By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | HTML | PDF ]

Look for this book on Amazon

We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: Rules and Practice for Adjusting Watches
Author: Kleinlein, Walter J.
Language: English
As this book started as an ASCII text book there are no pictures available.
Copyright Status: Not copyrighted in the United States. If you live elsewhere check the laws of your country before downloading this ebook. See comments about copyright issues at end of book.

*** Start of this Doctrine Publishing Corporation Digital Book "Rules and Practice for Adjusting Watches" ***

This book is indexed by ISYS Web Indexing system to allow the reader find any word or number within the document.

produced from images generously made available by The
Internet Archive/American Libraries.)

           Adjusting Watches




  Copyright, 1920, by Walter J. Kleinlein

          _All rights reserved_


In the early days of horology the apprentice was taught the art of
making a complete watch. Production was slow, very few duplicate
watches were constructed, and it was necessary that extra material be
made individually by hand in the same way that the original part was
produced. As time passed the value of the repairer was indicated by
his ability to make new parts and to replace them so that the watch
would again be in running condition. This was the prevailing situation
for many years and the repairer was judged according to his skill in
making and finishing the various parts.

A similar method of judging ability is still in force among some
employers, although the development of the industry into machine and
specialized work has made many changes in regard to the most important
duties of the repairer.

It is no longer necessary for him to know how to make a complete watch
and only on occasional instances is it necessary for him to make a
part. Genuine material for modern watches is supplied by the
and in this particular branch of the work the repairer's requirements
have been very considerably curtailed.

A more exacting and a higher standard of timekeeping has developed,
however, and in this field the requirements of the watchmaker have
increased to the extent that it is no longer sufficient to merely
restore a good watch to running condition. It must keep time. This
development has grown gradually and surely and the past twenty-five
years may be assumed as the period of greatest advance.

It has been made possible by scientific and practical refinements
which permit the adjustment of watches so that they will keep time
within closely defined allowances under varying conditions.

The larger problem of the successful repairer of today, therefore, is
that of understanding the principles governing close time and of
knowing how and where to look for the causes of variation, so that the
higher standard of timekeeping may be restored in case of damage since
the original adjustment.

It is naturally essential to know when material is correct, how to
make it fit in its proper place, and how to make and finish some of
the individual parts. It is also commendable to be skilful in all
classes of lathe work, as this at times gains prestige for the workman
through restoring old model watches to running condition.

It is, however, a disadvantage to develop one's ability in making
parts for watches of a bygone age and neglecting the training that
happens to be most essential and of daily advantage in repairing
modern watches so that they will keep time as consistently after
repairs have been made as they did when new.

The object of this book is to present the essential points of watch
adjusting in an elementary and non-technical way that will interest
the average watchmaker and to enable him to have a convenient source
of information, covering the necessary refinements that are
fundamental in repairing, regulating and adjusting the better class of

The author trusts that the experienced successful watchmaker will read
the book with interest and also with profit and that the novice will
be enabled to foresee that there is something more to the art of
watchmaking and repairing than that of merely assembling a watch and
making it "tick."

It so happens that the author has had many years of experience in both
factories and repair shops and that a considerable part of his duties
have been devoted to instruction.

He has for a long time felt the need of a book that would, above all
else, be practical in its description of the rules that an adjuster
follows and which would prove its value in actual experience by being
personal as far as permissible in the same sense that detailed shop
instruction would be.

Since writing the article entitled "The Watch Adjuster and His Work"
several years ago numerous inquiries have been received, for this
class of information and the present book is an effort to meet this
demand in a manner that can be followed without highly technical or
theoretical education.

To promote advancement and interest in everyday practical results is
the foremost consideration, and to this end definite means are
presented for personal development and for obtaining better results
from high grade watches than can possibly be obtained without a fair
knowledge of the final details which go so far toward assuring close

                           WALTER J. KLEINLEIN,
      July 21, 1920            Waltham, Mass.



The Compensation Balance, Controlling Factor                          3

  1. General Method of Obtaining Results
  2. How to Place Screws When the Rate is Either Slow
     or Fast in Heat Compared to Cold.
  3. Composition of and Distortions of Compensation
  4. Tests and Experiments.
  5. Effect of Shifting Screws to Different Locations.
  6. Permanency of the Temperature Adjustment.


Equipment for Temperature Adjusting                                   9

  7. Various Methods Available.
  8. Electrically Equipped Oven, Description and Dimensions.
  9. The Lower Temperature Box.


Difference in Observatory and Commercial Systems                      13

  10. Observatory System.
  11. Commercial System.
  12. Rating Card and Method of Calculating Variation
  13. Value of the Normal Period Rate.
  14. Definition of the Characters Used on Rate Cards
      for Gain or Loss in Time.
  15. Increasing or Decreasing the Extremes of Temperature.


Some Practical Methods of Correction                                  19

  16. Example of Maintaining a Pleasing Appearance of
     the Balance.
  17. Correction Varies When Screws are Above or Below
      Normal Size and Weight
  18. Over or Under Compensation.
  19. Special Corrections for Over or Under Compensation.
  20. Example Illustrating that Temperature Variation
      is Not Always Due to the Balance and Spring.


The Middle Temperature Error                                          26

  21. Why this Error Exists and What it Consists of.
  22. How Nickel Steel Balances Overcome this Error.



General Consideration                                                 31

  23. Optional Allowances for Variation.
  24. Some Necessary Requirements for Learning Adjusting.
  25. Train and Escapement Freedom.


Theory and Practice                                                   39

  26. Theory of Frictional Errors and the Isochronal
  27. How Theory Works Out in Practice and what
      Isochronism Consists of.
  28. Common Causes of Extreme Isochronal Variation.


Relative Pinning Points of the Hairspring                             43

  29. Original Springing of Watches.
  30. How Pinning Point Alterations are Made.
  31. Even Coil Hairsprings Very Incorrect for Some Watches.
  32. How to Find the Correct Collet Pinning Point for Any Watch.
  33. Results in Vertical Position Rates due to Changing
      the Pinning Point.
  34. The Natural Position Error and Why it Cannot be Eliminated.
  35. Principle of Pinning Point Alterations.
  36. Same Principles Apply in Case of American Hunting Models.


Manipulation of the Regulator Pins                                    51

  37. Altering the Length of Spring by Regulator Pins
  38. Method of Examining Vibration of Over Coil
      Between the Pins.
  39. Position Corrections Obtained by Spreading or Closing
      the Regulator Pins.


Factory and Repair Shop Adjusting                                     53

  40. Routine Varies According to Circumstances.
  41. Considering the Watchmaker in the Small Shop of
      One or Two Workmen.
  42. Advantages of Understanding Adjusting Even
      Though Watches are Not Tested in Positions or
  43. Concerning Watchmakers of Limited Experience.


Preliminary Notes and Practice for Beginners                          56

  44. Practical Suggestions.
  45. The First Point of Consideration in Learning to Adjust.
  46. Causes of Variation Between Dial Up and Dial Down.
  47. Short Motion Generally Indicates Where to Find Trouble.
  48. Short Motion Sometimes Caused by Burr on Opposite Pivot.
  49. Examining the Hairspring.
  50. Exceptions in Regard to Gaining Rate and Short Motion.
  51. Detailed Practice.
  52. Which Rate to Use as the Unit for Comparison.
  53. Damaged Pivots, Pitted End Stones and Methods of Correction.


Preliminary Notes and Practice on Vertical Corrections                64

  54. Five Principal Causes and Corrections for Pendant Up Variation.
  55. Poor Motion, Cause and Effect.
  56. Regulator Pin Practice for Pendant Up Variation.
  57. Pendant Up Corrections Through Poise of Balance
  58. Concentricity of the Hairspring.
  59. Correcting Pendant Up Variation Through Pinning
      Point Alterations.
  60. Percentage of Watches Requiring Correction of
      Position Rates


Concrete Examples Showing Definite Three Position Alterations
and Labor Utilized                                                    70

  61. Order of Position Timing and Method of Calculating the Variation.
  62. Example No. 1, Three Positions, Columbus.
  63. Example No. 2, Three Positions, Ball.
  64. Example No. 3, Three Positions, Elgin.
  65. Example No. 4, Three Positions, Hampden.


Concrete Examples Showing Definite Five Position Alterations
and Labor Utilized                                                    77

  66. What Five Position Adjusting Consists of--Detailed Allowances.
  67. Example No. 5, Five Positions, Hamilton.
  68. Example No. 6, Five Positions, Elgin, B. W. R.
  69. Example No. 7, Five Positions, Waltham, Vang.
  70. Example No. 8, Five Positions, Vacheron and Constantin.
  71. Example No. 9, Five Positions, E. Howard
  72. Example No. 10, Five Positions, Illinois, B. S.
  73. Causes of Extremely Fast Vertical Rates.
  74. How to Locate Defective Gearings.


Timing and Final Regulation                                           91

  75. Mean Time Screws and Timing Washers.
  76. Importance of Properly Fitted Regulator.
  77. Effect of the Middle Temperature Error.
  78. Some Practical Reasons for Slow Rates.



Special Notes                                                         99

  79. Efficiency of Execution Analyzed (Two Examples)
  80. Truing the Balance.
  81. Poising the Balance.
  82. Truing Hairsprings.
  83. Treating a Rusty Hairspring.
  84. Stopping by Escapement Locking when Hands are
      set Backward or When Watch Receives a Jar.
  85. Essentials and Non-Essentials in Cleaning Watches.






1. _General Method of Obtaining Results._

Only since the introduction of the compensation balance which received
its most substantial early experiments as recently as the year 1859,
has it been possible to control the variation in pocket timepieces
which is caused by changes in temperature. Previous to this
introduction it was not uncommon for the best watches to vary as much
as two or three minutes with changes of forty or fifty degrees Fahr.
Through experiment and improvement in the quality and application of
balance materials, such advancement has been made, that this variation
has been reduced to seconds and temperature adjusting is now quite
universal in the production of medium and high grade watches.

In the large factories, girls and young men of very little previous
experience are frequently taught to make the alterations and to do the
testing, while men of experience in watchmaking handle only the more
intricate cases such as "stoppers" and radical rates that may require
investigation of the inner workings of the movement. The simplicity of
the adjustment naturally becomes more apparent with experience and the
general alterations consist merely of transferring the balance screws
in opposite pairs, either forward or backward one or more holes,
according to the extent of the correction desired.

As these alterations are quite positive the adjustment can be
undertaken with considerable certainty of obtaining results in every

The repairer will not find as much daily necessity for understanding
temperature adjusting as he will for being thorough in Position
adjusting. The subject is covered, however, for the benefit of those
who may desire practical experience in this branch of adjusting and
also for those who desire a general knowledge of the details.

2. _How to Place Screws When the Rate is Either Slow or Fast in Heat
Compared to Cold._

If a watch rates slow in heat compared to cold it is necessary to
shift screws in opposite pairs out toward the cut or free end of the
rims; because when the metals expand the hairspring becomes weaker and
produces a loss in time. During this period the free ends of the
balance rims, carrying the transferred weight are forced toward the
center and produce a gaining rate which compensates for the loss
caused by the weakened spring.

As the metals contract in cold the free ends of the balance are drawn
outward from their true form and the concentrated weight of these
screws near the ends reduces the fast rate in cold and in principle
works both ways in its action on the rate.

Should the circumstances be just opposite, or the rate be fast in heat
compared to the rate in cold, it will be necessary to move the screws
away from the free end of the rims. In doing this, less weight will be
carried toward the center as the free ends curl inward and as a
result, the rate in heat will become slower and the slow rate in cold
will be reduced.

3. _Composition of and Distortions of Compensation Balances._

Compensation balances are generally made of one layer of brass and one
of steel, with the brass on the outside consisting of about
three-fifths of the total thickness and the steel on the inside
consisting of about two-fifths. These metals are firmly soldered
together and the distortions in changes of temperature are as follows.
In heat both metals expand, which infers that the rims become longer
as well as wider and thicker. Brass expands more than steel and
because of its attachment to the steel it cannot continue to lengthen
in its true circular form, due to the fact that the steel does not
become enough longer to maintain the true curve, and the result is
that the free ends of the rims are forced inward.

In cold the brass, contracting more than the steel, pulls the rim
outward at the free end which is just in reverse of the operations in

The end of the rim which is attached to the balance arm always moves
in the opposite direction from the free end, or outward from the
center of balance, when the free end moves in, and inward when the
free end moves out. In comparison, however, this movement is
negligible as will be noted later in the results obtained in moving
screws in that direction.

4. _Tests and Experiments._

It is generally understood that the purpose of the compensation
balance is to act in opposition to the error caused principally by the
hairspring. The steel hairspring having no compensating qualities,
either grows stronger or weaker with changes in temperature. When it
becomes longer, wider and thicker in heat, experiments seem to prove
that the increased width and thickness are not in proportion to the
increased length, for if they were, the spring would actually be
stronger; while timing proves that it is weaker because of the loss in
time. In cold the shortening factor seems to dominate because of a
gain in time.

In a series of tests with steel springs on uncut steel brass balances,
the temperature error in the extremes of 40 degrees and 90 degrees
Fahrenheit was found to be from eighty to one hundred and sixty
seconds. With the same balances cut the error was reduced from seventy
to one hundred and thirty seconds in each instance, without any
correction of the balance screws.

A former test with palladium springs on the same balances, previous to
having been cut, showed a considerably reduced error, indicating that
the steel springs were mainly responsible for the temperature

The above tests were in actual practice and results are given as
noted, regardless of scientific or established formula relating to the
cubic measurement of metals in changes of temperature.

5. _Effect of Shifting Screws to Different Locations._

As a rule compensation balances generally have five or six pairs of
balance screws in addition to two pairs of mean time screws. High
grade Swiss and some American models do not have mean time screws and
are therefore generally supplied with seven or eight pairs of balance
screws. The mean time screws are never disturbed in making alterations
for temperature, such alterations being confined to the balance screws
only and the mean time screws are reserved for timing.

For appearance sake the balance screws should be evenly distributed,
although it is necessary at times to closely assemble them to obtain
temperature results and they should not be disturbed in making
ordinary repairs, as the adjustment may be destroyed in so doing. With
the larger balances the moving of one pair of screws for a distance of
one hole, generally makes a difference of four or five seconds in the
temperature rate. In the case of smaller balances this alteration does
not make as much difference, although the weight and location of the
screws has considerable influence on the result.

A pair of screws shifted from the second holes from the cuts, to the
holes adjoining the cuts, will generally make a correction four or
five times as great as would be obtained by shifting a pair of screws
from the third to the fourth holes from the arms. The same
proportional difference is obtained in moving a pair of screws from
the center of the rims out to the cut, compared to moving a pair of
screws from the holes nearest the arms out to the center of the rims.
This principle also obtains in moving the screws in the opposite
direction and is due to the fact that while the metals composing the
balance follow the common laws of expansion and contraction, the
balance actually becomes smaller in area during expansion and larger
during contraction. This condition is made possible entirely through
joining the metals in proper proportion and then cutting the rims.

In the factories where large quantities of a particular model having a
standard style balance are handled, tests are usually made to
determine as to just what degree of correction will be obtained by
shifting various pairs of screws certain distances. This information
is then used in making alterations with considerable certainty. The
expert temperature adjuster becomes fully informed as to the
peculiarities of various models and is capable of getting larger
percentages of watches within the limits of allowance, after making
alterations, than he could obtain otherwise.

Through understanding the various models individually, he is also
enabled to furnish information that will cause intelligent arrangement
of the balance screws, for each model, when they are originally
fitted. The production thereby showing a greater yield of good watches
that do not require alterations after the first test.

6. _Permanency of the Temperature Adjustment._

When the original temperature adjustment has been carefully executed
it is quite permanent and unless the screws have been mutilated or
changed in location there will seldom be an occasion for readjusting.
The balance may be retrued and repoised many times and the spring may
be retrued, altered, or even changed, without seriously interfering
with the temperature rating, as long as the screws are not shifted. In
changing the spring, however, it is necessary that the same number of
coils and the same size of spring be used, as otherwise readjusting
would be required.



