷ CP. Et
propterea Vr est DRq. × CK × CP ÷ {2CDq. × QB}, id est (ob proportionales
DR & DC, DV & DP) DVq. × CK × CP ÷ {2DPq. × QB}, & Latus rectum DV quad. ÷
Vr prodit 2DPq. × QB ÷ {CK × CP}, id est (ob proportionales QB & CK, DA &
AC) 2DPq. × DA ÷ {AC × CP}, adeoq; ad 2DP ut DP × DA ad PC × AC; hoc est ut
resistentia ad gravitatem.   Q. E. D.

_Corol. 2._ Unde si corpus de loco quovis D, data cum velocitate, secundum
rectam quamvis positione datam DP projiciatur; & resistentia Medii ipso
motus initio detur, inveniri potest Curva DraF, quam corpus idem describet.
Nam ex data velocitate datur latus rectum Parabolæ, ut notum est. Et
sumendo 2DP ad latus illud rectum ut est vis Gravitatis ad vim resistentiæ,
datur DP. Dein secando DC in A, ut sit CP × AC ad DP × DA in eadem illa
ratione Gravitatis ad resistentiam, dabitur punctum A. Et inde datur Curva
DraF.

_Corol. 3._ Et contra, si datur curva DraF, dabitur & velocitas corporis &
resistentia Medii in locis singulis r. Nam ex data ratione CP × AC ad DP ×
DA, datur tum resistentia Medii sub initio motus, tum latus rectum
Parabolæ: & inde datur etiam velocitas sub initio motus. Deinde ex
longitudine tangentis rL, datur & huic proportionalis velocitas, &
velocitati proportionalis resistentia in loco quovis r.

_Corol. 4._ Cum autem longitudo 2DP sit ad latus rectum Parabolæ ut
gravitas ad resistentiam in D; & ex aucta Velocitate augeatur resistentia
in eadem ratione, at latus rectum Parabolæ augeatur in ratione illa
duplicata: patet longitudinem 2DP augeri in ratione illa simplici, adeoq;
velocitati semper proportionalem esse, neq; ex angulo CDP mutato augeri vel
minui, nisi mutetur quoq; velocitas.

[Illustration]

_Corol. 5._ Unde liquet methodus determinandi Curvam DraF ex Phænomenis
quamproxime, & inde colligendi resistentiam & velocitatem quacum corpus
projicitur. Projiciantur corpora duo similia & æqualia eadem cum
velocitate, de loco D, secundum angulos diversos CDP, cDp (minuscularum
literarum locis subintellectis) & cognoscantur loca F, f, ubi incidunt in
horizontale planum DC. Tum, assumpta quacunq; longitudine pro DP vel Dp,
fingatur quod resistentia in D sit ad gravitatem in ratione qualibet, &
exponatur ratio illa per longitudinem quamvis SM. Deinde per computationem,
ex longitudine illa assumpta DP, inveniantur longitudines DF, Df, ac de
ratione Ff ÷ DF per calculum inventa, auferatur ratio eadem per
experimentum inventa, & exponatur differentia per perpendiculum MN. Idem
fac iterum ac tertio, assumendo semper novam resistentiæ ad gravitatem
rationem SM, & colligendo novam differentiam MN. Ducantur autem differentiæ
affirmativæ ad unam partem rectæ SM, & negativæ ad alteram; & per puncta N,
N, N agatur curva regularis NNN secans rectam SMMM in X, & erit SX vera
ratio resistentiæ ad gravitatem, quam invenire oportuit. Ex hac ratione
colligenda est longitudo DF per calculum; & longitudo quæ sit ad assumptam
longitudinem DP ut modo inventa longitudo DF ad longitudinem eandem per
experimentum cognitam, erit vera longitudo DP. Qua inventa, habetur tum
Curva Linea DraF quam corpus describit, tum corporis velocitas &
resistentia in locis singulis.

_Scholium._

Cæterum corpora resisti in ratione velocitatis Hypothesis est magis
Mathematica quam Naturalis. Obtinet hæc ratio quamproxime ubi corpora in
Mediis rigore aliquo præditis tardissime moventur. In Mediis autem quæ
rigore omni vacant (uti posthac demonstrabitur) corpora resistuntur in
duplicata ratione velocitatum. Actione corporis velocioris communicatur
eidem Medii quantitati, tempore minore, motus major in ratione majoris
velocitatis, adeoq; tempore æquali (ob majorem Medii quantitatem
perturbatam) communicatur motus in duplicata ratione major, estq;
resistentia (per motus Legem 2. & 3.) ut motus communicatus. Videamus
igitur quales oriantur motus ex hac lege Resistentiæ.

       *       *       *       *       *


SECT. II.

_De motu corporum quibus resistitur in duplicata ratione velocitatum._

Prop. V. Theor. III.

    _Si corpori resistitur in velocitatis ratione duplicata, & sola vi
    insita per Medium similare movetur, tempora vero sumantur in
    progressione Geometrica a minoribus terminis ad majores pergente: dico
    quod velocitates initio singulorum temporum sunt in eadem progressione
    Geometrica inverse, & quod spatia sunt æqualia quæ singulis temporibus
    describuntur._

[Illustration]

Nam quoniam quadrato velocitatis proportionalis est resistentia Medii, &
resistentiæ proportionale est decrementum velocitatis; si tempus in
particulas innumeras æquales dividatur, quadrata velocitatum singulis
temporum initiis erunt velocitatum earundem differentiis proportionalia.
Sunto temporis particulæ illæ AK, KL, LM, &c. in recta CD sumptæ, &
erigantur perpendicula AB, Kk, Ll, Mm, &c. Hyperbolæ BklmG, centro C
Asymptotis rectangulis CD, CH descriptæ occurrentia in B, k, l, m, &c. &
erit AB ad Kk ut CK ad CA, & divisim AB - Kk ad Kk ut AK ad CA, & vicissim
AB - Kk ad AK ut Kk ad CA, adeoq; ut AB × Kk ad AB × CA. Unde cum AK & AB ×
CA dentur, erit AB - Kk ut AB × Kk; & ultimo, ubi coeunt AB & Kk, ut ABq.
Et simili argumento erunt Kk - Ll, Ll - Mm, &c. ut Kkq., Llq. &c. Linearum
igitur AB, Kk, Ll, Mm quadrata sunt ut earundem differentiæ, & idcirco cum
quadrata velocitatum fuerint etiam ut ipsarum differentiæ, similis erit
ambarum progressio. Quo demonstrato, consequens est etiam ut areæ his
lineis descriptæ sint in progressione consimili cum spatiis quæ
velocitatibus describuntur. Ergo si velocitas initio primi temporis AK
exponatur per lineam AB, & velocitas initio secundi KL per lineam Kk, &
longitudo primo tempore descripta per arcam AKkB, velocitates omnes
subsequentes exponentur per lineas subsequentes Ll, Mm, &c. & longitudines
descriptæ per areas Kl, Lm, &c. & composite, si tempus totum exponatur per
summam partium suarum AM, longitudo tota descripta exponetur per summam
partium suarum AMmB. Concipe jam tempus AM ita dividi in partes AK, KL, LM,
&c. ut sint CA, CK, CL, CM, &c. in progressione Geometrica, & erunt partes
illæ in eadem progressione, & velocitates AB, Kk, Ll, Mm, &c. in
progressione eadem inversa, atq; spatia descripta Ak, Kl, Lm, &c. æqualia.
Q. E. D.

_Corol. 1._ Patet ergo quod si tempus exponatur per Asymptoti partem
quamvis AD, & velocitas in principio temporis per ordinatim applicatam AB;
velocitas in fine temporis exponetur per ordinatam DG, & spatium totum
descriptum per aream Hyperbolicam adjacentem ABGD; necnon spatium quod
corpus aliquod eodem tempore AD, velocitate prima AB in Medio non
resistente describere posset, per rectangulum AB × AD.

_Corol. 2._ Unde datur spatium in Medio resistente descriptum, capiendo
illud ad spatium quod velocitate uniformi AB in Medio non resistente simul
describi posset, ut est area Hyperbolica ABGD ad rectangulum AB × AD.

_Corol. 3._ Datur etiam resistentia Medii, statuendo eam ipso motus initio
æqualem esse vi uniformi centripetæ, quæ, in cadente corpore, tempore AC,
in Medio non resistente, generare posset velocitatem AB. Nam si ducatur BT
quæ tangat Hyperbolam in B, & occurrat Asymptoto in T; recta AT æqualis
erit ipsi AC, & tempus exponet quo resistentia prima uniformiter continuata
tollere posset velocitatem totam AB.

_Corol. 4._ Et inde datur etiam proportio hujus resistentiæ ad vim
gravitatis, aliamve quamvis datam vim centripetam.

_Corol. 5._ Et viceversa, si datur proportio resistentiæ ad datam quamvis
vim centripetam, datur tempus AC, quo vis centripeta resistentiæ æqualis
generare possit velocitatem quamvis AB; & inde datur punctum B per quod
Hyperbola Asymptotis CH, CD describi debet; ut & spatium ABGD, quod corpus
incipiendo motum suum cum velocitate illa AB, tempore quovis AD, in Medio
similari resistente describere potest.

Prop. VI. Theor. IV.

[Illustration]

    _Corpora Sphærica homogenea & æqualia, resistentiis in duplicata
    ratione velocitatum impedita, & solis viribus insitis incitata,
    temporibus quæ sunt reciproce ut velocitates sub initio, describunt
    semper æqualia spatia, & amittunt partes velocitatum proportionales
    totis._

Asymptotis rectangulis CD, CH descripta Hyperbola quavis BbEe secante
perpendicula AB, ab, DE, de, in B, b, E, e, exponantur velocitates
initiales per perpendicula AB, DE, & tempora per lineas Aa, Dd. Est ergo ut
Aa ad Dd ita (per Hypothesin) DE ad AB, & ita (ex natura Hyperbolæ) CA ad
CD; & componendo, ita Ca ad Cd. Ergo areæ ABba, DEed, hoc est spatia
descripta æquantur inter se, & velocitates primæ AB, DE sunt ultimis ab,
de, & propterea (dividendo) partibus etiam suis amissis AB - ab, DE - de
proportionales.   Q. E. D.

Prop. VII. Theor. V.

    _Corpora Sphærica quibus resistitur in duplicata ratione velocitatum,
    temporibus quæ sunt ut motus primi directe & resistentiæ primæ inverse,
    amittent partes motuum proportionales totis, & spatia describent
    temporibus istis in velocitates primas ductis proportionalia._

Namq; motuum partes amissæ sunt ut resistentiæ & tempora conjunctim. Igitur
ut partes illæ sint totis proportionales, debebit resistentia & tempus
conjunctim esse ut motus. Proinde tempus erit ut Motus directe &
resistentia inverse. Quare temporum particulis in ea ratione sumptis,
corpora amittent semper particulas motuum proportionales totis, adeoq;
retinebunt velocitates in ratione prima. Et ob datam velocitatum rationem,
describent semper spatia quæ sunt ut velocitates primæ & tempora
conjunctim.   Q. E. D.

_Corol. 1._ Igitur si æquivelocia corpora resistuntur in duplicata ratione
diametrorum, Globi homogenei quibuscunq; cum velocitatibus moti,
describendo spatia diametris suis proportionalia, amittent partes motuum
proportionales totis. Motus enim Globi cujusq; erit ut ejus velocitas &
Massa conjunctim, id est ut velocitas & cubus diametri; resistentia (per
Hypothesin) erit ut quadratum diametri & quadratum velocitatis conjunctim;
& tempus (per hanc Propositionem) est in ratione priore directe & ratione
posteriore inverse, id est ut diameter directe & velocitas inverse; adeoq;
spatium (tempori & velocitati proportionale) est ut diameter.

_Corol. 2._ Si æquivelocia corpora resistuntur in ratione sesquialtera
diametrorum: Globi homogenei quibuscunq; cum velocitatibus moti,
describendo spatia in sesquialtera ratione diametrorum inverse, amittent
partes motuum proportionales totis. Nam tempus augetur in ratione
resistentiæ diminutæ, & spatium augetur in ratione temporis.

_Corol. 3._ Et universaliter, si æquivelocia corpora resistuntur in ratione
dignitatis cujuscunq; diametrorum, spatia quibus Globi homogenei,
quibuscunq; cum velocitatibus moti, amittent partes motuum proportionales
totis, erunt ut cubi diametrorum ad dignitatem illam applicata. Sunto
diametri D & E; & si resistentiæ sint ut D^n & E^n, spatia quibus amittent
partes motuum proportionales totis, erunt ut D^{3 - n} & E^{3 - n}. Igitur
describendo spatia ipsis D^{3 - n} & E^{3 - n} proportionalia, retinebunt
velocitates in eadem ratione ad invicem ac sub initio.

_Corol. 4._ Quod si Globi non sint homogenei, spatium a Globo densiore
descriptum augeri debet in ratione densitatis. Motus enim sub pari
velocitate major est in ratione densitatis, & tempus (per hanc
Propositionem) augetur in ratione motus directe, ac spatium descriptum in
ratione temporis.

_Corol. 5._ Et si Globi moveantur in Mediis diversis, spatium in Medio,
quod cæteris paribus magis resistit, diminuendum erit in ratione majoris
resistentiæ. Tempus enim (per hanc Propositionem) diminuetur in ratione
resistentiæ, & spatium in ratione temporis.

Lemma II.

    _Momentum Genitæ æquatur momentis Terminorum singulorum generantium in
    eorundem laterum indices dignitatum & coefficientia continue ductis._

Genitam voco quantitatem omnem quæ ex Terminis quibuscunq; in Arithmetica
per multiplicationem, divisionem, & extractionem radicum; in Geometria per
inventionem vel contentorum & laterum, vel extremarum & mediarum
proportionalium absq; additione & subductione generatur. Ejusmodi
quantitates sunt Facti, Quoti, Radices, rectangula, quadrata, cubi, latera
quadrata, latera cubica & similes. Has quantitates ut indeterminatas &
instabiles, & quasi motu fluxuve perpetuo crescentes vel decrescentes hic
considero, & eorum incrementa vel decrementa momentanea sub nomine
momentorum intelligo: ita ut incrementa pro momentis addititiis seu
affirmativis, ac decrementa pro subductitiis seu negativis habeantur. Cave
tamen intellexeris particulas finitas. Momenta, quam primum finitæ sunt
magnitudinis, desinunt esse momenta. Finiri enim repugnat aliquatenus
perpetuo eorum incremento vel decremento. Intelligenda sunt principia
jamjam nascentia finitarum magnitudinum. Neq; enim spectatur in hoc Lemmate
magnitudo momentorum, sed prima nascentium proportio. Eodem recidit si loco
momentorum usurpentur vel velocitates incrementorum ac decrementorum, (quas
etiam motus, mutationes & fluxiones quantitatum nominare licet) vel finitæ
quævis quantitates velocitatibus hisce proportionales. Termini autem
cujusq; Generantis coefficiens est quantitas, quæ oritur applicando Genitam
ad hunc Terminum.

Igitur sensus Lemmatis est, ut si quantitatum quarumcunq; perpetuo motu
crescentium vel decrescentium A, B, C, &c. Momenta, vel mutationum
velocitates dicantur a, b, c, &c. momentum vel mutatio rectanguli AB fuerit
Ab + aB, & contenti ABC momentum fuerit ABc + AbC + aBC: & dignitatum A^2,
A^3, A^4, A^{1/2}, A^{3/2}, A^{1/3}, A^{2/3}, 1 ÷ A, 1 ÷ A^2, & 1 ÷ A^{1/2}
momenta 2Aa, 3aA^2, 4aA^3, 1/2aA^{-1/2}, 3/2aA^{1/2}, 1/3aA^{-2/3},
2/3aA^{-1/3}, -aA^{-2}, -2aA^{-3}, & -1/2aA^{-3/2} respective. Et
generaliter ut dignitatis cujuscunq; A^{n ÷ m} momentum fuerit n ÷ m
aA^{(n-m) ÷ m}. Item ut Genitæ A quad. × B momentum fuerit 2aAB + A^2b; &
Genitæ A^3B^4C^2 momentum 3aA^2B^4C^2 + 4A^3bB^3C^2 + 2A^3B^4Cc; & Genitæ
A^3 ÷ B^2 sive A^3B^{-2} momentum 3aA^2B^{-2} - 2A^3bB^{-3}: & sic in
cæteris. Demonstratur vero Lemma in hunc modum.

_Cas. 1._ Rectangulum quodvis motu perpetuo auctum AB, ubi de lateribus A &
B deerant momentorum dimidia ½a & ½b, fuit A - ½a in B - ½b, seu AB - ½aB -
½Ab + ¼ab; & quam primum latera A & B alteris momentorum dimidiis aucta
sunt, evadit A + ½a in B + ½b seu AB + ½aB + ½Ab + ¼ab. De hoc rectangulo
subducatur rectangulum prius, & manebit excessus aB + Ab. Igitur laterum
incrementis totis a & b generatur rectanguli incrementum aB + Ab.
Q. E. D.

_Cas. 2._ Ponatur AB æquale G, & contenti ABC seu GC momentum (per Cas. 1.)
erit gC + Gc, id est (si pro G & g scribantur AB & aB + Ab) aBC + AbC +
ABc. Et par est ratio contenti sub lateribus quotcunq;.   Q. E. D.

_Cas. 3._ Ponantur A, B, C æqualia; & ipsius A^2, id est rectanguli AB,
momentum aB + Ab erit 2aA, ipsius autem A^3, id est contenti ABC, momentum
aBC + AbC + ABc erit 3aA^2. Et eodem argumento momentum dignitatis
cujuscunq; A^n est naA^{n - 1}.   Q. E. D.

_Cas. 4._ Unde cum 1 ÷ A in A sit 1, momentum ipsius 1 ÷ A ductum in A, una
cum 1 ÷ A ducto in a erit momentum ipsius 1, id est nihil. Proinde momentum
ipsius 1 ÷ A seu A^{-1} est -a ÷ A^2. Et generaliter cum 1 ÷ A^n in A^n sit
1, momentum ipsius 1 ÷ A^n ductum in A^n una cum 1 ÷ A^n in naA^{n - 1}
erit nihil. Et propterea momentum ipsius 1 ÷ A^n seu A^{-n} erit -na ÷ A^{n
+ 1}.   Q. E. D.

_Cas. 5._ Et cum A^½ in A^½ sit A, momentum ipsius A^½ in 2A^½ erit a, per
Cas. 3: ideoq; momentum ipsius A^½ erit a ÷ 2A^½ sive 2aA^{-½}. Et
generaliter si ponatur A^{m ÷ n} æqualem B, erit A^m æquale B^n, ideoq;
maA^{m - 1} æquale nbB^{n - 1}, & maA^{-1} æquale nbB^{-1} seu nb ÷ A^{m ÷
n}, adeoq; {m ÷ n}aA^{(m-n) ÷ n} æquale b, id est æquale momento ipsius
A^{m ÷ n}.   Q. E. D.

_Cas. 6._ Igitur Genitæ cujuscunq; A^m B^n momentum est momentum ipsius A^m
ductum in B^n, una cum momento ipsius B^n ducto in A^m, id est maA^{m - 1}
+ nbB^{n - 1}; idq; sive dignitatum indices m & n sint integri numeri vel
fracti, sive affirmativi vel negativi. Et par est ratio contenti sub
pluribus dignitatibus.   Q. E. D.

_Corol. 1._ Hinc in continue proportionalibus, si terminus unus datur,
momenta terminorum reliquorum erunt ut iidem termini multiplicati per
numerum intervallorum inter ipsos & terminum datum. Sunto A, B, C, D, E, F
continue proportionales; & si detur terminus C, momenta reliquorum
terminorum erunt inter se ut -2A, -B, D, 2E, 3F.

_Corol. 2._ Et si in quatuor proportionalibus duæ mediæ dentur, momenta
extremarum erunt ut eædem extremæ. Idem intelligendum est de lateribus
rectanguli cujuscunq; dati.

_Corol. 3._ Et si summa vel differentia duorum quadratorum detur, momenta
laterum erunt reciproce ut latera.

_Scholium._

In literis quæ mihi cum Geometra peritissimo _G. G. Leibnitio_ annis abhinc
decem intercedebant, cum significarem me compotem esse methodi determinandi
Maximas & Minimas, ducendi Tangentes, & similia peragendi, quæ in terminis
surdis æque ac in rationalibus procederet, & literis transpositis hanc
sententiam involventibus [Data æquatione quotcunq; fluentes quantitates
involvente, fluxiones invenire, & vice versa] eandem celarem: rescripsit
Vir Clarissimus se quoq; in ejusmodi methodum incidisse, & methodum suam
communicavit a mea vix abludentem præterquam in verborum & notarum
formulis. Utriusq; fundamentum continetur in hoc Lemmate.

Prop. VIII. Theor. VI.

    _Si corpus in Medio uniformi, Gravitate uniformiter agente, recta
    ascendat vel descendat, & spatium totum descriptum distinguatur in
    partes æquales, inq; principiis singularum partium (addendo
    resistentiam Medii ad vim gravitatis, quando corpus ascendit, vel
    subducendo ipsam quando corpus descendit) colligantur vires absolutæ;
    dico quod vires illæ absolutæ sunt in progressione Geometrica._

[Illustration]

Exponatur enim vis gravitatis per datam lineam AC; resistentia per lineam
indefinitam AK; vis absoluta in descensu corporis per differentiam KC;
velocitas corporis per lineam AP (quæ sit media proportionalis inter AK &
AC, ideoq; in dimidiata ratione resistentiæ) incrementum resistentiæ data
temporis particula factum per lineolam KL, & contemporaneum velocitatis
incrementum per lineolam PQ; & centro C Asymptotis rectangulis CA, CH
describatur Hyperbola quævis BNS, erectis perpendiculis AB, KN, LO, PR, QS
occurrens in B, N, O, R, S. Quoniam AK est ut APq., erit hujus momentum KL
ut illius momentum 2APQ, id est ut AP in KC. Nam velocitatis incrementum
PQ, per motus Leg. 2. proportionale est vi generanti KC. Componatur ratio
ipsius KL cum ratione ipsius KN, & fiet rectangulum KL × KN ut AP × KC ×
KN; hoc est, ob datum rectangulum KC × KN, ut AP. Atqui areæ Hyperbolicæ
KNOL ad rectangulum KL × KN ratio ultima, ubi coeunt puncta K & L, est
æqualitatis. Ergo area illa Hyperbolica evanescens est ut AP. Componitur
igitur area tota Hyperbolica ABOL ex particulis KNOL velocitati AP semper
proportionalibus, & propterea spatio velocitate ista descripto
proportionalis est. Dividatur jam area illa in partes æquales ABMI, IMNK,
KNOL, &c. & vires absolutæ AC, IC, KC, LC, &c. erunt in progressione
Geometrica.   Q. E. D.   Et simili argumento, in ascensu corporis, sumendo,
ad contrariam partem puncti A, æquales areas ABmi, imnk, knol, &c.
constabit quod vires absolutæ AC, iC, kC, lC, &c. sunt continue
proportionales. Ideoq; si spatia omnia in ascensu & descensu capiantur
æqualia; omnes vires absolutæ lC, kC, iC, AC, IC, KC, LC, &c. erunt
continue proportionales.   Q. E. D.

_Corol. 1._ Hinc si spatium descriptum exponatur per aream Hyperbolicam
ABNK; exponi possunt vis gravitatis, velocitas corporis & resistentia Medii
per lineas AC, AP & AK respective; & vice versa.

_Corol. 2._ Et velocitatis maximæ, quam corpus in infinitum descendendo
potest unquam acquirere, exponens est linea AC.

_Corol. 3._ Igitur si in data aliqua velocitate cognoscatur resistentia
Medii, invenietur velocitas maxima, sumendo ipsam ad velocitatem illam
datam in dimidiata ratione, quam habet vis Gravitatis ad Medii resistentiam
illam cognitam.

_Corol. 4._ Sed & particula temporis, quo spatii particula quam minima NKLO
in descensu describitur, est ut rectangulum KN × PQ. Nam quoniam spatium
NKLO est ut velocitas ducta in particulam temporis; erit particula temporis
ut spatium illud applicatum ad velocitatem, id est ut rectangulum quam
minimum KN × KL applicatum ad AP. Erat supra KL ut AP × PQ. Ergo particula
temporis est ut KN × PQ, vel quod perinde est, ut PQ ÷ CK. Q. E. D.

_Corol. 5._ Eodem argumento particula temporis, quo spatii particula nklo
in ascensu describitur, est ut pq ÷ Ck.

Prop. IX. Theor. VII.

    _Positis jam demonstratis, dico quod si Tangentes angulorum sectoris
    Circularis & sectoris Hyperbolici sumantur velocitatibus
    proportionales, existente radio justæ magnitudinis: erit tempus omne
    ascensus futuri ut sector Circuli, & tempus omne descensus præteriti ut
    sector Hyperbolæ._

Rectæ AC, qua vis gravitatis exponitur, perpendicularis & æqualis ducatur
AD. Centro D semidiametro AD describatur tum circuli Quadrans AtE, tum
Hyperbola rectangula AVZ axem habens AX, verticem principalem A &
Asymptoton DC. Jungantur Dp, DP, & erit sector circularis AtD ut tempus
ascensus omnis futuri; & Sector Hyperbolicus ATD ut tempus descensus omnis
præteriti, si modo Sectorem tangentes Ap & AP sint velocitates.

[Illustration]

_Cas. 1._ Agatur enim Dvq abscindens Sectoris ADt & trianguli ADp momenta,
seu particulas quam minimas simul descriptas tDv & pDq. Cum particulæ illæ,
ob angulum communem D, sunt in duplicata ratione laterum, erit particula
tDv ut qDp ÷ pD quad. Sed pD quad. est AD quad. + Ap quad. id est AD quad.
+ Ak × AD seu AD × Ck; & qDp est ½AD × pq. Ergo Sectoris particula vDt est
ut pq ÷ Ck, id est, per Corol. 5, Prop. VIII. ut particula temporis. Et
componendo fit summa particularum omnium tDv in Sectore ADt, ut summa
particularum temporis singulis velocitatis decrescentis Ap particulis
amissis pq respondentium, usq; dum velocitas illa in nihilum diminuta
evanuerit; hoc est, Sector totus ADt est ut ascensus totius futuri tempus.
Q. E. D.

_Cas. 2._ Agatur DQV abscindens tum Sectoris DAV, tum trianguli DAQ
particulas quam minimas TDV & PDQ; & erunt hæ particulæ ad invicem ut DTq.
ad DPq. id est (si TX & AP parallelæ sint) ut DXq. ad DAq. vel TXq. ad APq.
& divisim ut DXq. - TXq. ad ADq. - APq. Sed ex natura Hyperbolæ DXq. - TXq.
est ADq., & per Hypothesin APq. est AD × AK. Ergo particulæ sunt ad invicem
ut ADq. ad ADq. - AD × AK; id est ut AD ad AD - AK seu AC ad CK: ideoq;
Sectoris particula TDV est PDQ × AC ÷ CK, atq; adeo ob datas AC & AD, ut PQ
÷ CK; & propterea per Corol. 5. Prop. VIII. Lib. II. ut particula temporis
incremento velocitatis PQ respondens. Et componendo fit summa particularum
temporis, quibus omnes velocitatis AP particulæ PQ generantur, ut summa
particularum Sectoris ADT, id est tempus totum ut Sector totus.   Q. E. D.

_Corol. 1._ Hinc si AB æquetur quartæ parti ipsius AC, spatium ABRP, quod
corpus tempore quovis ATD cadendo describit, erit ad spatium quod corpus
semisse velocitatis maximæ AC, eodem tempore uniformiter progrediendo
describere potest, ut area ABRP, qua spatium cadendo descriptum exponitur,
ad aream ATD qua tempus exponitur. Nam cum sit AC ad AP ut AP ad AK, erit
2APQ æquale AC × KL (per Corol. 1. Lem. II. hujus) adeoq; KL ad PQ ut 2AP
ad AC, & inde LKN ad PQ × ½AD seu DPQ ut 2AP × KN ad ½AC × AD. Sed erat DPQ
ad DTV ut CK ad AC. Ergo ex æquo LKN est ad DTV ut 2AP × KN × CK ad ½AC
cub.; id est, ob æquales CKN & ¼ACq., ut AP ad AC; hoc est ut velocitas
corporis cadentis ad velocitatem maximam quam corpus cadendo potest
acquirere. Cum igitur arearum ABKN & AVD momenta LKN & DTV sunt ut
velocitates, erunt arearum illarum partes omnes simul genitæ ut spatia
simul descripta, ideoq; areæ totæ ab initio genitæ ABKN & AVD ut spatia
tota ab initio descensus descripta.   Q. E. D.

_Corol. 2._ Idem consequitur etiam de spatio quod in ascensu describitur.
Nimirum quod spatium illud omne sit ad spatium, uniformi cum velocitate AC
eodem tempore descriptum, ut est area ABnk ad Sectorem ADt.

_Corol. 3._ Velocitas corporis tempore ATD cadentis est ad velocitatem,
quam eodem tempore in spatio non resistente acquireret, ut triangulum APD
ad Sectorem Hyperbolicum ATD. Nam velocitas in Medio non resistente foret
ut tempus ATD, & in Medio resistente est ut AP, id est ut triangulum APD.
Et velocitates illæ initio descensus æquantur inter se, perinde ut areæ
illæ ATD, APD.

_Corol. 4._ Eodem argumento velocitas in ascensu est ad velocitatem, qua
corpus eodem tempore in spatio non resistente omnem suum ascendendi motum
amittere posset, ut triangulum ApD ad Sectorem circularem AtD, sive ut
recta Ap ad arcum At.

_Corol. 5._ Est igitur tempus quo corpus in Medio resistente cadendo
velocitatem AP acquirit, ad tempus quo velocitatem maximam AC in spatio non
resistente cadendo acquirere posset, ut Sector ADT ad triangulum ADC: &
tempus, quo velocitatem Ap in Medio resistente ascendendo possit amittere,
ad tempus quo velocitatem eandem in spatio non resistente ascendendo posset
amittere, ut arcus At ad ejus Tangentem Ap.

_Corol. 6._ Hinc ex dato tempore datur spatium ascensu vel descensu
descriptum. Nam corporis in infinitum descendentis datur velocitas maxima,
per Corol. 2. & 3. Theor. VI, Lib. II. indeq; datur & spatium quod semisse
velocitatis illius dato tempore describi potest, & tempus quo corpus
velocitatem illam in spatio non resistente cadendo posset acquirere. Et
sumendo Sectorem ADT vel ADt ad triangulum ADC in ratione temporum; dabitur
tum velocitas AP vel Ap, tum area ABKN vel ABkn, quæ est ad Sectorem ut
spatium quæsitum ad spatium jam ante inventum.

_Corol. 7._ Et regrediendo, ex dato ascensus vel descensus spatio ABnk vel
ABNK, dabitur tempus ADt vel ADT.

Prop. X. Prob. III.

    _Tendat uniformis vis gravitatis directe ad planum Horizontis, sitq;
    resistentia ut medii densitas & quadratum velocitatis conjunctim:
    requiritur tum Medii densitas in locis singulis, quæ faciat ut corpus
    in data quavis linea curva moveatur, tum corporis velocitas in iisdem
    locis._

[Illustration]

Sit AK planum illud plano Schematis perpendiculare; ACK linea curva; C
corpus in ipsa motum; & FCf recta ipsam tangens in C. Fingatur autem corpus
C nunc progredi ab A ad K per lineam illam ACK, nunc vero regredi per
eandem lineam; & in progressu impediri a Medio, in regressu æque promoveri,
sic ut in iisdem locis eadem semper sit corporis progredientis &
regredientis velocitas. Æqualibus autem temporibus describat corpus
progrediens arcum quam minimum CG, & corpus regrediens arcum Cg; & sint CH,
Ch longitudines æquales rectilineæ, quas corpora de loco C exeuntia, his
temporibus, absq; Medii & Gravitatis actionibus describerent: & a punctis
C, G, g, ad planum horizontale AK demittantur perpendicula CB, GD, gd,
quorum GD ac gd tangenti occurrant in F & f. Per Medii resistentiam fit ut
corpus progrediens, vice longitudinis CH, describat solummodo longitudinem
CF; & per vim gravitatis transfertur corpus de F in G: adeoq; lineola HF vi
resistentiæ, & lineola FG vi gravitatis simul generantur. Proinde (per Lem.
X. Lib. I.) lineola FG est ut vis gravitatis & quadratum temporis
conjunctim, adeoq; (ob datam gravitatem) ut quadratum temporis; & lineola
HF ut resistentia & quadratum temporis, hoc est ut resistentia & lineola
FG. Et inde resistentia fit ut HF directe & FG inverse, sive ut HF ÷ FG.
Hæc ita se habent in lineolis nascentibus. Nam in lineolis finitæ
magnitudinis hæ rationes non sunt accuratæ.

Et simili argumento est fg ut quadratum temporis, adeoq; ob æqualia tempora
æquatur ipsi FG; & impulsus quo corpus regrediens urgetur est ut hf ÷ fg.
Sed impulsus corporis regredientis & resistentia progredientis ipso motus
initio æquantur, adeoq; & ipsis proportionales hf ÷ fg & HF ÷ FG æquantur;
& propterea ob æquales fg & FG, æquantur etiam hf & HF, suntq; adeo CF, CH
(vel Ch) & Cf in progressione Arithmetica, & inde HF semidifferentia est
ipsarum Cf & CF; & resistentia quæ supra fuit ut HF ÷ FG, est ut {Cf - CF}
÷ FG.

Est autem resistentia ut Medii densitas & quadratum velocitatis. Velocitas
autem ut descripta longitudo CF directe & tempus [sqrt]FG inverse, hoc est
ut CF ÷ [sqrt]FG, adeoq; quadratum velocitatis ut CFq. ÷ FG. Quare
resistentia, ipsiq; proportionalis {Cf - CF} ÷ FG est ut Medii densitas &
ut CFq. ÷ FG conjunctim; & inde Medii densitas ut {Cf - CF} ÷ FG directe &
CFq. ÷ FG inverse, id est ut {Cf - CF} ÷ CFq.   Q. E. I.

_Corol. 1._ Et hinc colligitur, quod si in Cf capiatur Ck æqualis CF, & ad
planum horizontale AK demittatur perpendiculum ki, secans curvam ACK in l;
fiet Medii densitas ut {FG - kl} ÷ {CF × {FG + kl}}. Erit enim fC ad kC ut
[sqrt]fg seu [sqrt]FG ad [sqrt]kl, & divisim fk ad kC, id est Cf - CF ad CF
ut [sqrt]FG - [sqrt]kl ad [sqrt]kl; hoc est (si ducatur terminus uterq; in
[sqrt]FG + [sqrt]kl) ut FG - kl ad kl + [sqrt]FG × kl, sive ad FG + kl. Nam
ratio prima nascentium kl + [sqrt]FG × kl & FG + kl est æqualitatis.
Scribatur itaq; {FK - Kl} ÷ {FK + Kl} pro {Cf - CF} ÷ CF; & Medii densitas,
quæ fuit ut {Cf - CF} ÷ CF quad. evadet ut {FG - kl} ÷ {CF × FG + kl}.

_Corol. 2._ Unde cum 2HF & Cf - CF æquentur, & FG & kl (ob rationem
æqualitatis) componant 2FG; erit 2HF ad CF ut FG - kl ad 2FG; et inde HF ad
FG, hoc est resistentia ad gravitatem, ut rectangulum CF in FG - kl ad 4FG
quad.

_Corol. 3._ Et hinc si curva linea definiatur per relationem inter basem
seu abscissam AB & ordinatim applicatam BC; (ut moris est) & valor
ordinatim applicatæ resolvatur in seriem convergentem: Problema per primos
seriei terminos expedite solvetur: ut in Exemplis sequentibus.

_Exempl. 1._ Sit Linea ACK semicirculus super diametro AK descriptus, &
requiratur Medii densitas quæ faciat ut Projectile in hac linea moveatur.

Bisecetur semicirculi diameter AK in O; & dic OK n, OB a, BC e, & BD vel Bi
o: & erit DGq. seu OGq. - ODq. æquale nn - aa - 2ao - oo seu ee - 2ao - oo;
& radice per methodum nostram extracta, fiet DG = e - ao ÷ e - oo ÷ 2e -
aaoo ÷ 2e^3 - ao^3 ÷ 2e^3 - a^3o^3 ÷ 2e^5 &c. Hic scribatur nn pro ee + aa
& evadet DG = e - ao ÷ e - nnoo ÷ 2e^3 - anno^3 ÷ 2e^5 &c.

Hujusmodi Series distinguo in terminos successivos in hunc modum. Terminum
primum appello in quo quantitas infinite parva o non extat; secundum in quo
quantitas illa extat unius dimensionis; tertium in quo extat duarum,
quartum in quo trium est, & sic in infinitum. Et primus terminus, qui hic
est e, denotabit semper longitudinem ordinatæ BC insistentis ad indefinitæ
quantitatis initium B; secundus terminus qui hic est ao ÷ e, denotabit
differentiam inter BC & DF, id est lineolam IF, quæ abscinditur complendo
parallelogrammum BC - ID, atq; adeo positionem Tangentis CF semper
determinat: ut in hoc casu capiendo IF ad IC ut est ao ÷ e ad o seu a ad e.
Terminus tertius, qui hic est nnoo ÷ 2e^3 designabit lineolam FG, quæ jacet
inter Tangentem & Curvam, adeoq; determinat angulum contactus FCG, seu
curvaturam quam curva linea habet in C. Si lineola illa FG finitæ est
magnitudinis, designabitur per terminum tertium una cum subsequentibus in
infinitum. At si lineola illa minuatur in infinitum, termini subsequentes
evadent infinite minores tertio, ideoq; negligi possunt. Terminus quartus,
qui hic est anno^3 ÷ 2e^5, exhibet variationem Curvaturæ; quintus
variationem variationis, & sic deinceps. Unde obiter patet usus non
contemnendus harum Serierum in solutione Problematum, quæ pendent a
Tangentibus & curvatura Curvarum.

Præterea CF est latus quadratum ex CIq. & IFq. hoc est ex BDq. & quadrato
termini secundi. Estq; FG + kl æqualis duplo termini tertii, & FG - kl
æqualis duplo quarti. Nam valor ipsius DG convertitur in valorem ipsius il,
& valor ipsius FG in valorem ipsius kl, scribendo Bi pro BD, seu -o pro +o.
Proinde cum FG sit - nnoo ÷ 2e^3 - anno^3 ÷ 2e^5 &c. erit kl = - nnoo ÷
2e^3 + anno^3 ÷ 2e^5, &c. Et horum summa est - nnoo ÷ e^3, differentia -
anno^3 ÷ e^5. Terminum quintum & sequentes hic negligo, ut infinite minores
quam qui in hoc Problemate considerandi veniant. Itaq; si designetur Series
universaliter his terminis ± Qo - Roo - So^3 &c. erit CF æqualis [sqrt]{oo
+ QQoo}, FG + kl æqualis 2Roo, & FG - kl æqualis 2So^3. Pro CF, FG + kl &
FG - kl scribantur hi earum valores, & Medii densitas quæ erat ut {FG - kl}
÷ {CF in FG + kl} jam fiet ut S ÷ {R [sqrt]{1 + QQ}}. Deducendo igitur
Problema unumquodq; ad seriem convergentem, & hic pro Q, R & S scribendo
terminos seriei ipsis respondentes; deinde etiam ponendo resistentiam Medii
in loco quovis G esse ad Gravitatem ut S[sqrt]{1 + QQ} ad 2RR, &
velocitatem esse illam ipsam quacum corpus, de loco C secundum rectam CF
egrediens, in Parabola, diametrum CB & latus rectum {1 + QQ} ÷ R habente,
deinceps moveri posset, solvetur Problema.

Sic in Problemate jam solvendo, si scribantur [sqrt]1 + aa ÷ ee seu n ÷ e
pro [sqrt]{1 + QQ}, nn ÷ 2e^3 pro R, & ann ÷ 2e^3 pro S, prodibit Medii
densitas ut a ÷ ne, hoc est (ob datam n) ut a ÷ e seu OB ÷ BC, id est ut
Tangentis longitudo illa CT, quæ ad semidiametrum OL ipsi AK normaliter
insistentem terminatur, & resistentia erit ad gravitatem ut a ad n, id est
ut OB ad circuli semidiametrum OK, velocitas autem erit ut [sqrt]2BC.
Igitur si corpus C certa cum velocitate, secundum lineam ipsi OK
parallelam, exeat de loco L, & Medii densitas in singulis locis C sit ut
longitudo tangentis CT, & resistentia etiam in loco aliquo C sit ad vim
gravitatis ut OB ad OK; corpus illud describet circuli quadrantem LCK.
Q. E. I.

At si corpus idem de loco A secundum lineam ipsi AK perpendicularem
egrederetur, sumenda esset OB seu a ad contrarias partes centri O, &
propterea signum ejus mutandum esset, & scribendum -a pro +a. Quo pacto
prodiret Medii densitas ut -a ÷ e. Negativam autem densitatem (hoc est quæ
motus corporum accelerat) Natura non admittit, & propterea naturaliter
fieri non potest ut corpus ascendendo ab A describat circuli quadrantem AL.
Ad hunc effectum deberet corpus a Medio impellente accelerari, non a
resistente impediri.

_Exempl. 2._ Sit linea ALCK Parabola, axem habens OL horizonti AK
perpendicularem, & requiratur Medii densitas quæ faciat ut projectile in
ipsa moveatur.

Ex natura Parabolæ, rectangulum ADK æquale est rectangulo sub ordinata DG &
recta aliqua data: hoc est, si dicantur recta illa b, AB a, AK c, BC e & BD
o; rectangulum a + o in c - a - o seu ac - aa - 2ao + co - oo æquale est
rectangulo b in DG, adeoq; DG æquale {ac - aa} ÷ b + {{c - 2a} ÷ b}o - oo ÷
b. Jam scribendus esset hujus seriei secundus terminus {{c - 2a} ÷ b} o pro
Qo, & ejus coefficiens {c - 2a} ÷ b pro Q; tertius item terminus oo ÷ b pro
Roo, & ejus coefficiens 1 ÷ b pro R. Cum vero plures non sint termini,
debebit quarti termini So^3 coefficiens S evanescere, & propterea quantitas
S ÷ R[sqrt]{1 + QQ} cui Medii densitas proportionalis est, nihil erit.
Nulla igitur Medii densitate movebitur Projectile in Parabola, uti olim
demonstravit _Galilæus_.   Q. E. I.

[Illustration]

_Exempl. 3._ Sit linea AGK Hyperbola, Asymptoton habens NX plano
horizontali AK perpendicularem; & quæratur Medii densitas quæ faciat ut
Projectile moveatur in hac linea.

Sit MX Asymptotos altera, ordinatim applicatæ DG productæ occurrens in V, &
ex natura Hyperbolæ, rectangulum XV in VG dabitur. Datur autem ratio DN ad
VX, & propterea datur etiam rectangulum DN in VG. Sit illud bb; & completo
parallelogrammo DNXZ, dicatur BN a, BD o, NX c, & ratio data VZ ad ZX vel
DN ponatur esse m ÷ n. Et erit DN æqualis a - o, VG æqualis bb ÷ {a - o},
VZ æqualis m ÷ n {a - o}, & GD seu NX - VZ - VG æqualis c - {m ÷ n}a + {m ÷
n}o - bb ÷ {a - o}. Resolvatur terminus bb ÷ {a - o} in seriem convergentem
bb ÷ a + {bb ÷ aa}o + {bb ÷ a^3}oo + {bb ÷ a^4}o^3 etc. & fiet GD æqualis c
- {m ÷ n}a - bb ÷ a + {m ÷ n}o - {bb ÷ aa}o - {bb ÷ a^3}o^2 - {bb ÷ a^4}o^3
&c. Hujus seriei terminus secundus {m ÷ n}o - {bb ÷ aa}o usurpandus est pro
Qo, tertius cum signo mutato {bb ÷ a^3}o^2 pro Ro^2, & quartus cum signo
etiam mutato {bb ÷ a^4}o^3 pro So^3, eorumq; coefficientes m ÷ n - bb ÷ aa,
bb ÷ a^3 & bb ÷ a^4 scribendæ sunt, in Regula superiore, pro Q, R & S. Quo
facto prodit medii densitas ut

                 bb
                ---
                a^4                                  1
   ------------------------------ seu ------------------------------
          ---------------------           -------------------------
   bb    /    mm   2mbb   b^4            /     mm      2mbb   b^4
   --   / 1 - -- - ---- + ---           / aa + -- aa - ---- + ----
   a^3\/      nn    naa   a^4         \/       nn        n     aa

est, si in VZ sumatur VY æqualis VG, ut 1 ÷ XY. Namq; aa & {mm ÷ nn}aa -
2mbb ÷ n + b^4 ÷ aa sunt ipsarum XZ & ZY quadrata. Resistentia autem
invenitur in ratione ad Gravitatem quam habet XY ad YG, & velocitas ea est
quacum corpus in Parabola pergeret verticem G diametrum DG & latus rectum
YX quad. ÷ VG habente. Ponatur itaq; quod Medii densitates in locis
singulis G sint reciproce ut distantiæ XY, quodq; resistentia in loco
aliquo G sit ad gravitatem ut XY ad YG; & corpus de loco A justa cum
velocitate emissum describet Hyperbolam illam AGK.   Q. E. I.

_Exempl. 4._ Ponatur indefinite, quod linea AGK Hyperbola sit, centro X
Asymptotis MX, NX, ea lege descripta, ut constructo rectangulo XZDN cujus
latus ZD secet Hyperbolam in G & Asymptoton ejus in V, fuerit VG reciproce
ut ipsius ZX vel DN dignitas aliqua ND^n, cujus index est numerus n: &
quæratur Medii densitas, qua Projectile progrediatur in hac curva.

Pro DN, BD, NX scribantur A, O, C respective, sitq; VZ ad ZX vel DN ut d ad
e, & VG æqualis bb ÷ DN^n, & erit DN æqualis A - O, VG = bb ÷ {A - O}^n, VZ
= d ÷ e in A - O, & GD seu NX - VZ - VG æqualis C - {d ÷ e}A + {d ÷ e}O -
bb ÷ {A - O}^n. Resolvatur terminus ille bb ÷ {A - O}^n in seriam infinitam

   bb      nbbO      nn + n          n^3 + 3nn + 2n
  ----- + ------- + -------- bbO^2 + -------------- bbO^3 &c.
   A^n    A^{n+1}   2A^{n+2}            6A^{n+3}

ac fiet GD æqualis

      d    bb      d      nbb       nn + n         n^3 + 3nn + 2n
  C - -A - ----- + -O - -------O - --------bbO^2 - --------------bbO^3 &c.
      e    A^n     e    A^{n+1}    2A^{n+2}           6A^{n+3}

Hujus seriei terminus secundus {d ÷ e}O - {nbb ÷ A^{n+1}}O usurpandus est
pro Qo, tertius {{nn + n} ÷ 2A^{n+2}}bbO^2 pro Ro^2, quartus {{n^3 + 3nn +
2n} ÷ 6A^{n+3}}bbO^3 pro So^3. Et inde Medii densitas S ÷ {R × [sqrt]{1 +
QQ}}, in loco quovis G, fit

                 n + 2
  --------------------------------------- ,
       --------------------------------
      /      dd       2dnbb      nnb^4
  3  / A^2 + -- A^2 - ------ A + ------
   \/        ee        eA^n      A^{2n}

adeoq; si in VZ capiatur VY æqualis n × VG, est reciproce ut XY. Sunt enim
A^2 & {dd ÷ ee}A^2 - 2dnbb ÷ eA^n in A + nnb^4 ÷ A^{2n} ipsarum XZ & ZY
quadrata. Resistentia autem in eodem loco G fit ad Gravitatem ut S in XY ÷
A ad 2RR, id est XY ad {{3nn + 3n} ÷ {n + 2}}VG. Et velocitas ibidem ea
ipsa est quacum corpus projectum in Parabola pergeret, verticem G,
diametrum GD & Latus rectum {1 + QQ} ÷ R seu 2XY quad. ÷ {{nn + n} in VG}
habente.   _Q. E. I._

_Scholium._

Quoniam motus non fit in Parabola nisi in Medio non resistente, in
Hyperbolis vero hic descriptis fit per resistentiam perpetuam; perspicuum
est quod linea, quam Projectile in Medio uniformiter resistente describit,
propius accedit ad Hyperbolas hasce quam ad Parabolam. Est utiq; linea illa
Hyperbolici generis, sed quæ circa verticem magis distat ab Asymptotis; in
partibus a vertice remotioribus propius ad ipsas accedit quam pro ratione
Hyperbolarum quas hic descripsi. Tanta vero non est inter has & illam
differentia, quin illius loco possint hæ in rebus practicis non incommode
adhiberi. Et utiliores forsan futuræ sunt hæ, quam Hyperbola magis accurata
& simul magis composita. Ipsæ vero in usum sic deducentur.

Compleatur parallelogrammum XYGT, & ex natura harum Hyperbolarum facile
colligitur quod recta GT tangit Hyperbolam in G, ideoq; densitas Medii in G
est reciproce ut tangens GT, & velocitas ibidem ut [sqrt]{GTq. ÷ GV},
resistentia autem ad vim gravitatis ut GT ad {{3nn + 3n} ÷ {n + 2}}GV.

Proinde si corpus de loco A secundum rectam AH projectum describat
Hyperbolam AGK, & AH producta occurrat Asymptoto NX in H, actaq; AI
occurrat alteri Asymptoto MX in I: erit Medii densitas in A reciproce ut
AH, & corporis velocitas ut [sqrt]{AHq. ÷ AI}, ac resistentia ibidem ad
Gravitatem ut AH ad {3nn + 3n} ÷ {n + 2} in AI. Unde prodeunt sequentes
Regulæ.

_Reg. 1._ Si servetur Medii densitas in A & mutetur angulus NAH, manebunt
longitudines AH, AI, HX. Ideoq; si longitudines illæ in aliquo casu
inveniantur, Hyperbola deinceps ex dato quovis angulo NAH expedite
determinari potest.

_Reg. 2._ Si servetur tum angulus NAH tum Medii densitas in A, & mutetur
velocitas quacum corpus projicitur; servabitur longitudo AH, & mutabitur AI
in duplicata ratione velocitatis reciproce.

_Reg. 3._ Si tam angulus NAH quam corporis velocitas in A, gravitasq;
acceleratrix servetur, & proportio resistentiæ in A ad gravitatem motricem
augeatur in ratione, quacunque: augebitur proportio AH ad AI eadem ratione,
manente Parabolæ latere recto, eiq; proportionali longitudine AHq. ÷ AI; &
propterea minuetur AH in eadem ratione, & AI minuetur in ratione illa
duplicata. Augetur vero proportio resistentiæ ad pondus, ubi vel gravitas
specifica sub æquali magnitudine fit minor, vel Medii densitas major, vel
resistentia, ex magnitudine diminuta, diminuitur in minore ratione quam
pondus.

_Reg. 4._ Quoniam densitas Medii prope verticem Hyperbolæ major est quam in
loco A, ut servetur densitas mediocris, debet ratio minimæ tangentium GT ad
Tangentem AH inveniri, & densitas in A, per Regulam tertiam, diminui in
ratione paulo minore quam semisummæ Tangentium ad Tangentium AH.

_Reg. 5._ Si dantur longitudines AH, AI, & describenda sit figura AGK:
produc HN ad X, ut sit HX æqualis facto sub n + 1 & AI; centroq; X &
Asymptotis MX, NX per punctum A describatur Hyperbola, ea lege ut sit AI ad
quamvis VG ut XV^n ad XI^n.

[Illustration]

_Reg. 6._ Quo major est numerus n, eo magis accuratæ sunt hæ Hyperbolæ in
ascensu corporis ab A, & minus accuratæ in ejus descensu ad G; & contra.
Hyperbola Conica mediocrem rationem tenet, estq; cæteris simplicior. Igitur
si Hyperbola sit hujus generis, & punctum K, ubi corpus projectum incidet
in rectam quamvis AN per punctum A transeuntem, quæratur: occurrat producta
AN Asymptotis MX, NX in M & N, & sumatur NK ipsi AM æqualis.

_Reg. 7._ Et hinc liquet methodus expedita determinandi hanc Hyperbolam ex
Phænomenis. Projiciantur corpora duo similia & æqualia eadem velocitate, in
angulis diversis HAK, hAk, incidentq; in planum Horizontis in K & k; &
notetur proportio AK ad Ak. Sit ea d ad e. Tum erecto cujusvis longitudinis
perpendiculo AI, assume utcunq; longitudinem AH vel Ah, & inde collige
graphice longitudines AK, Ak, per Reg. 6. Si ratio AK ad Ak sit eadem cum
ratione d ad e, longitudo AH recte assumpta fuit. Sin minus cape in recta
infinita SM longitudinem SM æqualem assumptæ AH, & erige perpendiculum MN
æquale rationum differentiæ AK ÷ Ak - d ÷ e ductæ in rectam quamvis datam.
Simili methodo ex assumptis pluribus longitudinibus AH invenienda sunt
plura puncta N: & tum demum si per omnia agatur Curva linea regularis NNXN,
hæc abscindet SX quæsitæ longitudini AH æqualem. Ad usus Mechanicos
sufficit longitudines AH, AI easdem in angulis omnibus HAK retinere. Sin
figura ad inveniendam resistentiam Medij accuratius determinanda sit,
corrigendæ sunt semper hæ longitudines per Regulam quartam.

[Illustration]

_Reg. 8._ Inventis longitudinibus AH, HX; si jam desideretur positio rectæ
AH, secundum quam Projectile data illa cum velocitate emissum incidit in
punctum quodvis K: ad puncta A & K erigantur rectæ AC, KF horizonti
perpendiculares, quarum AC deorsum tendat, & æquetur ipsi AI seu ½HX.
Asymptotis AK, KF describatur Hyperbola, cujus Conjugata transeat per
punctum C, centroq; A & intervallo AH describatur Circulus secans
Hyperbolam illam in puncto H; & projectile secundum rectam AH emissum
incidet in punctum K.   _Q. E. I._   Nam punctum H, ob datam longitudinem
AH, locatur alicubi in circulo descripto. Agatur CH occurrens ipsis AK &
KF, illi in C, huic in F, & ob parallelas CH, MX & æquales AC, AI, erit AE
æqualis AM, & propterea etiam æqualis KN. Sed CE est ad AE ut FH ad KN, &
propterea CE & FH æquantur. Incidit ergo punctum H in Hyperbolam Asymptotis
AK, KF descriptam, cujus conjugata transit per punctum C, atq; adeo
reperitur in communi intersectione Hyperbolæ hujus & circuli descripti.
_Q. E. D._   Notandum est autem quod hæc operatio perinde se habet, sive
recta AKN horizonti parallela sit, sive ad horizontem in angulo quovis
inclinata: quodq; ex duabus intersectionibus H, H duo prodeunt anguli NAH,
NAH, quorum minor eligendus est; & quod in Praxi mechanica sufficit
circulum semel describere, deinde regulam interminatam CH ita applicare ad
punctum C, ut ejus pars FH, circulo & rectæ FK interjecta, æqualis sit ejus
parti CE inter punctum C & rectam HK sitæ.

[Illustration]

Quæ de Hyperbolis dicta sunt facile applicantur ad Parabolas. Nam si XAGK
Parabolam designet quam recta XV tangat in vertice X, sintq; ordinatim
applicatæ IA, VG ut quælibet abscissarum XI, XV dignitates XI^n, XV^n;
agantur XT, TG, HA, quarum XT parallela sit VG, & TG, HA parabolam tangant
in G & A: & corpus de loco quovis A, secundum rectam AH productam, justa
cum velocitate projectum, describet hanc Parabolam, si modo densitas Medij,
in locis singulis G, sit reciproce ut tangens GT. Velocitas autem in G ea
erit quacum Projectile pergeret, in spatio non resistente, in Parabola
Conica, verticem G, diametrum VG deorsum productam, & latus rectum
[sqrt]{2TGq. ÷ {nn - n}XVG} habente. Et resistentia in G erit ad vim
Gravitatis ut TG ad {{3nn - 3n} ÷ {n - 2}}VG. Vnde si NAK lineam
horizontalem designet, & manente tum densitate Medij in A, tum velocitate
quacum corpus projicitur, mutetur utcunq; angulus NAH; manebunt
longitudines AH, AI, HX, & inde datur Parabolæ vertex X, & positio rectæ
XI, & sumendo VG ad IA ut XV^n ad XI^n, dantur omnia Parabolæ puncta G, per
quæ Projectile transibit.

       *       *       *       *       *


SECT. III.

_De motu corporum quæ resistuntur partim in ratione velocitatis, partim in
ejusdem ratione duplicata._

Prop. XI. Theor. VIII.

    _Si corpus resistitur partim in ratione velocitatis, partim in
    velocitatis ratione duplicata, & sola vi insita in Medio similari
    movetur, sumantur autem tempora in progressione Arithmetica:
    quantitates velocitatibus reciproce proportionales, data quadam
    quantitate auctæ, erunt in progressione Geometrica._

[Illustration]

Centro C, Asymptotis rectangulis CADd & CH describatur Hyperbola BEeS, &
Asymptoto CH parallelæ sint AB, DE, de. In Asymptoto CD dentur puncta A, G:
Et si tempus exponatur per aream Hyperbolicam ABED uniformiter crescentem;
dico quod velocitas exponi potest per longitudinem DF, cujus reciproca GD
una cum data CG componat longitudinem CD in progressione Geometrica
crescentem.

Sit enim areola DEed datum temporis incrementum quam minimum, & erit Dd
reciproce ut DE, adeoque directe ut CD. Ipsius autem 1 ÷ GD decrementum,
quod (per hujus Lem. II.) est Dd ÷ GDq. erit ut CD ÷ GDq. seu {CG + GD} ÷
GDq., id est, ut {1 ÷ GD} + {CG ÷ GDq.}. Igitur tempore ABED per additionem
datarum particularum EDde uniformiter crescente, decrescit 1 ÷ GD in eadem
ratione cum velocitate. Nam decrementum velocitatis est ut resistentia, hoc
est (per Hypothesin) ut summa duarum quantitatum, quarum una est ut
velocitas, altera ut quadratum velocitatis; & ipsius 1 ÷ GD decrementum est
ut summa quantitatum 1 ÷ GD & CG ÷ GDq., quarum prior est ipsa 1 ÷ GD, &
posterior CG ÷ GDq. est ut 1 ÷ GDq.. Proinde 1 ÷ GD, ob analogum
decrementum, est ut velocitas. Et si quantitas GD ipsi 1 ÷ GD reciproce
proportionalis quantitate data CG augeatur, summa CD, tempore ABED
uniformiter crescente, crescet in progressione Geometrica.   _Q. E. D._

_Corol. 1._ Igitur si datis punctis A, G, exponatur tempus per aream
Hyperbolicam ABED, exponi potest velocitas per ipsius GD reciprocam 1 ÷ GD.

_Corol. 2._ Sumendo autem GA ad GD ut velocitatis reciproca sub initio, ad
velocitatis reciprocam in fine temporis cujusvis ABED, invenietur punctum
G. Eo autem invento, velocitas ex dato quovis alio tempore inveniri potest.

Prop. XII. Theor. IX.

    _Iisdem positis, dico quod si spatia descripta sumantur in progressione
    Arithmetica, velocitates data quadam quantitate auctæ erunt in
    progressione Geometrica._

In Asymptoto CD detur punctum R, & erecto perpendiculo RS, quod occurrat
Hyperbolæ in S, exponatur descriptum spatium per aream Hyperbolicam RSED; &
velocitas erit ut longitudo GD, quæ cum data CG componit longitudinem CD,
in Progressione Geometrica decrescentem, interea dum spatium RSED augetur
in Arithmetica.

Etenim ob datum spatii incrementum EDde, lineola Dd, quæ decrementum est
ipsius GD, erit reciproce ut ED, adeoq; directe ut CD, hoc est ut summa
ejusdem GD & longitudinis datæ CG. Sed velocitatis decrementum, tempore
sibi reciproce proportionali, quo data spatii particula DdeE describitur,
est ut resistentia & tempus conjunctim, id est directe ut summa duarum
quantitatum, quarum una est velocitas, altera ut velocitatis quadratum, &
inverse ut velocitas; adeoque directe ut summa dearum quantitatum, quarum
una datur, altera est ut velocitas. Igitur decrementum tam velocitatis quam
lineæ GD, est ut quantitas data & quantitas decrescens conjunctim, &
propter analoga decrementa, analogæ semper erunt quantitates decrescentes:
nimirum velocitas & linea GD.   _Q. E. D._

_Corol. 1._ Igitur si velocitas exponatur per longitudinem GD, spatium
descriptum erit ut area Hyperbolica DESR.

_Corol. 2._ Et si utcunque assumatur punctum R, invenietur punctum G,
capiendo GD ad GR ut est velocitas sub initio ad velocitatem post spatium
quodvis ABED descriptum. Invento autem puncto G, datur spatium ex data
velocitate, & contra.

_Corol. 3._ Unde cum, per Prop. XI. detur velocitas ex dato tempore, & per
hanc Propositionem detur spatium ex data velocitate; dabitur spatium ex
dato tempore: & contra.

Prop. XIII. Theor. X.

[Illustration]

    _Posito quod corpus ab uniformi gravitate deorsum attractum recta
    ascendit vel descendit, & resistitur partim in ratione velocitatis,
    partim in ejusdem ratione duplicata: dico quod si Circuli & Hyperbolæ
    diametris parallelæ rectæ per conjugatarum diametrorum terminos
    ducantur, & velocitates sint ut segmenta quædam parallelarum a dato
    puncto ducta, Tempora erunt ut arearum Sectores, rectis a centro ad
    segmentorum terminos ductis abscissi: & contra._

_Cas. 1._ Ponamus primo quod corpus ascendit, centroque D & semidiametro
quovis DB describatur circuli quadrans BETF, & per semidiametri DB terminum
B agatur infinita BAP, semidiametro DF parallela. In ea detur punctum A, &
capiatur segmentum AP velocitati proportionale. Et cum resistentiæ pars
aliqua sit ut velocitas & pars altera ut velocitatis quadratum, fit
resistentia tota in P ut AP quad. + 2PAB. Jungantur DA, DP circulum
secantes in E ac T, & exponatur gravitas per DA quadratum, ita ut sit
gravitas ad resistentiam in P ut DAq. ad APq. + 2PAB: & tempus ascensus
omnis futuri erit ut circuli sector EDTE.

Agatur enim DVQ, abscindens & velocitatis AP momentum PQ, & Sectoris DET
momentum DTV dato temporis momento respondens: & velocitatis decrementum
illud PQ erit ut summa virium gravitatis DBq. & resistentiæ APq. + 2BAP, id
est (per _Prop. 12. Lib. II._ Elem.) ut DP quad. Proinde area DPQ, ipsi PQ
proportionalis, est ut DP quad.; & area DTV, (quæ est ad aream DPQ ut DTq.
ad DPq.) est ut datum DTq. Decrescit igitur area EDT uniformiter ad modum
temporis futuri, per subductionem datarum particularum DTV, & propterea
tempori ascensus futuri proportionalis est.   _Q. E. D._

[Illustration]

_Cas. 2._ Si velocitas in ascensu corporis exponatur per longitudinem AP ut
prius, & resistentia ponatur esse ut APq. + 2BAP, & si vis gravitatis minor
sit quam quæ per DAq. exponi possit; capiatur BD ejus longitudinis, ut sit
ABq. - BDq. gravitati proportionale, sitque DF ipsi DB perpendicularis &
æqualis, & per verticem F describatur Hyperbola FTVE cujus semidiametri
conjugatæ sint DB & DF, quæq; secet DA in E, & DP, DQ in T & V; & erit
tempus ascensus futuri ut Hyperbolæ sector TDE.

