Home
  By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | PDF ]

Look for this book on Amazon


We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: Buffon's Natural History, Volume II (of 10) - Containing a Theory of the Earth, a General History of - Man, of the Brute Creation, and of Vegetables, Mineral, - &c. &c
Author: Buffon, Georges Louis Leclerc de
Language: English
As this book started as an ASCII text book there are no pictures available.
Copyright Status: Not copyrighted in the United States. If you live elsewhere check the laws of your country before downloading this ebook. See comments about copyright issues at end of book.

*** Start of this Doctrine Publishing Corporation Digital Book "Buffon's Natural History, Volume II (of 10) - Containing a Theory of the Earth, a General History of - Man, of the Brute Creation, and of Vegetables, Mineral, - &c. &c" ***

This book is indexed by ISYS Web Indexing system to allow the reader find any word or number within the document.



                           _Barr's Buffon._

                                -===-

                       Buffon's Natural History.

                              CONTAINING

                        A THEORY OF THE EARTH,

                               A GENERAL

                           _HISTORY OF MAN_,

                     OF THE BRUTE CREATION, AND OF
                         VEGETABLES, MINERALS,

                              _&c._ _&c._

                           FROM THE FRENCH.

                     WITH NOTES BY THE TRANSLATOR.

                            =============

                            IN TEN VOLUMES.

                            =============

                               VOL. II.

                                -===-

                                London:

                      PRINTED FOR THE PROPRIETOR,

              SOLD AND BY H. D. SYMONDS, PATERNOSTER-ROW.

                                 ----

                                 1797.



                               CONTENTS

                                  OF

                          THE SECOND VOLUME.


                   Proof of the Theory of the Earth.

                                                            _Page_

  Article XI.    _Of Seas and Lakes_                            1

  Article XII.   _Of the Flux and Reflux_                      58

  Article XIII.  _Of the Inequalities at the Bottom of the
                   Sea, and of Currents_                       71

  Article XIV.   _Of regular Winds_                            86

  Article XV.    _Of irregular Winds, Hurricanes, and
                   other Phenomena, caused by the Agitation
                   of the Sea and Air_                        108

  Article XVI.   _Of Volcanos and Earthquakes_                133

  Article XVII.  _Of New Islands, Caverns, Perpendicular
                   Clefts, &c._                               171

  Article XVIII. _Of the Effects of Rain--of Marshes,
                   Subterraneous Wood and Water_              205

  Article XIX.   _Of the Changes of Land into Sea and Sea
                   into Land_                                 247

  _Conclusion of the Theory of the Earth_                     251


                          History of Animals.

  Chapter I.   _A comparison between Animals, Vegetables
                   and other Productions of Nature_           255

  Chapter II.  _Of Reproduction in general_                   272

  Chapter III. _Of Nutrition and Growth_                      298

  Chapter IV.  _Of the Generation of Animals_                 311

  Chapter V.   _Exposition of the Systems in Generation_      329



                               BUFFON's

                           NATURAL HISTORY.



                  _PROOF OF THE THEORY OF THE EARTH._



ARTICLE XI.

OF SEAS AND LAKES.


The ocean surrounds the earth on all sides, and penetrates into the
interior parts of different countries, often by large openings, and
frequently by small straits; it forms mediterranean seas, some of which
participate of its motions of flux and reflux, and others seem to have
nothing in common with it except the continuity of water. We shall
follow the ocean through all its extent and windings, enumerating at
the same time all the mediterranean seas, and endeavour to distinguish
them from those which should be only called bays, or gulphs, and lakes.

The sea which washes the western coasts of France forms a gulph between
Spain and Britain; this gulph, which mariners call the Bay of Biscay,
is very open, and the point which projects farthest inland is between
Bayonne and St. Sebastian; another great projection is between Rochelle
and Rochefort: this gulph begins at Cape Ortegal, and ends at Brest,
where a strait commences between the south point of Britain and Cape
Lizard. This strait, which at first is very large, forms a small gulph
in Normandy, the most projecting point of which is at Auranche; it
continues pretty broad until it comes to the channel at the foot of
Calais, where it is very narrow; afterwards it grows broader on a
sudden, and ends between the Texel and the coast of England at Norwich;
at the Texel it forms a small mediterranean sea, called _Zuyder-zee_,
and many other great canals, which are not very deep.

After that the ocean forms a great gulph called the German Ocean; it
begins at the northern point of Scotland, runs along the eastern
coast of Scotland and England as far as Norwich, from thence to the
Texel, along the coasts of Holland and Germany, Jutland, Norway, and
above Bergen. This gulph might be taken for a mediterranean sea,
because the Orkney islands partly shut up its opening, and seem
to be directed as if they were a continuation of the mountains of
Norway. It forms a large strait, which begins at the southern point
of Norway, and continues very broad to the Island of Zetland, where
it narrows all at once, and forms between the coasts of Sweden, the
islands of Denmark and Jutland, four small straits; after which it
widens to a small gulph, the most projecting point of which is at
Lubec: from thence it continues pretty broad to the southern extremity
of Sweden, when it grows broader and broader, and forms the Baltic
Sea, which is a mediterranean, extending from south to north near 300
leagues, comprehending the gulph of Bothnia, which is in fact only a
continuation of it. This sea has two more gulphs, that of Livonia,
whose most projecting point is near Mittau and Riga, and that of
Finland, which is an arm of the Baltic, extending between Livonia and
Finland to Petersburgh, and communicating with the lake Ladoga, and
even with the lake Onega, which communicates by the river Onega to the
White Sea. All this extent of water, which forms the Baltic Sea, the
gulphs of Bothnia, Finland, and Livonia, must be looked upon as one
great lake, supported by a great number of rivers which it receives,
as the Oder, the Vistula, the Niemen, the Droine, in Germany and
Poland; other rivers in Livonia and Finland; others still greater,
which come from Lapland, Tornea, the Calis, Lula, Pithea, Uma, and
many others that come from Sweden. These rivers, which are very large,
are more than 40, including the rivers they receive, which cannot fail
of producing a quantity of water sufficient to support the Baltic.
Besides, this sea has no flux nor reflux, although it is very narrow
and very salt. If we consider also the bearing of the country, and
the number of lakes and morasses in Finland and Sweden, we shall be
inclined to look on it not as a sea, but as a great lake formed by the
abundance of waters from the adjacent lands, and which has forced a
passage near Denmark into the ocean, where in fact, according to the
account of mariners, they still continue to flow.

From the beginning of the gulph which forms the German Sea, and which
terminates above Bergen, the ocean follows the coasts of Norway,
Swedish Lapland, North Lapland, and Muscovy Lapland, at the eastern
part of which it forms a large strait, which borders a mediterranean
called the White Sea, which may be likewise regarded as a great lake;
for it receives 12 or 13 rivers, all very considerable, and which
are more than sufficient to support it; its water is but a little
salt. Besides, in many parts it is very near communicating with the
Baltic Sea; it has even a real one with the gulph of Finland, for,
by ascending the river Onega, we come to a lake of the same name;
from this lake Onega there are two rivers of communication with the
lake Ladoga; this last communicates by a large arm with the gulph of
Finland; and there are many parts in Swedish Lapland, the waters of
which run almost indifferently either into the White Sea, or the gulphs
of Bothnia and Finland; and all this country being full of lakes and
morasses, the Baltic and White Seas seem to be the receptacles of its
waters, and which afterwards discharge themselves into the Frozen and
German Sea.

Quitting the White Sea, and coasting the island of Candenos and the
northern coasts of Russia, the ocean forms a small arm in the land at
the mouth of the river Petzora. This arm, which is about 40 leagues
long, by 8 or 10 broad, is rather a mass of water formed by the river
than a gulph of the sea, and also has but little saltness. The land
there forms a projecting cape, terminated by the small islands of
Maurice and of Orange; and between this promontory and the lands which
border the Strait of Waigat to the south, there is a small gulph about
30 leagues depth inland. This gulph belongs to the ocean, and is not
formed by the land waters. We afterwards meet with Waigat's Strait,
which is nearly under the 70th degree of north latitude. This strait is
not more than 8 or 10 leagues long, and communicates with the sea which
waters the northern coasts of Siberia. As this strait is shut up by the
ice the greatest part of the year, it is very difficult to get into
the sea beyond it. The passage has been attempted in vain by a great
number of navigators, and those who fortunately passed it have left
us no exact charts of that sea, which they have termed the Pacific
Ocean. All that appears by the most recent charts, and by Senex's
globe of 1739, is, that this sea might be entirely mediterranean, and
not communicating with the great sea of Tartary, for it appears to
be enclosed and bounded on the south by the country of the Samoides,
which is at present well known, and which extends from the Straits of
Waigat to the river Jenisca; on the east it is bounded by Jelmorland,
on the west by Nova Zembla; and although we are not acquainted with the
extent of this sea to the north and north-east, yet as there does not
appear any interruption of the lands, there is great probability of
its being only a mediterranean, and bounded by land on that side: what
indeed proves this is, that by leaving Waigat's Strait you may coast
Nova-Zembla all along its western and northern coasts as far as Cape
Desire; that after having past this cape, keeping along the coast to
the east of Nova Zembla, you arrive at a small gulph, which is about
the 75th country of Jelmorland was discovered in 1664, which is only a
few leagues distant from Nova Zembla, so that the only land which has
not yet been discovered is a small spot near this little gulph; and
this part is perhaps not thirty leagues long; so that if the Pacific
Sea communicated with the ocean it must be at this little gulph, which
is the only way by which they can join; and as this small gulph is
in the 75th degree, even if the communication should exist, we must
always keep five degrees towards the north to gain the great sea. It
is evident, therefore, that if we would acquire the northern route to
China, it would be much better to pass by the north of Nova Zembla, at
the 77th or 78th degree, where the sea is more open, and has less ice,
than to attempt the road through the icy strait of Waigat, with the
uncertainty of getting out of this sea, which there is so much reason
to believe mediterranean.

By following, therefore, the ocean along the coasts of Nova Zembla
and Jelmorland, these lands are discoverable as far as the mouth of
Chotanga, which is about the 73d degree, beyond which there is an
unknown coast of about 200 leagues: we have only an account of them
from the Muscovites, who have travelled by land into those climates;
they state the country to be uninterrupted, have marked out the rivers
in their charts, and called the people _populi palati_. This interval
of coasts, still unknown, extends from the mouth of Chotanga to that of
Kauvoina, in the 66th degree of latitude; the ocean there forms a bay,
whose most projecting point in land is at the mouth of the Len, which
is a very considerable river. This bay is very open, belongs to the
Tartarian sea, and is called the Linchidolin, where the Muscovites have
a whale fishery.

From the mouth of the Len we may follow the coasts of Tartary more
than 500 leagues towards the east, to a peninsula inhabited by the
Schelates. This is the most northern extremity of Tartary, and is
situate about the 72d degree of latitude. In this 500 leagues the
ocean makes no interruption by bays nor arms, only a considerable
elbow from the peninsula of the Schelates to the mouth of the river
Korvinea. This point of land also forms the eastern extremity of the
old continent, and whose western is at Cape North in Lapland; so that
the old continent has about 1700 leagues northern coasts, comprehending
the sinuosities of the bays, from Cape North in Lapland to the farthest
point of land belonging to the Schelates, and about 1100 leagues in a
straight line.

Let us now take a view of the eastern coasts of the old continent,
beginning at the farthest point of land which the Schelates inhabit,
and descending towards the equator. The ocean at first forms an elbow
between the country of the Schelates, and the land inhabited by the
people called Tschutschi, which projects a considerable way into the
sea. To the south of this island it forms a small bay, called the Bay
of Suctoikret, and afterwards another smaller bay, which projects like
an arm 40 or 50 miles into Kamtschatka; the ocean then enters into
the land by a long strait, filled with many small Islands between the
southern point of Kamtschatka and the northern point of Jesso, and
forms a great mediterranean, which it is proper we should now trace
throughout. The first is the sea of Kamtschatka, in which is a very
considerable island, called Amour, or Love Island. This sea has an arm
to the north-east; but this arm, and the sea of Kamtschatka itself,
might possibly be, at least in part, formed by the rivers, which run
therein, from the lands of Kamtschatka and from Tartary. Be this as it
will, the sea of Kamtschatka communicates with the sea of Corea, which
makes the second part of this mediterranean; and all this sea, which
is more than 600 leagues in length, is bounded upon the west and north
by Corea and Tartary, and on the east and south by Kamtschatka, Jesso,
and Japan, without having any other communication with the ocean than
that of the fore-mentioned strait, for it is not certain whether that
which is set down in some maps between Japan and Jesso really exists;
and even if this strait does exist, the sea of Kamtschatka and Corea
will still be regarded as forming a great mediterranean, divided from
the ocean on every side, and could not be taken for a bay, for it has
no direct communication with the ocean by its southern strait, but with
the sea of China, which is rather a mediterranean than a gulph of the
ocean.

It has been observed in the preceding article, that the sea has a
constant motion from east to west; and that consequently the great
Pacific Sea made continual efforts against the eastern countries;
an attentive inspection of the globe will confirm the consequences
which we have drawn from this observation; for from Kamtschatka to
New Britain, discovered in 1700 by Dampier, and which is the 4th or
5th degree in the south latitude, the ocean appears to have washed
away part of the land on these coasts for upwards of 400 leagues, and
consequently the eastern bounds of the old continent formerly extended
much farther than at present; for it is remarkable, that New Britain
and Kamtschatka, which are the most projecting lands towards the east,
are under the same meridian. All countries have their greatest extent
from north to south. Kamtschatka reaches at least 160 leagues from
north to south, and that point which is washed by the Pacific Sea on
the east, and on the other by the mediterranean sea above mentioned, is
divided in the direction, from north to south by a chain of mountains.

After these the lands of Jesso and Japan form another extent of
land, whose direction is also north and south, extending upwards of
400 leagues, between the Great Sea and that of Corea. The chain of
mountains of Jesso, and of Japan, cannot fail of being directed from
north to south, since these lands, which are 400 leagues in this
direction, are not more than 50 or 60 from east to west. Therefore
the lands of Kamtschatka, Jesso, and the eastern part of Japan, must
be regarded as contiguous, and directed from north to south. Still
pursuing the same direction, after having passed Cape Ava at Japan,
we meet with the island of Barnevelt, and three other islands, which
are placed in the direction of north and south, and extend about 100
leagues. We afterwards meet with three other islands, called the
islands of Callanos, then the Ladrones, which are fourteen or fifteen
in number, all placed in the same direction from north to south,
and all together occupying a space of more than 300 leagues in this
direction, by so trifling a breadth, that its greatest does not exceed
seven or eight leagues from east to west. It therefore appears to me
that Kamtschatka, Jesso, eastern Japan, the islands of Barnevelt, the
Callanos, and the Ladrones, are only the same chain of mountains, and
the remains of an old country, which the ocean has at one time covered
and gradually retired from. All these countries in fact appear to be
only mountains, and the islands to be their points or peaks, while
the low lands are covered with the ocean. What is related in Lettres
Edifiantes, appears, to be true, and that in fact a quantity of islands
have been discovered, called the new Philippine Islands, and that their
position is really such as is given by Father Gobien; and it cannot be
doubted but that the most eastern of these islands are a continuation
of the chain of mountains which forms the Ladrones, for these eleven
eastern islands are all placed in the same direction from north to
south, occupying a space of more than 200 leagues in length, the
broadest of which is not more than 7 or 8 leagues from east to west.

But if these conjectures are thought too presumptuous, on account of
the great intervals between the islands bordering on Cape Ava, Japan,
and the Callanos, and between these islands and the Ladrones, and
between the Ladrones and the new Philippines, the first of which is
in fact about 160 leagues, the second 50 or 60, and the third near
120, I shall answer that the chains of mountains often extend much
farther under the waters of the sea, and that these intervals are
small in comparison of the extent of land which these mountains in
the above direction present, which is 1100 leagues, computing them
from the interior part of Kamtschatka. In short, if we wholly reject
this idea, as to the quantity of land the ocean must have gained on
the eastern coasts of the continent, and on that suit of mountains,
still it must be allowed that Kamtschatka, Jesso, Japan, the islands
Bonga, Tanaxima, those of Great Lequeo, King's Island, Formosa, Vaif,
Basha, Babuyane, Lucca, Mindano, Gilolo, &c. and lastly, Guinea,
which extends to New Britain, and is situate under the same meridian
as Kamtschatka, do not form a continuation of land of more than 2200
leagues, interrupted only by small intervals, the greatest of which
perhaps is not more than 20 leagues, so that the ocean has formed in
the lands of the eastern continent a great bay, which commences at
Kamtschatka and ends at New Britain. This bay is interspersed with many
islands, and has every appearance of having been gained from the land,
consequently we may suppose, with some probability, that the ocean, by
its constant motion from east to west, has by degrees acquired this
extent on the eastern continent, and has formed mediterraneans, such
as Kamtschatka, Corea, China, and perhaps all the Archipelago; for the
earth and sea are there so blended that it evidently appears to be an
inundated country, of which we only see the eminences and high lands,
while the lower are hid under the waters of the ocean. This supposition
appears to be in some measure confirmed by the water being more shallow
than in other seas, and the innumerable islands resembling the tops of
mountains.