7. _Various Methods Available._

Two boxes are necessary for temperature testing. One fitted up to
maintain a temperature of about 90° Fahr. and the other maintaining a
temperature of about 40° Fahr.

The method employed in obtaining the high temperature varies in
different styles of boxes, while the low temperature is always
obtained through the use of ice. When only an occasional test is made,
any simple method whereby approximately close results in the two
extremes can be obtained, may be used. For instance, the watch may be
enclosed in a tin box and placed in sand that is kept at a temperature
of 90 or 95 degrees F. A thermometer placed in the sand indicates when
the temperature rises too high or falls too low. The ordinary
household refrigerator may be used for testing the cold. Tests by this
method are advisable only for short periods and for an approximate
idea as to the extent of error.

If frequent tests are made and accurate results are expected, it is
quite important that the special boxes be used. Such boxes are often
constructed with a capacity of four or five hundred watches, or they
may be constructed to receive only half a dozen watches. Some are made
with a zinc or copper tank in which warm water is placed and which
surrounds the chamber in which the watches are deposited. The water is
kept at the desired temperature by means of a small adjustable flame.
In other instances electrical arrangements are used, in which case no
water is required.

In either instance a thermostat controls the source of heat.

8. _Electrically Equipped Oven, Description and Dimensions._

A very practical arrangement for testing a few watches at a time in
the higher temperature is shown in Fig. 1. This is electrically
equipped and will maintain an even temperature at all times.

The outside of the box is constructed of about one-half inch lumber
and the inside is lined with asbestos. It is about fourteen inches
high by ten inches wide and eight inches deep.

"A". Is an incandescent lamp set in a porcelain base.

"B". Is a porcelain plug through which the wires "C" enter the box.

"D" and "E". Are metal uprights with a thumbscrew on the top, under
each of which a wire terminates.

"F". Is the compensating bar, one end of which is fastened solidly to
"D" with rivets.

The opposite end is free and rests against the end of a thumbscrew
which passes through "E."

The thumbscrew is to be adjusted so that the free end of "F" will rest
against it in a temperature of 70° Fahr. or any lower temperature. As
the temperature rises the free end of the bar moves away from the end
of thumbscrew, breaking the circuit and extinguishing the light, which
cuts off the source of heat. As the temperature decreases the bar
again comes into contact and creates the circuit.

This bar can be made of various compensating metals, one combination
of which is a strip of zinc about six inches long by three eighths of
an inch wide and one thirty-second of an inch thick. On the outside of
this soft solder a strip of tin six inches or a trifle less in length,
by one fourth inch wide and one thirty-second of an inch thick. Both
metals should be bent to a curved form before they are soldered
together as shown in the cut.

[Illustration: Fig. 1]

It is generally preferable to have the bar taper to a slightly
narrower width at its free end, and near this free end it is necessary
to solder a small strip of platinum at the point where the end of
thumbscrew comes in contact.

"G", "H", "I" and "J" are ventilating holes one inch in diameter and
covered by a swinging slide so that the holes can be opened or closed
as desired for regulating the ventilation. "K". Is a shelf of brass
screen located about five inches from the top and on which the watches
and a thermometer are placed in testing.

"L". Is a handle for the purpose of convenience in carrying the box.
The front is to be enclosed by a door made in two parts, the upper
section of which is glass which will admit of observing the
thermometer. Proper adjustment of the thumbscrew and bar makes the box
ready for use.

9. _The Lower Temperature Box._

Fig. 2 shows a box specially made for testing watches in cold. It is
constructed of wood and stands about twenty-four inches high without
the legs and about eighteen inches square.

A double partition packed with about one inch of sawdust will be most

The upper half of the box should contain a watertight zinc tank for
holding cracked ice and about an inch of space should be left above
for circulation of the air.

The chamber for receiving the watches may be about six inches square
and supported by a crosspiece and attachment to the front. It should
be covered above to prevent particles of ice from falling on the
watches which are to be placed on the floor or on a shelf of the
chamber, but the sides may be left partly open to improve the
circulation of cold air. The door may also be filled with sawdust but
does not require glass as the moisture would prevent observation of
the thermometer which should be inside for checking up the temperature
when the door is opened.

[Illustration: Fig. 2]

The bottom of the tank should be slightly higher on one side than on
the other, with a one-half inch drain pipe fitted to the low side. The
inlet end of the pipe should be covered with a fine screen to prevent
dirt from accumulating in the pipe and the outlet may be either at the
extreme bottom or on one of the sides as shown in the cut. The upper
part or cover of box should be made so that it can be easily removed
for filling and cleaning the tank.



10. _Observatory System._

In the foreign observatories where watches are generally tested for
competition prize, or certificate purposes, they are subjected to
either three or five day tests in each temperature, preceded by one
intermediate day at normal temperature which is not considered in
making the deductions. The purpose of this is to allow the metals to
assume the natural condition before being placed in, or changed from,
one degree of temperature to another. After the three or five day
test, according to the grade of the watch, the average of the daily
rates in each temperature is considered in making the comparison and
arriving at the total variation. The total error is then considered in
the summary, as a fraction of a second variation per each degree of
temperature. As an example we will consider that the total error
between the two averages is five seconds and that the difference in
the two extremes of temperature was fifty degrees F. The variation
would be given as one-tenth of a second per each degree of

11. _Commercial System._

In manufacturing watches for commercial purposes, both foreign and
domestic, the tests are generally made for twenty-four hours in each
temperature and the difference in the rates is considered as the total

Sometimes preliminary tests of four or six hours in each temperature
are made to obtain an estimate as to the extent of error, then
alterations are made, after which the watch is subjected to the
regular twenty-four hour test. There is nothing to be gained by this
in regular work, although for a special rush job a day's time may be
saved. Watches are always expected to be in first-class condition and
such features as close fitting pivots or dirty oil will prevent any
dependable timing. It is also advisable to time them closely before
the test is made, as too great mean time variation may confuse in
estimating the error, especially if the time is not taken in each
temperature exactly at the end of twenty-four hours.

The testing should preferably be done in the dial up position to
eliminate poise errors as much as possible. The first test is made in
heat at 90° Fahr., then in normal temperature of sixty-five or seventy
degrees and finally in the lower extreme of 40° Fahr.

When the watch is removed from the cold box it will be covered with
moisture which will immediately begin to condense. The time should
therefore be quickly noted and the watch replaced in the higher
temperature box for four or five hours to become thoroughly dry and
prevent against rusting of the steel parts.

12. _Rating Card and Method of Calculating Variation._

A card ruled similar to the cut shown in Fig. 3, may be used for
entering the rates and the watch need only be set at the beginning of
each test, as deductions can be made from the entries on the card and
the variation accurately ascertained without resetting or disturbing
the time.

Details as to the methods to be followed would be about as follows:
Wind and set the watch to correct time, place it in the heat box and
at the end of twenty-four hours enter the variation from correct time
in the upper left hand square of the card.

Assuming that the time is four seconds fast, enter this as shown in
the first column Fig. 3, then wind but do not set the watch and place
it in normal temperature and at the end of twenty-four hours enter the
total variation noted in the second square of first column. Assuming
the time to be just correct, place a zero as shown. Next wind the
watch and place it in the cold box, and assuming that the variation is
sixteen seconds fast at the end of twenty-four hours, enter this in
the lower square of the first column as shown in Fig. 3. The watch is
next placed in the heat box to dry and the variation shown in the
three sets of figures in first column are carried out as follows.

Fig. 3

  | No. .................... Make................... |
  | HEAT   | + 4 | + 4 | + 2 | + 2 |     |     |     |
  | NORMAL |   0 | - 4 | + 6 | + 4 |     |     |     |
  | COLD   | +16 | +16 | + 8 | + 2 |     |     |     |
                  12           0

In the upper square we find +4, enter this in upper square of second
column at its full value as shown.

Next we find a "0" in the second square of first column, and as this
is a loss of four seconds from the entry shown in the square above we
carry it out in second column as -4. In the lower square of first
column we find +16 and as this is a gain of sixteen seconds over the
square above, it is necessary to carry this to second column at its
full value as per illustration.

To determine the extent of variation between heat and cold, simply
ignore the normal rate of -4 in the second column and subtract +4,
from +16, which indicates an error of twelve seconds slow in heat
compared to cold.

Or it may be determined as twelve seconds fast in cold compared to
heat. For convenience sake it is advisable to form the habit of using
one of the temperatures as a unit for comparison and wherever large
quantities of watches are adjusted, it is generally the custom to use
the higher temperature for this purpose and the rate is stated as
either slow or fast in heat. In this instance the rate is slow in heat
and it will be necessary to shift one or more pairs of screws toward
the cut as explained in Chapter 1, No. 2.

13. _Value of the Normal Period Rate._

The rate in the normal period cannot be considered as of any value,
its importance consisting only of allowing the metals to return to the
natural form and tension before being placed in the cold box.

This is quite important in obtaining a true estimate of the error,
because of the fact that in transferring the watch immediately from
the extreme of heat to the extreme of cold, there will be a period of
time during which the metals are readjusting themselves to the natural
form, and the variation in time during this period will not be
accounted for, as the real comparative rate will not begin to develop
until after the natural form and tension is reached.

If the limit of time devoted to testing is no object and if a very
fine rate is desired the observatory method is of course to be
preferred. However, by allowing an intermediate day at normal
temperature we have the assurance that the hairspring is at the same
tension and that the balance has the same form concentrically when the
test begins in cold that it had when the test began in heat.

As the object is to find the variation between the two temperature
extremes the estimate will be quite close enough and allows the saving
of many days' time. Some authorities advocate in addition to the five
days required for observatory testing in each temperature that the
watch be subjected to an intermediate day in each, instead of in
normal, before considering the daily rate. This seems very logical, as
the time noted each day would be taken at the actual extremes in both
instances and any outside factor in the timing would be eliminated.

14. _Definition of the Characters Used on Rate Cards for Gain or Loss
in Time._

In making entries on the rate cards and in figuring the variations the
sign + is used as denoting that the watch is running faster than the
standard time and the sign - is used as denoting that it is running
slower than standard time.

This is stated for the reason that in some instances, generally
foreign, the signs are used in reverse, or as indicating that the
watch requires a correction of + or - the number of seconds indicated,
to attain the correct standard of time. When the signs are identical
in a column it is necessary to subtract the lesser from the greater
and the result is the variation. There are often instances however,
when one rate will be + and the other - as shown in second column of
Fig. 4, and in these instances it is necessary to add the figures to
obtain the variation.

The first column is always the progressive rate and the second column
shows the variation carried out. This example shows +8 in heat, the
normal rate in the second square is not considered, for the reason
previously explained and the rate in cold is shown as -1. The total
variation between the extremes is therefore arrived at by adding +8
and -1, which in this instance gives us a total of nine seconds fast
in heat.

Fig. 4

  | No. .................... Make................... |
  | HEAT   | + 8 | + 8 |     |     |     |     |     |
  | NORMAL | +20 | +12 |     |     |     |     |     |
  | COLD   | +19 | - 1 |     |     |     |     |     |

15. _Increasing or Decreasing the Extremes of Temperature._

The extremes of 40° and 90° Fahr. have been used for the reason that
they are best suited for general purposes. When it is known, however,
that a watch is to be used in a warm climate the extremes may be
raised five or ten degrees to advantage. If the watch is to be used in
a cold climate, the extremes may be lowered this amount. The metals,
however, can only stand the strain of expansion and contraction to a
certain degree, and still maintain the positive qualities. Therefore
it is quite important that the extremes be not raised or lowered very
much beyond these figures.



16. _Example of Maintaining a Pleasing Appearance of the Balance._

In altering the location of screws during the temperature adjustment
it is often possible to either mar or improve the appearance of the
balance. As a demonstration of this point the correction made in
regard to Fig. 3 is analyzed. The balance had twelve screw holes in
each rim, with the space between the first and second holes from the
arms equal to double the space between any other two holes. There were
seven screws in each rim, equally divided as per cut Fig. 5, which
indicates screws in the first, second, fourth, sixth, eighth, tenth
and twelfth holes.

[Illustration: Fig. 5]

A correction of the rate could have been obtained by shifting the
screws in either the sixth or eighth holes forward three holes. Or
those in either the first or second holes could have been shifted to
the ninth holes and those in the fourth holes might have been shifted
to the ninth holes with good results possible in either instance.

Moving one pair of screws under any circumstances however would have
caused a massing of three pairs of screws at some point and a vacant
space of three holes at another point which would not present a very
good appearance for high grade work. Therefore the alteration made was
to move the screws from the second to the third holes, fourth to
seventh, and from the eighth to the ninth holes as indicated by the
positions shown in Fig. 6.

[Illustration: Fig. 6]

Examination of the fourth column Fig. 3, which gives the result of the
second test will show that the desired correction was obtained with a
better appearance of the balance than would have been possible if only
one pair of screws had been shifted.

In following the logic of the alterations made we must consider that
the screws moved from the second to third holes made no correction,
due to the fact that the balance rims remain almost stationary at this
point, the alteration being for appearance only, those moved from the
fourth to the seventh holes were estimated for a correction of seven
or eight seconds only, for the reason that the alteration did not
carry them beyond the center of the rims where the greatest curvature
takes place. The screws moved from the eighth to the ninth holes
however were estimated for the full correction of four or five seconds
which is to be expected through shifting a normal pair of screws from
one hole to another beyond the center of the rim on sixteen or
eighteen size balances. In moving a pair of screws one hole between
the first quarter and the center of the rims, a correction of from two
to three seconds can be expected and from the center to the cut the
difference for one hole is generally four or five seconds, while an
alteration between the arm and the first quarter seldom yields any

The matter of appearance should at all times be respected, for it is
just as easy to obtain results in most instances and also have a
well-appearing balance. There is also less disturbance of the poise
usually in moving several pairs of screws a short distance than there
is in moving one pair a longer distance.

17. _Correction Varies When Screws are Above or Below Normal Size and

Normal corrections can only be realized when normal screws are
shifted. Some balances have one half, or quarter head screws which of
course will not produce a correction as great as will be obtained by
shifting regular screws. Sometimes platinum, or other extra heavy
screws will be found in balances and these will produce a correction
almost double that of ordinary screws of the same size.

18. _Over or Under Compensation._

On some occasions it will be found impossible to maintain a pleasing
arrangement of the screws because the temperature variation will make
it necessary to mass all of the screws either in the holes nearest the
cuts or in those nearest the arms.

This is due to either over or under compensation of the balance. Over
compensation is caused by too large a proportion of brass in the rims,
which causes them to curve inward too far at the free ends in heat and
outward too far in cold. When the extent of this error is so great
that the rate is still fast in heat, with the screws massed in the
holes nearest the arm, a correction can be obtained by fitting heavier
screws in the holes adjacent to the arms and lighter screws in the
holes nearer the free ends.

When the rate in heat is slow with the screws massed at the free ends
of rims the balance is under compensated, which is caused by too
large a proportion of steel compared to the proportion of brass in the
rims. This prevents the free ends of rims from curving inward far
enough to carry the weight the proper distance toward the center of
balance. A correction for this can be obtained by fitting heavier
screws in the holes adjacent to the cuts and lighter screws in the
holes toward the center of rims.

In changing the weight of screws as stated above it should be
remembered that the gross weight of all screws must remain the same or
the timing will be seriously affected. It is also important that the
poise be tested whenever a considerable degree of alteration is made,
as this will assist in obtaining an accurate rate.

19. _Special Corrections for Over or Under Compensation._

Balances having the extreme degree of over or under compensation will
seldom be found in high grade watches. In any instance, however, it is
possible to obtain a better distribution of the screws by fitting
either a larger or a smaller hairspring. For instance, we will assume
a case of under compensation in which the screws have all been massed
at the holes nearest the cuts. If the spring has seventeen coils, a
correction of from five to ten seconds can be obtained by selecting
and fitting a spring of the same make that will have eighteen coils,
and the correction obtained will permit of shifting one or two pairs
of screws back toward the arms.

In case of over compensation a spring of the same make, one coil
smaller, will permit of shifting one or two pairs of screws toward the
free ends of rims.