Nam velocitatis decrementum PQ, in data temporis particula factum, est ut
summa resistentiæ APq. + 2ABP & gravitatis ABq. - BDq. id est ut BPq. -
BDq. Est autem area DTV ad aream DPQ ut DTq. ad DPq. adeoque, si ad DF
demittatur perpendiculum GT, ut GTq. seu GDq. - DFq. ad BDq. utque GDq. ad
PBq. & divisim ut DFq. ad BPq. - DBq. Quare cum area DPQ sit ut PQ, id est
ut BPq. - BDq. erit area DTV ut datum DFq. Decrescit igitur area EDT
uniformiter singulis temporis particulis æqualibus, per subductionem
particularum totidem datarum DTV, & propterea tempori proportionalis est.
_Q. E. D._

_Cas. 3._ Sit AP velocitas in descensu corporis, & APq. + 2ABP resistentia,
& DBq. - ABq. vis gravitatis, existente angulo DAB recto. Et si centro D,
vertice principali B, describatur Hyperbola rectangula BETV secans
productas DA, DP & DQ in E, T & V; erit Hyperbolæ hujus sector DET ut
tempus descensus.

[Illustration]

Nam velocitatis incrementum PQ, eiq; proportionalis area DPQ, est ut
excessus gravitatis supra resistentiam, id est, ut DBq. - ABq. - 2ABP -
APq. seu DBq. - BPq. Et area DTV est ad aream DPQ ut DTq. ad DPq. adeoq; ut
GTq. seu GDq. - BDq. ad BPq. utque GDq. ad BDq. & divisim ut BDq. ad BDq. -
BPq. Quare cum area DPQ sit ut BDq. - BPq. erit area DTV ut datum BDq.
Crescit igitur area EDT uniformiter singulis temporis particulis æqualibus,
per additionem totidem datarum particularum DTV, & propterea tempori
descensus proportionalis est.   _Q. E. D._

_Corol._ Igitur velocitas AP est ad velocitatem quam corpus tempore EDT, in
spatio non resistente, ascendendo amittere vel descendendo acquirere
posset, ut area trianguli DAP ad aream sectoris centro D, radio DA, angulo
ADT descripti; ideoque ex dato tempore datur. Nam velocitas in Medio non
resistente, tempori atque adeo Sectori huic proportionalis est; in Medio
resistente est ut triangulum; & in Medio utroq; ubi quam minima est,
accedit ad rationem æqualitatis, pro more Sectoris & Trianguli.

Prop. XIV. Prob. IV.

    _Iisdem positis, dico quod spatium ascensu vel descensu descriptum, est
    ut summa vel differentia areæ per quam tempus exponitur, & areæ
    cujusdam alterius quæ augetur vel diminuitur in progressione
    Arithmetica; si vires ex resistentia & gravitate compositæ sumantur in
    progressione Geometrica._

Capiatur AC (_in Fig. tribus ultimis,_) gravitati, & AK resistentiæ
proportionalis. Capiantur autem ad easdem partes puncti A si corpus
ascendit, aliter ad contrarias. Erigatur Ab quæ sit ad DB ut DBq. ad 4BAC:
& area AbNK augebitur vel diminuetur in progressione Arithmetica, dum vires
CK in progressione Geometrica sumuntur. Dico igitur quod distantia corporis
ab ejus altitudine maxima sit ut excessus areæ AbNK supra aream DET.

Nam cum AK sit ut resistentia, id est ut APq. + 2BAP; assumatur data quævis
quantitas Z, & ponatur AK æqualis {APq. + 2BAP} ÷ Z; & (per hujus Lem. II.)
erit ipsius AK momentum KL æquale {2APQ + 2BA × PB} ÷ Z seu 2BPQ ÷ Z, &
areæ AbNK momentum KLON æquale 2BPQ × LO ÷ Z seu {BPQ × BD cub.} ÷ {2Z × CK
× AB}.

_Cas. 1._ Jam si corpus ascendit, sitque gravitas ut ABq. + BDq. existente
BET circulo, (_in Fig. Cas. 1. Prop. XIII._) linea AC, quæ gravitati
proportionalis est, erit {ABq. + BDq.} ÷ Z & DPq. seu APq. + 2BAP + ABq. +
BDq. erit AK × Z + AC × Z seu CK × Z; ideoque area DTV erit ad aream DPQ ut
DTq. vel DBq. ad CK × Z.

_Cas. 2._ Sin corpus ascendit, & gravitas sit ut ABq. - BDq. linea AC
(_Fig. Cas. 2. Prop. XIII._) erit {ABq. - BDq.} ÷ Z, & DTq. erit ad DPq. ut
DFq. seu DBq. ad BPq. - BDq. seu APq. + 2BAP + ABq. - BDq. id est ad AK × Z
+ AC × Z seu CK × Z. Ideoque area DTV erit ad aream DPQ ut DBq. ad CK × Z.

_Cas. 3._ Et eodem argumento, si corpus descendit, & propterea gravitas sit
ut BDq. - ABq. & linea AC (_Fig. Cas. 3. Prop. præced._) æquetur {BDq. -
ABq.} ÷ Z erit area DTV ad aream DPQ ut DBq. ad CK × Z: ut supra.

Cum igitur areæ illæ semper sint in hac ratione; si pro area DTV, qua
momentum temporis sibimet ipsi semper æquale exponitur, scribatur
determinatum quodvis rectangulum, puta BD × m, erit area DPQ, id est, ½BD ×
PQ; ad BD × m ut CK in Z ad BDq. Atq; inde fit PQ in BD cub. æquale 2BD × m
× CK × Z, & areæ AbNK momentum KLON superius inventum, fit BP × BD × m ÷
AB. Auferatur areæ DET momentum DTV seu BD × m, & restabit AP × BD × m ÷
AB. Est igitur differentia momentorum, id est, momentum differentiæ
arearum, æqualis AP × BD × m ÷ AB; & propterea (ob datum BD × m ÷ AB) ut
velocitas AP, id est ut momentum spatii quod corpus ascendendo vel
descendendo describit. Ideoque differentia arearum & spatium illud
proportionalibus momentis crescentia vel decrescentia, & simul incipientia
vel simul evanescentia, sunt proportionalia.   _Q. E. D._

_Corol._ Igitur si longitudo aliqua V sumatur in ea ratione ad arcum ET,
quam habet linea DA ad lineam DE; spatium quod corpus ascensu vel descensu
toto in Medio resistente describit, erit ad spatium quod in Medio non
resistente eodem tempore describere posset, ut arearum illarum differentia
ad BD × V^2 ÷ 4AB, ideoque ex dato tempore datur. Nam spatium in Medio non
resistente est in duplicata ratione temporis, sive ut V^2, & ob datas BD &
AB, ut BD × V^2 ÷ 4AB. Tempus autem est ut DET seu ½BD × ET, & harum
arearum momenta sunt ut BD × V ÷ 2AB ductum in momentum ipsius V & ½BD
ductum in momentum ipsius ET, id est, ut BD × V ÷ 2AB in DAq. × 2m ÷ DEq. &
½BD × 2m, sive ut {BD × V × DAq. × m} ÷ {AB × DEq.} & BD × m. Et propterea
momentum areæ V^2 est ad momentum differentiæ arearum DET & AKNb, ut {BD ×
V × DA × m} ÷ {AB × DE} ad AP × BD × m ÷ AB sive ut V × DA ÷ DE ad AP;
adeoque, ubi V & AP quam minimæ sunt, in ratione æqualitatis. Æqualis
igitur est area quam minima BD × V^2 ÷ 4AB differentiæ quam minimæ arearum
DET & AKNb. Unde cum spatia in Medio utroque, in principio descensus vel
fine ascensus simul descripta accedunt ad æqualitatem, adeoque tunc sunt ad
invicem ut area BD × V^2 ÷ 4AB & arearum DET & AKNb differentia; ob eorum
analoga incrementa necesse est ut in æqualibus quibuscunque temporibus sint
ad invicem ut area illa BD × V^2 ÷ 4AB & arearum DET & AKNb differentia.
_Q. E. D._

       *       *       *       *       *


SECT. IV.

_De Corporum circulari Motu in Mediis resistentibus._

LEM. III.

    _Sit PQRr Spiralis quæ secet radios omnes SP, SQ, SR, &c. in æqualibus
    angulis. Agatur recta PT quæ tangat eandem in puncto quovis P, secetque
    radium SQ in T; & ad Spiralem erectis perpendiculis PO, QO
    concurrentibus in O, jungatur SO. Dico quod si puncta P & Q accedant ad
    invicem & coeant, angulus PSO evadet rectus, & ultima ratio rectanguli
    TQ × PS ad PQ quad. erit ratio æqualitatis._

[Illustration]

Etenim de angulis rectis OPQ, OQR subducantur anguli æquales SPQ, SQR, &
manebunt anguli æquales OPS, OQS. Ergo circulus qui transit per puncta O,
S, P transibit etiam per punctum Q. Coeant puncta P & Q, & hic circulus in
loco coitus PQ tanget Spiralem, adeoque perpendiculariter secabit rectam
OP. Fiet igitur OP diameter circuli hujus, & angulus OSP in semicirculo
rectus.   _Q. E. D._

Ad OP demittantur perpendicula QD, SE, & linearum rationes ultimæ erunt
hujusmodi: TQ ad PD ut TS vel PS ad PE, seu PO ad PS. Item PD ad PQ ut PQ
ad PO. Et ex æquo perturbate TQ ad PQ ut PQ ad PS. Unde fit PQq. æqualis TQ
× PS.   _Q. E. D._

Prop. XV. Theor. XI.

    _Si Medii densitas in locis singulis sit reciproce ut distantia locorum
    a centro immobili, sitque vis centripeta in duplicata ratione
    densitatis: dico quod corpus gyrari potest in Spirali, quæ radios omnes
    a centro illo ductos intersecat in angulo dato._

Ponantur quæ in superiore Lemmate, & producatur SQ ad V, ut sit SV æqualis
SP. Temporibus æqualibus describat corpus arcus quam minimos PQ & QR,
sintque areæ PSQ, QSr æquales. Et quoniam vis centripeta, qua corpus
urgetur in P est reciproce ut SPq. & (per Lem. X. Lib. I.) lineola TQ, quæ
vi illa generatur, est in ratione composita ex ratione hujus vis & ratione
duplicata temporis quo arcus PQ describitur, (Nam resistentiam in hoc casu,
ut infinite minorem quam vis centripeta negligo) erit TQ × SPq. id est (per
Lemma novissimum) PQq. × SP, in ratione duplicata temporis, adeoque tempus
est ut PQ × [sqrt]SP, & corporis velocitas qua arcus PQ illo tempore
describitur ut PQ ÷ {PQ × [sqrt]SP} seu 1 ÷ [sqrt]SP, hoc est in dimidiata
ratione ipsius SP reciproce. Et simili argumento velocitas, qua arcus QR
describitur, est in dimidiata ratione ipsius SQ reciproce. Sunt autem arcus
illi PQ & QR ut velocitates descriptrices ad invicem, id est in dimidiata
ratione SQ ad SP, sive ut SQ ad [sqrt]SP × [sqrt]SQ; & ob æquales angulos
SPQ, SQr & æquales areas PSQ, QSr, est arcus PQ ad arcum Qr ut SQ ad SP.
Sumantur proportionalium consequentium differentiæ, & fiet arcus PQ ad
arcum Rr ut SQ ad SP - SP^½ × SQ^½, seu ½VQ; nam punctis P & Q coeuntibus,
ratio ultima SP - SP^½ × SQ^½ ad ½VQ fit æqualitatis. In Medio non
resistente areæ æquales PSQ, QSr (Theor. I. Lib. I.) temporibus æqualibus
describi deberent. Ex resistentia oritur arearum differentia RSr, &
propterea resistentia est ut lineolæ Qr decrementum Rr collatum cum
quadrato temporis quo generatur. Nam lineola Rr (per Lem. X. Lib. I.) est
in duplicata ratione temporis. Est igitur resistentia ut Rr ÷ {PQq. × SP}.
Erat autem PQ ad Rr ut SQ ad ½VQ, & inde Rr ÷ {PQq. × SP} fit ut ½VQ ÷ {PQ
× SP × SQ} sive ut ½OS ÷ {OP × SPq.}. Namque punctis P & Q coeuntibus, SP &
SQ coincidunt; & ob similia triangula PVQ, PSO, fit PQ ad ½VQ ut OP ad ½OS.
Est igitur OS ÷ {OP × SPq.} ut resistentia, id est in ratione densitatis
Medii in P & ratione duplicata velocitatis conjunctim. Auferatur duplicata
ratio velocitatis, nempe ratio 1 ÷ SP, & manebit Medii densitas in P ut OS
÷ {OP × SP}. Detur Spiralis, & ob datam rationem OS ad OP, densitas Medii
in P erit ut 1 ÷ SP. In Medio igitur cujus densitas est reciproce ut
distantia a centro SP, corpus gyrari potest in hac Spirali.   _Q. E. D._

_Corol. 1._ Velocitas in loco quovis P ea semper est quacum corpus in Medio
non resistente gyrari potest in circulo, ad eandem a centro distantiam SP.

_Corol. 2._ Medii densitas, si datur distantia SP, est ut OS ÷ OP, sin
distantia illa non datur, ut OS ÷ {OP × SP}. Et inde Spiralis ad quamlibet
Medii densitatem aptari potest.

_Corol. 3._ Vis resistentiæ in loco quovis P, est ad vim centripetam in
eodem loco ut ½OS ad OP. Nam vires illæ sunt ut lineæ Rr & TQ seu ut ½VQ ×
PQ ÷ SQ & PQq. ÷ SP quas simul generant, hoc est, ut ½VQ & PQ, seu ½OS &
OP. Data igitur Spirali datur proportio resistentiæ ad vim centripetam, &
viceversa ex data illa proportione datur Spiralis.

_Corol. 4._ Corpus itaque gyrari nequit in hac spirali, nisi ubi vis
resistentiæ minor est quam dimidium vis centripetæ. Fiat resistentia
æqualis dimidio vis centripetæ & Spiralis conveniet cum linea recta PS,
inque hac recta corpus descendet ad centrum, dimidia semper cum velocitate
qua probavimus in superioribus in casu Parabolæ (Theor. X. Lib. I.)
descensum in Medio non resistente fieri. Unde tempora descensus hic erunt
dupla majora temporibus illis atque adeo dantur.

_Corol. 5._ Et quoniam in æqualibus a centro distantiis velocitas eadem est
in Spirali PQR atque in recta SP, & longitudo Spiralis ad longitudinem
rectæ PS est in data ratione, nempe in ratione OP ad OS; tempus descensus
in Spirali erit ad tempus descensus in recta SP in eadem illa data ratione,
proindeque datur.

_Corol. 6._ Si centro S intervallis duobus describantur duo circuli;
numerus revolutionum quas corpus intra circulorum circumferentias complere
potest, est ut PS ÷ OS, sive ut Tangens anguli quem Spiralis continet cum
radio PS; tempus vero revolutionum earundem ut OP ÷ OS, id est reciproce ut
Medii densitas.

[Illustration]

_Corol. 7._ Si corpus, in Medio cujus densitas est reciproce ut distantia
locorum a centro, revolutionem in Curva quacunque AEB circa centrum illud
fecerit, & Radium primum AS in eodem angulo secuerit in B quo prius in A,
idque cum velocitate quæ fuerit ad velocitatem suam primam in A reciproce
in dimidiata ratione distantiarum a centro (id est ut BS ad mediam
proportionalem inter AS & CS:) corpus illud perget innumeras consimiles
revolutiones BFC, CGD, &c. facere, & intersectionibus distinguet Radium AS
in partes AS, BS, CS, DS &c. continue proportionales. Revolutionum vero
tempora erunt ut Perimetri orbitarum AEB, BFC, CGD &c. directe, &
velocitates in principiis A, B, C, inverse; id est ut AS^½, BS^½, CS^½.
Atq; tempus totum, quo corpus perveniet ad centrum, erit ad tempus
revolutionis primæ, ut summa omnium continue proportionalium AS^½, BS^½,
CS^½ pergentium in infinitum, ad terminum primum AS^½; id est ut terminus
ille primus AS^½ ad differentiam duorum primorum AS^½ - BS^½, & quam
proxime ut 2/3AS ad AB. Unde tempus illud totum expedite invenitur.

_Corol. 8._ Ex his etiam præterpropter colligere licet motus corporum in
Mediis, quorum densitas aut uniformis est, aut aliam quamcunque legem
assignatam observat. Centro S intervallis continue proportionalibus SA, SB,
SC &c. describe circulos quotcunque, & statue numerum revolutionum inter
perimetros duorum quorumvis ex his circulis, in Medio de quo egimus, esse
ad numerum revolutionum inter eosdem in Medio proposito, ut Medii propositi
densitas mediocris inter hos circulos ad Medii, de quo egimus, densitatem
mediocrem inter eosdem quam proxime; Sed & in eadem quoq; ratione esse
Tangentem anguli quo Spiralis præfinita, in Medio de quo egimus, secat
radium AS, ad tangentem anguli quo Spiralis nova secat radium eundem in
Medio proposito: Atq; etiam ut sunt eorundem angulorum secantes ita esse
tempora revolutionum omnium inter circulos eosdem duos quam proxime. Si hæc
fiant passim inter circulos binos, continuabitur motus per circulos omnes.
Atque hoc pacto haud difficulter imaginari possimus quibus modis ac
temporibus corpora in Medio quocunque regulari gyrari debebunt.

_Corol. 9._ Et quamvis motus excentrici in Spiralibus ad formam Ovalium
accedentibus peragantur; tamen concipiendo Spiralium illarum singulas
revolutiones eisdem ab invicem intervallis distare, iisdemque gradibus ad
centrum accedere cum Spirali superius descripta, intelligemus etiam quomodo
motus corporum in hujusmodi Spiralibus peragantur.

Prop. XVI. Theor. XII.

    _Si Medii densitas in locis singulis sit reciproce ut dignitas aliqua
    distantiæ locorum a centro, sitque vis centripeta reciproce ut
    distantia in dignitatem illam ducta: dico quod corpus gyrari potest in
    Spirali, quæ radios omnes a centro illo ductos intersecat in angulo
    dato._

Demonstratur eadem methodo cum Propositione superiore. Nam si vis
centripeta in P sit reciproce ut distantiæ SP dignitas quælibet SP^{n + 1}
cujus index est n + 1; colligetur ut supra, quod tempus quo corpus
describit arcum quemvis PQ erit ut PQ × SP^{½n} & resistentia in P ut Rr ÷
{PQq. × SP^n} sive ut ½nVQ ÷ {PQ × SP^n × SQ}, adeoque ut ½OS ÷ {OP × SP^{n
+ 1}}. Et propterea densitas in P est reciproce ut SP^n.

_Scholium._

Cæterum hæc Propositio & superiores, quæ ad Media inæqualiter densa
spectant, intelligendæ sunt de motu corporum adeo parvorum, ut Medii ex uno
corporis latere major densitas quam ex altero non consideranda veniat.
Resistentiam quoque cæteris paribus densitati proportionalem esse suppono.
Unde in Mediis quorum vis resistendi non est ut densitas, debet densitas eo
usque augeri vel diminui, ut resistentiæ vel tollatur excessus vel defectus
suppleatur.

Prop. XVII. Prob. V.

_Invenire & vim centripetam & Medii resistentiam qua corpus in data Spirali
data lege revolvi potest._ Vide _Fig. Prop. XV._

Sit spiralis illa PQR. Ex velocitate qua corpus percurrit arcum quam
minimum PQ dabitur tempus, & ex altitudine TQ, quæ est ut vis centripeta &
quadratum temporis dabitur vis. Deinde ex arearum, æqualibus temporum
particulis confectarum PSQ & QSR, differentia RSr, dabitur corporis
retardatio, & ex retardatione invenietur resistentia ac densitas Medii.

Prop. XVIII. Prob. VI.

    _Data lege vis centripetæ, invenire Medii densitatem in locis singulis,
    qua corpus datam Spiralem describet._

Ex vi centripeta invenienda est velocitas in locis singulis, deinde ex
velocitatis retardatione quærenda Medii densitas: ut in Propositione
superiore.

Methodum vero tractandi hæc Problemata aperui in hujus Propositione decima,
& Lemmate secundo; & Lectorem in hujusmodi perplexis disquisitionibus
diutius detenere nolo. Addenda jam sunt aliqua de viribus corporum ad
progrediendum, deque densitate & resistentia Mediorum, in quibus motus
hactenus expositi & his affines peraguntur.

       *       *       *       *       *


SECT. V.

_De Densitate & compressione Fluidorum, deque Hydrostatica._

Definitio Fluidi.

Fluidum est corpus omne cujus partes cedunt vi cuicunque illatæ, & cedendo
facile movetur inter se.

Prop. XIX. Theor. XIII.

    _Fluidi homogenei & immoti, quod in vase quocunque immoto clauditur &
    undique comprimitur, partes omnes (seposita Condensationis, gravitatis
    & virium omnium centripetarum consideratione) æqualiter premuntur
    undique, & absque omni motu a pressione illa orto permanent in locis
    suis._

[Illustration]

_Cas. 1._ In vase sphærico ABC claudatur & uniformiter comprimatur fluidum
undique: dico quod ejusdem pars nulla ex illa pressione movebitur. Nam si
pars aliqua D moveatur, necesse est ut omnes ejusmodi partes, ad eandem a
centro distantiam undique consistentes, simili motu simul moveantur; atq;
hoc adeo quia similis & æqualis est omnium pressio, & motus omnis exclusus
supponitur, nisi qui a pressione illa oriatur. Atqui non possunt omnes ad
centrum propius accedere, nisi fluidum ad centrum condensetur; contra
Hypothesin. Non possunt longius ab eo recedere nisi fluidum ad
circumferentiam condensetur; etiam contra Hypothesin. Non possunt servata
sua a centro distantia moveri in plagam quamcunq; quia pari ratione
movebuntur in plagam contrariam; in plagas autem contrarias non potest pars
eadem eodem tempore moveri. Ergo fluidi pars nulla de loco suo movebitur.
_Q. E. D._

_Cas. 2._ Dico jam quod fluidi hujus partes omnes sphæricæ æqualiter
premuntur undique: sit enim EF pars sphærica fluidi, & si hæc undiq; non
premitur æqualiter, augeatur pressio minor, usq; dum ipsa undiq; prematur
æqualiter; & partes ejus, per casum primum, permanebunt in locis suis. Sed
ante auctam pressionem permanebunt in locis suis, per casum eundum primum,
& additione pressionis novæ movebuntur de locis suis, per definitionem
Fluidi. Quæ duo repugnant. Ergo falso dicebatur quod Sphæra EF non undique
premebatur æqualiter.   _Q. E. D._

_Cas. 3._ Dico præterea quod diversarum partium sphæricarum æqualis sit
pressio. Nam partes sphæricæ contiguæ se mutuo premunt æqualiter in puncto
contactus, per motus Legem III. Sed & per Casum secundum, undiq; premuntur
eadem vi. Partes igitur duæ quævis sphæricæ non contiguæ, quia pars
sphærica intermedia tangere potest utramque, prementur eadem vi.
_Q. E. D._

_Cas. 4._ Dico jam quod fluidi partes omnes ubiq; premuntur æqualiter. Nam
partes duæ quævis tangi possunt a partibus Sphæricis in punctis
quibuscunque, & ibi partes illas Sphæricas æqualiter premunt, per Casum 3.
& vicissim ab illis æqualiter premuntur, per Motus Legem Tertiam.
_Q. E. D._

_Cas. 5._ Cum igitur fluidi pars quælibet GHI in fluido reliquo tanquam in
vase claudatur, & undique prematur æqualiter, partes autem ejus se mutuo
æqualiter premant & quiescant inter se; manifestum est quod Fluidi
cujuscunque GHI, quod undique premitur æqualiter, partes omnes se mutuo
premunt æqualiter, & quiescunt inter se.   _Q. E. D._

_Cas. 6._ Igitur si Fluidum illud in vase non rigido claudatur, & undique
non prematur æqualiter, cedet idem pressioni fortiori, per Definitionem
Fluiditatis.

_Cas. 7._ Ideoque in vase rigido Fluidum non sustinebit pressionem
fortiorem ex uno latere quam ex alio, sed eidem cedet, idq; in momento
temporis, quia latus vasis rigidum non persequitur liquorem cedentem.
Cedendo autem urgebit latus oppositum, & sic pressio undique ad æqualitatem
verget. Et quoniam Fluidum, quam primum a parte magis pressa recedere
conatur, inhibetur per resistentiam vasis ad latus oppositum; reducetur
pressio undique ad æqualitatem in momento temporis absque motu locali; &
subinde, partes fluidi, per Casum quintum, se mutuo prement æqualiter, &
quiescent inter se.   _Q. E. D._

_Corol._ Unde nec motus partium fluidi inter se, per pressionem fluido
ubivis in externa superficie illatam, mutari possunt nisi, quatenus aut
figura superficiei alicubi mutatur, aut omnes fluidi partes intensius vel
remissius sese premendo difficilius vel facilius labuntur inter se.

Prop. XX. Theor. XIV.

    _Si Fluidi Sphærici, & in æqualibus a centro distantiis homogenei,
    fundo sphærico concentrico incumbentis partes singulæ versus centrum
    totius gravitent; sustinet fundum pondus Cylindri, cujus basis æqualis
    est superficiei fundi, & altitudo eadem quæ Fluidi incumbentis._

[Illustration]

Sit DHM superficies fundi, & AEI superficies superior fluidi. Superficiebus
sphæricis innumeris BFK, CGL distinguatur fluidum in Orbes concentricos
æqualiter crassos; & concipe vim gravitatis agere solummodo in superficiem
superiorem Orbis cujusque, & æquales esse actiones in æquales partes
superficierum omnium. Premitur ergo superficies suprema AE vi simplici
gravitatis propriæ, qua & omnes Orbis supremi partes & superficies secunda
BFK (per Prop. XIX.) premuntur. Premitur præterea superficies secunda BFK
vi propriæ gravitatis, quæ addita vi priori facit pressionem duplam. Hac
pressione & insuper vi propriæ gravitatis, id est pressione tripla, urgetur
superficies tertia CGL. Et similiter pressione quadrupla urgetur
superficies quarta, quintupla quinta & sic deinceps. Pressio igitur qua
superficies unaquæque urgetur, non est ut quantitas solida fluidi
incumbentis, sed ut numerus Orbium ad usque summitatem fluidi; & æquatur
gravitati Orbis infimi multiplicatæ per numerum Orbium: hoc est gravitati
solidi cujus ultima ratio ad Cylindrum præfinitum, (si modo Orbium augeatur
numerus & minuatur crassitudo in infinitum, sic ut actio gravitatis a
superficie infima ad supremam continua reddatur) fiet ratio æqualitatis.
Sustinet ergo superficies infima pondus cylindri præfiniti.   _Q. E. D._
Et simili argumentatione patet Propositio, ubi gravitas decrescit in
ratione quavis assignata distantiæ a centro, ut & ubi Fluidum sursum rarius
est, deorsum densius.   _Q. E. D._

_Corol. 1._ Igitur fundum non urgetur a toto fluidi incumbentis pondere,
sed eam solummodo ponderis partem sustinet quæ in Propositione describitur;
pondere reliquo a fluidi figura fornicata sustentato.

_Corol. 2._ In æqualibus autem a centro distantiis eadem semper est
pressionis quantitas, sive superficies pressa sit Horizonti parallela vel
perpendicularis vel obliqua; sive fluidum a superficie pressa sursum
continuatum surgat perpendiculariter secundum lineam rectam, vel serpit
oblique per tortas cavitates & canales, easque regulares vel maxime
irregulares, amplas vel angustissimas. Hisce circumstantiis pressionem nil
mutari colligitur, applicando demonstrationem Theorematis hujus ad Casus
singulos Fluidorum.

_Corol. 3._ Eadem Demonstratione colligitur etiam (per Prop. XIX.) quod
fluidi gravis partes nullum, ex pressione ponderis incumbentis, acquirunt
motum inter se, si modo excludatur motus qui ex condensatione oriatur.

_Corol. 4._ Et propterea si aliud ejusdem gravitatis specificæ corpus, quod
sit condensationis expers, submergatur in hoc fluido, id ex pressione
ponderis incumbentis nullum acquiret motum: non descendet, non ascendet,
non cogetur figuram suam mutare. Si Sphæricum est manebit sphæricum, non
obstante pressione; si quadratum est manebit quadratum: idq; sive molle
sit, sive fluidissimum; sive fluido libere innatet, sive fundo incumbat.
Habet enim fluidi pars quælibet interna rationem corporis submersi, & par
est ratio omnium ejusdem magnitudinis, figuræ & gravitatis specificæ
submersorum corporum. Si corpus submersum servato pondere liquesceret &
indueret formam fluidi; hoc, si prius ascenderet vel descenderet vel ex
pressione figuram novam indueret, etiam nunc ascenderet vel descenderet vel
figuram novam induere cogeretur: id adeo quia gravitas ejus cæteræque
motuum causæ permanent. Atqui, per Cas. 5. Prop. XIX. jam quiesceret &
figuram retineret. Ergo & prius.

_Corol. 5._ Proinde corpus quod specifice gravius est quam Fluidum sibi
contiguum subsidebit, & quod specifice levius est ascendet, motumque &
figuræ mutationem consequetur, quantum excessus ille vel defectus
gravitatis efficere possit. Namque excessus ille vel defectus rationem
habet impulsus, quo corpus, alias in æquilibrio cum fluidi partibus
constitutum, urgetur; & comparari potest cum excessu vel defectu ponderis
in lance alterutra libræ.

_Corol. 6._ Corporum igitur in fluidis constitutorum duplex est Gravitas:
altera vera & absoluta, altera apparens, vulgaris & comparativa. Gravitas
absoluta est vis tota qua corpus deorsum tendit: relativa & vulgaris est
excessus gravitatis quo corpus magis tendit deorsum quam fluidum ambiens.
Prioris generis Gravitate partes fluidorum & corporum omnium gravitant in
locis suis: ideoque conjunctis ponderibus componunt pondus totius. Nam
totum omne grave est, ut in vasis liquorum plenis experiri licet; & pondus
totius æquale est ponderibus omnium partium, ideoque ex iisdem componitur.
Alterius generis gravitate corpora non gravitant in locis suis, id est
inter se collata non prægravant, sed mutuos ad descendendum conatus
impedientia permanent in locis suis, perinde ac si gravia non essent. Quæ
in Aere sunt & non prægravant, Vulgus gravia non judicat. Quæ prægravant
vulgus gravia judicat, quatenus ab Aeris pondere non sustinentur. Pondera
vulgi nihil aliud sunt quam excessus verorum ponderum supra pondus Aeris.
Unde & vulgo dicuntur levia, quæ sunt minus gravia, Aerique prægravanti
cedendo superiora petunt. Comparative levia sunt non vere, quia descendunt
in vacuo. Sic & in Aqua, corpora, quæ ob majorem vel minorem gravitatem
descendunt vel ascendunt, sunt comparative & apparenter gravia vel levia, &
eorum gravitas vel levitas comparativa & apparens est excessus vel defectus
quo vera eorum gravitas vel superat gravitatem aquæ vel ab ea superatur.
Quæ vero nec prægravando descendunt, nec prægravanti cedendo ascendunt,
etiamsi veris suis ponderibus adaugeant pondus totius, comparative tamen &
in sensu vulgi non gravitant in aqua. Nam similis est horum Casuum
Demonstratio.

_Corol. 7._ Quæ de gravitate demonstrantur, obtinent in aliis quibuscunque
viribus centripetis.

_Corol. 8._ Proinde si Medium, in quo corpus aliquod movetur, urgeatur vel
a gravitate propria, vel ab alia quacunq; vi centripeta, & corpus ab eadem
vi urgeatur fortius: differentia virium est vis illa motrix, quam in
præcedentibus Propositionibus ut vim centripetam consideravimus. Sin corpus
a vi illa urgeatur levius, differentia virium pro vi centrifuga haberi
debet.

_Corol. 9._ Cum autem fluida premendo corpora inclusa non mutent eorum
Figuras externas, patet insuper, per Corollaria Prop. XIX. quod non
mutabunt situm partium internarum inter se: proindeque, si Animalia
immergantur, & sensatio omnis a motu partium oriatur; nec lædent corporibus
immersis, nec sensationem ullam excitabunt, nisi quatenus hæc corpora a
compressione ne condensari possunt. Et par est ratio cujuscunque corporum
Systematis fluido comprimente circundati. Systematis partes omnes iisdem
agitabuntur motibus, ac si in vacuo constituerentur, ac solam retinerent
gravitatem suam comparativam, nisi quatenus fluidum vel motibus earum
nonnihil resistat, vel ad easdem compressione conglutinandas requiratur.

Prop. XXI. Theor. XV.

    _Sit Fluidi cujusdam densitas compressioni proportionalis, & partes
    ejus a vi centripeta distantiis suis a centro reciproce proportionali
    deorsum trahantur: dico quod si distantiæ illæ sumantur continue
    proportionales, densitates fluidi in iisdem distantiis erunt etiam
    continue proportionales._

[Illustration]

Designet ATV fundum Sphæricum cui fluidum incumbit, S centrum, SA, SB, SC,
SD, SE, &c. distantias continue proportionales. Erigantur perpendicula AH,
BI, CK, DL, EM, &c. quæ sint ut densitates Medii in locis A, B, C, D, E; &
specificæ gravitates in iisdem locis erunt ut AH ÷ AS, BI ÷ BS, CK ÷ CS,
&c. vel, quod perinde est, ut AH ÷ AB, BI ÷ BC, CK ÷ CD &c. Finge primum
has gravitates uniformiter continuari ab A ad B, a B ad C, a C ad D &c.
factis per gradus decrementis in punctis B, C, D &c. Et hæ gravitates ductæ
in altitudines AB, BC, CD &c. conficient pressiones AH, BI, CK, quibus
fundum ATV (juxta Theorema XIV.) urgetur. Sustinet ergo particula A
pressiones omnes AH, BI, CK, DL, pergendo in infinitum; & particula B
pressiones omnes præter primam AH; & particula C omnes præter duas primas
AH, BI; & sic deinceps: adeoque particulæ primæ A densitas AH est ad
particulæ secundæ B densitatem BI ut summa omnium AH + BI + CK + DL, in
infinitum, ad summam omnium BI + CK + DL, &c. Et BI densitas secundæ B, est
ad CK densitatem tertiæ C, ut summa omnium BI + CK + DL, &c. ad summam
omnium CK + DL, &c. Sunt igitur summæ illæ differentiis suis AH, BI, CK,
&c. proportionales, atque adeo continue proportionales per hujus Lem. I.
proindeq; differentiæ AH, BI, CK, &c. summis proportionales, sunt etiam
continue proportionales. Quare cum densitates in locis A, B, C sint ut AH,
BI, CK, &c. erunt etiam hæ continue proportionales. Pergatur per saltum, &
(ex æquo) in distantiis SA, SC, SE continue proportionalibus, erunt
densitates AH, CK, EM continue proportionales. Et eodem argumento in
distantiis quibusvis continue proportionalibus SA, SD, SQ densitates AH,
DL, QT erunt continue proportionales. Coeant jam puncta A, B, C, D, E, &c.
eo ut progressio gravitatum specificarum a fundo A ad summitatem Fluidi
continua reddatur, & in distantiis quibusvis continue proportionalibus SA,
SD, SQ, densitates AH, DL, QT, semper existentes continue proportionales,
manebunt etiamnum continue proportionales.   _Q. E. D._

[Illustration]

_Corol._ Hinc si detur densitas Fluidi in duobus locis, puta A & E, colligi
potest ejus densitas in alio quovis loco Q. Centro S, Asymptotis
rectangulis SQ, SX describatur Hyperbola secans perpendicula AH, EM, QT in
a, e, q, ut & perpendicula HX, MY, TZ ad asymptoton SX demissa in h, m, &
t. Fiat area ZYmtZ ad aream datam YmhX ut area data EeqQ ad aream datam
EeaA; & linea Zt producta abscindet lineam QT densitati proportionalem.
Namque si lineæ SA, SE, SQ sunt continue proportionales, erunt areæ EeqQ,
EeaA æquales, & inde areæ his proportionales YmtZ, XhmY etiam æquales &
lineæ SX, SY, SZ id est AH, EM, QT continue proportionales, ut oportet. Et
si lineæ SA, SE, SQ obtinent alium quemvis ordinem in serie continue
proportionalium, lineæ AH, EM, QT, ob proportionales areas Hyperbolicas,
obtinebunt eundem ordinem in alia serie quantitatum continue
proportionalium.

Prop. XXII. Theor. XVI.

    _Sit Fluidi cujusdam densitas compressioni proportionalis, & partes
    ejus a gravitate quadratis distantiarum suarum a centro reciproce
    proportionali deorsum trahantur: dico quod si distantiæ sumantur in
    progressione Musica, densitates Fluidi in his distantiis erunt in
    progressione Geometrica._

[Illustration]

Designet S centrum, & SA, SB, SC, SD, SE distantias in Progressione
Geometrica. Erigantur perpendicula AH, BI, CK, &c. quæ sint ut Fluidi
densitates in locis A, B, C, D, E, &c. & ipsius gravitates specificæ in
iisdem locis erunt AH ÷ SAq., BI ÷ SBq., CK ÷ SCq., &c. Finge has
gravitates uniformiter continuari, primam ab A ad B, secundam a B ad C,
tertiam a C ad D, &c. Et hæ ductæ in altitudines AB, BC, CD, DE, &c. vel,
quod perinde est, in distantias SA, SB, SC, &c. altitudinibus illis
proportionales, conficient exponentes pressionum AH ÷ SA, BI ÷ SB, CK ÷ SC,
&c. Quare cum densitates sint ut harum pressionum summæ, differentiæ
densitatum AH - BI, BI - CK, &c. erunt ut summarum differentiæ AH ÷ SA, BI
÷ SB, CK ÷ SC, &c. Centro S Asymptotis SA, SX describatur Hyperbola quævis,
quæ secet perpendicula AH, BI, CK, &c. in a, b, c; ut & perpendicula ad
Asymptoton SX demissa Ht, Iu, Kw in h, i, k; & densitatum differentiæ tu,
uw, &c. erunt ut AH ÷ SA, BI ÷ SB, &c. Et rectangula tu × th, uw × ui, &c.
seu tp, uq, &c. ut AH × th ÷ SA ut BI × ui ÷ SB, &c. id est ut Aa, Bb &c.
Est enim ex natura Hyperbolæ SA ad AH vel St, ut th ad Aa, adeoque AH × th
÷ SA æquale Aa. Et simili argumento est BI × ui ÷ SB æqualis Bb, &c. Sunt
autem Aa, Bb, Cc, &c. continue proportionales, & propterea differentiis
suis Aa - Bb, Bb - Cc, &c. proportionales; ideoque differentiis hisce
proportionalia sunt rectangula tp, uq, &c. ut & summis differentiarum Aa -
Cc vel Aa - Dd summæ rectangulorum tp + uq, vel tp + uq + wr. Sunto
ejusmodi termini quam plurimi, & summa omnium differentiarum, puta Aa - Ff,
erit summæ omnium rectangulorum, puta zthn, proportionalis. Augeatur
numerus terminorum & minuantur distantiæ punctorum A, B, C, &c. in
infinitum, & rectangula illa evadent æqualia areæ Hyperbolicæ zthn, adeoque
huic areæ proportionalis est differentia Aa - Ff. Sumantur jam distantiæ
quælibet, puta SA, SD, SF in Progressione Musica, & differentiæ Aa - Dd, Dd
- Ff erunt æquales; & propterea differentiis hisce proportionales areæ
thlx, xlnz æquales erunt inter se, & densitates St, Sx, Sz, id est AH, DL,
FN, continue proportionales.   _Q. E. D._

_Corol._ Hinc si dentur Fluidi densitates duæ quævis, puta AH & CK, dabitur
area thkw harum differentiæ tw respondens; & inde invenietur densitas FN in
altitudine quacunque SF, sumendo aream thnz ad aream illam datam thkw ut
est differentia Aa - Ff ad differentiam Aa - Cc.

_Scholium._

Simili argumentatione probari potest, quod si gravitas particularum Fluidi
diminuatur in triplicata ratione distantiarum a centro; & quadratorum
distantiarum SA, SB, SC, &c. reciproca (nempe SA cub. ÷ SAq., SA cub. ÷
SBq., SA cub. ÷ SCq.) sumantur in progressione Arithmetica; densitates AH,
BI, CK, &c. erunt in progressione Geometrica. Et si gravitas diminuatur in
quadruplicata ratione distantiarum, & cuborum distantiarum reciproca (puta
SA qq. ÷ SA cub., SA qq. ÷ SB cub., SA qq. ÷ SC cub.) sumantur in
progressione Arithmetica; densitates AH, BI, CK, &c. erunt in progressione
Geometrica. Et sic in infinitum. Rursus si gravitas particularum Fluidi in
omnibus distantiis eadem sit, & distantiæ sint in progressione Arithmetica,
densitates erunt in progressione Geometrica, uti Vir Cl.\ _Edmundus
Halleius_ invenit. Si gravitas sit ut distantia, & quadrata distantiarum
sint in progressione Arithmetica, densitates erunt in progressione
Geometrica. Et sic in infinitum. Hæc ita se habent ubi Fluidi compressione
condensati densitas est ut vis compressionis, vel, quod perinde est,
spatium a Fluido occupatum reciproce ut hæc vis. Fingi possunt aliæ
condensationis leges, ut quod cubus vis comprimentis sit ut
quadrato-quadratum densitatis, seu triplicata ratio Vis æqualis
quadruplicatæ rationi densitatis. Quo in casu, si gravitas est reciproce ut
quadratum distantiæ a centro, densitas erit reciproce ut cubus distantiæ.
Fingatur quod cubus vis comprimentis sit ut quadrato-cubus densitatis, & si
gravitas est reciproce ut quadratum distantiæ, densitas erit reciproce in
sesquiplicata ratione distantiæ. Fingatur quod vis comprimens sit in
duplicata ratione densitatis, & gravitas reciproce in ratione duplicata
distantiæ, & densitas erit reciproce ut distantia. Casus omnes percurrere
longum esset.

Prop. XXIII. Theor. XVII.

    _Particulæ viribus quæ sunt reciproce proportionales distantiis
    centrorum suorum se mutuo fugientes componunt Fluidum Elasticum, cujus
    densitas est compressioni proportionalis. Et vice versa, si Fluidi ex
    particulis se mutuo fugientibus compositi densitas sit ut compressio,
    vires centrifugæ particularum sunt reciproce proportionales distantiis
    centrorum._

[Illustration]

Includi intelligatur Fluidum in spatio cubico ACE, dein compressione redigi
in spatium cubicum minus ace; & particularum similem situm inter se in
utroque spatio obtinentium distantiæ erunt ut cuborum latera AB, ab; &
Medii densitates reciproce ut spatia continentia AB cub. & ab cub. In
latere cubi majoris ABCD capiatur quadratum DP æquale lateri cubi minoris
db; & ex Hypothesi, pressio qua quadratum DP urget Fluidum inclusum, erit
ad pressionem qua latus illud quadratum db urget Fluidum inclusum, ut Medii
densitates ad invicem, hoc est ab cub. ad AB cub. Sed pressio qua quadratum
DB urget Fluidum inclusum, est ad pressionem qua quadratum DP urget idem
Fluidum, ut quadratum DB ad quadratum DP, hoc est ut AB quad. ad ab quad.
Ergo ex æquo pressio qua latus DB urget Fluidum, est ad pressionem qua
latus db urget Fluidum, ut ab ad AB. Planis FGH, fgh per media cuborum
ductis distinguatur Fluidum in duas partes, & hæ se mutuo prement iisdem
viribus, quibus premuntur a planis AC, ac, hoc est in proportione ab ad AB:
adeoque vires centrifugæ, quibus hæ pressiones sustinentur, sunt in eadem
ratione. Ob eundem particularum numerum similemq; situm in utroque cubo,
vires quas particulæ omnes secundum plana FGH, fgh exercent in omnes, sunt
ut vires quas singulæ exercent in singulas. Ergo vires, quas singulæ
exercent in singulas secundum planum FGH in cubo majore, sunt ad vires quas
singulæ exercent in singulas secundum planum fgh in cubo minore ut ab ad
AB, hoc est reciproce ut distantiæ particularum ad invicem.   _Q. E. D._

Et vice versa, si vires particularum singularum sunt reciproce ut
distantiæ, id est reciproce ut cuborum latera AB, ab; summæ virium erunt in
eadem ratione, & pressiones laterum DB, db ut summæ virium; & pressio
quadrati DP ad pressionem lateris DB ut ab quad. ad AB quad. Et ex æquo
pressio quadrati DP ad pressionem lateris db ut ab cub. ad AB cub. id est
vis compressionis ad vim compressionis ut densitas ad densitatem.
_Q. E. D._

_Scholium._

Simili argumento si particularum vires centrifugæ sint reciproce in
duplicata ratione distantiarum inter centra, cubi virium comprimentium
erunt ut quadrato-quadrata densitatum. Si vires centrifugæ sint reciproce
in triplicata vel quadruplicata ratione distantiarum, cubi virium
comprimentium erunt ut quadrato-cubi vel cubo-cubi densitatum. Et
universaliter, si D ponatur pro distantia, & E pro densitate Fluidi
compressi, & vires centrifugæ sint reciproce ut distantiæ dignitas quælibet
Dn, cujus index est numerus n; vires comprimentes erunt ut latera cubica
Dignitatis E^{n + 2}, cujus index est numerus n + 2; & contra. Intelligenda
vero sunt hæc omnia de particularum Viribus centrifugis quæ terminantur in
particulis proximis, aut non longe ultra diffunduntur. Exemplum habemus in
corporibus Magneticis. Horum Virtus attractiva terminatur fere in sui
generis corporibus sibi proximis. Magnetis virtus per interpositam laminam
ferri contrahitur, & in lamina fere terminatur. Nam corpora ulteriora non
tam a Magnete quam a lamina trahuntur. Ad eundem modum si particulæ fugant
alias sui generis particulas sibi proximas, in particulas autem remotiores
virtutem nullam nisi forte per particulas intermedias virtute illa auctas
exerceant, ex hujusmodi particulis componentur Fluida de quibus actum est
in hac propositione. Quod si particulæ cujusq; virtus in infinitum
propagetur, opus erit vi majori ad æqualem condensationem majoris
quantitatis Fluidi. Ut si particula unaquæq; vi sua, quæ sit reciproce ut
distantia locorum a centro suo, fugat alias omnes particulas in infinitum;
Vires quibus Fluidum in vasis similibus æqualiter comprimi & condensari
possit, erunt ut quadrata diametrorum vasorum: ideoque vis, qua Fluidum in
eodem vase comprimitur, erit reciproce ut latus cubicum quadrato-cubi
densitatis. An vero Fluida Elastica ex particulis se mutuo fugantibus
constent, Quæstio Physica est. Nos proprietatem Fluidorum ex ejusmodi
particulis constantium Mathematice demonstravimus, ut Philosophis ansam
præbeamus Quæstionem illam tractandi.

       *       *       *       *       *


SECT. VI.

_De Motu & resistentia Corporum Funependulorum._

Prop. XXIV. Theor. XVIII.

    _Quantitates materiæ in corporibus funependulis, quorum centra
    oscillationum a centro suspensionis æqualiter distant, sunt in ratione
    composita ex ratione ponderum & ratione duplicata temporum
    oscillationum in vacuo._

Nam velocitas, quam data vis in data materia dato tempore generare potest,
est ut vis & tempus directe, & materia inverse. Quo major est vis vel majus
tempus vel minor materia, eo major generabitur velocitas. Id quod per motus
Legem secundam manifestum est. Jam vero si pendula ejusdem sint
longitudinis, vires motrices in locis a perpendiculo æqualiter distantibus
sunt ut pondera: ideoque si corpora duo oscillando describant arcus
æquales, & arcus illi dividantur in partes æquales; cum tempora quibus
corpora describant singulas arcuum partes correspondentes sint ut tempora
oscillationum totarum, erunt velocitates ad invicem in correspondentibus
oscillationum partibus, ut vires motrices & tota oscillationum tempora
directe & quantitates materiæ reciproce: adeoque quantitates materiæ ut
vires & oscillationum tempora directe & velocitates reciproce. Sed
velocitates reciproce sunt ut tempora, atque adeo tempora directe &
velocitates reciproce sunt ut quadrata temporum, & propterea quantitates
materiæ sunt ut vires motrices & quadrata temporum, id est ut pondera &
quadrata temporum.   _Q. E. D._

_Corol. 1._ Ideoque si tempora sunt æqualia, quantitates materiæ in
singulis corporibus erunt ut pondera.

_Corol. 2._ Si pondera sunt æqualia, quantitates materiæ erunt ut quadrata
temporum.

_Corol. 3._ Si quantitates materiæ æquantur, pondera erunt reciproce ut
quadrata temporum.

_Corol. 4._ Unde cum quadrata temporum cæteris paribus sint ut longitudines
pendulorum; si & tempora & quantitates materiæ æqualia sunt, pondera erunt
ut longitudines pendulorum.

_Corol. 5._ Et universaliter, quantitas materiæ pendulæ est ut pondus &
quadratum temporis directe, & longitudo penduli inverse.

_Corol. 6._ Sed & in Medio non resistente quantitas Materiæ pendulæ est ut
pondus comparativum & quadratum temporis directe & longitudo penduli
inverse. Nam pondus comparativum est vis motrix corporis in Medio quovis
gravi, ut supra explicui; adeoque idem præstat in tali Medio non resistente
atque pondus absolutum in vacuo.

_Corol. 7._ Et hinc liquet ratio tum comparandi corpora inter se, quoad
quantitatem materiæ in singulis, tum comparandi pondera ejusdem corporis in
diversis locis, ad cognoscendam variationem gravitatis. Factis autem
experimentis quam accuratissimis inveni semper quantitatem materiæ in
corporibus singulis eorum ponderi proportionalem esse.

Prop. XXV. Theor. XIX.

    _Corpora Funependula quæ in Medio quovis resistuntur in ratione
    momentorum temporis, quæque in ejusdem gravitatis specificæ Medio non
    resistente moventur, oscillationes in Cycloide eodem tempore peragunt,
    & arcuum partes proportionales simul describunt._

[Illustration]

Sit AB Cycloidis arcus, quem corpus D tempore quovis in Medio non
resistente oscillando describit. Bisecetur idem in C, ita ut C sit infimum
ejus punctum; & erit vis acceleratrix qua corpus urgetur in loco quovis D
vel d vel E ut longitudo arcus CD vel Cd vel CE. Exponatur vis illa per
eundem arcum; & cum resistentia sit ut momentum temporis, adeoque detur,
exponatur eadem per datam arcus Cycloidis partem CO, & sumatur arcus Od in
ratione ad arcum CD quam habet arcus OB ad arcum CB: & vis qua corpus in d
urgetur in Medio resistente, cum sit excessus vis Cd supra resistentiam CO,
exponetur per arcum Od, adeoque erit ad vim qua corpus D urgetur in Medio
non resistente, in loco D, ut arcus Od ad arcum CD; & propterea etiam in
loco B ut arcus OB ad arcum CB. Proinde si corpora duo, D, d exeant de loco
B & his viribus urgeantur: cum vires sub initio sint ut arcus CB & OB,
erunt velocitates primæ & arcus primo descripti in eadem ratione. Sunto
arcus illi BD & Bd, & arcus reliqui CD, Od erunt in eadem ratione. Proinde
vires ipsis CD, Od proportionales manebunt in eadem ratione ac sub initio,
& propterea corpora pergent arcus in eadem ratione simul describere. Igitur
vires & velocitates & arcus reliqui CD, Od semper erunt ut arcus toti CD,
OB, & propterea arcus illi reliqui simul describentur. Quare corpora duo D,
d simul pervenient ad loca C & O, alterum quidem in Medio non resistente ad
locum C, & alterum in Medio resistente ad locum O. Cum autem velocitates in
C & O sint ut arcus CB & OB; erunt arcus quos corpora ulterius pergendo
simul describunt, in eadem ratione. Sunto illi CE & Oe. Vis qua corpus D in
Medio non resistente retardatur in E est ut CE, & vis qua corpus d in Medio
resistente retardatur in e est ut summa vis Ce & resistentiæ CO, id est ut
Oe; ideoque vires, quibus corpora retardantur, sunt ut arcubus CE, Oe
proportionales arcus CB, OB; proindeque velocitates in data illa ratione
retardatæ manent in eadem illa data ratione. Velocitates igitur & arcus
iisdem descripti semper sunt ad invicem in data illa ratione arcuum CB &
OB; & propterea si sumantur arcus toti AB, aB in eadem ratione, corpora D,
d simul describent hos arcus, & in locis A & a motum omnem simul amittent.
Isochronæ sunt igitur oscillationes totæ, & arcubus totis BA, BE
proportionales sunt arcuum partes quælibet BD, Bd vel BE, Be quæ simul
describuntur.   _Q. E. D._

_Corol._ Igitur motus velocissimus in Medio resistente non incidit in
punctum infimum C, sed reperitur in puncto illo O, quo arcus totus
descriptus aB bisecatur. Et corpus subinde pergendo ad a, iisdem gradibus
retardatur quibus antea accelerabatur in descensu suo a B ad O.

Prop. XXVI. Theor. XX.

    _Corporum Funependulorum, quæ resistuntur in ratione velocitatum,
    oscillationes in Cycloide sunt Isochronæ._

Nam si corpora duo a centris suspensionum æqualiter distantia, oscillando
describant arcus inæquales, & velocitates in arcuum partibus
correspondentibus sint ad invicem ut arcus toti; resistentiæ velocitatibus
proportionales erunt etiam ad invicem ut iidem arcus. Proinde si viribus
motricibus a gravitate oriundis, quæ sint ut iidem arcus auferantur,
conferantur vel addantur hæ resistentiæ, erunt differentiæ vel summæ ad
invicem in eadem arcuum ratione: cumque velocitatum incrementa vel
decrementa sint ut hæ differentiæ vel summæ, velocitates semper erunt ut
arcus toti: Igitur velocitates, si sint in aliquo casu ut arcus toti,
manebunt semper in eadem ratione. Sed in principio motus, ubi corpora
incipiunt descendere & arcus illos describere, vires, cum sint arcubus
proportionales, generabunt velocitates arcubus proportionales. Ergo
velocitates semper erunt ut arcus toti describendi, & propterea arcus illi
simul describentur.   _Q. E. D._

Prop. XXVII. Theor. XXI.

    _Si corpora Funependula resistuntur in duplicata ratione velocitatum,
    differentiæ inter tempora oscillationum in Medio resistente ac tempora
    oscillationum in ejusdem gravitatis specificæ Medio non resistente,
    erunt arcubus oscillando descriptis proportionales, quam proxime._

Nam pendulis æqualibus in Medio resistente describantur arcus inæquales A,
B; resistentia corporis in arcu A, erit ad resistentiam corporis in parte
correspondente arcus B, in duplicata ratione velocitatum, id est ut A quad.
ad B quad. quamproxime. Si resistentia in arcu B esset ad resistentiam in
arcu A ut rectangulum AB ad A quad. tempora in arcubus A & B forent æqualia
per Propositionem superiorem. Ideoque resistentia A quad. in arcu A, vel AB
in arcu B, efficit excessum temporis in arcu A supra tempus in Medio non
resistente; & resistentia BB efficit excessum temporis in arcu B supra
tempus in Medio non resistente. Sunt autem excessus illi ut vires
efficientes AB & BB quam proxime, id est ut arcus A & B.   _Q. E. D._

_Corol. 1._ Hinc ex oscillationum temporibus, in Medio resistente in
arcubus inæqualibus factarum, cognosci possunt tempora oscillationum in
ejusdem gravitatis specificæ Medio non resistente. Nam si verbi gratia
arcus sit altero duplo major, differentia temporum erit ad excessum
temporis in arcu minore supra tempus in Medio non resistente, ut
differentia arcuum ad arcum minorem.

_Corol. 2._ Oscillationes breviores sunt magis Isochronæ, & brevissimæ
iisdem temporibus peraguntur ac in Medio non resistente, quam proxime.
Earum vero quæ in majoribus arcubus fiunt, tempora sunt paulo majora,
propterea quod resistentia in descensu corporis qua tempus producitur,
major sit pro ratione longitudinis in descensu descriptæ, quam resistentia
in ascensu subsequente qua tempus contrahitur. Sed & tempus oscillationum
tam brevium quam longarum nonnihil produci videtur per motum Medii. Nam
corpora tardescentia paulo minus resistuntur pro ratione velocitatis, &
corpora accelerata paulo magis quam quæ uniformiter progrediuntur: id adeo
quia Medium, eo quem a corporibus accepit motu, in eandem plagam pergendo,
in priore casu magis agitatur, in posteriore minus; ac proinde magis vel
minus cum corporibus motis conspirat. Pendulis igitur in descensu magis
resistit, in ascensu minus quam pro ratione velocitatis, & ex utraque causa
tempus producitur.

Prop. XXVIII. Theor. XXII.

    _Si corpus Funependulum in Cycloide oscillans resistitur in ratione
    momentorum temporis, erit ejus resistentia ad vim gravitatis ut
    excessus arcus descensu toto descripti supra arcum ascensu subsequente
    descriptum, ad penduli longitudinem duplicatam._

Designet BC arcum descensu descriptum, Ca arcum ascensu descriptum, & Aa
differentiam arcuum: & stantibus quæ in Propositione XXV. constructa &
demonstrata sunt, erit vis qua corpus oscillans urgetur in loco quovis D,
ad uim resistentia ut arcus CD ad arcum CO, qui semissis est differentiæ
illius Aa. Ideoque vis qua corpus oscillans urgetur in Cycloidis principio
seu puncto altissimo, id est vis gravitatis, erit ad resistentiam ut arcus
Cycloidis inter punctum illud supremum & punctum infimum C ad arcum CO; id
est (si arcus duplicentur) ut Cycloidis totius arcus, seu dupla penduli
longitudo, ad arcum Aa.   _Q. E. D._

Prop. XXIX. Prob. VII.

    _Posito quod corpus in Cycloide oscillans resistitur in duplicata
    ratione velocitatis: invenire resistentiam in locis singulis._

[Illustration]

Sit Ba (_Fig. Prop. XXV._) arcus oscillatione integra descriptus, sitque C
infimum Cycloidis punctum, & CZ semissis arcus Cycloidis totius,
longitudini Penduli æqualis; & quæratur resistentia corporis in loco quovis
D. Secetur recta infinita OQ in punctis O, C, P, Q ea lege ut (si erigantur
perpendicula OK, CT, PI, QE, centroque O & Asymptotis OK, OQ describatur
Hyperbola TIGE secans perpendicula CT, PI, QE in T, I & E, & per punctum I
agatur KF occurrens Asymptoto OK in K, & perpendiculis CT & QE in L & F)
fuerit area Hyperbolica PIEQ ad aream Hyperbolicam PITC ut arcus BC
descensu corporis descriptus ad arcum Ca ascensu descriptum, & area IEF ad
aream ILT ut OQ ad OC. Dein perpendiculo MN abscindatur area Hyperbolica
PINM quæ sit ad aream Hyperbolicam PIEQ ut arcus CZ ad arcum BC descensu
descriptum. Et si perpendiculo RG abscindatur area Hyperbolica PIGR, quæ
sit ad aream PIEQ ut arcus quilibet CD ad arcum BC descensu toto
descriptum: erit resistentia in loco D ad vim gravitatis, ut area {OR ÷ OQ}
IEF - IGH ad aream PIENM.

Nam cum vires a gravitate oriundæ quibus corpus in locis Z, B, D, a
urgetur, sint ut arcus CZ, CB, CD, Ca, & arcus illi sint ut areæ PINM,
PIEQ, PIGR, PITC; exponatur tum arcus tum vires per has areas respective.
Sit insuper Dd spatium quam minimum a corpore descendente descriptum, &
exponatur idem per aream quam minimam RGgr parallelis RG, rg comprehensam;
& producatur rg ad h, ut sint GHhg, & RGgr contemporanea arearum IGH, PIGR
decrementa. Et areæ {OR ÷ OQ} IEF - IGH incrementum GHhg - {Rr ÷ OQ} IEF,
seu Rr × HG - {Rr ÷ OQ} IEF, erit ad areæ PIGR decrementum RGgr seu Rr ×
RG, ut HG - {IEF ÷ OQ} ad RG; adeoque ut OR × HG - {OR ÷ OQ} IEF ad OR × GR
seu OP × PI: hoc est (ob æqualia OR × HG, OR × HR - OR × GR, ORHK - OPIK,
PIHR & PIGR + IGH) ut PIGR + IGH - {OR ÷ OQ} IEF ad OPIK. Igitur si area
{OR ÷ OQ} IEF - IGH dicatur Y, atque areæ PIGR decrementum RGgr detur, erit
incrementum areæ Y ut PIGR - Y.

Quod si V designet vim a gravitate oriundam arcui describendo CD
proportionalem, qua corpus urgetur in D; & R pro resistentia ponatur: erit
V - R vis tota qua corpus urgetur in D, adeoque ut incrementum velocitatis
in data temporis particula factum. Est autem resistentia R (per Hypothesin)
ut quadratum velocitatis, & inde (per Lem. II.) incrementum resistentiæ ut
velocitas & incrementum velocitatis conjunctim, id est ut spatium data
temporis particula descriptum & V - R conjunctim; atque adeo, si momentum
spatii detur, ut V - R; id est, si pro vi V scribatur ejus exponens PIGR, &
resistentia R exponatur per aliam aliquam aream Z, ut PIGR - Z.

Igitur area PIGR per datorum momentorum subductionem uniformiter
decrescente, crescunt area Y in ratione PIGR - Y, & area Z in ratione PIGR
- Z. Et propterea si areæ Y & Z simul incipiant & sub initio æquales sint,
hæ per additionem æqualium momentorum pergent esse æquales, & æqualibus
itidem momentis subinde decrescentes simul evanescent. Et vicissim, si
simul incipiunt & simul evanescunt, æqualia habebunt momenta & semper erunt
æquales: id adeo quia si resistentia Z augeatur, velocitas una cum arcu
illo Ca, qui in ascensu corporis describitur, diminuetur; & puncto in quo
motus omnis una cum resistentia cessat propius accedente ad punctum C,
resistentia citius evanescet quam area Y. Et contrarium eveniet ubi
resistentia diminuitur.

Jam vero area Z incipit desinitque ubi resistentia nulla est, hoc est, in
principio & fine motus, ubi arcus CD, CD arcubus CB & Ca æquantur, adeoque
ubi recta RG incidit in rectas QE & CT. Et area Y seu {OR ÷ OQ} IEF - IGH
incipit desinitque ubi nulla est, adeoque ubi {OR ÷ OQ} IEF & IGH æqualia
sunt: hoc est (per constructionem) ubi recta RG incidit in rectam QE & CT.
Proindeque areæ illæ simul incipiunt & simul evanescunt, & propterea semper
sunt æquales. Igitur area {OR ÷ OQ} IEF - IGH æqualis est areæ Z, per quam
resistentia exponitur, & propterea est ad aream PINM per quam gravitas
exponitur, ut resistentia ad gravitatem.   _Q. E. D._

_Corol. 1._ Est igitur resistentia in loco infimo C ad vim gravitatis, ut
area {OP ÷ OQ} IEF ad aream PINM.

_Corol. 2._ Fit autem maxima, ubi area PIHR est ad aream IEF ut OR ad OQ.
Eo enim in casu momentum ejus (nimirum PIGR - Y) evadit nullum.