If we particularly examine these seas, we shall find the sea of China
forms a very deep bay in its northern part, which commences at the
island of Fungma, and terminates at the frontier of the province of
Pekin, about 50 leagues distance from that capital of the Chinese
empire. This bay, in its most interior and narrowest part, is called
the Gulph of Changi. It is very probable that this gulph, and a part of
the sea of China, have been formed by the ocean, which has submerged
all the ancient country, of which only the islands before-mentioned
are now to be seen. In this southern part are the bays of Tonquin and
Siam, near which is the peninsula of Malacco, formed by a long chain
of mountains, whose direction is from north to south, and the Andaman
islands, another chain of mountains in the same direction, and which
appear to be only a succession of the mountains of Sumatra.

The ocean afterwards forms the great Gulph of Bengal, in which we may
remark, that the peninsula of Indus forms a concave curb towards the
east, nearly like the great bay of the eastern continent, which seems
to have been also produced by the same motion of the ocean from east
to west. In this peninsula are the mountains of Gates, which have a
direction from north to south, as far as Cape Comorin, and the Island
of Ceylon seems to have been separated from this part of the continent.
The Maldiva islands are only another chain of mountains, whose
direction is also the same. After these follows the Arabian Gulph,
which sends out four arms into the country; the two greatest on the
western side, and the two smallest on the east. The first of these arms
on the east side is the Bay of Cambaia, which is not above 50 or 60
leagues in length: this receives two very considerable rivers, viz. the
Tapti and the Baroche, which Pietro de Valle calls the Mehi: the second
arm, towards the east, is famous for the velocity and height of its
tides, which are greater than in any other part of the world, and which
extends for more than 50 leagues. Many rivers fall into this gulph, as
the Indus, the Padar, &c. which have brought so great a quantity of
earth and mud to their mouths as to raise the bottom almost to a level,
the inclination of which is so gentle, that the tide extends to a very
great distance. The first arm on the west side in the Persian Gulph,
which spreads more than 250 leagues on the land; and the second is the
Red Sea, which extends more than 680, computing it from the island
Socotora. These two arms should be regarded as two mediterranean seas,
taking them from beyond the straits of Ormuz and Babelmandel: they
are both subject to the tides, but this is occasioned by their being
so near the equator, where the motion of the tides is much greater
than in any other climate; and besides they are both very long and
narrow. The motion of the tides is more rapid in the Red Sea than in
the Persian Gulph, because the Red Sea is near three times longer and
quite as narrow. The Red Sea does not receive any river whose motion
might oppose the tides, whereas the Persian Gulph receives three very
considerable ones in its most projecting extremity. It appears very
apparently that the Red Sea has been formed by an eruption of the
ocean, for the bearing of the lands are exactly similar, the coasts
on each side of the straits follow the same direction,, and evidently
appear to have been cut by waters.

At the extremity of the Red Sea is that famous neck of land called the
Isthmus of Suez, which forms a barrier to the Red Sea, and prevents
its communication with the Mediterranean. In a preceding article we
noticed the reasons which inclined us to think that the Red Sea is
higher than the Mediterranean, and that if the Isthmus of Suez was
cut, an inundation and an augmentation of the latter might ensue. To
which we shall subjoin, that if even it should not be agreed that the
Red Sea is higher than the Mediterranean, it cannot be denied that
there is neither flux nor reflux in the Mediterranean, adjoining to
the mouths of the Nile; and that, on the contrary, in the Red Sea the
tides are very considerable, and raise the water several feet, which
circumstance alone would suffice to send a quantity of water into the
Mediterranean if the Isthmus was broken. Besides, we have an example on
this subject quoted by Varenius, who says in page 100 of his Geography:
"Oceanus Germanicus, qui est Atlantici pars, inter Frisiam & Hollandium
se effundens, efficit sinum, qui et si parvis sit respectu celebrium
sinum maris, tamen & ipse dicitur mare, alluitque Hollandiæ emporium
celeberrimum, Amstelodamum. Non procul inde abest lacus Harlemensis,
qui etiam mare Harlemense dicitur. Hujus altitudo non est minor
altitudine sinus illius Belgici, quem diximus & mittit ramum ad urbem
Leidam, ubi in varias fossas divaricatur. Quoniam itaque nec lacus
his, neque sinus ille Hollandici maris inundant adjacentes agros (de
naturali constitutione loquor, non ubi tempestatibus urgentur, propter
quas aggeres facti sunt) pater inde, quod non sint altiores quam agri
Hollandiæ. At vero Oceanum Germanicum esse altiorem quam terras hasce,
experti sunt Leidenses, cum suscepissent fossam seu alveum ex urbe sua
ad Oceani Germanici littora, prope Cattorum vicum perducere (distantia
est duorum milliarum) ut, recepto per alveum hunc mari, possent
navigationem instituere in Oceanum Germanicum, & hinc in varias terræ
regiones. Verumenimvero cum magnam jam alvei port em perfecissent,
desistere coacti sunt, quoniam turn demum per observationem cognitem
est, Oceani Germanici aquam esse altiorem quam agrum inter Leidam et
litus Oceani istius; unde locus ille, ubi fodere desierunt dicitur,
_Het malle Gat_. Oceanus itaque Germanicus est aliquantum altior quam
sinus ille Hollandicus, &c." Therefore, as the German Sea is higher
than that of Holland, there is no reason why we should not believe the
Red Sea may be higher than the Mediterranean. Herodotus and Diodorus
Siculus speak of a canal of communication between the Nile, the
Mediterranean, and the Red Sea, and M. Del'isle published a map in
1704, in which he traces one end of a canal to the most eastern part
of the Nile, and which he judges to be a part of that which formerly
joined the Nile with the Red Sea.[A]

[A] See Mem. de l'Acad. Sciences, 1734.

In the third part of a book entitled, "Connoisance de l'Ancien Monde,
or the Knowledge of the Old World," printed in 1707, we meet with the
like sentiment; and it is there said, from Diodorus Siculus, that it
was Neco, King of Egypt, who began this canal, that Darius, King of
Persia, continued it, and that it was finished by Ptolemy II. who
conducted it as far as the city Arsinoe, and that it could be opened
and shut when they found it needful. Without desiring to deny these
circumstances, I must own, that to me they appear doubtful. I do not
know whether the violence and height of the tide in the Red Sea, would
not be necessarily communicated to this canal; it appears to me, at
least, that it would have required great precautions to confine the
waters, to avoid inundations and to preserve this canal in good repair.
Though historians assert that this canal was undertaken and finished,
yet they do not tell us the length of its duration; and the remains
which are pretended to be even now perceptible, are perhaps all that
was ever done of it. The name of the Red Sea has been given to this arm
of the ocean, because it has the appearance of that colour in every
part where corals, or madrepores, are met with at the bottom. In the
Histoire General des Voyages, vol. i. pages 198 and 199, it is said,
"Before he quitted the Red Sea, D. Jean examined what might have been
the reason why that name was given to it by the ancients, and if, in
fact, this sea differed from others in its colour. He knew that Pliny
had given several opinions on the origin of this name. Some derived it
from a King named Erythros, who reigned in those parts, and which, in
the Greek language, signifies red. Others imagined that the reflection
of the sun produces a reddish colour on the surface of the water, and
others that the water was naturally red. The Portuguese, who had made
several voyages to the entrance of the straits, asserted that all the
coasts of Arabia were very red, and that the sand and dust which the
wind carries into the sea, tinged the water of the same colour.

"D. Jean, who examined the nature of the water, and the qualities of
the coasts as far as Suez, asserts, that far from being naturally red,
the water is of the same colour as in other seas, and that the sand and
the dust having nothing red in themselves could not give this tinge to
the water. The earth of both countries, he says, is generally brown;
it is even black in some places, and in others white. On the coasts
of Suaquem, where the Portuguese had not penetrated, he saw three
mountains streaked with red, but they were of a very hard rock, and the
neighbouring country was of the common colour.

"The truth is, that this sea is throughout of an uniform colour, which
is easy to be demonstrated; but it must also be owned, that in some
parts it appears to be red through chance, and in others green and
white; the explanation of which phenomena is as follows: From Suaquem
to Kossir, that is, for the space of 136 leagues, the sea is filled
with shoals and rocks of coral; this name is given to them, by reason
that their form and colour render them so extremely like coral, that
it requires great circumspection not to be deceived. There are two
sorts of them, the one white and the other red; in many parts they
are covered with a kind of gum, or glue, of a green, and in others
with a deep orange. Now the water of this sea is so transparent that
the bottom may be seen at 20 fathoms deep, especially from Suaquem to
the extremity of the gulph; it appears, therefore, to take the colour
of the matters it covers; as for example, when the rocks are covered
with a green gum, the water above appears of a deeper green than the
rocks themselves; and when the bottom is only sand, the water appears
white: so likewise when the rocks are coral, the water seems to be
tinged with red; and as these last coloured rocks are more frequently
met with there than any other, D. Jean concludes, that the name of the
Red Sea was affixed to the Arabian Gulph in preference to the Green
or White. He applauds himself on this discovery, because the method
by which he ascertained it left him no room for doubt. He caused a
float to be moored against the rocks in the parts which were not deep
enough to permit vessels to approach them, and the sailors could often
execute his orders with facility, without the sea being higher than the
stomach at more than half a league from the rocks. The greatest part
of the stones and pebbles they drew up, in those parts where the water
appeared red, was also of that colour: in the water which appeared
green, the stones were green, and if the water appeared white, the
bottom was white sand, without any other mixture."

The direction of the coast of the Red Sea, from Cape Gordafu to the
Cape of Good Hope, is pretty equal; in the course of which there are
no bays, excepting an arm on the coast of Melinda, that might be
supposed as belonging to a large one provided the island of Madagascar
joined the continent, which most probably was formerly the case,
notwithstanding it is now divided by the straits of Mosambique. The
coast bears the same direction from the Cape of Good Hope to Cape Negro
on the west side of Africa; it has the appearance of being a chain of
high mountains, extends about 500 leagues, but contains scarcely any
rivers of importance. Beyond Cape Negro however the land is much lower,
and is supplied by several considerable rivers beside the Coanza and
the Zaire; and between that and Cape Gonsalvez, which is computed to
be about 420 leagues, there are the mouths of no less than twenty-four
large rivers; from this last Cape to Cape Trois-pointes it is an open
bay, in about the centre of which is a considerable projection called
Cape Formosa. On the southern side are the islands Fernanda, St.
Thomas, and the Prince's Island, and which there is reason to suspect
are part of a chain of mountains from Rio del Rey to the river Jamoer.
The water turns somewhat into the land between Cape Trois-pointes
to Cape Palmas, from the latter of which it is an open sea to Cape
Tangrin; beyond this Cape there is a small bay towards Sierra Leona,
and another in which are the islands of Bisagas. We then come to a
considerable projection into the ocean called Cape Verd; of which the
islands of that name are supposed to be a continuation, although it
is more probable they are so of Cape Blanc, which is both higher and
extends farther into the sea. From Cape Blanc to Cape Bajador is a
mountainous and hard coast to which the Canary Islands seem to belong.

Turning from Africa we find an open bay extending to Portugal, and in
about the centre of which are the straits of Gibraltar, through which
the water runs with great rapidity into the Mediterranean, which
flows almost 900 leagues into the interior part of land, and is the
cause of many curious circumstances; 1st, it has no tides, at least
that are visible, excepting in the Gulph of Venice and what are almost
imperceptible at Marseilles and at Tripoli; 2dly, it surrounds a number
of extensive islands, for instance, Sardinia, Sicily, Corsica, Cyprus,
Majorca, and Italy, which is the largest known. It has also a fertile
Archipelago; indeed it is from the Mediterranean Archipelago, that all
collections of islands have been so denominated; this indeed has the
appearance of belonging more to the Black Sea than the Mediterranean;
nor is it in the least unlikely that Greece was at one time covered
with the waters of the Black Sea, which empties itself into the
Marmora, and from thence finds its way into the Mediterranean.

Some have asserted there was a double current in the Straits of
Gibraltar, the one superior, which carries the water of the ocean into
the Mediterranean, and the other inferior, which carries them in the
contrary direction; but this opinion is evidently false, and contrary
to the laws of hydrostatics: it has likewise been asserted to be the
case in many other places, as in the Bosphorus, the strait of Sund, &c.
and Marsilli relates even experiments made in the Bosphorus, to prove
the truth of these opposite currents; but the experiments must have
been badly made, since the matter is totally repugnant to the nature
and motions of the waters; besides Greaves in his Pyramidography,
page 101 and 102, proves, by able experiments, that there is no such
thing as a current in the Bosphorus, whose direction is opposite to
the superior: what may have deceived Marsilli and others, is possibly
the circumstance, that in the Bosphorus, the Straits of Gibraltar, and
in all rivers which flow with rapidity, there is a considerable eddy
along the shores, the direction of which is generally contrary to the
principal current of the waters.

Let us now shortly trace all the coasts of the new continent. Cape
Hold-with-Hope, lying in the 73d degree north latitude, is the most
northern land we are acquainted with in New Greenland, and is not above
160 or 180 leagues distant from Cape North in Lapland. From this cape
we may follow the coast of Greenland as far as the polar circle, where
the ocean forms a broad strait between Iceland and Greenland. It is
pretended that this country, adjacent to Iceland, is not the ancient
Greenland which the Danes formerly possessed as a province dependant
on their kingdom; for in that there were civilized Christians, who
had bishops, churches, and several towns wherein they carried on
their commerce. The Danes also visited it frequently, and as easily
as the Spaniards can go to the Canaries: there still exists, as it is
asserted, laws and ordinances for the government of this province, and
those not very ancient: nevertheless, without attempting to divine how
this country became absolutely lost, it is certain not the least trace
of what we have related is to be met with in New Greenland. The people
are wild and savage; there is no vestiges of any edifice; nor have
they a word in their language which has an affinity with the Danish;
in short, there is nothing which might give us room to judge that
this is the same country. It is even almost a desert, and surrounded
with ice for the greatest part of the year. But as these lands are of
a vast extent, and as the coasts have been but little frequented by
modern navigators, they may have missed the spot where the descendants
of these polished people inhabit; or the ice having become more
abundant in this sea, may prevent any approach to the shore near them:
nevertheless, if we can rely on maps, this whole country has been
coasted, and according to them it forms nearly a peninsula, and at the
extremity of which are the two straits of Forbishers and of Friesland,
where it is extremely cold, although they are not higher than the
Orkneys, that is, at 60 degrees.

Between the west coast of Greenland and that of Labrador, the ocean
forms a gulph, and afterwards a large mediterranean, which is the
coldest of all seas, and the coasts of which are pot perfectly known.
By following this tract due north, we come to Davis's Strait, which
leads to the Christian Sea, and is terminated by Baffin's Bay, which
has the appearance of forming a kind of road into Hudson's Bay.
Cumberland Strait, which as well as Davis's may lead to the Christian
Sea, is narrower and more liable to be frozen: that of Hudson,
though much more to the south, is also frozen during one part of the
year. A very strong motion of the tide has been remarked in these
straits, which is quite contrary to what is the case in the inland
seas of Europe, as neither the Baltic nor Mediterranean have any;
this difference seems to arise from the sea's motion, which always
moving from east to west, occasions high, tides in the Straits, whose
openings are turned towards the east; whereas in those of Europe, which
open to the west, there is no motion; the ocean by its general motion
enters into the first, and avoids the last; and this is the reason
that there are such violent tides in the seas of China, Corea, and
Kamtschatka.

Proceeding from Hudson's Strait towards Labrador, we come to a narrow
opening, in which Davis, in 1586, sailed as far up as 30 leagues,
and trafficked with the inhabitants, but no one has since attempted
a discovery of this arm of the sea, and we are only acquainted with
the country of the Esquimaux of all the adjacent land. The fort Pon
Chartrin is the only and the most northern habitation of this country,
which is separated from the island of Newfoundland by the little strait
of Belleisle, which is not much frequented. As the eastern coast of
Newfoundland is in the same direction as the coast of Labrador, we must
regard the latter as a part of the continent, the same as Isle-royal
appears to have been a part of Arcadia. There is no very considerable
depth either on the great or other banks, where they fish for the cod;
but as they slant for a distance under water, very violent currents are
produced. Between Cape Breton and Newfoundland is a very broad Strait,
by which we enter a small mediterranean, called the Gulph of St.
Lawrence. This sea has an arm which extends far into the country, and
seems to be only the mouth of the river St. Lawrence. The motion of the
tides is extremely plain in this arm of the sea, and even at Quebec,
which projects more into the country, the waters rise several feet.
On quitting the Gulph of Canada, and following the coast of Arcadia,
we meet with a small gulph called Boston-Bay, which forms a small
square inlet into the land. But before we trace this coast farther,
it is just to remark, that from Newfoundland to the most projecting
Antille island, even to Guiana, the ocean forms a very great bay, which
reaches as far as Florida, at least 500 leagues. This bay of the new
continent is similar to that of the old, of which we have taken notice,
where the ocean, after having made a gulph between Kamtschatka and New
Britain, afterwards forms a vast mediterranean, which comprehends the
seas of Kamtschatka, Corea, China, &c. so that in the new continent
the ocean, after having formed a great gulph between Newfoundland and
Guiana, forms a very large mediterranean, extending from the Antilles
to Mexico, which confirms our observations on the motion of the sea
from east to west, for it appears that the ocean has equally gained on
the eastern coasts of America and Asia. These great gulphs in the two
continents are under the same degrees of latitude, and nearly of the
same extent.