In a series of tests it was demonstrated that by duplicating or
changing springs of the same make and size, on balances that had
previously been compensated, there was very slight difference in the
temperature variation of the watch. Also by changing pinning points or
breaking out one-fourth to one-half of the coil around collet and
adding weight to the balances to correct the mean time the difference
in the variation was almost negligible.

On the other hand it was found that by replacing the springs with
others of larger or smaller size, variations of from three to ten
seconds were noted in all instances.

In selecting and fitting a spring that will be one coil larger or
smaller, it should be noted that the inner coil of the original spring
and that of the new spring are approximately the same distance from
the collet. For if there was considerable space between the collet and
inner coil of the original spring, and the new spring was colleted
quite close, there might be the addition of an extra coil in the
inside only. This was found to produce only a very slight correction,
compared to that obtained by the addition of a complete outer coil.
These tests indicate that the proportion of strength of the spring in
the temperatures varies with any appreciable change in length while
slight changes make practically no difference.

20. _Example Demonstrating that Temperature Variation is not Always
Due to the Balance and Spring._

Fig. 7

  | No. .................... Make................... |
  | HEAT   | -10 | -10 | + 4 | + 4 | + 1 | + 1 |     |
  | NORMAL | - 6 | + 4 | + 5 | + 1 | + 4 | + 3 |     |
  | COLD   | +12 | +18 | + 1 | - 4 | + 7 | + 3 |     |
                    28           8           2

The following example is submitted to show that temperature variation
is not always due to the balance and spring, and that the general
condition of the watch may be responsible. The second column of Fig.
7, indicates an error of twenty-eight seconds slow in heat with all
screws assembled in the holes nearest the free ends of the rims.

Examination proved that the motion of the balance in cold was reduced
to about one-fourth of a turn. In heat the arc of motion was at least
one full turn. This difference in motion was sufficient to prove that
there was some binding in the train.

A very close fitting of the escape pivots was found and this
undoubtedly caused binding of the pivots in heat due to slight
expansion. Expansion of the stone would also tend to close the hole,
and while the degree of temperature would hardly have any bearing on
this point it is sufficient to show in what direction the tendency
would be. The fourth wheel end shake was very close and probably
caused binding of the wheel in cold, due to greater contraction of the
bridge than of the fourth pinion. Furthermore the mainspring was only
0.02 of a millimeter narrower than the space in the barrel box. This
no doubt also caused binding through greater contraction of the barrel
than occurred in the mainspring.

The above defects were remedied and the rate was found to be eight
seconds plus in heat as per third and fourth columns Fig. 7.

This made it necessary to shift several of the screws away from the
cut, in almost the same position in which they were before the
alteration which caused the close assembling of the screws was made.
The final rate was two seconds slow in heat as shown in fifth and
sixth columns.

The variation of thirty-six seconds between the second and fourth
columns was entirely erroneous, and was due to condition of the watch
irrespective of the balance and hairspring. Should the variation with
the screws assembled have been by chance within the limits of
allowance the watch would undoubtedly have been a very unreliable
timepiece. The errors in the watch would no doubt have been corrected
during the position adjustment later, but the large error in
temperature which would have been introduced by wrongly moving the
screws, would have prevented reliable timing until possibly at some
future period a test in temperature would have been made and the
screws replaced in the proper positions.



21. _Why This Error Exists and What it Consists Of._

In adjusting watches to temperature it is not always possible nor
expected to obtain a perfect rate between the two extremes,
manufacturers generally allowing from two to ten seconds variation
according to the grade.

Even when the rate obtained is perfect it will only be so at the two
extremes and there will always be a few seconds variation in the
middle or normal temperature.

This variation will always be a gain of from two to four seconds in
the higher grades of steel brass balances and usually more in cheaper

As there is no possible correction for this irregularity in ordinary
balances it has long been known as the middle temperature error and
for many years was one of the most perplexing problems that the
manufacturer of specially fine timepieces had to deal with.

Various devices were originated from time to time for the purpose of
counteracting the error but they were always too infinitely
complicated to be of commercial or scientific value, and none of them
were ever adopted as a solution of the problem.

In chapter I, No. 3, will be found a description of the distortions of
compensation balances in the extremes of temperature and the cause of
the middle error is due entirely to the fact that these distortions
are not exactly equal in both directions. The free ends of the rims
are drawn outward from the concentric form to a slightly greater
proportional degree as the temperature decreases from normal and they
are not forced inward at an even proportional degree with increase of

22. _How Nickel Steel Balances Overcome the Middle Temperature Error._

Through extensive experiment in the foreign laboratories balances
containing nickel steel have been found to almost eliminate the middle
error, which is reduced to one second or less, making it possible to
obtain perfect adjustment in various temperatures.

All highest prize watches passing through the Geneva Observatory are
equipped with these balances and they have been adopted for commercial
use to a large extent by the manufacturers of the finer grades of

From the same source success has recently been attained in applying
this metal to hairsprings and using them in connection with uncut
balances, but owing to the necessary high cost of production, their
general use may be delayed for some years to come. Their general use
however would revolutionize the present-day methods of adjusting to
temperature as there would be practically no expansion or contraction
to deal with.

Nickel steel balances will always be found to have the cuts about one
eighth of the circle distant from the arms instead of close to the
arms. This is made necessary by the fact that the coefficient of
nickel steel is about ten times less than that of ordinary steel, and
if the cuts were made close to the arms the brass in expansion would
force the free end of the rims to curve inward to such an extent that
it would cause an abnormally fast rate in heat.

By making the cuts more central the length of the segments are
reduced, thereby causing less curvature of the extreme ends and more
nearly equalizing the extent of curvature both ways from the
concentric form. This equalization is what causes the reduction in the
middle error and its absence in ordinary balances is what causes the
larger error.

Non-magnetic or palladium balances are also credited with a smaller
middle temperature error than the ordinary steel brass balance, but
owing to the unstable nature of the metal they have not proved to be
as reliable in other respects and are not used to any large extent.

The middle temperature error is of course a small factor in the larger
sense of obtaining time from commercial watches but its influence is
apparent in timing and it will therefore be considered further in the
section devoted to Final Regulation, Chapter XV, No. 77.





23. _Optional Allowances for Variation._

The phrase "Adjusted to Isochronism and Positions" does not always
indicate the same high quality or the expense assumed in obtaining
close rating in different kinds of watches.

One particular model may be stamped "Adjusted to Five Positions" and
this may indicate that the manufacturer of this model has tested all
watches of this grade for twenty-four hours in each of five positions
and that the extreme extent of variation from one position to any
other, among any of these watches, did not exceed six seconds. Another
model may be stamped in exactly the same way and it may indicate that
all watches of that particular grade have been tested in exactly the
same way and that the extreme extent of variation from one position to
any other, did not exceed twenty-five seconds.

The statement regarding the number of positions to which the watch has
been adjusted is just as legitimate in the latter instance as it is in
the former, for the watches are really tested in five positions and
required to perform within specified allowances.

The important difference is in the established limits of requirement,
one demanding an extreme of only six seconds variation and the other
allowing twenty-five seconds. Both watches may have the same number of
jewels and there is no way to discern the actual variation except
through a test in positions.

Technically it would be just as legitimate to stamp and advertise
watches as above and have an allowance of fifty or more seconds,
providing that they were actually tested and not allowed to pass with
a variation greater than this limit.

Close limits of allowance require adjusters of greater skill and
material of a finer degree of accuracy, however, than do greater
allowances, but the dealer and consumer are generally not informed in
regard to this particular point. Some watchmakers also do not
understand this feature clearly and the limits of variation to which
watches have been adjusted are seldom considered.

Should the difference in allowances and identical advertising be
interpreted as an injustice to the manufacturer who maintains close
limits for his various grades of watches, it must be remembered that
they speak for themselves after passing over the counter and into the
hands of satisfied customers. His reputation after a period of years
will be more firmly established than will that of his less particular
competitor in the high grade field. A similar situation prevails in
the repair shop, and the fact that many of the leading dealers and
railroad watch inspectors require at least a three position adjustment
in the repairing of high grade watches, is convincing evidence that
position rating demonstrates its importance in actual service when
applied to repair work, as surely as it does when applied to new

In placing limits of allowance for variation in various grades it is
not intended that all watches of a particular grade will have the
extreme variation. It is possible that an individual watch in the
twenty-five seconds allowance class may have an even better rate than
another watch that is in the six seconds class. It is also possible
for a watch in either class to have a perfect rate, although these
would be rather exceptional instances.

24. _Some Necessary Requirements for Learning Adjusting._

The adjustments to isochronism and positions are not permanent to the
same extent that the temperature adjustment is, and they can be
damaged or destroyed entirely by the average workman in making
ordinary repairs unless he is familiar with the common principles
governing their production and maintenance.

Experienced workmen who are familiar with these principles avoid
unconsciously doing any damage and make practical repairs in a manner
that will maintain or improve the original adjustment and time-keeping
qualities of the watch.

To know and to make use of these principles does not make a "putterer"
of the workman, in fact the consequence is just the reverse, because
the training acquired tends to eliminate guess work and enables him to
determine more readily as to just what the trouble may be, how to
correct it, and as to just what degree of perfection is required in a
particular instance.

Certain practical requirements are necessary in reaching this standard
of workmanship and it would not be profitable to attempt to do
adjusting unless one has first had a reasonable degree of training as
a watchmaker or repairer, especially in such branches of the work as
truing and poising balances; truing, leveling and centering
hairsprings; matching the escapement; finishing pivots, and properly
cleaning and assembling watches.

These mechanical requirements and experiences alone are not
sufficient, however, and a certain amount of study must be
consolidated with them in order to become proficient. This study
should not deal so much with the problems of manufacture of the watch,
or its various parts, as it does with the problems pertaining to the
finished results that are to be obtained through refinement and
intelligent assembly of these parts. The workman's willingness to
indulge in such study is a very large asset among the requirements,
and it only remains for him to obtain the proper class of instruction
and then to conscientiously follow correct methods in his practice and
to make personal experiments, conforming to the instruction, so that
his confidence will become more enduring.

It is further required that he be capable of realizing the difference
between genuine and imitation materials, especially such essentials as
balance staffs, hole jewels, mainsprings and roller jewels, which are
the most frequently changed and most frequently substituted parts of
watches. Imitation materials may be less expensive as a matter of
first cost but staffs may have pivots and shoulders out of line, or
out of true; hole jewels may be rough, out of round or extremely
thick; mainsprings soft, or of improper proportion, and roller jewels
may have sharp edges which cause rubbing in the fork and "hanging up"
when the second hand is reversed. It is most satisfactory to depend
upon the materials supplied by the manufacturer of the watch, as
imitation goods are seldom any better.

25. _Train and Escapement Freedom._

Beyond a general insight of high class watch-work this book is not
intended to meet the requirements of beginners. It is designed
principally for watchmakers of some experience, and cannot presume to
cover details that would be essential for those in early
apprenticeship. It is thought essential, however, to consider some
matters in a general way and among these are the subjects of side
shakes and end shakes, and the escapement, as far as they pertain to
general inspection of the watch without consideration of details that
refer to correction of irregularities which are presumed to have been
acquired in earlier training.

Thoroughness of mechanical ability always demands a system of
inspection and of making corrections and it is quite necessary to
follow some method that will reveal any point or points that may not
be up to standard.

As a rule it is best to begin at either end of the watch, and if it is
to be taken down the best place to begin is usually with the balance
and examine each part as it is removed until the barrel has been
reached. If it is not to be taken down, just as good results will be
obtained by beginning the examination at the barrel and finishing with
the balance. Sometimes watchmakers of considerable ability will demand
as a basic consideration that pivots be fitted with very little side
shake and that end shakes also be quite close if close time is to be

These presumed to be, wide side shakes and long end shakes, very often
have nothing whatever to do with the absence of a close position rate
and frequently are absolutely necessary for good performance of the
watch and proper space for oil.

The importance of reasonable limits is of course granted, but it is
very detrimental to have pivots too close fitting and more stoppage
and irregular time keeping can be traced to lack of freedom than can
be traced to excessive shakes.

If the repairer is not familiar with accepted standards of side and
end shakes, he can improve his judgment by examining watches of the
higher grades and comparing the results with those found in cheaper
makes of watches.

Such examination will invariably disclose the fact that fine watches
receive very careful consideration in this respect. The center, third
and fourth wheels generally having from 0.03 mm. to 0.05 mm. freedom
for end shake and 0.015 mm. to 0.02 mm. for side shake. The escape
wheel, pallet and balance will be found to run quite uniform at from
0.02 mm. to 0.03 mm. freedom for end shake and from 0.0075 mm. to
0.0125 mm. for side shake. The smaller and thinner watches generally
favoring the lesser figures and the larger and thicker watches
favoring the higher.

This uniformity of freedom will be found absent in cheaper watches;
for instance, a center wheel may have 0.02 mm. end shake and 0.01 mm.
side shake which would be very close fitting for large pivots. The
fourth wheel may have as much as 0.08 mm. end shake and 0.03 mm. side
shake which would be too great. The pallet may have 0.05 mm. end shake
and the balance 0.01 mm. and in this instance the short end shake of
the balance would be more detrimental in most instances than would the
longer end shake of the pallet. The variation will even be found to
exceed these figures and when they are found in connection with thick,
straight hole jewels they often interfere with a close position rate
and with regularity of time in service. The interference in
timekeeping is considerably aggravated in cases where one pivot has
excessive side shake and the opposite pivot is close fitting, as this
tends to cause almost certain binding of the close fitting pivot as
soon as the power of the mainspring is applied.

The end shake and side shake allowance for the barrel depends
considerably upon its style of construction. Safety barrels
constructed so that the arbor revolves with the main wheel, when the
watch is running, may have about the same end shake and side shake as
applied to the center, third and fourth wheels, and if the pivots of
the arbor are quite large they may have a trifle more side shake.

As a rule larger pivots will stand more side shake than smaller
pivots; this, however, does not apply in the case of large bearings,
such as safety main wheels that revolve around a stationary arbor, or
going barrels where the entire barrel revolves around the stationary
arbor when the watch is running.

In such instances the main wheel or barrel should have from 0.03 mm.
to 0.05 mm. end shake on the arbor and should be just free for side

The arbor which turns only when the watch is wound requires merely
freedom for end shake between the plates, as well as for side shake
where the pivots pass through the plates.

With reference to the escapement, good watchmakers often have
different methods of examining the various points and of making
corrections and it is not of so much importance as to just how
correct conditions are obtained, as it is that they actually be

Whatever the method may be it is certain that each escape wheel tooth
must have positive locking on each pallet stone and that there must be
positive space for drop between the back of each stone and the pointed
end of each escape wheel tooth. There must also be sufficient draw
when each tooth and stone are locked to hold the fork against the

When the lock, drop and draw are correct it is next necessary to see
that the fork length and guard pin freedom are correct.

There is only one positive method of determining as to when the fork
length is correct, and this is through closing the bankings to drop.

This can be done either before or after placing the balance in the
watch and merely requires turning the banking screws so that the
excentric pins will close in on the fork until the fork arrives at the
pins, at the same instant that the tooth drops on the pallet stone.
This eliminates any slide of the stone on the tooth beyond the actual
locking and in this condition it is required that the roller jewel
pass through the fork slot and out of the fork horn entirely on both
sides with perfect freedom.

Should it touch on both sides of the fork, then the fork is either too
long or the roller jewel is too far forward, and if it touches on one
side only it may require simply equalization of the freedom. The guard
pin length also must be obtained with the bankings closed to drop and
should be just free from the safety roller on both sides.

When the inspection proves that these conditions have been properly
provided for, it is necessary to slightly open the bankings so that
there will be just a trifle of slide of each stone, on each tooth,
after the locking takes place.

Extremely wide side shakes of the escape, pallet or balance pivots
will sometimes cause striking of the roller jewel when conditions are
otherwise correct, and these side shakes should not be very much
beyond the extreme limits mentioned in this number. The fact of this
feature, however, should not be construed as a recommendation that
these pivots be closely fitted, for reasonable freedom is to be
desired because it is positively necessary.