_Corol. 3._ Hinc etiam innotescit velocitas in locis singulis: quippe quæ
est in dimidiata ratione resistentiæ, & ipso motus initio æquatur
velocitati corporis in eadem Cycloide absque omni resistentia oscillantis.

Cæterum ob difficilem calculum quo resistentia & velocitas per hanc
Propositionem inveniendæ sunt, visum est Propositionem sequentem
subjungere, quæ & generalior sit & ad usus Philosophicos abunde satis
accurata.

Prop. XXX. Theor. XXIII.

    _Si recta aB æqualis sit Cycloidis arcui quem corpus oscillando
    describit, & ad singula ejus puncta D erigantur perpendicula DK, quæ
    sint ad longitudinem Penduli ut resistentia corporis in arcus punctis
    correspondentibus ad vim gravitatis: dico quod differentia inter arcum
    descensu toto descriptum, & arcum ascensu toto subsequente descriptum,
    ducta in arcuum eorundem semisummam, æqualis erit areæ BKaB a
    perpendiculis omnibus DK occupatæ, quamproxime._

[Illustration]

Exponatur enim tum Cycloidis arcus oscillatione integra descriptus, per
rectam illam sibi æqualem aB, tum arcus qui describeretur in vacuo per
longitudinem AB. Bisecetur AB in C, & punctum C repræsentabit infimum
Cycloidis punctum, & erit CD ut vis a gravitate oriunda, qua corpus in D
secundum Tangentem Cycloidis urgetur, eamque habebit rationem ad
longitudinem Penduli quam habet vis in D ad vim gravitatis. Exponatur
igitur vis illa per longitudinem CD, & vis gravitatis per longitudinem
penduli; & si in DE capiatur DK in ea ratione ad longitudinem penduli quam
habet resistentia ad gravitatem, erit DK exponens resistentiæ. Centro C &
intervallo CA vel CB construatur semicirculus, BEeA. Describat autem corpus
tempore quam minimo spatium Dd, & erectis perpendiculis DE, de
circumferentiæ occurrentibus in E & e, erunt hæc ut velocitates quas corpus
in vacuo, descendendo a puncto B, acquireret in locis D & d. Patet hoc per
Prop. LII. Lib. I. Exponantur itaq; hæ velocitates per perpendicula illa
DE, de; sitque DF velocitas quam acquirit in D cadendo de B in Medio
resistente. Et si centro C & intervallo CF describatur circulus FfM
occurrens rectis de & AB in f & M, erit M locus ad quem deinceps absque
ulteriore resistentia ascenderet, & df velocitas quam acquireret in d. Unde
etiam si Fg designet velocitatis momentum quod corpus D, describendo
spatium quam minimum Dd, ex resistentia Medii amittit, & sumatur CN æqualis
Cg: erit N locus ad quem corpus deinceps absque ulteriore resistentia
ascenderet, & MN erit decrementum ascensus ex velocitatis illius amissione
oriundum. Ad df demittatur perpendiculum Fm, & velocitatis DF decrementum
fg a resistentia DK genitum, erit ad velocitatis ejusdem incrementum fma vi
CD genitum, ut vis generans DK ad vim generantem CD. Sed & ob similia
triangula Fmf, Fhg, FDC, est fm ad Fm seu Dd, ut CD ad DF, & ex æquo Fg ad
Dd ut DK ad DF. Item Fg ad Fh ut CF ad DF; & ex æquo perturbate Fh seu MN
ad Dd ut DK ad CF. Sumatur DR ad ½aB ut DK ad CF, & erit MN ad Dd ut DR ad
½aB; ideoque summa omnium MN × ½aB, id est Aa × ½aB, æqualis erit summæ
omnium Dd × DR, id est areæ BRrSa, quam rectangula omnia Dd × DR seu DRrd
componunt. Bisecentur Aa & aB in P & O, & erit ½aB seu OB æqualis CP,
ideoque DR est ad DK ut CP ad CF vel CM, & divisim KR ad DR ut PM ad CP.
Ideoque cum punctum M, ubi corpus versatur in medio oscillationis loco O,
incidat circiter in punctum P, & priore oscillationis parte versetur inter
A & P, posteriore autem inter P & a, utroque in casu æqualiter a puncto P
in partes contrarias errans: punctum K circa medium oscillationis locum, id
est e regione puncti O, puta in V, incidet in punctum R; in priore autem
oscillationis parte jacebit inter R & E, & in posteriore inter R & D,
utroque in casu æqualiter a puncto R in partes contrarias errans. Proinde
area quam linea KR describit, priore oscillationis parte jacebit extra
aream BRSa, posteriore intra eandem, idque dimensionibus hinc inde
propemodum æquatis inter se; & propterea in casu priore addita areæ BRSa,
in posteriore eidem subducta, relinquet aream BKTa areæ BRSa æqualem quam
proxime. Ergo rectangulum Aa × ½aB seu AaO, cum sit æquale areæ BRSa, erit
etiam æquale areæ BKTa quamproxime.   _Q. E. D._

_Corol._ Hinc ex lege resistentiæ & arcuum Ca, CB differentia Aa, colligi
potest proportio resistentiæ ad gravitatem quam proxime.

Nam si uniformis sit resistentia DK, figura aBKkT rectangulum erit sub Ba &
DK, & inde rectangulum sub ½Ba & Aa æqualis erit rectangulo sub Ba & DK, &
DK æqualis erit ½Aa. Quare cum DK sit exponens resistentiæ, & longitudo
penduli exponens gravitatis, erit resistentia ad gravitatem ut ½Aa ad
longitudinem Penduli; omnino ut in Propositione XXVIII. demonstratum est.

Si resistentia sit ut velocitas, Figura aBKkT Ellipsis erit quam proxime.
Nam si corpus, in Medio non resistente, oscillatione integra describeret
longitudinem BA, velocitas in loco quovis D foret ut circuli diametro AB
descripti ordinatim applicata DE. Proinde cum Ba in Medio resistente & BA
in Medio non resistente, æqualibus circiter temporibus describantur;
adeoque velocitates in singulis ipsius Ba punctis, sint quam proxime ad
velocitates in punctis correspondentibus longitudinis BA, ut est Ba ad BA;
erit velocitas DK in Medio resistente ut circuli vel Ellipseos super
diametro Ba descripti ordinatim applicata; adeoque figura BKVTa Ellipsis,
quam proxime. Cum resistentia velocitati proportionalis supponatur, sit OV
exponens resistentiæ in puncto Medio O; & Ellipsis, centro O, semiaxibus
OB, OV descripta, figuram aBKVT, eique æquale rectangulum Aa × BO, æquabit
quam proxime. Est igitur Aa × BO ad OV × BO ut area Ellipseos hujus ad OV ×
BO: id est Aa ad OV ut area semicirculi, ad quadratum radii sive ut 11 and
7 circiter: Et propterea: 7/11Aa ad longitudinem penduli ut corporis
oscillantis resistentia in O ad ejusdem gravitatem.

Quod si resistentia DK sit in duplicata ratione velocitatis, figura BKTVa
Parabola erit verticem habens V & axem OV, ideoque æqualis erit duabus
tertiis partibus rectanguli sub Ba & OV quam proxime. Est igitur
rectangulum sub ½Ba & Aa æquale rectangulo sub 2/3Ba & OV, adeoque OV
æqualis ¾Aa, & propterea corporis oscillantis resistentia in O ad ipsius
gravitatem ut ¾Aa ad longitudinem Penduli.

Atque has conclusiones in rebus practicis abunde satis accuratas esse
censeo. Nam cum Ellipsis vel Parabola congruat cum figura BKVTa in puncto
medio V, hæc si ad partem alterutram BKV vel VTa excedit figuram illam,
deficiet ab eadem ad partem alteram, & sic eidem æquabitur quam proxime.

Prop. XXXI. Theor. XXIV.

    _Si corporis oscillantis resistentia in singulis arcuum descriptorum
    partibus proportionalibus augeatur vel minuatur in data ratione;
    differentia inter arcum descensu descriptum & arcum subsequente ascensu
    descriptum, augebitur vel diminuetur in eadem ratione quamproxime._

Oritur enim differentia illa ex retardatione Penduli per resistentiam
Medii, adeoque est ut retardatio tota eique proportionalis resistentia
retardans. In superiore Propositione rectangulum sub recta ½aB & arcuum
illorum CB, Ca differentia Aa, æqualis erat areæ BKT. Et area illa, si
maneat longitudo aB, augetur vel diminuitur in ratione ordinatim
applicatarum DK; hoc est in ratione resistentiæ, adeoque est ut longitudo
aB & resistentia conjunctim. Proindeque rectangulum sub Aa & ½aB est ut aB
& resistentia conjunctim, & propterea Aa ut resistentia.   _Q. E. D._

_Corol. 1._ Unde si resistentia sit ut velocitas, differentia arcuum in
eodem Medio erit ut arcus totus descriptus: & contra.

_Corol. 2._ Si resistentia sit in duplicata ratione velocitatis,
differentia illa erit in duplicata ratione arcus totius; & contra.

_Corol. 3._ Et universaliter, si resistentia sit in triplicata vel alia
quavis ratione velocitatis, differentia erit in eadem ratione arcus totius;
& contra.

_Corol. 4._ Et si resistentia sit partim in ratione simplici velocitatis,
partim in ejusdem ratione duplicata, differentia erit partim in ratione
arcus totius & partim in ejus ratione duplicata; & contra. Eadem erit lex &
ratio resistentiæ pro velocitate, quæ est differentiæ illius pro
longitudine arcus.

_Corol. 5._ Ideoque si, pendulo inæquales arcus successive describente,
inveniri potest ratio incrementi ac decrementi resistentiæ hujus pro
longitudine arcus descripti, habebitur etiam ratio incrementi ac decrementi
resistentiæ pro velocitate majore vel minore.

       *       *       *       *       *


SECT. VII.

_De Motu Fluidorum & resistentia Projectilium._

Prop. XXXII. Theor. XXV.

    _Si corporum Systemata duo ex æquali particularum numero constent &
    particulæ correspondentes similes sint, singulæ in uno Systemate
    singulis in altero, ac datam habeant rationem densitatis ad invicem, &
    inter se temporibus proportionalibus similiter moveri incipiant, (eæ
    inter se quæ in uno sunt Systemate & eæ inter se quæ sunt in altero) &
    si non tangant se mutuo quæ in eodem sunt Systemate, nisi in momentis
    reflexionum, neque attrahant vel fugent se mutuo, nisi viribus
    acceleratricibus quæ sint ut particularum correspondentium diametri
    inverse & quadrata velocitatum directe: dico quod Systematum particulæ
    ille pergent inter se temporibus proportionalibus similiter moveri; &
    contra._

Corpora similia temporibus proportionalibus inter se similiter moveri dico,
quorum situs ad invicem in fine temporum illorum semper sunt similes: puta
si particulæ unius Systematis cum alterius particulis correspondentibus
conferantur. Unde tempora erunt proportionalia, in quibus similes &
proportionales figurarum similium partes a particulis correspondentibus
describuntur. Igitur si duo sint ejusmodi Systemata, particulæ
correspondentes, ob similitudinem incæptorum motuum, pergent similiter
moveri usque donec sibi mutuo occurrant. Nam si nullis agitantur viribus,
progredientur uniformiter in lineis rectis per motus Leg. I. Si viribus
aliquibus se mutuo agitant, & vires illæ sint ut particularum
correspondentium diametri inverse & quadrata velocitatum directe; quoniam
particularum situs sunt similes & vires proportionales, vires totæ quibus
particulæ correspondentes agitantur, ex viribus singulis agitantibus (per
Legum Corollarium secundum) compositæ, similes habebunt determinationes,
perinde ac si centra inter particulas similiter sita respicerent; & erunt
vires illæ totæ ad invicem ut vires singulæ componentes, hoc est ut
correspondentium particularum diametri inverse, & quadrata velocitatum
directe: & propterea efficient ut correspondentes particulæ figuras similes
describere pergant. Hæc ita se habebunt per Corol. 1. 2, & 7. Prop. IV. si
modo centra illa quiescant. Sin moveantur, quoniam ob translationum
similitudinem, similes manent eorum situs inter Systematum particulas;
similes inducentur mutationes in figuris quas particulæ describunt. Similes
igitur erunt correspondentium & similium particularum motus usque ad
occursus suos primos, & propterea similes occursus, & similes reflexiones,
& subinde (per jam ostensa) similes motus inter se, donec iterum in se
mutuo inciderint, & sic deinceps in infinitum.   _Q. E. D._

_Corol. 1._ Hinc si corpora duo quævis, quæ similia sint & ad Systematum
particulas correspondentes similiter sita, inter ipsas temporibus
proportionalibus similiter moveri incipiant, sintque eorum densitates ad
invicem ut densitates correspondentium particularum: hæc pergent temporibus
proportionalibus similiter moveri. Est enim eadem ratio partium majorum
Systematis utriusque atque particularum.

_Corol. 2._ Et si similes & similiter positæ Systematum partes omnes
quiescant inter se: & earum duæ, quæ cæteris majores sint, & sibi mutuo in
utroque Systemate correspondeant, secundum lineas similiter sitas simili
cum motu utcunque moveri incipiant: hæ similes in reliquis systematum
partibus excitabunt motus, & pergent inter ipsas temporibus
proportionalibus similiter moveri; atque adeo spatia diametris suis
proportionalia describere.

Prop. XXXIII. Theor. XXVI.

    _Iisdem positis, dico quod Systematum partes majores resistuntur in
    ratione composita ex duplicata ratione velocitatum suarum & duplicata
    ratione diametrorum & ratione densitatis partium Systematum._

Nam resistentia oritur partim ex viribus centripetis vel centrifugis quibus
particulæ systematum se mutuo agitant, partim ex occursibus & reflexionibus
particularum & partium majorum. Prioris autem generis resistentiæ sunt ad
invicem ut vires totæ motrices a quibus oriuntur, id est ut vires totæ
acceleratrices & quantitates materiæ in partibus correspondentibus; hoc est
(per Hypothesin) ut quadrata velocitatum directe & distantiæ particularum
correspondentium inverse & quantitates materiæ in partibus
correspondentibus directe: ideoque (cum distantiæ particularum systematis
unius sint ad distantias correspondentes particularum alterius, ut diameter
particulæ vel partis in systemate priore ad diametrum particulæ vel partis
correspondentis in altero, & quantitates materiæ sint ut densitates partium
& cubi diametrorum) resistentiæ sunt ad invicem ut quadrata velocitatum &
quadrata diametrorum & densitates partium Systematum.   _Q. E. D._
Posterioris generis resistentiæ sunt ut reflexionum correspondentium numeri
& vires conjunctim. Numeri autem reflexionum sunt ad invicem ut velocitates
partium correspondentium directe, & spatia inter eorum reflexiones inverse.
Et vires reflexionum sunt ut velocitates & magnitudines & densitates
partium correspondentium conjunctim; id est ut velocitates & diametrorum
cubi & densitates partium. Et conjunctis his omnibus rationibus,
resistentiæ partium correspondentium sunt ad invicem ut quadrata
velocitatum & quadrata diametrorum & densitates partium conjunctim.
_Q. E. D._

_Corol. 1._ Igitur si systemata illa sint Fluida duo Elastica ad modum
Aeris, & partes eorum quiescant inter se: corpora autem duo similia &
partibus fluidorum quoad magnitudinem & densitatem proportionalia, & inter
partes illas similiter posita, secundum lineas similiter positas utcunque
projiciantur; vires autem motrices, quibus particulæ Fluidorum se mutuo
agitant, sint ut corporum projectorum diametri inverse, & quadrata
velocitatum directe: corpora illa temporibus proportionalibus similes
excitabunt motus in Fluidis, & spatia similia ac diametris suis
proportionalia describent.

_Corol. 2._ Proinde in eodem Fluido projectile velox resistitur in
duplicata ratione velocitatis quam proxime. Nam si vires, quibus particulæ
distantes se mutuo agitant, augerentur in duplicata ratione velocitatis,
projectile resisteretur in eadem ratione duplicata accurate; ideoque in
Medio, cujus partes ab invicem distantes sese viribus nullis agitant,
resistentia est in duplicata ratione velocitatis accurate. Sunto igitur
Media tria A, B, C ex partibus similibus & æqualibus & secundum distantias
æquales regulariter dispositis constantia. Partes Mediorum A & B fugiant se
mutuo viribus quæ sint ad invicem ut T & V, illæ Medii C ejusmodi viribus
omnino destituantur. Et si corpora quatuor æqualia D, E, F, G in his Mediis
moveantur, priora duo D & E in prioribus duobus A & B, & altera duo F & G
in tertio C; sitque velocitas corporis D ad velocitatem corporis E, &
velocitas corporis F ad velocitatem corporis G, in dimidiata ratione virium
T ad vires V; resistentia corporis D erit ad resistentiam corporis E, &
resistentia corporis F ad resistentiam corporis G in velocitatum ratione
duplicata; & propterea resistentia corporis D erit ad resistentiam corporis
F ut resistentia corporis E ad resistentiam corporis G. Sunto corpora D & F
æquivelocia ut & corpora E & G; & augendo velocitates corporum D & F in
ratione quacunque, ac diminuendo vires particularum Medii B in eadem
ratione duplicata, accedet Medium B ad formam & conditionem Medii C pro
lubitu, & idcirco resistentiæ corporum æqualium & æquivelocium E & G in his
Mediis, perpetuo accedent ad æqualitatem, ita ut earum differentia evadat
tandem minor quam data quævis. Proinde cum resistentiæ corporum D & F sint
ad invicem ut resistentiæ corporum E & G, accedent etiam hæ similiter ad
rationem æqualitatis. Corporum igitur D & F, ubi velocissime moventur,
resistentiæ sunt æquales quam proxime: & propterea cum resistentia corporis
F sit in duplicata ratione velocitatis, erit resistentia corporis D in
eadem ratione quamproxime.   _Q. E. D._

_Corol. 3._ Igitur corporis in Fluido quovis Elastico velocissime moventis
eadem fere est resistentia ac si partes Fluidi viribus suis centrifugis
destituerentur, seque mutuo non fugerent: si modo Fluidi vis Elastica ex
particularum viribus centrifugis oriatur.

_Corol. 4._ Proinde cum resistentiæ similium & æquivelocium corporum, in
Medio cujus partes distantes se mutuo non fugiunt, sint ut quadrata
diametrorum, sunt etiam æquivelocium & celerrime moventium corporum
resistentiæ in Fluido Elastico ut quadrata diametrorum quam proxime.

_Corol. 5._ Et cum corpora similia, æqualia & æquivelocia, in Mediis
ejusdem densitatis, quorum particulæ se mutuo non fugiunt, sive particulæ
illæ sint plures & minores, sive pauciores & majores, in æqualem materiæ
quantitatem temporibus æqualibus inpingant, eique æqualem motus quantitatem
imprimant, & vicissim (per motus Legem tertiam) æqualem ab eadem reactionem
patiantur, hoc est, æqualiter resistantur: manifestum est etiam quod in
ejusdem densitatis Fluidis Elasticis, ubi velocissime moventur, æquales
sint eorum resistentiæ quam proxime; sive Fluida illa ex particulis
crassioribus constent, sive ex omnium subtilissimis constituantur. Ex Medii
subtilitate resistentia projectilium celerrime motorum non multum
diminuitur.

_Corol. 6._ Cum autem particulæ Fluidorum, propter vires quibus se mutuo
fugiunt, moveri nequeant quin simul agitent particulas alias in circuitu,
atque adeo difficilius moveantur inter se quam si viribus istis
destituerentur; & quo majores sint earum vires centrifugæ, eo difficilius
moveantur inter se: manifestum esse videtur quod projectile in tali Fluido
eo difficilius movebitur, quo vires illæ sunt intensiores; & propterea si
corporis velocissimi in superioribus Corollariis velocitas diminuatur,
quoniam resistentia diminueretur in duplicata ratione velocitatis, si modo
vires particularum in eadem ratione duplicata diminuerentur; vires autem
nullatenus diminuantur, manifestum est quod resistentia diminuetur in
ratione minore quam duplicata velocitatis.

_Corol. 7._ Porro cum vires centrifugæ eo nomine ad augendam resistentiam
conducant, quod particulæ motus suos per Fluidum ad majorem a se distantiam
per vires illas propagent; & cum distantia illa minorem habeat rationem ad
majora corpora: manifestum est quod augmentum resistentiæ ex viribus illis
oriundum in corporibus majoribus minoris sit momenti; & propterea, quo
corpora sint majora eo magis accurate resistentia tardescentium decrescet
in duplicata ratione velocitatis.

_Corol. 8._ Unde etiam ratio illa duplicata magis accurate obtinebit in
Fluidis quæ, pari densitate & vi Elastica, ex particulis minoribus
constant. Nam si corpora illa majora diminuantur, & particulæ Fluidi,
manente ejus densitate & vi Elastica, diminuantur in eadem ratione; manebit
eadem ratio resistentiæ quæ prius: ut ex præcedentibus facile colligitur.

_Corol. 9._ Hæc omnia ita se habent in Fluidis, quorum vis Elastica ex
particularum viribus centrifugis originem ducit. Quod si vis illa aliunde
oriatur, veluti ex particularum expansione ad instar Lanæ vel ramorum
arborum, aut ex alia quavis causa, qua motus particularum inter se
redduntur minus liberi: resistentia, ob minorem Medii fluiditatem, erit
major quam in superioribus Corollariis.

Prop. XXXIV. Theor. XXVII.

    _Quæ in præcedentibus duabus Propositionibus demonstrata sunt, obtinent
    ubi particulæ Systematum se mutuo contingunt, si modo particulæ illæ
    sint summe lubricæ._

Concipe particulas viribus quibusdam se mutuo fugere, & vires illas in
accessu ad superficies particularum augeri in infinitum, & contra, in
recessu ab iisdem celerrime diminui & statim evanescere. Concipe etiam
systemata comprimi, ita ut partes eorum se mutuo contingant, nisi quatenus
vires illæ contactum impediunt. Sint autem spatia per quæ vires
particularum diffunduntur quam angustissima, ita ut particulæ se mutuo quam
proxime contingant: & motus particularum inter se iidem erunt quam proxime
ac si se mutuo contingerent. Eadem facilitate labentur inter se ac si
essent summe lubricæ, & si impingant in se mutuo reflectentur ab invicem
ope virium præfatarum, perinde ac si essent Elasticæ. Itaque motus erunt
iidem in utroque casu, nisi quatenus perexigua particularum sese non
contingentium intervalla diversitatem efficiant: quæ quidem diversitas
diminuendo particularum intervalla diminui potest in infinitum. Jam vero
quæ in præcedentibus duabus Propositionibus demonstrata sunt, obtinent in
particulis sese non contingentibus, idque licet intervalla particularum,
diminuendo spatia per quæ vires diffunduntur, diminuantur in infinitum. Et
propterea eadem obtinent in particulis sese contingentibus, exceptis solum
differentiis quæ tandem differentiis quibusvis datis minores evadant. Dico
igitur quod accurate obtinent. Si negas, assigna differentiam in casu
quocunque. Atqui jam probatum est quod differentia minor sit quam data
quævis. Ergo differentia falso assignatur, & propterea nulla est.
_Q. E. D._

_Corol. 1._ Igitur si Systematum duorum partes omnes quiescant inter se,
exceptis duabus, quæ cæteris majores sint & sibi mutuo correspondeant inter
cæteras similiter sitæ. Hæ secundum lineas similiter positas utcunque
projectæ similes excitabunt motus in Systematibus, & temporibus
proportionalibus pergent spatia similia & diametris suis proportionalia
describere; & resistentur in ratione composita ex duplicata ratione
velocitatum & duplicata ratione diametrorum & ratione densitatis
Systematum.

_Corol. 2._ Unde si Systemata illa sint Fluida duo similia, & eorum partes
duæ majores sint corpora in iisdem projecta: sint autem Fluidorum particulæ
summe lubricæ, & quoad magnitudinem & densitatem proportionales corporibus:
pergent corpora temporibus proportionalibus spatia similia & diametris suis
proportionalia describere, & resistentur in ratione Corollario superiore
definita.

_Corol. 3._ Proinde in eodem Fluido Projectile magnitudine datum resistitur
in duplicata ratione velocitatis.

_Corol. 4._ At si particulæ Fluidi non sint summe lubricæ, vel si viribus
quibuscunque se mutuo agitant, quibus motuum libertas diminuitur:
Projectilia tardiora difficilius superabunt resistentiam, & propterea magis
resistentur quam in velocitatis ratione duplicata.

Prop. XXXV. Theor. XXVIII.

    _Si Globus & Cylindrus æqualibus diametris descripti, in Medio raro &
    Elastico, secundum plagam axis Cylindri, æquali cum velocitate
    celerrime moveantur: erit resistentia Globi duplo minor quam
    resistentia Cylindri._

[Illustration]

Nam quoniam resistentia (per Corol. 3. Prop. XXXIII.) eadem est quam
proxime ac si partes Fluidi viribus nullis se mutuo fugerent, supponamus
partes Fluidi ejusmodi viribus destitutas per spatia omnia uniformiter
dispergi. Et quoniam actio Medii in corpus eadem est (per Legum Corol. 5.)
sive corpus in Medio quiescente moveatur, sive Medii particulæ eadem cum
velocitate impingant in corpus quiescens: consideremus corpus tanquam
quiescens, & videamus quo impetu urgebitur a Medio movente. Designet igitur
ABKI corpus Sphæricum centro C semidiametro CA descriptum, & incidant
particulæ Medii data cum velocitate in corpus illud Sphæricum, secundum
rectas ipsi AC parallelas: Sitque FB ejusmodi recta. In ea capiatur LB
semidiametro CB æqualis, & ducatur BD quæ Sphæram tangat in B. In AC & BD
demittantur perpendiculares BE, DL, & vis qua particula Medii, secundum
rectam FB oblique incidendo, Globum ferit in B, erit ad vim qua particula
eadem Cylindrum ONGQ axe ACI circa Globum descriptum perpendiculariter
feriret in b, ut LD ad LB vel BE ad BC. Rursus efficacia hujus vis ad
movendum globum secundum incidentiæ suæ plagam FB vel AC, est ad ejusdem
efficaciam ad movendum globum secundum plagam determinationis suæ, id est
secundum plagam rectæ BC qua globum directe urget, ut BE ad BC. Et
conjunctis rationibus, efficacia particulæ, in globum secundum rectam FB
oblique incidentis, ad movendum eundem secundum plagam incidentiæ suæ, est
ad efficaciam particulæ ejusdem secundum eandem rectam in cylindrum
perpendiculariter incidentis, ad ipsum movendum in plagam eandem, ut BE
quadratum ad BC quadratum. Quare si ad cylindri basem circularem NAO
erigatur perpendiculum bHE, & sit bE æqualis radio AC, & bH æqualis BE
quad. ÷ CB, erit bH ad bE ut effectus particulæ in globum ad effectum
particulæ in cylindrum. Et propterea Solidum quod a rectis omnibus bH
occupatur erit ad solidum quod a rectis omnibus bE occupatur, ut effectus
particularum omnium in globum ad effectum particularum omnium in Cylindrum.
Sed solidum prius est Parabolois vertice V, axe CA & latere recto CA
descriptum, & solidum posterius est cylindrus Paraboloidi circumscriptus: &
notum est quod Parabolois sit semissis cylindri circumscripti. Ergo vis
tota Medii in globum est duplo minor quam ejusdem vis tota in cylindrum. Et
propterea si particulæ Medii quiescerent, & cylindrus ac globus æquali cum
velocitate moverentur, foret resistentia globi duplo minor quam resistentia
cylindri.   _Q. E. D._

_Scholium._

[Illustration]

Eadem methodo figuræ aliæ inter se quoad resistentiam comparari possunt,
eæque inveniri quæ ad motus suos in Mediis resistentibus continuandos
aptiores sunt. Ut si base circulari CEBH, quæ centro O, radio OC
describitur, & altitudine OD, construendum sit frustum coni CBGF, quod
omnium eadem basi & altitudine constructorum & secundum plagam axis sui
versus D progredientium frustorum minime resistatur: biseca altitudinem OD
in Q & produc, OQ ad S ut sit QS æqualis QC, & erit S vertex coni cujus
frustum quæritur.

Unde obiter cum angulus CSB semper sit acutus, consequens est, quod si
solidum ADBE convolutione figuræ Ellipticæ vel Ovalis ADBE circa axem AB
facta generetur, & tangatur figura generans a rectis tribus FG, GH, HI in
punctis F, B & I, ea lege ut GH sit perpendicularis ad axem in puncto
contactus B, & FG, HI cum eadem GH contineant angulos FGB, BHI graduum 135:
solidum, quod convolutione figuræ ADFGHIE circa axem eundem CB generatur,
minus resistitur quam solidum prius; si modo utrumque secundum plagam axis
sui AB progrediatur, & utriusque terminus B præcedat. Quam quidem
propositionem in construendis Navibus non inutilem futuram esse censeo.

[Illustration]

Quod si figura DNFB ejusmodi sit ut, si ab ejus puncto quovis N ad axem AB
demittatur perpendiculum NM, & a puncto dato G ducatur recta GR quæ
parallela sit rectæ figuram tangenti in N, & axem productum secet in R,
fuerit MN ad GR ut GR cub. ad 4BR × GBq.: Solidum quod figuræ hujus
revolutione circa axem AB facta describitur, in Medio raro & Elastico ab A
versus B velocissime movendo, minus resistetur quam aliud quodvis eadem
longitudine & latitudine descriptum Solidum circulare.

Prop. XXXVI. Prob. VIII.

    _Invenire resistentiam corporis Sphærici in Fluido raro & Elastico
    velocissime progredientis._ (Vide Fig. Pag. 325.)

Designet ABKI corpus Sphæricum centro C semidiametro CA descriptum.
Producatur CA primo ad S deinde ad R, ut sit AS pars tertia ipsius CA, & CR
sit ad CS ut densitas corporis Sphærici ad densitatem Medii. Ad CR
erigantur perpendicula PC, RX, centroque R & Asymptotis CR, RX describatur
Hyperbola quævis PVY. In CR capiatur CT longitudinis cujusvis, & erigatur
perpendiculum TV abscindens aream Hyperbolicam PCTV, & sit CZ latus hujus
areæ applicatæ ad rectam PC. Dico quod motus quem globus, describendo
spatium CZ, ex resistentia Medii amittet, erit ad ejus motum totum sub
initio ut longitudo CT ad longitudinem CR quamproxime.

Nam (per motuum Legem tertiam) motus quem cylindrus GNOQ circa globum
descriptus impingendo in Medii particulas amitteret, æqualis est motui quem
imprimeret in easdem particulas. Ponamus quod particulæ singulæ
reflectantur a cylindro, & ab eodem ea cum velocitate resiliant, quacum
cylindrus ad ipsas accedebat. Nam talis erit reflexio, per Legum Corol. 3.
si modo particulæ quam minime sint, & vi Elastica quam maxima reflectantur.
Velocitas igitur quacum a cylindro resiliunt, addita velocitati cylindri
componet totam velocitatem duplo majorem quam velocitas cylindri, &
propterea motus quem cylindrus ex reflexione particulæ cujusque amittit,
erit ad motum totum cylindri, ut particula duplicata ad cylindrum. Proinde
cum densitas Medii sit ad densitatem cylindri ut CS ad CR; si Ct sit
longitudo tempore quam minimo a cylindro descripta, erit motus eo tempore
amissus ad motum totum cylindri ut 2Ct × CS ad AI × CR. Ea enim est ratio
materiæ Medii, a cylindro protrusæ & reflexæ, ad massam cylindri. Unde cum
globus sit duæ tertiæ partes cylindri, & resistentia globi (per
Propositionem superiorem) sit duplo minor quam resistentia cylindri: erit
motus, quem globus describendo longitudinem L amittit, ad motum totum
globi, ut Ct × CS ad 2/3AI × CR, sive ut Ct ad CR. Erigatur perpendiculum
tv Hyperbolæ occurrens in v, & (per Corol. 1. Prop. V. Lib. II.) si corpus
describendo longitudinem areæ CtvP proportionalem, amittit motus sui totius
CR partem quamvis Ct, idem describendo longitudinem areæ CTVP
proportionalem, amittet motus sui partem CT. Sed longitudo Ct æqualis est
CPvt ÷ CP, & longitudo CZ (per Hypothesin) æqualis est CPTV ÷ CP, adeoque
longitudo Ct est ad longitudinem CZ ut area CPvt ad aream CPVT. Et
propterea cum globus describendo longitudinem quam minimam Ct amittat motus
sui partem, quæ sit ad totum ut Ct ad CR, is describendo longitudinem aliam
quamvis CZ, amittet motus sui partem quæ sit ad totum ut CT ad CR.
_Q. E. D._

_Corol. 1._ Si detur corporis velocitas sub initio, dabitur tempus quo
corpus, describendo spatium Ct, amittet motus sui partem Ct: & inde,
dicendo quod resistentia sit ad vim gravitatis ut ista motus pars amissa ad
motum, quem gravitas Globi eodem tempore generaret; dabitur proportio
resistentiæ ad gravitatem Globi.

_Corol. 2._ Quoniam in his determinandis supposui quod particulæ Fluidi per
vim suam Elasticam quam maxime a Globo reflectantur, & particularum sic
reflexarum impetus in Globum duplo major sit quam si non reflecterentur:
manifestum est quod in Fluido, cujus particulæ vi omni Elastica aliaque
omni vi reflexiva destituuntur, corpus Sphæricum resistentiam duplo minorem
patietur; adeoque eandem velocitatis partem amittendo, duplo longius
progredietur quam pro constructione Problematis hujus superius allata.

_Corol. 3._ Et si particularum vis reflexiva neque maxima sit neque omnino
nulla, sed mediocrem aliquam rationem teneat: resistentia pariter, inter
limites in constructione Problematis & Corollario superiore positos,
mediocrem rationem tenebit.

_Corol. 4._ Cum corpora tarda paulo magis resistantur quam pro ratione
duplicata velocitatis: hæc describendo longitudinem quamvis CZ amittent
majorem motus sui partem, quam quæ sit ad motum suum totum ut CT ad CR.

_Corol. 5._ Cognita autem resistentia corporum celerrimorum, innotescet
etiam resistentia tardorum; si modo lex decrementi resistentiæ pro ratione
velocitatis inveniri potest.

Prop. XXXVII. Prob. IX.

    _Aquæ de vase dato per foramen effluentis definire motum._

Si vas impleatur aqua, & in fundo perforetur ut aqua per foramen defluat,
manifestum est quod vas sustinebit pondus aquæ totius, dempto pondere
partis illius quod foramini perpendiculariter imminet. Nam si foramen
obstaculo aliquo occluderetur, obstaculum sustineret pondus aquæ sibi
perpendiculariter incumbentis, & fundum vasis sustineret pondus aquæ
reliquæ. Sublato autem obstaculo, fundum vasis eadem aquæ pressione eodemve
ipsius pondere urgebitur ac prius; & pondus quod obstaculum sustinebat, cum
jam non sustineatur, faciet ut aqua descendat & per foramen defluat.

Unde consequens est, quod motus aquæ totius effluentis is erit quem pondus
aquæ foramini perpendiculariter incumbentis generare possit. Nam aquæ
particula unaquæque pondere suo, quatenus non impeditur, descendit, idque
motu uniformiter accelerato; & quatenus impeditur, urgebit obstaculum.
Obstaculum illud vel vasis est fundum, vel aqua inferior defluens; &
propterea ponderis pars illa, quam vasis fundum non sustinet, urgebit aquam
defluentem & motum sibi proportionalem generabit.

Designet igitur F aream foraminis, A altitudinem aquæ foramini
perpendiculariter incumbentis, P pondus ejus, AF quantitatem ejus, S
spatium quod dato quovis tempore T in vacuo libere cadendo describeret, & V
velocitatem quam in fine temporis illius cadendo acquisierit: & motus ejus
acquisitus AF × V æqualis erit motui aquæ totius eodem tempore effluentis.
Sit velocitas quacum effluendo exit de foramine, ad velocitatem V ut d ad
e; & cum aqua velocitate V describere posset spatium 2S, aqua effluens
eodem tempore, velocitate sua {d ÷ e}V describere posset spatium {2d ÷ e}S.
Et propterea columna aquæ cujus longitudo sit {2d ÷ e}S & latitudo eadem
quæ foraminis, posset eo tempore defluendo egredi de vase, hoc est columna
{2d ÷ e}SF. Quare motus {2dd ÷ ee}SFV, qui fiet ducendo quantitatem aquæ
effluentis in velocitatem suam, hoc est motus omnis tempore effluxus illius
genitus, æquabitur motui AF × V. Et si æquales illi motus applicentur ad
FV; fiet {2dd ÷ ee}S æqualis A. Unde est dd ad ee ut A ad 2S, & d ad e in
dimidiata ratione ½A ad S. Est igitur velocitas quacum aqua exit e
foramine, ad velocitatem quam aqua cadens, & tempore T cadendo describens
spatium S acquireret, ut altitudo aquæ foramini perpendiculariter
incumbentis, ad medium proportionale inter altitudinem illam duplicatam &
spatium illud S, quod corpus tempore T cadendo describeret.

Igitur si motus illi sursum vertantur; quoniam aqua velocitate V ascenderet
ad altitudinem illam S de qua deciderat; & altitudines (uti notum est) sint
in duplicata ratione velocitatum: aqua effluens ascenderet ad altitudinem
½A. Et propterea quantitas aquæ effluentis; quo tempore corpus cadendo
describere posset altitudinem ½A, æqualis erit columnæ aquæ totius AF
foramini perpendiculariter imminentis.

Cum autem aqua effluens, motu suo sursum verso, perpendiculariter surgeret
ad dimidiam altitudinem aquæ foramini incumbentis; consequens est quod si
egrediatur oblique per canalem in latus vasis, describet in spatiis non
resistentibus Parabolam cujus latus rectum est altitudo aquæ in vase supra
canalis orificium, & cujus diameter horizonti perpendicularis ab orificio
illo ducitur, atque ordinatim applicatæ parallelæ sunt axi canalis.

Hæc omnia de Fluido subtilissimo intelligenda sunt. Nam si aqua ex partibus
crassioribus constet, hæc tardius effluet quam pro ratione superius
assignata, præsertim si foramen angustum sit per quod effluit.

Denique si aqua per canalem horizonti parallelum egrediatur; quoniam fundum
vasis integrum est, & eadem aquæ incumbentis pressione ubique urgetur ac si
aqua non efflueret; vas sustinebit pondus aquæ totius, non obstante
effluxu, sed latus vasis de quo effluit non sustinebit pressionem illam
omnem, quam sustineret si aqua non efflueret. Tolletur enim pressio partis
illius ubi perforatur: quæ quidem pressio æqualis est ponderi columnæ aquæ,
cujus basis foramini æquatur & altitudo eadem est quæ aquæ totius supra
foramen. Et propterea si vas, ad modum corporis penduli, filo prælongo a
clavo suspendatur, hoc, si aqua in plagam quamvis secundum lineam
horizontalem effluit, recedet semper a perpendiculo in plagam contrariam.
Et par est ratio motus pilarum, quæ Pulvere tormentario madefacto
implentur, &, materia in flammam per foramen paulatim expirante, recedunt a
regione flammæ & in partem contrariam cum impetu feruntur.

Prop. XXXVIII. Theor. XXIX.

    _Corporum Sphæricorum in Mediis quibusque Fluidissimis resistentiam in
    anteriore superficie definire._

[Illustration]

Defluat aqua de vase Cylindrico ABCD, per canalem Cylindricum EFGH, in vas
inferius IKLM; & inde effluat per vasis marginem IM. Sit autem margo ille
ejusdem altitudinis cum vasis superioris fundo CD, eo ut aqua per totum
canalem uniformi cum motu descendat; & in medio canalis collocetur Globus
P, sitque PR altitudo aquæ supra Globum, & SR ejusdem altitudo supra fundum
vasis. Sustineatur autem Globus filo tenuissimo TV, lateribus canalis hinc
inde affixo. Et manifestum est per proportionem superiorem, quod quantitas
aquæ dato tempore defluentis erit ut amplitudo foraminis per quod defluit;
hoc est, si Globus tollatur, ut canalis orificium: sin Globus adsit, ut
spatium undique inter Globum & canalem. Nam velocitas aquæ defluentis (per
superiorem Propositionem) ea erit quam corpus cadendo, & casu suo
describendo dimidiam aquæ altitudinem SR, acquirere posset: adeoque eadem
est sive Globus tollatur, sive adsit. Et propterea aqua defluens erit ut
amplitudo spatii per quod transit. Certe transitus aquæ per spatium
angustius facilior esse nequit quam per spatium amplius, & propterea
velocitas ejus ubi Globus adest, non potest esse major quam cum tollitur:
ideoque major aquæ quantitas, ubi Globus adest, non effluet quam pro
ratione spatii per quod transit. Si aqua non sit liquor subtilissimus &
fluidissimus, hujus transitus per spatium angustius, ob crassitudinem
particularum, erit aliquanto tardior: at liquorem fluidissimum esse hic
supponimus. Igitur quantitas aquæ, cujus descensum Globus dato tempore
impedit, est ad quantitatem aquæ quæ, si Globus tolleretur, eodem tempore
descenderet, ut basis Cylindri circa Globum descripti ad orificium canalis;
sive ut quadratum diametri Globi ad quadratum diametri cavitatis canalis.
Et propterea quantitas aquæ cujus descensum Globus impedit, æqualis est
quantitati aquæ, quæ eodem tempore per foramen circulare in fundo vasis,
basi Cylindri illius æquale, descendere posset, & cujus descensus per fundi
partem quamvis circularem basi illi æqualem impeditur.

Jam vero pondus aquæ, quod vas & Globus conjunctim sustinent, est pondus
aquæ totius in vase, præter partem illam quæ aquam defluentem accelerat, &
ad ejus motum generandum sufficit, quæque, per Propositionem superiorem,
æqualis est ponderi columnæ aquæ cujus basis æquatur spatio inter Globum &
canalem per quod aqua defluit, & altitudo eadem cum altitudine aquæ supra
fundum vasis, per lineam SR designata. Vasis igitur fundum & Globus
conjunctim sustinent pondus aquæ totius in vase sibi ipsis
perpendiculariter imminentis. Unde cum fundum vasis sustineat pondus aquæ
sibi perpendiculariter imminentis, reliquum est ut Globus etiam sustineat
pondus aquæ sibi perpendiculariter imminentis. Globus quidem non sustinet
pondus aquæ illius stagnantis & sibi absque omni motu incumbentis, sed aquæ
defluenti resistendo impedit effectum tanti ponderis; adeoque vim aquæ
defluentis sustinet ponderi illi æqualem. Nam impedit descensum & effluxum
quantitatis aquæ quem pondus illud accurate efficeret si Globus tolleretur.
Aqua pondere suo, quatenus descensus ejus impeditur, urget obstaculum omne,
ideoque obstaculum, quatenus descensum aquæ impedit, vim sustinet æqualem
ponderi quo descensus ille efficeretur. Globus autem descensum quantitatis
aquæ impedit, quem pondus columnæ aquæ sibi perpendiculariter incumbentis
efficere posset; & propterea vim aquæ decurrentis sustinet ponderi illi
æqualem. Actio & reactio aquæ per motus Legem tertiam æquantur inter se, &
in plagas contrarias diriguntur. Actio Globi in aquam descendentem, ad ejus
descensum impediendum, in superiora dirigitur, & est ut descendendi motus
impeditus, eique tollendo adæquate sufficit: & propterea actio contraria
aquæ in Globum æqualis est vi quæ motum eundem vel tollere vel generare
possit, hoc est ponderi columnæ aquæ, quæ Globo perpendiculariter imminet &
cujus altitudo est RS.

Si jam canalis orificium superius obstruatur, sic ut aqua descendere
nequeat, Globus quidem, pondere aquæ in canali & vase inferiore IKLM
stagnantis, premetur undique; sed non obstante pressione illa, si ejusdem
sit specificæ gravitatis cum aqua, quiescet. Pressio illa Globum nullam in
partem impellet. Et propterea ubi canalis aperitur & aqua de vase superiore
descendit, vis omnis, qua Globus impellitur deorsum, orietur ab aquæ illius
descensu, atque adeo æqualis erit ponderi columnæ aquæ, cujus altitudo est
RS & diameter eadem quæ Globi. Pondus autem istud, quo tempore data
quælibet aquæ quantitas, per foramen basi Cylindri circa Globum descripti
æquale, sublato Globo effluere posset, sufficit ad ejus motum omnem
generandum; atque adeo quo tempore aqua in Cylindro uniformiter decurrendo
describit duas tertias partes diametri Globi, sufficit ad motum omnem aquæ
Globo æqualis generandum. Nam Cylindrus aquæ, latitudine Globi & duabus
tertiis partibus altitudinis descriptus, Globo æquatur. Et propterea aquæ
currentis impetus in Globum quiescentem, quo tempore aqua currendo
describit duas tertias partes diametri Globi, si uniformiter continuetur,
generaret motum omnem partis Fluidi quæ Globo æquatur.

Quæ vero de aqua in canali demonstrata sunt, intelligenda sunt etiam de
aqua quacunque fluente, qua Globus quilibet in ea quiescens urgetur. Quæque
de aqua demonstrata sunt obtinent etiam in Fluidis universis subtilissimis.
De his omnibus idem valet argumentum.

Jam vero per Legum Corol. 5, vis Fluidi in Globum eadem est, sive Globus
quiescat & Fluidum uniformi cum velocitate moveatur, sive Fluidum quiescat
& Globus eadem cum velocitate in partem contrariam pergat. Et propterea
resistentia Globi in Medio quocunque Fluidissimo uniformiter progredientis,
quo tempore Globus duas tertias partes diametri suæ describit, æqualis est
vi, quæ in corpus ejusdem magnitudinis cum Globo & ejusdem densitatis cum
Medio uniformiter impressa, quo tempore Globus duas tertias partes diametri
suæ progrediendo describit, velocitatem Globi in corpore illo generare
posset. Tanta est resistentia Globi in superficiei parte præcedente.
_Q. E. I._

_Corol. 1._ Si solidum Sphæricum in ejusdem secum densitatis Fluido
subtilissimo libere moveatur, & inter movendum eadem vi urgeatur a tergo
atque cum quiescit; ejusdem resistentia ea erit quam in Corollario secundo
Propositionis xxxvi. descripsimus. Unde si computus ineatur, patebit quod
solidum dimidiam motus sui partem prius amittet, quam progrediendo
descripserit longitudinem diametri propriæ; Quod si inter movendum minus
urgeatur a tergo, magis retardabitur: & contra, si magis urgeatur, minus
retardabitur.

_Corol. 2._ Hallucinantur igitur qui credunt resistentiam projectilium per
infinitam divisionem partium Fluidi in infinitum diminui. Si Fluidum sit
valde crassum, minuetur resistentia aliquantulum per divisionem partium
ejus. At postquam competentem Fluiditatis gradum acquisiverit, (qualis
forte est Fluiditas Aeris vel aquæ vel argenti vivi) resistentia in
anteriore superficie solidi, per ulteriorem partium divisionem non multum
minuetur. Nunquam enim minor futura est quam pro limite quem in Corollario
superiore assignavimus.

_Corol. 3._ Media igitur in quibus corpora projectilia sine sensibili motus
diminutione longissime progrediuntur, non solum Fluidissima sunt, sed etiam
longe rariora quam sunt corpora illa quæ in ipsis moventur: nisi forte quis
dixerit Medium omne Fluidissimum, impetu perpetuo in posticam projectilis
partem facto, tantum promovere motum ejus quantum impedit & resistit in
parte antica. Et motus quidem illius, quem projectile imprimit in Medium,
partem aliquam a Medio circulariter lato reddi corpori a tergo verisimile
est. Nam & experimentis quibusdam factis, reperi quod in Fluidis satis
compressis pars aliqua redditur. Omnem vero in casu quocunque reddi nec
rationi consentaneum videtur, neque cum experimentis hactenus a me tentatis
bene quadrat. Fluidorum enim utcunque subtilium, si densa sint, vim ad
solida movenda resistendaque permagnam esse, & quomodo vis illius quantitas
per experimenta determinetur, plenius patebit per Propositiones duas quæ
sequuntur.

Lemma IV.

    _Si vas Sphæricum Fluido homogeneo quiescente plenum a vi impressa
    moveatur in directum, motuque progessivo semper accelerato ita pergat
    ut interea non moveatur in orbem: partes Fluidi inclusi, æqualiter
    participando motum vasis, quiescent inter se. Idem obtinebit in vase
    figuræ cujuscunque. Res manifesta est, nec indiget demonstratione._

Prop. XXXIX. Theor. XXX.

    _Fluidum omne quod motu accelerato ad modum venti increbescentis
    progreditur, & cujus partes inter se quiescunt, rapit omnia ejusdem
    densitatis innatantia corpora, & secum cum eadem velocitate defert._

Nam per Lemma superius si vas Sphæricum, rigidum, Fluidoque homogeneo
quiescente plenum, motu paulatim impresso progrediatur; Fluidi motum vasis
participantis partis omnes semper quiescent inter se. Ergo si Fluidi partes
aliquæ congelarentur, pergerent hæ quiescere inter partes reliquas. Nam
quoniam partes omnes quiescunt inter se, perinde est sive fluidæ sint, sive
aliquæ earum rigescant. Ergo si vas a vi aliqua extrinsecus impressa
moveatur, & motum suum imprimat in Fluidum; Fluidum quoque motum suum
imprimet in sui ipsius partes congelatas easque secum rapiet. Sed partes
illæ congelatæ sunt corpora solida ejusdem densitates cum Fluido; & par est
ratio Fluidi, sive id in vase moto claudatur, sive in spatiis liberis ad
modum venti spiret. Ergo Fluidum omne quod motu progressivo accelerato
fertur, & cujus partes inter se quiescunt, solida quæcunque ejusdem
densitatis inclusa, quæ sub initio quiescebant, rapit secum, & una moveri
cogit.   _Q. E. D._

Prop. XL. Prob. X.

    _Invenire resistentiam solidorum Sphæricorum in Mediis Fluidissimis
    densitate datis._

In Fluido quocunque dato inveniatur resistentia ultima solidi specie dati,
cujus magnitudo in infinitum augetur. Dein dic: ut ejus motus amissus, quo
tempore progrediendo longitudinem semidiametri suæ describit, est ad ejus
motum totum sub initio, ita motus quem solidum quodvis datum, in Fluido
eodem jam facto subtilissimo, describendo diametri suæ longitudinem
amitteret, est ad ejus motum totum sub initio quamproxime. Nam si particulæ
minimæ Fluidi subtiliati eandem habeant proportionem eundemque situm ad
solidum datum in eo movens, quem particulæ totidem minimæ Fluidi non
subtiliati habent ad solidum auctum; sintque particulæ Fluidi utriusq;
summe lubricæ, & viribus centrifugis centripetisque omnino destituantur;
incipiant autem solida temporibus quibuscunque proportionalibus in his
Fluidis similiter moveri: pergent eadem similiter moveri, adeoque quo
tempore describunt spatia semidiametris suis æqualia, amittent partes
motuum proportionales totis; idque licet partes Medii subtiliati minuantur,
& magnitudo solidi in Medio non subtiliato moventis augeatur in infinitum.
Ergo ex resistentia solidi aucti in Medio non subtiliato, dabitur per
proportionem superiorem resistentia solidi non aucti in Medio subtiliato.
_Q. E. I._

Si particulæ non sunt summe lubricæ, supponendum est quod in utroq; Fluido
sunt æqualiter lubricæ, eo ut ex defectu lubricitatis resistentia utrinq;
æqualiter augeatur: & Propositio etiamnum valebit.

_Corol. 1._ Ergo si ex aucta solidi Sphærici magnitudine augeatur ejus
resistentia in ratione duplicata, resistentia solidi Sphærici dati ex
diminuta magnitudine particularum Fluidi, nullatenus minuetur.

_Corol. 2._ Sin resistentia, augendo solidum Sphæricum, augeatur in minore
quam duplicata ratione diametri; eadem diminuendo particulas Fluidi,
diminuetur in ratione qua resistentia aucta deficit a ratione duplicata
diametri.

_Corol. 3._ Unde perspicuum est quod solidi dati resistentia per divisionem
partium Fluidi non multum diminui potest. Nam resistentia solidi aucti
debebit esse quam proxime ut quantitas materiæ fluidæ resistentis, quam
solidum illud movendo protrudit & a locis a se invasis & occupatis
propellit: hoc est ut spatium Cylindricum per quod solidum movetur, adeoque
in duplicata ratione semidiametri solidi quamproxime.

_Corol. 4._ Igitur propositis duobus Fluidis, quorum alterum ab altero
quoad vim resistendi longissime superatur: Fluidum quod minus resistit est
altero rarius; suntque Fluidorum omnium vires resistendi prope ut eorum
densitates; præsertim si solida sint magna, & velociter moveantur, &
Fluidorum æqualis sit compressio.

_Scholium Generale._

Quæ hactenus demonstrata sunt tentavi in hunc modum. Globum ligneum pondere
unciarum _Romanarum_ 57-7/22, diametro digitorum _Londinensium_ 6-7/8
fabricatum, filo tenui ab unco satis firmo suspendi, ita ut inter uncum &
centrum oscillationis Globi distantia esset pedum 10½. In filo punctum
notavi pedibus decem & uncia una a centro suspensionis distans; & e regione
puncti illius collocavi Regulam in digitos distinctam, quorum ope notarem
longitudines arcuum a Pendulo descriptas. Deinde numeravi oscillationes
quibus Globus quartam motus sui partem amitteret. Si pendulum deducebatur a
perpendiculo ad distantiam duorum digitorum, & inde demittebatur; ita ut
toto suo descensu describeret arcum duorum digitorum, totaque oscillatione
prima, ex descensu & ascensu subsequente composita, arcum digitorum fere
quatuor; idem oscillationibus 164 amisit octavam motus sui partem, sic ut
ultimo suo ascensu describeret arcum digiti unius cum tribus partibus
quartis digiti. Si primo descensu descripsit arcum digitorum quatuor,
amisit octavam motus partem oscillationibus 121; ita ut ascensu ultimo
describeret arcum digitorum 3½. Si primo descensu descripsit arcum
digitorum octo, sexdecim, triginta duorum vel sexaginta quatuor, amisit
octavam motus partem oscillationibus 69, 35½, 18½, 9-2/3, respective.
Igitur differentia inter arcus descensu primo & ascensu ultimo descriptos,
erat in casu primo, secundo, tertio, quarto, quinto, sexto, digitorum ¼, ½,
1, 2, 4, 8 respective. Dividantur eæ differentiæ per numerum oscillationum
in casu unoquoque; & in oscillatione una mediocri, qua arcus digitorum 3¾,
7½, 15, 30, 60, 120 descriptus fuit, differentia arcuum descensu &
subsequente ascensu descriptorum, erit 1/656, 1/242, 1/69, 4/71, 8/37,
24/29 partes digiti respective. Hæ autem in majoribus oscillationibus sunt
in duplicata ratione arcuum descriptorum quam proxime; in minoribus vero
paulo majores quam in ea ratione, & propterea (per Corol. 2. Prop. xxxi.
Libri hujus) resistentia Globi, ubi celerius movetur, est in duplicata
ratione velocitatis quamproxime; ubi tardius, paulo major quam in ea
ratione: omnino ut in Corollariis Propositionis xxxii. demonstratum est.

Designet jam V velocitatem maximam in oscillatione quavis, sintque A, B, C
quantitates datæ, & fingamus quod differentia arcuum sit AV + BV^{3/2} +
CV^2. Et cum velocitates maximæ in prædictis sex Casibus, sint ut arcuum
dimidiorum 1-7/8, 3¾, 7½, 15, 30, 60 chordæ, atque adeo ut arcus ipsi
quamproxime, hoc est ut numeri ½, 1, 2, 4, 8, 16: scribamus in Casu secundo
quarto & sexto numeros 1, 4, & 16 pro V; & prodibit arcuum differentia
1/242 æqualis A + B + C in Casu secundo; & 2 ÷ 35½ æqualis 4A + 8B + 16C in
casu quarto; & 8 ÷ 9-2/3 æqualis 16A + 64B + 256C in casu sexto. Unde si
per has æquationes determinemus quantitates A, B, C; habebimus Regulam
inveniendi differentiam arcuum pro velocitate quacunque data.

Cæterum cum velocitates maximæ sint in Cycloide ut arcus oscillando
descripti, in circulo vero ut semissium arcuum illorum chordæ, adeoque
paribus arcubus majores sint in Cycloide quam in circulo, in ratione
semissium arcuum ad eorundem chordas; tempora autem in circulo sint majora
quam in Cycloide in velocitatis ratione reciproca: ut ex resistentia in
circulo inveniatur resistentia in Trochoide, debebit resistentia augeri in
duplicata circiter ratione arcus ad chordam, ob velocitatem in ratione illa
simplici auctam; & diminui in ratione chordæ ad arcum, ob tempus (seu
durationem resistentiæ qua arcuum differentia prædicta generatur) diminutum
in eadem ratione: id est (si rationes conjungamus) debebit resistentia
augeri in ratione arcus ad chordam circiter. Hæc ratio in casu secundo est
6283 ad 6279, in quarto 12566 ad 12533, in sexto 25132 ad 24869. Et inde
resistentia 1 ÷ 242, 2 ÷ 35½, & 8 ÷ 9-2/3 evadunt 6283 ÷ {6279 × 242},
25132 ÷ {12533 × 35½} & 201056 ÷ {24869 × 9-2/3}, id est in numeris
decimalibus 0,004135, 0,056486 & 0,8363. Unde prodeunt æquationes A + B + C
= 0,004135: 4A + 8B + 16C = 0,05648 & 16A + 64B + 256C = 0,8363. Et ex his
per debitam terminorum collationem & reductionem Analyticam fit A =
0,0002097, B = 0,0008955 & C = 0,0030298. Est igitur differentia arcuum ut
0,0002097V + 0,0008955V^{3/2} + 0,0030298V^2: & propterea cum per Corol.
Prop. xxx. resistentia Globi in medio arcus oscillando descripti, ubi
velocitas est V, sit ad ipsius pondus ut 7/11AV + 16/23BV^{3/2} + ¾CV^2 ad
longitudinem Penduli; si pro A, B, & C scribantur numeri inventi, fiet
resistentia Globi ad ejus pondus, ut 0,0001334V + 0,000623V^{3/2} +
0,00227235V^2 ad longitudinem Penduli inter centrum suspensionis & Regulam,
id est ad 121 digitos. Unde cum V in casu secundo designet 1, in quarto 4,
in sexto 16: erit resistentia ad pondus Globi in casu secundo ut 0.003029
ad 121, in quarto ut 0.042875 ad 121, in sexto ut 0.63013 ad 121.

Arcus quem punctum in filo notatum in Casu sexto descripsit, erat 120 - {8
÷ 9-2/3} seu 119-5/29 digitorum. Et propterea cum radius esset 121
digitorum, & longitudo penduli inter punctum suspensionis & centrum Globi
esset 126 digitorum, arcus quem centrum Globi descripsit erat 124-3/31
digitorum. Quoniam corporis oscillantis velocitas maxima ob resistentiam
Aeris non incidit in punctum infimum arcus descripti, sed in medio fere
loco arcus totius versatur: hæc eadem erit circiter ac si Globus descensu
suo toto in Medio non resistente describeret arcus illius partem dimidiam
digitorum 62-3/62; idque in Cycloide, ad quam motum penduli supra
reduximus: & propterea velocitas illa æqualis erit velocitati quam Globus,
perpendiculariter cadendo & casu suo describendo altitudinem arcus illius
Sinui verso æqualem, acquirere posset. Est autem sinus ille versus in
Cycloide ad arcum istum 62-3/62 ut arcus idem ad penduli longitudinem
duplam 252, & propterea æqualis digitis 15,278. Quare velocitas ea ipsa est
quam corpus cadendo & casu suo spatium 15,278 digitorum describendo
acquirere posset. Unde cum corpus tempore minuti unius secundi cadendo (uti
per experimenta pendulorum determinavit _Hugenius_) describat pedes
_Parisienses_ 15-1/12, id est pedes _Anglicos_ 16-11/24 seu digitos 197½, &
tempora sint in dimidiata ratione spatiorum; Globus tempore minut.
16^{tert.} 38^{quart.} cadendo describet 15,278 digitos, & velocitatem suam
prædictam acquiret; & propterea cum eadem velocitate uniformiter continuata
describet eodem tempore longitudinem duplam 30,556 digitorum. Tali igitur
cum velocitate Globus resistentiam patitur, quæ sit ad ejus pondus ut
0,63013 ad 121, vel (si resistentiæ pars illa sola spectetur quæ est in
velocitatis ratione duplicata) ut 0,58172 ad 121.

Experimento autem Hydrostatico inveni quod pondus Globi hujus lignei esset
ad pondus Globi aquei magnitudinis ejusdem, ut 55 ad 97: & propterea cum
121 sit ad 213,4 in eadem ratione, erit resistentia Globi aquei præfata cum
velocitate progredientis ad ipsius pondus ut 0,58172 ad 213,4, id est ut 1
ad 366-5/6. Unde cum pondus Globi aquei, quo tempore Globus cum velocitate
uniformiter continuata describat longitudinem pedum 30,556, velocitatem
illam omnem in Globo cadente generare posset; manifestum est quod vis
resistentiæ uniformiter continuata tollere posset velocitatem minorem in
ratione 1 ad 366-5/6, hoc est velocitatis totius partem 1 ÷ 366-5/6. Et
propterea quo tempore Globus, ea cum velocitate uniformiter continuata,
longitudinem semidiametri suæ seu digitorum 3-7/16 describere posset, eodem
amitteret motus sui partem 1/3262.

Numerabam etiam oscillationes quibus pendulum quartam motus sui partem
amisit. In sequente Tabula numeri supremi denotant longitudinem arcus
descensu primo descripti, in digitis & partibus digiti expressam: numeri
medii significant longitudinem arcus ascensu ultimo descripti; & loco
infimo stant numeri oscillationum. Experimentum descripsi tanquam magis
accuratum quam cum motus pars tantum octava amitteretur. Calculum tentet
qui volet.

  Descensus Primus    2     4    8       16       32      64
  Ascensus ultimus  1-1/2   3    6       12       24      48
  Num. Oscillat.     374   272 162-1/2  83-1/3  41-2/3  22-2/3

Postea Globum plumbeum, diametro digitorum duorum & pondere unciarum
Romanarum 26¼ suspendi filo eodem, sic ut inter centrum Globi & punctum
suspensionis intervallum esset pedum 10½, & numerabam oscillationes quibus
data motus pars amitteretur. Tabularum subsequentium prior exhibet numerum
oscillationum quibus pars octava motus totius cessavit; secunda numerum
oscillationum quibus ejusdem pars quarta amissa fuit.