If we examine the position of the Antilles, beginning at Trinidad,
which is the most south, we cannot doubt but that Tobago, Trinidad,
the Grenades, St. Vincent, Martinico, Mary Galante, Antigua, and
Barbadoes, with every other island adjacent, at one time formed a chain
of mountains, whose direction was from south to north, like that of the
island of Newfoundland, and the country of the Esquimaux; afterwards
the direction of the Antilles is from east to west, beginning at
Barbadoes, then passing by St. Bartholomew, Porto Rico, St. Domingo,
and Cuba, and nearly the same as Cape Breton, Acadia, and New England.
All these islands are so adjacent to each other, that they may be
looked upon as an interrupted tract of land, and as the summit of an
overflown country now possessed by the sea. Most of them in fact are
only points of mountains, and the sea which surrounds them is a real
mediterranean where the motion of the flux and reflux is scarcely
more sensible than in our Mediterranean, although the openings they
present to the ocean are directly opposite to the motion of the waters
from east to west, which must contribute to elevate the tides in the
gulph of Mexico; but as this sea is very broad, the flux and reflux
communicated to it by the ocean, dispersing over so large a space,
becomes almost insensible at the coast of Louisiana, and many other
places.

The old and new continent appear, therefore, both to have been
encroached upon by the ocean in the same latitudes. Both have a vast
mediterranean and a great number of islands, which are situated nearly
in the same latitudes; the only difference is, that the old continent
being much broader than the new, there is in the western part of it a
mediterranean, of which nothing similar can be found in the new; but
it appears that all which has happened to the eastern countries of the
old world has also happened to the eastern part of the new, and that
the greatest revolutions are nearly in the middle and towards their
equators, where the most violent motion of the ocean is made.

The coasts of Guiana, comprehended between the mouth of the river
Oroonoko and the Amazones, presents nothing remarkable, but the latter,
which is the broadest in the universe, forms a considerable extent of
water near Coropa, before it arrives at the sea, by the two different
mouths which surround the island of Caviana. From the mouth of the
Amazones to Cape St. Roche, the coast runs almost straight east; from
Cape St. Roche to St. Augustine it runs south, and from Cape St.
Augustine to the Bay of All Saints it turns towards the west, so that
this part of Brazil forms a considerable projection in the sea, which
directly faces a like projection of land in Africa. The Bay of All
Saints is a small arm of the ocean, running about 50 leagues into the
land, and is much frequented by navigators. From this bay to Cape St.
Thomas the coast runs direct south, and afterwards in a south-west
direction as far as the mouth of the Plata, where the sea forms an arm
projecting nearly 100 leagues into land. From thence to the extremity
of America, the ocean forms a great gulph, terminated by the adjacent
lands of Terra del Fuega, as Falkland Island, Cape Assumption, and the
land discovered in 1671. At the bottom of this bay is the Straits of
Magellan, which is the longest in the world, and where the tides flow
extremely high. Beyond Magellan is that of La Maire, which is shorter,
and at last Cape Horn, which is the south point of America.

We must remark on the subject of these points that they all face the
south, and most of them cut by straits which run from east to west;
the first is that of South America, which faces the southern pole,
and is cut by the Strait of Magellan; the second, that of Greenland,
which also directly faces the south, and is also cut from east to west
by Forbisher's Strait; the third that of Africa, which also faces the
south; and beyond the Cape of Good Hope are banks and shoals, that
appear to have been divided from it; the fourth, the peninsula of
India, which is cut by a strait that forms the island of Ceylon, and
facing the south like all the rest. Hitherto we perceive no reason to
be given for this similarity, and can only remark such are the facts.

From Terra del Fuega, all along the western coast of South America,
the ocean very considerably penetrates into the land; and this coast
seems exactly to follow the direction of the lofty mountains which
cross all South America, from south to north, from the equator to the
Arctic Pole. Near the equator the ocean forms a considerable gulph,
beginning at Cape St. Francois, and reaching as far as Panama, the
famous isthmus, which, like that of Suez, prevents the communication
of the two seas, and without which there would be an entire separation
of the old and new continents. From thence to California there is
nothing remarkable. Between the latter and New Mexico an arm branches
off, called Vermilion Sea, at least 200 leagues in length. In short,
the western coasts of California have been followed to the 43d degree,
at which latitude Drake, who was the first that made the discovery of
the land to the north of California, and who called it New Albion,
was obliged, through excessive cold, to change his course, and to
anchor in a small bay which bears his name, so that these countries
have not been discovered beyond the 43d and 44th degree, any more than
the lands pf North America beyond Moozemlaki under the 48th degree,
and the Assiniboils under the 51st. The country of the first savages
extends much more to the west than the east. All beyond, throughout an
extent of more than 1000 leagues in length, and as many in breadth,
is unknown, excepting what the Russians pretend to have discovered in
their excursions from Kamtschatka to the eastern part of North America.

The ocean, therefore, surrounds the whole earth without any
interruption, and the tour of the globe may be made from the south
point of America; but it is not yet known whether the ocean surrounds
the northern part of the globe in the like manner; and all mariners
who have attempted to go from Europe to China by the north-east of
north-west have alike miscarried in their enterprises.

The lakes differ from the mediterraneans; the first do not receive
any water from the ocean; on the contrary, if they have communication
with the seas, they furnish them with water. Thus the Black Sea, which
some geographers have regarded as an arm of the Mediterranean, and
consequently as an appendix of the ocean, is only a lake, because,
in place of receiving water from the Mediterranean, it supplies it
with some, and flows with rapidity through the Bosphorus into the lake
called the Sea of Marmora, and from thence through the Strait of the
Dardanelles into the Grecian Sea. The Black Sea is about 250 leagues
long by 100 broad, and it receives a great number of rivers, as the
Danube, the Nieper, the Don, the Boh, the Donjec, &c. The Don, which
unites with the Donjec, forms, before it arrives at the Black Sea, a
lake, called the Palus Meotis, which is more than 100 leagues in length
by 20 or 25 broad. The sea of Marmora, which is below the Black Sea, is
a smaller lake than the Palus Meotis, being not more than 50 leagues
long and 8 or 9 broad.

Some ancients, and among the rest Diodorus Siculus, have asserted that
the Euxine, or Black Sea, was formerly only a large river or lake,
and had no communication with the Grecian sea; but being considerably
increased with time by the rivers which fell into it, the waters
forced a passage at first on the side of the Cyanean islands, and
afterwards on the side of the Hellespont. This opinion appears to be
very probable, and the operation is easily explained; for supposing the
bottom of the Black Sea was formerly lower than it is at present, then
the rivers which come into it would have raised it by the mud and sand
which they brought with them, until the surface of the water became
higher than the land, when consequently it would have forced a passage
for itself, and as the rivers still continue to bring sand and earth,
and at the same time the quantity of water diminishes in the rivers,
in proportion as the mountains from which they drew their sources are
lowered, it may happen in a course of years that the Bosphorus will
be again filled up; but as these effects depend on many causes, it is
scarcely possible to give more than mere conjectures thereon. From this
testimony of the ancients, Mr. Tournefort, in his voyage to the Levant,
says, on ancient authority, that the Black Sea receiving the waters of
a great part of Europe and Asia, after being considerably increased,
opened itself a passage by the Bosphorus, and afterwards formed the
Mediterranean, or so considerably augmented it, that it became a great
sea, and forced itself a road through the strait of Gibraltar, by which
the island of Atlantis, mentioned by Plato, was entirely overflowed.
This opinion has no foundation, since we are certain that it is the
ocean which flows into the Mediterranean, and not the Mediterranean
into the ocean. Besides, M. Tournefort has not combined two essential
facts, both of which he mentions: the first is, that the Black Sea
receives nine or ten rivers, not one of which but supplies it with more
than the Bosphorus throws out: and the second, that the Mediterranean
does not receive more water from rivers than the Black Sea, although it
is seven or eight times larger, and that what the Bosphorus supplies
it with does not make the tenth part of what falls into the Black Sea;
how then could this tenth part of what falls into a small sea have
formed not only a larger sea, but have also so greatly increased the
waters, as to have broken down the lands at the strait of Gibraltar,
and overflow an island larger than the whole of Europe? It is easy to
perceive that this passage of M. Tournefort has not had due reflection.
The Mediterranean receives at least ten times more water from the ocean
than from the Black Sea, because the Bosphorus is only 800 feet broad
in its narrowest part, whereas the strait of Gibraltar is more than
5000, and that, even supposing their velocity to be equal, still the
depth of the straits of Gibraltar is by far the greatest.

M. de Tournefort, who ridicules Polybius on his predicting that the
Bosphorus would be filled up in time, did not pay sufficient attention
to circumstances, when he asserted that event to be impossible. This
sea receives eight or ten great rivers, and as most of them bring sand
and mud, must it not gradually be choaked up? Must not the winds and
the natural current of the waters towards the Bosphorus, convey thither
a part of these matters? It is, therefore, very probable that in a
course of time the Bosphorus will be filled, when the waters of the
rivers which come into the Black Sea shall be gradually diminished;
now all rivers daily diminish, because the vapours collected by the
mountains being the first sources of rivers, their quantity must
decrease as the mountains diminish in height.

The Black Sea in fact receives more water from rivers than the
Mediterranean, and the same author observes, "the greatest rivers in
Europe fall into the Black Sea, by means of the Danube, in which the
rivers of Suabia, Franconia, Bavaria, Austria, Hungary, Moravia,
Corinthia, Croatia, Bothnia, Servia, Transilvania, Wallachia, empty
themselves; those of Black Russia and Podolia, go into the same sea
by the Niester; those of the southern and eastern parts of Poland, of
the northern parts of Muscovy, and the country of the Cossacks, enter
therein by the Neiper or the Boristhenes; the Tanais and Copa also fall
into the Black Sea by the Cimmerian Bosphorus; the rivers of Mingrelia,
of which Phasis is the principal, also voids itself into the Black Sea,
as does the Casalmac, the Sangaris, and other rivers of Asia Minor
which have their course towards the north; nevertheless the Thracian
Bosphorus, which is the only outlet from it, is not comparable to any
of these great rivers."

These facts prove, that evaporation alone carries off a very
considerable quantity of water, and it is from this great evaporation
from the Mediterranean that the ocean continually flows thither through
the straits of Gibraltar. It is difficult to estimate the quantity
of water any sea receives; we should be acquainted with the breadth,
depth, and rapidity of all the rivers which enter therein, how much
they increase and diminish in the different seasons of the year, and
how much it loses by evaporation; the last of which is most difficult;
for even supposing it proportional to the surfaces, it must be more
considerable in a hot than in a cold climate; besides, water mixed with
salt and bitumen, evaporates more slowly than fresh water; a troubled
sea more quickly than one that is tranquil; and the difference of depth
has also some effect: in short, so many circumstances enter into this
theory of evaporation that it is scarcely possible to calculate any
exact estimations on it.

The water of the Black Sea appears to be less clear and less saline
than that of the ocean. There are no islands in it, and its tempests
are more violent and more dangerous than in the ocean, because the
whole body of its waters being contained in a bason, which has but a
small outlet, when they are agitated, they have a kind of whirling
motion which strikes the vessels on every side with an insupportable
violence.

Next to the Black Sea the greatest lake in the universe is the Caspian
Sea, whose extent in length from north to south is about 300 leagues,
and scarcely more than fifty broad. This lake receives the Wolga and
some other considerable rivers, as the Kur, the Faie, and the Gempo;
but what is singular, it does not receive any on its eastern side; the
country on that side being only a desert of sand almost unknown. Czar
Peter I. sent some engineers there to design a chart of the Caspian
Sea, who discovered that its figure was quite different from that given
by former geographers, who had represented it to be round, whereas it
is very long and narrow. The eastern coasts of this sea, as well as the
neighbouring country, were unknown: even the existence of lake Aral,
which is 100 leagues distant from it towards the east, was doubtful,
or at least thought to be a part of the Caspian Sea, so that before
the discoveries of the Czar there was unknown land in this climate
upward of 300 leagues long by 100 or 150 broad. Lake Aral is nearly
an oblong, and may be 90 or 100 leagues long, by 50 or 60 broad; it
receives two very considerable rivers, the Sideroias and the Oxus, but
as well as the Caspian has no outlet for its waters; and it bears the
further resemblance, for as the Caspian receives no river on the east,
so lake Aral receives none on the west, from which we may presume, that
formerly these two lakes were but one, and that the rivers having, by
degrees, diminished, left a great quantity of sand and mud, and which
forms the country that now divides them. There are some small islands
in the Caspian, and its waters are much less saline than those of the
ocean; storms are here very dangerous, and large vessels are not used
in it for navigation, because it has many sand banks, shoals and rocks
scattered under the surface of the water. Pietro della Valle says,
"The largest vessels employed on the Caspian Sea, along the coasts of
Mazanda in Persia, where the town of Ferhabad stands, although they
are called ships, appear smaller than our Tartanes. Their sides are
high, and they draw but little water, having a flat bottom. They give
this form to their vessels, not only because this sea is shallow, but
because it is filled with shoals and sand banks; so that if the vessels
were not fabricated in this manner they could not be used with safety.
Indeed, I was astonished, why at Ferhabad they fish only for salmon,
which are found at the mouth of the river, some poor sturgeons, and
other sort of fresh water fish, of little value: I attributed the cause
of it to their ignorance of the arts of fishing and navigation until
the Cham of Esterabad, whose residence is at a sea port, informed me
that the waters are so shallow 20 and 30 leagues from shore that it
was impossible to cast the nets with the chance of taking any fish, and
that it was for this reason they gave the above-mentioned form to their
vessels, which are not mounted with any cannon, as but few corsairs and
pirates ever visit this sea."

Struys and other travellers have asserted, that in the neighbourhood
of Kilan, there were two gulphs wherein the rivers of the Caspian were
ingulphed, and carried afterwards by subterranean canals into the
Persian Gulph. De Fer and other geographers have even marked out these
gulphs in their maps, nevertheless we are assured by the people sent by
the Czar that they do not exist.[B]

[B] See Mem. Acad. Sciences, 1721.

The circumstance of willow leaves being seen in great quantities on the
Persian Gulph, and which are supposed by the same authors to come from
the Caspian Sea because there are no such trees on the Persian Gulph,
is fully as improbable as their subterraneous gulphs, and which Gemelli
Careri, as well as the Muscovites, asserts are entirely imaginary: in
fact, the Caspian is near one third smaller than the Black Sea, which
last also receives much more water by rivers than the former: the
evaporation therefore is sufficient to carry off all its water, nor is
it necessary to suppose subterraneous gulphs in the Caspian any more
than in the Black Sea.

There are lakes which do not receive any rivers, and from which none go
out. There are others which both receive and discharge and some that
only receive them. The Caspian Sea, lake Aral, and the Dead Sea, are
of the last kind; they receive the waters of many rivers, and contain
them. In Asia Minor there is a small lake of the like kind, and one
much larger in Persia, on which the town of Marago stands; its figure
is oval, and it is about ten or twelve leagues long, by six or seven
broad; it receives the river Tauris, which is not very considerable.
There is also a similar small lake in Greece, about 12 or 15 leagues
from Lepanto, which are the only lakes of that kind known in Asia. In
Europe there is not one which is considerable; in Africa there are many
small ones, as those which receive the rivers Ghir, Zez, Touguedout,
and Tasilet. These four lakes are pretty near each other, and situate
towards the frontiers of Barbary near the deserts of Zara; there is
another situated in the country of Kovar, which receives the river
of Berdoa. In North America, where there are more lakes than in any
other part of the world, not one of this kind is known, at least if we
except two small collections of water formed by rivulets, the one near
Guatimapo, and the other some leagues from Realnuevo, both in Mexico.
But in South America, at Peru, there are two contiguous lakes, one of
which, lake Titicaca, is very large, and receives a river whose source
is not very remote from Cusco, and from which no river issues: there
is one smaller in Tucuman, which receives the river Sala; and another
larger in the same country, which receives the river Santiago, and
three or four others between Tucuman and Chili.