26. _Theory of Frictional Errors and the Isochronal Hairspring._

Theory teaches us in brief, that the position adjustment is made
necessary principally because of frictional errors. It would therefore
seem that if the watch was mechanically correct there would be little
or no requirement for position alterations.

We are also advised that an isochronal hairspring is one which will
cause the long and short arcs of the balance to be made in equal time
and that to attain this, the center of gravity of the spring must
coincide with the center of gravity of the balance and that a certain
pinning point is necessary in producing this result.

Now if we have a watch of correct mechanical construction and fitted
with an isochronal spring it would seem that a close rating timepiece
would be assured.

27. _How Theory Works Out in Practice and What Isochronism Consists

Practical adjusting, however, proves that such is not the case, for
even when the construction and alterations produce watches as nearly
correct as scientific methods can determine, there is often
considerable variation in the position rates. A twenty-four hour test
in any position may prove that the long and short arcs are made in
equal time showing the spring to be isochronous and yet the position
variations have not been accounted for. In this connection experience
proves that a spring showing a perfect isochronal rate may have its
collet pinning point changed, in relation to the pinning point at the
stud and that through such an alteration, a correction in positions
can be obtained, without in the least disturbing the perfect
isochronal rate.

This indicates that the separation of the two adjustments which is
possible in theory, does not hold good in practice, because a spring
showing a perfect isochronal rate has been altered for the purpose of
counteracting some position error and thereby producing a practical
center of gravity of the balance and spring combined, instead of

This may be further explained as creating an error in a spring which
is supposed to be theoretically isochronous, with the idea of making
it act in opposition to the position error and the combination thus
obtained produces practical isochronism as well as a corrected
position rate.

It is not suggested that these relative pinning points be altered for
the purpose of overcoming position variation such as may be caused by
dirt and gummy oil, damaged pivots, or balances that are out of poise.
The watch should be in first-class condition and have a good motion in
every position and then the alterations may be safely undertaken in
accordance with the principles.

Adjusted to isochronism indicates that the watch functions uniformly
during the entire twenty-four hours running. It is immaterial as to
whether the rate be perfect or whether it be a gain or a loss, so long
as it is uniform.

The watch is not isochronous if there is both a gain and a loss in the
rate, even though the time be perfect at the expiration of twenty-four

Experiment will demonstrate that watches carefully adjusted to
positions will also have a very close isochronal rate. These
isochronal experiments can be made by timing watches for twenty-four
hours in any one of the vertical positions and noting the variation
in periods of from four to twelve hours and by comparing the variation
in the first period, during which time the arc of motion is long, with
the variation in the latter period when the mainspring power is weaker
and the arc of motion is short.

28. _Common Causes of Extreme Isochronal Variation._

The most common causes of isochronal variation with which the repairer
has to deal and which are often very destructive to position rates, as
well as to general time keeping, may be found in the factor of, out of
poise and uneven motive force, which is one of the elementary
principles of adjusting. This feature should be thoroughly understood
by all watchmakers, so that as good results as possible may be
obtained from all watches above low grade, even though no test for
adjustment is to be made.

When the balance is slightly out of poise and the motion is exactly
one and one-fourth turn during the twenty-four hours, this out of
poise will not affect the isochronism. When the motion varies and
reaches approximately one and one-half turn during the first few hours
after winding and then drops to one and one-quarter turn and finally
to one turn or less during the latter part of the twenty-four hours,
the poise error will have considerable effect. This factor is not
perceptible in the flat positions, but shows up to the full extent in
the vertical positions and the variation differs according to the
location of the point that is heavy. For example, if the balance is
heavy on the lower side when at rest, the watch will lose during the
hours that the arc of motion is over one and one-fourth turn and will
gain when the motion drops to one turn or less.

Should the heavy point be on the top side of balance the result will
be reversed and the watch will gain when the motion is over one and
one-fourth turn and will lose when it drops to one turn or less.

The total variation may be either seconds or minutes, depending upon
the extent of the poise error and experiments will prove that serious
isochronal variations can be traced to the simple cause of lack of
poise and irregular motion in more instances than to any other cause.

The arc of one and one-fourth turn is the ideal motion, as slight
poise errors are neutralized at this point, but very few watches will
maintain this motion for twenty-four hours, therefore the poise must
be as nearly perfect as possible. The nearest approach to even motion
of modern watches is found in the fine Swiss grades equipped with stop
work, which causes only the best part of the mainspring to be

Such watches also receive the most expert attention as to gearings of
wheels and pinions and the train wheels are specially rounded up on
their respective staffs. This latter feature has been adopted by at
least two of the American manufacturers of fine watches during the
past few years with considerable benefit in producing even motion and
the use of lighter mainsprings. It should be definitely understood
that these tests refer to the vertical positions of the watch only and
that the horizontal positions are not affected in the same way by lack
of poise.



29. _Original Springing of Watches._

Theory and practice agree that different models of watches have
important relative points of attachment of the spring to collet and
stud. In the original springing and adjusting of high grade watches,
these points receive careful consideration, and only a very small
percentage ever require future alterations.

There are instances, however, where the original allowance of position
variation has been considerable, also medium grades where no attention
has been directed to pinning points and in which an occasional
alteration may be required before a close position rate can be

30. _How Pinning Point Alterations are Made._

These alterations are generally made by breaking off or letting out a
small section of the inner coil at the collet. In making such
alterations a quarter of a coil broken away at the collet will have
the same effect as will a quarter of a coil broken off at the outer
end and will require less weighting of the balance to correct the mean
time. It will also avoid breaking and remaking the over coil and the
possible necessity of readjustment to temperature. Letting out the
spring can be accomplished by unpinning and repinning the spring at
collet with less of the coil entered in the pinhole. This is not a
positive alteration, however, because very often the segment in the
pinhole is as short as it can be with safety.

A more substantial correction is that of reforming the over coil in a
manner that will cause the end holding the stud to be shifted further

The method of obtaining this correction is illustrated in Fig. 8. The
broken line shows the original formation of the over coil with the
stud on the line "B". The solid lines show the corrections with the
stud shifted to the line A.

[Illustration: Fig. 8]

When the collet is turned to replace the spring in beat, the stud will
be in its original location on the line "B."

This will cause the pinning point at collet to be shifted from "A" to
"B" and bring it that much nearer to the horizontal line "C."

This alteration has the same effect as that of letting out the spring
at the collet or of moving the stud forward on the over coil, with the
advantage of eliminating any change in the mean time.

It should be definitely understood that the objective in making the
above alterations and as illustrated with the aid of the following
cuts, is the relation of the pinning point at collet to the pinning
point at stud, and that the change in length of the spring has no
bearing on the matter whatever as far as the position rate is

31. _Even Coil Hairsprings Very Incorrect for Some Models._

It is often supposed that hairsprings having exactly even coils are
correct for close position and isochronal rating. Such springs do
approximate the nearest correct relation in more instances than any
other relation. They are precisely correct for very few models,
however, and are very incorrect for many models, as will be seen
through study of the following cuts showing the various points of
attachment and the different results obtainable in each.

32. _How to Find the Correct Collet Pinning Point for Any Watch._

A very simple method of locating the proper point of attachment of the
spring to collet is to face the train side of the movement and hold
the balance stationary with a small twig, and with the pallet fork
just midway between the two bankings.

[Illustration: Fig. 9]

Presume the existence of a vertical line through the center of
hairspring and collet as shown at "A B" Fig. 9. Then presume a
horizontal line as shown at "C D" on the same cut.

[Illustration: Fig. 10]

The proper pinning point is at the intersection of the collet and
horizontal line; the spring may be either over or under even coils,
depending entirely upon the location of the stud hole in the balance
bridge as demonstrated by Figures 9, 10, 14, 15.

When the spring develops to the right from collet as shown in Fig. 9,
for example, the proper point of attachment is on the right side of
collet as shown at "E" Fig. 9, and also at "J" Fig. 14.

If it develops to the left as the springs of all fine Swiss watches
do, the proper point of attachment is on the left side of collet as
shown at "F" Fig. 10.

33. _Results in Vertical Position Rates Due to Changing the Pinning

In either of the above instances the spring will develop upward as it
leaves the collet. These points of attachment always produce a fast
pendant up rate when compared to the opposite, or pendant down rate,
and all high grade watches are originally fitted with springs
conforming to this principle.

If these points of attachment were changed to the opposite side of
collet so that the spring would develop downward as shown at "G" Fig.
11, and "H" Fig. 12, the results would be reversed and the pendant up
rate would be slow in comparison to the pendant down rate.

[Illustration: Fig. 11]

This point of attachment in which the spring develops downward from
the collet is generally known as the slow point among adjusters, and
when a spring is pinned at either the slow or fast point the pendant
right and left positions generally compare quite closely to each other
in timing, provided that the poise and other conditions of the watch
are correct.

If the pinning point was changed to the intersection of the collet and
vertical line as shown in "I" Fig. 13, the pendant up and down rates
would compare nearly equal to each other and the pendant right
position would be slow compared to the pendant left position.

[Illustration: Fig. 12]

If it were pinned at the intersection of the collet and vertical line
just opposite to that shown in Fig. 13, the pendant left position
would be slow compared to the pendant right position.

[Illustration: Fig. 13]

The vertical points of attachment are seldom used, for the reason that
the variation between the pendant right and left positions would be
very difficult to control within close limits, due to the existence of
the natural error. As these positions, together with the pendant up
position are the most important of the four vertical positions, they
are given preference, and the natural error is placed in the pendant
down position where it will be the least detrimental to the
performance of the watch.

34. _The Natural Position Error and Why it Cannot be Eliminated._

[Illustration: Fig. 14]

The natural error generally consists of from twelve to fifteen seconds
in finely constructed watches, and exists because of the fact that it
is impossible to perfectly poise a spiral spring. The location of the
heavy point, however, may be shifted by changing the point of
attachment at collet as described in No. 33, this Chapter. The nearest
approximation of a poised spiral spring is probably attained through
L. Lossier's inner terminal curve. Results are not positive, however,
and any deviation from the required precision makes the curve
valueless. It is possible to obtain perfect adjustment between three
vertical quarter positions and the two horizontal positions, but all
four quarter positions cannot be perfectly adjusted because the
natural error will show up in one of them. Manufacturers of fine
watches do not of course presume to supply perfect adjustment in the
five positions. Some however, have considerably closer limits of
allowance for variation than do others and it is logical to presume
that a line of high grade watches having a five position allowance of
six seconds from one position to any other would show better results
than another line which had even a six position adjustment and an
allowance of fifteen seconds from one position to any other.

35. _Principle of Pinning Point Alterations._

[Illustration: Fig. 15]

When an alteration of any pinning point is necessary, the extent and
direction of the alteration are determined by the rate of the watch.
For instance, if a spring is pinned at the fast point and if a
slightly slower pendant up rate is desired, the spring can be broken
off at the collet and pinned one-eighth above the horizontal line.

If the rate is to be made slightly faster, the spring can be let out a
trifle at the collet, the over coil reformed or the stud moved forward
on the over coil so that the collet point of attachment will come
slightly below the horizontal line when the spring is placed in beat.
The former alteration causes an approach toward the slow point and in
making the latter alteration we assume that the fast point is a trifle
below the horizontal line on that particular watch. When altering
springs from the extreme fast point to the extreme slow point, it is
advisable to remove a trifle less of the inner coil than the extreme
calculation. This will cause the point of attachment to be slightly
above the horizontal line on the slow side and will most always
produce the result desired and if it does not, there is still a
possibility of further alteration. The same principle applies in
making an alteration from the extreme slow to the extreme fast point
and in this case the point of attachment to collet may be just a
trifle below the horizontal line.

The theory of this is that all shortening of the coil from the fast to
the slow point produces a slower rate pendant up, until the extreme
slow point is reached. After passing this extreme slow point the
pendant up rate begins to grow faster until the extreme fast point is
reached. [A]The designations "right" and "left" in regard to pinning
points are used with the explicit understanding that the individual is
facing the train side of the movement. The same designations used as
referring to position rates, or results to be expected in positions
should be interpreted to mean with the individual facing the dial side
of the watch.

36. _Same Principles Apply in Case of American Hunting Models._

The points shown in Figures 14 and 15 refer generally to American
hunting models. In all other high grade watches the location of the
balance and spring will be found either to the right or left of the
center of the watch.

In American hunting models the balance and spring are located in the
lower center of the watch.

This is due to the fact that American manufacturers do not construct
separate models for hunting watches as is done by foreign

Instead of producing an entirely separate model, the method simply
calls for a change in the construction of the barrel bridge by
reversing the position of the barrel and winding wheels. This places
the winding sleeve at figure three on the dial, which is customary on
hunting watches and causes the entire movement to be shifted by ninety
degrees with the balance just about opposite the pendant.


[Footnote A: Important Note.]



37. _Altering the Length of Spring by Regulator Pins._

On some occasions when the pinning points seem to be comparatively
close and the watch is in good condition with the balance in poise, it
is possible to obtain corrections by closing or opening the regulator

This, however, can only be resorted to, to a limited extent, as
otherwise the value of the regulator may be impaired.

The pins should not be closed tight enough to cause "kinking" of the
over coil and they should not be spread apart any more than enough to
make the mean rate about 2 seconds per hour slower.

Some models of watches consistently require that the pins be closed,
while other models require that they be slightly spread, and it is
therefore advisable not to disturb the pins when cleaning watches
unless they have been bent by incompetent hands.

It is better to reserve the majority of pin alterations for such time
as the position rate determines the necessity of an alteration. When
the pins are open, however, it is necessary to adjust the coil so that
its vibration will be equal.

Correct execution in spreading or closing the pins will very often
make it possible to obtain a correction of six or eight seconds
between the vertical and horizontal positions.

38. _Method of Examining Vibration of Over Coil Between the Pins._

The proper method of examining this vibration is to stop the balance
and observe the movement of the coil between the pins.

The vibration should be equal at the slightest oscillation of the
balance as well as during the longer arcs. The coil should not rest
against one or the other of the pins at any time unless they are both
closed. Emphasis is placed upon equal vibration of the coil when the
pins are open because of its importance, and if results are not
obtained (as expected) the examination should be repeated to see if
correct conditions have been attained. Examination of this vibration
should be made from both sides of the pins and usually the best
estimate can be obtained by looking between the pins from the stud

39. _Position Corrections Obtained by Spreading or Closing the
Regulator Pins._

When the regulator pins are tightly closed and the watch has a fast
pendant up position rate, it will be possible to obtain a slower rate
by slightly spreading the pins.

When the pins are spread and vibration of the coil between them can be
discerned, and the pendant up rate is slow, a faster rate can be
obtained by closing them.

In spreading the pins they should be drawn away from the coil equally,
as otherwise the coil will strike one pin with more force than the
other, which will not produce results as expected and will cause
uncertain regulation. In closing the pins they should be drawn
together one at a time until both are in equal contact. They should
not be merely squeezed together, as this causes distortion of the coil
at the point of contact.



40. _Routine Varies According to Circumstances._

The principles covering the adjustment of watches are the same in the
repair shop as they are in the factory and they are equally the same
in the various lines of high grade watches regardless as to whether
they are of American or foreign extraction.

The routine covering the work to be done, however, may vary, depending
upon the quantity of watches that are turned out. In the factories
where large numbers of watches are adjusted the adjuster is trained in
the various branches of watch work and eventually devotes his entire
time to adjusting. The watches are generally turned over to him after
they are all assembled and ready for the final balance and spring
work, or after they have been finished and rated, in which instance he
receives only those that are not within the requirements and he then
makes the necessary alterations, after which they are again tested for

In some repair shops where large numbers of fine watches are handled,
a similar system is used and one competent adjuster devotes his time
principally to the work of timing and adjusting.

41. _Considering the Watchmaker in the Small Shop of One or Two

By far the greater number of watchmakers are employed in stores having
only one or two workmen who are required to do the cleaning and to
make all repairs. For this reason an adjuster of equal skill could not
do as much actual adjusting as could be done in either of the two
previous instances, but for the same reason he would not be expected
to do as much.