  Descensus primus     1      2     4     8    16     32    64
  Ascensus ultimus   7/8    7/4  3-1/2    7    14     28    56
  Numerus Oscillat.  226    228   193   140  90-1/2   53    30

  Descensus primus     1      2     4     8    16     32    64
  Ascensus ultimus   3/4   1-1/2    3     6    12     24    48
  Numerus Oscillat.  510    518   420   318   204    121    70

In Tabula priore seligendo ex observationibus tertiam, quintam & septimam,
& exponendo velocitates maximas in his observationibus particulatim per
numeros 1, 4, 16 respective, & generaliter per quantitatem V ut supra:
emerget in observatione prima 2/193 = A + B + C, in secunda 2 ÷ 90½ = 4A +
8B + 16C, in tertia 8/30 æqu. 16A + 64B + 256C. Quæ æquationes per
reductiones superius expositas dant, A = 0,000145, B = 0,000247 & C =
0,0009. Et inde prodit resistentia Globi cum velocitate V moventis, in ea
ratione ad pondus suum unciarum 26¼, quam habet 0,000923V + 0,000172V^{3/2}
+ 0,000675V^2 ad Penduli longitudinem 121 digitorum. Et si spectemus eam
solummodo resistentiæ partem quæ est in duplicata ratione velocitatis, hæc
erit ad pondus Globi ut 0,000675V^2 ad 121 digitos. Erat autem hæc pars
resistentiæ in experimento primo ad pondus Globi lignei unciarum 57-7/22 ut
0,00227235V^2 ad 121: & inde fit resistentia Globi lignei ad resistentiam
Globi plumbei (paribus eorum velocitatibus) ut 57-7/22 in 0,00227235 ad 26¼
in 0,000675, id est ut 130309 ad 17719 seu 7-1/3 ad 1. Diametri Globorum
duorum erant 6-7/8 & 2 digitorum, & harum quadrata sunt ad invicem ut 47¼ &
4, seu 11-13/16 & 1 quamproxime. Ergo resistentiæ Globorum æquivelocium
erant in minore ratione quam duplicata diametrorum. At nondum
consideravimus resistentiam fili, quæ certe permagna erat, ac de pendulorum
inventa resistentia subduci debet. Hanc accurate definire non potui, sed
majorem tamen inveni quam partem tertiam resistentiæ totius minoris
penduli, & inde didici quod resistentiæ Globorum, dempta fili resistentia,
sunt quamproxime in dimidiata ratione diametrorum. Nam ratio 7-1/3 - 1/3 ad
1 - 1/3, id est 7 ad 2/3 seu 10½ ad 1, non longe abest a diametrorum
ratione duplicata 11-13/16 ad 1.

Cum resistentia fili in Globis majoribus minoris sit momenti, tentavi etiam
experimentum in Globo cujus diameter erat 18¼ digitorum. Longitudo penduli
inter punctum suspensionis & centrum oscillationis erat digitorum 122¾
inter punctum suspensionis & nodum in filo 109½ dig. Arcus primo penduli
descensu a nodo descriptus, 32 dig. arcus ascensu ultimo post oscillationes
quinque ab eodem nodo descriptus, 28 dig. Summa arcuum seu arcus totus
oscillatione mediocri descriptus, 30 dig. Differentia arcuum 4 dig. Ejus
pars decima seu differentia inter descensum & ascensum in oscillatione
mediocri 2/5 dig. Ut radius 109½ ad radium 122½, ita arcus totus 60 dig.
oscillatione mediocri a Nodo descriptus, ad arcum totum 67-1/8,
oscillatione mediocri a centro Globi descriptum: & ita differentia 2/5 ad
differentiam novam 0,4475. Si longitudo penduli, manente longitudine arcus
descripti, augeretur in ratione 126 ad 122½, velocitas ejus diminueretur in
ratione illa dimidiata; & arcuum descensu & subsequente ascensu
descriptorum differentia 0,4475 diminueretur in ratione velocitatis,
adeoque evaderet 0,4412. Deinde si arcus descriptus augeretur in ratione
67-1/8 ad 124-3/31, differentia ista 0,4412 augeretur in duplicata illa
ratione, adeoque, evaderet 1,509. Hæc ita se haberent, ex hypothesi quod
resistentia Penduli esset in duplicata ratione velocitatis. Ergo si
pendulum describeret arcum totum 124-3/31 digitorum, & longitudo ejus inter
punctum suspensionis & centrum oscillationis esset 126 digitorum,
differentia arcuum descensu & subsequente ascensu descriptorum foret 1,509
dig. Et hæc differentia ducta in pondus Globi penduli, quod erat unciarum
208, producit 313,9. Rursus ubi pendulum superius ex Globo ligneo
constructum, centro oscillationis, quod a puncto suspensionis digitos 126
distabat, describebat arcum totum 124-3/31 digitorum, differentia arcuum
descensu & ascensu descriptorum fuit 126/121 in 8 ÷ 9-2/3 seu 25/29, quæ
ducta in pondus Globi, quod erat unciarum 57-7/22, producit 48,55. Duxi
autem differentias hasce in pondera Globorum ut invenirem eorum
resistentias. Nam differentiæ oriuntur ex resistentiis, suntque ut
resistentiæ directe & pondera inverse. Sunt igitur resistentiæ ut numeri
313,9 & 48,55. Pars autem resistentiæ Globi minoris, quæ est in duplicata
ratione velocitatis, erat ad resistentiam totam ut 0,58172 ad 0,63013, id
est ut 44,4 ad 48,55; & pars resistentiæ Globi majoris propemodum æquatur
ipsius resistentiæ toti, adeoque partes illæ sunt ut 313,9 & 44,4
quamproxime, id est ut 7,07 ad 1. Sunt autem Globorum diametri 10¾ & 6-7/8;
& harum quadrata 351½ & 47-17/64 sunt ut 7,438 & 1, id est ut Globorum
resistentiæ 7,07 & 1 quamproxime. Differentia rationum haud major est quam
quæ ex fili resistentia oriri potuit. Igitur resistentiarum partes illæ quæ
sunt (paribus Globis) ut quadrata velocitatum, sunt etiam (paribus
velocitatibus) ut quadrata diametrorum Globorum; & propterea (per
Corollaria Prop. XL. Libri hujus) resistentia quam Globi majores &
velociores in aere movendo sentiunt, haud multum per infinitam aeris
divisionem & subtiliationem diminui potest, proindeque Media omnia in
quibus corpora multo minus resistuntur, sunt aere rariora.

Cæterum Globorum, quibus usus sum in his experimentis, maximus non erat
perfecte Sphæricus, & propterea in calculo hic allato minutias quasdam
brevitatis gratia neglexi; de calculo accurato in experimento non satis
accurato minime sollicitus. Optarim itaque (cum demonstratio vacui ex his
dependeat) ut experimenta cum Globis & pluribus & majoribus & magis
accuratis tentarentur. Si Globi sumantur in proportione Geometrica, puta
quorum diametri sint digitorum 4, 8, 16, 32; ex progressione experimentorum
colligetur quid in Globis adhuc majoribus evenire debeat.

Jam vero conferendo resistentias diversorum fluidorum inter se tentavi
sequentia. Arcam ligneam paravi longitudine pedum quatuor, latitudine &
altitudine pedis unius. Hanc operculo nudatam implevi aqua fontana, fecique
ut immersa pendula in medio aquæ oscillando moverentur. Globus autem
plumbeus pondere 166-1/6 unciarum, diametro 3-5/8 digitorum, movebatur ut
in Tabula sequente descripsimus, existente videlicet longitudine penduli a
puncto suspensionis ad punctum quoddam in filo notatum 126 digitorum, ad
oscillationis autem centrum 134-1/8 digitorum.

  Arcus descensu primo a
  puncto in filo notato    64  32   16    8    4    2    1    1/2    1/4
  descriptus digitorum.

  Arcus ascensu ultimo     48  24   12    6    3  1-1/2 3/4   3/8    3/16
  descriptus digitorum.

  Arcuum differentia motui
  amisso proportionalis,   16   8    4    2    1   1/2  1/4   1/8    1/16
  digitorum.

  Numerus oscillationum            29/60 1-1/5 3   7  11-1/4 12-2/3 13-1/3
  in aqua.

  Numerus oscillationum  85-1/2     287  535
  in aere.

In experimento columnæ quartæ, motus æquales oscillationibus 535 in aere, &
1-1/5 in aqua amissi sunt. Erant autem oscillationes in aere paulo
celeriores quam in aqua, nimirum in ratione 44 ad 41. Nam 14-2/3
oscillationes in aqua, & 13-2/3 in aere simul peragebantur. Et propterea si
oscillationes in aqua in ea ratione accelerarentur ut motus pendulorum in
Medio utroque fierent æquiveloces, numerus oscillationum 1-1/5 in aqua,
quibus motus idem ac prius amitteretur (ob resistentiam auctam in ratione
illa duplicata & tempus diminutum in ratione eadem simplici) diminueretur
in eadem illa ratione 44 ad 41, adeoque evaderet 1-1/5 in 41/44 seu
123/110. Paribus igitur Pendulorum velocitatibus motus æquales in aere
oscillationibus 535 & in aqua oscillationibus 123/110 amissi sunt; ideoque
resistentia penduli in aqua est ad ejus resistentiam in aere ut 535 ad
123/110. Hæc est proportio resistentiarum totarum in Casu columnæ quartæ.

Designet jam AV + CV^2 resistentiam Globi in aere cum velocitate V
moventis, & cum velocitas maxima, in Casu columnæ, quartæ sit ad
velocitatem maximam in casu columnæ primæ ut 1 ad 8, & resistentia in Casu
columnæ quartæ ad resistentiam in Casu columnæ primæ in ratione arcuum
differentiæ in his casibus, ad numeros oscillationum applicatæ, id est ut
2/535 ad 16 ÷ 85½ seu ut 85½ ad 4280: scribamus in his Casibus 1 & 8 pro
velocitatibus, atque 85½ & 4280 pro resistentiis, & fiet A + C = 85½ & 8A +
64C = 4280 seu A + 8C = 535, indeque per reductionem æquationum proveniet
7C = 449½ & C = 64-3/14 & A = 21-2/7; atque adeo resistentia ut 21-2/7V +
64-3/14V^2 quamproxime. Quare in Casu columnæ quartæ ubi velocitas erat 1,
resistentia tota est ad partem suam quadrato velocitatis proportionalem, ut
21-2/7 + 64-3/14 seu 85½, ad 64-3/14; & idcirco resistentia penduli in aqua
est ad resistentiæ partem illam in aere quæ quadrato velocitatis
proportionalis est, quæque sola in motibus velocioribus consideranda venit,
ut 85½ ad 64-3/14 & 535 ad 123/110 conjunctim, id est ut 637 ad 1. Si
penduli in aqua oscillantis filum totum fuisset immersum, resistentia ejus
fuisset adhuc major; adeo ut penduli in aere oscillantis resistentia illa
quæ velocitatis quadrato proportionalis est, quæque sola in corporibus
velocioribus consideranda venit, sit ad resistentiam ejusdem penduli
totius, eadem cum velocitate in aqua oscillantis, ut 800 vel 900 ad 1
circiter, hoc est ut densitas aquæ ad densitatem aeris quamproxime.

In hoc calculo sumi quoque deberet pars illa resistentiæ penduli in aqua,
quæ esset ut quadratum velocitatis, sed (quod mirum forte videatur)
resistentia in aqua augebatur in ratione velocitatis plusquam duplicata.
Ejus rei causam investigando, in hanc incidi, quod Arca nimis angusta esset
pro magnitudine Globi penduli, & motum aquæ cedentis præ angustia sua nimis
impediebat. Nam si Globus pendulus, cujus diameter erat digiti unius,
immergeretur, resistentia augebatur in duplicata ratione velocitatis
quamproxime. Id tentabam construendo pendulum ex Globis duobus, quorum
inferior & minor oscillaretur in aqua, superior & major proxime supra aquam
filo affixus esset, & in Aere oscillando, adjuvaret motum penduli eumque
diuturniorem redderet. Experimenta autem hoc modo instituta se habebant ut
in Tabula sequente describitur.

  Arcus descensu primo descriptus  16     8      4       2    1  1/2 1/4
  Arcus ascensu ultimo descriptus. 12     6      3     1-1/2 3/4 3/8 3/16
  Arcuum diff. motui amisso
                    proportionalis  4     2      1       1/2 1/4 1/8 1/16
  Numerus Oscillationum           3-3/8 6-1/2 12-1/12 21-1/5 34  53 62-1/5

Resistentia hic nunquam augetur in ratione velocitatis plusquam duplicata.
Et idem in pendulo majore evenire verisimile est, si modo Arca augeatur in
ratione penduli. Debebit tamen resistentia tam in aere quam in aqua, si
velocitas per gradus in infinitum augeatur, augeri tandem in ratione paulo
plusquam duplicata, propterea quod in experimentis hic descriptis
resistentia minor est quam pro ratione de corporibus velocissimis in Libri
hujus Prop. xxxvi & xxxviii. demonstrata. Nam corpora longe velocissima
spatium a tergo relinquent vacuum, ideoque resistentia quam sentiunt in
partibus præcedentibus, nullatenus minuetur per pressionem Medii in
partibus posticis.

Conferendo resistentias Mediorum inter se, effeci etiam ut pendula ferrea
oscillarentur in argento vivo. Longitudo fili ferrei erat pedum quasi
trium, & diameter Globi penduli quasi tertia pars digiti. Ad filum autem
proxime supra Mercurium affixus erat Globus alius plumbeus satis magnus ad
motum penduli diutius continuandum. Tum vasculum, quod capiebat quasi
libras tres argenti vivi, implebam vicibus alternis argento vivo & aqua
communi, ut pendulo in Fluido utroque successive oscillante invenirem
proportionem resistentiarum: & prodiit resistentia argenti vivi ad
resistentiam aquæ ut 13 vel 14 ad 1 circiter: id est ut densitas argenti
vivi ad densitatem aquæ. Ubi Globum pendulum paulo majorem adhibebam, puta
cujus diameter esset quasi ½ vel 2/3 partes digiti, prodibat resistentia
argenti vivi in ea ratione ad resistentiam aquæ quam habet numerus 12 vel
10 ad 1 circiter. Sed experimento priori magis fidendum est, propterea quod
in his ultimis vas nimis angustum fuit pro magnitudine Globi immersi.
Ampliato Globo, deberet etiam vas ampliari. Constitueram quidem hujusmodi
experimenta in vasis majoribus & in liquoribus tum Metallorum fusorum, tum
aliis quibusdam tam calidis quam frigidis repetere: sed omnia experiri non
vacat, & ex jam descriptis satis liquet resistentiam corporum celeriter
motorum densitati Fluidorum in quibus moventur proportionalem esse
quamproxime. Non dico accurate. Nam Fluida tenaciora pari densitate
proculdubio magis resistunt quam liquidiora, ut oleum frigidum quam
calidum, calidum quam aqua pluvialis, aqua quam Spiritus vini. Verum in
liquoribus qui ad sensum satis fluidi sunt, ut in Aere, in aqua seu dulci
seu falsa, in Spiritibus vini, Terebinthi & Salium, in Oleo a foecibus per
destillationem liberato & calefacto, Oleoque Vitrioli & Mercurio, ac
Metallis liquefactis, & siqui sint alii, qui tam Fluidi sunt ut in vasis
agitati motum impressum diutius conservent, effusique liberrime in guttas
decurrendo resolvantur, nullus dubito quin regula allata satis accurate
obtineat: præsertim si experimenta in corporibus pendulis & majoribus &
velocius motis instituantur.

Quare cum Globus aqueus in aere movendo resistentiam patiatur qua motus sui
pars 1/3261, interea dum longitudinem semidiametri suæ describat (ut jam
ante ostensum est) tollatur, sitque densitas aeris ad densitatem aquæ ut
800 vel 850 ad 1 circiter, consequens est ut hæc Regula generaliter
obtineat. Si corpus quodlibet Sphæricum in Medio quocunque satis Fluido
moveatur, & spectetur resistentiæ pars illa sola quæ est in duplicata
ratione velocitatis, hæc pars erit ad vim quæ totum corporis motum, interea
dum corpus idem longitudinem duarum ipsius semidiametrorum motu illo
uniformiter continuato describat, vel tollere posset vel eundem generare,
ut densitas Medii ad densitatem corporis quamproxime. Igitur resistentia
quasi triplo major est quam pro lege in Corollario primo Propositionis
xxxviii. allata; & propterea partes quasi duæ tertiæ motus illius omnis
quem Globi partes anticæ movendo imprimunt in Medium, restituuntur in Globi
partes posticas a Medio in orbem redeunte, inque spatium irruente quod
Globus alias vacuum post se relinqueret. Unde si velocitas Globi eousque
augeatur ut Medium non posset adeo celeriter in spatium illud irruere, quin
aliquid vacui a tergo Globi semper relinquatur, resistentia tandem evadet
quasi triplo major quam pro Regula generali novissime posita.

Hactenus experimentis usi sumus oscillantium pendulorum, eo quod eorum
motus facilius & accuratius observari & mensurari possint. Motus autem
pendulorum in gyrum actorum & in orbem redeundo circulos describentium,
propterea quod sint uniformes & eo nomine ad investigandam resistentiam
datæ velocitati competentem longe aptiores videantur, in consilium etiam
adhibui. Faciendo enim ut pendulum circulariter latum duodecies
revolveretur, notavi magnitudines circulorum duorum, quos prima & ultima
revolutione descripsit. Et inde collegi velocitates corporis sub initio &
fine. Tum dicendo quod corpus, velocitate mediocri describendo circulos
duodecim mediocres, amitteret velocitatum illarum differentiam, collegi
resistentiam qua differentia illa eo omni corporis per circulos duodecim
itinere amitti posset; & resistentia inventa, quanquam hujus generis
experimenta minus accurate tentare licuit, probe tamen cum præcedentibus
congruebat.

Denique cum receptissima Philosophorum ætatis hujus opinio sit, Medium
quoddam æthereum & longe subtilissimum extare, quod omnes omnium corporum
poros & meatus liberrime permeet; a tali autem Medio per corporum poros
fluente resistentia oriri debeat: ut tentarem an resistentia, quam in motis
corporibus experimur, tota sit in eorum externa superficie, an vero partes
etiam internæ in superficiebus propriis resistentiam notabilem sentiant,
excogitavi experimentum tale. Filo pedum undecim longitudinis, ab unco
chalybeo satis firmo, mediante annulo chalybeo, suspendebam pyxidem
abiegnam rotundam, ad constituendum pendulum longitudinis prædictæ. Uncus
sursum præacutus erat acie concava, ut annulus arcu suo superiore aciei
innixus liberrime moveretur. Arcui autem inferiori annectebatur filum.
Pendulum ita constitutum deducebam a perpendiculo ad distantiam quasi pedum
sex, idque secundum planum aciei unci perpendiculare, ne annulus,
oscillante Pendulo, supra aciem unci ultro citroque laberetur. Nam punctum
suspensionis in quo annulus uncum tangit, immotum manere debet. Locum
igitur accurate notabam, ad quem deduxeram pendulum, dein pendulo demisso
notabam alia tria loca ad quæ redibat in fine oscillationis primæ, secundæ
ac tertiæ. Hoc repetebam sæpius, ut loca illa quam potui accuratissime
invenirem. Tum pyxidem plumbo & gravioribus, quæ ad manus erant, metallis
implebam. Sed prius ponderabam pyxidem vacuam, una cum parte fili quæ
circum pyxidem volvebatur ac dimidio partis reliquæ quæ inter uncum &
pyxidem pendulam tendebatur. (Nam filum tensum dimidio ponderis sui
pendulum a perpendiculo digressum semper urget.) Huic ponderi addebam
pondus aeris quam pyxis capiebat. Et pondus totum erat quasi pars
septuagesima octava pyxidis metallorum plenæ. Tum quoniam pyxis Metallorum
plena, pondere suo tendendo filum, augebat longitudinem penduli,
contrahebam filum ut penduli jam oscillantis eadem esset longitudo ac
prius. Dein pendulo ad locum primo notatum distracto ac dimisso, numerabam
oscillationes quasi septuaginta & septem, donec pyxis ad locum secundo
notatum rediret, totidemque subinde donec pyxis ad locum tertio notatum
rediret, atque rursus totidem donec pyxis reditu suo attingeret locum
quartum. Unde concludo quod resistentia tota pyxidis plenæ non majorem
habebat proportionem ad resistentiam pyxidis vacuæ quam 78 ad 77. Nam si
æquales essent ambarum resistentiæ, pyxis plena ob vim suam insitam
septuagies & octies majorem vi insita pyxidis vacui, motum suum
oscillatorium tanto diutius conservare deberet, atque adeo completis semper
oscillationibus 78 ad loca illa notata redire. Rediit autem ad eadem
completis oscillationibus 77.

Designet igitur A resistentiam pyxidis in ipsius superficie externa, & B
resistentiam pyxidis vacuæ in partibus internis; & si resistentiæ corporum
æquivelocium in partibus internis sint ut materia, seu numerus particularum
quæ resistuntur: erit 78B resistentia pyxidis plenæ in ipsius partibus
internis: adeoque pyxidis vacuæ resistentia tota A + B erit ad pyxidis
plenæ resistentiam totam A + 78B ut 77 ad 78, & divisim A + B ad 77B ut 77,
ad 1, indeque A + B ad B ut 77 × 77 ad 1, & divisim A ad B ut 5928 ad 1.
Est igitur resistentia pyxidis vacuæ in partibus internis quinquies millies
minor quam ejusdem resistentia in externa superficie, & amplius. Sic
disputamus ex hypothesi quod major illa resistentia pyxidis plenæ oriatur
ab actione Fluidi alicujus subtilis in Metallum inclusum. Ac causam longe
aliam esse opinor. Nam tempora oscillationum pyxidis plenæ minora sunt quam
tempora oscillationum pyxidis vacuæ, & propterea resistentia pyxidis plenæ
in externa superficie major est, pro ipsius velocitate & longitudine spatii
oscillando descripti, quam ea pyxidis vacuæ. Quod cum ita sit, resistentia
pyxidum in partibus internis aut nulla erit aut plane insensibilis.

Hoc experimentum recitavi memoriter. Nam charta, in qua illud aliquando
descripseram, intercidit. Unde fractas quasdam numerorum partes, quæ
memoria exciderunt, omittere compulsus sum. Nam omnia denuo tentare non
vacat. Prima vice, cum unco infirmo usus essem, pyxis plena citius
retardabatur. Causam quærendo, reperi quod uncus infirmus cedebat ponderi
pyxidis, & ejus oscillationibus obsequendo in partes omnes flectebatur.
Parabam igitur uncum firmum, ut punctum suspensionis immotum maneret, &
tunc omnia ita evenerunt uti supra descripsimus.

Eadem methodo qua invenimus resistentiam corporum Sphæricorum in Aqua &
argento vivo, inveniri potest resistentia corporum figurarum aliarum; & sic
Navium figuræ variæ in Typis exiguis constructæ inter se conferri, ut
quænam ad navigandum aptissimæ sint, sumptibus parvis tentetur.

       *       *       *       *       *


SECT. VIII.

_De Motu per Fluida propagato._

Prop. XLI. Theor. XXXI.

    _Pressio non propagatur per Fluidum secundum lineas rectas, nisi ubi
    particulæ Fluidi in directum jacent._

[Illustration]

Si jaceant particulæ a, b, c, d, e in linea recta, potest quidem pressio
directe propagari ab a ad e; at particula e urgebit particulas oblique
positas f & g oblique, & particulæ illæ f & g non sustinebunt pressionem
illatam, nisi fulciantur a particulis ulterioribus h & k; quatenus autem
fulciuntur, premunt particulas fulcientes; & hæ non sustinebunt pressionem
nisi fulciantur ab ulterioribus l & m easque premant, & sic deinceps in
infinitum. Pressio igitur, quam primum propagatur ad particulas quæ non in
directum jacent, divaricare incipiet & oblique propagabitur in infinitum; &
postquam incipit oblique propagari, si inciderit in particulas ulteriores,
quæ non in directum jacent, iterum divaricabit; idque toties, quoties in
particulas non accurate in directum jacentes inciderit.   _Q. E. D._

_Corol._ Si pressionis a dato puncto per Fluidum propagatæ pars aliqua
obstaculo intercipiatur, pars reliqua quæ non intercipitur divaricabit in
spatia pone obstaculum. Id quod sic etiam demonstrari potest. A puncto A
propagetur pressio quaquaversum, idque si fieri potest secundum lineas
rectas, & obstaculo NBCK perforato in BC, intercipiatur ea omnis, præter
partem Coniformem APQ, quæ per foramen circulare BC transit. Planis
transversis de, fg, hi distinguatur conus APQ in frusta & interea dum conus
ABC, pressionem propagando, urget frustum conicum ulterius degf in
superficie de, & hoc frustum urget frustum proximum fgih in superficie fg,
& frustum illud urget frustum tertium, & sic deinceps in infinitum;
manifestum est (per motus Legem tertiam) quod frustum primum defg,
reactione frusti secundi fghi, tantum urgebitur & premetur in superficie
fg, quantum urget & premit frustum illud secundum. Frustum igitur degf
inter Conum Ade & frustum fhig comprimitur utrinque, & propterea (per
Corol. 6. Prop. XIX.) figuram suam servare nequit, nisi vi eadem
comprimatur undique. Eodem igitur impetu quo premitur in superficiebus de,
fg conabitur cedere ad latera df, eg; ibique (cum rigidum non sit, sed
omnimodo Fluidum) excurret ac dilatabitur, nisi Fluidum ambiens adsit, quo
conatus iste cohibeatur. Proinde conatu excurrendi premet tam Fluidum
ambiens ad latera df, eg quam frustum fghi eodem impetu; & propterea
pressio non minus propagabitur a lateribus df, eg in spatia NO, KL hinc
inde, quam propagatur a superficie fg versus PQ.   _Q. E. D._

[Illustration]

Prop. XLII. Theor. XXXII.

    _Motus omnis per Fluidum propagatus divergit a recto tramite in spatia
    immota._

_Cas. 1._ Propagetur motus a puncto A per foramen BC, pergatque (si fieri
potest) in spatio conico BCQP, secundum lineas rectas divergentes a puncto
C. Et ponamus primo quod motus iste sit undarum in superficie stagnantis
aquæ. Sintque de, fg, hi, kl, &c. undarum singularum partes altissimæ,
vallibus totidem intermediis ab invicem distinctæ. Igitur quoniam aqua in
undarum jugis altior est quam in Fluidi partibus immotis LK, NO, defluet
eadem de jugorum terminis e, g, i, l, &c. d, f, h, k, &c. hinc inde versus
KL & NO: & quoniam in undarum vallibus depressior est quam in Fluidi
partibus immotis KL, NO; defluet eadem de partibus illis immotis in undarum
valles. Defluxu priore undarum juga, posteriore valles hinc inde dilatantur
& propagantur versus KL & NO. Et quoniam motus undarum ab A versus PQ fit
per continuum defluxum jugorum in valles proximos, adeoque celerior non est
quam pro celeritate descensus; & descensus aquæ hinc inde versus KL & NO
eadem velocitate peragi debet; propagabitur dilatatio undarum hinc inde
versus KL & NO, eadem velocitate qua undæ ipsæ ab A versus PQ recta
progrediuntur. Proindeque spatium totum hinc inde versus KL & NO ab undis
dilatatis rfgr, shis, tklt, vmnv, &c. occupabitur.   _Q. E. D._   Hæc ita
se habere quilibet in aqua stagnante experiri potest.

_Cas. 2._ Ponamus jam quod de, fg, hi, kl, mn designent pulsus a puncto A
per Medium Elasticum successive propagatos. Pulsus propagari concipe per
successivas condensationes & rarefactiones Medii, sic ut pulsus cujusque
pars densissima Sphæricam occupet superficiem circa centrum A descriptam, &
inter pulsus successivos æqualia intercedant intervalla. Designent autem
lineæ de, fg, hi, kl, &c. densissimas pulsuum partes per foramen BC
propagatas. Et quoniam Medium ibi densius est quam in spatiis hinc inde
versus KL & NO, dilatabit sese tam versus spatia illa KL, NO utrinque sita,
quam versus pulsuum rariora intervalla; eoq; pacto rarius semper evadens e
regione intervallorum ac densius e regione pulsuum, participabit eorundem
motum. Et quoniam pulsuum progressivus motus oritur a perpetua relaxatione
partium densiorum versus antecedentia intervalla rariora; & pulsus eadem
celeritate sese in Medii partes quiescentes KL, NO hinc inde relaxare
debent; pulsus illi eadem celeritate sese dilatabunt undique in spatia
immota KL, NO, qua propagantur directe a centro A; adeoque spatium totum
KLON occupabunt.   _Q. E. D._   Hoc experimur in sonis, qui vel domo
interposita audiuntur, vel in cubiculum per fenestram admissi sese in omnes
cubiculi partes dilatant, inque angulis omnibus audiuntur, non reflexi a
parietibus oppositis sed a fenestra directe propagati.

_Cas. 3._ Ponamus denique quod motus cujuscunque generis propagetur ab A
per foramen BC: & quoniam propagatio ista non fit nisi quatenus partes
Medii centro A propiores urgent commoventque partes ulteriores; & partes
quæ urgentur Fluidæ sunt, ideoque recedunt quaquaversum in regiones ubi
minus premuntur: recedent eædem versus Medii partes omnes quiescentes, tam
laterales KL & NO, quam anteriores PQ, eoque pacto motus omnis, quam primum
per foramen BC transiit, dilatari incipiet, & abinde tanquam a principio &
centro in partes omnes directe propagari.   _Q. E. D._

Prop. XLIII. Theor. XXXIII.

    _Corpus omne tremulum in Medio Elastico propagabit motum pulsuum
    undique in directum; in Medio vero non Elastico motum circularem
    excitabit._

_Cas. 1._ Nam partes corporis tremuli vicibus alternis eundo & redeundo,
itu suo urgebunt & propellent partes Medii sibi proximas, & urgendo
compriment easdem & condensabunt; dein reditu suo sinent partes compressas
recedere & sese expandere. Igitur partes Medii corpori tremulo proximæ
ibunt & redibunt per vices, ad instar partium corporis illius tremuli: &
qua ratione partes corporis hujus agitabant hasce Medii partes, hæ
similibus tremoribus agitatæ agitabunt partes sibi proximas, eæque
similiter agitatæ agitabunt ulteriores, & sic deinceps in infinitum. Et
quemadmodum Medii partes primæ eundo condensantur & redeundo relaxantur,
sic partes reliquæ quoties eunt condensabuntur, & quoties redeunt sese
expandent. Et propterea non omnes ibunt & simul redibunt (sic enim
determinatas ab invicem distantias servando non rarefierent &
condensarentur per vices) sed accedendo ad invicem ubi condensantur, &
recedendo ubi rarefiunt, aliquæ earum ibunt dum aliæ redeunt; idque vicibus
alternis in infinitum. Partes autem euntes & eundo condensatæ, ob motum
suum progressivum quo feriunt obstacula, sunt pulsus; & propterea pulsus
successivi a corpore omni tremulo in directum propagabuntur; idque
æqualibus circiter ab invicem distantiis, ob æqualia temporis intervalla,
quibus corpus tremoribus suis singulis singulos pulsus excitat.
_Q. E. D._   Et quanquam corporis tremuli partes eant & redeant secundum
plagam aliquam certam & determinatam, tamen pulsus inde per Medium
propagati sese dilatabunt ad latera, per Propositionem præcedentem; & a
corpore illo tremulo tanquam centrocommuni, secundum superficies propemodum
Sphæricas & concentricas, undique propagabuntur. Cujus rei exemplum aliquod
habemus in Undis, quæ si digito tremulo excitentur, non solum pergent hinc
inde secundum plagam motus digiti, sed, in modum circulorum concentricorum,
digitum statim cingent & undique propagabuntur. Nam gravitas undarum
supplet locum vis Elasticæ.

Quod si Medium non sit Elasticum: quoniam ejus partes a corporis tremuli
partibus vibratis pressæ condensari nequeunt, propagabitur motus in
instanti ad partes ubi Medium facillime cedit, hoc est ad partes quæ corpus
tremulum alioqui vacuas a tergo relinqueret. Idem est casus cum casu
corporis in Medio quocunque projecti. Medium cedendo projectilibus, non
recedit in infinitum, sed in circulum eundo pergit ad spatia quæ corpus
relinquit a tergo. Igitur quoties corpus tremulum pergit in partem
quamcunque, Medium cedendo perget per circulum ad partes quas corpus
relinquit, & quoties corpus regreditur ad locum priorem, Medium inde
repelletur & ad locum suum priorem redibit. Et quamvis corpus tremulum non
sit firmum, sed modis omnibus flexile, si tamen magnitudine datum maneat,
quoniam tremoribus suis nequit Medium ubivis urgere, quin alibi eidem simul
cedat; efficiet ut Medium, recedendo a partibus ubi premitur, pergat semper
in Orbem ad partes quæ eidem cedunt.

_Corol._ Hallucinantur igitur qui credunt agitationem partium flammæ ad
pressionem per Medium ambiens secundum lineas rectas propagandam conducere.
Debebit ejusmodi pressio non ab agitatione sola partium flammæ sed a totius
dilatatione derivari.

Prop. XLIV. Theor. XXXIV.

    _Si Aqua in canalis cruribus erectis KL, MN vicibus alternis ascendat &
    descendat; construatur autem Pendulum cujus longitudo inter punctum
    suspensionis & centrum oscillationis æquetur semissi longitudinis aquæ
    in Canali: dico quod aqua ascendet & descendet iisdem temporibus quibus
    pendulum oscillatur._

[Illustration]

Longitudinem aquæ mensuro secundum axes canalis & crurum, eandem summæ
horum axium æquando. Designent igitur AB, CD mediocrem altitudinem aquæ in
crure utroque; & ubi aqua in crure KL ascendit ad altitudinem EF,
descenderit aqua in crure MN ad altitudinem GH. Sit autem P corpus
pendulum, VP filum, V punctum suspensionis, SPQR Cyclois quam Pendulum
describat, P ejus punctum infimum, PQ arcus altitudini AE æqualis. Vis, qua
motus aquæ alternis vicibus acceleratur & retardatur, est excessus ponderis
aquæ in alterutro crure supra pondus in altero, ideoque ubi aqua in crure
KL ascendit ad EF, & in crure altero descendit ad GH, vis illa est pondus
duplicatum aquæ EABF, & propterea est ad pondus aquæ totius ut AE seu PQ ad
VP seu PR. Vis etiam, qua pondus P in loco quovis Q acceleratur &
retardatur in Cycloide, est ad ejus pondus totum, ut ejus distantia PQ a
loco infimo P, ad Cycloidis longitudinem PR. Quare aquæ & penduli, æqualia
spatia AE, PQ describentium, vires motrices sunt ut pondera movenda;
ideoque vires illæ, si aqua & pendulum in principio, æquali cum velocitate
moveantur; pergent eadem temporibus æqualiter movere, efficientque ut motu
reciproco simul eant & redeant.   _Q. E. D._

_Corol. 1._ Igitur aquæ ascendentis & descendentis, sive motus intensior
sit sive remissior, vices omnes sunt Isochronæ.

_Corol. 2._ Si longitudo aquæ totius in canali sit pedum _Parisiensium_
6-1/9, aqua tempore minuti unius secundi descendet, & tempore minuti
alterius secundi ascendet; & sic deinceps vicibus alternis in infinitum.
Nam pendulum pedum 3-1/18 longitudinis, tempore minuti unius secundi
oscillatur.

_Corol. 3._ Aucta autem vel diminuta longitudine aquæ, augetur vel
diminuitur tempus reciprocationis in longitudinis ratione dimidiata.

Prop. XLV. Theor. XXXV.

    _Undarum velocitas est in dimidiata ratione latitudinum._

Consequitur ex constructione Propositionis sequentis.

Prop. XLVI. Prob. XI.

    _Invenire velocitatem Undarum._

Constituatur Pendulum cujus longitudo inter punctum suspensionis & centrum
oscillationis æquetur latitudini Undarum: & quo tempore pendulum illud
oscillationes singulas peragit, eodem Undæ progrediendo latitudinem suam
propemodum conficient.

Undarum latitudinem voco mensuram transversam quæ vel vallibus imis vel
summis culminibus interjacet. Designet ABCDEF superficiem aquæ stagnantis,
undis successivis ascendentem ac descendentem, sintque A, C, E, &c. undarum
culmina, & B, D, F, &c. valles intermedii. Et quoniam motus undarum fit per
aquæ successivum ascensum & descensum, sic ut ejus partes A, C, E, &c. quæ
nunc infimæ sunt, mox fiant altissimæ; & vis motrix, qua partes altissimæ
descendunt & infimæ ascendunt, est pondus aquæ elevatæ; alternus ille
ascensus & descensus analogus erit motui reciproco aquæ in canali,
easdemque temporis leges observabit: & propterea (per Prop. XLIV.) si
distantiæ inter undarum loca altissima A, C, E, & infima B, D, F æquentur
duplæ penduli longitudini, partes altissimæ A, C, E tempore oscillationis
unius evadent infimæ, & tempore oscillationis alterius denuo ascendent.
Igitur inter transitum Undarum singularum tempus erit oscillationum duarum;
hoc est Unda describet latitudinem suam, quo tempore pendulum illud bis
oscillatur; sed eodem tempore pendulum, cujus longitudo quadrupla est,
adeoque æquat undarum latitudinem, oscillabitur semel.   _Q. E. D._

_Corol. 1._ Igitur Undæ, quæ pedes _Parisienses_ 3-1/18 latæ sunt, tempore
minuti unius secundi progrediendo latitudinem suam conficient; adeoque
tempore minuti unius primi percurrent pedes 183-1/3, & horæ spatio pedes
11000 quamproxime.

_Corol. 2._ Et undarum majorum vel minorum velocitas augebitur vel
diminuetur in dimidiata ratione latitudinis.

Hæc ita se habent ex Hypothesi quod partes aquæ recta ascendunt vel recta
descendunt; sed ascensus & descensus ille verius fit per circulum, ideoque
tempus hac Propositione non nisi quamproxime definitum esse affirmo.

Prop. XLVII. Theor. XXXVI.

    _Pulsuum in Fluido Elastico propagatorum velocitates sunt in ratione
    composita ex dimidiata ratione vis Elasticæ directe & dimidiata ratione
    densitatis inverse; si modo Fluidi vis Elastica ejusdem condensationi
    proportionalis esse supponatur._

_Cas. 1._ Si Media sint homogenea, & pulsuum distantiæ in his Mediis
æquentur inter se, sed motus in uno Medio intensior sit: contractiones &
dilatationes partium analogarum erunt ut iidem motus. Accurata quidem non
est hæc proportio. Verum tamen nisi contractiones & dilatationes sint valde
intensæ, non errabit sensibiliter, ideoque pro Physice accurata haberi
potest. Sunt autem vires Elasticæ motrices ut contractiones & dilatationes;
& velocitates partium æqualium simul genitæ sunt ut vires. Ideoque æquales
& correspondentes pulsuum correspondentium partes, itus & reditus suos per
spatia contractionibus & dilatationibus proportionalia, cum velocitatibus
quæ sunt ut spatia, simul peragent: & propterea pulsus, qui tempore itus &
reditus unius latitudinem suam progrediendo conficiunt, & in loca pulsuum
proxime præcedentium semper succedunt, ob æqualitatem distantiarum, æquali
cum velocitate in Medio utroque progredientur.

_Cas. 2._ Sin pulsuum distantiæ seu longitudines sint majores in uno Medio
quam in altero; ponamus quod partes correspondentes spatia latitudinibus
pulsuum proportionalia singulis vicibus eundo & redeundo describant: &
æquales erunt earum contractiones & dilatationes. Ideoque si Media sint
homogenea, æquales erunt etiam vires illæ Elasticæ motrices quibus
reciproco motu agitantur. Materia autem his viribus movenda, est ut pulsuum
latitudo; & in eadem ratione est spatium per quod singulis vicibus eundo &
redeundo moveri debent. Estque tempus itus & reditus unius in ratione
composita ex ratione dimidiata materiæ & ratione dimidiata spatii, atque
adeo ut spatium. Pulsus autem temporibus itus & reditus unius eundo
latitudines suas conficiunt, hoc est, spatia temporibus proportionalia
percurrunt; & propterea sunt æquiveloces.

_Cas. 3._ In Mediis igitur densitate & vi elastica paribus, pulsus omnes
sunt æquiveloces. Quod si Medii vel densitas vel vis Elastica intendatur,
quoniam vis motrix in ratione vis Elasticæ, & materia movenda in ratione
densitatis augetur; tempus quo motus iidem peragantur ac prius, augebitur
in dimidiata ratione densitatis, ac diminuetur in dimidiata ratione vis
Elasticæ. Et propterea velocitas pulsuum erit in ratione composita ex
ratione dimidiata densitatis Medii inverse & ratione dimidiata vis Elasticæ
directe.   _Q. E. D._

Prop. XLVIII. Theor. XXXVII.

    _Pulsibus per Fluidum propagatis, singulæ Fluidi particulæ, motu
    reciproco brevissimo euntes & redeuntes, accelerantur semper &
    retardantur pro lege oscillantis Penduli._

[Illustration]

[Illustration]

Designent AB, BC, CD, &c. pulsuum successivorum æquales distantias; ABC
plagam motus pulsuum ab A versus B propagati; E, F, G puncta tria Physica
Medii quiescentis, in recta AC ad æquales ab invicem distantias sita; Ee,
Ff, Gg, spatia æqualia perbrevia per quæ puncta illa motu reciproco
singulis vibrationibus eunt & redeunt; [epsilon], [phi], [gamma] loca
quævis intermedia eorundem punctorum; & EF, FG lineolas Physicas seu Medii
partes lineares punctis illis interjectas, & successive translatas in loca
[epsilon][phi], [phi][gamma] & ef, fg. Rectæ Ee æqualis ducatur recta PS.
Bisecetur eadem in O, centroque O & intervallo OP describatur circulus
SIPi. Per hujus circumferentiam totam cum partibus suis exponatur tempus
totum vibrationis unius cum ipsius partibus proportionalibus; sic ut
completo tempore quovis PH vel PHSh, si demittatur ad PS perpendiculum HL
vel hl, & capiatur Ee æqualis PL vel Pl, punctum Physicum E reperiatur in
[epsilon]. Hac lege punctum quodvis E eundo ab E per [epsilon] ad e, & inde
redeundo per [epsilon] ad E iisdem accelerationis ac retardationis
gradibus, vibrationes singulas peraget cum oscillante Pendulo. Probandum
est quod singula Medii puncta Physica tali motu agitari debeant. Fingamus
igitur Medium tali motu a causa quacunque cieri, & videamus quid inde
sequatur.

In circumferentia PHSh capiantur æquales arcus HI, IK vel hi, ik, eam
habentes rationem ad circumferentiam totam quam habent æquales rectæ EF, FG
ad pulsuum intervallum totum BC. Et demissis perpendiculis IM, KN vel im,
kn; quoniam puncta E, F, G motibus similibus successive agitantur, si PH
vel PHSk sit tempus ab initio motus puncti E, erit PI vel PHSi tempus ab
initio motus puncti F, & PK vel PHSh tempus ab initio motus puncti G; &
propterea E[epsilon], F[phi], G[gamma] erunt ipsis PL, PM, PN in itu
punctorum, vel ipsis Pn, Pm, Pl in punctorum reditu, æquales respective.
Unde [epsilon][gamma] in itu punctorum æqualis erit EG - LN, in reditu
autem æqualis EG + ln. Sed [epsilon][gamma] latitudo est seu expansio
partis Medii EG in loco [epsilon][gamma], & propterea expansio partis
illius in itu, est ad ejus expansionem mediocrem ut EG - LN ad EG; in
reditu autem ut EG + ln seu EG + LN ad EG. Quare cum sit LN ad KH ut IM ad
radium OP, & EG ad BC ut HK ad circumferentiam PHShP, & vicissim EG ad HK
ut BC ad circumferentiam PHShP, id est (si circumferentia dicatur Z) ut OP
× BC ÷ Z ad OP, & ex æquo LN ad EG ut IM ad OP × BC ÷ Z: erit expansio
partis EG in loco [epsilon][gamma] ad expansionem mediocrem quam habet in
loco suo primo EG, ut {OP × BC ÷ Z} - IM ad OP × BC ÷ Z in itu, utque {OP ×
BC ÷ Z} + im ad OP × BC ÷ Z in reditu. Unde si OP × BC ÷ Z dicatur V, erit
expansio partis EG, punctive Physici F, ad ejus expansionem mediocrem in
itu, ut V - IM ad V, in reditu ut V + im ad V; & ejusdem vis elastica ad
vim suam elasticam mediocrem in itu, ut 1 ÷ {V - IM} ad 1 ÷ V; in reditu,
ut 1 ÷ {V + im} ad 1 ÷ V. Et eodem argumento vires Elasticæ punctorum
Physicorum E & G in itu, sunt ut 1 ÷ {V - HL} & 1 ÷ {V - KN} ad 1 ÷ V; &
virium differentia ad Medii vim elasticam mediocrem, ut

            HL - KN                  1
  ------------------------------ ad ---.
  VV - V × HL - V × KN + HL × KN     V

Hoc est (si ob brevitatem pulsuum supponamus HK & KN indefinite minores
esse quantitate V) ut {HL - KN} ÷ VV ad 1 ÷ V, sive ut HL - KN ad V. Quare
cum quantitas V detur, differentia virium est ut HL - KN, hoc est (ob
proportionales HL - KN ad HK, & OM ad OI vel OP, datasque HK & OP) ut OM;
id est, si Ff bisecetur in [Omega], ut [Omega][phi]. Et eodem argumento
differentia virium Elasticarum punctorum Physicorum [epsilon] & [gamma], in
reditu lineolæ Physicæ [epsilon][gamma] est ut [Omega][phi]. Sed
differentia illa (id est excessus vis Elasticæ puncti [epsilon] supra vim
elasticam puncti [gamma],) est vis qua interjecta Medii lineola Physica
[epsilon][gamma] acceleratur; & propterea vis acceleratrix lineolæ Physicæ
[epsilon][gamma] est ut ipsius distantia a Medio vibrationis loco [Omega].
Proinde tempus (per Prop. XXXVIII. Lib. I.) recte exponitur per arcum PI; &
Medii pars linearis [epsilon][gamma] lege præscripta movetur, id est lege
oscillantis Penduli: estque par ratio partium omnium linearium ex quibus
Medium totum componitur.   _Q. E. D._

_Corol._ Hinc patet quod numerus pulsuum propagatorum idem sit cum numero
vibrationum corporis tremuli, neque multiplicatur in eorum progressu. Nam
lineola Physica [epsilon][gamma], quamprimum ad locum suum primum redierit,
quiescet; neque deinceps movebitur, nisi vel ab impetu corporis tremuli,
vel ab impetu pulsuum qui a corpore tremulo propagantur, motu novo cieatur.
Quiescet igitur quamprimum pulsus a corpore tremulo propagari desinunt.

Prop. XLIX. Prob. XII.

    _Datis Medii densitate & vi Elastica, invenire velocitatem pulsuum._

Fingamus Medium ab incumbente pondere, pro more Aeris nostri comprimi,
sitque A altitudo Medii homogenei, cujus pondus adæquet pondus incumbens, &
cujus densitas eadem sit cum densitate Medii compressi, in quo pulsus
propagantur. Constitui autem intelligatur Pendulum, cujus longitudo inter
punctum suspensionis & centrum oscillationis sit A: & quo tempore pendulum
illud oscillationem integram ex itu & reditu compositam peragit, eodem
pulsus eundo conficiet spatium circumferentiæ circuli radio A descripti
æquale.

Nam stantibus quæ in Propositione superiore constructa sunt, si linea
quævis Physica, EF singulis vibrationibus describendo spatium PS, urgeatur
in extremis itus & reditus cujusque locis P & S, a vi Elastica quæ ipsius
ponderi æquetur; peraget hæc vibrationes singulas quo tempore eadem in
Cycloide, cujus Perimeter tota longitudini PS æqualis est, oscillari
posset: id adeo quia vires æquales æqualia corpuscula per æqualia spatia
simul impellent. Quare cum oscillationum tempora sint in dimidiata ratione
longitudinis pendulorum, & longitudo penduli æquetur dimidio arcui
Cycloidis totius; foret tempus vibrationis unius ad tempus oscillationis
Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO
ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis
extremis P, S existens, urgetur, erat (in demonstratione Propositionis
superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum
punctum K jam incidat in P) ut HK ad V: & vis illa tota, hoc est pondus
incumbens, qua lineola EG comprimitur, est ad pondus lineolæ ut ponderis
incumbentis altitudo A ad lineolæ longitudinem EG; adeoque ex æquo, vis qua
lineola EG in locis suis P & S urgetur, est ad lineolæ illius pondus ut HK
× A ad V × EG. Quare cum tempora, quibus æqualia corpora per æqualia spatia
impelluntur, sint reciproce in dimidiata ratione virium, erit tempus
vibrationis unius urgente vi illa Elastica, ad tempus vibrationis urgente
vi ponderis, in dimidiata ratione V × EG ad HK × A, atque adeo ad tempus
oscillationis Penduli cujus longitudo est A, in dimidiata ratione V × EG ad
HK × A & PO ad A conjunctim; id est (cùm fuerit, in superiore Propositione,
V æqualis PO × BC ÷ Z, & HK æqualis EG × Z ÷ BC) in dimidiata ratione PO
qu. × BC × EG ÷ Z ad EG × Z × A qu. ÷ BC seu PO qu. × BC qu. ad Z qu. × A
qu. hoc est in ratione PO × BC ad Z × A, seu BC ad Z × A ÷ PO. Sed tempore
vibrationis unius ex itu & reditu compositæ, pulsus progrediendo conficit
latitudinem suam BC. Ergo tempus quo pulsus percurrit spatium BC, est ad
tempus oscillationis unius ex itu & reditu compositæ, ut BC ad Z × A ÷ PO,
id est ut BC ad circumferentiam circuli cujus radius est A. Tempus autem,
quo pulsus percurret spatium BC, est ad tempus quo percurret longitudinem
huic circumferentiæ æqualem, in eadem ratione; ideoque tempore talis
oscillationis pulsus percurret longitudinem huic circumferentiæ æqualem.
_Q. E. D._

Prop. L. Prob. XIII.

    _Invenire pulsuum distantias._

Corporis, cujus tremore pulsus excitantur, inveniatur numerus Vibrationum
dato tempore. Per numerum illum dividatur spatium quod pulsus eodem tempore
percurrere possit, & pars inventa erit pulsus unius latitudo.   _Q. E. I._

_Schol._

Spectant Propositiones novissimæ ad motum Lucis & Sonorum. Lux enim cum
propagetur secundum lineas rectas, in actione sola (per Prop. XLI. & XLII.)
consistere nequit. Soni vero propterea quod a corporibus tremulis oriantur,
nihil aliud sunt quàm aeris pulsus propagati, per Prop. XLIII. Confirmatur
id ex tremoribus quos excitant in corporibus objectis, si modò vehementes
sint & graves, quales sunt soni Tympanorum. Nam tremores celeriores &
breviores difficilius excitantur. Sed & sonos quosvis, in chordas
corporibus sonoris unisonas impactos, excitare tremores notissimum est.
Confirmatur etiam ex velocitate sonorum. Nam cùm pondera specifica Aquæ
pluvialis & Argenti vivi sint ad invicem ut 1 ad 13-2/3 circiter, & ubi
_Mercurius_ in _Barometro_ altitudinem attingit digitorum _Anglicorum_ 30,
pondus specificum Aeris & aquæ pluvialis sint ad invicem ut 1 ad 850
circiter: erunt pondera specifica aeris & argenti vivi ut 1 ad 11617.
Proinde cum altitudo argenti vivi sit 30 digitorum, altitudo aeris
uniformis, cujus pondus aerem nostrum subjectum comprimere posset, erit
348500 digitorum seu pedum _Anglicorum_ 29042. Estque hæc altitudo illa
ipsa quam in constructione superioris Problematis nominavimus A. Circuli
radio 29042 pedum descripti circumferentia est pedum 182476. Et cum
Pendulum digitos 39-1/5 longum, oscillationem ex itu & reditu compositam,
tempore minutorum duorum secundorum, uti notum est, absolvat; pendulum
pedes 29042, seu digitos 348500, longum, oscillationem consimilem tempore
minutorum secundorum 188-4/7 absolvere debebit. Eo igitur tempore sonus
progrediendo conficiet pedes 182476, adeoque tempore minuti unius secundi
pedes 968. Scribit _Mersennus_, in Balisticæ suæ Prop. XXXV. se factis
experimentis invenisse quod sonus minutis quinque secundis hexapedas
_Gallicas_ 1150 (id est pedes _Gallicos_ 6900) percurrat. Unde cum pes
_Gallicus_ sit ad _Anglicum_ ut 1068 ad 1000, debebit sonus tempore minuti
unius secundi pedes _Anglicos_ 1474 conficere. Scribit etiam idem
_Mersennus Robervallum_ Geometram clarissimum in Obsidione _Theodonis_
observasse tormentorum fragorem exauditum esse post 13 vel 14 ab igne viso
minuta secunda, cùm tamen vix dimidiam _Leucam_ ab illis Tormentis
abfuerit. Continet _Leuca Gallica_ hexapedas 2500, adeoque sonus tempore 13
vel 14 secundorum, ex Observatione _Robervalli_, confecit pedes
_Parisienses_ 7500, ac tempore minuti unius secundi pedes _Parisienses_
560, _Anglicos_ verò 600 circiter. Multum differunt hæ Observationes ab
invicem, & computus noster medium locum tenet. In porticu Collegii nostri
pedes 208 longa, sonus in termino alterutro excitatus quaterno recursu Echo
quadruplicem efficit. Factis autem experimentis inveni quod singulis soni
recursibus pendulum quasi sex vel septem digitorum longitudinis
oscillabatur, ad priorem soni recursum eundo & ad posteriorem redeundo.
Longitudinem penduli satis accuratè definire nequibam: sed longitudine
quatuor digitorum, oscillationes nimis celeres esse, ea novem digitorum
nimis tardas judicabam. Unde sonus eundo & redeundo confecit pedes 416
minore tempore quàm pendulum digitorum novem, & majore quàm pendulum
digitorum quatuor oscillatur; id est minore tempore quàm 28¾ minutorum
tertiorum, & majore quàm 19-1/6; & propterea tempore minuti unius secundi
conficit pedes _Anglicos_ plures quàm 866 & pauciores quàm 1272, atque adeò
velocior est quàm pro Observatione _Robervalli,_ ac tardior quàm pro
Observatione _Mersenni_. Quinetiam accuratioribus postea Observationibus
definivi quod longitudo penduli major esse deberet quàm digitorum quinque
cum semisse, & minor quàm digitorum octo; adeoque quòd sonus tempore minuti
unius secundi confecit pedes _Anglicos_ plures quàm 920 & pauciores quàm
1085. Igitur motus sonorum, secundum calculum Geometricum superius allatum,
inter hos limites consistens, quadrat cum Phænomenis, quatenus hactenus
tentare licuit. Proinde cùm motus iste pendeat ab aeris totius densitate,
consequens est quod soni non in motu ætheris vel aeris cujusdam
subtilioris, sed in aeris totius agitatione consistat.

Refragari videntur experimenta quædam de sono in vasis aere vacuis
propagato, sed vasa aere omni evacuari vix possunt; & ubi satis evacuantur
soni notabiliter imminui solent; _Ex. gr._ Si aeris totius pars tantùm
centesima in vase maneat, debebit sonus esse centuplo languidior, atque
adeò non minus audiri quàm si quis sonum eundem in aere libero excitatum
audiendo, subinde ad decuplam distantiam à corpore sonoro recederet.
Conferenda sunt igitur corpora duo æqualiter sonora, quorum alterum in vase
evacuato, alterum in aere libero consistat, & quorum distantiæ ab auditore
sint in dimidiata ratione densitatum aeris: & si sonus corporis prioris non
superat sonum posterioris objectio cessabit.

Cognita sonorum velocitate, innotescunt etiam intervalla pulsuum. Scribit
_Mersennus_ (Lib. I. Harmonicorum Prop. IV.) se (factis experimentis
quibusdam quæ ibidem describit) invenisse quod nervus tensus vicibus 104
recurrit spatio minuti unius secundi, quando facit Unisonum cum organica
Fistula quadrupedali aperta vel bipedali obturata, quam vocant Organarii _C
fa ut_. Sunt igitur pulsus 104 in spatio pedum 968, quos sonus tempore
minuti secundi describit: adeoque pulsus unus occupat spatium pedum 9¼
circiter; id est duplam circiter longitudinem fistulæ. Unde verisimile est
quòd latitudines pulsuum, in omnium apertarum fistularum sonis, æquentur
duplis longitudinibus fistularum.

Porrò cur Soni cessante motu corporis sonori statim cessant, neque diutiùs
audiuntur ubi longissimè distamus à corporibus sonoris, quàm cum proximè
absumus, patet ex Corollario Propositionis XLVIII. Libri hujus. Sed & cur
soni in Tubis Stenterophonicis valde augentur, ex allatis principiis
manifestum est. Motus enim omnis reciprocus singulis recursibus à causa
generante augeri solet. Motus autem in Tubis dilatationem sonorum
impedientibus tardiùs amittitur & fortius recurrit, & propterea à motu novo
singulis recursibus impresso magis augetur. Et hæc sunt præcipua Phænomena
Sonorum.

       *       *       *       *       *


SECT. IX.

_De motu Circulari Fluidorum._

Hypothesis.

    _Resistentiam, quæ oritur ex defectu lubricitatis partium Fluidi,
    cæteris paribus, proportionalem esse velocitati, qua partes Fluidi
    separantur ab invicem._

Prop. LI. Theor. XXXVIII.

    _Si Cylindrus solidus infinitè longus in fluido uniformi & infinito
    circa axem positione datum uniformi cum motu revolvatur, & ab hujus
    impulsu solo agatur Fluidum in Orbem, perseveret autem fluidi pars
    unaquæque uniformiter in motu suo; dico quod tempora periodica partium
    fluidi sunt ut ipsarum distantiæ ab axe cylindri._

[Illustration]

Sit AFL cylindrus uniformiter circa axem S in orbem actus, & circulis
concentricis BGM, CHN, DIO, EKP, &c. distinguatur fluidum in orbes
cylindricos innumeros concentricos solidos ejusdem crassitudinis. Et
quoniam homogeneum est Fluidum, impressiones contiguorum orbium in se mutuò
factæ, erunt (per Hypothesin) ut eorum translationes ab invicem &
superficies contiguæ in quibus impressiones fiunt. Si impressio in Orbem
aliquem major est vel minor, ex parte concava quàm ex parte convexa,
prævalebit impressio fortior, & motum Orbis vel accelerabit vel retardabit
prout in eandem regionem cum ipsius motu, vel in contrariam dirigitur.
Proinde ut Orbis unusquisque in motu suo uniformiter perseveret, debent
impressiones ex parte utraque sibi invicem æquari, & fieri in regiones
contrarias. Unde cùm impressiones sunt ut contiguæ superficies & harum
translationes ab invicem, erunt translationes inversè ut superficies, hoc
est inversè ut superficierum distantiæ ab axe. Sunt autem differentiæ
motuum angularium circa axem ut hæ translationes applicatæ ad distantias,
sive ut translationes directè & distantiæ inversè; hoc est (conjunctis
rationibus) ut quadrata distantiarum inversè. Quare si ad infinitæ rectæ
SABCDEQ partes singulas erigantur perpendicula Aa, Bb, Cc, Dd, Ee, &c.
ipsarum SA, SB, SC, SD, SE, &c. quadratis reciprocè proportionalia, & per
terminos perpendicularium duci intelligatur linea curva Hyperbolica; erunt
summæ distantiarum, hoc est motus toti angulares, ut respondentes summæ
linearum Aa, Bb, Cc, Dd, Ee: id est, si ad constituendum Medium uniformiter
fluidum orbium numerus augeatur & latitudo minuatur in infinitum, ut areæ
Hyperbolicæ his summis Analogæ AaQ, BbQ, CcQ, DdQ, EeQ, &c. & tempora
motibus angularibus reciprocè proportionalia erunt etiam his areis
reciprocè proportionalia. Est igitur tempus periodicum particulæ cujusvis D
reciprocè ut area DdQ, hoc est, (per notas Curvarum quadraturas) directè ut
distantia SD.   _Q. E. D._

_Corol. 1._ Hinc motus angulares particularum fluidi sunt reciprocè ut
ipsarum distantiæ ab axe Cylindri, & velocitates absolutæ sunt æquales.

_Corol. 2._ Si fluidum in vase cylindrico longitudinis infinitæ
contineantur, & cylindrum alium interiorem contineat, revolvatur autem
cylindrus uterque circa axem communem, sintque revolutionum tempora ut
ipsorum semidiametri, & perseveret fluidi pars unaquæque in motu suo: erunt
partium singularum tempora periodica ut ipsarum distantiæ ab axe
cylindrorum.

_Corol. 3._ Si cylindro & fluido ad hunc modum motis addatur vel auferatur
communis quilibet motus angularis; quoniam hoc novo motu non mutatur
attritus mutuus partium fluidi, non mutabuntur motus partium inter se. Nam
translationes partium ab invicem pendent ab attritu. Pars quælibet in eo
perseverabit motu, qui attritu utrinque in contrarias partes facto, non
magis acceleratur quàm retardatur.

_Corol. 4._ Unde si toti cylindrorum & fluidi Systemati auferatur motus
omnis angularis cylindri exterioris, habebitur motus fluidi in cylindro
quiescente.

_Corol. 5._ Igitur si fluido & cylindro exteriore quiescentibus, revolvatur
cylindrus interior uniformiter, communicabitur motus circularis fluido, &
paulatim per totum fluidum propagabitur; nec prius desinet augeri quàm
fluidi partes singulæ motum Corollario quarto definitum acquirant.

_Corol. 6._ Et quoniam fluidum conatur motum suum adhuc latius propagare,
hujus impetu circumagetur etiam cylindrus exterior nisi violenter detentus;
& accelerabitur ejus motus quoad usque tempora periodica cylindri utriusque
æquentur inter se. Quod si cylindrus exterior violenter detineatur,
conabitur is motum fluidi retardare, & nisi cylindrus interior vi aliqua
extrinsecùs impressa motum illum conservet, efficiet ut idem paulatim
cesset.

Quæ omnia in aqua profunda stagnante experiri licet.

Prop. LII. Theor. XXXIX.

    _Si Sphæra solida, in fluido uniformi & infinito, circa axem positione
    datum uniformi cum motu revolvatur, & ab hujus impulsu solo agatur
    fluidum in orbem; perseveret autem fluidi pars unaquæque uniformiter in
    motu suo: dico quod tempora periodica partium fluidi erunt ut quadrata
    distantiarum à centro Sphæræ._ Fig. Prop. LI.

_Cas. 1._ Sit AFL sphæra uniformiter circa axem S in orbem acta, & circulis
concentricis BGM, CHN, DIO, EKP, &c. distinguatur fluidum in orbes
innumeros concentricos ejusdem crassitudinis. Finge autem orbes illos esse
solidos; & quoniam homogeneum est fluidum, impressiones contiguorum Orbium
in se mutuò factæ, erunt (per Hypothesin) ut eorum translationes ab invicem
& superficies contiguæ in quibus impressiones fiunt. Si impressio in orbem
aliquem major est vel minor ex parte concava quàm ex parte convexa,
prævalebit impressio fortior, & velocitatem Orbis vel accelerabit vel
retardabit, prout in eandem regionem cum ipsius motu vel in contrariam
dirigitur. Proinde ut orbis unusquisque in motu suo perseveret uniformiter,
debebunt impressiones ex parte utraque sibi invicem æquari, & fieri in
regiones contrarias. Unde cum impressiones sint ut contiguæ superficies &
harum translationes ab invicem; erunt translationes inversè ut superficies,
hoc est inversè ut quadrata distantiarum superficierum à centro. Sunt autem
differentiæ motuum angularium circa axem ut hæ translationes applicatæ ad
distantias, sive ut translationes directè & distantiæ inversè; hoc est
(conjunctis rationibus) ut cubi distantiarum inversè. Quare si ad rectæ
infinitæ SABCDEQ partes singulas erigantur perpendicula Aa, Bb, Cc, Dd, Ee,
&c. ipsarum SA, SB, SC, SD, SE, &c. cubis reciprocè proportionalia, erunt
summæ distantiarum, hoc est, motus toti angulares, ut respondentes summæ
linearum Aa, Bb, Cc, Dd, Ee: id est (si ad constituendum Medium uniformiter
fluidum, numerus Orbium augeatur & latitudo minuatur in infinitum) ut areæ
Hyperbolicæ his summis analogæ AaQ, BbQ, CcQ, DdQ, EeQ, &c. Et tempora
periodica motibus angularibus reciprocè proportionalia erunt etiam his
areis reciprocè proportionalia. Est igitur tempus periodicum orbis cujusvis
DIO reciprocè ut area DdQ, hoc est, (per notas Curvarum quadraturas)
directè ut quadratum distantiæ SD. Id quod volui primò demonstrare.