The lakes which receive no rivers, and from which no rivers issue,
are greater in number than those just spoken of; these lakes are
kinds of pools where the rain water collects; or may proceed from
subterraneous waters, which issue in form of springs, in low places,
where they cannot afterwards find any drain. The rivers which overflow
may likewise leave stagnate waters in the country, which may remain
for a long time, and only be replenished by other inundations. The
sea has often inundated lands and formed saline lakes therein, like
that at Haarlem, and many others in Holland, to which, no other origin
can be attributed; or by losing its natural motion, might quit some
land, and leaving water in the lowest places may have formed lakes,
which have continued to be supported by rains. In Europe there are
many small lakes of this kind, as in Ireland, Jutland, Italy, in the
country of the Grisons, Poland, Muscovy, Finland, and in Greece. But
all these lakes are very inconsiderable. In Asia there is one near the
Euphrates, in the desert of Irac, more than 15 leagues long: another
in Persia nearly of the same extent, and on which the towns of Kelat,
Tetuan, Vastan, and Van, are situated; another small one in Chorazan
near Ferrior; another in Independent Tartary, called Lake Levi; two in
Muscovy Tartary, another in Cochinchina, and one in China very large,
and not far distant from Nankin; this last, nevertheless, communicates
with the adjacent sea, by a canal several leagues in length. In Africa
there is a small lake of the same kind in the kingdom of Morocco;
another near Alexandria, which appears to have been left by the sea;
another very considerable one formed by the rain in the desert Azarad,
about the 30th degree latitude; this lake is eight or ten leagues long;
another still larger on which the town of Gaoga is situate, in the 27th
degree; another much smaller, near the town of Kanum, under the 30th
degree; one near the mouth of the river Gambia; many more in Congo,
about the 2d or 3d degree of south latitude; two more in the country
of the Caffrees, one called the Lake Rufumbo, of no great length, and
another in the province of Arbuta, which is perhaps the greatest lake
of this kind, being about 25 leagues in length by seven or eight in
breadth; there is also one of these lakes at Madagascar, near the east
side, about the 29th degree of south latitude.

In America there is one of these lakes in the middle of the peninsula
of Florida, in its centre is an island called Serope; the lake of
Mexico is also of this kind, this is almost round, and about 10 leagues
diameter; there is another still larger in New Spain, 25 leagues
distant from the coast of Campeachy Bay, and another smaller in the
same country near the coast of the South Sea. Some travellers have
asserted that there was in the inland parts of Guiana a very great lake
of that kind; it is called the Golden Lake, or Lake Parima. They have
related surprising things of the riches of the neighbouring country,
and of the quantity of gold dust that is found in this lake. They give
it an extent of more than 400 leagues in length, and 125 in breadth. No
river, they say, goes out nor enters therein; although many geographers
have marked this lake in their maps, it is not probable there is any
such existing.

But the most general and largest lakes are those which receive and give
rise to other great rivers: as their number is very great I shall speak
only of the most considerable, or of the most remarkable. Beginning
at Europe, we have in Switzerland the lake of Geneva, Constance, &c.;
in Hungary, the lake Balaton; in Lavonia, a large lake, and which
separates this province from Russia; in Finland, the lake Lapwert,
which is very long, and is divided into many arms, and lake Oula, which
is of a round figure; in Muscovy, lake Ladoga, more than 25 leagues
long by above 12 broad. Lake Onega is as long, but not so broad. Lakes
Ilmen and Belozo, from whence issue one of the sources of the Wolga;
the Iwan-Osero, from whence issues one of the sources of the Don: two
other lakes from whence the Vitzogda derives its origin; in Lapland,
the lake from which issues the river Kimi; another much larger near the
coast of Wardhus, and many others, from whence issue the rivers Lula,
Pithea, and Uma. These are not very considerable. In Norway two more
of nearly the same size as those of Lapland: in Sweden, lake Vener,
which is as large a lake as Meler, on which Stockholm is situated; and
two others less considerable; one is near Eveldal, and the other near
Lincopin.

In Siberia, in Muscovy, and in Independent Tartary, there are a great
number of these lakes, the principal of which is the great lake Baraba,
which is more than 100 leagues long, and whose waters fall into the
Irtis; the great lake Estraguel, the source of the same river: many
other smaller, the sources of the Jenisca; the great lake Kita, the
source of the Oby; another larger, the source of the Angara; lake
Baical, which is more than 70 leagues long, and is formed by the same
river Angara; lake Pehu, from which issues the river Urack, &c. In
China and Chinese Tartary, lake Dalai, from whence issues the large
river Argus, which falls into the river Amour; the lake of the three
mountains, the source of the river Helum; the lakes Cinhal, Cokmor,
and Sorama, the sources of the river Honaho; two other lakes adjacent
to the river Nankin, &c. In Tonquin, lake Guadag, which is very
considerable. In India, the lake Chiamat, from whence issues the river
Laquia, adjacent to the sources of the rivers Ava, Longenu, &c. This
lake is more than 40 leagues broad by 50 long. There is another at the
origin of the Ganges; and one bordering on Cashmere is the source of
the river Indus, &c.

In Africa is lake Cavar, and two or three others adjacent to the mouth
of Senegal river. Lakes Guarda and Sigismus make but one lake, of a
triangular form, about 100 leagues long by 75 broad, and contain a very
considerable island. In this lake the Niger loses its name, and takes
that of Senegal, in the course of which, towards the source, we meet
with another considerable lake, called Bournou, where the Niger again
loses its name, for the river which comes therein is called Gambaru. In
Ethiopia, at the sources of the Nile, is the great lake Gambia, upwards
of 50 leagues long. There are also many lakes on the coast of Guinea,
which appear to have been formed by the sea, and there are only a few
lesser lakes in the remaining part of Africa.

North America may be styled the country of lakes; the greatest are lake
Superior, upwards of 125 leagues long by 50 broad; lake Huron, upwards
of 100 leagues long by 40 broad; lake Illionois, which, comprehending
the Bay of Puanto, is quite as extensive as lake Huron; lakes Erio, and
Ontario, together upwards of 80 leagues long, from 20 to 25 broad; the
lake Mistasin, to the north of Quebec, is about 50 leagues in length;
and lake Champlain, to the south of it, is nearly of the same extent;
lake Alemipigon, and the lake Christinaux, both to the north of lake
Superior, are also very considerable; the lake Assiniboils contains
many islands, and is upwards of 75 leagues long; there are also,
independent of that of Mexico, two large lakes in that country, the one
called Nicaragua, in the province of that name, which is upwards of 70
leagues long.

In South America there is a small lake, the source of the Maragnon, and
another larger which is the source of the river Paraguay; also the lake
Titicares, which falls into the river Plata; two smaller lakes which
flow into the same river; and some others, not very considerable, in
the inland part of Chili.

All lakes from which rivers derive their origin, those which fall into
the course of rivers, and which carry their water thereto, are not
salt. Almost all those, on the contrary, which receive rivers without
others issuing thereout, are salt; this seems to favour the opinion
that the saltness of the sea arises from the salts which rivers wash
from the earth, and continually convey into it; for evaporation cannot
carry off fixed salts, and consequently those which rivers carry into
the sea remain therein. Although river water appears to taste fresh, we
well know that it contains a small quantity of salt, and in course of
time might have acquired such a considerable degree, as to occasion the
present saltness of the sea, and which must still continue increasing.
It is thus, therefore, as I imagine, that the Black Sea, the Caspian,
lake Aral, &c. have become salt. With respect to lakes, which do not
receive any river, nor from which does any issue, are either fresh or
salt, according to their different origins; those near the sea are
generally salt, and those remote from it are fresh, because the one has
been formed by the inundations of the sea, and the others proceed from
springs of fresh water.

The lakes any ways remarkable are the Dead Sea, the waters of which
contain much more bitumen than salt: it is called the Bitumen of Judea,
but is no other than the Asphaltes, which has caused some authors to
call it the Asphaltic Lake. The lands which border this lake contain a
great quantity of this bitumen; and many have supposed, as the poets
feign of lake Avernus, that no fish could live therein, and birds which
attempted to fly over it were suffocated; but neither of these lakes
produce such mortal events; fish live in both, birds pass over them,
and men bathe therein without the least danger.

At Boleslaw, in Bohemia, there is said to be a lake, wherein are holes,
whose depth is unfathomable, from which impetuous winds issue, which
are carried over all Bohemia, and in winter raise pieces of ice of an
100 weight in the air.

A petrified lake in Iceland is also mentioned; and lake Neagh, in
Ireland, has also the same property; but these petrifactions are no
other than incrustations, like those made by the water of Arcueil.



ARTICLE XII,

OF THE FLUX AND REFLUX.


Water has but one natural motion; like other fluids it always descends
from the higher into the lower places, unless obstructed by some
intervening obstacle. When it reaches the lowest place it remains
there calm and motionless, at least without some foreign causes which
agitates and disturbs it. All the waters of the ocean are collected in
the lowest parts of the surface of the earth, of course the motions
of the sea must proceed from external causes, the principal of which
is the flux and reflux, which is alternatively made in a contrary
direction, and from which results a general and continual motion in the
sea from east to west. These two motions have a constant and regular
relation with the motions of the moon. When the moon is new, or at
the full, this motion from east to west is more sensible, as well as
that of the tides, which upon most shores ebb and flow every six hours
and a half: that it is always high tide whenever the moon is at the
meridian, whether above or below the horizon of the place; and low tide
when the moon rises or sets. The motion of the sea from east to west
is constant and invariable, because the ocean in its flux moves from
east to west, and impels towards the west a great quantity of water,
and the reflux seems to be made in a contrary direction, by reason of
the small quantity of water then driven towards the west; the flux,
therefore, must rather be regarded as a swelling, and the reflux as a
subsiding of the water, which instead of its disturbing the motion from
east to west, produces and continually restores it, although in fact it
is stronger during the rise, and weaker during the fall, from the above
reason.

The principal circumstances of this motion are, 1. That it is more
sensible when the moon is new, or at the full, than in the quadratures:
in spring and in autumn it is also more violent than at any other time
of the year; and it is weaker in the solstices, which, is occasioned
by the combination of the attraction of the moon and sun. 2. The wind
often alters the direction and quantity of this motion, particularly
that which constantly blows from the same quarter. It is the same
with respect to large rivers which convey their waters into the sea
and produce a current there, often extending several leagues, which
is strongest when the direction of the wind agrees with the general
motion. Of this we have an example in the Pacific Ocean, where the
motion from east to west is constant and very perceptible. 3. We must
remark that when one part of a fluid moves, the whole mass receives the
motion; now in the motion of the tides a great part of the ocean moves
in a very sensible manner, and consequently the ocean is agitated by
this motion throughout its whole extent.

Perfectly to comprehend this we must attend to the nature of the power
which produces the tides. We have observed that the moon acts upon the
earth by a power called attraction by some, and by others gravity:
this force penetrates through the globe, is exactly proportioned to
the quantity of matter, and decreases as the square of the distance
increases. Let us next examine what must happen to the waters when the
moon is at the meridian of any one place.--The surface of the waters
being immediately under the moon is then nearer that planet than any
other part of the globe; hence this part of the sea must be elevated
towards the moon, by forming an eminence, the summit of which must
be opposite to the moon's centre; for the formation of this eminence
the waters at the bottom, as well as at the surface, contribute their
share, in proportion to the proximity they are in of the moon, which
acts upon them in the inverse ratio of the squares of their distances:
thus the surface of that part of the sea is first raised; the surface
of the neighbouring parts will be likewise elevated, but to a less
height, and the water at the bottom of all these parts will be raised
by the same cause; so that all this part of the sea growing higher
and forming an eminence, it is necessary that the water of the remote
parts, and on which this force of attraction does not act, proceeds
with precipitation to replace the waters which are thus elevated and
drawn towards the moon. This is what produces the flux, or high tide,
which is more or less sensible on different coasts, and which agitates
the sea not only at its surface but even to the greatest depths. The
reflux, or ebb, happens afterwards by the natural inclination of the
water, for when the moon no longer uses its power, the water which was
raised by this foreign power retakes its level, and returns to the
shores and places it had been forced to quit. When the moon passes to
the antipode, or opposite meridian, the same effect ensues, though
from a different cause, In the first case the waters rise because they
are nearer the planet than any other parts of the globe; and in the
second it is from the contrary reason, they rise because she is the
most remote from them; and this it is easily perceived must produce
the same effect, for the waters of this part being less attracted
than those of the opposite hemisphere, they will naturally recede
and form an eminence, the summit of which will answer to the point
of the least action that is directly opposite to the moon's station,
or where she was thirteen hours before. When the moon arrives at the
horizon the tide is ebb, the sea is then in its natural state, and
the water in a direct equilibrium; but when she is at the opposite
meridian this equilibrium can no longer exist, since the waters of
the part opposite to the moon being at the greatest distance possible
from her, they are less attracted than the remaining part of the
globe, and hence their relative weight, which always retains them in
an equilibrium, impels them towards the opposite point to the moon.
Thus in the two cases, when the moon is at the meridian of a place, or
at the opposite meridian, the water must be raised nearly to the same
height, and consequently fall and rise, when the moon is at the horizon
either at her rising or setting. Thus a motion, such as we have just
mentioned, necessarily disturbs the whole mass of the sea, and agitates
it throughout its whole extent and depth; and if this motion appears
insensible in the open seas, it is nevertheless no less real; but as
the winds cannot ruffle the bottom in an equal degree with the surface,
the motion of the tides is necessarily more regular there, although
directed alternately in the same manner as at the top.

From this alternative motion of flux and reflux there results, as
already observed, a continual motion of the sea from east to west,
because the moon, which produces the tides, proceeds from east to
west, and successively acting in the same direction, the water follows
her course. This motion is most considerable in all sraits; for
example, at the straits of Magellan the water rises nearly 20 feet, and
continues so for six hours, whereas the reflux lasts only two[C], and
the water runs towards the west. This evidently proves that the reflux
is not equal to the flux, and that from both there results a motion
towards the west, much stronger in the time of the flux than in that of
the reflux. This is the reason that in open seas, remote from land, the
tides are only felt by the general motion of the waters from east to
west.

[C] See Narborough's Voyage.

The tides are stronger in the torrid zone between the tropics than in
the rest of the ocean: they are also more sensible in places which
extend from east to west, in long and narrow gulphs, and on the coasts
where there and isles and promontories. The greatest known flux is at
one of the mouths of the river Indus, where the water rises thirty
feet. It rises also very remarkably near Malays, in the straits of
Sund, in the Red Sea, in Nelson's Bay, at the mouth of the river St.
Lawrence, on the coasts of China, Japan, Banama, in the Gulph of
Bengal, &c.

The motion of the sea from east to west is more sensible in particular
places. Mariners have observed it in sailing from India to Madagascar
and Africa; it is also very perceptible in the Pacific Sea, and
between the Malaccas and Brazil: but this motion is most violent in
the Straits; for example, the waters are carried with such great force
in that direction through the Straits of Magellan that it is felt to
a great distance in the Atlantic; and it is supposed that this caused
Magellan to conjecture there was a strait by which the two seas had a
communication. In the Manilla straits, and in all the channels which
divide the Maldivian islands, the sea flows from east to west, as well
as in the Gulph of Mexico, between Cuba and Jucatan. In the gulph of
Paria this motion is so violent that the strait is called the Dragon's
Mouth. In the Canadian and Tartarian Seas it flows also with violence,
as well as in the Strait of Waigat, through which it conveys enormous
masses of ice into the northern seas of Europe. The Pacific Ocean flows
from east to west, through the Straits of Java; the sea of Japan flows
towards China, the Indian Ocean flows towards the west, through the
Straits of Java and other Indian islands; we cannot, therefore, doubt
that the sea has a constant and general motion from east to west, and
it is certain the Atlantic flows towards America, and that the Pacific
Sea goes from it, as is evident at Cape Current between Lima and Panama.

In short, the alternatives of the flux and reflux are regularly made
in six hours and a half on most coasts, though at different hours,
according to the climate and position of the lands: thus the sea coasts
are continually beaten by the waves which at each time wash away some
small parts of their matters, which they transport to a distance, and
deposit at the bottom of the sea; so likewise the waves convey, and
leave on the lower shores, shells, sands, &c. these by degrees form
horizontal strata, which accumulating, become downs and hills, exactly
similar to others, both as to form and internal composition. From this
constant action, the sea naturally shuts itself out from the lowest
coasts, and gains upon the highest.

To give an idea of the efforts of a troubled sea against coasts, I
shall relate a fact which has been affirmed to me by a creditable
person, and which I the readier gave credit to, having seen something
nearly similar. In the principal islands of the Orkneys there are
coasts composed of rocks perpendicularly divided to the surface of the
sea, to the height of near 200 feet. The tides in this place rise very
considerable, as is common in all parts where there are projecting
lands and islands; but when the wind is very strong, and the sea swells
at the same time, the motion is so great, and the agitation so violent,
that the water rises to the summit of these rocks, and falls again in
the form of rain: it throws to this great height gravel and stones from
the foot of the rocks, and some of them even broader than the hand.