He can, however, adjust the high grade watches that he repairs just as
closely, and he should not permit himself to feel that time and the
nature of his position prohibits him from doing so. Whether it does,
or does not prevent him from obtaining close rates depends entirely
upon his training and understanding of the necessary details. If he is
skilful and accurate, his output of work in the long run will not be
reduced, his work will give better satisfaction and he will have less
"comebacks" to take up his valuable time.

42. _Advantage of Understanding Adjusting Even Though Watches are Not
Tested in Positions or Isochronism._

To understand position adjusting thoroughly is of the greatest
advantage in obtaining satisfactory time from any medium or high grade
watches even though they are not to be tested in positions because
vital points will receive intelligent observation where they would
otherwise be overlooked.

43. _Concerning Watchmakers of Limited Experience._

The previous notes and rules covering pinning points of the hairspring
as detailed by the cuts and descriptions, together with the concrete
adjusting examples to follow would no doubt be of sufficient note for
watchmakers of considerable experience.

There are, however, many ambitious workmen who have not devoted any
time whatever to the study or practice of adjusting and to whom some
elementary study and practice may be quite indispensable.

To be of service to this class of workmen chapters XI and XII are
devoted to preliminary notes and practice lessons.

The contents of these chapters can be worked out in practice by almost
any workman who is capable of holding a position as watchmaker and it
is substantially necessary that they be mastered before finished
results are to be expected.



44. _Practical Suggestions._

Experience will eventually prove that most of the variations in
positions are caused by apparently insignificant details. The mistake
made by the average repairer is generally that of failing to detect
these details and to make slight corrections where necessary, as he
proceeds with the ordinary cleaning and repairing of the watch.

This oversight often prevents what would otherwise be excellent
results in timekeeping and makes it necessary to utilize extra time
and labor in the effort to obtain more consistent timekeeping.

45. _The First Point of Consideration in Learning to Adjust._

The first consideration in position adjusting should be directed
toward equalizing the time in the two horizontal positions. This
equalization should be accomplished entirely by attention to details
that can be plainly seen before arriving at the point of actual timing
of the watch. The principal requirement for equal time between dial up
and dial down is equal arc of motion of the balance in each of the two
positions, and the adjuster should become capable of obtaining this
equal arc of motion before attempting to obtain close rating in the
other positions.

46. _Causes of Variation Between Dial Up and Dial Down._

Variations between dial up and dial down may be due to one or more of
the following causes which have been arranged in two groups, the
first group consisting of the most frequent and common causes, while
the second group consists of causes equally detrimental but less

Group No. 1

  1. Dirt or thick oil in one or both balance jewels.
  2. Burred or marred balance pivots.
  3. End of one balance pivot flat or rough and opposite pivot polished.
  4. Ends of both balance pivots polished but not same form.
  5. Balance pivot bent.
  6. Hairspring rubbing balance arm or stud.
  7. Hairspring concave or convex in form instead of perfectly level.
  8. Over coil rubbing under balance cock.
  9. Over coil rubbing center wheel. (Some watches).

Group No. 2

 10. Balance pivots fitted too close in jewels.
 11. One pivot having excessive side shake and the opposite close
 12. Escape or pallet pivots bent or damaged.
 13. Balance end stone pitted or badly out of flat.
 14. Over coil rubbing outside coil, at point where it curves over
 15. Balance arm or screw touching pallet bridge.
 16. Balance screw out too far, touching bridge or train wheel.
 17. Safety roller rubbing dial plate or jewel setting.
 18. Fork rubbing impulse roller.
 19. Guard pin rubbing edge of safety roller.
 20. Roller jewel long and rubs guard pin.

47. _Short Motion Generally Indicates Where to Find Trouble._

Any of the above irregularities will cause a variation in motion
between dial up and dial down and invariably the trouble will be
found on the side which has the shorter motion. For instance, a pivot
that is flat or rough on the end will cause a shorter motion, when it
is down, than will the opposite pivot when it is down, provided that
its end is slightly rounded and highly polished. The same is true when
the oil is gummy or dirty in one jewel and the opposite jewel is clean
and freshly oiled.

Capped escape or pallet pivots when flat or rough on one end have the
same effect to a lesser degree.

It is never proper to make the end of a pivot flat or rough and
thereby shorten and equalize the motion. Neither should the ends of
both balance pivots be flattened at any time. On the contrary, the
ends of pivots should always be slightly rounded and highly polished:
there is no logical reason for having them otherwise.

48. _Short Motion Sometimes Caused by Burr on Opposite Pivot._

There are occasionally instances where a poor motion on one pivot is
caused by a slight burr on the opposite pivot. This is usually due to
the fact that while the burred pivot is running on its own end stone,
there is space enough between the end stone and jewel to give the burr
clearance, but when the position of the watch is reversed, the balance
end shake allowance causes the burr to rub on the top of jewel hole
and prevents perfect freedom of motion when the good pivot is

49. _Examining the Hairspring._

The hairspring may be true and level but it should be carefully
examined to see that there is no possibility of touching at any point.
The observation should take place during the full arc of motion of the
balance, for there are some instances in which no rubbing takes place
until the motion accelerates. The watch should be held at different
angles and the space between the balance arm and spring, and the stud
and spring, closely scrutinized for possible contact. The space
between the spring and over coil at the point where the over coil
rises and curves over the spring should be at least equal to the width
of the coils and care should be taken to see that the over coil just
before the point of rising has the usual space between it and the next
coil. Either position in which the hairspring may rub will have a
shorter motion and a gain in time compared to the opposite position in
which there is no interference.

50. _Exceptions in Regard to Gaining Rate and Short Motion._

Invariably the arc of motion which is the shortest will gain time
compared to the opposite position which has a longer motion. There
are, however, some few instances in which there are exceptions to this
rule, and knowledge of these exceptions is quite valuable in
preventing confusion and doubtfulness in the certainty of making
specific alterations. As an example in the horizontal positions; if
both end stones are perfect and the freedom of one pivot in the jewel
is correct while the opposite pivot has entirely too much freedom, the
motion may be somewhat shorter with the proper fitting pivot downward
while the rate may be slower compared to the opposite position. This
is caused by the balance describing a larger circle when the large
hole jewel is upward, as the pivot is allowed to travel a greater
distance from the center of the hole as it wavers from side to side
during the oscillations.

When the watch is reversed the weight of the balance prevents the
pivot from wobbling in the large hole and eliminates the possibility
of compensating for the larger circle described by the balance in the
opposite position.

The same results are possible when the freedom of both pivots is
correct and when one end stone is pitted, as the pit in the stone
causes a short motion when downward and prevents the pivot from
having any side play whatever, while the opposite pivot enjoys full
play to whatever freedom there may be and through this causing a
somewhat larger circle to be described by the balance and a slower
rate in time.

It should be understood that this does not refer to instances where
the end stone surface is merely slightly worn, but to pittings in
which the surface of the stone has been actually pierced. In most
instances of slight wear the motion will be shorter and the rate fast
which conforms to the general rule covering rate and motion.

51. _Detailed Practice._

For preliminary practice in position adjusting, select a watch of
about 17 jewels which has just been cleaned and put in order to the
best of one's ability.

Regulate it so that it will time within ten seconds in twenty-four
hours. Then run it dial up for twenty-four hours and make a notation
as to the number of seconds either fast or slow. Next run it dial down
for twenty-four hours and make note of the number of seconds fast or
slow in this position. If there is a variation in time between the two
positions it will be found that the position having the faster rate of
the two will also have a shorter arc of motion.[B]

The exact arc of motion in each position can be known by observing the
arms of the balance and comparing the extent of the arc with some
point on the pallet bridge.

A variation of one-eighth of an inch in motion will generally make a
difference of four or five seconds in the rate and greater variations
will make corresponding increases in the difference.

When a watch is in good order a correct motion for the horizontal
positions is generally considered to be that of one and one-half turn,
which consists of three-quarters of a revolution of the balance in
each direction.

Should the motion be very much below this, in both positions, there
may be something wrong with the general condition of the watch or
possibly there may be a weak mainspring at fault, or an imitation
spring that is too long and thick may take up too much room in the
barrel and cause poor motion as surely as will one that is two weak.

Assuming, however, that the motion is good in one position and drops
off in the other, it is quite probable that only an ordinary position
correction will be required and the immediate problem to be considered
is that of causing the short arc of motion to accelerate enough to
equal the longer arc. The precise correction required will most
probably be found among the causes listed in No. 46, this Chapter.

52. _Which Rate to Use as the Unit for Comparison._

The horizontal position which has the slower rate of the two should be
considered as the unit which is correct and it will always have the
longer motion of the two, barring the occasional exception as
described in No. 50.

This longer arc of motion is universally due to a better condition,
while the shorter motion indicates that something is wrong, and it
should always be the aim of the adjuster to improve some condition
that is below standard, rather than to make some good condition a
little worse in order to equalize the rates.

It may be possible to equalize horizontal rates by flattening the ends
of pivots, but it does not require much more time to improve the
motion in one position than it does to make it a little worse in
another. The advantage is all one way and results either good or bad
depend entirely upon the viewpoint of the worker and how he applies
himself to the situation.

53. _Damaged Pivots, Pitted End Stones and Methods of Correction._

In the examination of pivots, end stones and jewels, it is necessary
to use a stronger glass than the one used for ordinary work.

Damaged pivots can often be detected by looking through the end stone
with a strong glass while the balance is moving. If imperfect they
will appear dark or display a slight waver or flash and if they are in
good condition they will appear bright and seem to stand still. They
can also be examined in the lathe and a good true enclosed balance
chuck is of immense value in detecting burrs, chipped edges, rings on
the sides, slight bends and poorly shaped ends. The complete balance
and spring can be inserted and the pivots can be refinished without
disturbing the roller or hairspring. The chuck should be revolving
very slowly when making the examination and moving the belt with the
hand will enable one to see more than can be seen when the lathe is
running at regular speed. Some watchmakers use small bow lathes for
examining and finishing pivots, or the Jacot lathe, which is excellent
for this kind of work. An end stone that has been deeply pitted should
always be discarded and a new one supplied. If the hole is very
slight, however, it can be removed entirely and the surface of the
stone re-polished on a lap charged with No. 5 diamond powder, but the
stone and setting should be thoroughly cleansed by brushing and
pithing before replacement.

Should a slight particle of diamond or any other hard stone powder
possibly remain on the stone or in the bezel it might eventually enter
the end of pivot and again cause pitting. In case that the end stone
is of the type that is flat and highly polished on both sides, such as
is usually found on detachable dome foreign watches, it can be punched
out with a piece of brass wire or peg wood and replaced in reverse
position, after which the bezel can be closed and the stone will be
just as serviceable as a new one.

Pivots that have been running on pitted end stones are generally rough
on the end which is charged with some hard substance. They require
special treatment to remove the cause of the pitting and the following
method of refinishing is very good. Place the balance in the lathe and
draw a soft Arkansas oil stone over the end of pivot with pressure
enough to remove a bit of the metal. This will drag out any hard
particles that may be lodged in the end and after this has been done
the pivot should be pithed clean and polished with a smooth hard steel
burnisher covered with oil.

A hard stone such as sapphire or jasper, or a steel burnisher should
not be used on the pivot until the Arkansas stone has first done its
work, because a hard instrument of this description will force the
small particles that cause the pitting further into the end of the
pivot instead of removing them entirely.

A pivot that has been treated in this way will not pit the end stone a
second time unless carelessness in the use of hard powder permits
additional particles to come in contact with the pivot or end stone.

There are some instances in which the steel is highly carbonized but
manufacturers generally use the best steel obtainable for balance
staffs and excessive carbon can generally be detected with a
magnifying glass. Free use of diamond powder and emery wheel dust are
more often responsible. The holes of jewels should never be enlarged
or polished with diamond powder after the jewels have once been placed
in their permanent settings, as this allows the powder to lodge
between the jewel and the setting where it cannot be removed by
cleaning but where it will be drawn out by the oil and charge any
pivot that may be run in the jewel. The grey powder in such instances
may be seen through the top of jewel with a strong glass.


[Footnote B: Note Exceptions in No. 50.]



54. _Five Principal Causes and Corrections for Pendant Up Variation._

The first of the vertical positions to be considered is that of
Pendant Up and to understand the causes of and corrections for
variations in this position completes what is known as three position

The usual causes of variation in the pendant up position as compared
to the horizontal positions are as follows.

      Poor Motion Pendant Up.
      Regulator Pins not properly adjusted.
      Balance not in poise.
      Hairspring not in circle.
      Hairspring not pinned at proper point.

55. _Poor Motion, Cause and Effect._

Among these causes that of Poor Motion covers a number of troubles
such as roller jewel rubbing in fork, guard pin rubbing roller, strong
lock on the escapement, or no lock on some teeth.

Such causes may not prevent close rating between the horizontal
positions because of non-interference until the position of the watch
is changed.

The pendant up motion should therefore be the first vertical point of
investigation and if at fault the cause should be eliminated. In this
connection it should not be expected that the arc of motion in the
pendant up or any other vertical position will be as long as it will
be in the horizontal positions, for when a watch is in excellent
condition in every particular the vertical arcs are always
approximately one-fourth of a turn shorter than the horizontal.

This is due to frictions and is impossible of correction and therefore
should not be confused with a poor motion of greater extent which has
removable causes that are practical of execution.

A good motion is to be considered as one of the results to be expected
in overhauling and putting a watch in good order and it should not be
understood that it is particularly to be associated with adjusting
only, nor should any watch be slighted in cleaning and assembling with
the idea that adjusting will correct it in a few minutes' time. On the
other hand it should be understood as fundamental that no watch can be
a close time keeper unless it has a good motion and no good adjuster
will attempt to obtain close time in one position or a close rate in
different positions until the motion is first what it should be. If it
is what it should be, about ninety per cent of the necessary work
required for obtaining close position rates will have been completed.

56. _Regulator Pin Practice for Pendant Up Variation._

When the watch is in reasonably satisfactory condition and a three
position test proves that the pendant up position has a variation of
from ten to twenty seconds either fast or slow compared to the
horizontal positions, the regulator pins may be the first point of
examination. If there is considerable vibration of the coil between
them, and the pendant rate is slow, it will be necessary to close the
pins and if the rate is fast and the pins are found to be closed so
that there is no vibration of the coil, it will be necessary to spread
them slightly. Closing the pins will of course make the general timing
of the watch faster and spreading them will make it slower and
therefore it will be necessary to regulate the watch for one or two
seconds per hour before again testing it in positions. The result of
either operation, however, will be to cause the rate in the pendant up
position to conform more closely to the horizontal rates.

Preliminary and profitable two position experiments can be made
between dial up and pendant up, by having the pins closed on most any
watch that is in good order and timing it within five or ten seconds
in twenty-four hours, then rating it in these two positions. Next
spread the pins slightly, re-time the watch and rate it in the same
two positions and compare the variations. A few experiments of this
description will soon demonstrate as to the extent of correction that
can be obtained in this way.[C] The rule of equal vibration of the
coil between the pins after they have been spread must be rigidly

57. _Pendant Up Corrections Through Poise of Balance._

Assuming that the motion and regulator pins seem to be satisfactory,
the next point of investigation should be the poise of balance. The
hairspring should be removed and the pivots known to be straight and
polished before testing. The rollers are of course a part of the
balance and are not to be removed. A perfectly poised balance can be
stopped at any point on the tool and it should at least remain
stationary at each of the four quarters of its circumference. No. 28,
Chapter VII, should be consulted for details on poise corrections.

58. _Concentricity of the Hairspring._

The next point of consideration may be the concentricity of the
hairspring, and it is quite important that the spring be centered as
nearly perfect as the trained eye can determine. Any unusual pressure
of the spring in one direction will cause undue friction and a fast
rate compared to the opposite direction.

There are several easy tests for determining as to how nearly the
spring may be centered. One of these is to look straight down upon the
spring and examine the space between the coils that extend beyond the
circumference of the dome. This test may be made in three ways, one
with the balance at rest, one with the coils of the spring wound up
and the third with the coils unwound. With the balance at rest and the
spring centered there will be the same space between the coils all
around as though the spring were out of the watch entirely and laying
on the bench.