_Cas. 2._ A centro Sphæræ ducantur infinitæ rectæ quam plurimæ, quæ cum axe
datos contineant angulos, æqualibus differentiis se mutuò superantes; & his
rectis circa axem revolutis concipe orbes in annulos innumeros secari; &
annulus unusquisque habebit annulos quatuor sibi contiguos, unum
interiorem, alterum exteriorem & duos laterales. Attritu interioris &
exterioris non potest annulus unusquisque, nisi in motu juxta legem casus
primi facto, æqualiter & in partes contrarias urgeri. Patet hoc ex
demonstratione casus primi. Et propterea annulorum series quælibet à globo
in infinitum rectà pergens movebitur pro lege casus primi, nisi quatenus
impeditur ab attritu annulorum ad latera. At in motu hac lege facto,
attritus annulorum ad latera nullus est, neque adeò motum, quo minus hac
lege fiat, impediet. Si annuli, qui à centro æqualiter distant, vel citiùs
revolverentur vel tardiùs juxta polos quàm juxta æquatorem; tardiores
accelerarentur, & velociores retardarentur ab attritu mutuo, & sic
vergerent semper tempora periodica ad æqualitatem, pro lege casus primi.
Non impedit igitur hic attritus quo minus motus fiat secundum legem casus
primi, & propterea lex illa obtinebit: hoc est annulorum singulorum tempora
periodica erunt ut quadrata distantiarum ipsorum à centro globi. Quod volui
secundo demonstrare.

_Cas. 3._ Dividatur jam annulus unusquisque sectionibus transversis in
particulas innumeras constituentes substantiam absolutè & uniformiter
fluidam; & quoniam hæ sectiones non spectant ad legem motus circularis, sed
ad constitutionem fluidi solummodo conducunt, perseverabit motus circularis
ut priùs. His sectionibus annuli omnes quamminimi asperitatem & vim
attritus mutui aut non mutabunt aut mutabunt æqualiter. Et manente causarum
proportione manebit effectuum proportio, hoc est proportio motuum &
periodicorum temporum.   _Q. E. D._   Cæterum cum motus circularis, &
abinde orta vis centrifuga, major sit ad Eclipticam quàm ad polos; debebit
causa aliqua adesse qua particulæ singulæ in circulis suis retineantur, ne
materia quæ ad Eclipticam est recedat semper à centro & per exteriora
Vorticis migret ad polos, indeque per axem ad Eclipticam circulatione
perpetua revertatur.

_Corol. 1._ Hinc motus angulares partium fluidi circa axem globi sunt
reciprocè ut quadrata distantiarum à centro globi, & velocitates absolutæ
reciprocè ut eadem quadrata applicata ad distantias ab axe.

_Corol. 2._ Si globus in fluido quiescente similari & infinito circa axem
positione datum uniformi cum motu revolvatur, communicabitur motus fluido
in morem Vorticis, & motus iste paulatim propagabitur in infinitum; neque
prius cessabit in singulis fluidi partibus accelerari, quàm tempora
periodica singularum partium sint ut quadrata distantiarum à centro globi.

_Corol. 3._ Quoniam Vorticis partes interiores ob majorem suam velocitatem
atterunt & urgent exteriores, motumque ipsis ea actione perpetuò
communicant, & exteriores illi eandem motus quantitatem in alios adhuc
exteriores simul transferunt, eaque actione servant quantitatem motus sui
planè invariatam; patet quod motus perpetuò transfertur à centro ad
circumferentiam Vorticis, & per infinitatem circumferentiæ absorbetur.
Materia inter sphæricas duas quasvis superficies Vortici concentricas
nunquam accelerabitur, eò quod motum omnem à materia interiore acceptum
transfert semper in exteriorem.

_Corol. 4._ Proinde ad conservationem Vorticis constanter in eodem movendi
statu, requiritur principium aliquod activum à quo globus eandem semper
quantitatem motus accipiat quam imprimit in materiam vorticis. Absque tali
principio necesse est ut globus & Vorticis partes interiores, propagantes
semper motum suum in exteriores, neque novum aliquem motum recipientes,
tardescant paulatim & in orbem agi desinant.

_Corol. 5._ Si globus alter huic Vortici ad certam ab ipsius centro
distantiam innataret, & interea circa axem inclinatione datum vi aliqua
constanter revolveretur; hujus motu raperetur fluidum in vorticem: & primò
revolveretur hic vortex novus & exiguus una cum globo circa centrum
alterius, & interea latiùs serperet ipsius motus, & paulatim propagaretur
in infinitum, ad modum vorticis primi. Et eadem ratione qua hujus globus
raperetur motu vorticis alterius, raperetur etiam globus alterius motu
hujus, sic ut globi duo circa intermedium aliquod punctum revolverentur,
seque mutuò ob motum illum circularem fugerent, nisi per vim aliquam
cohibiti. Postea si vires constanter impressæ, quibus globi in motibus suis
perseverant, cessarent, & omnia legibus Mechanicis permitterentur,
languesceret paulatim motus globorum (ob rationem in Corol. 3. & 4.
assignatam) & vortices tandem conquiescerent.

_Corol. 6._ Si globi plures datis in locis circum axes positione datos
certis cum velocitatibus constanter revolverentur, fierent vortices totidem
in infinitum pergentes. Nam globi singuli, eadem ratione qua unus aliquis
motum suum propagat in infinitum, propagabunt etiam motus suos in
infinitum, adeò ut fluidi infiniti pars unaquæque eo agitetur motu qui ex
omnium globorum actionibus resultat. Unde vortices non definientur certis
limitibus, sed in se mutuò paulatim excurrent; globiq; per actiones
vorticum in se mutuò, perpetuò movebuntur de locis suis; uti in Lemmate
superiore expositum est; neq; certam quamvis inter se positionem servabunt,
nisi per vim aliquam retenti. Cessantibus autem viribus illis quæ in globos
constanter impressæ conservant hosce motus, materia ob rationem in
Corollario tertio & quarto assignatam paulatim requiescet & in vortices agi
desinet.

_Corol. 7._ Si Fluidum similare claudatur in vase sphærico, ac globi in
centro consistentis uniformi rotatione agatur in vorticem, globus autem &
vas in eandem partem circa axem eundem revolvantur, sintq; eorum tempora
periodica ut quadrata semidiametrorum: partes fluidi non prius
perseverabunt in motibus suis sine acceleratione & retardatione, quàm sint
eorum tempora periodica ut quadrata distantiarum à centro vorticis. Alia
nulla Vorticis constitutio potest esse permanens.

_Corol. 8._ Si vas, Fluidum inclusum & globus servent hunc motum, & motu
præterea communi angulari circa axem quemvis datum revolvantur; quoniam hoc
motu novo non mutatur attritus partium fluidi in se invicem, non mutabuntur
motus partium inter se. Nam translationes partium inter se pendent ab
attritu. Pars quælibet in eo perseverabit motu, quo fit ut attritu ex uno
latere non magis tardetur quàm acceleretur attritu ex altero.

_Corol. 9._ Unde si vas quiescat ac detur motus globi, dabitur motus
fluidi. Nam concipe planum transire per axem globi & motu contrario
revolvi; & pone tempus revolutionis hujus esse ad summam hujus temporis &
temporis revolutionis globi, ut quadratum semidiametri vasis ad quadratum
semidiametri globi: & tempora periodica partium fluidi respectu plani hujus
erunt ut quadrata distantiarum suarum à centro globi.

_Corol. 10._ Proinde si vas vel circa axem eundem cum globo, vel circa
diversum aliquem, data cum velocitate quacunq; moveatur, dabitur motus
fluidi. Nam si Systemati toti auferatur vasis motus angularis, manebunt
motus omnes iidem inter se qui prius, per Corol. 8. Et motus isti per
Corol. 9. dabuntur.

_Corol. 11._ Si vas & fluidum quiescant & globus uniformi cum motu
revolvatur, propagabitur motus paulatim per fluidum totum in vas, &
circumagetur vas nisi violenter detentum, neq; prius desinent fluidum & vas
accelerari, quàm sint eorum tempora periodica æqualia temporibus periodicis
globi. Quod si vas vi aliqua detineatur vel revolvatur motu quovis
constanti & uniformi, deveniet Medium paulatim ad statum motus in
Corollariis 8. 9 & 10 definiti, nec in alio unquam statu quocunq;
perseverabit. Deinde verò si, viribus illis cessantibus quibus vas & globus
certis motibus revolvebantur, permittatur Systema totum Legibus Mechanicis;
vas & globus in se invicem agent mediante fluido, neq; motus suos in se
mutuò per fluidum propagare prius cessabunt, quàm eorum tempora periodica
æquantur inter se, & Systema totum ad instar corporis unius solidi simul
revolvatur.

_Scholium._

In his omnibus suppono fluidum ex materia quoad densitatem & fluiditatem
uniformi constare. Tale est in quo globus idem eodem cum motu, in eodem
temporis intervallo, motus similes & æquales, ad æquales semper à se
distantias, ubivis in fluido constitutus, propagare possit. Conatur quidem
materia per motum suum circularem recedere ab axe Vorticis, & propterea
premit materiam omnem ulteriorem. Ex hac pressione fit attritus partium
fortior & separatio ab invicem difficilior; & per consequens diminuitur
materiæ fluiditas. Rursus si partes fluidi sunt alicubi crassiores seu
majores, fluiditas ibi minor erit, ob pauciores superficies in quibus
partes separentur ab invicem. In hujusmodi casibus deficientem fluiditatem
vel lubricitate partium vel lentore aliave aliqua conditione restitui
suppono. Hoc nisi fiat, materia ubi minùs fluida est magis cohærebit &
segnior erit, adeoq; motum tardiùs recipiet & longiùs propagabit quàm pro
ratione superiùs assignata. Si figura vasis non sit Sphærica, movebuntur
particulæ in lineis non circularibus sed conformibus eidem vasis figuræ, &
tempora periodica erunt ut quadrata mediocrium distantiarum à centro
quamproximè. In partibus inter centrum & circumferentiam, ubi latiora sunt
spatia, tardiores erunt motus, ubi angustiora velociores; neque tamen
particulæ velociores petent circumferentiam. Arcus enim describent minus
curvos, & conatus recedendi à centro non minus diminuetur per decrementum
hujus curvaturæ, quàm augebitur per incrementum velocitatis. Pergendo à
spatiis angustioribus in latiora recedent paulò longiùs à centro, sed isto
recessu tardescent; & accedendo postea de latioribus ad angustiora
accelerabuntur, & sic per vices tardescent & accelerabuntur particulæ
singulæ in perpetuum. Hæc ita se habebunt in vase rigido. Nam in fluido
infinito constitutio Vorticum innotescit per Propositionis hujus
Corollarium sextum.

Proprietates autem Vorticum hac Propositione investigare conatus sum, ut
pertentarem siqua ratione Phænomena coelestia per Vortices explicari
possint. Nam Phænomenon est quod Planetarum circa Jovem revolventium
tempora periodica sunt in ratione sesquialtera distantiarum à centro Jovis;
& eadem Regula obtinet in Planetis qui circa Solem revolvuntur. Obtinent
autem hæ Regulæ in Planetis utrisque quam accuratissimè, quatenus
observationes Astronomicæ hactenus prodidêre. Ideoq; si Planetæ illi à
Vorticibus circa Jovem & Solem revolventibus deferantur, debebunt etiam hi
Vortices eadem lege revolvi. Verum tempora periodica partium Vorticis
prodierunt in ratione duplicata distantiarum à centro motus: neque potest
ratio illa diminui & ad rationem sesquialteram reduci, nisi vel materia
vorticis eo fluidior sit quo longius distat à centro, vel resistentia, quæ
oritur ex defectu lubricitatis partium fluidi, ex aucta velocitate qua
partes fluidi separantur ab invicem, augeatur in majori ratione quàm ea est
in qua velocitas augetur. Quorum tamen neutrum rationi consentaneum
videtur. Partes crassiores & minus fluidæ (nisi graves sint in centrum)
circumferentiam petent; & verisimile est quod, etiamsi Demonstrationum
gratia Hypothesin talem initio Sectionis hujus proposuerim ut Resistentia
velocitati proportionalis esset, tamen Resistentia in minori sit ratione
quàm ea velocitatis est. Quo concesso tempora periodica partium Vorticis
erunt in majori quàm duplicata ratione distantiarum ab ipsius centro. Quod
si vortices (uti aliquorum est opinio) celeriùs moveantur prope centrum,
dein tardiùs usque ad certum limitem, tum denuò celeriùs juxta
circumferentiam; certè nec ratio sesquialtera neque alia quævis certa ac
determinata obtinere potest. Viderint itaq; Philosophi quo pacto Phænomenon
illud rationis sesquialteræ per Vortices explicari possit.

Prop. LIII. Theor. XL.

    _Corpora quæ in Vortice delata in orbem redeunt ejusdem sunt densitatis
    cum Vortice, & eadem lege cum ipsius partibus (quoad velocitatem &
    cursus determinationem) moventur._

Nam si vorticis pars aliqua exigua, cujus particulæ seu puncta physica
datum servant situm inter se, congelari supponatur: hæc, quoniam neq; quoad
densitatem suam, neque quoad vim insitam aut figuram suam mutatur,
movebitur eadem lege ac prius: & contra, si Vorticis pars congelata &
solida ejusdem sit densitatis cum reliquo vortice, & resolvatur in fluidum;
movebitur hæc eadem lege ac prius, nisi quatenus ipsius particulæ jam
fluidæ factæ moveantur inter se. Negligatur igitur motus particularum inter
se, tanquam ad totius motum progressivum nil spectans, & motus totius idem
erit ac prius. Motus autem idem erit cum motu aliarum Vorticis partium à
centro æqualiter distantium, propterea quod solidum in Fluidum resolutum
fit pars Vorticis cæteris partibus consimilis. Ergo solidum, si sit ejusdem
densitatis cum materia Vorticis, eodem motu cum ipsius partibus movebitur,
in materia proximè ambiente relative quiescens. Sin densius sit, jam magis
conabitur recedere à centro Vorticis quàm priùs; adeoq; Vorticis vim illam,
qua priùs in Orbita sua tanquam in æquilibrio constitutum retinebatur, jam
superans, recedet à centro & revolvendo describet Spiralem, non amplius in
eundem Orbem rediens. Et eodem argumento si rarius sit, accedet ad centrum.
Igitur non redibit in eundem Orbem nisi sit ejusdem densitatis cum fluido.
Eo autem in casu ostensum est, quod revolveretur eadem lege cum partibus
fluidi à centro Vorticis æqualiter distantibus.   _Q. E. D._

_Corol. 1._ Ergo solidum quod in Vortice revolvitur & in eundem Orbem
semper redit, relativè quiescit in fluido cui innatat.

_Corol. 2._ Et si vortex sit quoad densitatem uniformis, corpus idem ad
quamlibet à centro Vorticis distantiam revolvi potest.

_Scholium._

[Illustration]

Hinc liquet Planetas à Vorticibus corporeis non deferri. Nam Planetæ
secundum Hypothesin _Copernicæam_ circa Solem delati revolvuntur in
Ellipsibus umbilicum habentibus in Sole, & radiis ad Solem ductis areas
describunt temporibus proportionales. At partes Vorticis tali motu revolvi
nequeunt. Designent AD, BE, CF, orbes tres circa Solem S descriptos, quorum
extimus CF circulus sit Soli concentricus, & interiorum duorum Aphelia sint
A, B, & Perihelia D, E. Ergo corpus quod revolvitur in orbe CF, radio ad
Solem ducto areas temporibus proportionales describendo, movebitur uniformi
cum motu. Corpus autem quod revolvitur in Orbe BE, tardiùs movebitur in
Aphelio B & velociùs in Perihelio C, secundum leges Astronomicas; cum tamen
secundum leges Mechanicas materia Vorticis in spatio angustiore inter A & C
velociùs moveri debeat quàm in spatio latiore inter D & F; id est, in
Aphelio velociùs quàm in Perihelio. Quæ duo repugnant inter se. Sic in
principio Signi Virginis, ubi Aphelium Martis jam versatur, distantia inter
orbes Martis & Veneris est ad distantiam eorundem orbium in principio Signi
Piscium ut tria ad duo circiter, & propterea materia Vorticis inter Orbes
illos in principio Piscium debet esse velocior quàm in principio Virginis
in ratione trium ad duo. Nam quo angustius est spatium per quod eadem
Materiæ quantitas eodem revolutionis unius tempore transit, eo majori cum
velocitate transire debet. Igitur si Terra in hac Materia coelesti relativè
quiescens ab ea deferretur, & una circa Solem revolveretur, foret hujus
velocitas in principio Piscium ad ejusdem velocitatem in principio Virginis
in ratione sesquialtera. Unde Solis motus diurnus apparens in principio
Virginis major esset quàm minutorum primorum septuaginta, & in principio
Piscium minor quàm minutorum quadraginta & octo: cum tamen (experientia
teste) apparens iste Solis motus major sit in principio Piscium quàm in
principio Virginis, & propterea Terra velocior in principio Virginis quàm
in principio Piscium. Itaq; Hypothesis Vorticum cum Phænomenis Astronomicis
omninò pugnat, & non tam ad explicandos quàm ad perturbandos motus
coelestes conducit. Quomodo verò motus isti in spatiis liberis absque
Vorticibus peraguntur intelligi potest ex Libro primo, & in Mundi Systemate
pleniùs docebitur.

       *       *       *       *       *


De Mundi Systemate

LIBER TERTIUS

In Libris præcedentibus principia Philosophiæ tradidi, non tamen
Philosophica sed Mathematica tantum, ex quibus videlicet in rebus
Philosophicis disputari possit. Hæc sunt motuum & virium leges &
conditiones, quæ ad Philosophiam maximè spectant. Eadem tamen, ne sterilia
videantur, illustravi Scholiis quibusdam Philosophicis, ea tractans quæ
generalia sunt, & in quibus Philosophia maximè fundari videtur, uti
corporum densitatem & resistentiam, spatia corporibus vacua, motumque Lucis
& Sonorum. Superest ut ex iisdem principiis doceamus constitutionem
Systematis Mundani. De hoc argumento composueram Librum tertium methodo
populari, ut à pluribus legeretur. Sed quibus Principia posita satis
intellecta non fuerint, ij vim consequentiarum minimè percipient, neque
præjudicia deponent quibus à multis retro annis insueverunt: & propterea ne
res in disputationes trahatur, summam libri illius transtuli in
Propositiones, more Mathematico, ut ab iis solis legantur qui principia
prius evolverint. Veruntamen quoniam Propositiones ibi quam plurimæ
occurrant, quæ Lectoribus etiam Mathematicè doctis moram nimiam injicere
possint, author esse nolo ut quisquam eas omnes evolvat; suffecerit siquis
Definitiones, Leges motuum & sectiones tres priores Libri primi sedulò
legat, dein transeat ad hunc Librum de Mundi Systemate, & reliquas Librorum
priorum Propositiones hic citatas pro lubitu consulat.

HYPOTHESES.

Hypoth. I. _Causas rerum naturalium non plures admitti debere, quàm quæ &
vera sint & earum Phænomenis explicandis sufficiunt._

Natura enim simplex est & rerum causis superfluis non luxuriat.

Hypoth. II. _Ideoque effectuum naturalium ejusdem generis eædem sunt
causæ._

Uti respirationis in Homine & in Bestia; descensus lapidum in _Europa_ & in
_America_; Lucis in Igne culinari & in Sole; reflexionis lucis in Terra &
in Planetis.

Hypoth. III. _Corpus omne in alterius cujuscunque generis corpus
transformari posse, & qualitatum gradus omnes intermedios sucessivè
induere._

Hypoth. IV. _Centrum Systematis Mundani quiescere._

Hoc ab omnibus concessum est, dum aliqui Terram alii Solem in centro
quiescere contendat.

Hypoth. V. _Planetas circumjoviales, radiis ad centrum Jovis ductis, areas
describere temporibus proportionales, eorumque tempora periodica esse in
ratione sesquialtera distantiarum ab ipsius centro._

Constat ex observationibus Astronomicis. Orbes horum Planetarum non
differunt sensibiliter à circulis Jovi concentricis, & motus eorum in his
circulis uniformes deprehenduntur. Tempora verò periodica esse in
sesquialtera semidiametrorum orbium consentiunt Astronomici: &
_Flamstedius_, qui omnia Micrometro & per Eclipses Satellitum accuratius
definivit, literis ad me datis, quinetiam numeris suis mecum communicatis,
significavit rationem illam sesquialteram tam accuratè obtinere, quàm sit
possibile sensu deprehendere. Id quòd ex Tabula sequente manifestum est.

_Satellitum tempora periodica._

1d. 18h. 28'-3/5.   3d. 13h. 17'-9/10.   7d. 3h. 59'-3/5.   16d. 18h.
5'-1/5.

_Distantiæ Satellitum à centro Jovis._

  Ex Observationibus        | 1.     | 2      | 3      | 4
                            +--------+--------+--------+---------
  Cassini                   | 5.     | 8.     | 13.    | 23.     }
  Borelli                   | 5-2/3. | 8-2/3. | 14.    | 24-2/3. } Semi-
  Tounlei per Micromet.     | 5,51.  | 8,78.  | 13,47. | 24,72.  } diam.
  Flamstedii per Microm.    | 5,31.  | 8,85.  | 13,98. | 24,23.  } Jovis.
  Flamst. per Eclips. Satel.| 5,578. | 8,876. | 14,159.| 24,903. }
  --------------------------+--------+--------+--------+---------
  Ex temporibus periodicis. | 5,578. | 8,878. | 14,168.| 24,968.

Hypoth. VI. _Planetas quinque primarios Mercurium, Venerem, Martem, Jovem &
Saturnum Orbibus suis Solem cingere._

Mercurium & Venerem circa Solem revolvi ex eorum phasibus lunaribus
demonstratur. Plenâ facie lucentes ultra Solem siti sunt, dimidiatâ è
regione Solis, falcatâ cis Solem; per discum ejus ad modum macularum
nonnunquam transeuntes. Ex Martis quoque plena facie prope Solis
conjunctionem, & gibbosa in quadraturis, certum est quod is Solem ambit. De
Jove etiam & Saturno idem ex eorum phasibus semper plenis demonstratur.

Hypoth. VII. _Planetarum quinque primariorum, & (vel Solis circa Terram
vel) Terræ circa Solem tempora periodica esse in ratione sesquialtera
mediocrium distantiarum à Sole._

Hæc à _Keplero_ inventa ratio in confesso est apud omnes. Eadem utique sunt
tempora periodica, eædemq; orbium dimensiones, sive Planetæ circa Terram,
sive iidem circa Solem revolvantur. Ac de mensura quidem temporum
periodicorum convenit inter Astronomos universos. Magnitudines autem Orbium
_Keplerus_ & _Bullialdus_ omnium diligentissimè ex Observationibus
determinaverunt: & distantiæ mediocres, quæ temporibus periodicis
respondent, non differunt sensibiliter à distantiis quas illi invenerunt,
suntque inter ipsas ut plurimum intermediæ; uti in Tabula sequente videre
licet.

_Planetarum ac Telluris Distantiæ mediocres à Sole._

                      Satur.   Jovis      Mart.  Tellur.   Vener.  Mercur.
  Secundum Keplerum   951000.  519650.  152350.  100000.   72400.   38806.
  Secundum Bullialdum 954198.  522520.  152350.  100000.   72398.   38585.
  Secundum tempora    953806.  520116.  152399.  100000.   72333.   38710.
     periodica

De distantiis Mercurii & Veneris à Sole disputandi non est locus, cum hæ
per eorum Elongationes à Sole determinentur. De distantiis etiam superiorum
Planetarum à Sole tollitur omnis disputatio per Eclipses Satellitum Jovis.
Etenim per Eclipses illas determinatur positio umbræ quam Jupiter projicit,
& eo nomine habetur Jovis longitudo Heliocentrica. Ex longitudinibus autem
Heliocentrica & Geocentrica inter se collatis determinatur distantia Jovis.

Hypoth. VIII. _Planetas primarios radiis ad Terram ductis areas describere
temporibus minimè proportionales; at radiis ad Solem ductis areas
temporibus proportionales percurrere._

Nam respectu terræ nunc progrediuntur, nunc stationarii sunt, nunc etiam
regrediuntur: At Solis respectu semper progrediuntur, idque propemodum
uniformi cum motu, sed paulo celerius tamen in Periheliis ac tardius in
Apheliis, sic ut arearum æquabilis sit descriptio. Propositio est
Astronomis notissima, & in Jove apprimè demonstratur per Eclipses
Satellitum, quibus Eclipsibus Heliocentricas Planetæ hujus longitudines &
distantias à Sole determinari diximus.

Hypoth. IX. _Lunam radio ad centrum terræ ducto aream tempori
proportionalem describere._

Patet ex Lunæ motu apparente cum ipsius diametro apparente collato.
Perturbatur autem motus Lunaris aliquantulum à vi Solis, sed errorum
insensibiles minutias Physicis in hisce Hypothesibus negligo.

Prop. I. Theor. I.

    _Vires, quibus Planetæ circumjoviales perpetuo retrahuntur à motibus
    rectilineis & in orbibus suis retinentur, respicere centrum Jovis, &
    esse reciproce ut quadrata distantiarum locorum ab eodem centro._

Patet pars prior Propositionis per Hypoth. V. & Prop. II. vel III. Lib. I.
& pars posterior per Hypoth. V. & Corol. 6. Prop. IV. ejusdem Libri.

Prop. II. Theor. II.

    _Vires, quibus Planetæ primarii perpetuo retrahuntur à motibus
    rectilineis, & in Orbibus suis retinentur, respicere Solem, & esse
    reciproce ut quadrata distantiarum ab ipsius centro._

Patet pars prior Propositionis per Hypoth. VIII. & Prop. II. Lib. I. & pars
posterior per Hypoth. VII. & Prop. IV. ejusdem Libri. Accuratissimè autem
demonstratur hæc pars Propositionis per quietem Apheliorum. Nam aberratio
quam minima à ratione duplicata (per Corol. 1. Prop. XLV. Lib. I.) motum
Apsidum in singulis revolutionibus notabilem, in pluribus enormem efficere
deberet.

Prop. III. Theor. III.

    _Vim qua Luna retinetur in Orbe suo respicere terram, & esse reciprocò
    ut quadratum distantiæ locorum ab ipsius centro._

Patet assertionis pars prior, per Hypoth. IX. & Prop. II. vel III. Lib. I.
& pars posterior per motum tardissimum Lunaris Apogæi. Nam motus ille, qui
singulis revolutionibus est graduum tantum trium in consequentia, contemni
potest. Patet enim, per Corol. 1. Prop. XLV. Lib. I. quod si distantia Lunæ
à centro Terræ dicatur D, vis à qua motus talis oriatur, sit reciproce ut
D^{2-4/243}, id est reciprocè ut ea ipsius D dignitas, cujus index est
2-4/243, hoc est in ratione distantiæ paulo majore quam duplicata inverse,
sed quæ vicibus 60¾ propius ad duplicatam quam ad triplicatam accedit.
Tantillus autem accessus meritò contemnendus est. Oritur verò ab actione
Solis (uti posthac dicetur) & propterea hic negligendus est. Restat igitur
ut vis illa, quæ ad Terram spectat, sit reciprocè ut D^2; id quod etiam
plenius constabit, conferendo hanc vim cum vi gravitatis, ut fit in
Propositione sequente.

Prop. IV. Theor. IV.

    _Lunam gravitare in terram, & vi gravitatis retrahi semper à motu
    rectilineo, & in orbe suo retineri._

Lunæ distantia mediocris à centro Terræ est semidiametrorum terrestrium,
secundum plerosque Astronomorum 59, secundum _Vendelinum_ 60, secundum
_Copernicum_ 60-1/3, secundum _Kircherum_ 62½, & secundum _Tychonem_ 56½.
Ast _Tycho_, & quotquot ejus Tabulas refractionum sequuntur, constituendo
refractiones Solis & Lunæ (omnino contra naturam Lucis) majores quam
fixarum, idque scrupulis quasi quatuor vel quinque, auxerunt Parallaxin
Lunæ scrupulis totidem, hoc est quasi duodecima vel decima quinta parte
totius parallaxeos. Corrigatur iste error, & distantia evadet quasi 61
semidiametrorum terrestrium, fere ut ab aliis assignatum est. Assumamus
distantiam mediocrem sexaginta semidiametrorum; & Lunarem periodum respectu
fixarum compleri diebus 27, horis 7, minutis primis 43, ut ab Astronomis
statuitur; atque ambitum Terræ esse pedum Parisiensium 123249600, uti à
Gallis mensurantibus nuper definitum est: & si Luna motu omni privari
fingatur, ac dimitti ut, urgente vi illa omni qua in Orbe suo retinetur,
descendat in terram; hæc spatio minuti primi cadendo describet pedes
Parisienses 15-1/12. Colligitur hoc ex calculo, vel per Propositionem xxxvi
Libri primi, vel (quod eodem recedit) per Scholium Propositionis quartæ
ejusdem Libri, confecto. Unde cum vis illa accedendo ad terram augeatur in
duplicata distantiæ ratione inversâ, adeoque ad superficiem Terræ major sit
vicibus 60 × 60 quam ad Lunam, corpus vi illa in regionibus nostris cadendo
describere deberet spatio minuti unius primi pedes Parisienses 60 × 60 ×
15-1/12, & spatio minuti unius secundi pedes 15-1/12. Atqui corpora in
regionibus nostris vi gravitatis cadendo describunt tempore minuti unius
secundi pedes Parisienses 15-1/12, uti _Hugenius_, factis pendulorum
experimentis & computo inde inito, demonstravit: & propterea vis qua Luna
in orbe suo retinetur, illa ipsa est quam nos gravitatem dicere solemus.
Nam si gravitas ab ea diversa est, corpora viribus utrisque conjunctis
Terram petendo duplo velocius descendent, & spatio minuti unius secundi
cadendo describent pedes Parisienses 30-1/6: omnino contra experientiam.

Calculus hic fundatur in Hypothesi quod Terra quiescit. Nam si Terra & Luna
circa Solem moveantur, & interea quoque circa commune gravitatis centrum
revolvantur: distantia centrorum Lunæ ac Terræ ab invicem erit 60½
semidiametrorum terrestrium; uti computationem (per Prop. LX. Lib. I.)
ineunti patebit.

Prop. V. Theor. V.

    _Planetas circumjoviales gravitare in Jovem, & circumsolares in Solem,
    & vi gravitatis suæ retrahi semper à motibus rectilineis, & in orbibus
    curvilineis retineri._

Nam revolutiones Planetarum circumjovialium circa Jovem, & Mercurii ac
Veneris reliquorumque circumsolarium circa Solem sunt Phænomena ejusdem
generis cum revolutione Lunæ circa Terram; & propterea per Hypoth. II. à
causis ejusdem generis dependent: præsertim cùm demonstratum sit quod
vires, à quibus revolutiones illæ dependent, respiciant centra Jovis ac
Solis, & recedendo à Jove & Sole decrescant eadem ratione ac lege, qua vis
gravitatis decrescit in recessu à Terra.

_Corol. 1._ Igitur gravitas datur in Planetas universos. Nam Venerem,
Mercurium cæterosque esse corpora ejusdem generis cum Jove nemo dubitat.
Certe Planeta Hugenianus, eodem argumento quo Satellites Jovis gravitant in
Jovem, gravis est in Saturnum. Et cum attractio omnis (per motus legem
tertiam) mutua sit, Saturnus vicissim gravitabit in Planetam Hugenianum.
Eodem argumento Jupiter in Satellites suos omnes, Terraque in Lunam, & Sol
in Planetas omnes primarios gravitabit.

_Corol. 2._ Gravitatem, quæ Planetam unumquemque respicit, ese reciprocè ut
quadratum distantiæ locorum ab ipsius centro.

Prop. VI. Theor. VI.

    _Corpora omnia in Planetas singulos gravitare, & pondera eorum in
    eundem quemvis Planetam, paribus distantiis à centro Planetæ,
    proportionalia esse quantitati materiæ in singulis._

Descensus gravium omnium in Terram (dempta saltem inæquali retardatione quæ
ex Aeris perexigua resistentia oritur) æqualibus temporibus fieri jamdudum
observarunt alii; & accuratissimè quidem notare licet æqualitatem temporum
in Pendulis. Rem tentavi in auro, argento, plumbo, vitro, arena, sale
communi, ligno, aqua, tritico. Comparabam pixides duas ligneas rotundas &
æquales. Unam implebam ligno, & idem auri pondus suspendebam (quàm potui
exactè) in alterius centro oscillationis. Pixides ab æqualibus pedum
undecim filis pendentes constituebant Pendula, quoad pondus, figuram &
aeris resistentia omnino paria: Et paribus oscillationibus juxta positæ
ibant unà & redibant diutissime. Proinde copia materiæ in auro (per Corol.
1. & 6. Prop. XXIV. Lib. II.) erat ad copiam materiæ in ligno, ut vis
motricis actio in totum aurum ad ejusdem actionem in totum lignum; hoc est
ut pondus ad pondus. Et sit in cæteris. In corporibus ejusdem ponderis
differentia materiæ, quæ vel minor esset quàm pars millesima materiæ
totius, his experimentis manifestò deprehendi potuit. Jam verò naturam
gravitatis in Planetas eandem esse atque in Terram non est dubium. Elevari
enim fingantur corpora hæc Terrestria ad usque Orbem Lunæ, & una cum Lunâ
motu omni privata demitti, ut in Terram simul cadant; & per jam ante
ostensa certum est quod temporibus æqualibus describent æqualia Spatia cum
Luna, adeoque quod sunt ad quantitatem materiæ in Luna, ut pondera sua ad
ipsius pondus. Porrò quoniam Satellites Jovis temporibus revolvuntur quæ
sunt in ratione sesquialtera distantiarum a centro Jovis, erunt eorum
gravitates acceleratrices in Jovem reciprocè ut quadrata distantiarum à
centro Jovis; & propterea in æqualibus à Jove distantiis eorum gravitates
acceleratrices evaderent æquales. Proinde temporibus æqualibus ab æqualibus
altitudinibus cadendo describerent æqualia Spatia, perinde ut fit in
gravibus, in hac Terra nostra. Et eodem argumento Planetæ circumsolares ab
æqualibus à Sole distantiis dimissi, descensu suo in Solem æqualibus
temporibus æqualia spatia describerent. Vires autem, quibus corpora
inæqualia æqualiter accelerantur, sunt ut corpora; hoc est pondera ut
quantitates materiæ in Planetis. Porrò Jovis & ejus Satellitum pondera in
Solem proportionalia esse quantitatibus materiæ eorum, patet ex motu
Satellitum quam maxime regulari; per Corol. 3. Prop. LXV. Lib. I. Nam si
horum aliqui magis traherentur in Solem pro quantitate materiæ suæ quàm
cæteri, motus Satellitum (per Corol. 2. Prop. LXV. Lib. I.) ex inæqualitate
attractionis perturbarentur. Si (paribus à Sole distantiis) Satelles
aliquis gravior esset in Solem pro quantitate materiæ suæ, quam Jupiter pro
quantitate materiæ suæ, in ratione quacunque data, puta d ad e: distantia
inter centrum Solis & centrum Orbis Satellitis major semper foret quam
distantia inter centrum Solis & centrum Jovis in ratione dimidiata quam
proximè; uti calculis quibusdam initis inveni. Et si Satelles minus gravis
esset in Solem in ratione illa d ad e, distantia centri Orbis Satellitis à
Sole minor foret quàm distantia centri Jovis à Sole in ratione illa
dimidiata. Igitur si in æqualibus à Sole distantiis, gravitas acceleratrix
Satellitis cujusvis in Solem major esset vel minor quàm gravitas
acceleratrix Jovis in Solem, parte tantum millesima gravitatis totius;
foret distantia centri Orbis Satellitis à Sole major vel minor quàm
distantia Jovis à Sole parte 1/2600 distantiæ totius, id est parte quinta
distantiæ Satellitis extimi à centro Jovis: Quæ quidem Orbis excentricitas
foret valde sensibilis. Sed Orbes Satellitum sunt Jovi concentrici, &
propterea gravitates acceleratrices Jovis & Satellitum in Solem æquantur
inter se. Et eodem argumento pondera Saturni & Comitis ejus in Solem, in
æqualibus à Sole distantiis, sunt ut quantitates materiæ in ipsis: Et
pondera Lunæ ac Terræ in Solem vel nulla sunt, vel earum massis accuratè
proportionalia.

Quinetiam pondera partium singularum Planetæ cujusque in alium quemcunque
sunt inter se ut materia in partibus singulis. Nam si partes aliquæ plus
gravitarent, aliæ minus, quàm pro quantitate materiæ, Planeta totus, pro
genere partium quibus maximè abundet, gravitaret magis vel minus quàm pro
quantitate materiæ totius. Sed nec refert utrum partes illæ externæ sint
vel internæ. Nam si verbi gratia corpora Terrestria, quæ apud nos sunt, in
Orbem Lunæ elevari fingantur, & conferantur cum corpore Lunæ: Si horum
pondera essent ad pondera partium externarum Lunæ ut quantitates materiæ in
iisdem, ad pondera verò partium internarum in majori vel minori ratione,
forent eadem ad pondus Lunæ totius in majori vel minori ratione: contra
quam supra ostensum est.

_Corol. 1._ Hinc pondera corporum non pendent ab eorum formis & texturis.
Nam si cum formis variari possent, forent majora vel minora pro varietate
formarum in æquali materia; omninò contra experientiam.

_Corol. 2._ Igitur corpora universa quæ circa Terram sunt, gravia sunt in
Terram; & pondera omnium, quæ æqualiter à centro Terræ distant, sunt ut
quantitates materiæ in iisdem. Nam si æther aut corpus aliud quodcunque vel
gravitate omnino destitueretur vel pro quantitate materiæ suæ minus
gravitaret, quoniam id non differt ab aliis corporibus nisi in forma
materiæ, posset idem per mutationem formæ gradatim transmutari in corpus
ejusdem conditionis cum iis quæ pro quantitate materiæ quam maximè
gravitant, (per Hypoth. III.) & vicissim corpora maxime gravia, formam
illius gradatim induendo, possent gravitatem suam gradatim amittere. Ac
proinde pondera penderent à formis corporum, possentque cum formis variari,
contra quam probatum est in Corollario superiore.

_Corol. 3._ Itaque Vacuum necessariò datur. Nam si spatia omnia plena
essent, gravitas specifica fluidi quo regio aeris impleretur, ob summam
densitatem materiæ, nil cederet gravitati specificæ argenti vivi, vel auri,
vel corporis alterius cujuscunque densissimi; & propterea nec aurum neque
aliud quodcunque corpus in aere descendere posset. Nam corpora in fluidis,
nisi specificè graviora sint, minimè descendunt.

_Corol. 4._ Gravitatem diversi generis esse à vi magnetica. Nam attractio
magnetica non est ut materia attracta. Corpora aliqua magis trahuntur, alia
minus, plurima non trahuntur. Estque vis magnetica longe major pro
quantitate materiæ quam vis gravitatis: sed & in eodem corpore intendi
potest & remitti; in recessu verò à magnete decrescit in ratione distantiæ
plusquam duplicata, per Prop. LXXXV. Lib. I.; propterea quod vis longe
fortior sit in contactu, quam cum attrahentia vel minimum separantur ab
invicem.

Prop. VII. Theor. VII.

    _Gravitatem in corpora universa fieri, eamque proportionalem esse
    quantitati materiæ in singulis._

Planetas omnes in se mutuò graves esse jam ante probavimus, ut & gravitatem
in unumquemque seorsim spectatum esse reciprocè ut quadratum distantiæ
locorum à centro Planetæ. Et inde consequens est, (per Prop. LXIX. Lib. I.
& ejus Corollaria) gravitatem in omnes proportionalem esse materiæ in
iisdem.

Porrò cum Planetæ cujusvis A partes omnes graves sint in Planetam quemvis
B, & gravitas partis cujusque sit ad gravitatem totius, ut materia partis
ad materiam totius, & actioni omni reactio (per motus Legem tertiam)
æqualis sit; Planeta B in partes omnes Planetæ A vicissim gravitabit, &
erit gravitas sua in partem unamquamque ad gravitatem suam in totum, ut
materia partis ad materiam totius.   _Q. E. D._

_Corol. 1._ Oritur igitur & componitur gravitas in Planetam totum ex
gravitate in partes singulas. Cujus rei exempla habemus in attractionibus
Magneticis & Electricis. Oritur enim attractio omnis in totum ex
attractionibus in partes singulas. Res intelligetur in gravitate,
concipiendo Planetas plures minores in unum Globum coire & Planetam majorem
componere. Nam vis totius ex viribus partium componentium oriri debebit.
Siquis objiciat quod corpora omnia, quæ apud nos sunt, hac lege gravitare
deberent in se mutuò, cùm tamen ejusmodi gravitas neutiquam sentiatur:
Respondeo quod gravitas in hæc corpora, cum sit ad gravitatem in Terram
totam ut sunt hæc corpora ad Terram totam, longe minor est quam quæ sentiri
possit.

_Corol. 2._ Gravitatio in singulas corporis particulas æquales est
reciprocè ut quadratum distantiæ locorum à particulis. Patet per Corol. 3.
Prop. LXXIV. Lib. I.

Prop. VIII. Theor. VIII.

    _Si Globorum duorum in se mutuò gravitantium materia undique, in
    regionibus quæ à centris æqualiter distant, homogenea sit: erit pondus
    Globi alterutrius in alterum reciprocè ut quadratum distantiæ inter
    centra._

Postquam invenissem gravitatem in Planetam totum oriri & componi ex
gravitatibus in partes; & esse in partes singulas reciprocè proportionalem
quadratis distantiarum à partibus: dubitabam an reciproca illa proportio
duplicata obtineret accuratè in vi tota ex viribus pluribus composita, an
verò quam proximè. Nam fieri posset ut proportio illa in majoribus
distantiis satis obtineret, at prope superficiem Planetæ, ob inæquales
particularum distantias & situs dissimiles, notabiliter erraret. Tandem
verò, per Prop. LXXV. Libri primi & ipsius Corollaria, intellexi veritatem
Propositionis de qua hic agitur.

_Corol. 1._ Hinc inveniri & inter se comparari possunt pondera corporum in
diversos Planetas. Nam pondera corporum æqualium circum Planetas in
circulis revolventium sunt (per Prop. IV. Lib. I.) ut diametri circulorum
directè & quadrata temporum periodicorum inversè; & pondera ad superficies
Planetarum aliasve quasvis à centro distantias majora sunt vel minora (per
hanc Propositionem) in duplicata ratione distantiarum inversa. Sic ex
temporibus periodicis Veneris circa Solem dierum 224-2/3, Satellitis extimi
circumjovialis circa Jovem dierum 16¾, Satellitis Hugeniani circa Saturnum
dierum 15 & horarum 22-2/3, & Lunæ circa Terram 27 _dier._ 7 hor. 43 min.
collatis cum distantia mediocri Veneris à Sole; cum Elongatione maxima
Heliocentrica Satellitis extimi circumjovialis, quæ (in mediocri Jovis à
Sole distantia juxta observationes _Flamstedii_) est 8'. 13"; cum
elongatione maximæ Heliocentrica Satellitis Saturnii 3'. 20"; & cum
distantia Lunæ à Terra, ex Hypothesi quod Solis parallaxis horizontalis seu
semidiameter Terræ è Sole visæ sit quasi 20"; calculum ineundo inveni quod
corporum æqualium & à Sole, Jove, Saturno ac Terra æqualiter distantium
pondera in Solem, Jovem, Saturnum ac Terram forent ad invicem ut 1, 1/1100,
1/2360 & 1/28700 respectivè. Est autem Solis semidiameter mediocris
apparens quasi 16'. 6". Illam Jovis è Sole visam _Flamstedius_, ex umbræ
Jovialis diametro per Eclipses Satellitum inventa, determinavit esse ad
elongationem Satellitis extimi ut 1 ad 24,9 adeoque cum elongatio illa sit
8'. 13" semidiameter Jovis è Sole visi erit 19"¾. Diameter Saturni est ad
diametrum Annuli ejus ut 4 ad 9, & diameter annuli è Sole visi (mensurante
_Flamstedio_) 50", adeoque semidiameter Saturnie è Sole visi 11". Malim
dicere 10" vel 9", propterea quod globus Saturni per lucis inæqualem
refrangibilitatem nonnihil dilatatur. Hinc inito calculo prodeunt veræ
Solis, Jovis, Saturni ac Terræ semidiametri ad invicem ut 10000, 1063, 889,
& 208. Unde cum pondera æqualium corporum à centris Solis, Jovis, Saturni
ac Telluris æqualiter distantium sint in Solem, Jovem, Saturnum ac Terram
ut 1, 1/1100, 1/2360, 1/28700 respective, & auctis vel diminutis distantiis
diminuuntur vel augentur pondera in duplicata ratione; erunt pondera
eorundem æqualium corporum in Solem, Jovem, Saturnum & Terram, in
distantiis 10000, 1063, 889 & 208 ab eorum centris, atque adeo in eorum
superficiebus versantium, ut 10000, 804½, 536 & 805½ respectivè. Pondera
corporum in superficie Lunæ ferè duplo minora esse quam pondera corporum in
superficie Terræ dicemus in sequentibus.

_Corol. 2._ Igitur pondera corporum æqualium, in superficiebus Terræ &
Planetarum, sunt fere in ratione dimidiata diametrorum apparentium è Sole
visarum. De Terræ quidem diametro è Sole visa nondum constat. Hanc assumpsi
40", propterea quod observationes _Kepleri_, _Riccioli_ & _Vendelini_ non
multo majorem esse permittunt; eam _Horroxii_ & _Flamstedii_ observationes
paulo minorem adstruere videntur. Et malui in excessu peccare. Quòd si
fortè diameter illa & gravitas in superficie Terræ mediocris sit inter
diametros Planetarum & gravitatem in eorum superficiebus: quoniam Saturni,
Jovis, Martis, Veneris & Mercurii è Sole visorum diametri sunt 18", 39"½,
8", 28", 20" circiter, erit diameter Terræ quasi 24", adeoque Parallaxis
Solis quasi 12", ut _Horroxius_ & _Flamstedius_ propemodum statuere. Sed
diameter paulo major melius congruit cum Regula hujus Corollarii.

_Corol. 3._ Innotescit etiam quantitas materiæ in Planetis singulis. Nam
quantitates illæ sunt ut Planetarum Vires in distantiis à se æqualibus; id
est in Sole, Jove, Saturno ac Terra ut 1, 1/1100, 1/2360, 1/28700
respectivè. Si Parallaxis Solis statuatur minor quam 20", debebit quantitas
materiæ in Terra diminui in triplicata ratione.

_Corol. 4._ Innotescunt etiam densitates Planetarum. Nam corporum æqualium
& homogeneorum pondera in Sphæras homogeneas in superficiebus Sphærarum,
sunt ut Sphærarum diametri per Prop. LXXII. Lib. I. ideoque Sphærarum
heterogenearum densitates sunt ut pondera applicata ad diametros. Erant
autem veræ Solis, Saturni, Jovis ac Terræ diametri ad invicem ut 10000,
889, 1063 & 208, & pondera in eosdem ut 10000, 536, 804½ & 805½, &
propterea densitates sunt ut 100, 60, 76, 387. Densitas autem Terræ, quæ
hic colligitur, non pendet à Parallaxi Solis, sed determinatur per
parallaxin Lunæ, & propterea hic recte definitur. Est igitur Sol paulo
densior quàm Jupiter, & Terra multo densior quàm Sol.

_Corol. 5._ Planetarum autem densitates inter se fere sunt in ratione
composita ex ratione distantiarum à Sole & ratione dimidiata diametrorum
apparentium è Sole visarum. Nempe Saturni, Jovis, Terræ & Lunæ densitates
60, 76, 387 & 700, fere sunt ut distantiarum reciproca 1/9538, 1/5201,
1/1000 & 1/1000, ducta in radices diametrorum apparentium 18", 39"½, 40", &
11". Diximus utique, in Corollario secundo, gravitatem ad superficies
Planetarum esse quam proximè in ratione dimidiata apparentium diametrorum è
Sole visarum; & in Lemmate quarto densitates esse ut gravitates illæ
applicatæ ad diametros veras: ideoque densitates fere sunt ut radices
diametrorum apparentium applicatæ ad diametros veras, hoc est reciproce ut
distantiæ Planetarum à Sole ductæ in radices diametrorum apparentium.
Collocavit igitur Deus Planetas in diversas distantiis à Sole, ut quilibet
pro gradu densitatis calore Solis majore vel minore fruatur. Aqua nostra,
si Terra locaretur in orbe Saturne, rigesceret, si in orbe Mercurii in
vapores statim abiret. Nam lux Solis, cui calor proportionalis est,
septuplo densior est in orbe Mercurii quàm apud nos; & Thermometro expertus
sum quod septuplo Solis æstivi calore aqua ebullit. Dubium verò non est
quin materia Mercurii ad calorem accommodetur, & propterea densior sit hac
nostra; cum materia omnis densior ad operationes Naturales obeundas majorem
calorem requirat.

Prop. IX. Theor. IX.

    _Gravitatem pergendo à superficiebus Planetarum deorsum decrescere in
    ratione distantiarum à centro quam proximè._

Si materia Planetæ quoad densitatem uniformis esset, obtineret hæc
Propositio accuratè: per Prop. LXXIII. Lib. I. Error igitur tantus est,
quantus ab inæquabili densitate oriri possit.

Prop. X. Theor. X.

    _Motus Planetarum in Coelis diutissimè conservari posse._

In Scholio Propositionis XL. Lib. II. ostensum est quod globus Aquæ
congelatæ in Aere nostro, liberè movendo & longitudinem semidiametri suæ
describendo, ex resistentia Aeris amitteret motus sui partem 1/3200.
Obtinet autem eadem proportio quam proximè (per Prop. XL. Lib. II.) in
globis utcunque magnis & velocibus. Jam verò Globum Terræ nostræ densiorem
esse quam si totus ex Aqua constaret, sic colligo. Si Globus hicce totus
esset aqueus, quæcunque rariora essent quàm aqua, ob minorem specificam
gravitatem emergerent & supernatarent. Eaque de causa Globus terreus aquis
undique coopertus, si rarior esset quam aqua, emergeret alicubi, & aqua
omnis inde defluens congregaretur in regione opposita. Et par est ratio
Terræ nostræ maribus magna ex parte circumdatæ. Hæc si densior non esset,
emergeret ex maribus, & parte sui pro gradu levitatis extaret ex Aqua,
maribus omnibus in regionem oppositam confluentibus. Eodem argumento maculæ
Solares leviores sunt quàm materia lucida Solaris cui supernatant. Et in
formatione qualicunque Planetarum, materia omnis gravior, quo tempore massa
tota fluida erat, centrum petebat. Unde cum Terra communis suprema quasi
duplo gravior sit quam aqua, & paulo inferius in fodinis quasi triplo vel
quadruplo aut etiam quintuplo gravior reperiatur: verisimile est quod copia
materiæ totius in Terra quasi quintuplo vel sextuplo major sit quàm si tota
ex aqua constaret; præsertim cum Terram quasi quintuplo densiorem esse quàm
Jovem jam ante ostensum sit. Igitur si Jupiter paulo densior sit quàm aqua,
hic spatio dierum viginti & unius, quibus longitudinem 320 semidiametrorum
suarum describit, amitteret in Medio ejusdem densitatis cum Aere nostro
motus sui partem fere decimam. Verum cum resistentia Mediorum minuatur in
ratione ponderis ac densitatis, sic ut aqua, quæ vicibus 13-2/3 levior est
quàm argentum vivum, minus resistat in eadem ratione; & aer, qui vicibus
800 levior est quàm aqua, minus resistat in eadem ratione: si ascendatur in
coelos ubi pondus Medii, in quo Planetæ moventur, diminuitur in immensum,
resistentia prope cessabit.

Prop. XI. Theor. XI.

    _Commune centrum gravitas Terræ Solis & Planetarum omnium quiescere._

Nam centrum illud (per Legum Corol. 4.) vel quiescet vel progredietur
uniformiter in directum. Sed centro illo semper progrediente, centrum Mundi
quoque movebitur contra Hypothesin quartam.

Prop. XII. Theor. XII.

    _Solem motu perpetuo agitari sed nunquam longe recedere à communi
    gravitatis centro Planetarum omnium._

Nam cum, per Corol. 3. Prop. VIII. materia in Sole sit ad materiam in Jove
ut 1100 ad 1, & distantia Jovis à Sole sit ad semidiametrum Solis in eadem
ratione circiter; commune centrum gravitatis Jovis & Solis incidet fere in
superficiem Solis. Eodem argumento cùm materia in Sole sit ad materiam in
Saturno ut 2360 ad 1, & distantia Saturni à Sole sit ad semidiametrum Solis
in ratione paulo minori: incidet commune centrum gravitatis Saturni & Solis
in punctum paulo infra superficiem Solis. Et ejusdem calculi vestigiis
insistendo si Terra & Planetæ omnes ex una Solis parte consisterent,
commune omnium centrum gravitatis vix integra Solis diametro à centro Solis
distaret. Aliis in casibus distantia centrorum semper minor est. Et
propterea cum centrum illud gravitatis perpetuo quiescit, Sol pro vario
Planetarum situ in omnes partes movebitur, sed à centro illo nunquam longe
recedet.

_Corol._ Hinc commune gravitatis centrum Terræ, Solis & Planetarum omnium
pro centro Mundi habendum est. Nam cùm Terra, Sol & Planetæ omnes gravitent
in se mutuò, & propterea, pro vi gravitatis suæ, secundum leges motûs
perpetuò agitentur: perspicuum est quod horum centra mobilia pro Mundi
centro quiescente haberi nequeunt. Si corpus illud in centro locandum esset
in quod corpora omnia maximè gravitant (uti vulgi est opinio) privilegium
istud concedendum esset Soli. Cum autem Sol moveatur, eligendum erit
punctum quiescens, à quo centrum Solis quam minimè discedit, & à quo idem
adhuc minus discederet, si modò Sol densior esset & major, ut minus
moveretur.

Prop. XIII. Theor. XIII.

    _Planetæ moventur in Ellipsibus umbilicum habentibus in centro Solis, &
    radiis ad centrum illud ductis areas describunt temporibus
    proportionales._

Disputavimus supra de his motibus ex Phænomenis. Jam cognitis motuum
principiis, ex his colligimus motus coelestes à priori. Quoniam pondera
Planetarum in Solem sunt reciprocè ut quadrata distantiarum à centro Solis;
si Sol quiesceret & Planetæ reliqui non agerent in se mutuò, forent orbes
eorum Elliptici, Solem in umbilico communi habentes, & areæ describerentur
temporibus proportionales (per Prop. I. & XI, & Corol. 1. Prop. XIII. Lib.
I.) Actiones autem Planetarum in se mutùo perexiguæ sunt (ut possint
contemni) & motus Planetarum in Ellipsibus circa Solem mobilem minus
perturbant (per Prop. LXVI. Lib. I.) quàm si motus isti circa Solem
quiescentem peragerentur.

Actio quidem Jovis in Saturnum non est omnino contemnenda. Nam gravitas in
Jovem est ad gravitatem in Solem (paribus distantiis) ut 1 ad 1100; adeoque
in conjunctione Jovis & Saturni, quoniam distantia Saturni à Jove est ad
distantiam Saturni à Sole fere ut 4 ad 9, erit gravitas Saturni in Jovem ad
gravitatem Saturni in Solem ut 81 ad 16 × 1100 seu 1 ad 217 circiter. Error
tamen omnis in motu Saturni circa Solem, à tanta in Jovem gravitate
oriundus, evitari fere potest constituendo umbilicum Orbis Saturni in
communi centro gravitatis Jovis & Solis (per Prop. LXVII. Lib. I.) &
propterea ubi maximus est vix superat minutos duos primos. In conjunctione
autem Jovis & Saturni gravitates acceleratrices Solis in Saturnum, Jovis in
Saturnum & Jovis in Solem sunt fere ut 16, 81 & {16 × 81 × 2360} ÷ 25 seu
122342, adeoque differentia gravitatum Solis in Saturnum & Jovis in
Saturnum est ad gravitatem Jovis in Solem ut 65 ad 122342 seu 1 ad 1867.
Huic autem differentiæ proportionalis est maxima Saturni efficacia ad
perturbandum motum Jovis, & propterea perturbatio orbis Jovialis longe
minor est quàm ea Saturnii. Reliquorum orbium perturbationes sunt adhuc
longe minores.

Prop. XIV. Theor. XIV.

    _Orbium Aphelia & Nodi quiescunt._

Aphelia quiescunt, per Prop. XI. Lib. I. ut & orbium plana, per ejusdem
Libri Prop. I. & quiescentibus planis quiescunt Nodi. Attamen à Planetarum
revolventium & Cometarum actionibus in se invicem orientur inæqualitates
aliquæ, sed quæ ob parvitatem contemni possunt.

_Corol. 1._ Quiescunt etiam Stellæ fixæ, propterea quod datas ad Aphelia
Nodosque positiones servant.

_Corol. 2._ Ideoque cum nulla sit earum parallaxis sensibilis ex Terræ motu
annuo oriunda, vires earum ob immensam corporum distantiam nullos edent
sensibiles effectus in regione Systematis nostri.

Prop. XV. Theor. XV.

    _Invenire Orbium transversas diametros._

Capiendæ sunt hæ in ratione sesquialtera temporum periodicorum per Prop.
XV. Lib. I. deinde sigillatim augendæ in ratione summæ massarum Solis &
Planetæ cujusque revolventis ad primam duarum mediè proportionalium inter
summam illam & Solem, per Prop. LX. Lib. I.

Prop. XVI. Prob. I.

    _Invenire Orbium Excentricitates & Aphelia._

Problema confit per Prop. XVIII. Lib. I.

Prop. XVII. Theor. XVI.

    _Planetarum motus diurnos uniformes esse, & librationem Lunæ ex ipsius
    motu diurno oriri._

Patet per motus Legem I, & Corol. 22. Prop. LXVI. Lib. I. Quoniam verò
Lunæ, circa axem suum uniformiter revolventis, dies menstruus est; hujus
facies eadem ulteriorem umbilicum orbis ipsius semper respiciet, &
propterea pro situ umbilici illius deviabit hinc inde à Terra. Hæc est
libratio in longitudinem. Nam libratio in latitudinem orta est ex
inclinatione axis Lunaris ad planum orbis. Porrò hæc ita se habere, ex
Phænomenis manifestum est.

Prop. XVIII. Theor. XVII.

    _Axes Planetarum dimetris quæ ad eosdem axes normaliter ducuntur
    minores esse._

Planetæ sublato omni motu circulari diurno figuram Sphæricam, ob æqualem
undique partium gravitatem, affectare deberent. Per motum illum circularem
fit ut partes ab axe recedentes juxta æquatorem ascendere conentur. Ideoque
materia si fluida sit ascensu suo ad æquatorem diametros adaugebit, axem
verò descensu suo ad polos diminuet. Sic Jovis diameter (consentientibus
observationibus _Cassini_ & _Flamstedii_) brevior deprehenditur inter polos
quàm ab oriente in occidentem. Eodem argumento, nisi Terra nostra paulò
altior esset sub æquatore quàm ad polos, Maria ad polos subsiderent, &
juxta æquatorem ascendendo, ibi omnia inundarent.

Prop. XIX. Prob. II.

    _Invenire proportionem axis Planetæ ad diametros eidem
    perpendiculares._

[Illustration]

Ad hujus Problematis solutionem requiritur computatio multiplex, quæ
facilius exemplis quàm præceptis addiscitur. Inito igitur calculo invenio,
per Prop. IV. Lib. I. quod vis centrifuga partium Terræ sub æquatore, ex
motu diurno oriunda, sit ad vim gravitatis ut 1 ad 290-4/5. Unde si APBQ
figuram Terræ designet revolutione Ellipseos circa axem minorem PQ genitam;
sitque ACQqca canalis aquæ plena, à polo Qq ad centrum Cc, & inde ad
æquatorem Aa pergens: debebit pondus aquæ in canalis crure ACca esse ad
pondus aquæ in crure altero QCcq ut 291 ad 290, eò quòd vis centrifuga ex
circulari motu orta partem unam è ponderis partibus 291 sustinebit &
detrahet, & pondus 290 in altero crure sustinebit partes reliquas. Porrò
(ex Propositionis XCI. Corollario secundo, Lib. I.) computationem ineundo,
invenio quod si Terra constaret ex uniformi materia, motuque omni
privaretur, & esset ejus axis PQ ad diametrum AB ut 100 ad 101: gravitas in
loco Q in Terram, foret ad gravitatem in eodem loco Q sphæram centro C
radio PC vel QC descriptam, ut 126-2/15 ad 125-2/15. Et eodem argumento
gravitas in loco A in Sphæroidem, convolutione Ellipseos APBQ circa axem AB
descriptam, est ad gravitatem in eodem loco A in Sphæram centro C radio AC
descriptam, ut 125-2/15 ad 126-2/15. Est autem gravitas in loco A in
Terram, media proportionalis inter gravitates in dictam Sphæroidem &
Sphæram, propterea quod Sphæra, diminuendo diametrum PQ in ratione 101 ad
100, vertitur in figuram Terræ; & hæc figura diminuendo in eadem ratione
diametrum tertiam, quæ diametris duabus AP, PQ perpendicularis est,
vertitur in dictam Sphæroidem, & gravitas in A, in casu utroque, diminuitur
in eadem ratione quam proximè. Est igitur gravitas in A in Sphæram centro C
radio AC descriptam, ad gravitatem in A in Terram ut 126 ad 125½, &
gravitas in loco Q in Sphæram centro C radio QC descriptam, est ad
gravitatem in loco A in Sphæram centro C radio AC descriptam, in ratione
diametrorum (per Prop. LXXII. Lib. I.) id est ut 100 ad 101: Conjungantur
jam hæ tres rationes, 126-2/15 ad 125-2/15, 125½ ad 126 & 100 ad 101 & fiet
gravitas in loco Q in Terram ad gravitatem in loco A in Terram, ut 126 ×
126 × 100 ad 125 × 125½ × 101, seu ut 501 ad 500.