In the port of Livourne, where the sea is much more calm, I saw a
tempest in December, 1731, wherein they were obliged to cut down
the masts of some vessels that had been forced from their anchors
by the wind, and driven into the road. The sea swelled above the
fortifications, which were of a considerable height, and as I was on
one of the most projecting works, I could not regain the town before I
was wetted by the sea-water much more than I could have been by the
most plentiful rain.

These examples are sufficient to shew with what violence the sea acts
against some coasts. This continual agitation destroys and diminishes
by degrees the land. The water carries away all these matters, and
deposits them as soon as it arrives at a part where the troubled sea
subsides into a calm. In tempestuous weather the water is foul, from
the mixture of matters detached from the shore and bottom of the sea,
which then casts on the coasts a number of things that it brings from a
distance, and which are never met with but after storms; as ambergris
on the west of Ireland, and yellow amber on those of Pomerania,
cocoa-nuts on the coasts of India, &c. and sometimes pumice and other
singular stones. We can quote on this occasion a circumstance related
in the new travels to the American Islands. "Being at St. Domingo,
says the author, among other things they gave me some light stones,
which the sea brought to the coast when there had been strong southerly
winds; there was one two feet and a half long by eighteen broad, and
one thick, which did not quite weigh five pounds: they are as white
as snow, much harder than pumice, of a fine consistency, having no
appearance of being porous, but when thrown into water, rebounded
like a ball thrown on the ground, and it was with great difficulty
they could be forced under the water with the hand." The stone must
have been a very fine and close-grained pumice, which had issued
from some volcano, and which the sea had conveyed, as it transports
ambergris, cocoa-nuts, common pumice-stone, seeds of plants, rushes,
&c. Observations of this kind have been generally made on the coasts
of Ireland and Scotland. The sea by its general motion from east to
west must convey the productions of our coast to those of America; and
it is by some irregular motions that the productions of the East and
West Indies, as well as the northern climates, are brought upon our
shores. There is a great appearance that the winds cause those effects;
large spots have often been observed in the high seas, far from shore,
covered with pumice-stones; they could only come from the volcanoes
in islands or on the continent, and which the current had transported
to the middle of the seas. Before the southern part of America was
known, and in the time when the India Sea was thought to have no
communication with our ocean, appearances of this kind afforded the
first supposition of it.

The alternative motion of the flux and reflux, and the constant motion
of the sea from cast to west, presents different phenomena in different
climates, according to the bearing of the land and the height of the
coasts. There are parts where the general motion from east to west is
not perceptible; there are others where the sea has even a contrary
motion, as on the coast of Guinea. But these contrary motions are
occasioned by the winds, by the position of the lands, by the waters
of large rivers, and by the disposition of the bottom of the sea; all
these causes produce currents which alter, and often change the general
motion in many parts of the sea; but as the motion from east to west
is the greatest, most general and constant, it must also produce the
greatest effects, and all taken together, the sea must gain ground
towards the west, and lose it towards the east; although it may happen
that on those coasts where the west winds blow during the greatest
part of the year, as in France and England, the sea may gain on the
east, yet these particular exceptions do not destroy the effect of the
general cause.



ARTICLE XIII.

OF THE INEQUALITIES AT THE BOTTOM OF THE SEA, AND OF CURRENTS.


The coasts of the sea may be distinguished into three kinds, 1st, the
elevated coasts, which are rocks and hard stones, generally divided
perpendicularly, and which rise sometimes to the height of 7 or 800
feet. 2d, The low coasts, some of which are almost level with the
surface of the water, and others rising with a moderate elevation,
often bounded by rocks at the water's edge, forming shelves and
breakers, which render the approach to shore very difficult and
dangerous. 3dly, Downs, which are coasts formed by sand which the sea
accumulates, or brought or deposited by rivers; these downs form hills
more or less elevated, according to the accumulated sand.

The coasts of Italy are bordered by several sorts of marble and
stone; these rocks appear at a distance as so many pillars of marble
perpendicularly divided. The coasts of France from Brest to Bourdeaux
are almost surrounded with rocks just at the water's edge, which
occasion dangerous breakers. The coasts of England, Spain, and many
others, are also bordered with rocks and hard stone; excepting some
parts which are made use of for bays, ports, and havens.

The depth of water along the coasts is in proportion to their
elevation. The inequalities at the bottom of the sea near the coasts,
correspond also with the inequalities of the surface of the ground
along the shore. A celebrated navigator has made the following
observations on this subject.

"I have constantly remarked, that where the coasts are defended
by steep rocks, the sea is there very deep, and seldom affords a
probability of anchoring; and, on the contrary, where the ground
inclines from the coast to the sea, however elevated it may be further
inland, the bottom is good there, and consequently admits of anchorage.

"According to the declivity of land, as it approaches the water's
edge, so we generally find our anchor ground, and either approach or
keep at a distance from shore agreeable to the steepness of the land;
for I never saw or heard of a coast where the land is of a continual
height, without some vallies lying intermixed with the high-lands;
they are the subsiding of low lands, and afford good anchoring, the
earth being lodged deep under water; for this reason it is we find good
harbours upon coasts which abound with steep cliffs, because the land
has subsided between them. But Where the declensions from the hills is
not within land but towards the main sea, as at Chili and Peru, and
the coasts are nearly perpendicular, as in the countries running from
the Andes, it is very deep, and has scarcely any creeks or harbours.
The coasts of Gallicia, Portugal, Newfoundland, the islands of Juan
Fernando and St. Helena, &c. are somewhat similar to those of Peru,
yet good harbours are not so scarce, as there is always good anchorage
where there are short ridges of land. In general the land under water
seems to be exactly proportioned to the rising of the contiguous part
above, and therefore, where the lands upon the shores are steep, there
is but little security for ships, they being very easily driven from
their moorings; yet although steep cliffs denote this disadvantage,
they assure us of this benefit also, that we can sail close to them
with safety, besides being able to see them at a considerable distance;
whereas low lands are frequently not discovered until we are near, and
always experience the hazard of running aground. This fact of good
anchorage where the lands on the coast are low, might be illustrated by
many instances in the bays of Campeachy, Honduras, Panama; the coasts
of Portobella, Carthagena, Guinea, Callifornia, China, Coromandel, &c.
but going into particulars would be almost endless, as I very seldom
found it otherwise than that deep waters and high shores went together,
as well as low lands and shallow seas."

The fact therefore of there being considerable mountains, and other
inequalities, at the bottom of the sea is fully confirmed by the
observations of navigators. Divers also assure us, there are smaller
inequalities formed by rocks, and that it is much the coldest in the
vallies of the sea. In general the depths in great seas, as we have
already observed, increase proportionably to their distance from shore.
By Mr. Buache's chart of that part of the ocean between the coasts of
Africa and America, and by the divisions he has given of the sea from
Cape Tagrin to Rio-Grande, there appears to be similar inequalities in
the ocean to those on land. That the Albrolhos, where there are some
rocks at the surface of the water, are only the tops of very large
and lofty mountains, of which Dolphin island is one of the highest
peaks. That the islands of Cape de Verd are also the tops of mountains
that there are a great number of shoals in the sea, which round the
Albrolhos descends even to unknown depths.

With respect to the quality of the different soils which form the
bottom of the sea, as we must rely on divers and the plumb, we can say
nothing exact or precise concerning it; we only know that there are
parts covered with mud to a considerable thickness, on which anchors
have no hold; in these parts probably the mud of rivers are deposited.
In other parts are sands similar to those on land. In others are
shells, heaped up together, madrepores, corals, and other productions
of insects, which begin to unite and appear like stones; in others are
fragments of stones, gravel, and often entire stones and marble. For
example, in the Maldivian islands the buildings are made of a hard
stone weighed up from several fathoms under water. At Marseilles very
good marble is obtained from the bottom of the sea, which, so far from
wasting and spoiling stone and marble, in our discourse on minerals,
we shall prove they are formed and preserved therein; whereas the sun,
earth, air, and rain water, corrupts and destroys them.

The bottom of the sea must be composed of the same matters as our
habitable land, because the very same substances are contained in the
one as the other; places are found at the bottom of the sea, covered
with shells, madrepores, and other productions of sea matters, as we
meet with on earth an infinity of quarries and banks of chalk and other
matters replete with the same sort of shells, madrepores, &c. so that
in all respects the dry parts of the globe resemble those covered by
the water, both in composition of matters, and inequalities of the
superfices.

It is to these inequalities at the bottom of the sea, we must attribute
the origin of currents, for if the bottom was equal and level, there
would be no other current than the general motion from east to west,
and a few others which might be caused by the action of the winds; but
a certain proof that most currents are produced by the flux and reflux,
and directed by the inequalities at the bottom of the sea, is, that
they regularly follow the tides, and change their direction at each ebb
and flow. See Pietra della Valle on the subject of the currents of the
gulph of Cambay, and the accounts of all navigators, who unanimously
assert that in those parts where the flux and reflux of the sea is the
most violent, the currents are also most rapid.

Therefore it cannot be doubted but that the tides produce currents
whose direction always answers that of the opposite hills and all
mountains between which they flow. Currents produced by winds, also
follow the direction of those hills which are under the water, seldom
running opposite to the wind which produces them, any more than those
which are occasioned by the tides follow the direction of their
original cause.

To give a clear idea of the productions of currents, we shall first
observe they are to be met with in every sea; that some are rapid,
and others slow; that some are of great extent, both in length and
breadth, and others short and narrow; that the same cause, whether the
wind or tides, which produces these currents, frequently gives to each
of them a velocity and direction very different; that a north wind,
for example, which should give the water one general motion towards
the south, on the contrary, produces a number of currents, separated
from each other, and very different both in extent and direction; some
flowing towards the south, others south-east, and others south-west;
some are very rapid, others slow; some long and broad, others short
and narrow; in fact, their motions are so various that we have no idea
left of their original cause. When a contrary wind succeeds, all these
currents take an opposite course, and follow in a contrary direction,
precisely in the same manner as would be the case upon land between two
opposite and adjacent hills, provided it was covered with water, as
is seen at the Maldiva and all the islands of the Indian seas, where
the currents run, and the winds blow, for six months in a contrary
direction. The same remark has been made on currents between shoals
and sandbanks. In general all currents, whether caused by the motion
of flux or reflux, or the action by the wind; have the same extent and
direction throughout their whole course, yet differ from each other
in most respects, which can proceed only from the inequalities of the
hills, mountains, and vallies, at the bottom of the sea, it being
certain that the current between two islands follows the direction of
the coasts; and the same is observable between banks of sand, shoals,
&c. we must, therefore, look on the hills and mountains of the bottom
of the sea as banks which direct the current; and hence a current is a
river, the breadth of which is determined by that of the valley through
which it flows: its rapidity depends on the force which produces it,
combined with the breadth, of the interval through which it must
pass: and its direction is traced by the position of the hills and
inequalities between which it must take its course.

We shall now give a reason for the singular correspondence between the
angles of mountains and hills, which are to be met with in every part
of the world. We have already remarked that when a river, &c. forms an
elbow, one of the borders forms on one side a projection inland, and
the other forms a point from land, and that through all the sinuosities
of their course this correspondence is always found. This fact is
founded on the laws of hydrostatics. It would be easy to demonstrate
the cause of this effect; but it is sufficient that it is general and
universally known, and that all the world may be convinced of it by
their own eyes, that when the banks of a river form a projection inland
to the left hand, the other shore forms a projection from land to the
right.

Hence the currents of the sea must be looked upon as great rivers,
subject to the some laws as those on land, and will, like them, form
in the extent of their course many sinuosities, whose projections or
angles will correspond; and as the banks of currents are hills and
mountains, above or below the surface of the water, they will have
given these eminences the same form as is remarked on the shores
of rivers; therefore we must not be astonished that our hills and
mountains, which have been formerly covered by the sea, and formed by
the sediments which the waters have left, should, by the motion of
its currents, have taken this regular figure, and all the angles are
alternately opposite; they have been the shores of the currents or
rivers of the sea, and have therefore necessarily taken a figure and
direction similar to those of the shores of the rivers of the earth.

This alone, independent of the other proofs we have given, would be
sufficient to evince that the earth of our continent and islands have
been covered with waters of the ocean, and doubtless throws great light
upon the Theory which I have endeavoured to prove well founded; for it
was not sufficient to have proved that the strata of the earth were
formed by the sediments of the sea; that the mountains were elevated
by the successive accumulation of such sediments; and that they were
composed of shells and other marine productions; but it required also
a reason why the angles of mountains so exactly correspond; this could
only be done by an investigation into the real cause, which had not
hitherto been attempted, and which, being united with the rest, forms a
body of proofs as complete as may be had in physics, and establishes my
Theory to be founded on facts, independent of all hypothesis.

The principal currents of the ocean are those observed in the Atlantic
Sea, near Guinea. They extend from Cape Verd to the Bay of Fernandes.
Their motion is from west to east; that is contrary to the general
motion of the sea. These currents are so rapid that vessels sail in
two days from Moura to Rio de Benin, a course of 150 leagues; but they
require six or seven weeks to return; nor would it be possible to get
out of these climates if advantage was not taken of the tempestuous
winds which suddenly rise in them; but there are entire seasons during
which vessels cannot stir, the sea being continually calm, excepting
what arises from the currents, which is always directed towards the
coasts, and never extend more than 20 leagues from shore. Near Sumatra
there are rapid currents, which flow from south to north, and which
probably formed the gulph at Malacca. There are also considerable
currents between Java and Magellan, the Cape of Good Hope, and the
island of Madagascar, especially on the coast of Africa, between
Natal and the Cape. In the Pacific Sea, on the coast of Peru, and the
rest of America, the sea moves from south to north, and a south wind
continually blowing there seems to be the cause. The like motion
is observed on the coasts of Brazil; from Cape St. Augustine to the
Antilles; from the mouth of the Manilla strait to the Philippine
islands; and in the port of Kubuxiu at Japan[D].

[D] See Varen. Geography, page 140.

There are violent currents in the sea adjacent to the Maldivian
islands; and between those islands these currents flow, as already
observed, constantly for six months from east to west, and during the
other six months they follow the direction of the monsoons, and it is
probable they are produced by those winds.

We speak here only of currents, whose extent and rapidity are very
considerable, for in every sea there are an infinity of currents,
though of no great importance. The flux and reflux, the winds, and all
other causes which agitate the waters, produce currents, more or less
perceptible, in different parts. We have observed that the bottom of
the sea, like the surface of the earth, is overspread with mountains
intersected with inequalities and divided by banks of sand. In all
mountainous places currents will be violent; in all places where the
bottom of the sea is level they will be almost imperceptible; the
rapidity of the current will increase in proportion to the obstacles
the water meets with, or rather to the contraction of the spaces
through which they incline to pass. Between two chains of mountains the
current will be so much the stronger as the mountains are near. It will
be the same between two banks of sand, or two neighbouring islands. It
is also remarked in the Indian ocean, which is divided with an infinity
of islands and banks, there are rapid currents throughout, which render
the navigation of that sea dangerous.

It is not inequalities at the bottom of the sea alone which form
currents, but the coasts themselves have a similar effect, as the water
is repelled at greater or lesser distances: this repulsion of the
waters is a kind of current which circumstances can render continual
and violent; the oblique position of a coast, the vicinity of a bay,
or of some great river, a promontory; in one word, every particular
obstacle which opposes the general motion, will always produce a
current. Now, as nothing is more irregular than the bottom and borders
of the sea, we must cease from being surprised at the great number of
currents which every where appear.

All currents have a determinate breadth, which depends on that of
the interval between the two eminences which serves it for a bed.
The currents flow into the sea as rivers flow on land, and they
produce similar effects. They form their bed, and give to eminences
corresponding angles. In one word, it is these currents which hollowed
our vallies, formed our mountains, and gave to the surface of the
earth, when it was under water, the form it now retains.

If any doubt of the correspondence of the angles of mountains remains,
I appeal to the sight of every man who makes the observation. Every
traveller, with the smallest attention, will perceive that the opposite
sides of a hill exactly correspond. Whenever the hills to the right of
the valley form a projection, those opposite recede to the left. These
hills have also nearly the same elevation, and it is very rare to see
any great inequality of height in the two hills separated by a valley.
I can assert, that the more I have looked on the circumference and
heights of hills, the more I have been convinced of the correspondence
of the angles, and of the resemblance they have with the beds and
borders of rivers; and it is by reiterated observations on this
surprising regularity and resemblance that my first ideas of this
Theory of the Earth arose. Let us add to these observations that of the
parallel and horizontal situation of the strata, that of the shells
being dispersed throughout the earth, and incorporated in every matter;
and it must be admitted, that on a subject like this we cannot have a
greater degree of probability.