If it is not properly centered there will be more space between the
coils on one side than there will be on the opposite. The same
conditions will be apparent when the spring is wound up, although the
coils will all be nearer to each other than they were with the balance
at rest, and when they are unwound the coils will all be farther apart
with the same apparent difference on opposite sides when the centering
is not correct.

The winding and unwinding of the spring is alternating and almost
instantaneous, as the balance oscillates from one extreme to the
other. For observation of the spring when it is wound or unwound it is
necessary to stop the balance with the finger or camel's hair brush as
it reaches its extreme arc of motion, then hold it stationary for a
few seconds while the space between the coils is being examined. The
balance should then be allowed to swing to the opposite extreme, when
it should again be held for examination of the coils. In one of these
extremes the coils will be wound and in the other they will be unwound
and after a few experiments in stopping and starting the balance it
will be found that the entire examination will not require over ten
seconds' time.

When the spring is not properly centered the reason is of course
found in some curve of the over coil and the most usual point at fault
is the section or curve on which the regulator pins act. If the coils
open too wide on the side where the regulator pins are located this
section of the coil will be too near the center and should be moved
outward, possibly equal to one-half or one full space of the coils. If
the coils are too close on the side where the pins are it will
probably be found that the section requires shifting toward the center
slightly. The balance should be removed from the watch in either
instance and the coil circled with the over-coiling tweezer, although
experienced workmen can frequently make excellent corrections with a
fine pointed tweezer without removing the balance.

Finely adjusted watches will always be found to have springs as nearly
perfectly centered as it is possible for expert workmen to get them
and it is quite interesting and instructive to observe the vibration
of a perfect spring by any one interested in the work.

Some watchmakers center the spring on the balance cock before it is
staked on the balance and very good results can be obtained in this
way. The balance cock is placed on the bench in the inverted position
which makes it easy to locate the point or curve requiring alteration.

59. _Correcting Pendant Up Variation Through Pinning Point

Should most careful investigation of the condition of the watch
indicate that the Motion, Regulator Pins, Poise of Balance and
Centering of the Hairspring as well as the general condition of the
watch are satisfactory and the rating show that there is still
considerable variation between the horizontal positions and the
pendant up position there is still one source through which positive
correction may be obtained.

This refers to the relative positions of the collet and stud pinning
points which is defined with explanatory cuts and formula in Chapter

60. _Percentage of Watches Requiring Correction of Position Rates._

In constructing this chapter and the preceding one it has been
preferred to go into detail for the purpose of defining the possible
corrections and alterations, together with the results to be expected.
Not every watch demanding position correction would require the extent
of investigation and possible alteration that is pointed out and in
most instances the direct cause will be disclosed with very little
investigation. In fact, the experienced adjuster can tell almost
immediately where to look for trouble by merely observing the position
rate as entered on the card.

It should also be clearly understood by the student that when the
repairing and cleaning of high grade watches is done by one who
understands the details of adjusting, there will be only a very small
proportion of the watches requiring position corrections. As a rule
among experienced adjusters there will be about seventy per cent of
the watches that will have very close rates. If, therefore, one
hundred watches are put in order and tested in positions there should
be seventy that do not require any correction, while about thirty will
require either minor or major alteration. The time required for making
alterations on this thirty per cent of the watches will be offset by a
smaller percentage of unsatisfactory returns and a better reputation
for doing good work.


[Footnote C: See Chapter IX, on Regulator Pin Alterations.]



61. _Order of Position Timing and Method of Calculating the

In submitting the previous chapters it is assumed that the average
ambitious watchmaker will gain enough knowledge from the various
details to enable him to understand the meaning of the adjustment of
watches, the causes of variations and the principal alterations for
obtaining corrections.

There are many features covered that will enable him to develop in
practice and to experiment in individual points of importance, without
running up against mathematical deductions that halt and discourage
further interest in the subject.

To understand the principles constitutes a large percentage of the
qualifications required and to be able to execute the practical
alterations and corrections required in different kinds of variations
completes the general qualifications. It would hardly be sufficient,
however, to conclude the work at this point without giving more
definite examples for comparison, together with some indication as to
the approximate time that may ordinarily be utilized in doing the work
and also showing some instances of a possible choice of several
alterations and why a particular alteration is advisable. For this
reason the following examples will be found to have an important part
in fulfilling the mission of this book.

In selecting these examples the fineness of results has not been the
principal consideration. The deciding factor was the differences in
variation and alterations, and the fact that they cover the widest
field for general instruction that could be selected from hundreds of
equally good rates among various models of watches which, with three
exceptions, were put in order for railroad service.

The method of computing the variation from one position to any other
is similar to that used in temperature adjusting as described in
Chapter 3, No. 13. The watch should first be timed closely and then
rated for twenty-four hours in each position. It should be wound
before being started in each position but should be set only on the
first day so that the time is never disturbed.

The first position to be rated is universally Dial Up, then in
succession Dial Down, Pendant Up, Pendant Right and Pendant Left. The
daily total number of seconds fast or slow should be entered in the
first column of the rate card after each twenty-four hours run. This
column then constitutes the progressive rate from which the actual
variation between the different positions is ascertained.

The figure in the upper square is first carried out to the adjoining
column at its full value and then the difference between this figure
and that of the second square is entered in the second square of
second column, and so on until the difference between each of the
succeeding squares of first column is registered in the second column.

If the figure in a square of first column is greater than that in the
preceding square the carried out figure would be entered in second
column as + If the figure is less than the preceding square it would
be carried out as-.

The total variation in positions is obtained from the figures entered
in second column. If these figures are all entered as either plus or
minus it is necessary to merely subtract the lesser figure from the
greater. If, however, some figures are entered as plus and others as
minus it will be necessary to add the greater figure of each of the
two denominations.

62. _Example No. 1, Three Positions._

Columbus, No. 358846, Open Face, 17 Jewels.

Repairs Made. New balance staff, two balance screws changed,
hairspring trued and cleaned.

After timing the watch closely it was tested in three positions and
found to have a variation of eleven seconds fast pendant up as per
second column, Fig. 16.

Fig. 16

  | No. _358846_          Make _Columbus_            |
  |  D U   | + 1 | + 1 | + 4 | + 4 |     |     |  P  |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  D D   |   0 | - 1 | + 7 | + 3 |     |     |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P U   | +10 | +10 | +14 | + 7 |     |     |     |
                    11           4

Investigation showed the hairspring to be pinned nearly correct, true
level and in circle; balance true; regulator pins closed and motion
satisfactory. A correction could have been made in one of several
ways; either by making a slight alteration of the pinning point at the
collet; correcting a possible slight error in poise or by slightly
spreading the regulator pins.

As the extent of variation did not indicate any serious error at any
particular point for a watch of this description the possible poise
error and the slight variation in the pinning point were waived and
the regulator pins were spread just enough so that slight equal
vibration of the coil could be seen with a double eyeglass. After this
alteration the mean time was found to be one second per hour slow
which was corrected on the mean time screws and the next test showed
that the variation had been reduced to four second as per fourth
column, Fig. 16. The time consumed in making the alteration aside from
the repairing was less than ten minutes.

63. _Example No. 2, Three Positions._

Ball No. B060816, Open Face, 17 Jewels.

Repairs made. Refinished balance pivots and cleaned. The first test in
positions disclosed a variation of thirty-five seconds as per second
column Fig. 17.

Investigation found the balance true; hairspring true, level and
circle; regulator pins very nearly closed and the motion one and
one-eighth turn. This rate like example No. 1, was also fast in the
pendant up position, but the greater extent of the error indicated
that there must be some serious poise error, and upon investigation
this was found to be the case. A screw on the roller jewel side or at
the bottom when the balance was at rest was found to be heavy. This
was corrected and the next test showed a much improved rate although
there was still a variation of eight seconds fast pendant up as per
fourth column Fig. 17.

Fig. 17

  | No. _B060816_          Make _Ball_               |
  |  D U   | + 2 | + 2 | + 7 | + 7 | + 7 | + 7 |  P  |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  D D   | + 2 |   0 | +14 | + 7 | +14 | + 7 |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P U   | +37 | +35 | +29 | +15 | +24 | +10 |     |
                    35           8           3

A better rate than this was desired and further examination proved
that the locking of the pallet stones and escape teeth was quite
strong and caused the pendant up motion to have a shorter arc than
would have been entirely desirable. An alteration was made by pushing
the receiving stone further back into the slot and rebanking the
escapement. The third position test showed an improved motion and a
variation of three seconds as per sixth column. The total time
required for making the alterations was about three quarters of an

64. _Example No. 3, Three Positions._

Elgin No. 7457488. Open Face, 21 Jewels.

Repairs made. Cleaned; polished pivots and new mainspring fitted. The
first position test showed a variation of nineteen seconds as per
second column, Fig. 18.

It will be noted that this example differs from Nos. 1 and 2, in that
the rate is slow in the pendant up position. Examination showed all
points satisfactory except that the regulator pins were spread
considerably and allowed too much freedom of vibration for the coil.

Had this vibration been slight it would have been advisable to examine
the poise. As it was considerable, however, the alteration made was to
close the pins so that only slight vibration was visible with a strong

Fig. 18

  | No. _7457488_          Make _Elgin_              |
  |  D U   | - 9 | - 9 | + 5 | + 5 |     |     |  P  |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  D D   | -18 | - 9 | + 8 | + 3 |     |     |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P U   | -46 | -28 | + 9 | + 1 |     |     |     |
                    19           4

This watch was not equipped with mean time screws and it was therefore
necessary to fit a pair of thin timing washers because closing the
pins caused a gaining rate of two seconds per hour in the mean time.
The next position test showed a variation of four seconds as per
fourth column Fig. 18.

The time consumed in making the alteration and fitting the washers was
about ten minutes.

65. _Example No. 4, Three Positions._

Hampden No. 1438676, Open Face, 21 Jewels.

Repairs made. New balance staff and hole jewel fitted and cleaned.

The first position test showed a variation of twelve seconds slow
pendant up as per second column Fig. 19.

Fig. 19

  | No. _1438676_          Make _Hampden             |
  |  D U   | + 2 | + 2 | + 2 | + 2 |     |     |  P  |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  D D   | + 4 | + 2 | + 6 | + 4 |     |     |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P U   | - 6 | -10 | + 9 | + 3 |     |     |     |
                    12           2

Investigation found all points such as balance true, hairspring true,
level and circle and the regulator pins reasonably satisfactory. The
motion, however, was not as good as it should have been when the
spring was nearly wound up. It was let down to where it would
ordinarily be after about twenty-hours run and found to have barely
one turn pendant up and a trifle over one turn in the flat positions.
This proved that the motion was not satisfactory for a watch that had
just been put in order and all pivots were examined for close end or
side shake; they were found to be satisfactory and the mainspring was
removed for examination and found to be somewhat set and about 0.01
mm. thinner than those generally used for this grade watch. A new
mainspring was fitted and the motion was improved by about one-fourth
of a turn and the next position test showed a variation of two seconds
as per fourth column Fig. 19. The time consumed in examination and
changing the mainspring was about twenty-five minutes.

The three position limit of variation allowed by most manufacturers
and railroad inspectors is seven seconds from one position to any
other. Records of thousands of watches on which the work has been
carefully done in putting the watches in order, show that about
seventy per cent of the watches will rate within five seconds in the
three positions without making alterations and that only ten per cent
will be close to the limit of seven seconds, while about twenty per
cent will require alterations such as shown in the four examples
above. (See Chapter XII, No. 60.)

One or two more examples might be introduced to show variations and
corrections between dial up and dial down; this feature has been
pretty well covered however in Chapter XI, and five position example
No. 9 also shows a variation of the horizontal rates with correction.



66. _What Five Position Adjusting Consists of--Detailed Allowances._

Five position adjusting consists of a further refinement of the
condition of the watch. The fact that a very close rate is shown in
the first three positions is not an indication that the watch will be
an excellent timepiece under all conditions.

In fact there are instances where there may be an excellent three
position rate and a further test in the pendant right and left
positions may disclose some error that would positively prevent close
timing in service. Even under the five position test the limit of
allowance must be reasonably close or unfavorable conditions may exist
and cause irregularity in timing.

A popular allowance for very fine watches among Swiss and some
American manufacturers is six seconds variation for the five positions
as an extreme limit, and for medium high grades ten seconds extreme
variation is considered a fair allowance. These allowances are
graduated, however, and a six seconds extreme allowance watch would
have an allowance not exceeding three seconds in the horizontal
positions, with two seconds additional in the pendant up position and
one second additional in either the pendant right or pendant left

Watches having an extreme allowance of ten seconds may be permitted to
have not more than five seconds variation between the two horizontal
positions, with two seconds additional for the pendant up position
and still three seconds additional in either the pendant right or left

It will be noted that there is considerable difference between six or
ten second allowances of this description and straight limits of six
or ten seconds.

Some manufacturers have greater limits of allowance, sometimes as
great as twenty-five seconds for the five positions, but as a rule the
first three positions are required to rate within seven seconds and
the difference of eighteen seconds is divided between the right and
left positions.

Under limits of this description a watch that would not be tolerated
under the six or ten seconds class would be considered as good.
Watches having such large allowances, however, and rating close to the
limit are hardly justified in being considered as adjusted to five
positions. The fact that they are so considered however, is the reason
why watchmakers will sometimes fine wide variation in new watches
before they have been damaged or mishandled. The following five
position examples were selected with the same care as were the three
position specimens and will be found to cover a wide field of
variation for comparison with rates that the adjuster may desire to

67. _Example No. 5._

Hamilton, No. 248027; Open Face, 21 Jewels.

Repairs made. New balance staff and cleaned. The first test in five
positions showed a variation of twenty seconds as per second column
Fig. 20. It will be noted that in four of the positions the rate was
quite close and that the pendant right position had an extremely fast

A casual investigation indicated that all points relating to the
spring, regulator pins and balance were reasonably satisfactory but
that there was a slight falling off in motion in the pendant right
position. Further investigation of this feature disclosed a slight
striking sound when the watch was held to the ear in this position.
The dial was removed and the bankings were closed to drop whereupon it
was discovered that the fork was long on the inside, or when the
receiving stone was locked on the escape teeth. This prevented the
roller jewel from passing through the fork freely as it did on the
opposite side.

The balance pivots had the limit of allowance for side shake which
aided the cause of the roller jewel in striking.

Fig. 20

  | No. _248027_          Make _Hamilton_            |
  |  D U   | + 1 | + 1 | + 3 | + 3 |     |     |  P  |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  D D   | + 2 | + 1 | + 7 | + 4 |     |     |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P U   | + 4 | + 2 | + 8 | + 1 |     |     |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P R   | +22 | +18 | +12 | + 4 |     |     |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P L   | +20 | - 2 | + 8 | - 4 |     |     |     |
                    20           8

After correcting the roller jewel shake and readjusting the slide and
guard pin freedom the next test showed a variation of eight seconds in
the five positions as per fourth column Fig. 20. The side shake of the
balance pivots was not detrimental after the real cause of the
variation had been removed and therefore no correction was required in
this respect.

If the error in the escapement had not existed and if the watch had
shown the same rate with all points appearing to be satisfactory, the
trouble would most likely have been found in the poise of balance with
the upper side heavy in the pendant right position.

The time consumed in making the correction was about one half hour.

68. _Example No. 6._

Elgin. B. W. Raymond. No. 4,109,543, Open Face, 15 Jewels.

Repairs made. New fourth pinion; new end stone; mainspring; refinished
balance pivots and cleaned. Note that this was only a 15-Jewel watch.

It belonged to a railroad engineer, however, who wanted it placed in
first class condition, as it had not been satisfactory. The first five
position test showed an error of twenty-four seconds as per second
column Fig. 21.

Examination of the motion, pivots, regulator pins, escapement and
poise proved them to be satisfactory.

The hairspring however, was found to be pinned at the slow pendant up
point as per illustration in Fig. 22.