Jam cum per Corol. 3. Prop. XCI. Lib. I. gravitas in canalis crure utrovis
ACca vel QCcq sit ut distantia locorum à centro Terræ; si crura illa
superficiebus transversis & æquidistantibus distinguantur in partes totis
proportionales, erunt pondera partium singularum in crure ACca ad pondera
partium totidem in crure altero, ut magnitudines & gravitates
acceleratrices conjunctim; id est ut 101 ad 100 & 500 ad 501, hoc est ut
505 ad 501. Ac proinde si vis centrifuga partis cujusque in crure ACca ex
motu diurno oriunda, fuisset ad pondus partis ejusdem ut 4 ad 505, eò ut de
pondere partis cujusque, in partes 505 diviso, partes quatuor detraheret;
manerent pondera in utroque crure æqualia, & propterea fluidum consisteret
in æquilibrio. Verum vis centrifuga partis cujusque est ad pondus ejusdem
ut 1 ad 290. Hoc est, vis centripeta quæ deberet esse ponderis pars 4/505
est tantum pars 1/290, & propterea dico, secundum Regulam auream, quod si
vis centrifuga 4/505 faciat ut altitudo aquæ in crure ACca superet
altitudin aquæ in crure QCcq parte centesima totius altitudinis: vis
centrifuga 1/290 faciet ut excessus altitudinis in crure ACca sit
altitudinis in crure altero QCcq pars tantum 3/689. Est igitur diameter
Terræ secundum æquatorem ad ipsius diametrum per polos ut 692 ad 689.
Ideoque cùm Terræ semidiameter mediocris, juxta nuperam Gallorum mensuram,
sit pedum Parisiensium 19615800 seu milliarium 3923 (posito quod milliare
sit mensura pedum 5000;) Terra altior erit ad æquatorem quàm ad polos,
excessu pedum 85200 seu milliarium 17.

Si Planeta vel major sit vel densior, minorve aut rarior quàm Terra,
manente tempore periodico revolutionis diurnæ, manebit proportio vis
centrifugæ ad gravitatem, & propterea manebit etiam proportio diametri
inter polos ad diametrum secundum æquatorem. At si motus diurnus in ratione
quacunque acceleretur vel retardetur, augebitur vel minuetur vis centrifuga
in duplicata illa ratione, & propterea differentia diametrorum augebitur in
eadem duplicata ratione. Unde cum Terra respectu fixarum revolvatur horis
23, 56' _Jupiter_ autem horis 9, 56', sintque temporum quadrata ut 29 ad 5,
differentia diametrorum _Jovis_ erit ad ipsius diametrum minorem ut {29 ×
3} ÷ {5 × 689} ad 1, seu 1 ad 39-3/5. Est igitur diameter _Jovis_ ab
oriente in occidentem ducta, ad ipsius diametrum inter polos ut 40-3/5 ad
39-3/5 quam proximè. Hæc ita se habent ex Hypothesi quod uniformis sit
Planetarum materia. Nam si materia densior sit ad centrum quàm ad
circumferentiam, diameter, quæ ab oriente in occidentem ducitur, erit adhuc
major.

Prop. XX. Prob. III.

    _Invenire & inter se comparare pondera corporum in regionibus
    diversis._

Quoniam pondera inæqualium crurum canalis aqueæ ACQqca æqualia sunt; &
pondera partium, cruribus totis proportionalium & similiter in totis
sitarum, sunt ad invicem ut pondera totorum, adeoque etiam æquantur inter
se; erunt pondera æqualium & in cruribus similiter sitarum partium
reciprocè ut crura, id est reciprocè ut 692 ad 689. Et par est ratio
homogeneorum & æqualium quorumvis & in canalis cruribus similiter sitorum
corporum. Horum pondera sunt reciprocè ut crura, id est reciprocè ut
distantiæ corporum à centro Terræ. Proinde si corpora in supremis canalium
partibus, sive in superficie Terræ consistant; erunt pondera eorum ad
invicem reciprocè ut distantiæ eorum à centro. Et eodem argumento pondera,
in aliis quibuscunque per totam Terræ superficiem regionibus, sunt
reciprocè ut distantiæ locorum à centro; & propterea, ex Hypothesi quod
Terra Sphærois sit, dantur proportione.

Unde tale confit Theorema, quod incrementum ponderis, pergendo ab Æquatore
ad Polos, sit quam proximè ut Sinus versus latitudinis duplicatæ, vel quod
perinde est ut quadratum Sinus recti Latitudinis. Exempli gratia, Latitudo
_Lutetiæ Parisiorum_ est 48 gr. 45': Ea Insulæ _Goree_ prope _Cape Verde_
14 gr. 15': ea _Cayennæ_ ad littus _Guianæ_ quasi 5 gr. ea locorum sub Polo
90 gr. Duplorum 97½ gr. 28½ gr. 10 gr. & 180 gr. Sinus versi sunt 11305,
1211, 152, & 20000. Proinde cum gravitas in Polo sit ad gravitatem sub
Æquatore ut 692 ad 689, & excessus ille gravitatis sub Polo ad gravitatem
sub Æquatore ut 3 ad 689; erit excessus gravitatis _Lutetiæ_, in Insula
_Goree_ & _Cayennæ_, ad gravitatem sub æquatore ut {3 × 11305} ÷ 20000, {3
× 1211} ÷ 20000 & {3 × 152} ÷ 20000 ad 689, seu 33915, 3633, & 456 ad
13780000, & propterea gravitates totæ in his locis erunt ad invicem ut
13813915, 13783633, 13780456, & 13780000. Quare cum longitudines Pendulorum
æqualibus temporibus oscillantium sint ut gravitates, & _Lutetiæ
Parisiorum_ longitudo penduli singulis minutis secundis oscillantis sit
pedum trium Parisiensium & 17/24 partium digiti; longitudines Pendulorum in
Insulâ _Goree_, in illâ _Cayennæ_ & sub Æquatore, minutis singulis secundis
oscillantium superabuntur à longitudine Penduli Parisiensis excessibus
81/1000, 89/1000 & 90/1000 partium digiti. Hæc omnia ita se habebunt, ex
Hypothesi quod Terra ex uniformi materia constat. Nam si materia ad centrum
paulò densior sit quàm ad superficiem, excessus illi erunt paulò majores;
propterea quod, si materia ad centrum redundans, qua densitas ibi major
redditur, subducatur & seorsim spectetur, gravitas in Terram reliquam
uniformiter densam erit reciprocè ut distantia ponderis à centro; in
materiam verò redundantem reciprocè ut quadratum distantiæ à materia illa
quam proximè. Gravitas igitur sub æquatore minor erit in materiam illam
redundantem quàm pro computo superiore, & propterea Terra ibi propter
defectum gravitatis paulò altius ascendet quàm in præcedentibus definitum
est. Jam verò Galli factis experimentis invenerunt quod Pendulorum minutis
singulis secundis oscillantium longitudo _Parisiis_ major sit quàm in
Insula _Goree_, parte decima digiti, & major quàm _Cayennæ_ parte octava.
Paulò majores sunt hæ differentiæ quam differentiæ 81/1000 & 89/1000 quæ
per computationem superiorem prodiere: & propterea (si crassis hisce
Observationibus satìs confidendum sit) Terra aliquanto altior erit sub
æquatore quàm pro superiore calculo, & densior ad centrum quàm in fodinis
prope superficiem. Si excessus gravitatis in locis hisce Borealibus supra
gravitatem ad æquatorem, experimentis majori cum diligentia institutis,
accuratè tandem determinetur, deinde excessus ejus ubique sumatur in
ratione Sinus versi latitudinis duplicatæ; determinabitur tum Mensura
Universalis, tum Æquatio temporis per æqualia pendula in locis diversis
indicati, tum etiam proportio diametrorum Terræ ac densitas ejus ad
centrum; ex Hypothesi quod densitas illa, pergendo ad circumferentiam,
uniformiter decrescat. Quæ quidem Hypothesis, licet accurata non sit, ad
ineundum tamen calculum assumi potest.

Prop. XXI. Theor. XVIII.

    _Puncta Æquinoctialia regredi, & axem Terræ singulis revolutionibus
    nutando bis inclinari in Eclipticam & bis redire ad positionem
    priorem._

Patet per Corol. 20. Prop. LXVI. Lib. I. Motus tamen iste nutandi
perexiguus esse debet, & vix aut ne vix quidem sensibilis.

Prop. XXII. Theor. XIX.

    _Motus omnes Lunares, omnesque motuum inæqualitates ex allatis
    Principiis consequi._

Planetas majores, interea dum circa Solem feruntur, posse alios minores
circum se revolventes Planetas deferre, & minores illos in Ellipsibus,
umbilicos in centris majorum habentibus, revolvi debere patet per Prop.
LXV. Lib. I. Actione autem Solis perturbabuntur eorum motus multimode,
iisque adficientur inæqualitatibus quæ in Luna nostra notantur. Hæc utique
(per Corol. 2, 3, 4, & 5 Prop. LXVI.) velocius movetur, ac radio ad Terram
ducto describit aream pro tempore majorem, orbemque habet minus curvam,
atque adeò propius accedit ad Terram, in Syzygiis quàm in Quadraturis, nisi
quatenus impedit motus Excentricitatis. Excentricitas enim maxima est (per
Corol. 9. Prop. LXVI.) ubi Apogæum Lunæ in Syzygiis versatur, & minima ubi
idem in Quadraturis consistit; & inde Luna in Perigæo velocior est & nobis
propior, in Apogæo autem tardior & remotior in Syzygiis quàm in
Quadraturis. Progreditur insuper Apogæum, & regrediuntur Nodi, sed motu
inæquabili. Et Apogæum quidem (per Corol. 7 & 8 Prop. LXVI.) velocius
progreditur in Syzygiis suis, tardius regreditur in Quadraturis, & excessu
progressus supra regressum annuatim fertur in consequentia. Nodi autem (per
Corol. 11. Prop. LXVI.) quiescunt in Syzygiis suis, & velocissimè
regrediuntur in Quadraturis. Sed & major est Lunæ latitudo maxima in ipsius
Quadraturis (per Corol. 10. Prop. LXVI.) quàm in Syzygiis: & motus medius
velocior in Perihelio Terræ (per Corol. 6. Prop. LXVI.) quàm in ipsius
Aphelio. Atque hæ sunt inæqualitates insigniores ab Astronomis notatæ.

Sunt etiam aliæ quædam nondum observatæ inæqualitates, quibus motus Lunares
adeò perturbantur, ut nulla hactenus lege ad Regulam aliquam certam reduci
potuerint. Velocitates enim seu motus horarii Apogæi & Nodorum Lunæ, &
eorundem æquationes, ut & differentia inter excentricitatem maximam in
Syzygiis & minimam in Quadraturis, & inæqualitas quæ Variatio dicitur,
augentur ac diminuuntur annuatim (per Corol. 14. Prop. LXVI.) in triplicata
ratione diametri apparentis Solaris. Et Variatio præterea augetur vel
diminuitur in duplicata ratione temporis inter quadraturas quam proximè
(per Corol. 1 & 2. Lem. X. & Corol. 16. Prop. LXVI. Lib. I.) Sed hæc
inæqualitas in calculo Astronomico, ad Prostaphæresin Lunæ referri solet, &
cum ea confundi.

Prop. XXIII. Prob. IV.

    _Motus inæquales Satellitum Jovis & Saturni à motibus Lunaribus
    derivare._

Ex motibus Lunæ nostræ motus analogi Lunarum seu Satellitum Jovis sic
derivantur. Motus medius Nodorum Satellitis extimi Jovialis est ad motum
medium Nodorum Lunæ nostræ, in ratione composita ex ratione duplicata
temporis periodici Terræ circa Solem ad tempus periodicum Jovis circa
Solem, & ratione simplici temporis periodici Satellitis circa Jovem ad
tempus periodicum Jovis circa Solem, & ratione simplici temporis periodici
Satellitis circa Jovem ad tempus periodicum Lunæ circa Terram: (per Corol.
16. Prop. LXVI.) adeoque annis centum conficit Nodus iste 9 gr. 34'. in
antecedentia. Motus medii Nodorum Satellitum interiorum sunt ad motum
hujus, ut illorum tempora periodica ad tempus periodicum hujus, per idem
Corollarium, & inde dantur. Motus autem Augis Satellitis cujusque in
consequentia est ad motum Nodorum ipsius in antecedentia ut motus Apogæi
Lunæ nostræ ad hujus motum Nodorum (per idem Corol.) & inde datur. Diminui
tamen debet motus Augis sic inventus in ratione 5 ad 9 vel 1 ad 2 circiter,
ob causam quam hic exponere non vacat. Æquationes maximæ Nodorum & Augis
Satellitis cujusque fere sunt ad æquationes maximas Nodorum & Augis Lunæ
respectivè, ut motus Nodorum & Augis Satellitum, tempore unius revolutionis
æquationum priorum, ad motus Nodorum & Apogæi Lunæ tempore unius
revolutionis æquationum posteriorum. Variatio Satellitis è Jove spectati,
est ad Variationem Lunæ ut sunt toti motus Nodorum temporibus periodicis
Satellitis & Lunæ ad invicem, per idem Corollarium, adeoque in Satellite
extimo non superat 6". 22"'. Parvitate harum inæqualitatum & tarditate
motuum fit ut motus Satellitum summè regulares reperiantur, utque Astronomi
recentiores aut motum omnem Nodis denegent, aut asserant tardissimè
retrogradum. Nam _Flamstedius_ collatis suis cum _Cassini_ Observationibus
Nodos tarde regredi deprehendit.

Prop. XXIV. Theor. XX.

    _Fluxum & refluxum Maris ab actionibus Solis ac Lunæ oriri debere._

Mare singulis diebus tam Lunaribus quàm Solaribus bis intumescere debere ac
bis defluere patet per Corol. 19. Prop. LXVI. Lib. I. ut & aquæ maximam
altitudinem, in maribus profundis & liberis, appulsum Luminarium ad
Meridianum loci minori quàm sex horarum spatio sequi, uti fit in Maris
_Atlantici_ & _Æthiopici_ tractu toto orientali inter _Galliam_ &
Promontorium _Bonæ Spei_, ut & in Maris _Pacifici_ littore _Chilensi_ &
_Peruviano_: in quibus omnibus littoribus æstus in horam circiter tertiam
incidit, nisi ubi motus per loca vadosa propagatus aliquantulum retardatur.
Horas numero ab appulsu Luminaris utriusque ad Meridianum loci, tam infra
Horizontem quàm supra, & per horas diei Lunaris intelligo vigesimas quartas
partes temporis quo Luna motu apparente diurno ad Meridianum loci
revolvitur.

Motus autem bini, quos Luminaria duo excitant, non cernentur distinctè, sed
motum quendam mixtum efficient. In Luminarium Conjunctione vel Oppositione
conjugentur eorum effectus, & componetur fluxus & refluxus maximus. In
Quadraturis Sol attollet aquam ubi Luna deprimit, deprimetque ubi Sol
attollit; & ex effectuum differentia æstus omnium minimus orietur. Et
quoniam, experientia teste, major est effectus Lunæ quàm Solis, incidet
aquæ maxima altitudo in horam tertiam Lunarem. Extra Syzygias &
Quadraturas, æstus maximus qui sola vi Lunari incidere semper deberet in
horam tertiam Lunarem, & sola Solari in tertiam Solarem, compositis viribus
incidet in tempus aliquod intermedium quod tertiæ Lunari propinquius est;
adeoque in transitu Lunæ à Syzygiis ad Quadraturas, ubi hora tertia Solaris
præcedit tertiam Lunarem, maxima aquæ altitudo præcedet etiam tertiam
Lunarem, idque maximo intervallo paulo post Octantes Lunæ; & paribus
intervallis æstus maximus sequetur horam tertiam Lunarem in transitu Lunæ à
Quadraturis ad Syzygias. Hæc ita sunt in mari aperto. Nam in ostiis
Fluviorum fluxus majores cæteris paribus tardius ad [Greek: akmên] venient.

Pendent autem effectus Luminarium ex eorum distantiis à Terra. In minoribus
enim distantiis majores sunt eorum effectus, in majoribus minores, idque in
triplicata ratione diametrorum apparentium. Igitur Sol tempore hyberno, in
Perigæo existens, majores edit effectus, efficitque ut æstus in Syzygiis
paulo majores sint, & in Quadraturis paulo minores (cæteris paribus) quàm
tempore æstivo; & Luna in Perigæo singulis mensibus majores ciet æstus quàm
ante vel post dies quindecim, ubi in Apogæo versatur. Unde fit ut æstus duo
omnino maximi in Syzygiis continuis se mutuo non sequantur.

Pendet etiam effectus utriusque Luminaris ex ipsius Declinatione seu
distantia ab Æquatore. Nam si Luminare in polo constitueretur, traheret
illud singulas aquæ partes constanter, absque actionis intensione &
remissione, adeoque nullam motus reciprocationem cieret. Igitur Luminaria
recedendo ab æquatore polum versus effectus suos gradatim amittent, &
propterea minores ciebunt æstus in Syzygiis Solstitialibus quàm in
Æquinoctialibus. In Quadraturis autem Solstitialibus majores ciebunt æstus
quàm in Quadraturis Æquinoctialibus; eò quod Lunæ jam in æquatore
constitutæ effectus maxime superat effectum Solis. Incidunt igitur æstus
maximi in Syzygias & minimi in Quadraturas Luminarium, circa tempora
Æquinoctii utriusque. Et æstum maximum in Syzygiis comitatur semper minimus
in Quadraturis, ut experientiâ compertum est. Per minorem autem distantiam
Solis à Terra, tempore hyberno quàm tempore æstivo, fit ut æstus maximi &
minimi sæpius præcedant Æquinoctium vernum quàm sequantur, & sæpius
sequantur autumnale quàm præcedant.

[Illustration]

Pendent etiam effectus Luminarium ex locorum latitudine. Designet ApEP
Tellurem aquis profundis undique coopertam; C centrum ejus; Pp, polos; AE
Æquatorem; F locum quemvis extra Æquatorem; Ff parallelum loci; Dd
parallelum ei respondentem ex altera parte æquatoris; L locum quem Luna
tribus ante horis occupabat; H locum Telluris ei perpendiculariter
subjectum; h locum huic oppositum; K, k loca inde gradibus 90 distantia,
CH, Ch Maris altitudines maximas mensuratas à centro Telluris; & CK, Ck
altitudines minimas; & si axibus Hh, Kk describatur Ellipsis, deinde
Ellipseos hujus revolutione circa axem majorem Hh describatur Sphærois
HPKhpk; designabit hæc figuram Maris quam proximè, & erunt CF, Cf, CD, Cd
altitudines Maris in locis F, f, D, d. Quinetiam si in præfata Ellipseos
revolutione punctum quodvis N describat circulum NM, secantem parallelos
Ff, Dd in locis quibusvis R, T, & æquatorem AE in S; erit CN altitudo Maris
in locis omnibus R, S, T, sitis in hoc circulo. Hinc in revolutione diurna
loci cujusvis F, affluxus erit maximus in F, hora tertia post appulsum Lunæ
ad Meridianum supra Horizontem; postea defluxus maximus in Q hora tertia
post occasum Lunæ; dein affluxus maximus in f hora tertia post appulsum
Lunæ ad Meridianum infra Horizontem; ultimò defluxus maximus in Q hora
tertia post ortum Lunæ; & affluxus posterior in f erit minor quàm affluxus
prior in F. Distinguitur enim Mare totum in duos omnino fluctus
Hemisphæricos, unum in Hemisphærio KHkC ad Boream vergentem, alterum in
Hemisphærio opposito KhkC; quos igitur fluctum Borealem & fluctum Australem
nominare licet. Hi fluctus semper sibi mutuò oppositi veniunt per vices ad
Meridianos locorum singulorum, interposito intervallo horarum Lunarium
duodecim. Cumque regiones Boreales magis participant fluctum Borealem, &
Australes magis Australem, inde oriuntur æstus alternis vicibus majores &
minores, in locis singulis extra æquatorem. Æstus autem major, Lunâ in
verticem loci declinante, incidet in horam circiter tertiam post appulsum
Lunæ ad Meridianum supra Horizontem, & Lunâ declinationem mutante vertetur
in minorem. Et fluxuum differentia maxima incidet in tempora Solstitiorum;
præsertim si Lunæ Nodus ascendens versatur in principio Arietis. Sic
experientiâ compertum est, quod æstus matutini tempore hyberno superent
vespertinos & vespertini tempore æstivo matutinos, ad _Plymuthum_ quidem
altitudine quasi pedis unius, ad _Bristoliam_ verò altitudine quindecim
digitorum: Observantibus _Colepressio_ & _Sturmio_.

Motus autem hactenus descripti mutantur aliquantulum per vim illam
reciprocationis aquarum, qua Maris æstus, etiam cessantibus Luminarium
actionibus, posset aliquamdiu perseverare. Conservatio hæcce motus impressi
minuit differentiam æstuum alternorum; & æstus proximè post Syzygias
majores reddit, eosque proximè post Quadraturas minuit. Unde fit ut æstus
alterni ad _Plymuthum_ & _Bristoliam_ non multo magis differant ab invicem
quàm altitudine pedis unius vel digitorum quindecim; utque æstus omnium
maximi in iisdem portubus non sint primi à Syzygiis sed tertii. Retardantur
etiam motus omnes in transitu per vada, adeò ut æstus omnium maximi, in
fretis quibusdam & Fluviorum ostiis, sint quarti vel etiam quinti à
Syzygiis.

Porrò fieri potest ut æstus propagetur ab Oceano per freta diversa ad
eundem portum, & citius transeat per aliqua freta quàm per alia, quo in
casu æstus idem, in duos vel plures successive advenientes divisus,
componere possit motus novos diversorum generum. Fingamus æstus duos
æquales à diversis locis in eundem portum venire, quorum prior præcedat
alterum spatio horarum sex, incidatque in horam tertiam ab appulsu Lunæ ad
Meridianum portus. Si Luna in hocce suo ad Meridianum appulsu versabatur in
æquatore, venient singulis horis senis æquales affluxus, qui in mutuos
refluxus incidendo eosdem affluxibus æquabunt, & sic spatio diei illius
efficient ut aqua tranquillè stagnet. Si Luna tunc declinabat ab Æquatore,
fient æstus in Oceano vicibus alternis majores & minores, uti dictum est; &
inde propagabuntur in hunc portum affluxus bini majores & bini minores,
vicibus alternis. Affluxus autem bini majores component aquam altissimam in
medio inter utrumque, affluxus major & minor faciet ut aqua ascendat ad
mediocrem altitudinem in Medio ipsorum, & inter affluxus binos minores aqua
ascendet ad altitudinem minimam. Sic spatio viginti quatuor horarum, aqua
non bis ut fieri solet, sed semel tantum perveniet ad maximam altitudinem &
semel ad minimam; & altitudo maxima, si Luna declinat in polum supra
Horizontem loci, incidet in horam vel sextam vel tricesimam ab appulsu Lunæ
ad Meridianum, atque Lunâ declinationem mutante mutabitur in defluxum.
Quorum omnium exemplum, in portu regni _Tunquini_ ad _Batsham_, sub
latitudine Boreali 20 gr. 50 min. _Halleius_ ex Nautarum Observationibus
patefecit. Ibi aqua die transitum Lunæ per Æquatorem sequente stagnat, dein
Lunâ ad Boream declinante incipit fluere & refluere, non bis, ut in aliis
portubus, sed semel singulis diebus; & æstus incidit in occasum Lunæ,
defluxus maximus in ortum. Cum Lunæ declinatione augetur hic æstus, usque
ad diem septimum vel octavum, dein per alios septem dies iisdem gradibus
decrescit, quibus antea creverat; & Lunâ declinationem mutante cessat, ac
mox mutatur in defluxum. Incidit enim subinde defluxus in occasum Lunæ &
affluxus in ortum, donec Luna iterum mutet declinationem. Aditus ad hunc
portum fretaque vicina duplex patet, alter ab Oceano _Sinensi_ inter
Continentem & Insulam _Luconiam_, alter à Mari _Indico_ inter Continentem &
Insulam _Borneo_. An æstus spatio horarum duodecim à Mari _Indico_, &
spatio horarum sex à Mari _Sinensi_ per freta illa venientes, & sic in
horam tertiam & nonam Lunarem incidentes, componant hujusmodi motus; sitne
alia Marium illorum conditio, observationibus vicinorum littorum
determinandum relinquo.

Hactenus causas motuum Lunæ & Marium reddidi. De quantitate motuum jam
convenit aliqua subjungere.

Prop. XXV. Prob. V.

    _Invenire vires Solis ad perturbandos motus Lunæ._

[Illustration]

Designet Q Solem, S Terram, P Lunam, PADB orbem Lunæ. In QP capiatur QK
æqualis QS; sitque QL ad QK in duplicata ratione QK ad QP & ipsi PS agatur
parallela LM; & si gravitas acceleratrix Terræ in Solem exponatur per
distantiam QS vel QK, erit QL gravitas acceleratrix Lunæ in Solem. Ea
componitur ex partibus QM, LM, quarum LM & ipsius QM pars SM perturbat
motum Lunæ, ut in Libri primi Prop. LXVI. & ejus Corollariis expositum est.
Quatenus Terra & Luna circum commune gravitatis centrum revolvuntur,
perturbabitur motus Terræ circa centrum illud à viribus consimilibus; sed
summas tam virium quàm motuum referre licet ad Lunam, & summas virium per
lineas ipsis analogas SM & ML designare. Vis ML (in mediocri sua
quantitate) est ad vim gravitatis, qua Luna in orbe suo circa Terram
quiescentem ad distantiam PS revolvi posset, in duplicata ratione temporum
periodicorum Lunæ circa Terram & Terræ circa Solem, (per Corol. 17. Prop.
LXVI. Lib. I.) hoc est in duplicata ratione dierum 27. hor. 7. min. 43. ad
dies 365. hor. 6. min. 9. id est ut 1000 ad 178725, seu 1 ad 178-8/11. Vis
qua Luna in orbe suo circa Terram quiescentem, ad distantiam PS
semidiametrorum terrestrium 60½ revolvi posset, est ad vim, qua eodem
tempore ad distantiam semidiametrorum 60 revolvi posset, ut 60½ ad 60; &
hæc vis ad vim gravitatis apud nos ut 1 ad 60 × 60. Ideoque vis mediocris
ML est ad vim gravitatis in superficie Terræ, ut 1 × 60½ ad 60 × 60 × 60 ×
178-8/11 seu 1 ad 638092,6. Unde ex proportione linearum SM, ML datur etiam
vis SM: & hæ sunt vires Solis quibus motus Lunæ perturbantur.   _Q. E. I._

Prop. XXVI. Prob. VI.

    _Invenire incrementum areæ quam Luna radio ad Terram ducto describit._

[Illustration]

Diximus aream, quam Luna radio ad Terram ducto describit, esse tempori
proportionalem, nisi quatenus motus Lunaris ab actione Solis turbatur.
Inæqualitatem momenti (vel incrementi horarii) hic investigandam
proponimus. Ut computatio facilior reddatur, fingamus orbem Lunæ circularem
esse, & inæqualitates omnes negligamus, ea sola excepta, de qua hic agitur.
Ob ingentem verò Solis distantiam ponamus etiam lineas QP, QS sibi invicem
parallelas esse. Hoc pacto vis LM reducetur semper ad mediocrem suam
quantitatem SP, ut & vis SM ad mediocrem suam quantitatem 3PK. Hæ vires,
per Legum Corol. 2. componunt vim SL; & hæc vis, si in radium SP demittatur
perpendiculum LE, resolvitur in vires SE, EL, quarum SE, agendo semper
secundum radium SP, nec accelerat nec retardat descriptionem areæ QSP radio
illo SP factam; & EL agendo secundum perpendiculum, accelerat vel retardat
ipsam, quantum accelerat vel retardat Lunam. Acceleratio illa Lunæ, in
transitu ipsius à Quadratura C ad conjunctionem A, singulis temporis
momentis facta, est ut ipsa vis accelerans EL, hoc est ut 3PK × SK ÷ SP.
Exponatur tempus per motum medium Lunarem, vel (quod eodem fere recidit)
per angulum CSP, vel etiam per arcum CP. Ad CS erigatur Normalis CG ipsi CS
æqualis. Et diviso arcu quadrantali AC in particulas innumeras æquales Pp
&c. per quas æquales totidem particulæ temporis exponi possint, ductâque pk
perpendiculari ad CS, jungatur SG ipsis KP, kp productis occurrens in F &
f; & erit Kk ad PK ut Pp ad Sp, hoc est in data ratione, adeoque FK × Kk
seu area FKkf ut 3PK × SK ÷ SP id est ut EL; & compositè, area tota GCKF ut
summa omnium virium EL tempore toto CP impressarum in Lunam, atque adeò
etiam ut velocitas hac summâ genita, id est, ut acceleratio descriptionis
areæ CSP, seu incrementum momenti. Vis qua Luna circa Terram quiescentem ad
distantiam SP, tempore suo periodico CADBC dierum 27. hor. 7. min. 43.
revolvi posset, efficeret ut corpus, tempore CS cadendo, describeret
longitudinem ½CS, & velocitatem simul acquireret æqualem velocitati, qua
Luna in orbe suo movetur. Patet hoc per Schol. Prop. IV. Lib. I. Cum autem
perpendiculum Kd in SP demissum sit ipsius EL pars tertia, & ipsius SP seu
ML in octantibus pars dimidia, vis EL in Octantibus, ubi maxima est,
superabit vim ML in ratione 3 ad 2, adeoque erit ad vim illam, qua Luna
tempore suo periodico circa Terram quiescentem revolvi posset, ut 100 ad
2/3 × 17872½ seu 11915, & tempore CS velocitatem generare deberet quæ esset
pars 100/11915 velocitatis Lunaris, tempore autem CPA velocitatem majorem
generaret in ratione CA ad CS seu SP. Exponatur vis maxima EL in Octantibus
per aream FK × Kk rectangulo ½SP × Pp æqualem. Et velocitas, quam vis
maxima tempore quovis CP generare posset, erit ad velocitatem quam vis
omnis minor EL eodem tempore generat ut rectangulum ½SP × CP ad aream KCGF:
tempore autem toto CPA, velocitates genitæ erunt ad invicem ut rectangulum
½SP × CA & triangulum SCG, sive ut arcus quadrantalis CA ad radium SP.
Ideoque (per Prop. IX. Lib. V. Elem.) velocitatis posterior, toto tempore
genita, erit pars 100/11915 velocitatis Lunæ. Huic Lunæ velocitati, quæ
areæ momento mediocri analoga est, addatur & auferatur dimidium velocitatis
alterius; & si momentum mediocre exponatur per numerum 11915 summa 11915 +
50 seu 11965 exhibebit momentum maximum areæ in Syzygia A, ac differentia
11915 - 50 seu 11865 ejusdem momentum minimum in Quadraturis. Igitur areæ
temporibus æqualibus in Syzygiis & Quadraturis descriptæ, sunt ad invicem
ut 11965 ad 11865. Ad momentum minimum 11865 addatur momentum, quod sit ad
momentorum differentiam 100 ut trapezium FKCG ad triangulum SCG (vel quod
perinde est, ut quadratum Sinus PK ad quadratum Radii SP, id est ut Pd ad
SP) & summa exhibebit momentum areæ, ubi Luna est in loco quovis intermedio
P.

Hæc omnia ita se habent, ex Hypothesi quod Sol & Terra quiescunt, & Luna
tempore Synodico dierum 27. hor. 7. min. 43. revolvitur. Cum autem periodus
Synodica Lunaris verè sit dierum 29. hor. 12. & min. 44. augeri debent
momentorum incrementa in ratione temporis. Hoc pacto incrementum totum,
quod erat pars 100/11915 momenti mediocris, jam fiet ejusdem pars
100/11023. Ideoque momentum areæ in Quadratura Lunæ erit ad ejus momentum
in Syzygia ut 11023 - 50 ad 11023 + 50, seu 10973 ad 11073, & ad ejus
momentum, ubi Luna in alio quovis loco intermedio P versatur, ut 10973 ad
10973 + Pd, existente videlicet SP æquali 100.

Area igitur, quam Luna radio ad Terram ducto singulis temporis particulis
æqualibus describit, est quam proximè ut summa numeri 219-46/100 & Sinus
versi duplicatæ distantiæ Lunæ à Quadratura proxima, in circulo cujus
radius est unitas. Hæc ita se habent ubi Variatio in Octantibus est
magnitudinis mediocris. Sin Variatio ibi major sit vel minor, augeri debet
vel minui Sinus ille versus in eadem ratione.

Prop. XXVII. Prob. VII.

    _Ex motu horario Lunæ invenire ipsius distantiam à Terra._

Area, quam Luna radio ad Terram ducto, singulis temporis momentis,
describit, est ut motus horarius Lunæ & quadratum distantiæ Lunæ à Terrâ
conjunctim; & propterea distantia Lunæ à Terrâ est in ratione compositâ ex
dimidiatâ ratione Areæ directè & dimidiatâ ratione motus horarii inversè.
_Q. E. I._

_Corol. 1._ Hinc datur Lunæ diameter apparens: quippe quæ sit reciprocè ut
ipsius distantia à Terra. Tentent Astronomi quàm probè hæc Regula cum
Phænomenis congruat.

_Corol. 2._ Hinc etiam Orbis Lunaris accuratiùs ex Phænomenis quàm antehac
definiri potest.

Prop. XXVIII. Prob. VIII.

    _Invenire diametros Orbis in quo Luna absque excentricitate moveri
    deberet._

[Illustration]

Curvatura Trajectoriæ, quam mobile, si secundum Trajectoriæ illius
perpendiculum trahatur, describit, est ut attractio directè & quadratum
velocitatis inversè. Curvaturas linearum pono esse inter se in ultima
proportione Sinuum vel Tangentium angulorum contactuum ad radios æquales
pertinentium, ubi radii illi in infinitum diminuuntur. Attractio autem Lunæ
in Terram in Syzygiis est excessus gravitatis ipsius in Terram supra vim
Solarem 2PK (Vide _Figur. pag. 434._) qua gravitas acceleratrix Lunæ in
Solem superat gravitatem acceleratricem Terræ in Solem. In Quadraturis
autem attractio illa est summa gravitatis Lunæ in Terram & vis Solaris KS,
qua Luna in Terram trahitur. Et hæ attractiones, si {AS + CS} ÷ 2 dicatur
N, sunt ut 178725 ÷ ASq. - 2000 ÷ {CS × N} & 178725 ÷ CSq. + 1000 ÷ {AS ×
N} quam proxime; seu ut 178725N in CSq. - 2000ASq. in CS, & 178725N in ASq.
+ 1000 CSq. × AS. Nam se gravitas acceleratrix Terræ in Solem exponatur per
numerum 178725, vis mediocris ML, quæ in Quadraturis est PS vel SK & Lunam
trahit in Terram, erit 1000, & vis mediocris SM in Syzygiis erit 3000; de
qua, si vis mediocris ML subducatur, manebit vis 2000 qua Luna in Syzygiis
distrahitur à Terra, quamque jam ante nominavi 2PK. Velocitas autem Lunæ in
Syzygiis A & B est ad ipsius velocitatem in Quadraturis C & D ut CS, ad AS
& momentum areæ quam Luna radio ad Terram ducto describit in Syzygiis ad
momentum ejusdem areæ in Quadraturis conjunctim; id est ut 11073CS ad
10973AS. Sumatur hæc ratio bis inversè & ratio prior semel directè, & fiet
Curvatura Orbis Lunaris in Syzygiis ad ejusdem Curvaturam in Quadraturis ut
120407 × 178725ASq. × CSq. × N - 120407 × 2000AS qq. × CS ad 122611 ×
178725ASq. × CSq. × N + 122611 × 1000CS qq. × AS, id est ut 2151969AS × CS
× N - 24081AS cub. ad 2191371AS × CS × N + 12261CS cub.

Quoniam figura orbis Lunaris ignoratur, hujus vice assumamus Ellipsin DBCA,
in cujus centro S Terra collocetur, & cujus axis major DC Quadraturis,
minor AB Syzygiis interjaceat. Cum autem planum Ellipseos hujus motu
angulari circa Terram revolvatur, & Trajectoria, cujus Curvaturam
consideramus, describi debet in plano quod motu omni angulari omnino
destituitur: consideranda erit figura, quam Luna in Ellipsi illa revolvendo
describit in hoc plano, hoc est Figura Cpa, cujus puncta singula p
inveniuntur capiendo punctum quodvis P in Ellipsi, quod locum Lunæ
representet, & ducendo Sp æqualem SP, ea lege ut angulus PSp æqualis sit
motui apparenti Solis à tempore Quadraturæ C confecto; vel (quod eodem fere
recidit) ut angulus CSp sit ad angulum CSP ut tempus revolutionis Synodicæ
Lunaris ad tempus revolutionis Periodicæ seu 29 d. 12. h. 44', ad 27 d. 7
h. 43'. Capiatur igitur angulus CSa in eadem ratione ad angulum rectum CSA,
& sit longitudo Sa æqualis longitudini SA; & erit a Apsis ima & C Apsis
summa orbis hujus Cpa. Rationes autem ineundo invenio quod differentia
inter curvaturam orbis Cpa in vertice a, & curvaturam circuli centro S
intervallo SA descripti, sit ad differentiam inter curvaturam Ellipseos in
vertice A & curvaturam ejusdem circuli, in duplicata ratione anguli CSP ad
angulum CSp; & quod curvatura Ellipseos in A sit ad curvaturam circuli
illius in duplicata ratione SA ad SC; & curvatura circuli illius ad
curvaturam circuli centro S intervallo SC descripti ut SC ad SA; hujus
autem curvatura ad curvaturam Ellipseos in C in duplicata ratione SA ad SC;
& differentia inter curvaturam Ellipseos in vertice C & curvaturam circuli
novissimi, ad differentiam inter curvaturam figuræ Spa in vertice C &
curvaturam ejusdem circuli, in duplicata ratione anguli CSP ad angulum CSp.
Quæ quidem rationes ex Sinubus angulorum contactus ac differentiarum
angulorum facilè colliguntur. Collatis autem his rationibus inter se,
prodit curvatura figuræ Cpa in a ad ipsius curvaturam in C, ut AS cub. +
16824/100000CSq. × AS ad CS cub. + 16824/100000ASq. × CS. Ubi numerus
16824/100000 designat differentiam quadratorum angulorum CSP & CSp
applicatam ad Quadratum anguli minoris CSP, seu (quod perinde est)
differentiam Quadratorum temporum 27 d. 7 h. 43', & 29 d. 12 h. 44',
applicatam ad Quadratum temporis 27 d. 7 h. 43'.

Igitur cum a designet Syzygiam Lunæ, & C ipsius Quadraturam, proportio jam
inventa eadem esse debet cum proportione curvaturæ Orbis Lunæ in Syzygiis
ad ejusdem curvaturam in Quadraturis, quam supra invenimus. Proinde ut
inveniatur proportio CS ad AS, duco extrema & media in se invicem. Et
termini prodeuntes ad AS × CS applicati, fiunt 2062,79CS qq. - 2151969N ×
CS cub. + 368682N × AS × CSq. + 36342ASq. × CSq. - 362046N × ASq. × CS +
2191371N × AS cub. + 4051,4AS qq. = 0. Hic pro terminorum AS & CS semisummâ
N scribo 1, & pro eorundem semidifferentia ponendo x, fit CS = 1 + x, & AS
= 1 - x: quibus in æquatione scriptis, & æquatione prodeunte resolutâ,
obtinetur x æqualis 0,0072036, & inde semidiameter CS fit 1,0072, &
semidiameter AS 0,9928, qui numeri sunt ut 69-11/12 & 68-11/12 quam
proximè. Est igitur distantia Lunæ à Terra in Syzygiis ad ipsius distantiam
in Quadraturis (seposita scilicet excentricitatis consideratione) ut
68-11/12 ad 69-11/12, vel numeris rotundis ut 69 ad 70.

Prop. XXIX. Prob. IX.

    _Invenire Variationem Lunæ._

[Illustration]

Oritur hæc inæqualitas partim ex forma Elliptica orbis Lunaris, partim ex
inæqualitate momentorum areæ, quam Luna radio ad Terram ducto describit. Si
Luna P in Ellipsi DBCA circa Terram in centro Ellipseos quiescentem
moveretur, & radio SP ad Terram ducto describeret aream CSP tempori
proportionalem; esset autem Ellipseos semidiameter maxima CS ad
semidiametrum minimam SA ut 69-11/12 ad 68-11/12: foret Tangens anguli CSP
ad Tangentem anguli motus medii à quadratura C computati, ut Ellipseos
semidiameter SA ad ejusdem semidiametrum SC seu 68-11/12 ad 69-11/12. Debet
autem descriptio areæ CSP, in progressu Lunæ à Quadratura ad Syzygiam, ea
ratione accelerari, ut ejus momentum in Syzygia Lunæ sit ad ejus momentum
in Quadratura ut 11073 ad 10973, utq; excessus momenti in loco quovis
intermedio P supra momentum in Quadratura sit ut quadratum Sinus anguli
CSP. Id quod satis accuratè fiet, si tangens anguli CSP diminuatur in
dimidiata ratione numeri 10973 ad numerum 11073, id est in ratione numeri
68-5958/10000 ad numerum 68-11/12. Quo pacto tangens anguli CSP jam erit ad
tangentem motus medii ut 68-5958/10000 ad 69-11/12, & angulus CSP in
Octantibus, ubi motus medius est 45 gr. invenietur 44 gr. 27'. 29": qui
subductus de angulo motus medii 45 gr. relinquit Variationem 32'. 31". Hæc
ita se haberent si Luna, pergendo à Quadratura ad Syzygiam, describeret
angulum CSA graduum tantum nonaginta. Verum ob motum Terræ, quo Sol in
antecedentia motu apparente transfertur, Luna, priusquam Solem assequitur,
describit angulum CSa angulo recto majorem in ratione revolutionis Lunaris
Synodicæ ad revolutionem periodicam, id est in ratione 29 d. 12 h. 44'. ad
27 d. 7 h. 43'. Et hoc pacto anguli omnes circa centrum S dilatantur in
eadem ratione, & Variatio quæ secus esset 32'. 31". jam aucta in eadem
ratione, fit 35'. 9". Hæc ab Astronomis constituitur 40', & ex
recentioribus Observationibus 38'. _Halleius_ autem recentissimè
deprehendit esse 38' in Octantibus versus oppositionem Solis, & 32' in
Octantibus Solem versus. Unde mediocris ejus magnitudo erit 35': quæ cum
magnitudine à nobis inventa 35'. 9" probe congruit. Magnitudinem enim
mediocrem computavimus, neglectis differentiis, quæ à curvaturâ Orbis
magni, majorique Solis actione in Lunam falcatam & novam quam in Gibbosam &
plenam, oriri possint.

Prop. XXX. Prob. X.

    _Invenire motum horarium Nodorum Lunæ in Orbe circulari._

[Illustration]

Designet S Solem, T Terram, P Lunam, NPn Orbem Lunæ, Npn vestigium Orbis in
plano Eclipticæ; N, n, Nodos, nTNm lineam Nodorum infinitè productam, PI,
PK; perpendicula demissa in lineas ST, Qq; Pp perpendiculum demissum in
planum Eclipticæ; Q, q Quadraturas Lunæ in plano Eclipticæ & pK
perpendiculum in lineam Qq Quadraturis intrajacentem. Et vis Solis ad
perturbandum motum Lunæ (per Prop. XXV.) duplex erit, altera lineæ 2IT vel
2Kp, altera lineæ PI proportionalis. Et Luna vi priore in Solem, posteriore
in lineam ST trahitur. Componitur autem vis posterior PI ex viribus IT &
PT, quarum PT agit secundum planum orbis Lunaris, & propterea situm plani
nil mutat. Hæc igitur negligenda est. Vis autem IT cum vi 2IT componit vim
totam 3IT, qua planum Orbis Lunaris perturbatur. Et hæc vis per Prop. XXV.
est ad vim qua Luna in circulo circa Terram quiescentem tempore suo
periodico revolvi posset, ut 3IT ad Radium circuli multiplicatum per
numerum 178,725, sive ut IT ad Radium multiplicatum per 59,575. Cæterum in
hoc calculo & eo omni qui sequitur, considero lineas omnes à Luna ad Solem
ductas tanquam parallelas lineæ quæ à Terra ad Solem ducitur, propterea
quod inclinatio tantum ferè minuit effectus omnes in aliquibus casibus,
quantum auget in aliis; & Nodorum motus mediocres quærimus, neglectis
istiusmodi minutiis, quæ calculum nimis impeditum redderent.

Designet jam PM arcum, quem Luna dato tempore quam minimo describit, & ML
lineolam quam Luna, impellente vi præfata 3IT, eodem tempore describere
posset. Jungantur PL, MP, & producantur eæ ad m & l, ubi secent planum
Eclipticæ; inque Tm demittatur perpendiculum PH. Et quoniam ML parallela
est ipsi ST, si ml parallela sit ipsi ML, erit ml in plano Eclipticæ, &
contra. Ergo ml, cum sit in plano Eclipticæ, parallela erit ipsi ML, &
similia erunt triangula LMP, Lmp. Jam cum MPm sit in plano Orbis, in quo
Luna in loco P movebatur, incidet punctum m in lineam Nn per Orbis illius
Nodos N, n, ductam. Et quoniam vis qua lineola LM generatur, si tota simul
& semel in loco P impressa esset, efficeret ut Luna moveretur in arcu,
cujus Chorda esset LP, atque adeò transferret Lunam de plano MPmT in planum
LPlT; motus Nodorum à vi illa genitus æqualis erit angulo mTl. Est autem ml
ad mP ut ML ad MP, adeoque cum MP ob datum tempus data sit, est ml ut
rectangulum ML × mP, id est ut rectangulum IT × mP. Et angulus mTl, si modo
angulus Tml rectus sit, est ut ml ÷ Tm, & propterea ut IT × Pm ÷ Tm id est
(ob proportionales Tm & mP, TP & PH) ut IT × PH ÷ TP, adeoque ob datam TP,
ut IT × PH. Quod si angulus Tml, seu STN obliquus sit, erit angulus mTl
adhuc minor, in ratione Sinus anguli STN ad Radium. Est igitur velocitas
Nodorum ut IT × PH & Sinus anguli STN conjunctim, sive ut contentum sub
sinubus trium angulorum TPI, PTN & STN.

Si anguli illi, Nodis in Quadraturis & Luna in Syzygia existentibus, recti
sint, lineola ml abibit in infinitum, & angulus mTl evadet angulo mPl
æqualis. Hoc autem in casu, angulus mPl est ad angulum PTM, quem Luna eodem
tempore motu suo apparente circa Terram describit ut 1 ad 59,575. Nam
angulus mPl æqualis est angulo LPM, id est angulo deflexionis Lunæ à recto
tramite, quam præfata vis Solaris 3IT dato illo tempore generare possit; &
angulus PTM æqualis est angulo deflexionis Lunæ à recto tramite, quem vis
illa, qua Luna in Orbe suo retinetur, eodem tempore generat. Et hæ vires,
uti supra diximus, sunt ad invicem ut 1 ad 59,575. Ergo cum motus medius
horarius Lunæ (respectu fixarum) sit 32'. 56". 27"'. 12^{iv}½, motus
horarius Nodi in hoc casu erit 33". 10"'. 33^{iv}. 12^v. Aliis autem in
casibus motus iste horarius erit ad 33". 10"'. 33^{iv}. 12^v. ut contentum
sub sinibus angulorum trium TPI, PTN, & STN (seu distantiarum Lunæ à
Quadratura, Lunæ à Nodo & Nodi à Sole) ad cubum Radii. Et quoties signum
anguli alicujus de affirmativo in negativum, deque negativo in affirmativum
mutatur, debebit motus regressivus in progressivum & progressivus in
regressivum mutari. Unde fit ut Nodi progrediantur quoties Luna inter
Quadraturam alterutram & Nodum Quadraturæ proximum versatur. Aliis in
casibus regrediuntur, & per excessum regressus supra progressum, singulis
mensibus feruntur in antecedentia.

[Illustration]

_Corol. 1._ Hinc si a dati arcus quam minimi PM terminis P & M ad lineam
Quadraturas jungentem Qq demittantur perpendicula PK, Mk, eademque
producantur donec secent lineam Nodorum Nn in D & d; erit motus horarius
Nodorum ut area MPDd & quadratum lineæ AZ conjunctim. Sunto enim PK, PH &
AZ prædicti tres Sinus. Nempe PK Sinus distantiæ Lunæ à Quadratura, PH
Sinus distantiæ Lunæ à Nodo, & AZ Sinus distantiæ Nodi à Sole: & erit
velocitas Nodi ut contentum PK × PH × AZ. Est autem PT ad PK ut PM ad Kk,
adeoque ob datas PT & PM est Kk ipsi PK proportionalis. Est & AT ad PD ut
AZ ad PH, & propterea PH rectangulo PD × AZ proportionalis, & conjunctis
rationibus, PK × PH est ut contentum Kk × PD × AZ, & PK × PH × AZ ut Kk ×
PD × AZ qu. id est ut area PDdM, & AZ qu. conjunctim.   _Q. E. D._

_Corol. 2._ In data quavis Nodorum positione, motus horarius mediocris est
semissis motus horarii in Syzygiis Lunæ, ideoque est ad 16". 35"'. 16^{iv}.
36^v. ut quadratum Sinus distantiæ Nodorum à Syzygiis ad quadratum Radii,
sive ut AZ qu. ad AT qu. Nam si Luna uniformi cum motu perambulet
semicirculum QAq, summa omnium arearum PDdM, quo tempore Luna pergit à Q ad
M, erit area QMdE quæ ad circuli tangentem QE terminatur; & quo tempore
Luna attingit punctum n, summa illa erit area tota EQAn quam linea PD
describit; dein Luna pergente ab n ad q, linea PD cadet extra circulum, &
aream nqe ad circuli tangentem qe terminatam describet; quæ, quoniam Nodi
prius regrediebantur, jam verò progrediuntur, subduci debet de area priore,
& cum æqualis sit areæ QEN, relinquet semicirculum NQAn. Igitur summa
omnium arearum PDdM, quo tempore Luna semicirculum describit, est area
semicirculi; & summa omnium quo tempore Luna circulum describit est area
circuli totius. At area PDdM, ubi Luna versatur in Syzygiis, est
rectangulum sub arcu PM & radio MT; & summa omnium huic æqualium arearum,
quo tempore Luna circulum describit, est rectangulum sub circumferentia
tota & radio circuli; & hoc rectangulum, cum sit æquale duobus circulis,
duplo majus est quàm rectangulum prius. Proinde Nodi, eâ cum velocitate
uniformiter continuatâ quam habent in Syzygiis Lunaribus, spatium duplo
majus describerent quàm revera describunt; & propterea motus mediocris
quocum, si uniformiter continuaretur, spatium à se inæquabili cum motu
revera confectum describere possent, est semissis motus quem habent in
Syzygiis Lunæ. Unde cum motus orarius maximus, si Nodi in Quadraturis
versantur, sit 33". 10"'. 33^{iv}. 12^v, motus mediocris horarius in hoc
casu erit 16". 35"'. 16^{iv}. 36^v. Et cum motus horarius Nodorum semper
sit ut AZ qu. & area PDdM conjunctim, & propterea motus horarius Nodorum in
Syzygiis Lunæ ut AZ qu. & area PDdM conjunctim, id est (ob datam aream PDdM
in Syzygiis descriptam) ut AZ qu. erit etiam motus mediocris ut AZ qu.
atque adeo hic motus, ubi Nodi extra Quadraturas versantur, erit ad 16".
35"'. 16^{iv}. 36^v. ut AZ qu. ad AT qu. _Q. E. D._

Prop. XXXI. Prob. XI.

    _Invenire motum horarium Nodorum Lunæ in Orbe Elliptico._

[Illustration]

Designet Qpmaq Ellipsim, axe majore Qq, minore ab descriptam, QAq circulum
circumscriptum, T Terram in utriusque centro communi, S Solem, p Lunam in
Ellipsi moventem, & pm arcum quem data temporis particula quam minima
describit, N & n Nodos linea Nn junctos, pK & mk perpendicula in axem Qq
demissa & hinc inde producta, donec occurrant circulo in P & M, & lineæ
Nodorum in D & d. Et si Luna, radio ad Terram ducto, aream describat
tempori proportionalem, erit motus Nodi in Ellipsi ut area pDdm.

Nam si PF tangat circulum in P, & producta occurrat TN in F, & pf tangat
Ellipsin in p & producta occurrat eidem TN in f, conveniant autem hæ
Tangentes in axe TQ ad Y; & si ML designet spatium quod Luna in circulo
revolvens, interea dum describit arcum PM, urgente & impellente vi prædicta
3IT, motu transverso describere posset, & ml designet spatium quod Luna in
Ellipsi revolvens eodem tempore, urgente etiam vi 3IT, describere posset; &
producantur LP & lp donec occurrant plano Eclipticæ in G & g; & jungantur
FG & fg, quarum FG producta secet pf, pg & TQ in c, e & R respectivè, & fg
producta secet TQ in r: Quoniam vis 3IT seu 3PK in circulo est ad vim 3IT
seu 3pK in Ellipsi, ut PK ad pK, seu AT ad aT; erit spatium ML vi priore
genitum, ad spatium ml vi posteriore genitum, ut PK ad pK, id est ob
similes figuras PYKp & FYRc, ut FR ad cR. Est autem ML ad FG (ob similia
triangula PLM, PGF) ut PL ad PG, hoc est (ob parallelas Lk, PK, GR) ut pl
ad pe, id est (ob similia triangula plm, cpe) ut lm ad ce; & inversè ut LM
est ad lm, seu FR ad cR, ita est FG ad ce. Et propterea si fg esset ad ce
ut fY ad cY, id est ut fr ad cR, (hoc est ut fr ad FR & FR ad cR
conjunctim, id est ut fT ad FT & FG ad ce conjunctim,) quoniam ratio FG ad
ce utrinque ablata relinquit rationes fg ad FG & fT ad FT, foret fg ad FG
ut fT ad FT; propterea quod anguli, quos FG & fg subtenderent ad Terram T,
æquarentur inter se. Sed anguli illi (per ea quæ in præcedente Propositione
exposuimus) sunt motus Nodorum, quo tempore Luna in circulo arcum PM, in
Ellipsi arcum pm percurrit: & propterea motus Nodorum in Circulo & Ellipsi
æquarentur inter se. Hæc ita se haberent, si modo fg esset ad ce ut fY ad
cY, id est si fg æqualis esset ce × fY ÷ cY. Verum ob similia triangula
fgp, cep, est fg ad ce ut fp ad cp; ideoque fg æqualis est ce × fp ÷ cp, &
propterea angulus, quem fg revera subtendit, est ad angulum priorem, quem
FG subtendit, hoc est motus Nodorum in Ellipsi ad motum Nodorum in Circulo,
ut hæc fg seu ce × fp ÷ cp ad priorem fg seu ce × fY ÷ cY, id est ut fp ×
cY ad cp × fY, seu fp ad fY & cY ad cp; hoc est, si pb ipsi TN parallela
occurrat FP in b, ut Fb ad FY & FY ad FP; hoc est ut Fb ad FP seu Dp ad DP,
adeoque ut area Dpmd ad aream DPMd. Et propterea, cum area posterior
proportionalis sit motui Nodorum in Circulo, erit area prior proportionalis
motui Nodorum in Ellipsi.   _Q. E. D._

_Corol._ Igitur cum, in data Nodorum positione, summa omnium arearum pDdm,
quo tempore Luna pergit à Quadratura ad locum quemvis m, sit area mpQEd,
quæ ad Ellipseos Tangentem QE terminatur; & summa omnium arearum illarum,
in revolutione integra, sit area Ellipseos totius: motus mediocris Nodorum
in Ellipsi erit ad motum mediocrem Nodorum in circulo, ut Ellipsis ad
circulum, id est ut Ta ad TA, seu 68-11/12 ad 69-11/12. Et propterea, cum
motus mediocris horarius Nodorum in circulo sit ad 16". 35"'. 16^{iv}.
36^v. ut AZ qu. ad AT qu. si capiatur angulus 16". 21"'. 2^{iv}. 36^v. ad
angulum 16". 35"'. 16^{iv}. 36^v. ut 68-11/12 ad 69-11/12, erit motus
mediocris horarius Nodorum in Ellipsi ad 16". 21"'. 2^{iv}. 36^v. ut AZq.
ad ATq.; hoc est ut quadratum Sinus distantiæ Nodi à Sole ad quadratum
Radii.

Cæterum Luna, radio ad Terram ducto, aream velocius describit in Syzygiis
quàm in Quadraturis, & eo nomine tempus in Syzygiis contrahitur, in
Quadraturis producitur; & una cum tempore motus Nodorum augetur ac
diminuitur. Erat autem momentum areæ in Quadraturis Lunæ ad ejus momentum
in Syzygiis ut 10973 ad 11073; & propterea momentum mediocre in Octantibus
est ad excessum in Syzygiis, defectumque in Quadraturis, ut numerorum
semisumma 11023 ad eorundem semidifferentiam 50. Unde cum tempus Lunæ in
singulis Orbis particulis æqualibus sit reciprocè ut ipsius velocitas, erit
tempus mediocre in Octantibus ad excessum temporis in Quadrantibus, ac
defectum in Syzygiis, ab hac causa oriundum, ut 11023 ad 50 quam proxime.
Pergendo autem à Quadraturis ad Syzygias, invenio quod excessus momentorum
areæ in locis singulis, supra momentum minimum in Quadraturis, sit ut
quadratum Sinus distantiæ Lunæ à Quadrantibus quam proximè; & propterea
differentia inter momentum in loco quocunque & momentum mediocre in
Octantibus, est ut differentia inter quadratum Sinus distantiæ Lunæ à
Quadraturis & quadratum Sinus graduum 45, seu semissem quadrati Radii; &
incrementum temporis in locis singulis inter Octantes & Quadraturas, &
decrementum ejus inter Octantes & Syzygias est in eadem ratione. Motus
autem Nodorum, quo tempore Luna percurrit singulas Orbis particulas
æquales, acceleratur vel retardatur in duplicata ratione temporis. Est enim
motus iste, dum Luna percurrit PM, (cæteris paribus) ut ML, & ML est in
duplicata ratione temporis. Quare motus Nodorum in Syzygiis, eo tempore
confectus quo Luna datas Orbis particulas percurrit, diminuitur in
duplicata ratione numeri 11073 ad numerum 11023; estque decrementum ad
motum reliquum ut 100 ad 10973, ad motum verò totum ut 100 ad 11073 quam
proximè. Decrementum autem in locis inter Octantes & Syzygias, &
incrementum in locis inter Octantes & Quadraturas, est quam proxime ad hoc
decrementum, ut motus totus in locis illis ad motum totum in Syzygiis &
differentia inter quadratum Sinus distantiæ Lunæ à Quadratura & semissem
quadrati Radii ad semissem quadrati Radii, conjunctim. Unde si Nodi in
Quadraturis versentur, & capiantur loca duo æqualiter ab Octante hinc inde
distantia, & alia duo à Syzygiâ & Quadraturâ iisdem intervallis distantia,
deque decrementis motuum in locis duabus inter Syzygiam & Octantem,
subducantur incrementa motuum in locis reliquis duobus, quæ sunt inter
Octantem & Quadraturam; decrementum reliquum æquale erit decremento in
Syzygia: uti rationem ineunti facilè constabit. Proindeque decrementum
mediocre, quod de Nodorum motu mediocri subduci debet, est pars quarta
decrementi in Syzygia. Motus totus horarius Nodorum in Syzygiis (ubi Luna
radio ad Terram ducto aream tempori proportionalem describere supponebatur)
erat 32". 42"'. 5^{iv}. 12^v. Et decrementum motus Nodorum, quo tempore
Luna jam velocior describit idem spatium, diximus esse ad hunc motum ut 100
ad 11073; adeoque decrementum illud est 17"'. 43^{iv}. 10^v, cujus pars
quarta 4"'. 25^{iv}. 48^v, motui horario mediocri superius invento 16".
21"'. 2^{iv}. 36^v. subducta, relinquit 16". 16"'. 36^{iv}. 48^v. motum
mediocrem horarium correctum.

Si Nodi versantur extra Quadraturas, & spectentur loca bina à Syzygiis hinc
inde æqualiter distantia; summa motuum Nodorum, ubi Luna versatur in his
locis, erit ad summam motuum, ubi Luna in iisdem locis & Nodi in
Quadraturis versantur, ut AZ qu. ad AT qu. Et decrementa motuum, à causis
jam expositis oriunda, erunt ad invicem ut ipsi motus, adeoque motus
reliqui erunt ad invicem ut AZ qu. ad AT qu. & motus mediocres ut motus
reliqui. Est itaque motus mediocris horarius correctus, in dato quocunque
Nodorum situ, ad 16". 16"'. 36^{iv}. 48^v. ut AZ qu. ad AT qu.; id est ut
quadratum Sinus distantiæ Nodorum à Syzygiis ad quadratum Radii.

Prop. XXXII. Prob. XII.

    _Invenire motum medium Nodorum Lunæ._

Motus medius annuus est summa motuum omnium horariorum mediocrium in anno.
Concipe Nodum versari in N, & singulis horis completis retrahi in locum
suum priorem, ut non obstante motu suo proprio, datum semper servet situm
ad Stellas Fixas. Interea verò Solem S, per motum Terræ, progredi à Nodo, &
cursum annuum apparentem uniformiter complere. Sit autem Aa arcus datus
quam minimus, quem recta TS ad Solem semper ducta, intersectione sua &
circuli NAn, dato tempore quam minimo describit: & motus horarius mediocris
(per jam ostensa) erit ut AZq. id est (ob proportionales AZ, ZY) ut
rectangulum sub AZ & ZY, hoc est ut area AZYa. Et summa omnium horariorum
motuum mediocrium ab initio, ut summa omnium arearum aYZA, id est ut area
NAZ. Est autem maxima AZYa æqualis rectangulo sub arcu Aa & radio circuli;
& propterea summa omnium rectangulorum in circulo toto ad summam totidem
maximorum, ut area circuli totius ad rectangulum sub circumferentia tota &
radio; id est ut 1 ad 2. Motus autem horarius, rectangulo maximo
respondens, erat 16". 16"'. 36^{iv}. 48^v. Et hic motus, anno toto sidereo
dierum 365. 6 hor. 9 min. fit 39 gr. 38'. 5". 39"'. Ideoque hujus dimidium
19 gr. 49'. 2". 49"'½ est motus medius Nodorum circulo toti respondens. Et
motus Nodorum, quo tempore Sol pergit ab N ad A, est ad 19 gr. 49'. 2".
49"'½ ut area NAZ ad circulum totum.