ARTICLE XIV.

OF REGULAR WINDS.


Nothing can appear more irregular and variable than the force and
direction of winds in our climates; but there are countries where this
irregularity is not so great, and others where the winds constantly
blow in one direction, and with almost the same degree of strength.

Although the motion of the air depends on a great number of causes,
there are nevertheless principal ones, of which it is difficult to
estimate the effects, because of the modifications from secondary
causes. The most powerful cause is the heat of the sun, which produces
successively a considerable rarefaction in different parts of the
atmosphere, and gives rise to an east wind that constantly blows
between the tropics, where rarefaction is the greatest.

The force of the sun's attraction, and even that of the moon on the
atmosphere, are inconsiderable in comparison with that just mentioned;
it is true, this force produces in the air a motion similar to that
of the flux and reflux in the sea, yet it must not be supposed that
the air, because it has a spring, and is 800 times lighter than water,
receives, by the action of the moon, a more considerable motion than
that of the waters of the sea; for the distance of the moon being the
same, a sea of any fluid matter will have nearly the same motion,
because the force which produces it penetrates the matter, and is
proportional to its quantity; thus a sea of water, air, or quicksilver,
would elevate itself nearly to the same height, by the action of the
sun and moon; hence we see that the the influence of the planets
in the atmosphere is not considerable, and although it must cause a
slight motion of the air from east to west, this motion is insensible
in comparison with that produced by the heat of the sun; but as the
rarefaction will be always greatest when the sun is at the zenith, the
current of air must follow the sun, and form a constant wind from east
to west. This wind blows continually over the sea in the torrid zone,
and in most parts of the land between the tropics; it is this wind
we feel at the sun's rising; and in general the east winds are more
frequent and impetuous than the west; this general wind from east to
west extends even beyond the tropics, and blows so constantly in the
Pacific Sea, that vessels which sail from Acapulco to the Philippines,
perform their voyage, which is more than 2700 leagues, without any
risque, and almost without any need of directing their course. In the
Atlantic, between Africa and Brazil, this wind is also constant: it is
felt also between the Philippines and Africa, but not in so constant a
manner, by reason of the islands, and different obstacles that are met
with in that sea; for during the months of January, February, March,
and April, it blows between the Mozambique coast and India, but during
the other months, it gives place to different winds: and although this
east wind is less felt on the coasts than in the open sea, and still
less in the middle of continents than on the coasts; nevertheless there
are places where it blows almost continually, as on the east coasts of
Brazil, on the coasts of Loango, in Africa, &c.

This east wind continually blowing under the line, is the cause, that
sailing from Europe to America, the course of the vessel is directed
from the north to the south, along the coasts of Spain and Africa, to
within 20 degrees of the equator, where this east wind is met with,
which carries them directly to the coasts of America. The voyage from
Acapulco to the Philippine islands, is made in two months by the favour
of this east wind: but the return from them to Acapulco is longer and
more difficult. At 28 or 30 degrees on this coast from the line, the
western wind is nearly as constant, which is the reason that vessels
returning from the East Indies to Europe, do not follow the same track
as in going; those from New Spain sail north along the coasts till they
arrive at the Havannah, and from thence they continue northward, until
they meet with the westerly winds which carry them to the Azores and
afterwards to Spain. So likewise in the South Sea, those which return
from the Philippines, or China, to Peru, or Mexico, sail north as far
as Japan, and navigate under that parallel to a certain distance from
California, from whence, coasting along New Spain, they arrive at
Acapulco. These winds do not always blow from one point, but in general
from the south-east from April to November, and from the north-east
from November to April.

The east wind, by its action, increases the general motion of the
sea from east to west; it also produces currents which are constant,
some flowing from east to west, others from west to east; and from
the east to the south-west or north-west, following the direction of
the eminencies and chains of mountains at the bottom of the sea, the
vallies that divide them serving as channels to these currents. The
alternative winds which blow sometimes from the east, and sometimes
from the south, produce also currents which change their direction at
the same time with these winds.

The winds which blow continually for some months, are generally
followed by contrary winds, and therefore mariners are obliged to wait
for that which is favourable to their voyage. When these winds change,
a calm or dangerous tempest generally ensues, and which continues for
several days, sometimes a month, and has been known for more than two.

These general winds caused by the rarefaction of the atmosphere, are
differently combined and modified by different causes in different
climates. In that part of the Atlantic, under the temperate zone,
the north wind blows almost constantly during the months of October,
November, December, and January, which makes those months the most
favourable to embark from Europe to India, in order to pass the line
by the aid of these winds; and it is known by experience, that ships
which quit Europe in the month of March frequently do not arrive
sooner at Brazil than those which sail in the October following. The
north wind almost continually reigns during winter in Nova Zembla, and
other northern coasts. The south wind blows during the month of July
at Cape de Verd, when the rainy season, or winter of these climates
sets in. At the Cape of Good Hope the north-west wind blows during
the month of September. At Patna, in the East Indies, the north-west
wind blows during the months of November, December, and January, and
produces heavy rains; but the east wind blows during the other nine
months. In the Indian ocean, between Africa and India, as far as the
Malacca islands, the monsoons reign from east to west from January to
the beginning of June, the west winds begin in the months of August or
September; during the interval of June and July, there are dreadful
tempests generally from the north winds; but on the coasts these winds
vary much more than in the open sea.

In the kingdom of Guzarat, and on the coasts of the neighbouring sea,
the north winds blow from March till September, and during the other
months south winds almost always reign. The Dutch, to return from Java,
generally set sail in the month of January or February, when they have
the assistance of an easterly wind which is felt as far as the 18th
degree of South latitude; afterwards they meet with the south winds
which carry them to St. Helena[E].

[E] See Varen. Geography, gener. cap. 20.

There are regular winds produced by the melting of snows, which the
ancient Greeks have noticed. During summer a north-east wind, and
in winter one from the south-east, were noticed in Greece, Thrace,
Macedonia, the Egean sea, and as far as Egypt and Africa; the same kind
of winds have been remarked at Congo, at Guzarat, and at the extremity
of Africa, which are all produced by the melting of the snows. The flux
and reflux of the sea also produce regular winds which remain only a
few hours, and in many places winds are observed to blow from the land
during night, and from the sea during the day, as on the coasts of New
Spain, Congo, the Havannah, &c.

The north winds are pretty regular in the polar circles; but the nearer
we approach the equator, the weaker they become: a circumstance equally
common to the two poles.

In the Atlantic and Ethiopian ocean within the tropics there is an
east wind which blows all the year without any considerable variation,
excepting some few small places, where it changes according to
circumstances and the position of the coasts. First, near the coasts
of Africa, having passed the Canary islands, about the 28th degree
of north latitude, a fresh wind blowing from the north-east or
north-north-east, is sure to be met with; this wind accompanies the
vessels to the 10th degree of the same latitude; about 100 leagues
from the coast of Guinea; where at the 4th degree north latitude they
meet with calms and tornadoes. Secondly, in going to America by the
Caribbee islands, this wind is found to veer more and more to the east,
in proportion as they approach the coast. Thirdly, the limits of these
variable winds in the Atlantic, are greater on the American coasts than
on those of Africa. A south or south-west wind blows continually all
along the coast of Guinea for a space of 500 leagues from Sierra Leona
to the island of St. Thomas; the narrowest part of that sea is from
Guinea to Brazil, being not more than 500 leagues across. Nevertheless,
ships which sail from Guinea do not direct their course straight to
Brazil, especially when they sail in the months of July and August, for
the purpose of taking advantage of the south-east winds which reign at
that time[F].

[F] See Abridg. Phil. Tran. vol. II, page 129.

In the Mediterranean the east wind blows from the land in the evening
at the sun's setting, and the west wind from the sea at its rising in
the morning. The south wind, which is commonly attended with rains,
and which generally blows at Paris, Burgundy and Champagne about the
beginning of November, gives place to mild and temperate breezes that
produce that fair weather vulgarly called the summer of St. Martin's.

Doctor Lister pretends that the east wind that blows between the
tropics all the year, is produced by the vapour of the plant called sea
lentil, which is extremely plentiful in those climates, and that the
difference of the winds on the land proceeds only from the different
disposition of the trees and forests; and he very seriously gives this
ridiculous imagination for a cause of the wind, by saying, that at noon
the wind is strongest because the plants are hotter and respire the
most, and that it blows from east to west, because all plants, somewhat
like sun-flowers, turn and respire with the sun.

Other authors have mentioned the motion of the earth on its axis as the
cause of this wind: this opinion is specious; and every person, even
but little initiated in mechanics, must comprehend, that no fluid which
surrounds the earth can have a particular motion from the rotation
of the globe; that the air can have no other motion than that of the
earth, and that all turning together at one time, this rotative motion
must be as insensible in the atmosphere, as it is on the surface of the
earth.

The principal cause of the winds, as we have observed, is the heat of
the sun; on this subject we refer to Halley's Treatise in Phil. Trans.
All causes which occasion rarefaction or condensation in the air will
produce winds, whose directions will be opposite to the places where is
the greatest rarefaction or condensation.

The pressure of the clouds, the exhalations of the earth, the
inflammation of meteors, &c. are causes which also produce considerable
agitations in the atmosphere. Each of these causes combining in
different manners, produces different effects. It appears to me,
therefore, a vain attempt to assign a theory of the winds, for which
reason I shall limit myself to the study of their history.

If we could have a course of observations on the direction, power,
and variation of the wind in different climates; if this course of
observations was exact and extensive enough for us to perceive the
result of these vicissitudes of the air in every country, we should
arrive at that degree of knowledge, from which at present we are very
remote; but a short time has passed since meteorological observations
have been made, and possibly much more will pass before we know how to
employ the results of them, although they are the only means that we
have to arrive at some positive knowledge on this subject.

On the sea the winds are more regular than on land, because the sea
is an open space, in which nothing opposes their direction, while on
land mountains, forests, and towns, form obstacles which change their
course. Winds reflected by the mountains are often as impetuous as in
their first direction: these winds are very irregular, because their
course depends on the size, height, and situation of the mountains
which reflect them. The sea winds blow with greater power than the
land winds, are not so variable, and last longer. Land winds, however
violent, have moments of remission, and sometimes of quiet, but at sea
their currents are constant and continual, without any interruption.

In general on the sea the east wind, and those which come from the
poles, are stronger than the west and those which proceed from the
equator. On the land the west and south winds are more or less violent,
according to the situation of the climates. In spring and autumn all
winds are more violent than in summer or winter, and for these reasons;
first, in spring and autumn are the highest tides, and consequently
the winds that these tides produce are most violent at those seasons;
secondly, the motion which the action of the sun and moon produce in
the air is also greater in the season of the equinoxes; thirdly, the
melting of the snows in spring, and the condensation of the vapours
that the sun raises during summer, which refall in plentiful rains
during autumn, produce, or at least increase the wind; fourthly, the
change from heat to cold, or from cold to heat, cannot be made without
increasing and diminishing consequently the volume of air, which alone
must produce very high winds.

Contrary currents are often observed in the air; some clouds move in
one direction, while others, which are higher or lower, move in a
directly opposite one; but this contrariety of motion does not remain,
being commonly produced by the resistance of some large clouds that
force the wind into another course, but which returns again as soon as
the obstacle is dissipated.

The winds are more violent in mountainous places than in plains, and
increase until we reach the common height of the clouds, that is to
say, to about one quarter, or one third of a league perpendicular
height; beyond that height the sky is generally serene, at least during
the summer, and the wind gradually diminishing. It is even asserted to
be quite insensible at the summit of the highest mountains; but these
summits being covered with snow and ice, it is natural to suppose that
this region of air is agitated by the wind when the snow falls, and
only during summer that the winds are not to be perceived. In summer
the light vapours which are raised above the summit of these mountains
fall in the form of dew, whereas in winter they condense and fall in
snow or ice, which in winter may raise considerable winds, even at that
height.

A current of air increases in velocity where the space of its passage
is straitened: the same wind which was moderate in an open plain
becomes violent in passing through a narrow passage in a mountain, or
between two lofty buildings; and its most violent action is at the top
of these structures or mountains, for air being compressed by these
obstacles, its density and mass becomes increased, and as the velocity
remains, the force or momentum of the wind naturally becomes much
stronger. This is the cause that near a church or castle the winds seem
to be stronger than at a distance from them. I have often remarked,
that the wind reflected from a lone building is more violent than the
direct wind which produced it. This can only be occasioned by the
impelled air being compressed against the building, and by that means
adds to its force.

The density of the air being greatest at the surface of the earth, we
might be led to imagine that the greatest action of the wind should be
there also; and I indeed think this is really the case when the sky is
serene; but when it is covered with clouds, the most violent action
of the wind is at the height of these clouds, which generally fall in
rain or snow. The strength of the wind, therefore, must be estimated,
not only by the velocity, but also by the density of the air; for it
will often happen that one wind, which shall have no more velocity than
another, will, nevertheless, root up trees and overturn buildings,
only from the air impelled by this wind being denser; and this evinces
the imperfection of the machines invented to measure the velocity of
the wind.

Particular winds, whether direct or reflected, are more violent than
general ones. The interrupted action of land-winds depends on the
compression of the air, which renders each blast much more violent than
if the wind blowed uniformly. A strong continued wind never occasions
such disasters as the rage of those produce which blow, as it were, by
fits; but we shall give examples thereof in the following article.

We may consider the winds, and their directions, under general points
of view, from which possibly we may derive useful instructions; for
example, we might divide the winds into zones. The east wind, which
extends to about 25 or 30 degrees on each side the equator, exerts its
action round the globe in the torrid zone; the north wind almost always
as constantly in the frigid zones. Therefore it may be said that the
east wind occupies the torrid zone, the north wind the frigid zones,
and with respect to the temperate zone, the winds which reign there are
merely currents of air produced by these two winds, whose direction
tends to the eastern points. With respect to the westerly winds, which
often reign in the temperate zones, both in the Pacific and Atlantic
Oceans, they may be regarded as winds reflected by the lands of Asia
and America, deriving their origin from the east and north winds.

Although we have said that, generally speaking, the east winds reign
around the globe to about 25 or 30 degrees on each side the equator,
it is nevertheless certain, that in some parts they do not extend so
far, and their direction is not always from east to west, for on this
side the equator it is east-north-east, and beyond the equator it is
east-south-east, and the further we remove from the equator the more
the direction is oblique. The equator is the line under which the
direction of the wind from east to west is the most exact; for example,
in the Indian ocean, the general wind from east to west scarcely
extends beyond 15 degrees. Sailing from Goa to the Cape of Good Hope
this wind is not felt till we have past the equator; but after arriving
at the 12th degree south latitude, it continues to the 28th degree. In
the sea which divides Africa from America there is an interval from
the 4th degree north latitude to the 10th or 11th degree south, where
this general wind is not perceivable; but beyond the 10th or 11th
degree it reigns as far as the 30th.

There is also much exception with regard to the trade winds, whose
motion is alternative. Some remain a longer or a shorter time, others
extend to greater or less distances; others are more or less regular,
and more or less violent. Varenius speaks thus of a principal phenomena
of these winds. "In the ocean between Africa and India, as far as
the Malaccas, the east winds begin to reign in January and last to
the beginning of June; in August or September the west winds begin
and continue during three or four months. In the interval of these
monsoons, that is from the end of June to the beginning of August,
there is no wind on that sea, but they have violent storms which come
from the north.

"These winds are subject to the greatest variations near the land, for
ships cannot depart from the Malabar coast, nor other western ports on
the coasts of the peninsula of India, to sail to Africa, Arabia, or
Persia, but from January to April or May; for from the end of May, and
during the months of June, July, and August, there are such violent
tempests from the north or north-east that ships are not able to keep
the sea. On the other side of this peninsula, in the sea which bathes
the Coromandel coast, these tempests are not known.

"To sail from Java, Ceylon, and many other places, to the Malacca
islands, the month of September is the most proper time, because the
west wind begins to blow in these parts; nevertheless, at 15 degrees
south of the equator, we lose this west wind and meet with the general
winds, which blow south-east. To sail from Cochin to Malacca they
depart in March, because the west winds begin to blow at that time;
therefore these westerly winds blow at different times in different
parts of the Indian sea; and it is necessary to sail at different
periods in going from Java to the Malaccas, from Cochin to Malacca,
from Malacca to China, and from China to Japan.

"At Banda, the west winds finish at the end of March, calms reign
during April, in May the east winds begin again with great violence.
At Ceylon, the west winds begin about the middle of March, and remain
till the beginning of October, when the east or rather north-east wind
returns. At Madagascar, from the middle of April to the end of May, the
north and north-west winds are constant; but in February and March,
the east and south winds reign. From Madagascar to the Cape of Good
Hope, the north and collateral winds blow during March and April. In
the Gulph of Bengal, the south wind prevails after the 20th of April,
before which time the south-west or north-west winds are predominant.
The west winds are also violent in the sea of China, in June and July,
which is likewise the most suitable season to go from China to Japan;
but to return from Japan to China, February and March are preferred,
because the east or north-east winds prevail.