Fig. 21

  | No. _4109543_          Make _Elgin_              |
  |  D U   | + 8 | + 8 | + 2 | + 2 |     |     |  P  |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  D D   | +16 | + 8 | + 3 | + 1 |     |     |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P U   |   0 | -16 | + 2 | - 1 |     |     |     |
 |  P R   | + 4 | + 4 | - 1 | - 3 |     |     |     |
 |  P L   | - 1 | - 5 | - 6 | - 5 |     |     |     |
                   24            7

The alteration made was to break out one-half of the inner coil at
collet so that it was pinned at the fast point as illustrated in
Fig. 23.

A pair of balance screws were removed and a heavier pair fitted to
correct the mean time, which would have been about ten minutes fast in
twenty-four hours because of shortening the spring.

The balance was repoised and the next test in positions showed a
variation of seven seconds as per fourth column Fig. 21.

The time required for making the alteration was about one half hour.

[Illustration: Fig. 22]

[Illustration: Fig. 23]

This watch was a full plate model with the train developing to the
left from the center and illustrations No. 22 and 23 are given to
show that, while the train follows the Swiss development, the spring
follows the American method and develops to the right from the collet
even though it is located to the left of the watch center. The
principle remains the same as that illustrated by Figs. 9 and 11 and
explained in Chapter VIII.

69. _Example No. 7._

Waltham. No. 10504112. Open Face, Vanguard model, 23 Jewels.

Repairs made. Cleaned and new hole jewel.

First five position test showed a very erratic rate as per second
column Fig. 24.

Investigation proved that the motion dropped off considerably after a
few hours run and that the mainspring was too weak for this grade of
watch. A proper mainspring was fitted which in turn corrected the
motion, but the next test in positions proved that there was still a
variation of eighteen seconds as per fourth column Fig. 24.

Fig. 24

  | No. _10504112_          Make _Waltham_           |
  |  D U   |   0 |   0 | - 2 | - 2 | - 1 | - 1 |  P  |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  D D   |   0 |   0 | - 5 | - 3 | - 1 |   0 |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P U   | +14 | +14 | -21 | -16 | - 4 | - 3 |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P R   | + 4 | -10 | -19 | + 2 | - 5 | - 1 |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P L   | +16 | +12 | -25 | - 6 | - 3 | + 2 |     |
                    24          18           5

The balance and spring were removed and considerable poise trouble was
discovered. The trouble was at different points of the balance and no
one location seemed to be heavy at all times. The balance pivots were
carefully gauged with a metric micrometer and found to be out of
round, or to be exact, more oval in form than cylindrical. A new staff
with round pivots was fitted, after which the balance was easily
poised and the next test showed a variation of five seconds as per
sixth column Fig. 24. The total time required for making the
examination and alterations was about one hour.

70. _Example No. 8._

Vacheron and Constantin. No. 272,854, Open Face, 21 Jewels.

Repairs made. New balance staff, hole jewel, cap jewel, glass, and

The first test after making the repairs showed a variation of twelve
seconds as per second column Fig. 25.

It will be observed that the rates in the horizontal positions are on
the fast side and those in the vertical positions are on the slow
side. In this instance the hairspring developed to the left from the
collet similar to the illustration shown in Fig. 10, page 45.

Fig. 25

  | No. _272854_          Make _V. & C._             |
  |  D U   | + 2 | + 2 | - 4 | - 4 |     |     |  P  |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  D D   | + 5 | + 3 | - 8 | - 4 |     |     |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P U   | - 1 | - 6 | -14 | - 6 |     |     |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P R   | - 8 | - 7 | -21 | - 7 |     |     |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P L   | -17 | - 9 | -25 | - 4 |     |     |     |
                    12           3

Investigation found the escapement, regulator pins and pinning point
satisfactory; the motion was one and one-fourth turn in the vertical
positions when fully wound and only a trifle less when partially let
down. In the flat positions, however, the motion was very little
better than in the vertical, which indicated either pivot or end
stone trouble as under normal conditions the flat motion would be
about one-fourth turn greater than that of the vertical.

Inspection of the end stones proved that they were satisfactory but
the ends of the balance pivots were found to be somewhat flat and not
perfectly polished.

The ends of the pivots were slightly rounded and highly polished, the
jewels and end stones cleaned and reoiled and the balance replaced,
after which the motion in the flat positions was one and one-half turn
with the mainspring fully wound and only slightly less when partially
let down.

The motion in the vertical positions was also slightly improved and
the next test in position showed a variation of three seconds as per
fourth column Fig. 25.

Time required for making the above alteration was about one-half hour.

In the study of this example it should be clearly understood that when
the ends of balance pivots are flat, burred or not well polished, or
when the end stones are dry or dirty the motion in the horizontal
positions will be shorter than normal and this will always cause the
rate to be faster than it should be. Acceleration of the motion in
such instances by means of refinishing the pivot ends or by cleaning
and reoiling the jewels and end stones will always produce a slower
rate through causing a longer arc of motion.

This point is covered in Chapter XI, No. 47.

71. _Example No. 9._

E. Howard. No. 1,116,735. Open Face, 23 Jewels.

Repairs made. New balance staff; hole jewel; mainspring and cleaned.

The first test in positions showed a variation of eleven seconds. The
rate in all positions was fast with the exception of the dial down
rate, which was slow. See Fig. 26.

At first glance it might appear that by causing a faster rate of six
or seven seconds in the dial down position the watch would have a very
good rate. This, however, would not be consistent unless the rate was
due to the exception referred to in Chapter XI, No. 50.

Examination of the motion in the horizontal positions proved that it
was about one fourth turn better in the dial down position than it was
in the dial up position which rate compared very closely with the
vertical positions. It was therefore evident that the dial up rate was
not true and investigation found the oil in the upper jewel had become
thickened by the entrance of dirt which caused the short motion and
fast rate when the balance was running on this end stone.

Fig. 26

  | No. _1116735_         Make _E. Howard_           |
  |  D U   | + 2 | + 2 | - 5 | - 5 | + 2 | + 2 |  P  |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  D D   | - 3 | - 5 | -10 | - 5 | + 4 | + 2 |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P U   | + 1 | + 4 | - 6 | + 4 | + 9 | + 5 |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P R   | + 7 | + 6 |   0 | + 6 | +10 | + 1 |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P L   | + 9 | + 2 | + 2 | + 2 | +14 | + 4 |     |
                    11          11           4

After thoroughly cleaning the jewel, end stone and pivot, the motion
in the dial up position was improved and equaled that of the dial down

The next position test showed the horizontal rates to be equal but the
variation of eleven seconds in the five positions still existed as per
fourth column Fig. 26. The vertical rates were all fast compared to
the horizontal; the regulator pins were found to be slightly open
which prevented a correction at this point. The locking of the
escapement was examined and found to be satisfactory, so the balance
was again removed and tested for poise which was also found

The hairspring was pinned at the usual fast point as per illustration
in Fig. 9, Chapter VIII. The most positive alteration to be made under
the circumstances was to break off the spring at the collet and repin
it at about 45° above the horizontal line. This would be slightly
approaching the slow point as explained in detail in Chapter VIII, No.

The mean rate of the watch would necessarily be faster after
shortening the spring; the mean time screws were found to be turned in
close to the rim and were each turned out about one full turn to
compensate for the gain. The poise was tested and found to remain
correct and the next position test showed a variation of four seconds
as per sixth column Fig. 26.

The total time required for the alterations was about one hour.

72. _Example No. 10._

Illinois. No. 1,483,023, Open Face, 21 Jewels.

Repairs made. Trued and poised balance, new balance jewel and cleaned.

This example has been selected for the purpose of illustrating a test
in the sixth or pendant down position and to give a practical
demonstration showing that the rates in the pendant down and pendant
up positions can be reversed, with positive results, through reversing
the collet pinning point of the spring, as covered in "Relative
Pinning Points" Chapter VIII.

This alteration can be undertaken with assurance of results even
though there may be serious errors of construction in the watch.

The first five position test proved that the rate pendant up was
extremely fast compared to all other rates as per second column Fig.

Investigation proved that the hairspring was properly centered and
pinned at the fast pendant point and that the regulator pins were
slightly spread with equal vibration of the coil between them. The
motion was about one and one-fourth turn pendant up and over one and
one-half turn in the horizontal positions when the mainspring was
nearly full wound. The ends of balance pivots were found to be
perfectly flat, which was no doubt due to an effort to produce a
faster rate in the flat positions to cause them to compare more
favorably with the pendant up rate. This, however, was unsuccessful as
indicated by the rate.

It is quite possible that if the watch ever was closely rated it was
due to counterpoise of the balance as with the present rate the poise,
escapement and regulator pins were satisfactory and did not admit of
further corrections that would be of advantage.

By examining the P. U. rate in second column Fig. 27, it will be found
to be twelve seconds fast and then by referring to the separate P. D.
(Pendant Down) rate at the bottom, it will be found to be four seconds
slow. Adding these figures gives a total variation of sixteen seconds
between these two positions.

Fig. 27

  | No. _1483023_          Make _Illinois_           |
  |  D U   | - 3 | - 3 | - 1 | - 1 |     |     |  P  |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  D D   | - 8 | - 5 | - 2 | - 1 |     |     |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P U   | + 4 | +12 | - 6 | - 4 |     |     |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P R   |   0 | - 4 | - 4 | + 2 |     |     |     |
  +--------+-----+-----+-----+-----+-----+-----+     |
  |  P L   | - 6 | - 6 | - 7 | - 3 |     |     |     |
  |  P.D.  |       - 4         +11 |

Now if these rates were reversed and the P. D. rate was in the place
of the P. U. rate the watch would have shown a very good position
rate in the first five positions and the greater part of the sixteen
seconds variation would have been in the pendant down position where
it would be of the least disadvantage. In order to obtain this
condition the collet pinning point was changed from the fast to the
slow point, or from "E", Fig. 9, to "G", Fig. 11, Chapter VIII.

A pair of heavier screws were fitted to the balance to compensate for
the difference in time caused by shortening the spring and the next
five position test showed a variation of six seconds. A separate
pendant down test proved that the pendant up and pendant down rates
had been practically reversed as shown in the fourth column.

73. _Causes of Extremely Fast Vertical Rates._

Extremely fast pendant up rates are not particularly unusual, although
the causes and corrections may be widely different.

For instance, the poise and motion feature, No. 28, Chapter VII, may
be responsible, or the balance may be in poise and the collet having a
wide slot may cause out of poise and be responsible if the slot is
located at the proper point. A defective escapement or regulator pins
tightly closed may also be responsible. Should these points be found
satisfactory, however, the rate is generally due to one of three

1. Excessive side friction of pivots because of being too large in

2. Train wheels and pinions being of incorrect proportion and causing
irregular motion and affecting the vertical positions mostly.

3. Centrifugal force, which would cause the balance rims to spring
outward in the longer arcs of vibration and thereby produce an
abnormal slow rate in the horizontal positions where the arc of
motion is always longest. This is due to the balance rims being too
heavy in proportion to the arms or center bar.

       *       *       *       *       *

When either of these three conditions are found there will be others
among the same lot of watches, but as a rule they are only found on
older watches made before correct proportions were firmly established.

Train depthings can often be improved if the workman is equipped with
a rounding up machine and knows how to use it. Otherwise the watch can
be sent to the factory for correction and the only alternative of the
repairer is to cut the spring to the slow point, or counterpoise, with
the intention of eliminating expense and getting as good results as
can be expected for the financial returns that are to be received.

74. _How to Locate Defective Gearings._

Defective gear or depthing of wheels can be detected in two ways, one
by observing the engaging surfaces of the wheel teeth and another by
testing the engagement of wheel and pinion.

If the gearing is correct, observation will show that the engaging
surfaces of the wheel teeth are smooth and either dark or possibly
polished from wearing away of the plating. If the gearings are not
correct the engaging surfaces will have cuts or ridges crosswise which
have been produced by the pinion leaves.

The cause of this cutting is due to either a faulty construction of
the teeth or to the fact that the pitch circle of the wheel is too
small while that of the pinion is too large.

Testing the gearing in the watch is accomplished by placing the
engaging wheel and pinion in the watch so that they are free to turn
without engaging with any other wheel. A piece of ivory or celluloid
several inches long and about the diameter of a piece of peg wood
should be pointed at one end and this end should be held between the
upper pivot and oil cup of the jewel, with enough pressure of the left
hand to cause friction in turning the pinion. The larger wheel should
then be turned in the direction in which it revolves when running;
this is accomplished with a piece of peg wood held in the right hand.

If the gearing is perfect there will be smoothness as the wheel and
pinion turn and if it is imperfect there will be a butting effect in
the action. Should there be a slight intermittent stepping action due
to drop of the wheel teeth on the pinion leaves it should not be
mistaken for butting as this is not detrimental and will not cause
cutting of the teeth.

Watches that have below standard train gearings require considerably
stronger mainsprings than do those which have correct gearing and they
will seldom take a reasonably good motion without a strong spring.

A safe way to judge gearings if in doubt is by the motion and the
engaging surfaces of the wheel teeth. If the motion is steady and the
teeth are not cut by the pinion leaves they may be considered as
satisfactory. If the motion is steady for a time and then suddenly
drops off there is generally something wrong in the gearing. The wheel
and pinion in error can be determined by noting at what particular
intervals the motion decreases. In nearly all instances this condition
will cause a gaining rate in the vertical positions because of the
fact that the vertical arcs are shorter and comparatively more easily
affected than the horizontal arcs.



75. _Mean Time Screws and Timing Washers._

In the general overhauling of watches, changing staffs, retruing and
repoising of balances it is often necessary to make corrections of
several minutes per day in the mean time.

For this reason and for the convenience of the future some
manufacturers have provided from two to four mean time screws in the
balances. A complete revolution of these screws either in or out,
generally corrects any variation that may be required and frequently
considerably less is all that is required in bringing the watch to

It is of course necessary that these screws be turned in opposite
pairs as well as equal distances and that they be fitted with enough
friction to prevent looseness and not too tight to cause bending of
the pivots when they are turned.

If properly used for the purpose for which they were intended they are
of inestimable value to the repairing fraternity in producing results.

The manufacturers of some watches do not supply mean time screws with
the balances and the repairer is obliged to depend entirely upon
timing washers for fast corrections, for it is, of course, not to be
expected that repair shops will carry an assortment of all different
kinds of screws such as the factories are able to maintain.

Occasionally a jeweler or watchmaker will be found who has strenuous
objections to the use of timing washers in any sense, but unless they
are supplied with a large assortment of the various makes and weights
of screws and are willing to use the extra time required for properly
changing the screws it is difficult to see just what legitimate
alternative they can adopt. Investigation of this point disclosed the
fact that the method employed by some watchmakers was to spread the
regulator pins, which would of course make the mean time slower but
would certainly destroy the adjustment to positions and make it
practically impossible to obtain results from the regulator.

It is admittedly poor workmanship to use ill-fitting washers and poor
taste to use brass washers on high grade gold screw balances, but the
fact should not be overlooked that the manufacturers of many fine
watches use washers to a limited extent, even when an abundance of
balance screws are available and very fine Swiss models are often
supplied with a pair of thin platinum washers which are not easily
detected. The regulator should not be moved from the center of the
index in correcting the mean time but should be used for minor final
regulation only. The length of the hairspring should also not be
disturbed in correcting the mean time of an adjusted watch and while a
slow rate can be corrected by reducing the weight of a pair of balance
screws it is necessary to use either heavier screws or washers for
correcting a fast rate.

76. _Importance of Properly Fitted Regulator._

Final regulation of watches is necessary after making repairs
regardless as to whether they have been adjusted to positions or not.
Position rating does not necessarily suggest that the timing has been
completed as the object is only to limit the variations from one
position to any other and a test of three or four days should always
be made in one position after the position rating has been completed.
This additional timing has for its purpose the close regulation of the
watch either in the pendant up position or in the position it is
carried. The last column on the rate card is reserved for this
purpose. In this respect the repairer who comes in contact with the
customer may gain considerable advantage by noting in which pocket the
watch is usually carried and then being guided in the final regulation
by this knowledge. The method of doing this regulating consists
generally of moving the regulator which requires certain attention to
be effective when it is moved.

The regulator should be carefully fitted around the dome and all
attachments in connection should be tightly fitted to the plate or
bridge so that they will remain rigid when regulation takes place.