[Illustration]

Hæc ita se habent, ex Hypothesi quod Nodus horis singulis in locum priorem
retrahitur, sic ut Sol anno toto completo ad Nodum eundem redeat à quo sub
initio digressus fuerat. Verum per motum Nodi fit ut Sol citius ad Nodum
revertatur, & computanda jam est abbreviatio temporis. Cum Sol anno toto
conficiat 360 gradus, & Nodus motu maximo eodem tempore conficeret 39 gr.
38'. 5". 39"'. seu 39,6349 gradus; & motus mediocris Nodi in loco quovis N
sit ad ipsius motum mediocrem in Quadraturis suis, ut AZq. ad ATq. erit
motus Solis ad motum Nodi in N, ut 360 ATq. ad 39,6349 AZq.; id est ut
9,0829032 ATq. ad AZq. Unde si circuli totius circumferentia NAn dividatur
in particulas æquales Aa, tempus quo Sol percurrat particulam Aa, si
circulus quiesceret, erit ad tempus quo percurrit eandem particulam, si
circulus una cum Nodis circa centrum T revolvatur, reciprocè ut 9,0829032
ATq. ad 9,0829032 ATq. + AZq. Nam tempus est reciprocè ut velocitas qua
particula percurritur, & hæc velocitas est summa velocitatum Solis & Nodi.
Igitur si tempus, quo Sol absque motu Nodi percurreret arcum NA, exponatur
per Sectorem NTA, & particula temporis quo percurreret arcum quam minimum
Aa, exponatur per Sectoris particulam ATa; & (perpendiculo aY in Nn
demisso) si in AZ capiatur dZ, ejus longitudinis ut sit rectangulum dZ in
ZY ad Sectoris particulam ATa ut AZq. ad 9,0829032 ATq. + AZq. id est ut
sit dZ ad ½AZ ut ATq. ad 9,0829032 ATq. + AZq.; rectangulum dZ in ZY
designabit decrementum temporis ex motu Nodi oriundum, tempore toto quo
arcus Aa percurritur. Et si punctum d tangit curvam NdGn, area curvilinea
NdZ erit decrementum totum, quo tempore arcus totus NA percurritur; &
propterea excessus Sectoris NAT supra aream NdZ erit tempus illud totum. Et
quoniam motus Nodi tempore minore minor est in ratione temporis, debebit
etiam area AaYZ diminui in eadem ratione. Id quod fiet si capiatur in AZ
longitudo eZ, quæ sit ad longitudinem AZ ut AZq. ad 9,08299032 ATq. + AZq.
Sic enim rectangulum eZ in ZY erit ad aream AZYa ut decrementum temporis,
quo arcus Aa percurritur, ad tempus totum, quo percurreretur si Nodus
quiesceret: Et propterea rectangulum illud respondebit decremento motus
Nodi. Et si punctum e tangat curvam NeFn, area tota NeZ, quæ summa est
omnium decrementorum, respondebit decremento toti, quo tempore arcus AN
percurritur; & area reliqua NAe respondebit motui reliquo, qui verus est
Nodi motus quo tempore arcus totus NA, per Solis & Nodi conjunctos motus,
percurritur. Jam verò si circuli radius AT ponatur 1, erit area semicirculi
1,570796; & area figuræ NeFnT, per methodum Serierum infinitarum quæsita,
prodibit 0,1188478. Motus autem qui respondet circulo toti erat 19 gr. 49'.
2". 49"'½; & propterea motus, qui figuræ NeFnT duplicatæ respondet, est 1
gr. 29'. 57". 51"'½. Qui de motu priore subductus relinquit 18 gr. 19'. 4".
58"'. motum totum Nodi inter sui ipsius Conjunctiones cum Sole; & hic motus
de Solis motu annuo graduum 360 subductus, relinquit 341 gr. 40'. 55". 2"'.
motum Solis inter easdem Conjunctiones. Iste autem motus est ad motum
annuum 360 gr. ut Nodi motus jam inventus 18 gr. 19'. 4". 58"'. ad ipsius
motum annuum, qui propterea erit 19 gr. 18'. 0". 22"'. Hic est motus medius
Nodorum in anno sidereo. Idem per Tabulas Astronomicas est 19 gr. 20'. 31".
1"'. Differentia minor est parte quadringentesima motus totius, & ab Orbis
Lunaris Excentricitate & Inclinatione ad planum Eclipticæ oriri videtur.
Per Excentricitatem Orbis motus Nodorum nimis acceleratur, & per ejus
Inclinationem vicissim retardatur aliquantulum, & ad justam velocitatem
reducitur.

Prop. XXXIII. Prob. XIII.

    _Invenire motum verum Nodorum Lunæ._

[Illustration]

In tempore quod est ut area NTA - NdZ, (_in Fig. præced._) motus iste est
ut area NAeN, & inde datur. Verum ob nimiam calculi difficultatem, præstat
sequentem Problematis constructionem adhibere. Centro C, intervallo quovis
CD, describatur circulus BEFD. Producatur DC ad A, ut sit AB ad AC ut motus
medius ad semissem motus veri mediocris, ubi Nodi sunt in Quadraturis: (id
est ut 19 gr. 18'. 0". 22"'. ad 19 gr. 49'. 2". 49"'½, atque adeo BC ad AC
ut motuum differentia 0 gr. 31'. 2". 27"'½, ad motum posteriorem 19 gr.
49'. 2". 49"'½, hoc est, ut 1. ad 38-1/3) dein per punctum D ducatur
infinita Gg, quæ tangat circulum in D; & si capiatur angulus BCE vel BCF
æqualis semissi distantiæ Solis à loco Nodi, per motum medium invento; &
agatur AE vel AF secans perpendiculum DG in G; & capiatur angulus qui sit
ad motum Nodi inter ipsius Syzygias (id est ad 9 gr. 10'. 40".) ut tangens
DG ad circuli BED circumferentiam totam, atque angulus iste ad motum medium
Nodorum addatur; habebitur eorum motus verus. Nam motus verus sic inventus
congruet quam proximè cum motu vero qui prodit exponendo tempus per aream
NTA - NdZ, & motum Nodi per aream NAeN; ut rem perpendenti constabit. Hæc
est æquatio annua motus Nodorum. Est & æquatio menstrua, sed quæ ad
inventionem Latitudinis Lunæ minimè necessaria est. Nam cum Variatio
inclinationis Orbis Lunaris ad planum Eclipticæ duplici inæqualitati
obnoxia sit, alteri annuæ, alteri autem menstruæ; hujus menstrua
inæqualitas & æquatio menstrua Nodorum ita se mutuò contemperant &
corrigunt, ut ambæ in determinanda Latitudine Lunæ negligi possint.

_Corol._ Ex hac & præcedente Propositione liquet quod Nodi in Syzygiis suis
quiescunt, in Quadraturis autem regrediuntur motu horario 16". 18"'.
41^{iv}½. Et quod æquatio motus Nodorum in Octantibus sit 1 gr. 30'. Quæ
omnia cum Phænomenis coelestibus probè quadrant.

Prop. XXXIV. Prob. XIV.

    _Invenire Variationem horariam inclinationis Orbis Lunaris ad planum
    Eclipticæ._

[Illustration]

Designent A & a Syzygias; Q & q Quadraturas; N & n Nodos; P locum Lunæ in
Orbe suo; p vestigium loci illius in plano Eclipticæ, & mTl motum
momentaneum Nodorum ut supra. Et si ad lineam Tm demittatur perpendiculum
PG, jungatur pG, & producatur ea donec occurrat Tl in g, & jungatur etiam
Pg: erit angulus PGp inclinatio orbis Lunaris ad planum Eclipticæ, ubi Luna
versatur in P; & angulus Pgp inclinatio ejusdem post momentum temporis
completum, adeoque angulus GPg Variatio momentanea inclinationis. Est autem
hic angulus GPg ad angulum GTg ut TG ad PG & Pp ad PG conjunctim. Et
propterea si pro momento temporis substituatur hora; cum angulus GTg (per
Prop. XXX.) sit ad angulum 33". 10"'. 33^{iv}. ut IT × PG × AZ ad AT cub.
erit angulus GPg (seu inclinationis horaria Variatio) ad angulum 33". 10"'.
33^{iv}. ut IT × AZ × TG × Pp ÷ PG ad AT cub.   _Q. E. I._

Hæc ita se habent ex Hypothesi quod Luna in Orbe circulari uniformiter
gyratur. Quod si orbis ille Ellipticus sit, motus mediocris Nodorum
minuetur in ratione axis minoris ad axem majorem; uti supra expositum est.
Et in eadem ratione minuetur etiam Sinus IT. Inclinationis autem Variatio
tantum augebitur per decrementum Sinus IT, quantum diminuitur per
decrementum motus Nodorum; & propterea idem manebit atque prius.

_Corol. 1._ Si ad Nn erigatur perpendiculum TF, sitque pM motus horarius
Lunæ in plano Eclipticæ; & perpendicula pK, Mk in QT demissa & utrinque
producta occurrant TF in H & h: erit Kk ad Mp ut pK seu IT ad AT, & TZ ad
AT ut TG ad Hp; ideoque IT × TG æquale Kk × Hp × TZ ÷ Mp, hoc est æquale
areæ HpMh ductæ in rationem TZ ÷ Mp: & propterea inclinationis Variatio
horaria ad 33". 10"'. 33^{iv}. ut HpMh ducta in AZ × {TZ ÷ Mp} × {Pp ÷ PG}
ad AT cub.

_Corol. 2._ Ideoque si Terra & Nodi singulis horis completis retraherentur
à locis suis novis, & in loca priora in instanti semper reducerentur, ut
situs eorum, per mensem integrum periodicum, datus maneret; tota
Inclinationis Variatio tempore mensis illius foret ad 33". 10"'. 33^{iv},
ut aggregatum omnium arearum HpMh, in revolutione puncti p generatarum, &
sub signis propriis + & - conjunctarum, ductum in AZ × TZ × Pp ÷ PG, ad Mp
× AT cub. id est ut circulus totus QAqa ductus in AZ × TZ × Pp ÷ PG ad Mp ×
AT cub. hoc est ut circumferentia QAqa ducta in AZ × TZ × Pp ÷ PG ad 2MP ×
AT quad.

_Corol. 3._ Proinde in dato Nodorum situ, Variatio mediocris horaria, ex
quâ per mensem uniformiter continuatâ Variatio illa menstrua generari
posset, est ad 33". 10"'. 33^{iv}. ut AZ × TZ × Pp ÷ PG ad 2ATq. id est
(cum Pp sit ad PG ut Sinus Inclinationis prædictæ ad Radium, & AZ × TZ ÷ AT
sit ad ½AT ut sinus duplicati anguli ATn ad Radium) ut inclinationis
ejusdem Sinus ductus in Sinum duplicatæ distantiæ Nodorum à Sole, ad
quadruplum quadratum Radii.

_Corol. 4._ Quoniam inclinationis horaria Variatio, ubi Nodi in Quadraturis
versantur, est (per Propositionem superiorem) ad angulum 33". 10"'.
33^{iv}. ut IT × AZ × TG × Pp ÷ PG ad AT cub. id est ut {IT × TG ÷ AT} ×
{Pp ÷ PG} ad AT; hoc est ut Sinus duplicatæ distantiæ Lunæ à Quadraturis
ductus in Pp ÷ PG ad radium duplicatum: summa omnium Variationum
horariarum, quo tempore Luna in hoc situ Nodorum transit à Quadratura ad
Syzygiam, (id est spatio horarum 177-1/6,) erit ad summam totidem angulorum
33". 10"'. 33^{iv}. seu 5878"½, ut summa omnium sinuum duplicatæ distantiæ
Lunæ à Quadraturis ducta in Pp ÷ PG ad summam totidem diametrorum; hoc est
ut diameter ducta in Pp ÷ PG, ad circumferentiam; id est si inclinatio sit
5 gr. 2', ut 7 × 876/10000 ad 22, seu 279 ad 10000. Proindeque Variatio
tota, ex summa omnium horariarum Variationum tempore prædicto conflata, est
164", seu 2'. 44".

Prop. XXXV. Prob. XV.

    _Dato tempore invenire Inclinationem Orbis Lunaris ad planum
    Eclipticæ._

[Illustration]

Sit AD Sinus inclinationis maximæ, & AB Sinus Inclinationis minimæ.
Bisecetur BD in C, & centro C, intervallo BC, describatur Circulus BGD. In
AC capiatur CE in ea ratione ad EB quam EB habet ad 2BA: Et si dato tempore
constituatur angulus AEG æqualis duplicatæ distantiæ Nodorum à Quadraturis,
& ad AD demittatur perpendiculum GH: erit AH Sinus inclinationis quæsitæ.

Nam GEq. æquale est GHq. + HEq. = BHD + HEq. = HBD + HEq. - BHq. = HBD +
BEq. - 2BH × BE = BEq. + 2EC × BH = 2EC × AB + 2EC × BH = 2EC × AH. Ideoque
cum 2EC detur, est GEq. ut AH. Designet jam AEg distantiam Nodorum à
Quadraturis post datum aliquod momentum temporis completum, & arcus Gg, ob
datum angulum GEg, erit ut distantia GE. Est autem Hh ad Gg ut GH ad GC, &
propterea Hh est ut contentum GH × Gg seu GH × GE; id est ut {GH ÷ GE} × GE
qu. seu {GH ÷ GE} × AH, id est ut AH & sinus anguli AEG conjunctim. Igitur
si AH in casu aliquo sit Sinus inclinationis, augebitur ea iisdem
incrementis cum sinu inclinationis, per Corol. 3. Propositionis superioris,
& propterea sinui illi æqualis semper manebit. Sed AH ubi punctum G incidit
in punctum alterutrum B vel D huic Sinui æqualis est, & propterea eidem
semper æqualis manet.   _Q. E. D._

In hac demonstratione supposui angulum BEG, qui distantia est Nodorum à
Quadraturis, uniformiter augeri. Nam omnes inæqualitatum minutias expendere
non vacat. Concipe jam angulum BEG rectum esse, & Gg esse augmentum
horarium distantiæ Nodorum & Solis ab invicem; & inclinationis Variatio
horaria (per Corol. 3. Prop. novissimæ) erit ad 33". 10"'. 33^{iv}. ut
contentum sub inclinationis Sinu AH & Sinu anguli recti BEG, qui est
duplicata distantia Nodorum à Sole, ad quadruplum quadratum Radii; id est
ut mediocris inclinationis Sinus AH ad radium quadruplicatum; hoc est (cum
inclinatio illa mediocris sit quasi 5 gr. 8'½.) ut ejus Sinus 896 ad radium
quadruplicatum 40000, sive ut 224 ad 10000. Est autem Variatio tota, Sinuum
differentiæ BD respondens, ad variationem illam horariam ut diameter BD ad
arcum Gg; id est ut diameter BD ad semicircumferentiam BGD & tempus horarum
2080, quo Nodus pergit à Quadraturis ad Syzygias, ad horam unam conjunctim;
hoc est ut 7 ad 11 & 2080 ad 1. Quare si rationes omnes conjungantur, fiet
Variatio tota BD ad 33". 10"'. 33^{iv}. ut 224 × 7 × 2080 ad 110000, id est
ut 2965 ad 100, & inde Variatio illa BD prodibit 16'. 24".

Hæc est inclinationis Variatio maxima quatenus locus Lunæ in Orbe suo non
consideratur. Nam inclinatio, si Nodi in Syzygiis versantur, nil mutatur ex
vario situ Lunæ. At si Nodi in Quadraturis consistunt, inclinatio major est
ubi Luna versatur in Syzygiis, quàm ubi ea versatur in Quadraturis, excessu
2'. 44"; uti in Propositionis superioris Corollario quarto indicavimus. Et
hujus excessus dimidio 1'. 22" Variatio tota mediocris BD in Quadraturis
Lunaribus diminuta fit 15'. 2", in ipsius autem Syzygiis aucta fit 17'.
46". Si Luna igitur in Syzygiis constituatur, Variatio tota, in transitu
Nodorum à Quadraturis ad Syzygias, erit 17'. 46". adeoque si Inclinatio,
ubi Nodi in Syzygiis versantur, sit 5 gr. 17'. 46". eadem, ubi Nodi sunt in
Quadraturis, & Luna in Syzygiis, erit 5 gr. Atque hæc ita se habere
confirmatur ex Observationibus. Nam statuunt Astronomi Inclinationem Orbis
Lunaris ad planum Eclipticæ, ubi Nodi sunt in Quadraturis & Luna in
oppositione Solis, esse quasi 5 gr. Ubi verò Nodi sunt in Syzygiis, eandem
docent esse 5 gr. 17'½ vel 5 gr. 18'.

Si jam desideretur Orbis Inclinatio illa, ubi Luna in Syzygiis & Nodi
ubivis versantur; fiat AB ad AD ut Sinus 5 gr. ad Sinum 5 gr. 17'. 46", &
capiatur angulus AEG æqualis duplicatæ distantiæ Nodorum à Quadraturis; &
erit AH Sinus Inclinationis quæsitæ. Huic Orbis Inclinationi æqualis est
ejusdem Inclinatio, ubi Luna distat 90 gr. à Nodis. Aliis in Lunæ locis
inæqualitas menstrua, quam Inclinationis variatio admittit, in calculo
Latitudinis Lunæ compensatur & quodammodo tollitur per inæqualitatem
menstruam motus Nodorum, (ut supra diximus) adeoque in calculo Latitudinis
illius negligi potest.

_Scholium._

Hactenus de motibus Lunæ quatenus Excentricitas Orbis non consideratur.
Similibus computationibus inveni, quod Apogæum ubi in Conjunctione vel
Oppositione Solis versatur, progreditur singulis diebus 23' respectu
Fixarum; ubi verò in Quadraturis est, regreditur singulis diebus 16-1/3
circiter: quodque ipsius motus medius annuus sit quasi 40 gr. Per Tabulas
Astronomicas à _Cl. Flamstedio_ ad Hypothesin _Horroxii_ accommodatas,
Apogæum in ipsius Syzygiis progreditur cum motu diurno 24'. 28", in
Quadraturis autem regreditur cum motu diurno 20'. 12", & motu medio annuo
40 gr. 41' fertur in consequentia. Quod differentia inter motum diurnum
progressivum Apogæi in ipsius Syzygiis, & motum diurnum regressivum in
ipsius Quadraturis, per Tabulas sit 4'. 16", per computationem verò nostram
6'-2/3, vitio Tabularum tribuendum esse suspicamur. Sed neque computationem
nostram satis accuratam esse putamus. Nam rationem quandam ineundo prodiere
Apogæi motus diurnus progressivus in ipsius Syzygiis, & motus diurnus
regressivus in ipsius Quadraturis, paulo majores. Computationes autem, ut
nimis perplexas & approximationibus impeditas, neque satis accuratas,
apponere non lubet.

Prop. XXXVI. Prob. XVI.

    _Invenire vim Solis ad Mare movendum._

[Illustration]

Solis vis ML seu PS, in Quadraturis Lunaribus, ad perturbandos motus
Lunares, erat (per Prop. XXV. hujus) ad vim gravitatis apud nos ut 1 ad
638092,6. Et vis SM - LM seu 2PK in Syzygiis Lunaribus est duplo major. Hæ
autem vires, si descendatur ad superficiem Terræ, diminuuntur in ratione
distantiarum à centro Terræ, id est in ratione 60½ ad 1; adeoque vis prior
in superficie Terræ est ad vim gravitatis ut 1 ad 38604600. Hac vi Mare
deprimitur in locis quæ 90 gr. distant à Sole. Vi alterâ quæ duplo major
est Mare elevatur, & sub Sole & in regione Soli opposita. Summa virium est
ad vim gravitatis ut 1 ad 12868200. Et quoniam vis eadem eundem ciet motum,
sive ea deprimat Aquam in regionibus quæ 90 gr. distant à Sole, sive elevet
eandem in regionibus sub Sole & Soli oppositis, hæc summa erit tota Solis
vis ad Mare agitandum; & eundem habebit effectum ac si tota in regionibus
sub Sole & Soli oppositis mare elevaret, in regionibus autem quæ 90 gr.
distant à Sole nil ageret.

_Corol._ Hinc cum vis centrifuga partium Terræ à diurno Terræ motu oriunda,
quæ est ad vim gravitatis ut 1 ad 291, efficiat ut altitudo Aquæ sub
Æquatore superet ejus altitudinem sub polis mensura pedum Parisiensium
85200, vis Solaris, de qua egimus, cum sit ad vim gravitatis ut 1 ad
12868200, atque adeo ad vim illam centrifugam ut 291 ad 12868200 seu 1 ad
44221, efficiet ut altitudo aquæ in regionibus sub Sole & Soli oppositis
superet altitudinem ejus in locis quæ 90 gradibus distant à Sole, mensura
tantum pedis unius Parisiensis & digitorum undecim. Est enim hæc mensura ad
mensuram pedum 85200 ut 1 ad 44221.

Prop. XXXVII. Prob. XVII.

    _Invenire vim Lunæ ad Mare movendum._

Vis Lunæ ad mare movendum colligenda est ex ejus proportione ad vim Solis,
& hæc proportio colligenda est ex proportione motuum maris, qui ab his
viribus oriuntur. Ante ostium fluvii _Avonæ_, ad lapidem tertium infra
_Bristoliam_, tempore verno & autumnali totus aquæ ascensus in Conjunctione
& Oppositione Luminarium (observante _Samuele Sturmio_) est pedum plus
minus 45, in Quadraturis autem est pedum tantum 25: Altitudo prior ex summa
virium, posterior ex earundem differentia oritur. Solis igitur & Lunæ in
Æquatore versantium & mediocriter à Terra distantium, sunto vires S & L. Et
quoniam Luna in Quadraturis, tempore verno & autumnali extra Æquatorem in
declinatione graduum plus minus 23½ versatur, & Luminaris ab Æquatore
declinantis vis ad mare movendum minor sit, idque (quantum sentio) in
duplicata ratione Sinus complementi declinationis quam proximè, vis Lunæ in
Quadraturis, (cum sinus ille sit ad radium ut 91706 ad 100000) erit
841/1000 L, & summa virium in Syzygiis erit L + S, ac differentia in
Quadraturis 841/1000 L - S, adeoque L + S erit ad 841/1000 L - S ut 45 ad
25 seu 9 ad 5, & inde 5L + 5S æqualis erit 7569/1000 L - 9S, & 14S æqualis
2569/1000 L, & propterea L ad S ut 14000 ad 2569 seu 5-7/15 ad 1. In Portu
_Plymuthi_ æstus maris (ex observatione _Samuelis Colepressi_) ad pedes
plus minus sexdecim, altitudine mediocri attollitur, ac tempore verno &
autumnali altitudo æstus in Syzygiis Lunæ superare potest altitudinem ejus
in Quadraturis pedibus septem vel octo. Si excessus mediocris his
temporibus sit pedum septem cum dimidio; æstus in Syzygiis ascendet ad
pedes 19¾, in Quadraturis ad pedes 12¼, & sic L + S erit ad 841/1000 L - S
ut 19¾ ad 12¼, & inde L ad S ut 734 ad 100 seu 7-1/3 ad 1. Est igitur vis
Lunæ ad vim Solis per computationem priorem ut 5-7/15 ad 1, per posteriorem
ut 7-1/3 ad 1. Donec aliquid certius ex Observationibus accuratius
institutis constiterit, usurpabimus proportionem mediocrem 6-1/3 ad 1. Unde
cum vis Solis sit ad vim gravitatis ut 1 ad 12868200, vis Lunæ erit ad vim
gravitatis ut 1 ad 2031821.

_Corol. 1._ Igitur cum aqua vi Solis agitata ad altitudinem pedis unius &
undecim digitorum ascendat, eadem vi Lunæ ascendet ad altitudinem pedum
duodecim. Tanta autem vis ad omnes maris motus excitandos abunde sufficit,
& quantitati motuum probe respondet. Nam in maribus quæ ab Oriente in
Occidentem latè patent, uti in Mari _Pacifico_, & Maris _Atlantici_ &
_Æthiopici_ partibus extra Tropicos, aqua attolli solet ad altitudinem
pedum sex, novem duodecim vel quindecim. In mari autem _Pacifico_, quod
profundius est & latius patet, æstus dicuntur esse majores quàm in
_Atlantico_ & _Æthiopico_. Etenim ut plenus sit æstus, latitudo Maris ab
Oriente in Occidentem non minor esse debet quàm graduum nonaginta. In Mari
_Æthiopico_, ascensus aquæ intra Tropicos minor est quàm in Zonis
temperatis, propter angustiam Maris inter _Africam_ & Australem partem
_Americæ_. In medio Mari aqua nequit ascendere nisi ad littus utrumque &
orientale & occidentale simul descendat: cum tamen vicibus alternis ad
littora illa in Maribus nostris angustis descendere debeat. Ea de causa
fluxus & refluxus in Insulis, quæ à littoribus longissimè absunt,
perexiguus esset solet. In Portubus quibusdam, ubi aqua cum impetu magno
per loca vadosa, ad Sinus alternis vicibus implendos & evacuandos, influere
& effluere cogitur, fluxus & refluxus sunt solito majores, uti ad
_Plymuthum_ & pontem _Chepstowæ_ in _Anglia_; ad montes _S. Michaelis_ &
urbem _Abrincatuorum_ (vulgo _Auranches_) in _Normania_; ad _Cambaiam_ &
_Pegu_ in _India_ orientali. His in locis mare, magna cum velocitate
accedendo & recedendo, littora nunc inundat nunc arida relinquit ad multa
Milliaria. Neque impetus influendi & remeandi prius frangi potest, quam
aqua attollitur vel deprimitur ad pedes 30, 40 vel 50 & amplius. Et par est
ratio fretorum oblongorum & vadosorum, uti _Magellanici_ & ejus quo
_Anglia_ circundatur. Æstus in hujusmodi portubus & fretis per impetum
cursus & recursus supra modum augetur. Ad littora verò quæ descensu
præcipiti ad mare profundum & apertum spectant, ubi aqua sine impetu
effluendi & remeandi attolli & subsidere potest, magnitudo æstus respondet
viribus Solis & Lunæ.

_Corol. 2._ Cum vis Lunæ ad mare movendum sit ad vim gravitatis ut 1 ad
2031821, perspicuum est quod vis illa sit longè minor quàm quæ vel in
experimentis Pendulorum, vel in Staticis aut Hydrostaticis quibuscunque
sentiri possit. In æstu solo marino hæc vis sensibilem edit effectum.

_Corol. 3._ Quoniam vis Lunæ ad mare movendum est ad Solis vim consimilem
ut 6-1/3 ad 1, & vires illæ sunt ut densitates corporum Lunæ & Solis & cubi
diametrorum apparentium conjunctim; erit densitas Lunæ ad densitatem Solis
ut 6-1/3 ad 1 directè & cubus diametri Solis ad cubum diametri Lunæ
inversè, id est (cum diametri mediocres apparentes Solis & Lunæ sint 31'.
27". & 32'. 12".) ut 34 ad 5. Densitas autem Solis erat ad densitatem Terræ
ut 100 ad 387, & propterea densitas Lunæ est ad densitatem Terræ ut 600 ad
387, seu 9 ad 5 quam proximè. Est igitur corpus Lunæ densius & magis
terrestre quàm Terra nostra.

_Corol. 4._ Unde cum vera diameter Lunæ sit ad veram diametrum Terræ ut 1
ad 3,6½, erit massa Lunæ ad massam Terræ ut 1 ad 26 quam proximè.

_Corol. 5._ Et gravitas acceleratrix in superficie Lunæ, erit quasi duplo
minor quàm gravitas acceleratrix in superficie Terræ.

Prop. XXXVIII. Prob. XVIII.

    _Invenire figuram corporis Lunæ._

Si corpus Lunare fluidum esset ad instar maris nostri, vis Terræ ad fluidum
illud in partibus & citimis & ultimis elevandum, esset ad vim Lunæ, qua
mare nostrum in partibus & sub Luna & Lunæ oppositis attollitur, ut
gravitas acceleratrix Lunæ in Terram ad gravitatem acceleratricem Terræ in
Lunam & diameter Lunæ ad diametrum Terræ conjunctim; id est ut 26 ad 1 & 5
ad 18 conjunctim seu 65 ad 9. Unde cum mare nostrum vi Lunæ attollatur ad
pedes duodecim, fluidum Lunare vi Terræ attolli deberet ad pedes fere
nonaginta. Eaque de causa figura Lunæ Sphærois esset, cujus maxima diameter
producta transiret per centrum Terræ, & superaret diametros perpendiculares
excessu pedum 180. Talem igitur figuram Luna affectat, eamque sub initio
induere debuit.   _Q. E. I._

_Corol._ Inde verò fit ut eadem semper Lunæ facies in Terram obvertatur. In
alio enim situ corpus Lunare quiescere non potest, sed ad hunc situm
oscillando semper redibit. Attamen oscillationes ob parvitatem virium
agitantium essent longè tardissimæ: adeò ut facies illa, quæ Terram semper
respicere deberet, possit alterum orbis Lunaris umbilicum, ob rationem
superius allatam respicere, neque statim abinde retrahi & in Terram
converti.

Lemma I.

[Illustration]

    _Si APEp Terram designet uniformiter densam, centroque C & polis P, p &
    æquatore AE delineatam; & si centro C radio CP describi intelligatur
    sphæra Pape; sit autem QR planum, cui recta à centro Solis ad centrum
    Terræ ducta normaliter insistit; & Terræ totius exterioris PapAPepE,
    quæ Sphærâ modò descriptâ altior est, particulæ singulæ conantur
    recedere hinc inde à plano QR, sitque conatus particulæ cujusque ut
    ejusdem distantia à plano: erit vis & efficacia tota particularum
    omnium, ad Terram circulariter movendam, quadruplo minor quàm vis tota
    particularum totidem in Æquatoris circulo AE, uniformiter per totum
    circuitum in morem annuli dispositarum, ad Terram consimili motu
    circulari movendam. Et motus iste circularis circa axem in plano QR
    jacentem, & axi Pp perpendiculariter insistentem, peragetur._

Sit enim IK circulus minor Æquatori AE parallelus, sitque L particula Terræ
in circulo illo extra globum Pape sita. Et si in planum QR demittatur
perpendiculum LM, vis tota particulæ illius ad Terram circa ipsius centrum
convertendum proportionalis erit eidem LM: & si hæc vis LM (per Legum
Corol. 2.) distinguatur in vires LN, NM; efficacia virium MN particularum
omnium L, in circuitu Terræ totius extra globum Pape consistentium, ad
Terram circa ipsius centrum secundum ordinem literarum ApEP convertendam,
erit ad efficaciam virium LN particularum omnium L, ad Terram circa ipsius
centrum secundum ordinem contrarium earundem literarum convertendam, ut
tria ad duo. Ideoque efficacia virium omnium MN erit ad excessum efficaciæ
hujus supra efficaciam virium omnium LN ut tria ad unum. Et si particulæ
illæ omnes locarentur in Æquatore, efficacia virium omnium LN evanesceret,
& efficacia virium omnium MN augeretur in ratione quatuor ad tria. Quare
excessus ille, qui est efficacia absoluta particularum in locis propriis,
est pars quarta efficaciæ particularum earundem in Æquatore. Motus autem
æquinoctiorum est ut hæc efficacia. Singula examinet qui volet. Brevitati
consulo.

Lemma II.

    _Motus autem Terræ totius circa axem illum, ex motibus particularum
    omnium compositus, erit ad motum annuli circa axem eundem, in ratione
    composita ex ratione materiæ in Terra ad materiam in annulo, & ratione
    trium quadratorum ex arcu quadrantali circuli cujuscunque, ad duo
    quadrata ex diametro; id est in ratione materiæ ad materiam & numeri
    925275 & 1000000._

Est enim motus Cylindri circa axem suum immotum revolventis, ad motum
Sphæræ inscriptæ & simul revolventis, ut quælibet quatuor æqualia quadrata
ad tres ex circulis sibi inscriptis: & motus Cylindri ad motum annuli
tenuissimi, Sphæram & Cylindrum ad communem eorum contactum ambientis, ut
duplum materiæ in Cylindro ad triplum materiæ in annulo; & annuli motus
iste circa axem Cylindri uniformiter continuatus, ad ejusdem motum
uniformem circa diametrum propriam, eodem tempore periodico factum, ut
circumferentia circuli ad duplum diametri.

Lemma III.

    _Si annulus, Terra omni reliqua sublata, solus in orbe Terræ motu annuo
    circa Solem ferretur, & interea circa axem suum, ad planum Eclipticæ in
    angulo graduum 23½ inclinatum, motu diurno revolveretur: idem foret
    motus Punctorum Æquinoctialium sive annulus iste fluidus esset, sive is
    ex materia rigida & firma constaret._

Prop. XXXIX. Prob. XIX.

    _Invenire Præcessionem Æquinoctiorum._

Motus mediocris horarius Nodorum Lunæ in Orbe circulari, ubi Nodi sunt in
Quadraturis, erat 16". 35"'. 16^{iv}. 36^v. & hujus dimidium 8". 17"'.
38^{iv}. 18^v. (ob rationes & supra explicatas) est motus medius horarius
Nodorum in tali Orbe; fitque anno toto sidereo 20 gr. 11'. 46". Quoniam
igitur Nodi Lunæ in tali Orbe conficerent annuatim 20 gr. 11'. 46". in
antecedentia; & si plures essent Lunæ motus Nodorum cujusque, per Corol.
16. Prop. LXVI. Lib. I. forent reciprocè ut tempora periodica; & propterea
si Luna spatio diei siderei juxta superficiem Terræ revolveretur, motus
annuus Nodorum foret ad 20 gr. 11'. 46". ut dies sidereus horarum 23. 56'.
ad tempus periodicum Lunæ dierum 27. 7 hor. 43'; id est ut 1436 ad 39343.
Et par est ratio Nodorum annuli Lunarum Terram ambientis; sive Lunæ illæ se
mutuò non contingant, sive liquescant & in annulum continuum formentur,
sive denique annulus ille rigescat & inflexibilis reddatur.

[Illustration]

Fingamus igitur quod annulus iste quoad quantitatem materiæ æqualis sit
Terræ omni PapAPepE, quæ globo PapE superior est; & quoniam globus iste est
ad Terram illam superiorem ut aC qu. ad AC qu. - aC qu. id est (cum Terræ
diameter minor PC vel aC sit ad diametrum majorem AC ut 689 ad 692) ut 4143
ad 474721 seu 1000 ad 114585; si annulus iste Terram secundum æquatorem
cingeret, & uterque simul circa diametrum annuli revolveretur, motus annuli
esset ad motum globi interioris (per hujus Lem. II.) ut 4143 ad 474721 &
1000000 ad 925275 conjunctim, hoc est ut 4143 ad 439248: ideoque motus
annuli esset ad summam motuum annuli & globi, ut 4143 ad 443991. Unde si
annulus globo adhæreat, & motum suum, quo ipsius Nodi seu puncta
æquinoctialia regrediuntur, cum globo communicet: motus qui restabit in
annulo erit ad ipsius motum priorem ut 4143 ad 443391; & propterea motus
punctorum æquinoctialium diminuetur in eadem ratione. Erit igitur motus
annuus punctorum æquinoctialium corporis ex globo & annulo compositi, ad
motum 20 gr. 11'. 46", ut 1436 ad 39343 & 4143 ad 443391 conjunctim, id est
ut 1 ad 2932. Vires autem quibus Nodi Lunarum (ut supra explicui) atque
adeò quibus puncta æquinoctialia annuli regrediuntur (id est vires 3IT, _in
Fig. pag. 444._) sunt in singulis particulis ut distantiæ particularum à
plano QR, & his viribus particulæ illæ planum fugiunt; & propterea (per
Lem. I.) si materia annuli per totam globi superficiem, in morem figuræ
PapAPepE, ad superiorem illam Terræ partem constituendam spargeretur, vis &
efficacia tota particularum omnium ad Terram circa quamvis Æquatoris
diametrum rotandam, atque adeo ad movenda puncta æquinoctialia, evaderet
quadruplo minor quàm prius. Ideoque annuus æquinoctiorum regressus jam
esset ad 20 gr. 11'. 46". ut 1 ad 11728, ac proinde fieret 6". 12"'.
2^{iv}. Hæc est præcessio Æquinoctiorum à vi Solis oriunda. Vis autem Lunæ
ad mare movendum erat ad vim Solis ut 6-1/3 ad 1, & hæc vis pro quantitate
sua augebit etiam præcessionem Æquinoctiorum. Ideoque præcessio illa ex
utraque causa oriunda jam fiet major in ratione 7-1/3 ad 1, & sic erit 45".
24"'. 15^{iv}. Hic est motus punctorum æquinoctialium ab actionibus Solis &
Lunæ in partes Terræ, quæ globo Pape incumbunt, oriundus. Nam Terra ab
actionibus illis in globum ipsum exercitis nullam in partem inclinari
potest.

[Illustration]

Designet jam APEp corpus Terræ figurâ Ellipticâ præditum, & ex uniformi
materiâ constans. Et si distinguatur idem in figuras innumeras Ellipticas
concentricas & consimiles, APEp, BQbq, CRcr, DSds, &c. quarum diametri sint
in progressione Geometrica: quoniam figuræ consimiles sunt, vires Solis &
Lunæ, quibus puncta æquinoctialia regrediuntur, efficerent ut figurarum
reliquarum seorsim spectatarum puncta eadem æquinoctialia eadem cum
velocitate regrederentur. Et par est ratio motus orbium singulorum AQEq,
BRbr, CScs, &c. qui sunt figurarum illarum differentiæ. Orbis
uniuscujusque, si solus esset, puncta æquinoctialia eadem cum velocitate
regredi deberent. Nec refert utrum orbis quilibet densior sit an rarior, si
modò ex materia uniformiter densa confletur. Unde etiam si orbes ad centrum
densiores sint quàm ad circumferentiam, idem erit motus æquinoctiorum Terræ
totius ac prius; si modo orbis unusquisque seorsim spectatus ex materia
uniformiter densa constet, & figura orbis non mutetur. Quod si figuræ
orbium mutentur, Terraque ad æquatorem AE, ob densitatem materiæ ad
centrum, jam altius ascendat quàm prius; regressus æquinoctiorum ex aucta
altitudine augebitur, idque in orbibus singulis seorsim existentibus, in
ratione majoris altitudinis materiæ juxta orbis illius æquatorem; in Terra
autem tota in ratione majoris altitudinis materiæ juxta æquatorem orbis non
extimi AQEq, non intimi Gg, sed mediocris alicujus CScs. Terram autem ad
centrum densiorem esse, & propterea sub Æquatore altiorem esse quàm ad
polos in majore ratione quàm 692 ad 689, in superioribus insinuavimus. Et
ratio majoris altitudinis colligi ferè potest ex majore diminutione
gravitatis sub æquatore, quàm quæ ex ratione 692 ad 689 consequi debeat.
Excessus longitudinis penduli, quod in Insula _Goree_ & in illâ _Cayennæ_
minutis singulis secundis oscillatur, supra longitudinem Penduli quod
_Parisiis_ eodem tempore oscillatur, à _Gallis_ inventi sunt pars decima &
pars octava digiti, qui tamen ex proportione 692 ad 689 prodiere 81/1000 &
89/1000. Major est itaque longitudo Penduli _Cayennæ_ quàm oportet, in
ratione 1/8 ad 89/1000, seu 1000 ad 712; & in Insula _Goree_ in ratione
1/10 ad 81/1000 seu 1000 ad 810. Si sumamus rationem mediocrem 1000 ad 760;
minuenda erit gravitas Terræ ad æquatorem, & ibidem augenda ejus altitudo,
in ratione 1000 ad 760 quam proximè. Unde motus æquinoctiorum (ut supra
dictum est) auctus in ratione altitudinis Terræ, non ad orbem extimum, non
ad intimum, sed ad intermedium aliquem, id est, non in ratione maxima 1000
ad 760, non in minima 1000 ad 1000, sed in mediocri aliqua, puta 10 ad
8-1/3 vel 6 ad 5, evadet annuatim 54". 29"'. 6^{iv}.

Rursus hic motus, ob inclinationem plani Æquatoris ad planum Eclipticæ,
minuendus est, idque in ratione Sinus complementi inclinationis ad Radium.
Nam distantia particulæ cujusque terrestris à plano QR, quo tempore
particula illa à plano Eclipticæ longissimè distat, in Tropico suo (ut ita
dicam) consistens, diminuitur, per inclinationem planorum Eclipticæ &
Æquatoris ad invicem, in ratione Sinus complementi inclinationis ad Radium.
Et in ratione distantiæ illius diminuitur etiam vis particulæ ad æquinoctia
movenda. In eadem quoque ratione diminuitur summa virium particulæ ejusdem,
in locis hinc inde à Tropico æqualiter distantibus: uti ex prædemonstratis
facilè ostendi possit: & propterea vis tota particulæ illius, in
revolutione integrâ, ad æquinoctia movenda, ut & vis tota particularum
omnium, & motus æquinoctiorum à vi illa oriundus, diminuitur in eadem
ratione. Igitur cum inclinatio illa sit 23½ gr. diminuendus est motus 54".
29"'. in ratione Sinus 91706 (qui sinus est complementi graduum 23½) ad
Radium 100000. Qua ratione motus iste jam fiet 49". 58"'. Regrediuntur
igitur puncta æquinoctiorum motu annuo (juxta computationem nostram) 49".
58"', fere ut Phænomena coelestia requirunt. Nam regressus ille annuus ex
observationibus Astronomorum est 50".

Descripsimus jam Systema Solis, Terræ & Planetarum: superest ut de Cometis
nonnulla adjiciantur.

Lemma IV.

    _Cometas esse Lunâ superiores & in regione Planetarum versari._

[Illustration]

Ut defectus Parallaxeos diurnæ extulit Cometas supra regiones sublunares,
sic ex Parallaxi annua convincitur eorum descensus in regiones Planetarum.
Nam Cometæ qui progrediuntur secundum ordinem signorum sunt omnes, sub
exitu apparitionis, aut solito tardiores aut retrogradi, si Terra est inter
ipsos & Solem, at justo celeriores si Terra vergit ad oppositionem. Et è
contra, qui pergunt contra ordinem signorum sunt justo celeriores in fine
apparitionis, si Terra versatur inter ipsos & Solem; & justo tardiores vel
retrogradi si Terra sita est ad contrarias partes. Contingit hoc maximè ex
motu Terræ in vario ipsius situ, perinde ut fit in Planetis, qui, pro motu
Terræ vel conspirante vel contrario, nunc retrogradi sunt, nunc tardiùs
moveri videntur, nunc verò celeriùs. Si Terra pergit ad eandem partem cum
Cometa, & motu angulari circa Solem celerius fertur, Cometa è Terra
spectatus, ob motum suum tardiorem, apparet esse retrogradus; sin Terra
tardiùs fertur, motus Cometæ, (detracto motu Terræ) fit saltem tardior. At
si Terra pergit in contrarias partes, Cometa exinde velocior apparet. Ex
acceleratione autem vel retardatione vel motu retrogrado distantia Cometæ
in hunc modum colligitur. Sunto [Aries]QA, [Aries]QB, [Aries]QC observatæ
tres longitudines Cometæ, sub initio motus, sitque [Aries]QF longitudo
ultimò observata, ubi Cometa videri desinit. Agatur recta ABC, cujus partes
AB, BC rectis QA & QB, QB & QC interjectæ, sint ad invicem ut tempora inter
observationes tres primas. Producatur AC ad G, ut sit AG ad AB ut tempus
inter observationem primam & ultimam, ad tempus inter observationem primam
& secundam, & jungatur QG. Et si Cometa moveretur uniformiter in linea
recta, atque Terra vel quiesceret, vel etiam in linea recta, uniformi cum
motu, progrederetur; foret angulus [Aries]QG longitudo Cometæ tempore
Observationis ultimæ. Angulus igitur FQG, qui longitudinum differentia est,
oritur ab inæqualitate motuum Cometæ ac Terræ. Hic autem angulus, si Terra
& Cometa in contrarias partes moventur, additur angulo AQG, & sic motum
apparentem Cometæ velociorem reddit: Sin Cometa pergit in easdem partes cum
Terra, eidem subducitur, motumque Cometæ vel tardiorem reddit, vel forte
retrogradum; uti modò exposui. Oritur igitur hic angulus præcipuè ex motu
Terræ, & idcirco pro parallaxi Cometæ meritò [Illustration] habendus est,
neglecto videlicet ejus incremento vel decremento nonnullo, quod à Cometæ
motu inæquabili in orbe proprio oriri possit. Distantia verò Cometæ ex hac
parallaxi sic colligitur. Designet S Solem, acT Orbem magnum, a locum Terræ
in observatione prima, c locum Terræ in observatione secunda, T locum Terræ
in observatione ultima, & T[Aries] lineam rectam versus principium Arietis
ductam. Sumatur angulus [Aries]TV æqualis angulo [Aries]QF, hoc est æqualis
longitudini Cometæ ubi Terra versatur in T. Jungatur ac, & producatur ea ad
g, ut sit ag ad ac ut AG ad AC, & erit g locus quem Terra tempore
observationis ultimæ, motu in recta ac uniformiter continuato, attingeret.
Ideoque si ducatur g[Aries] ipsi T[Aries] parallela, & capiatur angulus
[Aries]gV angulo [Aries]QG æqualis, erit hic angulus [Aries]gV æqualis
longitudini Cometæ è loco g spectati; & angulus TVg parallaxis erit, quæ
oritur à translatione Terræ de loco g in locum T: ac proinde V locus erit
Cometæ in plano Eclipticæ. Hic autem locus V orbe Jovis inferior esse
solet.

Idem colligitur ex curvatura viæ Cometarum. Pergunt hæc corpora propemodum
in circulis maximis quamdiu moventur celerius; at in fine cursus, ubi motus
apparentis pars illa quæ à parallaxi oritur, majorem habet proportionem ad
motum totum apparentem, deflectere solent ab his circulis, & quoties Terra
movetur in unam partem abire in partem contrariam. Oritur hæc deflexio
maximè ex Parallaxi, propterea quod respondet motui Terræ; & insignis ejus
quantitas meo computo collocavit disparentes Cometas satis longè infra
Jovem. Unde consequens est quòd in Perigæis & Periheliis, ubi propius
adsunt, descendunt sæpius infra orbes Martis & inferiorum Planetarum.

Confirmatur etiam propinquitas Cometarum ex luce capitum. Nam corporis
coelestis à Sole illustrati & in regiones longinquas abeuntis diminuitur
splendor in quadruplicata ratione distantiæ: in duplicata ratione videlicet
ob auctam corporis distantiam à Sole, & in alia duplicata ratione ob
diminutam diametrum apparentem. Unde si detur & lucis quantitas & apparens
diameter Cometæ, dabitur distantia, dicendo quod distantia sit ad
distantiam Planetæ in ratione integra diametri ad diametrum directè &
ratione dimidiata lucis ad lucem inversè. Sic minima Capillitii Cometæ anni
1682 diameter, per Tubum opticum sexdecim pedum à _Cl. Flamstedio_
observata & micrometro mensurata, æquabat 2'. 0". Nucleus autem seu stella
in medio capitis vix decimam partem latitudinis hujus occupabat, adeoque
lata erat tantum 11" vel 12". Luce verò & claritate capitis superabit caput
Cometæ anni 1680, stellasque primæ vel secundæ magnitudinis æmulabatur.
Ponamus Saturnum cum annulo suo quasi quadruplo lucidiorem fuisse: &
quoniam lux annuli propemodum æquabat lucem globi intermedii, & diameter
apparens globi sit quasi 21", adeoque lux globi & annuli conjunctim æquaret
lucem globi, cujus diameter esset 30": erit distantiæ Cometæ ad distantiam
Saturni ut 1 ad [sqrt]4 inversè, & 12" ad 30" directè, id est ut 24 ad 30
seu 4 ad 5. Rursus Cometa anni 1665 mense _Aprili_, ut Author est
_Hevelius_, claritate sua pene fixas omnes superabat, quinetiam ipsum
Saturnum, ratione coloris videlicet longè vividioris. Quippe lucidior erat
hic Cometa altero illo, qui in fine anni præcedentis apparuerat & cum
stellis primæ magnitudinis conferebatur. Latitudo capillitii erat quasi 6',
at nucleus cum Planetis ope Tubi optici collatus, plane minor erat Jove, &
nunc minor corpore intermedio Saturni, nunc ipsi æqualis judicabatur. Porrò
cum diameter Capillitii Cometarum rarò superet 8' vel 12', diameter verò
Nuclei seu stellæ centralis sit quasi decima vel fortè decima quinta pars
diametri capillitii, patet Stellas hasce ut plurimum ejusdem esse
apparentis magnitudinis cum Planetis. Unde cum lux eorum cum luce Saturni
non rarò conferri possit, eamque aliquando superet; manifestum est quod
Cometæ omnes in Periheliis vel infra Saturnum collocandi sint, vel non
longe supra. Errant igitur toto coelo qui Cometas in regionem Fixarum prope
ablegant: qua certè ratione non magis illustrari deberent à Sole nostro,
quàm Planetæ, qui hic sunt, illustrantur à Stellis fixis.

Hæc disputavimus non considerando obscurationem Cometarum per fumum illum
maximè copiosum & crassum, quo caput circundatur, quasi per nubem obtusè
semper lucens. Nam quanto obscurius redditur corpus per hunc fumum, tanto
propius ad Solem accedat necesse est, ut copia lucis à se reflexa Planetas
æmuletur. Inde verisimile fit Cometas longe infra Sphæram Saturni
descendere, uti ex Parallaxi probavimus. Idem verò quam maximè confirmatur
ex Caudis. Hæ vel ex reflexione fumi sparsi per æthera, vel ex luce capitis
oriuntur. Priore casu minuenda est distantia Cometarum, ne fumus à Capite
semper ortus per spatia nimis ampla incredibili cum velocitate & expansione
propagetur. In posteriore referenda est lux omnis tam caudæ quàm capillitii
ad Nucleum capitis. Igitur si imaginemur lucem hanc omnem congregari &
intra discum Nuclei coarctari, Nucleus ille jam certè, quoties caudam
maximam & fulgentissimam emittit, Jovem ipsum splendore suo multum
superabit. Minore igitur cum diametro apparente plus lucis emittens, multò
magis illustrabitur à Sole, adeoque erit Soli multò propior. Quinetiam
capita sub Sole delitescentia, & caudas cum maximas tum fulgentissimas
instar trabium ignitarum nonnunquam emittentia, eodem argumento infra orbem
Veneris collocari debent. Nam lux illa omnis si in stellam congregari
supponatur, ipsam Venerem ne dicam Veneres plures conjunctas quandoque
superaret.

Idem denique colligitur ex luce capitum crescente in recessu Cometarum à
Terra Solem versus, ac decrescente in eorum recessu à Sole versus Terram.
Sic enim Cometa posterior Anni 1665 (observante _Hevelio_,) ex quo conspici
cæpit, remittebat semper de motu suo, adeoque præterierat Perigæum;
Splendor verò capitis nihilominus indies crescebat, usque dum Cometa radiis
Solaribus obtectus desiit apparere. Cometa Anni 1683, observante eodem
_Hevelio_, in fine Mensis _Julii_ ubi primum conspectus est, tardissimè
movebatur, minuta prima 40 vel 45 circiter singulis diebus in orbe suo
conficiens. Ex eo tempore motus ejus diurnus perpetuo augebatur usque ad
_Sept. 4._ quando evasit graduum quasi quinque. Igitur toto hoc tempore
Cometa ad Terram appropinquabat. Id quod etiam ex diametro capitis
micrometro mensurata colligitur: quippe quam _Hevelius_ reperit _Aug. 6._
esse tantum 6'. 5" inclusâ comâ, at _Sept. 2._ esse 9'. 7". Caput igitur
initio longe minus apparuit quàm in fine motus, at initio tamen in vicinia
Solis longe lucidius extitit quàm circa finem, ut refert idem _Hevelius_.
Proinde toto hoc tempore, ob recessum ipsius à Sole, quoad lumen decrevit,
non obstante accessu ad Terram. Cometa Anni 1618 circa medium Mensis
_Decembris_, & iste Anni 1680 circa finem ejusdem Mensis, celerrimè
movebantur, adeoque tunc erant in Perigæis. Verum splendor maximus capitum
contigit ante duas fere septimanas, ubi modò exierant de radiis Solaribus;
& splendor maximus caudarum paulo ante, in majore vicinitate Solis. Caput
Cometæ prioris, juxta observationes _Cysati_, _Decem. 1._ majus videbatur
stellis primæ magnitudinis, & _Decem. 16._ (jam in Perigæo existens)
magnitudine parùm, splendore seu claritate luminis plurimum defecerat.
_Jan. 7._ _Keplerus_ de capite incertus finem fecit observandi. Die 12
mensis _Decemb._ conspectum & à _Flamstedio_ observatum est caput Cometæ
posterioris, in distantia novem graduum à Sole; id quod stellæ tertiæ
magnitudinis vix concessum fuisset. _Decem. 15 & 17_ apparuit idem ut
stella tertiæ magnitudinis, diminutum utique splendore Nubium juxta Solem
occidentum. _Decem. 26._ velocissimè motus, inque Perigæo propemodum
existens, cedebat ori Pegasi, Stellæ tertiæ magnitudinis. _Jan. 3._
apparebat ut Stella quartæ, _Jan. 9._ ut Stella quintæ, _Jan. 13._ ob
splendorem Lunæ crescentis disparuit. _Jan. 25._ vix æquabat Stellas
magnitudinis septimæ. Si sumantur æqualia à Perigæo hinc inde tempora,
capita quæ temporibus illis in longinquis regionibus posita, ob æquales à
Terra distantias, æqualiter lucere debuissent, in plaga Solis maximè
splenduere, ex altera Perigæi parte evanuere. Igitur ex magna lucis in
utroque situ differentia concluditur magna Solis & Cometæ vicinitas in situ
priore. Nam lux Cometarum regularis esse solet, & maxima apparere ubi
capita velocissimè moventur, atque adeo sunt in Perigæis; nisi quatenus ea
major est in vicinia Solis.

_Corol. 1._ Splendent igitur Cometæ luce Solis à se reflexa.

_Corol. 2._ Ex dictis etiam intelligitur cur Cometæ tantopere frequentant
regionem Solis. Si cernerentur in regionibus longè ultra Saturnum deberent
sæpius apparere in partibus Soli oppositis. Forent enim Terræ vicinioris
qui in his partibus versarentur, & Sol interpositus obscuraret cæteros.
Verum percurrendo historias Cometarum reperi quod quadruplo vel quintuplo
plures detecti sunt in Hemisphærio Solem versus, quàm in Hemisphærio
opposito, præter alios procul dubio non paucos quos lux Solaris obtexit.
Nimirum in descensu ad regiones nostras neque caudas emittunt, neque adeo
illustrantur à Sole, ut nudis oculis se prius detegendos exhibeant, quàm
sint ipso Jove propiores. Spatii autem tantillo intervallo circa Solem
descripti pars longè major sita est à latere Terræ quod Solem respicit;
inque parte illa majore Cometæ Soli ut plurimum viciniores magis illuminari
solent.

_Corol. 3._ Hinc etiam manifestum est, quod coeli resistentia destituuntur.
Nam Cometæ vias obliquas & nonnunquam cursui Planetarum contrarias secuti,
moventur omnifariam liberrimè, & motus suos etiam contra cursum Planetarum
diutissimè conservant. Fallor ni genus Planetarum sint, & motu perpetuo in
orbem redeant. Nam quod Scriptores aliqui Meteora esse volunt, argumentum à
capitum perpetuis mutationibus ducentes, fundamento carere videtur. Capita
Cometarum Atmosphæris ingentibus cinguntur; & Atmosphæræ infernè densiores
esse debent. Unde nubes sunt non ipsa Cometarum corpora, in quibus
mutationes illæ visuntur. Sic Terra si è Planetis spectaretur, luce nubium
suarum proculdubio splenderet, & corpus firmum sub nubibus prope
delitesceret. Sic cingula Jovis in nubibus Planetæ illius formata, situm
mutant inter se, & firmum Jovis corpus per nubes illas difficilius
cernitur. Et multo magis corpora Cometarum sub Atmosphæris & profundioribus
& crassioribus abscondi debent.

Prop. XL. Theor. XXI.

    _Cometas in Sectionibus conicis umbilicos in centro Solis habentibus
    moveri, & radiis ad solem ductis areas temporibus proportionales
    describere._

Patet per Corol. 1. Prop. XIII. Libri primi, collatum cum Prop. VIII, XII &
XIII. Libri tertii.

_Corol. 1._ Hinc si Cometæ in orbem redeunt, orbes erunt Ellipses, &
tempora periodica erunt ad tempora periodica Planetarum in ratione
sesquialtera transversorum axium. Ideoque Cometæ maxima ex parte supra
Planetas versantes, & eo nomine orbes axibus majoribus describentes,
tardius revolventur. Ut si axis orbis Cometæ sit quadruplo major axe orbis
Saturni, tempus revolutionis Cometæ erit ad tempus revolutionis Saturni, id
est ad annos 30, ut 4[sqrt]4 (seu 8) ad 1, ideoque erit annorum 240.

_Corol. 2._ Orbes autem erunt Parabolis adeo finitimi, ut eorum vice
Parabolæ absque erroribus sensibilibus adhiberi possunt.

_Corol. 3._ Et propterea, per Corol. 7. Prop. XVI. Lib. I. velocitas Cometæ
omnis erit semper ad velocitatem Planetæ cujusvis circa Solem in circulo
revolventis, in dimidiata ratione duplicatæ distantiæ Cometæ à centro Solis
ad distantiam Planetæ à centro Solis quamproximè. Ponamus radium orbis
magni, seu Ellipseos in qua Terra revolvitur semidiametrum transversam,
esse partium 100000000, & Terra motu suo diurno mediocri describet partes
1720212, & motu horario partes 71675½. Ideoque Cometa in eadem Telluris à
Sole distantia mediocri, ea cum velocitate quæ sit ad velocitatem Telluris
ut [sqrt]2 ad 1, describet motu suo diurno partes 2432747, & motu horario
partes 101364½. In majoribus autem vel minoribus distantiis, motus tum
diurnus tum horarius erit ad hunc motum diurnum & horarium in dimidiata
ratione distantiarum respectivè, ideoque datur.

Lemma V.

    _Invenire lineam curvam generis Parabolici, quæ per data quotcunque
    puncta transibit._

Sunto puncta illa A, B, C, D, E, F, &c. & ab iisdem ad rectam quamvis
positione datam HN demitte perpendicula quotcunque AH, BI, CK, DL, EM, FN.

[Illustration]

_Cas. 1._ Si punctorum H, I, K, L, M, N æqualia sunt intervalla HI, IK, KL,
&c. collige perpendiculorum AH, BI, CK &c. differentias primas b, 2b, 3b,
4b, 5b, &c. secundas c, 2c, 3c, 4c, &c. tertias d, 2d, 3d, &c. id est, ita
ut sit HA - BI = b, BI- CK = 2b, CK - DL = 3b, DL + EM = 4b, - EM + FN =
5b, &c. dein b - 2b = c &c. & sic pergatur ad differentiam ultimam, quæ hic
est f. Deinde erecta quacunque perpendiculari RS, quæ fuerit ordinatim
applicata ad curvam quæsitam: ut inveniatur hujus longitudo, pone
intervalla HI, IK, KL, LM, &c. unitates esse, & dic AH = a, - HS = p, ½p in
- IS = q, 1/3q in + SK = r, ¼r in + SL = s, 1/5s in + SM = t; pergendo
videlicet ad usque penultimum perpendiculum ME, & præponendo signa negativa
terminis HS, IS, &c. qui jacent ad partes puncti S versus A, & signa
affirmativa terminis SK, SL, &c. qui jacent ad alteras partes puncti S. Et
signis probe observatis erit RS = a + bp + cq + dr + es + ft &c.

_Cas. 2._ Quod si punctorum H, I, K, L, &c. inæqualia sint intervalla HI,
IK, &c. collige perpendiculorum AH, BI, CK, &c. differentias primas per
intervalla perpendiculorum divisas b, 2b, 3b, 4b, 5b; secundas per
intervalla bina divisas c, 2c, 3c, 4c, &c. tertias per intervalla terna
divisas d, 2d, 3d, &c. quartas per intervalla quaterna divisas e, 2e, &c. &
sic deinceps; id est ita ut sit b = {AH - BI} ÷ HI, 2b = {BI - CK} ÷ IK, 3b
= {CK - DL} ÷ KL &c. dein c = {b - 2b} ÷ HK, 2c = {2b - 3b} ÷ IL, 3c = {3b
- 4b} ÷ KM &c. Postea d = {c - 2c} ÷ HL, 2d = {2c - 3c} ÷ IM &c. Inventis
differentiis, dic AH = a, - HS = p, p in - IS = q, q in + SK = r, r in + SL
= s, s in + SM = t; pergendo scilicet ad usque perpendiculum penultimum ME,
& erit ordinatim applicata RS = a + bp + cq + dr + es + ft, &c.

_Corol._ Hinc areæ curvarum omnium inveniri possunt quamproximè. Nam si
curvæ cujusvis quadrandæ inveniantur puncta aliquot, & Parabola per eadem
duci intelligatur: erit area Parabolæ hujus eadem quam proximè cum area
curvæ illius quadrandæ. Potest autem Parabola per Methodos notissimas
semper quadrari Geometricè.

Lemma VI.

    _Ex observatis aliquot locis Cometæ invenire locum ejus ad tempus
    quodvis intermedium datum._

Designent HI, IK, KL, LM tempora inter observationes, (_in Fig. præced._)
HA, IB, KC, LD, ME, observatas quinque longitudines Cometæ, HS tempus datum
inter observationem primam & longitudinem quæsitam. Et si per puncta A, B,
C, D, E duci intelligatur curva regularis ABCDE; & per Lemma superius
inveniatur ejus ordinatim applicata RS, erit RS longitudo quæsita.

Eadem methodo ex observatis quinque latitudinibus invenitur latitudo ad
tempus datum.

Si longitudinum observatarum parvæ sint differentiæ, puta graduum tantum 4
vel 5; suffecerint observationes tres vel quatuor ad inveniendam
longitudinem & latitudinem novam. Sin majores sint differentiæ, puta
graduum 10 vel 20, debebunt observationes quinque adhiberi.

Lemma VII.

[Illustration]

    _Per datum punctum P ducere rectam lineam BC, cujus partes PB, PC,
    rectis duabus positione datis AB, AC abscissæ, datam habeant rationem
    ad invicem._

A puncto illo P ad rectarum alterutram AB ducatur recta quævis PD, &
producatur eadem versus rectam alteram AC usque ad E, ut sit PE ad PD in
data illa ratione. Ipsi AD parallela sit EC; & si agatur CPB, erit PC ad PB
ut PE ad PD.   _Q. E. F._

Lemma VIII.

    _Sit ABC Parabola umbilicum habens S. Chordâ AC bisectâ in I
    abscindatur segmentum ABCI, cujus diameter sit I[mu] & vertex [mu]. In
    I[mu] productâ capiatur [mu]O æqualis dimidio ipsius I[mu]. Jungatur
    OS, & producatur ea ad [xi], ut sit S[xi] æqualis 2SO. Et si Cometa B
    moveatur in arcu CBA, & agatur [xi]B secans AC in E: dico quod punctum
    E abscindet de chorda AC segmentum AE tempori proportionale
    quamproximè._

[Illustration]

Jungatur enim EO secans arcum Parabolicum ABC in Y, & erit area curvilinea
AEY ad aream curvilineam ACY ut AE ad AC quamproximè. Ideoque cum
triangulum ASE sit ad triangulum ASC in eadem ratione, erit area tota ASEY
ad aream totam ASCY ut AE ad AC quamproximè. Cum autem [xi]O sit ad SO ut 3
ad 1 & EO ad YO prope in eadem ratione, erit SY ipsi EB parallela
quamproximè, & propterea triangulum SEB, triangulo YEB quamproximè æquale.
Unde si ad aream ASEY addatur triangulum EYB, & de summa auferatur
triangulum SEB, manebit area ASBY areæ ASEY æqualis quamproximè, atque adeo
ad aream ASCY ut AE ad AC. Sed area ASBY est ad aream ASCY ut tempus
descripti arcus AB ad tempus descripti arcus totius. Ideoque AE est ad AC
in ratione temporum quamproximè.   _Q. E. D._

Lemma IX.

    _Rectæ I[mu] & [mu]M & longitudo AIC ÷ 4S[mu] æquantur inter se. Nam
    4S[mu] est latus rectum Parabolæ pertinens ad verticem B._

Lemma X.

    _Si producatur S[mu] ad N & P, ut [mu]N sit pars tertia ipsius [mu]I, &
    SP sit ad SN ut SN ad S[mu]. Cometa quo tempore describit arcum A[mu]C,
    si progrederetur ea semper cum velocitate quam habet in altitudine ipsi
    SP æquali, describeret longitudinem æqualem chordæ AC._

Nam si velocitate quam habet in [mu], eodem tempore progrediatur
uniformiter in recta quæ Parabolam tangit in [mu]; area quam Radio ad
punctum S ducto describeret, æqualis esset areæ Parabolicæ ASC[mu]. Ideoque
contentum sub longitudine in Tangente descripta & longitudine S[mu], esset
ad contentum sub longitudinibus AC & SM, ut area ASC[mu] ad triangulum
ASCM, id est ut SN ad SM. Quare AC est ad longitudinem in tangente
descriptam ut S[mu] ad SN. Cum autem velocitas Cometæ in altitudine SP sit
ad velocitatem in altitudine S[mu] in dimidiata ratione SP ad S[mu]
inversè, id est in ratione S[mu] ad SN, longitudo hac velocitate eodem
tempore descripta, erit ad longitudinem in Tangente descriptam ut S[mu] ad
SN. Igitur AC & longitudo hac nova velocitate descripta, cum sint ad
longitudinem in Tangente descriptam in eadem ratione, æquantur inter se.
_Q. E. D._

_Corol._ Cometa igitur ea cum velocitate, quam habet in altitudine S[mu] +
2/3I[mu], eodem tempore describeret chordam AC quamproximè.