"There are winds which may be regarded as peculiar to certain coasts;
for example, the south wind is almost continually on the coasts of
Chili and Peru; it begins at the 46th degree south latitude, and
extends beyond Panama, which renders the voyage from Lima to Panama
much easier performed than the return. The west wind blows continually
on the Magellanic coasts, and in the straits of Le Maire. The north and
north-west winds almost continually reign on the Malabar coast. The
north-west wind is very frequent on the coast of Guinea. The westerly
winds reign on the coasts of Japan, in the months of November and
December."

The alternative, or periodical winds, which we have just been speaking
of, are sea winds; but there are also land winds which are periodical,
and return either at a certain season, or in certain days, or even at
certain hours; for example, on the Malabar coast, from September to
April a land wind blows from the eastern side; it generally commences
at midnight, and finishes at noon, and is not felt beyond 12 or 15
leagues from the coast; and from noon till midnight a gentle wind blows
from the west. On the coast of New Spain, in America, and on that of
Congo, in Africa, land winds reign during the night, and sea winds
during the day. At Jamaica the winds blow from all parts of the coast
at once during the night, and therefore vessels cannot go in, nor
depart from it with safety, but in the day time.

In winter the port of Cochin is not to be entered, nor can any vessel
quit it, because the winds blow with such impetuosity, that ships
cannot remain at sea; and besides the west winds, which blow with such
fury, bring to the mouth of the river so great a quantity of sand as
prevents the possibility of ships of any size from entering it during
six months of the year; but the east winds which blow during the other
six months repel these sands, and render the entrance of the river
free. At the strait of Babelmandel there are south-east winds which
reign throughout the season, and are always succeeded by north-east. At
St. Domingo there are two different winds which regularly rise almost
every day, the one a sea wind proceeding from the east, and commences
at 10 o'clock in the morning; the other a land wind comes from the
west, rises at six or seven o'clock in the evening, and remains all
night. There are many other facts of this nature to be extracted from
travellers, the knowledge of which might perhaps lead to a history
of the winds, which would be a useful work equally to navigation and
physics.



ARTICLE XV.

  OF IRREGULAR WINDS, HURRICANES, AND OTHER PHENOMENA, CAUSED BY THE
  AGITATION OF THE SEA AND AIR.


The winds are more irregular on the land than on the sea, and in high
places than in low. The mountains not only alter the direction of
winds, but even produce some which are either constant or variable
according to different causes. The melting of snow upon the summits of
mountains, generally produces constant winds, which sometimes remain a
considerable time; the vapours that are stopt by mountains accumulate
there, and produce variable winds, very frequent in all climates:
and there are as many variations in the motions of air, as there
are inequalities on the surface of the earth. We can therefore give
only examples, and relate circumstances which are attested; and as we
are deficient in a course of observations on the variation of winds,
and even of the seasons in different countries, we do not pretend to
explain all the causes of these differences, but confine ourselves to
those which appear the most probable.

In straits, on all projecting coasts, at the extremity of all
promontories, peninsulas and capes, and in all narrow bays, storms are
frequent; but without these there are some seas much more tempestuous
than others. The Indian ocean, the Japan and the Magellan seas, that of
the African coast beyond the Canaries, and on the other side towards
the coast of Natal and the Red Sea, are very liable to storms. The
Atlantic is more stormy than the ocean, which from its tranquillity is
called the Pacific Sea; this sea, however, is not absolutely tranquil,
except between the tropics, for the nearer we approach the poles,
the more we are subject to variable winds, whose sudden changes are
frequently the cause of tempests.

All continents are subject to variable winds, which often produce
singular effects; in the kingdom of Cassimir, which is surrounded by
the mountain of Caucasus, at the mountain Pirepinjale, extraordinary
and sudden changes are experienced; we pass, in less than an hour's
travelling, from summer to winter; at this place are two winds, a
north and south, and which, according to Bernier, we successively feel
in less than 200 feet distance from each other; the position of this
mountain must be singular, and merit observation. In the peninsula of
India, which is crossed from north to south by the mountains of Gate,
it is winter on one side, and summer on the other at the same time.
The like difference is met with on the two sides of Rozalgate Cape in
Arabia; the sea to the north of the cape is perfectly tranquil, while
in the south violent tempests are experienced. It is the same in the
island of Ceylon; winter and high winds are experienced in the northern
parts of the island, while in the southern there is fine summer
weather. This contrariety of seasons at the same time not only happens
in many parts of the Indian continent, but also in many islands; for
example, at Cerem, a long island in the vicinage of Amboyna, they
have winter in the northern part, and summer at the same time in the
southern, and the interval that divides the two seasons is not above
three or four leagues.

In Egypt they have a south wind in summer, so hot as to prevent
respiration, and raises such great quantities of sand, that the sky
seems covered with thick clouds; this sand is so fine, and driven with
such force, that it penetrates even into the closest chests. When these
winds last many days they cause epidemical diseases, which are often
followed by a great mortality. It seldom rains in Egypt, nevertheless
every year there are some days of rain in the months of December,
January, and February. Thick mists are more frequent there than rain,
especially in the environs of Cairo; these mists begin in November,
and continue all the winter; and during the whole year there falls so
plentiful a dew, even when the sky is serene, that it might be taken
for a slight rain.

In Persia winter begins in November and lasts till March: the cold
is intense enough to form ice: much snow falls on the mountains, and
often a little in the plains. From March to May the winds blows with
great violence, and bring heat with them. From May to September, the
sky is serene, and the heat moderated by fresh breezes, which rise
every evening and remain till morning. In autumn they have violent
winds, like those of the spring; nevertheless, although these winds
are very violent they scarcely ever produce tempests or hurricanes;
but in summer there often arises along the Persian Gulph a very
dangerous wind, called by the natives Samuel; it is still hotter and
more terrible than that of Egypt. This wind is mortal, and acting
like an inflamed vapour, it suffocates every person unfortunately
enveloped within its vortex. In summer there also rises a wind of the
same kind along the Red Sea, which suffocates men and cattle, and
which conveys so great a quantity of sand that many persons conceive
this sea will in time be choaked up with what falls therein. There
are often clouds of sand in Arabia which darken the air and form
dangerous whirlwinds. At Veru Cruz, when the hot north winds blow, the
houses of the town are almost buried under the sand. In summer hot
winds rise also at Negapatam, in the peninsula of India, likewise at
Petapouli and Masulapatan. These burning winds, which destroy people,
are fortunately of short duration, but they are very violent, and the
greater swiftness they come with the more dreadful are their heats,
whereas all other winds refresh so much the more as their velocity is
greater. This difference proceeds from the degree of heat in the air,
for while the heat of the air is not so great as that of the body of
animals, the motion of the air is refreshing; but if the heat of the
air exceeds that of the body, then its motion heats and burns. At
Goa the winter, or rather the rainy and tempestuous season, is May,
June, and July, and without which rains the heat would be perfectly
unsupportable in that country.

The Cape of Good Hope is famous for its tempests, and the singular
cloud which produces them. This cloud appears at first like a small
round spot in the sky, called by the sailors the Ox's Eye. Probably its
appearing so minute is owing to its exceeding great height.

Of all travellers who have spoken of this cloud, Kolbe appears to have
the most examined it with attention; his words are, "The cloud seen
on the mountains of the Table, or of the Devil, or of the Wind, is
composed, if I am not deceived, of an infinity of small particles,
impelled first against the mountains of the Cape towards the east,
by the easterly wind which blows during almost the whole year in the
torrid zone; these particles are stopt in their course by these high
mountains, and collect on their eastern side; they then become visible
and form these assemblages of clouds, which being incessantly driven
by the east wind, rise to the summit of these mountains; they do not
long remain there at rest, but being obliged to advance, they ingulph
themselves between the hills before them, where they are bound and
confined as in a canal; the wind presses them from above, and the
opposite sides of the two mountains retain them in a direct line: in
advancing they arrive at the foot of a mountain, where the country is
a little more open, they then expand, and become again invisible; but
they are shortly driven against other mountains, by clouds which are
behind them, and thus proceed with much impetuosity, until they arrive
at the highest mountains of the Cape, which are those of the Wind, or
Table, where they have to encounter a wind blowing in an exact contrary
direction; this occasions a dreadful conflict, for the vapours being
impelled behind and repelled before, produce horrible whirlwinds
either on the high mountains of the Table, or adjacent vallies. When
the north-west wind yields, the south-east increases and continues to
blow with more or less violence for six months, it reinforces itself
while the cloud of the Ox's Eye is thick, because the vapours collected
behind press forward, and it diminishes as soon as its thickness is
lessened, because there are fewer particles and less pressure, and it
is entirely lowered when the Ox's Eye is no longer apparent, because no
new or not sufficient vapours any longer come from the east.

"All the circumstances attending this phenomenon lead to an hypothesis,
which well explains every part of them: First, behind the mountain of
the Table we remark a train of light white mists, which commencing on
the eastern descent of this mountain, incline to the sea, and occupy
the mountains of Stone throughout all their extent; I have often
contemplated this train, which according to my opinion was caused by
the rapid passage of the vapour above-mentioned, from the mountains of
Stone to that of the Table.

"Secondly, These vapours must be extremely embarrassed in their road,
by the frequent shocks and counter shocks caused, not only by the
mountains, but also by the south and east winds which reign at places
circumjacent to the Cape: I have already spoken of the two mountains
called Hanging Lip and Norvege, situate on the points of False Bay;
when the particles which I conceive are impelled on these mountains by
the easterly winds, they are repelled from them by the south, which
carry them on the neighbouring mountains; they are stopt there and
appear like clouds, which is often the case upon the mountains of
False Bay. These clouds are frequently very thick above the land which
the Dutch are in possession of, on the mountains of Stenltenborch, of
Drakenstein, and Stone, but particularly on the mountains of the Table,
and of the Devil.

"In short, what confirms me in my opinion is, that constantly two or
three days before the south-east wind blows on the Lion's Head, small
black clouds are perceived above it; these clouds, according to my
opinion, are composed of the particles or vapours which I have spoken
of. If the north-west wind prevails when they arrive there, they are
stopped in their course, but are never driven to a great distance till
the south-east winds commence."

The first mariners who approached the Cape of Good Hope were ignorant
of the effects of these clouds, which appear to form in the air so
slowly, and without any motion, but which in a moment excite the most
dreadful storms that precipitate the largest vessels to the bottom of
the sea. In the country of Natal, a small cloud similar to the Ox's
Eye at the Cape, produces the like effects. In the sea between Africa
and America, especially near the equator, these kind of tempests very
often arise. Near the coast of Guinea, three or four of these storms
sometimes happen in a day; they are also caused and announced by small
black clouds; the rest of the sky being generally serene, and the sea
perfectly calm. The first blast which issues from these clouds is
furious, and would sink ships in open sea, if they did not take the
precaution to furl the sails. It is principally in April, May, and
June these tempests are experienced on the coast of Guinea, because no
regular wind blows there. The stormy season on the coasts of Loango is
in January, February, March, and April. On the other side of Africa,
at Cape of Gardafu, these kinds of tempests rise in May, and the clouds
which produce them are generally in the north like those of the Cape of
Good Hope.

All these tempests are produced by winds which issue from a cloud,
and which have directions either from north to south, or north-east
to south-west, &c. but there are other kinds which are still more
violent, and in which the winds seem to proceed from every quarter at
once; they have a whirling motion, which nothing can resist. A calm
generally precedes these horrible tempests; but in an instant the fury
of the winds raises the waves as high as the clouds. There are parts
of the sea which cannot be approached, from there being constantly
calms and hurricanes in them. The Spaniards have called these places
Calms and Tornados; the most considerable are near Guinea, at two or
three degrees north latitude; they are 300 or 350 leagues in length by
as many in breadth, which forms a space of more than 100,000 leagues
square.

When contrary winds come all at once in the same place, as to a centre,
they produce whirlwinds by the contrariety of their motions; but when
these winds meet with others in opposition, which counterbalance their
action, they then revolve in a considerable circle, and occasion a dead
calm, through which it is impossible for vessels to make their way.
These places of the sea are marked in Senex's globes. I am inclined
to think that the contrariety of the winds alone could not produce
this effect if the direction of the coasts, and the particular form of
the bottom of the sea, did not contribute thereto. I imagine that the
currents caused by the winds, but directed by the form of the coasts
and the inequalities of the bottom of the sea, end at these places, and
that their opposite and contrary direction, in a plain surrounded on
all sides by a chain of mountains, is the real cause of these tornados.

Whirlpools appear to be no other than the eddies of the water formed
by the action of two or more opposite currents. The Euripus, so famous
for the death of Aristotle, alternately absorbs and rejects the water
seven times in twenty-four hours. This whirlpool is near the Grecian
coast. The Charybdis, which is near the straits of Sicily, rejects and
absorbs the water thrice in twenty-four hours. We are not quite certain
as to the number of alternative motions in these whirlpools. Doctor
Placentia, in his treatise, says, that the Euripus has irregular
motions for eighteen or nineteen days every month, and regular ones
for the other eleven; that in general it swells about one foot, and
seldom two: he says likewise that authors do not agree as to the tides
of the Euripus; that some assert it is twice, some seven, others
fourteen times in twenty-four hours, but that Loirius having examined
it attentively, observed it rose regularly every six hours, and with so
violent a motion, that it was sufficient to turn the wheel of a mill.

The greatest known whirlpool is that in the Norway sea, which is
affirmed to be upwards of twenty leagues in circumference. It absorbs
for six hours water, whales, ships, and every thing that comes near it,
and afterwards returns them in the same quantity of time as it drew
them in.

It is not necessary to suppose there are holes and abysses in the
bottom of the sea which swallow up the waters continually; to assign
a reason for whirlpools, it is well known that when water has two
contrary directions, the combination of these motions produce a
whirling, and seem to form a void place in the centre. It is the same
with respect to whirlpools in the sea, they are produced by two or
three contrary currents; and as the flux and reflux, which run every
six hours in contrary directions, are the principal cause of currents,
it is not astonishing that whirlpools, which result from them, attract
and swallow up all that surrounds them, and afterwards reject all they
have absorbed in the same portion of time.

Whirlpools, therefore, are produced by opposite currents, and likewise
by the meeting of contrary winds. These whirlwinds are common in the
sea of China and Japan, near the Antilles, and in many other parts of
the sea, particularly near projecting lands and high coasts; but they
are still more frequent upon land, and their effects are sometimes
prodigious. "I have seen," says Bellarmin, "an enormous ditch dug up
by the wind, and the earth thereof carried to a distance; so that the
place from whence it had been taken appeared a frightful hole, and the
village upon which it was dropped was entirely buried with it."

In the history of the French Academy, and in the Philosophical
Transactions, are the detail of the effects of many hurricanes, which
appear inconceivable and scarcely credible, if the facts were not
attested by a great number of intelligent testimonies.

It is the same with respect to water-spouts, which mariners never see
without fear and amazement; these are very frequent near certain coasts
of the Mediterranean, especially when the sky is cloudy and the wind
blows at the same time from various coasts. They are more common near
the coasts of Laodicea, Grecgo and Carmel, than in other parts of the
Mediterranean. Most of them are large cylinders of water which fall
from the clouds, although it appears, when we are at some distance,
that the water of the sea rises up to the clouds.[G]

[G] See Shaw's Travels, vol. 2. p. 56.

But there are two kinds of water-spouts, the first of which, alluded to
above, is no other than a thick compressed cloud, reduced to a small
space by contrary winds, which, blowing at the same time from many
corners, give it a cylindric form, and causes the water to fall by its
own weight. The quantity of water is so great, and the fall so sudden
and precipitate, that if unfortunately one of these spouts breaks
on a vessel, it shatters it to pieces and sinks it in an instant.
It is asserted, and possibly with foundation, that these spouts
may be broken and destroyed by the commotion which the firing of
cannons excites in the air; which answers to the effect of dispersing
thunder-clouds by the ringing of bells.

The other kind of water-spout is called a typhon, which many authors
have confounded with the hurricane, in speaking of the storms of the
Chinese sea, which is in fact subject to both. The typhon does not
descend from the clouds, but rises up from the sea with great violence.
By whirlwinds, sands, earth, houses, trees, and animals, are raised
in the air, and transported to different parts; but typhons, on the
contrary, remain in the same place, and can only have subterraneous
fires for their origin; for the sea is then in the greatest agitation,
and the air so strongly filled with sulphurous exhalations, that the
sky appears covered with a copper-coloured crust, although there are no
clouds, and the sun or stars may be seen through the vapour. It is to
these subterraneous fires the warmth of the sea of China in winter must
be attributed, as these typhons are there very frequent.[H]

[H] See Acta Eud. Lips. Supplementum, vol. 1. p. 405.