The tension around the dome should be even and if a tension spring is
used in connection it should be strong enough to keep the regulator
against the screw constantly without sticking at any point as the
screw is moved forward and backward.

It should also be closely examined to see that there is no shake. This
can be determined by lightly taking hold of the segment holding the
regulator pins and moving it up and down and side ways before the
tension spring is fitted. This should be examined with a glass and a
correction made if any looseness is noted.

77. _Effect of the Middle Temperature Error._

In the final regulation of watches it is important that the middle
temperature error receive due consideration. This error is always a
few seconds fast as explained in temperature adjusting Chapter V, No.
21, and is of some consequence in the larger number of complaints
regarding losing rates in the pocket, compared to complaints of
gaining rates.

The position rating as well as the final regulation is generally done
in normal temperature which produces a rate from two to four seconds
faster than the heat extreme and it is to be expected that the pocket
rate will be slower because the temperature will be higher than
normal. This loss may not be the full amount of the middle error as
it would depend upon the actual temperature encountered for the entire
twenty-four hours and the watch may only be subjected to the pocket
temperature for a part of this period. This works in exactly the same
way in a lower temperature, as the variation is a loss in either
direction from the middle or normal temperature and in case that the
watch should be subjected to a freezing temperature at night the
result will be a loss during that period.

As an example we will assume the regulation of a watch in which the
temperature rate at the extremes of 40° and 90° Fahr. is perfect,
while at the temperature of 70° it will time four seconds fast.

Now if this watch is regulated to no variation in the normal
temperature it will be plainly seen that there will be a loss of four
seconds per day if the watch is placed in service at either of the
temperature extremes. If it had been regulated to run four seconds
fast in the middle or normal temperature it would time more nearly
correct in the pocket.

It is safe to assume that the watch will lose its proportional rate
with a lesser change in temperature and for this reason it is of
advantage to finally regulate all watches from two to four seconds
fast in the rack rather than to time them just correct.

78. _Some Practical Reasons for Slow Rates._

There are additional reasons for the suggestion of timing watches a
few seconds fast rather than just correct. Among them may be mentioned
the fact that many watches are carried in the left vest pocket, and
that in this instance they very often assume the pendant right
position which is generally a trifle slow compared to pendant up in
most watches of close adjustment. Magnetism to any extent whatever
always causes a slow rate and this will have its effect whenever the
balance, hairspring, regulator, regulator spring or pallet are
slightly effected or when the mainspring, large winding wheels or
case springs are considerably charged and experiments have shown that
in no instance has a fast rate been produced from this cause.

The gradual weakening or loss of elastic force of the hairspring is
also a factor to be considered.

There are some influences which cause a gaining rate that to some
extent may offset these losses, although in the absence of necessity
for cleaning or other repairs these influences are slight in
comparison to the natural and possible causes for a slow rate.





79. _Efficiency of Execution Analyzed (Two Examples)._

In performance of the various alterations and corrections that have
been touched upon in the chapters devoted to position adjusting there
are some points that deserve special note. This refers to positive
execution of the correction which the watchmaker sets out to make.

As an example we may analyze the simple feature of polishing a pivot
and cleaning and reoiling a jewel to improve the motion in one of the
horizontal positions. Ordinarily this would seem to be a very simple
proceeding requiring no additional remarks.

It is, however, quite possible to go through all of the operations of
removing, cleaning and reoiling the jewel and polishing the pivot and
then find that no improvement has been made in the motion.

Invariably the workman of moderate experience will say that he has
just cleaned and reoiled the jewel and polished the pivot and that it
must be all right.

Investigation, however, will sometimes show that the pivot has again
been marred or that a particle of dirt has found its way into the
jewel hole during replacement either through dust in the oil or
through clinging to the end of the pivot when the balance was laying
on the bench.

This experience is one that comes occasionally to the best and most
careful adjusters and if it is found that results have not been
obtained the first time it will be necessary to go over the operations
a second time.

It is possible to almost entirely eliminate this duplication of work
if proper care is exercised in examining the pivot and jewel with a
good glass before replacing and in using oil from a closed receptacle
in which it has not been possible for dust to collect.

The point raised in this instance is that the improvement desired is
not assured because of merely going through the operations of doing
the work.

It is necessary to actually remove the cause and then keep it removed.
The proof is found in the improved motion and it would hardly be worth
while to retest in positions until this improvement was obtained.

Proper curvature of the over coil within the range of the regulator
pins is another feature that may be corrected and the correction
unconsciously destroyed in replacing the balance or in centering the

A slight kink in the coil close to the regulator pins may cause the
spring to be forced out of center when the regulator is moved, or it
may cause the coil to lay against one pin and cease vibrating between
the pins. This would cause a gain of some seconds per day when the
regulator had actually been moved to cause a slower rate.

These two examples are introduced to convey the idea that it is
necessary to actually produce the corrections or alterations in any
instance and that close timing and close position rates depend more
upon this practical execution and understanding as displayed by the
watch repairer than they do upon a high degree of technical knowledge.

Personal instruction of watchmakers in adjusting has demonstrated in
most instances that the refinements are not considered seriously
enough at first, but that consistent practice and reference to the
rules soon make the proper impression, after which results are
attained in less time than was at first required for faulty

80. _Truing the Balance._

The balance should invariably be true in the round and flat and always
in poise before it is placed in the watch.

It is at times pardonable to pass a balance that is not perfectly true
in the round, especially when the watch has been repaired on several
occasions and it is noted that the rims have a tendency to become set
slightly inward or outward after having been perfectly trued. This
shows a natural tendency of the metals to find a permanent position
which may be slightly away from the true concentric form. A balance of
this description may be poised as it is and often will produce better
timing results than would be gained by perfect truing and subsequent
regulation during readjustment of the metals.

It is advisable to always have the flat true as by doing so any
slightly bent pivots will be detected through wavering of the balance
and the flat is not very frequently affected by setting of the metals.

Balances should generally be trued and poised in normal or slightly
above normal temperature. If they are trued in a low temperature they
will be out of true and possibly out of poise in the temperature to
which they are mostly subjected. Compensation balances are not
presumed to be true in the round under variations of temperature and
therefore inspection for true is necessary in somewhere near the same
temperature in which they are trued.

81. _Poising the Balance._

In poising balances it is necessary to consider the mean rate of the
watch and several details in connection therewith.

If the rate is known to be fast, weight should be added to the light
side, and if it is known to be slow weight may be removed from the
heavy side.

If the rims of the balance have been trued outward it is a safe rule
to remove weight from the heavy side in poising and if they have been
bent inward to get the balance true, weight should be added to the
light side in poising.

A balance that is in perfect poise can be brought to a perfect stop on
a fine jeweled poising tool at any point of its circumference. For
ordinary work it is generally considered as satisfactory if it can be
brought to a perfect stop at each of the four quarters. When the heavy
point seems to be first at one place and then just opposite it is
proof that either a pivot is bent or oval in form instead of round.

In some instances balances will be found to swing slightly and stop at
several different places. This is usually an indication that there are
several flat places on one or both pivots and if the watch is a fine
one the staff will require changing or the pivots may be rounded up on
a Jacot Lathe. A fine edge jeweled poising tool is best for fine work
as defects in pivots and variations in poise can be more easily
discovered than with calipers.

82. _Truing Hairsprings._

Original truing of the hairspring is made necessary by the fact of
attaching the collet to its center. When springs are turned out by the
manufacturer they are perfectly true, that is, the coils are level and
perfectly spiral in form and the deviation from this spiral form, made
necessary in attaching the collet, is what demands certain forming of
the inner terminal so that it will blend with the other coils of the
spring which have not been disturbed.

In attaching the collet it is first necessary to have the spring level
before the pin is forced tightly in place. This can be fairly well
determined by sighting across the flat of the spring and focusing upon
the inner coil to see that it is level for at least one half of its
length from the point of exit. After this operation has been
completed and the pin has been set up tight, with the surplus ends cut
off flush with the collet it will be necessary to slightly pull the
coil up or down, providing it is not perfectly level. The next
operation will be that of truing the round and all work and bending of
the spring for this operation is concentrated within the first quarter
of the coil from its point of attachment and it is seldom ever
necessary to make any bends beyond the first eighth of the coil from
the attached point.

Figure 28 may be of some value in gaining an idea as to just how this
inner coil should appear when it has been trued.

The broken lines illustrate a condition after colleting and before
truing. The heavy lines illustrate two positions into either of which
the coil may be formed in getting the spring true.

[Illustration: Fig. 28]

The outer black line shows the most adaptable form for most instances.
The inner black line shows the most practical form for use in
instances where there is unusual space between the collet and the
inner coil. It will be noted that these two forms blend into the true
spiral form of the spring at about one-eighth of the coil distant from
the collet. These forms may be used as a basis for truing the spring
in any instance in which it has been bent or mishandled around the
collet after its original truing.

Experts always true springs after they have been staked to the balance
and a light weight calipers tapered on one end to a smaller diameter
than the collet is used for spinning the balance, making observations,
and corrections.

Considerable progress can be made by some watchmakers in removing the
spring from the balance and placing it on a colleting tool or tapered
broach and then truing the flat and round as good as possible, after
which it should be perfected in the calipers. When the balance is
spinning in the calipers and the spring is true in the flat there will
be no jumping or quivering of the coils as observation is made across
the top of the inner four or five coils.

When it is perfectly true in the round and the balance is spinning in
one direction the coils will seem to be whirling into a hole of which
the collet is the center. When spinning the balance in the opposite
direction the effect of the coils will be similar to the waves
produced by dropping a small stone in still water and they will appear
to be whirling away from the center. This effect in both instances is
caused by the eye following the spiral form of the coils as the spring

83. _Treating a Rusty Hairspring._

When rust begins its attack upon any point of a hairspring there will
be a constant loss in time until its advance is stopped.

Should considerable headway have been made by the rust before the
watchmaker's attention is enlisted for an examination it may be
necessary to change the spring entirely before good results can again
be obtained.

There are many instances, however, in which proper care at the right
time will produce as good results as will a new spring.

The first appearance of rust is generally indicated by one or more
spots of a light brown shade and in such instances it has hardly
attacked the metal to any serious extent, although usually enough to
cause a slightly losing rate. At this stage the spots may be scraped
with a piece of peg wood after which the spring can be placed in a
small copper pan containing lard oil to a depth of about one-fourth

This pan should then be held over an alcohol lamp until the oil
becomes hot enough to smoke, after which the spring should be removed,
immersed in benzine for about thirty seconds and then dried in
sawdust. This treatment will stop further rust and the only indication
of previous rust may be a removal of the color from the spot which had
been affected.

In case that the rust has reached a stage far enough advanced to
seriously pit the metal, good results cannot be expected from the
spring even though further rusting may be prevented.

84. _Stopping by Escapement Locking When Hands are Set Backward, or
When Watch Receives a Jar._

This is sometimes a very annoying trouble and while it should not
occur on high grade watches at all, it does show up just often enough
to cause a certain degree of unpleasantness for the owner of the watch
as well as for the watchmaker.

There are two principal causes for the difficulty. One is due to the
back of discharging pallet stone having a very sharp corner combined
with a slightly rough edge on the back of the escape wheel teeth and
when the two factors meet with some slight force, such as is caused by
reversal of the train wheels the sharp corner of the stone wedges
itself into the rough surface of the tooth and holds until pulled away
by some small instrument. This can be remedied by removing the sharp
edge of the stone on a diamond charged polishing lap and a very slight
correction is sufficient.

The second principal cause is due to sharp edges on the roller jewel.
First quality roller jewels always have these edges rounded, as
otherwise they may wedge into the horn of the fork and often will not
release through ordinary shaking of the watch.

A short guard pin can also cause the trouble by allowing the roller
jewel to catch on the end of the fork horn before it enters, or the
guard pin may catch on the edge of the crescent on the safety roller,
but the two causes mentioned above will allow "hanging up" even when
the guard pin, roller jewel and all other shakes are correct.

When the above conditions are correct and all setting connections are
properly fitted, the hands may be set either forward or backward
without in any way disturbing the time. There are instances, however,
where the watch will stop when the hands are reversed and at times the
second hand will actually turn backward although the watch will
immediately begin to run as soon as the backward pressure on the hands
is discontinued.

This is caused by the cannon pinion being so tightly fitted that
turning it backward will require more force than that which is
supplied by the mainspring. A condition of this description is more
pronounced when the mainspring is nearly run down and sometimes it
will happen at such times and will not occur when the spring is fully

85. _Essentials and Non-Essentials in Cleaning Watches._

It would be difficult to suggest a best method for general cleaning of
watches. Different watchmakers have different methods and good results
are attained in more than one way. Whatever the method, however, there
are certain definite requirements that are fundamental.

Among these are the thorough cleansing of pivots, jewels, pinion
leaves, wheel teeth, mainspring and winding parts.

It is not sufficient to depend upon routine and simply dip the parts
in various solutions, brush and reassemble the watch. There are many
instances in which the oil becomes gummy and sticks to the jewels and
pivots to such an extent that peg wood and pith must be applied with
considerable energy to obtain perfectly clean surfaces and holes.

The essential feature is that of actually removing every particle of
dirt from the contact surface.

It is not essential that the plate and bridges should have a high
lustre, as this does not facilitate the running. If it is desired and
if facilities are available, the plates and bridges may be dipped in
benzine and dried in sawdust, then washed and brushed in a solution of
hot water, borax and castile soap, then rinsed in fresh water, dipped
in alcohol and dried in sawdust. This produces a lustre to the plate
bridges and wheels. When it is not convenient to use hot water the
parts may be dipped and brushed in benzine for at least one minute and
dried in sawdust, then dipped in alcohol and again dried in sawdust.
In either event thorough pegging and pithing of the jewels, pivot
holes and pivots is necessary as well as brushing and examining all
wheel teeth and pinion leaves. The steel parts should be examined and
gummy oil eliminated. Fresh oil should be applied in proper quantities
in the proper places. This requires some study, as either too much or
too little oil is detrimental.

When a watch is cleaned annually by the same workman it is not
necessary that the mainspring be removed and reoiled each time, for a
mainspring properly oiled will last for two or three years before
requiring cleaning and reoiling.

It is well known that mainsprings frequently break shortly after being
removed and cleaned and this annoyance may be avoided in many
instances by intelligent use of this rule.

Balances should not be dipped in acid solutions, as the liquid gathers
under the screws and will often cause them to discolor in a short
time. It is better to polish them with fine rouge and cotton thread
arranged on a wire bow as the lustre will be more lasting.

*** End of this Doctrine Publishing Corporation Digital Book "Rules and Practice for Adjusting Watches" ***

Doctrine Publishing Corporation provides digitized public domain materials.
Public domain books belong to the public and we are merely their custodians.
This effort is time consuming and expensive, so in order to keep providing
this resource, we have taken steps to prevent abuse by commercial parties,
including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the files We designed Doctrine Publishing
Corporation's ISYS search for use by individuals, and we request that you
use these files for personal, non-commercial purposes.

+ Refrain from automated querying Do not send automated queries of any sort
to Doctrine Publishing's system: If you are conducting research on machine
translation, optical character recognition or other areas where access to a
large amount of text is helpful, please contact us. We encourage the use of
public domain materials for these purposes and may be able to help.

+ Keep it legal -  Whatever your use, remember that you are responsible for
ensuring that what you are doing is legal. Do not assume that just because
we believe a book is in the public domain for users in the United States,
that the work is also in the public domain for users in other countries.
Whether a book is still in copyright varies from country to country, and we
can't offer guidance on whether any specific use of any specific book is
allowed. Please do not assume that a book's appearance in Doctrine Publishing
ISYS search  means it can be used in any manner anywhere in the world.
Copyright infringement liability can be quite severe.

About ISYS® Search Software
Established in 1988, ISYS Search Software is a global supplier of enterprise
search solutions for business and government.  The company's award-winning
software suite offers a broad range of search, navigation and discovery
solutions for desktop search, intranet search, SharePoint search and embedded
search applications.  ISYS has been deployed by thousands of organizations
operating in a variety of industries, including government, legal, law
enforcement, financial services, healthcare and recruitment.