Lemma XI.

    _Si Cometa motu omni privatus de altitudine SN seu S[mu] + 1/3I[mu]
    demitteretur, ut caderet in Solem, & ea semper vi uniformiter
    continuata urgeretur in Solem qua urgetur sub initio; idem tempore in
    orbe suo describat arcum AC, descensu suo describeret spatium
    longitudini I[mu] æquale._

Nam Cometa quo tempore describat arcum Parabolicum AC, eodem tempore ea cum
velocitate quam habet in altitudine SP (per Lemma novissimum) describet
chordam AC, adeoque eodem tempore in circulo cujus semidiameter esset SP
revolvendo, describeret arcum cujus longitudo esset ad arcus Parabolici
chordam AC in dimidiata ratione unius ad duo. Et propterea eo cum pondere
quod habet in Solem in altitudine SP, cadendo de altitudine illa in Solem,
describeret eodem tempore (per Scholium Prop. IV. Lib. I.) spatium æquale
quadrato semissis chordæ illius applicato ad quadruplum altitudinis SP, id
est spatium AIq. ÷ 4SP. Unde cum pondus Cometæ in Solem in altitudine SN
sit ad ipsius pondus in Solem in altitudine SP, ut SP ad S[mu]: Cometa
pondere quod habet in altitudine SN eodem tempore, in Solem cadendo,
describet spatium AIq. ÷ 4S[mu], id est spatium longitudini I[mu] vel M[mu]
æquale.   _Q. E. D._

Prop. XLI. Prob. XX.

    _Cometæ in Parabola moventis Trajectoriam ex datis tribus
    observationibus determinare._

Problema hocce longe difficillimum multimodè aggressus, composui Problemata
quædam in Libro primo quæ ad ejus solutionem spectant. Postea solutionem
sequentem paulò simpliciorem excogitavi.

Seligantur tres observationes æqualibus temporum intervallis ab invicem
quamproximè distantes. Sit autem temporis intervallum illud ubi Cometa
tardius movetur paulo majus altero, ita videlicet ut temporum differentia
sit ad summam temporum ut summa temporum ad dies plus minus sexcentos. Si
tales observationes non præsto sint, inveniendus est novus Cometæ locus per
Lemma sextum.

[Illustration]

Designent S Solem, T, t, [tau] tria loca Terræ in orbe magno, TA, tB,
[tau]C observatas tres longitudines Cometæ, V tempus inter observationem
primam & secundam, W tempus inter secundam ac tertiam, X longitudinem quam
Cometa toto illo tempore ea cum velocitate quam habet in mediocri Telluris
à Sole distantia, describere posset, & tV perpendiculum in chordam T[tau].
In longitudine media tB sumatur utcunque punctum B, & inde versus Solem S
ducatur linea BE, quæ sit ad Sagittam tV, ut contentum sub SB & St quadrato
ad cubum hypotenusæ trianguli rectanguli, cujus latera sunt SB & tangens
latitudinis Cometæ in observatione secunda ad radium tB. Et per punctum E
agatur recta AEC, cujus partes AE, EC ad rectas TA & [tau]C terminatæ, sint
ad invicem ut tempora V & W: Tum per puncta A, B, C, duc circumferentiam
circuli, eamque biseca in i, ut & chordam AC in I. Age occultam Si secantem
AC in [lambda], & comple parallelogrammum iI[lambda][mu]. Cape I[sigma]
æqualem 3I[lambda], & per Solem S age occultam [sigma][xi] æqualem
3S[sigma] + 3i[lambda]. Et deletis jam literis A, E, C, I, à puncto B
versus punctum [xi] duc occultam novam BE, quæ sit ad priorem BE in
duplicata ratione distantiæ BS ad quantitatem S[mu] + 1/3i[lambda]. Et per
punctum E iterum duc rectam AEC eadem lege ac prius, id est, ita ut ejus
partes AE & EC sint ad invicem ut tempora inter observationes, V & W.

Ad AC bisectam in I erigantur perpendicula AM, CN, IO, quarum AM & CN sint
tangentes latitudinum in observatione prima ac tertia ad radios TA &
[tau][alpha]. Jungatur MN secans IO in O. Constituatur rectangulum
iI[lambda][mu] ut prius. In IA producta capiatur ID æqualis S[mu] +
2/3i[lambda], & agatur occulta OD. Deinde in MN versus N capiatur MP, quæ
sit ad longitudinem supra inventam X in dimidiata ratione mediocris
distantiæ Telluris à Sole (seu semidiametri orbis magni) ad distantiam OD.
Et in AC capiatur CG ipsi NP æqualis, ita ut puncta G & P ad easdem partes
rectæ NC jaceant.

Eadem methodo qua puncta E, A, C, G, ex assumpto puncto B inventa sunt,
inveniantur ex assumptis utcunque punctis aliis b & [beta] puncta nova e,
a, c, g, & [epsilon], [alpha], [kappa], [gamma]. Deinde si per G, g,
[gamma] ducatur circumferentia circuli Gg[gamma] secans rectam [tau]C in Z:
erit Z locus Cometæ in plano Eclipticæ. Et si in AC, ac, [alpha][kappa]
capiantur AF, af, [alpha][phi] ipsis CG, cg, [kappa][gamma] respectivè
æquales, & per puncta F, f, [phi] ducatur circumferentia circuli Ff[phi]
secans rectam AT in X; erit punctum X alius Cometæ locus in plano
Eclipticæ. Ad puncta X & Z erigantur tangentes latitudinum Cometæ ad radios
TX & [tau]Z; & habebuntur loca duo Cometæ in orbe proprio. Denique (per
Prop. XIX. Lib. I.) umbilico S, per loca illa duo describatur Parabola, &
hæc erit Trajectoria Cometæ.   _Q. E. I._

Constructionis hujus demonstratio ex Lemmatibus consequitur: quippe cum
recta AC secetur in E in ratione temporum, per Lemma VIII: & BE per Lem.
XI. sit pars rectæ BS in plano Eclipticæ arcui ABC & chordæ AEG interjecta;
& MP (per Lem. VIII.) longitudo sit chordæ arcus, quem Cometa in orbe
proprio inter observationem primam ac tertiam describere debet, ideoque
ipsi MN æqualis fuerit, si modò B sit verus Cometæ locus in plano
Eclipticæ.

Cæterum puncta B, b, [beta] non quælibet, sed vero proxima eligere
convenit. Si angulus AQt in quo vestigium orbis in plano Eclipticæ
descriptum secabit rectam tB præterpropter innotescat, in angulo illo
ducenda erit recta occulta AC, quæ sit ad 4/3Tt in dimidiata ratione St ad
SQ. Et agendo rectam SEB cujus pars EB æquetur longitudini Vt,
determinabitur punctum B quod prima vice usurpare licet. Tum rectâ AC
deletâ & secundum præcedentem constructionem iterum ductâ, & inventâ
insuper longitudine MP; in tB capiatur punctum b, ea lege, ut si TA, TC se
mutuò secuerint in Y, sit distantia Yb ad distantiam YB in ratione
composita ex ratione MN ad MP & ratione dimidiata SB ad Sb. Et eadem
methodo inveniendum erit punctum tertium [beta]; si modò operationem tertiò
repetere lubet. Sed hac methodo operationes duæ ut plurimum suffecerint.
Nam si distantia Bb perexigua obvenerit, postquam inventa sunt puncta F, f
& G, g, actæ rectæ Ff & Gg, secabunt TA & [tau]C in punctis quæsitis X & Z.

_Exemplum._

Proponatur Cometa anni 1680. Hujus motum à _Flamstedio_ observatum Tabula
sequens exhibet.

             | Tem.   |Temp.    |               |              |  Lat.   |
             | appar. |ver[=u]  |  Long. Solis  | Long. Cometæ | Cometæ  |
             +--------+---------+---------------+--------------+---------+
  1680     12|  4.46  | 4.46.00 |[Cap.] 1.53. 2 |[Cap.] 6.33. 0|  8.26. 0|
  December 21|6.32-1/2| 6.36.59 |      11. 8.10 |[Aqu.] 5. 7.38| 21.45.30|
           24|  6.12  | 6.17.52 |      14.10.49 |      18.49.10| 25.23.24|
           26|  5.14  | 5.20.44 |      16.10.38 |      28.24. 6| 27.00.57|
           29|  7.55  | 8.03. 2 |      19.20.56 |[Psc.]13.11.45| 28.10.05|
           30|  8. 2  | 8.10.26 |      20.22.20 |      17.37. 5| 28.11.12|
  1681      5|  5.51  | 6. 1.38 |      26.23.19 |[Ari.] 8.49.10| 26.15.26|
  January   9|  6.49  | 7. 0.53 |[Aqu.] 0.29.54 |      18.43.18| 24.12.42|
           10|  5.54  | 6. 6.10 |       1.28.34 |      20.40.57| 23.44.00|
           13|  6.56  | 7. 8.55 |       4.34. 6 |      25.59.34| 22.17.36|
           25|  7.44  | 7.58.42 |      16.45.58 |[Tau.] 9.55.48| 17.56.54|
           30|  8.07  | 8.21.53 |      21.50. 9 |      13.19.36| 16.40.57|
  February  2|  6.20  | 6.34.51 |      24.47. 4 |      15.13.48| 16.02.02|
            5|  6.50  | 7. 4.41 |      27.49.51 |      16.59.52| 15.27.23|
             +--------+---------+---------------+--------------+---------+

In his observationibus _Flamstedius_ eâ usus est diligentiâ, ut postquam
bis observasset distantiam Cometæ à Stella aliqua fixa, deinde etiam
distantiam bis ab alia stella fixa, rediret ad stellam priorem & distantiam
Cometæ ab eadem iterum observaret, idque bis, ac deinde ex distantiæ illius
incremento vel decremento tempori proportionali colligeret distantiam
tempore intermedio, quando distantia à stella altera observabatur. Ex
hujusmodi observationibus loca Cometæ festinanter computata _Flamstedius_
primò cum amicis communicavit, & postea easdem ad examen revocatas calculo
diligentiore correxit. Nos loca correcta hic descripsimus.

His adde observationes quasdam è nostris.

           | Temp.  |                 |           |
           | appar. |  Cometæ Longit. |Com. Lat.  |
           +--------+-----------------+-----------+
  Febru. 25|  8h.30'|[Tau.] 26.19'. 2"| 12.46-7/8 |
         27|  8 .15 |       27. 4 .28 | 12.36     |
  Mart.   1| 11 . 0 |       27.53 . 8 | 12.24-3/4 |
          2|  8 . 0 |       28.12 .29 | 12.19-1/2 |
          5| 11 .30 |       29.20 .51 | 12. 2-2/3 |
          9|  8 .30 |[Gem.]  0.43 . 2 | 11.44-3/5 |

Hæ observationes Telescopio septupedali, & Micrometro filisque in foco
Telescopii locatis paractæ sunt: quibus instrumentis & positiones fixarum
inter se & positiones Cometæ ad fixas determinavimus. Designet A stellam in
sinistro calcaneo Persei (_Bayero_ [omicron]) B stellam sequentem in
sinistro pede (_Bayero_ [zeta]) & C, D, E, F, G, H, I, K, L, M, N stellas
alias minores in eodem pede. Sintque P, Q, R, S, T loca Cometæ in
observationibus supra descriptis: & existente distantiâ AB partium 80-7/12,
erat AC partium 52¼, BC 58-5/6, AD 57-5/12, BD 82-6/11, CD 23-2/3, AE
29-4/7, CE 57½, DE 49-11/12, AK 38-2/3, BK 43, CK 31-5/9, FK 29, FB 23, FC
36¼, AH 18-6/7, DH 53-5/11, BN 46-5/12, CN 31-1/3, BL 45-5/12, NL 31-5/7.
LM erat ad LB ut 2 ad 9 & producta transibat per stellam H. His
determinabantur positiones fixarum inter se.

[Illustration]

Die Veneris _Feb. 25._ St. vet. Hor. 8½ P.M. Cometæ in p existentis
distantia à stella E erat major quàm 3/13 AE, minor quàm 1/5 AE, adeoque
æqualis 3/14 AE proximè; & angulus ApE nonnihil obtusus erat, sed fere
rectus. Nempe si demitteretur ad pE perpendiculum ab A, distantia Cometæ à
perpendiculo illo erat 1/5 pE.

Eadem nocte, horâ 9½, Cometæ in P existentis distantia à stella E erat
major quàm {1 ÷ 4½} AE, minor quàm {1 ÷ 5¼} AE, adeoque æqualis {1 ÷ 4-7/8}
AE, seu 8/39 AE quamproximè. A perpendiculo autem à Stella A ad rectam PE
demisso distantia Cometæ erat 4/5 PE.

Die [Mar]^{tis}, _Mart. 1_, hor. 11. P.M. Cometa in R existens, stellis K &
C accuratè interjacebat, & rectæ CRK pars CR paulo major erat quàm 1/3 CK,
& paulo minor quam 1/3 CK + 1/8 CR, adeoque æqualis 1/3 CK + 1/16 CR seu
16/45 CK.

[Illustration]

Die [Mercur]^{ii}, _Mart. 2._ hor. 8. P.M. Cometæ existentis in S,
distantia à stella C erat 4/9 FC quamproximè. Distantia stellæ F à recta CS
producta erat 1/24 FC; & distantia stellæ B ab eadem recta erat quintuplo
major quàm distantia stellæ F. Item recta NS producta transibat inter
stellas H & I, quintuplo vel sextuplo propior existens stellæ H quàm stellæ
I.

Die [Satur]^{ni}, _Mart. 5._ hor. 11½. P.M. Cometa existente in T, recta MT
æqualis erat ½ML, & recta LT producta transibat inter B & F, quadruplo vel
quintuplo propior F quàm B, auferens à BF quintam vel sextam ejus partem
versus F. Et MT producta transibat extra spatium BF ad partes stellæ B,
quadruplo propior existens stellæ B quam stellæ F. Erat M stella perexigua
quæ per Telescopium videri vix potuit, & L stella major quasi magnitudinis
octavæ.

Ex hujusmodi observationibus per constructiones figurarum & computationes
(posito quod stellarum A & B distantia esset 2 gr. 6-4/5, & stellæ A
longitudo [Tauri] 26 gr. 41'. 48" & latitudo borealis 12 gr. 8'½, stellæque
B longitudo [Tauri] 28 gr. 40'. 16". & latitudo borealis 11 gr. 17-1/5;
quemadmodum à _Flamstedio_ observatas accepi) derivabam longitudines &
latitudines Cometæ. Micrometro parum affabre constructâ usus sum, sed
Longitudinum tamen & Latitudinum errores (quatenus ab observationibus
nostris oriantur) dimidium minuti unius primi vix superant, præterquam in
observatione ultimâ _Mart. 9._ ubi positiones fixarum ad stellas A & B
minus accuratè determinare potui. _Cassinus_ qui Cometam eodem tempore
observavit, se declinationem ejus tanquam invariatam manentem parum
diligenter definivisse fassus est. Nam Cometa (juxta observationes nostras)
in fine motus sui notabiliter deflectere cæpit boream versus, à parallelo
quem in fine Mensis _Februarii_ tenuerat.

Jam ad Orbem Cometæ determinandum; selegi ex observationibus hactenus
descriptis tres, quas _Flamstedius_ habuit _Dec. 21_, _Jan. 5_, & _Jan.
25_. Ex his inveni St partium 9842,1 & Vt partium 455, quales 10000 sunt
semidiameter orbis magni. Tum ad operationem primam assumendo tB partium
5657, inveni SB 9747, BE prima vice 412, S[mu] 9503, i[lambda] = 413: BE
secunda vice 421, OD 10186, X 8528,4, MP 8450, MN 8475, NP - 25. Unde ad
operationem secundam collegi distantiam tb 5640. Et per hanc operationem
inveni tandem distantias TX 4775 & [tau]Z 11322. Ex quibus orbem definiendo
inveni Nodos ejus in [Cancris] & [Capricorni] 1 gr. 53'; Inclinationem
plani ejus ad planum Eclipticæ 61 gr. 20-1/3; verticem ejus (seu perihelium
Cometæ) in [Sagittarii] 27 gr. 43' cum latitudine australi 7 gr. 34'; &
ejus latus rectum 236,8, areamq; radio ad Solem ducto singulis diebus
descriptam 93585; Cometam verò _Decemb._ 8 d. 0 h. 4'. P.M. in vertice
orbis seu perihelio fuisse. Hæc omnia per scalam partium æqualium & chordas
angulorum ex Tabula Sinuum naturalium collectas determinavi graphicè;
construendo Schema satis amplum, in quo videlicet semidiameter orbis magni
(partium 10000) æqualis esset digitis 16-1/3 pedis Anglicani.

Tandem ut constaret an Cometa in Orbe sic invento verè moveretur, collegi
per operationes partim Arithmeticas partim Graphicas, loca Cometæ in hoc
orbe ad observationum quarundam tempora: uti in Tabula sequente videre
licet.

                                     COMETÆ
         |Distant.|         |         |         |          |     |       |
         |Cometæ  |  Lon.   |  Lat.   |Long.Obs.|Lat. Obs. |Diff.|Differ.|
         | à Sole |Collect. |Collect. |         |          |Long.|Lat.   |
         +--------+---------+---------+---------+----------+-----+-------+
  Decemb.|        | [Cap.]  |         | [Cap.]  |          |     |       |
       12|   2792 | 6.32    | 8.18-1/2| 6.33    | 8.26     | -2  | -7-1/2|
         |        | [Psc.]  |         | [Psc.]  |          |     |       |
       29|   8403 |13.13-2/3|28. 0    |13.11-3/4|28.10-1/12| +2  |-10-1/2|
         |        | [Tau.]  |         | [Tau.]  |          |     |       |
  Febr. 5|  16669 |17. 0    |15.29-2/3|16.59-7/8|15.27-2/5 |  0  | +2-1/5|
         |        | [Tau.]  |         | [Tau.]  |          |     |       |
  Mar.  5|  21737 |29.19-3/4|12. 4    |29.20-6/7|12. 2-2/3 | -1  | +1-1/3|

Præterea cum _Cl. Flamstedius_ Cometam, qui Mense _Novembri_ apparuerat,
eundem esse cum Cometa mensium subsequentium, literis ad me datis aliquando
disputaret, & Trajectoriam quamdam ab orbe hocce Parabolico non longe
aberrantem delinearet, visum est loca Cometæ in hoc orbe Mense _Novembri_
computare, & cum Observationis conferre. Observationes ita se habent.

_Nov. 17._ St. Vet. _Ponthæus_ & alii hora sexta matutina _Romæ_, (id est
hora 5. 10' _Londini_) Cometam observarunt in [Libræ] 8 gr. 30' cum
latitudine Australi 0 gr. 40'. Extant autem eorum observationes in tractatu
quem _Ponthæus_ de hoc Cometa in lucem edidit. Eadem horâ _Galletius_ etiam
_Romæ_, Cometam vidit in [Libræ] 8 gr. sine Latitudine.

_Nov. 18._ _Ponthæus_ & Socii horâ matutinâ 6, 30' _Romæ_ (_i. e._ hor. 5.
40' _Londini_) Cometam viderunt in [Libræ] 13½ cum Lat. Austr. 1 gr. 20'.
Eodem die _R. P. Ango_ in Academia _Flechensi_ apud _Gallos_, horâ quintâ
matutinâ, Cometam vidit in medio Stellarum duarum parvarum, quarum una
media est trium in recta linea in Virginis Australi manu, & altera est
extrema alæ. Unde Cometa tunc fuit in [Libræ] 12 gr. 46' cum Lat. Austr.
50'. Eodem die _Bostoniæ_ in _Nova Anglia_ in Lat. 42-1/3, horâ quintâ
matutinâ (id est _Londini_ hora Mat. 9-2/3) Cometa visus est in [Libræ] 14
circiter, cum Lat. Austr. 1 gr. 30'; uti à _Cl. Halleio_ accepi.

_Nov. 19._ hora Mat. 4½ _Cantabrigiæ_, Cometa (observante juvene quodam)
distabat à Spica [Virginis] quasi 2 gr. Boreazephyrum versus. Eodem die
hor. 5. Mat. _Bostoniæ_ in _Nova-Anglia_ Cometa distabat à Spica [Virginis]
gradu uno, differentiâ latitudinum existente 40', atque adeo differentia
Long. 44' circiter. Unde Cometa erat in [Libræ] 18 gr. 40' cum Lat. Austr.
1 gr. 19'. Eodem die D. _Arthurus Storer_ ad fluvium _Patuxent_ prope
_Hunting-Creek_ in _Mary-Land_, in Confinio _Virginiæ_ in Lat. 38½ gr. horâ
quintâ matutinâ (id est horâ 10^a _Londini_) Cometam vidit supra Spicam
[Virginis], & cum Spica propemodum conjunctum, existente distantia inter
eosdem quasi ¾ gr. Observator idem, eadem horà diei sequentis, Cometam
vidit quasi 2 gr. inferiorem Spicâ. Congruent hæ observationes cum
observationibus in _Nova Anglia_ factis, si modò distantiæ (pro motu diurno
Cometæ) nonnihil augeantur, ita ut Cometa die priore superior esset Spica
[Virginis] altitudine 52' circiter, ac die posteriore inferior eadem stellâ
altitudine perpendiculari 2 gr. 40'.

_Nov. 20._ D. _Montenarus_ Astronomiæ Professor _Paduensis_, hora sexta
Matutina, _Venetiis_ (id est hora 5. 10' _Londini_) Cometam vidit in
[Libræ] 23 gr. cum Lat. Austr. 1 gr. 30'. Eodem die _Bostoniæ_ distabat
Cometa à Spica [Virginis], 4 gr. longitudinis in orientem, adeoque erat in
[Libræ] 23 gr. 24 circiter.

_Nov. 21._ _Ponthæus_ & Socii hor. mat. 7¼ Cometam observarunt in [Libræ]
27 gr. 50' cum Latitudine Australi 1 gr. 16'. _Ango_ horâ quintâ mat. in
[Libræ] 27 gr. 45'. _Montenarus_ in [Libræ] 27 gr. 51'. Eodem die in Insulâ
_Jamaicâ_ visus est prope principium Scorpii, eandemque circiter
latitudinem habuit cum Spica Virginis, id est 1 gr. 59'.

_Novem. 22._ Visus est à _Montenaro_ in [Scorpii] 2°. 33'. _Bostoniæ_ autem
in _Novâ Angliâ_ apparuit in [Scorpii] 3 gr. circiter, eadem fere cum
latitudine ac prius.

Deinde visus est à _Montenaro_ _Novem. 24._ in [Scorpii] 12 gr. 52'. &
_Nov. 25._ in [Scorpii] 17 gr. 45'. Latitudinem _Galletius_ jam ponit 2 gr.
Eandem _Ponthæus_ & _Galletius_ decrevisse, _Montenarus_ & _Ango_ semper
crevisse testantur. Crassæ sunt horum omnium observationes, sed eæ
_Montenari_, _Angonis_ & observatoris in _Nova-Anglia_ præferendæ videntur.
Ex omnibus autem inter se collatis, & ad meridianum _Londini_, hora mat. 5.
10' reductis, colligo Cometam hujusmodi cursum quamproximè descripsisse.

          |   Long. Com.   | Latit. Com. |
          +----------------+-------------+
  Nov. 17 |[Libræ]     8.0 | 0.45 Austr. |
       18 |          12.52 | 1. 2        |
       19 |          17.48 | 1.18        |
       20 |          22.45 | 1.32        |
       21 |          27.46 | 1.44        |
       22 |[Scorpii]  2.48 | 1.55        |
       23 |           7.50 | 2. 4        |
       24 |          12.52 | 2.12        |
       25 |          17.45 | 2.18        |

Loca autem Cometæ iisdem horis in orbe Parabolico inventa ita se habent.

          |  Comet. Lon.   | Com. Lat. |
          +----------------+-----------+
  Nov. 17 |[Libræ]    8. 3 |   0.23 A  |
       21 |[Libræ]   28. 0 |   1.22 A  |
       25 |[Scorpii] 18.17 |   2. 6 A  |

Congruunt igitur observationes tam mense _Novembri_, quam mensibus tribus
subsequentibus cum motu Cometæ circa Solem in Trajectoriâ hacce Parabolicâ,
atque adeo hanc esse veram hujus Cometæ Trajectoriam confirmant. Nam
differentia inter loca observata & loca computata tam ex erroribus
observationum quam ex erroribus operationum Graphicarum in Orbe definiendo
admissis, facilè oriri potuere.

Cæterum Trajectoriam quam Cometa descripsit, & caudam veram quam singulis
in locis projecit, visum est annexo schemate in plano Trajectoriæ opticè
delineatas exhibere: observationibus sequentibus in cauda definienda
adhibitis.

_Nov. 17._ Cauda gradus amplius quindecim longa _Ponthæo_ apparuit. _Nov.
18._ cauda 30 gr. longa, Solique directe opposita in _Nova Anglia_
cernebatur, & protendebatur usque ad stellam [Martem], qui tunc erat in
[Virginis] 9 gr. 54'. _Nov. 19_ in _Mary-Land_ cauda visa fuit gradus 15
vel 20 longa. _Dec. 10._ cauda (observante _Flamstedio_) transibat per
medium distantiæ inter caudam serpentis Ophiuchi & stellam [delta] in
Aquilæ australi ala, & desinebat prope stellas A, [omega], b in Tabulis
_Bayeri_. Terminus igitur erat in [Capricorni] 19½ cum lat. bor. 34¼ gr.
circiter. _Dec. 11._ surgebat ad usque caput sagittæ (_Bayero_, [alpha],
[beta],) desinens in [Capricorni] 26 gr. 43' cum lat. bor. 38 gr. 34'.
_Dec. 12._ transibat per medium Sagittæ, nec longe ultra protendebatur,
desinens in [Aquarii] 4°, cum lat. bor. 42½ circiter. Intelligenda sunt hæc
de longitudine caudæ clarioris. Nam luce obscuriore, in coelo forsan magis
sereno, cauda _Dec. 12._ hora 5, 40' _Romæ_ (observante _Ponthæo_) supra
cygni Uropygium ad gr. 10. sese extulit; atque ab hac stella ejus latus ad
occasum & boream min. 45. destitit. Lata autem erat cauda his diebus gr. 3.
juxta terminum superiorem, ideoque medium ejus distabat à Stella illa 2 gr.
15' austrum versus, & terminus superior erat in [Piscium] 22 gr. cum lat.
bor. 61 gr. _Dec. 21._ surgebat fere ad cathedram _Cassiopeiæ_, æqualiter
distans à [beta] & _Schedir_, & distantiam ab utraque distantiæ earum ab
invicem æqualem habens, adeoque desinens in [Piscium] 24 gr. cum lat. 47½
gr. _Dec. 29._ tangebat _Scheat_ sitam ad sinistram, & intervallum
stellarum duarum in pede boreali _Andromedæ_ accuratè complebat, & longa
erat 54 gr. adeoque desinebat in [Tauri] 19 gr. cum lat. 35. gr. _Jan. 5._
tetigit stellam [pi] in pectore _Andromedæ_, ad latus suum dextrum &
stellam [mu] in ejus cingulo ad latus sinistrum; & (juxta observationes
nostras) longa erat 40 gr.; curva autem erat & convexo latere spectabat ad
austrum. Cum circulo per Solem & caput Cometæ transeunte angulum confecit
graduum 4 juxta caput Cometæ; at juxta terminum alterum inclinabatur ad
circulum illum in angulo 10 vel 11 grad. & chorda caudæ cum circulo illo
continebat angulum graduum octo. _Jan. 13._ Cauda luce satis sensibili
terminabatur inter _Alamech_ & _Algol_, & luce tenuissima desinebat è
regione stellæ [kappa] in latere _Persei_. Distantia termini caudæ à
circulo Solem & Cometam jungente erat 3 gr. 50', & inclinatio chordæ caudæ
ad circulum illum 8½ gr. _Jan. 25 & 26_ luce tenui micabat ad longitudinem
graduum 6 vel 7; & ubi coelum valde serenum erat, luce tenuissimâ &
ægerrimè sensibili attingebat longitudinem graduum duodecim & paulo ultra.
Dirigebatur autem ejus axis ad Lucidam in humero orientali Aurigæ accuratè,
adeoque declinabat ab oppositione Solis Boream versus in angulo graduum
decem. Denique _Feb. 10._ caudam oculis armatis aspexi gradus duos longam.
Nam lux prædicta tenuior per vitra non apparuit. _Ponthæus_ autem _Feb. 7._
se caudam ad longitudinem gr. 12. vidisse scribit.

Orbem jam descriptum spectanti & reliqua Cometæ hujus Phænomena in animo
revolventi haud difficulter constabit quod corpora Cometarum sunt solida,
compacta, fixa ac durabilia ad instar corporum Planetarum. Nam si nihil
aliud essent quàm vapores vel exhalationes Terræ, Solis & Planetarum,
Cometa hicce in transitu suo per viciniam Solis statim dissipari debuisset.
Est enim calor Solis ut radiorum densitas, hoc est reciprocè ut quadratum
distantiæ locorum à Sole. Ideoque cum distantia Cometæ à Sole _Dec. 8._ ubi
in Perihelio versabatur, esset ad distantiam Terræ à Sole ut 6 ad 1000
circiter, calor Solis apud Cometam eo tempore erat ad calorem Solis æstivi
apud nos ut 1000000 ad 36, seu 28000 ad 1. Sed calor aquæ ebullientis est
quasi triplo major quàm calor quem terra arida concipit ad æstivum Solem;
ut expertus sum: & calor ferri candentis (si rectè conjector) quasi triplo
vel quadruplo major quam calor aquæ ebullientis; adeoque calor quem terra
arida apud Cometam in perihelio versantem ex radiis Solaribus concipere
posset; quasi 2000 vicibus major quàm calor ferri candentis. Tanto autem
calore vapores & exhalationes, omnisque materia volatilis statim consumi ac
dissipari debuissent.

Cometa igitur in perihelio suo calorem immensum ad Solem concepit, &
calorem illum diutissimè conservare potest. Nam globus ferri candentis
digitum unum latus, calorem suum omnem spatio horæ unius in aere consistens
vix amitteret. Globus autem major calorem diutius conservaret in ratione
diametri, propterea quod superficies (ad cujus mensuram per contactum aeris
ambientis refrigeratur) in illa ratione minor est pro quantitate materiæ
suæ calidæ inclusæ. Ideoque globus ferri candentis huic Terræ æqualis, id
est pedes plus minus 40000000 latus, diebus totidem, & idcirco annis 50000,
vix refrigesceret. Suspicor tamen quod duratio Caloris ob causas latentes
augeatur in minore ratione quam ea diametri: & optarim rationem veram per
experimenta investigari.

Porrò notandum est quod Cometa Mense _Decembri_, ubi ad Solem modò
incaluerat, caudam emittebat longe majorem & splendidiorem quàm antea Mense
_Novembri_; ubi perihelium nondum attigerat. Et universaliter caudæ omnes
maximæ & fulgentissimæ è Cometis oriuntur, statim post transitum eorum per
regionem Solis. Conducit igitur calefactio Cometæ ad magnitudinem caudæ. Et
inde colligere videor quod cauda nihil aliud sit quam vapor longe
tenuissimus, quem caput seu Nucleus Cometæ per calorem suum emittit.

Cæterum de Cometarum caudis triplex est opinio, eas vel jubar esse Solis
per translucida Cometarum capita propagatum; vel oriri ex refractione lucis
in progressu ipsius à capite Cometæ in Terram: vel denique nubem esse seu
vaporem à capite Cometæ jugiter surgentem & abeuntem in partes à Sole
aversas. Opinio prima eorum est qui nondum imbuti sunt scientia rerum
opticarum. Nam jubar Solis in cubiculo tenebroso non cernitur nisi quatenus
lux reflectitur è pulverum & fumorum particulis per aerem semper
volitantibus: adeoque in aere fumis crassioribus infecto splendidius est, &
sensum fortius ferit; in aere clariore tenuius est & ægrius sentitur: in
coelis autem absque materia reflectente nullum esse potest. Lux non
cernitur quatenus in jubare est, sed quatenus inde reflectitur ad oculos
nostros. Nam visio non fit nisi per radios qui in oculos impingunt.
Requiritur igitur materia aliqua reflectens in regione Caudæ, ne coelum
totum luce Solis illustratum uniformiter splendeat. Opinio secunda multis
premitur difficultatibus. Caudæ nunquam variegantur coloribus: qui tamen
refractionum solent esse comites inseparabiles. Lux Fixarum & Planetarum
distinctè ad nos transmissa demonstrat medium coeleste nulla vi refractiva
pollere. Nam quod dicitur fixas ab _Ægyptiis_ comatas nonnunquam visas
fuisse, id quoniam rarissimè contingit, ascribendum est nubium refractioni
fortuitæ. Fixarum quoque radiatio & scintillatio ad refractiones tum
Oculorum tum aeris tremuli referendæ sunt: quippe quæ admotis oculo
Telescopiis evanescunt. Aeris & ascendentium vaporum tremore fit ut radii
facile de angusto pupilli spatio per vices detorqueantur, de latiore autem
vitri objectivi apertura neutiquam. Inde est quod scintillatio in priori
casu generetur, in posteriore autem cesset: & cessatio in posteriore casu
demonstrat regularem transmissionem lucis per coelos absque omni
refractione sensibili. Nequis contendat quod caudæ non soleant videri in
Cometis cum eorum lux non est satis fortis, quia tunc radii secundarii non
habent satis virium ad oculos movendos, & propterea caudas fixarum non
cerni: sciendum est quod lux fixarum plus centum vicibus augeri potest
mediantibus Telescopiis, nec tamen caudæ cernuntur. Planetarum quoque lux
copiosior est, caudæ verò nullæ: Cometæ autem sæpe caudatissimi sunt, ubi
capitum lux tenuis est & valde obtusa: sic enim Cometa Anni 1680, Mense
_Decembri_, quo tempore caput luce sua vix æquabat stellas secundæ
magnitudinis, caudam emittebat splendore notabili usque ad gradus 40, 50,
60 longitudinis & ultra: postea _Jan. 27 & 28_ caput apparebat ut stella
septimæ tantum magnitudinis, cauda verò luce quidem pertenui sed satis
sensibili longa erat 6 vel 7 gradus, & luce obscurissima, quæ cerni vix
posset, porrigebatur ad gradum usque duodecimum vel paulo ultra: ut supra
dictum est. Sed & _Feb. 9. & 10_ ubi caput nudis oculis videri desierat,
caudam gradus duos longam per Telescopium contemplatus sum. Porro si cauda
oriretur ex refractione materiæ coelestis, & pro figura coelorum
deflecteretur de Solis oppositione, deberet deflexio illa in iisdem coeli
regionibus in eandem semper partem fieri. Atqui Cometa Anni 1680 _Decemb.
28_ hora 8½ P.M. _Londini_, versabatur in [Piscium] 8 gr. 41 cum latitudine
boreali 28 gr. 6', Sole existente in [Capricorni] 18 gr. 26'. Et Cometa
Anni 1577 _Dec. 29._ versabatur in [Piscium] 8 gr. 41' cum latitudine
boreali 28 gr. 40'. Sole etiam existente in [Capricorni] 18 gr. 26'
circiter. Utroque in casu Terra versabatur in eodem loco & Cometa apparebat
in eadem coeli parte: in priori tamen casu cauda Cometæ (ex meis & aliorum
observationibus) declinabat angulo graduum 4½ ab oppositione Solis
Aquilonem versus; in posteriore verò (ex Observationibus _Tychonis_)
declinatio erat graduum 21 in austrum. Igitur repudiata coelorum
refractione, superest ut Phænomena Caudarum ex materia aliqua reflectente
deriventur.

Caudas autem à capitibus oriri & in regiones à Sole aversas ascendere
confirmatur ex legibus quas observant. Ut quod in planis orbium Cometarum
per Solem transeuntibus jacentes, deviant ab oppositione Solis in eas
semper partes quas capita in orbibus illis progredientia relinquunt. Quod
spectatori in his planis constituto apparent in partibus à Sole directè
aversis; digrediente autem spectatore de his planis, deviatio paulatim
sentitur, & indies apparet major. Quod deviatio cæteris paribus minor est
ubi cauda obliquior est ad orbem Cometæ, ut & ubi caput Cometæ ad Solem
propius accedit; præsertim si spectetur deviationis angulus juxta caput
Cometæ. Præterea quod caudæ non deviantes apparent rectæ, deviantes autem
incurvantur. Quod curvatura major est ubi major est deviatio, & magis
sensibilis ubi cauda cæteris paribus longior est: nam in brevioribus
curvatura ægre animadvertitur. Quod deviationis angulus minor est juxta
caput Cometæ, major juxta caudæ extremitatem alteram, atque adeò quod cauda
convexo sui latere partes respicit à quibus fit deviatio, quæque in rectâ
sunt lineâ à Sole per caput Cometæ in infinitum ductâ. Et quod caudæ quæ
prolixiores sunt & latiores, & luce vegetiore micant, sint ad latera
convexa paulò splendidiores & limite minus indistincto terminatæ quam ad
concava. Pendent igitur Phænomena caudæ à motu capitis, non autem à regione
coeli in qua caput conspicitur; & propterea non fiunt per refractionem
coelorum, sed à capite suppeditante materiam oriuntur. Etenim ut in aere
nostro fumus corporis cujusvis igniti petit superiora, idque vel
perpendiculariter si corpus quiescat, vel obliquè si corpus moveatur in
latus; ita in coelis ubi corpora gravitant in Solem, fumi & vapores
ascendere debent à Sole (uti jam dictum est) & superiora vel rectâ petere,
si corpus fumans quiescit; vel obliquè, si corpus progrediendo loca semper
deserit à quibus superiores vaporis partes ascenderant. Et obliquitas ista
minor erit ubi ascensus vaporis velocior est: nimirum in vicinia Solis &
juxta corpus fumans. Ex obliquitatis autem diversitate incurvabitur vaporis
columna: & quia vapor in columnæ latere præcedente paulo recentior est,
ideo etiam is ibidem aliquanto densior erit, lucemque propterea copiosius
reflectet, & limite minus indistincto terminabitur. De caudarum
agitationibus subitaneis & incertis, deque earum figuris irregularibus,
quas nonnulli quandoque describunt, hic nihil adjicio; propterea quod vel à
mutationibus aeris nostri, & motibus nubium caudas aliqua ex parte
obscurantium oriantur; vel forte à partibus Viæ Lacteæ, quæ cum caudis
prætereuntibus confundi possint, ac tanquam earum partes spectari.

Vapores autem, qui spatiis tam immensis implendis sufficiant, ex Cometarum
Atmosphæris oriri posse, intelligetur ex raritate aeris nostri. Nam aer
juxta superficiem Terræ spatium occupat quasi 850 vicibus majus quam aqua
ejusdem ponderis, ideoque aeris columna Cylindrica pedes 850 alta ejusdem
est ponderis cum aquæ columna pedali latitudinis ejusdem. Columna autem
aeris ad summitatem Atmosphæræ assurgens æquat pondere suo columnam aquæ
pedes 33 altam circiter; & propterea si columnæ totius aereæ pars inferior
pedum 850 altitudinis dematur, pars reliqua superior æquabit pondere suo
columnam aquæ altam pedes 32. Inde verò (ex Hypothesi multis experimentis
confirmata, quod compresso aeris sit ut pondus Atmosphæræ incumbentis,
quodque gravitas sit reciproce ut quadratum distantiæ locorum à centro
Terræ) computationem per Corol. Prop. XXII. Lib. II. ineundo, inveni quod
aer, si ascendatur à superficie Terræ ad altitudinem semidiametri unius
terrestris, rarior sit quàm apud nos in ratione longe majori, quàm spatii
omnis infra orbem Saturni ad globum diametro digiti unius descriptum.
Ideoque globus aeris nostri digitum unum latus, ea cum raritate quam
haberet in altitudine semidiametri unius terrestris, impleret omnes
Planetarum regiones ad usque sphæram Saturni & longe ultra. Proinde cum aer
adhuc altior in immensum rarescat; & coma seu Atmosphæra Cometæ, ascendendo
ab illius centro, quasi decuplo altior sit quàm superficies nuclei, deinde
cauda adhuc altius ascendat, debebit cauda esse quàm rarissima. Et quamvis,
ob longe crassiorem Cometarum Atmosphæram, magnamque corporum gravitationem
Solem versus, & gravitationem particularum Aeris & vaporum in se mutuo,
fieri possit ut aer in spatiis coelestibus inque Cometarum caudis non adeo
rarescat; perexiguam tamen quantitatem aeris & vaporum ad omnia illa
caudarum phænomena abunde sufficere ex hac computatione perspicuum est. Nam
& caudarum insignis raritas colligitur ex astris per eas translucentibus.
Atmosphæra terrestris luce Solis splendens, crassitudine sua paucorum
milliarium, & astra omnia & ipsam Lunam obscurat & extinguit penitus: per
immensam verò caudarum crassitudinem, luce pariter Solari illustratam,
astra minima absque claritatis detrimento translucere noscuntur. Neque
major esse solet caudarum plurimarum splendor, quam aeris nostri in
tenebroso cubiculo latitudine digiti unius duorumve, lucem Solis in jubare
reflectentis.

Quo tempore vapor à capite ad terminum caudæ ascendit, cognosci fere potest
ducendo rectam à termino caudæ ad Solem, & notando locum ubi recta illa
Trajectoriam secat. Nam vapor in termino caudæ, si rectà ascendat à Sole,
ascendere cæpit à capite quo tempore caput erat in loco intersectionis. At
vapor non rectà ascendit à Sole, sed motum Cometæ, quem ante ascensum suum
habebat, retinendo, & cum motu ascensus sui eundem componendo, ascendit
oblique. Unde verior erit Problematis solutio, ut recta illa quæ orbem
secat, parallela sit longitudini caudæ, vel potius (ob motum curvilineum
Cometæ) ut eadem à linea caudæ divergat. Hoc pacto inveni quod vapor qui
erat in termino caudæ _Jan. 25._ ascendere cæperat à capite ante _Decemb.
11._ adeoque ascensu suo toto dies plus 45 consumpserat. At cauda illa
omnis quæ _Dec. 10._ apparuit, ascenderat spatio dierum illorum duorum, qui
à tempore perihelii Cometæ elapsi fuerant. Vapor igitur sub initio in
vicinia Solis celerrimè ascendebat, & postea cum motu per gravitatem suam
semper retardato ascendere pergebat; & ascendendo augebat longitudinem
caudæ: cauda autem quamdiu apparuit ex vapore fere omni constabat qui à
tempore perihelii ascenderat; & vapor, qui primus ascendit, & terminum
caudæ composuit, non prius evanuit quàm ob nimiam suam tam à Sole
illustrante quam ab oculis nostris distantiam videri desiit. Unde etiam
caudæ Cometarum aliorum quæ breves sunt, non ascendunt motu celeri &
perpetuo à capitibus & mox evanescunt, sed sunt permanentes vaporum &
exhalationum columnæ, à capitibus lentissimo multorum dierum motu
propagatæ, quæ, participando motum illum capitum quem habuere sub initio,
per coelos una cum capitibus moveri pergunt. Et hinc rursus colligitur
spatia cælestia vi resistendi destitui; utpote in quibus non solum solida
Planetarum & Cometarum corpora, sed etiam rarissimi caudarum vapores motus
suos velocissimos liberrimè peragunt ac diutissimè conservant.

Ascensum caudarum ex Atmosphæris capitum & progressum in partes à Sole
aversas _Keplerus_ ascribit actioni radiorum lucis materiam caudæ secum
rapientium. Et auram longe tenuissimam in spatiis liberrimis actioni
radiorum cedere, non est à ratione prorsus alienum, non obstante quod
substantiæ crassæ, impeditissimis in regionibus nostris, à radiis Solis
sensibiliter propelli nequeant. Alius particulas tam leves quam graves dari
posse existimat, & materiam caudarum levitare, perque levitatem suam à Sole
ascendere. Cùm autem gravitas corporum terrestrium sit ut materia in
corporibus, ideoque servata quantitate materiæ intendi & remitti nequeat,
suspicor ascensum illum ex rarefactione materiæ caudarum potius oriri.
Ascendit fumus in camino impulsu aeris cui innatat. Aer ille per calorem
rarefactus ascendit, ob diminutam suam gravitatem specificam, & fumum
implicatum rapit secum. Quidni cauda Cometæ ad eundem modum ascenderit à
Sole? Nam radii Solares non agitant Media quæ permeant, nisi in reflexione
& refractione. Particulæ reflectentes ea actione calefactæ calefacient
auram ætheream cui implicantur. Illa calore sibi communicato rarefiet, & ob
diminutam ea raritate gravitatem suam specificam qua prius tendebat in
Solem, ascendet & secum rapiet particulas reflectentes ex quibus cauda
componitur: Ad ascensum vaporum conducit etiam quod hi gyrantur circa Solem
& ea actione conantur à Sole recedere, at Solis Atmosphæra & materia
coelorum vel plane quiescit, vel motu solo quem à Solis rotatione
acceperint, tardius gyratur. Hæ sunt causæ ascensus caudarum in vicinia
Solis, ubi orbes curviores sunt, & Cometæ intra densiorem & ea ratione
graviorem Solis Atmosphæram consistunt, & caudas quàm longissimas mox
emittunt. Nam caudæ quæ tunc nascuntur, conservando motum suum & interea
versus Solem gravitando, movebuntur circa Solem in Ellipsibus pro more
capitum, & per motum illum capita semper comitabuntur & iis liberrimè
adhærebunt. Gravitas enim vaporum in Solem non magis efficiet ut caudæ
postea decidant à capitibus Solem versus, quam gravitas capitum efficere
possit ut hæc decidant à caudis. Communi gravitate vel simul in Solem
cadunt, vel simul in ascensu suo retardabuntur, adeoque gravitas illa non
impedit, quo minus caudæ & capita positionem quamcunque ad invicem à causis
jam descriptis aut aliis quibuscunque facillimè accipiant & postea
liberrime servent.

Caudæ igitur quæ Cometarum periheliis nascuntur, in regiones longinquas cum
eorum capitibus abibunt, & vel inde post longam annorum seriem cum iisdem
ad nos redibunt, vel potius ibi rarefacti paulatim evanescent. Nam postea
in descensu capitum ad Solem caudæ novæ breviusculæ lento motu à capitibus
propagari debebunt, & subinde, in Periheliis Cometarum illorum qui adusq;
Atmosphæram Solis descendunt, in immensum augeri. Vapor enim in spatiis
illis liberrimis perpetuò rarescit ac dilatatur. Qua ratione fit ut cauda
omnis ad extremitatem superiorem latior sit quam juxta caput Cometæ. Ea
autem rarefactione vaporem perpetuo dilatatum diffundi tandem & spargi per
coelos universos, deinde paulatim in Planetas per gravitatem suam attrahi &
cum eorum Atmosphæris misceri rationi consentaneum videtur. Nam quemadmodum
Maria ad constitutionem Terræ hujus omnino requiruntur, idque ut ex iis per
calorem Solis vapores copiose satis excitentur, qui vel in nubes coacti
decidant in pluviis, & terram omnem ad procreationem vegetabilium irrigent
& nutriant; vel in frigidis montium verticibus condensati (ut aliqui cum
ratione philosophantur) decurrant in fontes & flumina: sic ad
conservationem marium & humorum in Planetis Cometæ requiri videntur; ex
quorum exhalationibus & vaporibus condensatis, quicquid liquoris per
vegetationem & putrefactionem consumitur & in terram aridam convertitur,
continuò suppleri & refici possit. Nam vegetabilia omnia ex liquoribus
omnino crescunt, dein magna ex parte in terram aridam per putrefactionem
abeunt, & limus ex liquoribus putrefactis perpetuò decidit. Hinc moles
Terræ aridæ indies augetur, & liquores, nisi aliunde augmentum sumerent,
perpetuò decrescere deberent, ac tandem deficere. Porrò suspicor spiritum
illum, qui aeris nostri pars minima est sed subtilissima & optima, & ad
rerum omnium vitam requiritur, ex Cometis præcipue venire.

Atmosphæræ Cometarum in descensu eorum in Solem excurrendo in caudas
diminuuntur, & (ea certe in parte quæ Solem respicit) angustiores
redduntur: & vicissim in recessu eorum à Sole, ubi jam minus excurrunt in
caudas, ampliantur; si modò Phænomena eorum _Hevelius_ recte notavit.
Minimæ autem apparent ubi capita jam modo ad Solem calefacta in caudas
maximas & fulgentissimas abiere, & nuclei fumo forsan crassiore & nigriore
in Atmosphærarum partibus infimis circundantur. Nam fumus omnis ingenti
calore excitatus crassior & nigrior esse solet. Sic caput Cometæ de quo
egimus, in æqualibus à Sole ac Terrâ distantiis, obscurius apparuit post
perihelium suum quam antea. Mense enim _Decem._ cum stellis tertiæ
magnitudinis conferri solebat, at Mense _Novem._ cum stellis primæ &
secundæ. Et qui utrumq; viderant, majorem describunt Cometam priorem. Nam
Juveni cuidam _Cantabrigiensi_ _Novem. 19._ Cometa hicce luce sua
quantumvis plumbea & obtusa æquabat Spicam Virginis, & clarius micabat quàm
postea. Et _D. Storer_ literis quæ in manus nostras incidêre, scripsit
caput ejus Mense _Decembri_, ubi caudam maximam & fulgentissimam emittebat,
parvum esse & magnitudine visibili longe cedere Cometæ qui Mense _Novembri_
ante Solis ortum apparuerat. Cujus rei rationem esse conjectabatur quod
materia capitis sub initio copiosior esset & paulatim consumeretur.

Eodem spectare videtur quod capita Cometarum aliorum, qui caudas maximas &
fulgentissimas emiserunt, describantur subobscura & exigua. Nam Anno 1668
Mart. 5. St. nov. hora septima Vesp. _R. P. Valentinus Estancius_,
_Brasiliæ_ agens, Cometam vidit Horizonti proximum ad occasum Solis
brumalem, capite minimo & vix conspicuo, cauda verò supra modum fulgente,
ut stantes in littore speciem ejus è mati reflexam facilè cernerent.
Speciem utique habebat trabis splendentis longitudine 23 graduum, ab
occidente in austrum vergens, & Horizonti fere parallela. Tantus autem
splendor tres solum dies durabat, subinde notabiliter decrescens; & interea
decrescente splendore aucta est magnitudine cauda. Unde etiam in
_Portugallia_ quartam fere coeli partem (id est gradus 45) occupasse
dicitur, ab occidente in orientem splendore cum insigni protensa; nec tamen
tota apparuit, capite semper in his regionibus infra Horizontem
delitescente. Ex incremento caudæ & decremento splendoris manifestum est
quod caput à Sole recessit, eique proximum fuit sub initio, pro more Cometæ
anni 1680. Et similis legitur Cometa anni 1101 vel 1106, _cujus Stella erat
parva & obscura_ (ut ille anni 1680) _sed splendor qui ex ea exivit valde
clarus & quasi ingens trabs ad orientem & Aquilonem tendebat_, ut habet
_Hevelius_ ex _Simeone Dunelmensi_ Monacho. Apparuit initio Mensis _Feb._
circa vesperam ad occasum Solis brumalem. Inde verò & ex situ caudæ
colligitur caput fuisse Soli vicinum. _A Sole_, inquit Matthæus
Parisiensis, _distabat quasi cubito uno, ab hora tertia_ [rectius sexta]
_usque ad horam nonam radium ex se longum emittens_. Talis etiam erat
ardentissimus ille Cometa ab _Aristotele_ descriptus Lib. 1. Meteor. 6.
_cujus caput primo die non conspectum est, eo quod ante Solem vel saltem
sub radiis solaribus occidisset, sequente verò die quantum potuit visum
est. Nam quam minimâ fieri potest distantiâ Solem reliquit, & mox occubuit.
Ob nimium ardorem_ [caudæ scilicet] _nondum apparebat capitis sparsus
ignis, sed procedente tempore_ (ait Aristoteles) _cum_ [cauda] _jam minus
flagraret, reddita est_ [capiti] _Cometæ sua facies. Et splendorem suum ad
tertiam usque coeli partem_ [id est ad 60 gr.] _extendit. Apparuit autem
tempore hyberno, & ascendens usque ad cingulum Orionis ibi evanuit._ Cometa
ille anni 1618, qui è radiis Solaribus caudatissimus emersit, stellas primæ
magnitudinis æquare vel paulo superare videbatur, sed majores apparuere
Cometæ non pauci qui caudas breviores habuere. Horum aliqui Jovem, alii
Venerem vel etiam Lunam æquasse traduntur.

Diximus Cometas esse genus Planetarum in Orbibus valde excentricis circa
Solem revolventium. Et quemadmodum è Planetis non caudatis, minores esse
solent qui in orbibus minoribus & Soli proprioribus gyrantur, sie etiam
Cometas, qui in Periheliis suis ad Solem propius accedunt, ut plurimum
minores esse & in orbibus minoribus revolvi rationi consentaneum videtur.
Orbium verò transversas diametros & revolutionum tempora periodica ex
collatione Cometarum in iisdem orbibus post longa temporum intervalla
redeuntium determinanda relinquo. Interea huic negotio Propositio sequens
Lumen accendere potest.

Prop. XLII. Prob. XXI.

    _Trajectoriam Cometæ graphicè inventam corrigere._

_Oper. 1._ Assumatur positio plani Trajectoriæ, per Propositionem
superiorem graphicè inventa; & seligantur tria loca Cometæ observationibus
accuratissimis definita, & ab invicem quam maximè distantia; sitque A
tempus inter primam & secundam, ac B tempus inter secundam ac tertiam.
Cometam autem in eorum aliquo in Perigæo versari convenit, vel saltem non
longe à Perigæo abesse. Ex his locis apparentibus inveniantur per
operationes Trigonometricas loca tria vera Cometæ in assumpto illo plano
Trajectoriæ. Deinde per loca illa inventa, circa centrum Solis ceu
umbilicum, per operationes Arithmeticas, ope Prop. XXI. Lib. I. institutas,
describatur Sectio Conica: & ejus areæ, radiis à Sole ad loca inventa
ductis terminatæ, sunto D & E; nempe D area inter observationem primam &
secundam, & E area inter secundam ac tertiam. Sitque T tempus totum quo
area tota D + E, velocitate Cometæ per Prop. XVI. Lib. I. inventa, describi
debet.

_Oper. 2._ Augeatur longitudo Nodorum Plani Trajectoriæ, additis ad
longitudinem illam 20' vel 30', quæ dicantur P; & servetur plani illius
inclinatio ad planum Eclipticæ. Deinde ex prædictis tribus Cometæ locis
observatis inveniantur in hoc novo plano loca tria vera (ut supra): deinde
etiam orbis per loca illa transiens, & ejusdem areæ duæ inter observationes
descriptæ, quæ sint d & e, nec non tempus totum t quo area tota d + e
describi debeat.

_Oper. 3._ Servetur Longitudo Nodorum in operatione prima, & augeatur
inclinatio Plani Trajectoriæ ad planum Eclipticæ, additis ad inclinationem
illam 20' vel 30', quæ dicantur Q. Deinde ex observatis prædictis tribus
Cometæ locis apparentibus, inveniantur in hoc novo Plano loca tria vera,
Orbisque per loca illa transiens, ut & ejusdem areæ duæ inter observationes
descriptæ, quæ sint [delta] & [epsilon], & tempus totum [tau] quo area tota
[delta] + [epsilon] describi debeat.

Jam sit C ad 1 ut A ad B, & G ad 1 ut D ad E, & g ad 1 ut d ad e, & [gamma]
ad 1 ut [delta] ad [epsilon]; sitque S tempus verum inter observationem
primam ac tertiam; & signis + & - probe observatis quærantur numeri m & n,
ea lege ut sit G - C = mG - mg + nG - n[gamma], & T - S æquale mT - mt + nT
- n[tau]. Et si, in operatione prima, I designet inclinationem plani
Trajectoriæ ad planum Eclipticæ, & K longitudinem Nodi alterutrius: erit I
+ nQ vera inclinatio Plani Trajectoriæ ad Planum Eclipticæ, & K + mP vera
longitudo Nodi. Ac denique si in operatione prima, secunda ac tertia,
quantitates R, r & [rho] designent Latera recta Trajectoriæ, & quantitates
1 ÷ L, 1 ÷ l, 1 ÷ [lambda] ejusdem Latera transversa respectivè: erit R +
mr - mR + n[rho] - nR verum Latus rectum, & 1 ÷ {L + ml - mL + n[lambda] -
nL} verum Latus transversum Trajectoriæ quàm Cometa describit. Dato autem
Latere transverso datur etiam tempus periodicum Cometæ.   _Q. E. I._

       *       *       *       *       *


_FINIS._

       *       *       *       *       *


Corrections made to printed original.

(The Errata of the printed original have been incorporated in the main
text)

p. 6. IV. "cum Velocitate partium 10010": 'Volocitate' in original.

p. 16. "differentiæ contrariorum 17 - 1 & 18 - 2": 'contrario-' at end of
page in original, the 'rum' is only in the catchword.

p. 11. "At si attenderetur ad filum": 'attenderatur' in original.

p. 22. "si corpora ibant ad eandem plagam": 'eandam' in original.

p. 27. Lemma II. "& curva acE comprehensa": 'AcE' in original.

ibid. Lemma III. "ubi parallelogrammorum latitudines": 'parallelogramomrum'
in original.

p. 54. "occurrentem tum diametro YPG": 'occurentem' in original.

p. 66. "ad illius umbilicorum intervallum": 'il-ius' on line break in
original.

p. 69. "in secundo casu abeunte in infinitum": 'abeun-in' on line break in
original.

p. 77. Lemma XXI. "describent sectionem Conicam": 'sec-ionem' in original,
across page break: the catchword has the missing t.

p. 79. Prob. XIV. "occurrentes in T & R": 'occurentes' in original.

p. 106. "& sic in infinitum.": 'infinium' in original.

p. 112. "Cognoscatur etiam angulus tempori proportionalis":
'porportionalis' in original.

ibid. "Postea capiatur tum angulus F ad angulum B": 'augulus F' in
original.

p. 113. "Asymptotos CK": 'Asymtotos' in original.

p. 146. "pro ratione distantiarum æquales viribus quibus corpora unaquaq;
trahuntur": 'undiquaq;' in original.

p. 176. Corol. 2. "ultimo in consequentia transeundo a B ad C":
'conseqentia' in original.

p. 180. "augetq; Excentricitatem Ellipseos": 'Ellipsieos' in original.

p. 184. "non mutantur motus Augis & Nodorum sensibiliter": 'sensibilitur'
in original.

p. 219. "erit attractio corpusculi P in circulum ut {1 ÷ PA^{n-2}} - {PA ÷
PH^{n-1}}.": First term '{1 ÷ PA^{n-1}}' in original.

p. 222. "Et pari ratione": 'pari-' at end of line in original.

p. 226. "resolvo in Seriem infinitam ... m ÷ n OA^...": 'n ÷ m' in
original.

p. 254. Prop. VIII. "spatium totum descriptum distinguatur": 'descriptnm'
in original.

p. 271. Reg. 7. "determinandi hanc Hyperbolam ex Phænomenis": 'Phænominis'
in original.

ibid. "in angulis diversis HAK, hAk": The second 'hAK' in original.

p. 272. Reg. 8. "quarum AC deorsum tendat": 'tandat' in original.

p. 294. Corol. 4. "par est ratio omnium ejusdem magnitudinis":
'magitudinis' in original.

p. 297. "densitates AH, DL, QT erunt continue proportionales": Last reads
'QO' in original - the point near Q was marked O in original but changed by
to T errata.

p. 306. Corol. "accelerabatur in descensu": 'desensu' in original.

p. 312. Theor. XXIII. "in arcuum eorundem semisummam": 'eorundam' in
original.

p. 320. Corol. 2. "augerentur in duplicata ratione velocitatis":
'augerenter' in original.

p. 331. "Et si æquales illi motus applicentur": 'applicenter' in original.

p. 340. "ita ut ascensu ultimo describeret": 'describaret' in original.

p. 341. "ut 0,0002097V + 0,0008955V^{3/2} + ...": Exponent '2/3' in
original.

p. 345. "id est 7 ad 2/3": '7 ad 3/2' in original.

p. 366. "vim suam elasticam mediocrem": 'medio-' at end of line in
original, 'crem' missing.

p. 405. Prop. II. Theor. II. "(per Corol. 1. Prop. XLV. Lib. I.)": 'Coral'
in original.

p. 418. "sit ad semidiametrum Solis in eadem ratione circiter":
'semediametrum' in original.

p. 432. "alterum in Hemisphærio opposito": 'Hæmisphærio' in original.

p. 458. Corol. 2. "in revolutione puncti p generatarum": 'genetarum' in
original.

p. 480. Corol. 1. "in ratione sesquialtera": 'sequialtera' in original.

p. 482. Cas. 2. "r in + SL = s, s in + SM = t": 'r in + SL = S, S in + SM =
t' in original.

p. 487. Prob. XX. "summa temporum ad dies plus minus sexcentos":
'tempo-porum' on line break in original.

p. 504. "ascendendo augebat longitudinem caudæ": 'longi-dinem' on line
break in original.

p. 506. "ad procreationem vegetabilium irrigent & nutriant": 'vegitabilium'
in original.

p. 507. "luce sua quantumvis plumbea": 'quamtumvis' in original.





*** End of this Doctrine Publishing Corporation Digital Book "Philosophiae Naturalis Principia Mathematica" ***

Doctrine Publishing Corporation provides digitized public domain materials.
Public domain books belong to the public and we are merely their custodians.
This effort is time consuming and expensive, so in order to keep providing
this resource, we have taken steps to prevent abuse by commercial parties,
including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the files We designed Doctrine Publishing
Corporation's ISYS search for use by individuals, and we request that you
use these files for personal, non-commercial purposes.

+ Refrain from automated querying Do not send automated queries of any sort
to Doctrine Publishing's system: If you are conducting research on machine
translation, optical character recognition or other areas where access to a
large amount of text is helpful, please contact us. We encourage the use of
public domain materials for these purposes and may be able to help.

+ Keep it legal -  Whatever your use, remember that you are responsible for
ensuring that what you are doing is legal. Do not assume that just because
we believe a book is in the public domain for users in the United States,
that the work is also in the public domain for users in other countries.
Whether a book is still in copyright varies from country to country, and we
can't offer guidance on whether any specific use of any specific book is
allowed. Please do not assume that a book's appearance in Doctrine Publishing
ISYS search  means it can be used in any manner anywhere in the world.
Copyright infringement liability can be quite severe.

About ISYS® Search Software
Established in 1988, ISYS Search Software is a global supplier of enterprise
search solutions for business and government.  The company's award-winning
software suite offers a broad range of search, navigation and discovery
solutions for desktop search, intranet search, SharePoint search and embedded
search applications.  ISYS has been deployed by thousands of organizations
operating in a variety of industries, including government, legal, law
enforcement, financial services, healthcare and recruitment.



Home