Thevenot, in his voyage to the Levant, says, "we saw water-spouts in
the Persian gulph, between the islands Quesomo, Lareca, and Ormutz. I
think few people have considered water-spouts with so much attention as
I have done. I shall mention my remarks with all possible simplicity,
in order to render them plain and easy to be comprehended.

"The first that we saw appeared on the northern coast, between us
and the island Quesomo, about a gun-shot from the ship: we directly
perceived the water boiled on the surface of the sea, and was raised
about a foot: it was whitish, and the top appeared like a thick black
smoke, so that it properly resembled some burning straw, which only
smoked. It made a noise like a torrent that runs with rapidity into a
deep valley. This noise was mixed with another, similar to the hissing
of serpents: a little afterwards we perceived something like a dark
pipe, which resembled smoke ascending towards the clouds, turning
round with great velocity: this appeared about the thickness of my
finger, and the same noise still continued. After this it disappeared,
having remained somewhat less than a quarter of an hour. This over, we
perceived another on the south side, which began in the same manner
as the preceding: directly after a third made its appearance on the
west, and then a fourth by its side. The farthest of them was not
more than a musket-shot from us. They all appeared like burning heaps
of straw, a foot and a half or two feet high, and were attended with
the same noise as the first. We afterwards saw three pipes or canals
descending from the clouds to the water. They were broad at the top
and lessened downwards, something in the shape of a trumpet, or as
the paps of an animal, drawn perpendicularly down by a heavy weight.
These canals appeared of a darkish white, occasioned, as I think, by
the waters which were in them; for apparently they were formed before
the water entered, as when they were empty they were no longer to be
seen, like as a clear glass tube placed at some distance before our
eyes, is not perceptible if it is not filled with some coloured liquor.
These pipes were not strait but crooked in some places; they were not
even perpendicular, but from the clouds, where they were joined, to
the parts which drew in the water, they were very much bent; and what
is more particular, the cloud, to which the second of the three was
fastened, having been driven by the wind, this pipe followed it without
breaking or quitting the place where it drew in the water, and passing
behind the first, they had for some time the form of St. Andrew's
cross. At the beginning neither of them was more than an inch in
thickness, excepting just at the top, but afterwards the first of the
three increased considerably. The two others scarcely remained longer
than that which we saw on the north side. The second, on the south
side, remained about a quarter of an hour, but the first on that side
remained longer, and gave us some apprehensions. At first it was not
bigger than my finger, afterwards it swelled as thick as my arm, then
as my leg, and at last as the trunk of a large tree, which a man might
encompass with both his arms. We distinctly perceived water through
this transparent body, which ascended in a serpentine manner. Sometimes
it diminished in size at the top, and sometimes at the bottom, then
it exactly resembled a tube with some fluid matter pressed with the
fingers, either above to make this liquor descend, or at bottom to
cause it to ascend; and I am persuaded that it was the violence of
the wind which caused these changes, pressing the pipe in a similar
manner. After this it diminished less than my arm, then returned as
large as my thigh, and then again became very small; at last I saw the
water that was raised from the surface began to lower, and the end of
the pipe divided from it, when, by the change of light from a cloud,
it was lost to our sight; I continued, however, to observe whether
it returned, because I had remarked that the pipe of the second had
appeared to be broken in the middle, and directly after we saw it
whole. This we found was occasioned by the light which hid the half
from us, but the last we saw no more.

"These water-spouts are very dangerous, for if they fall on a vessel
they entangle in the sails so much that sometimes they raise it up,
and afterwards let it fall with such violence as to sink it; at least
if they do not lift the vessel up, they tear all the sails, or let the
water they contain fall on it, and which often sinks it to the bottom.
There cannot be the least doubt but it is by similar accidents that
many ships, of which we have heard no accounts, have been lost, since
there are but few examples of those that we have known, from certainty,
to have perished in this manner."

I suspect there are many optical illusions in the above account, but
I have recounted them as related, in order that we might compare
them with those of other travellers. The following description is by
M. Gentil, in his voyage round the world. "At eleven o'clock in the
morning, the air being filled with clouds, we perceived about our
vessel, at a quarter of a mile distant, six water-spouts, which made
a noise similar to that of water flowing in subterraneous canals, and
increased until it resembled the whistling which an impetuous wind
makes among the cordage of a ship. We at first observed the water to
boil up about a foot and a half above the surface. Above this boiling
there appeared a mixed or rather a thick smoke, which formed a kind of
canal, that ascended to the clouds. These canals inclined according as
the wind moved the clouds to which they were attached, and in spite of
the wind's impulsion they not only adhered to them, but even lengthened
and shortened themselves in proportion as the clouds rose higher or
lower in the atmosphere.

"These phenomena terrified us greatly, and our sailors, instead of
being bolder, fomented their fears by the dismal tales they told each
other. If these spouts, said they, fall on our vessel, they will lift
her up, and then she will sink by the violence of her fall. Others
contended in a decisive tone, that they would not raise the vessel
up, but if they met it in their course, being full of water, the ship
would break the communication they had with the sea, and the whole body
of the water would fall perpendicularly on the deck of the vessel and
split her to pieces.

"To prevent this misfortune the cannon was loaded, the sailors
pretending the report of a cannon, by agitating the air, dissipated
these phenomena; but we had no need of having recourse to this remedy,
for when they had run about ten minutes about the ship, some at a
quarter of a league, others at a less distance, we perceived the canals
to grow narrower by degrees, till they got loose from the surface of
the sea and then dissipated."

It appears from the description given by these two travellers, that
water-spouts are produced, at least in part, by the action of a fire or
smoke which rises from the bottom of the sea with great force, and that
they are quite different from those produced by contrary winds.

"The water-spouts, says Mr. Shaw, which I had an opportunity of seeing,
appeared as so many cylinders of water, which fell from the clouds,
although by the reflection of the columns which descend, or by the
drops which detach themselves from the water they contain, it sometimes
seems, especially when we are at some distance, that the water is drawn
up from the sea. To render a reason for this phenomena we may suppose
that the clouds being collected in one part by opposite winds, they
force them by pressing them with violence to condense and descend in
this manner."

There still remain many facts to be acquired before we can give a
complete explanation of these phenomena; it appears to me, that if
there are under the waters of the sea, at particular places, soils
mixed with sulphur, bitumen, and minerals, these matters may be
inflamed and produce a great quantity of air, which being newly
generated and prodigiously rarefied, ascends with rapidity, and may
raise these water-spouts from the sea to the sky; so likewise if, by
inflammation, the sulphurous matters which a cloud contains, a current
of air is formed, which descends perpendicularly from the clouds
towards the sea, all its water may follow the current of air, and form
a water-spout which will fall from the sky upon the sea; but it must
be allowed that the explanation of this kind of water-spout, no more
than that we have given of those produced by contrary winds, is not
satisfactory; and it might be asked why these kinds of water-spouts,
which fall perpendicularly from the clouds, are not as often seen on
the land as on the sea?

The History of the Academy, anno 1727, mentions a land water-spout
which appeared at Capestan, near Beziers; it descended from a cloud
like a black pillar, which diminished by degrees, and at length
terminated in a point upon the surface of the earth. It obeyed the wind
which blew from west to south-west. It was accompanied with a very
thick smoke, and made a similar noise to that of a troubled sea. It
tore up and carried away trees to the distance of forty or fifty feet,
marking its way by a large track, on which three carriages might have
passed each other. There appeared another pillar of the same kind, but
which soon joined the first; and after the whole had disappeared, a
great quantity of hail fell on the earth.

This kind of water-spout appears to be still different from the other
two: it is not mentioned to have contained water; and it seems, by what
I have related, and by the explanation given thereof by M. Andoque,
to the academy, that this water-spout was only a whirlwind, rendered
visible by the dust and condensed vapours which it contained.

In the same history, anno 1741, a water-spout is spoken of, seen on the
lake of Geneva; the upper part was inclined to a very black cloud, and
the lower, which was narrower, terminated a little above the water.
This phenomenon remained only a few minutes, and, at the moment it was
dissipated, a thick vapour was perceived at the part where it first
appeared; the waters of the lake boiled and seemed to make an effort
to rise up. The air was very calm during the whole time; and when it
disappeared neither wind nor rain ensued. "After all we are acquainted
with," says the historian of the academy, "concerning water-spouts, is
not this another proof that they are not formed by the conflict of the
winds, but almost always produced by volcanos or subterraneous vapours,
from which we know the bottom of the sea is not exempt? Whirlwinds
and hurricanes, which we commonly thought to be the cause of these
appearances, may possibly be only the effect, or an accidental event
thereof."



ARTICLE XVI.

OF VOLCANOS AND EARTHQUAKES.


The burning mountains, called volcanos, contain in their bowels,
sulphur, bitumen, and other matters of an inflammable nature, the
effects of which are more violent than that of gunpowder, or even
thunder, and have from the earliest ages terrified mankind, and
desolated the country. A volcano is an immense cannon, whose orifice is
often more than half a league: from this wide mouth are vomited forth
torrents of smoke and flames, rivers of bitumen, sulphur, and melted
metals, clouds of cinders and stones, and sometimes it ejects enormous
rocks to many leagues distance, which human powers united could not
move; the conflagration is so terrible, and the quantity of burnt,
melted, calcined, and vitrified matters which the mountain throws
out, is so great, that they destroy cities and forests, cover fields
an hundred and two hundred feet in thickness, and sometimes form hills
and mountains, which are only heaps of these matters piled up together.
The action of this fire, and the force of its explosion, is so violent,
that it produces by its re-action, succussions which shake the earth,
agitate the sea, overthrow mountains, and destroy the most solid towers
and edifices, even to very considerable distances.

These effects, although natural, have been looked upon as prodigies;
and although we see in miniature, by fire, effects nearly similar to
those of volcanos, yet there is something in grandeur, of whatever
nature it may be, that invariably strikes the imagination and
influences the mind, and therefore I am not surprised that some authors
have taken them for the vents of a central fire, and ignorant people
for the mouths of Hell. Astonishment produces fear, and fear is the
mother of superstition. The natives of Iceland imagine the roarings of
the volcano are the cries of the damned, and its eruptions the effects
of the rage of devils, and the despair of the wretched.

All its effects, however, arise from fire and smoke: veins of sulphur,
bitumen, and other inflammable matters, are found in the bowels of
mountains, as well as minerals and pyrites, which ferment when exposed
to air or humidity, and cause explosions proportionate to the quantity
of inflamed matters. This is the just idea of a volcano, and it is easy
for a philosopher to imitate the action of these subterranean fires;
for by mixing together a quantity of brimstone and iron filings, and
burying them in the earth to a certain depth, a small volcano may be
produced, whose effects will be exactly similar; for this mixture
inflames by fermentation, throws off the earth and stones with which it
is covered, and smokes, flames, and explodes like a real volcano.

In Europe are three famous volcanos, Mount Ætna, in Sicily, Mount
Hecla, in Iceland, and Mount Vesuvius, near Naples, in Italy. Mount
Ætna has burnt from time immemorial, its eruptions are very violent,
and the quantity of matter it throws out is so great that after digging
68 feet deep, marble pavements, and the vestiges of an ancient town
have been found buried under this thickness of matter, in the same
manner as the city of Herculaneum has been covered by the matter
thrown out from Vesuvius. New mouths in Ætna were opened in 1650,
1669, and at other times. We see the flame and smoke of this volcano
from Malta, about 60 leagues distance; it smokes continually, and
there are times when it vomits flames, stones, and matters of every
kind with impetuosity. In 1537, there was an eruption of this volcano,
which caused an earthquake in Sicily that continued for 12 days, and
which overthrew a number of houses and public structures; it ceased
by the opening of a new mouth, the lava from which burnt every thing
within five leagues of the mountain. The cinders thrown out by the
volcano were so abundant, and ejected with so much force, that they
were driven as far as Italy; and vessels at some distance from Sicily
were incommoded by them. Farelli says the foot of this mountain is 100
leagues in circumference.

This volcano has now two principal mouths, one narrower than the other;
smoke comes continually from them, but flames never issue but during
the time of eruptions; it is pretended that large stones have been
thrown out by them to the distance of 60,000 feet.

In 1683 a violent eruption caused a terrible earthquake in Sicily; it
entirely destroyed the town of Catanea, and killed more than 60,000
persons in that town, besides those which were destroyed in the
neighbouring towns and villages.

Hecla throws out its fires through the ice and snow of a frozen land;
its eruptions are nevertheless as violent as those of Ætna, and other
volcanos of southern countries. It throws out cinders, lava, pumice
stones, and sometimes boiling water: it is not inhabitable within
six leagues of this volcano, and the whole island of Iceland is very
abundant in sulphur. The history of the violent eruptions of Hecla are
recorded by Dithmar Bleffken.

Mount Vesuvius, according to the historians, did not begin burning till
the seventh Consulate of Titus Vespasian and Falvius Domitian; the top
being opened, it at first threw out stones and rocks, afterwards fire
and lava, which burnt two neighbouring towns, and emitted such thick
smoke that it obscured the light of the sun. Pliny the elder, desirous
of examining this conflagration nearer, was suffocated by the smoke.[I]

[I] See the Epistle of Pliny, jun. to Tacitus.

Dion Cassius relates, that this eruption was so violent, that cinders
and sulphurous smoke were driven as far as Rome, and even beyond the
Mediterranean into Africa. Heraclea was one of the two towns burned
by this first conflagration of Vesuvius, which, in these latter times
has been discovered at more than 60 feet deep, the surface above which
was become, by length of time, arable land and fit for culture. The
relation of the discovery of Heraclea is in the hands of the public,
and we can only wish that some person, versed in Natural History, would
examine the different matters which compose this soil of 60 feet,
attending to their disposition and situation, the alterations they have
produced or suffered, the direction they have taken, and the hardness
they have acquired.

There is an appearance that Naples is situate on a hollow ground,
filled with burning materials, for Vesuvius and Solfatera seem to have
interior communications. When Vesuvius casts out lava Solfatera emits
flames, and when the one ceases the other is extinguished. The city of
Naples is situate nearly between them.

One of the last and most violent eruptions of Mount Vesuvius was in the
year 1737.[J] The mountain vomited, by several mouths, large torrents
of burning metallic matters, which dispersed themselves over the
country, and flowed into the sea. Mons. Montealegre, who communicated
this relation to the Academy of Sciences, observed, with horror, one of
these rivers of fire, whose length, from the mountain to the sea, was
about seven miles, its breadth about 60 feet, its depth 25 or 30 palms,
and in bottoms or vallies 120: the matter which flowed was like the
scum which issues from the furnace of a forge, &c.[K]

[J] It should be remembered, as noticed by Mr. Smellie, that the
original of this work was published by our author in 1749, since when
Vesuvius has undergone several eruptions.

[K] See the Hist. Acad. an. 1737.

In Asia, particularly in the islands of the Indian ocean, there are
many volcanos; one of the most famous is Mount Albours, near Mount
Taurus, eight leagues from Herat; its summit continually smokes, and
it frequently throws out flames and burning matter in such quantities
that the surrounding country is covered with cinders. In the island of
Ternate there is a volcano which throws out matter like pumice-stones.
Some travellers assert that this volcano is most furious at the time of
the equinoxes, because certain winds then reign there, which inflame
the matter that feeds, and has fed this fire for a number of years.[L]

[L] See Argensola's Travels, vol. 1, page 21.

The island of Ternate is but seven leagues round, and is only the
summit of a mountain; it gradually ascends from the shore to the middle
of the island, where the volcano rises to a considerable height, to
the top of which it is very difficult to attain. Many rills of sweet
water descend along the ridge of this mountain, and when the air is
calm, and the season mild, this burning gulph is in less agitation
than during storms and high winds.[M] This confirms what I have said
in a former article, and seems to prove that the fire of volcanos does
not proceed from any considerable depth, but from the top, or at least
not far distant from the summit of the mountain; for if it was not so,
the high winds could not increase their combustion. There are other
volcanos in the Malaccas. In one of the Mauritius islands, 70 leagues
from the Malaccas, there is a volcano, whose effects are as violent as
those of Mount Ternate. Sorca island, one of the Malaccas, was formerly
inhabited. In the middle of this island there is a lofty mountain, with
a volcano at the top. In 1693 this volcano vomited bitumen and inflamed
matters in such a great quantity as to form a burning lake, and which
covered the whole island.[N]

[M] See the Travels of Schuten.

[N] See Phil. Trans. ab. vol. 11 page 391.

At Japan, and in the adjacent islands, there are several volcanos,
which emit flames during the night and smoke in the day. At the
Philippine islands there are also burning mountains. One of the most
famous volcanos of the islands in the Indian ocean, and the most
recent, is that near the town of Panarucan, in the island of Java; it
opened in 1586, and at the first eruption, it threw out an enormous
quantity of sulphur, bitumen, and stones. The same year Mount Gounapi,
in the island of Banda, which continued only seventeen years, opened
and ejected, with a frightful noise, rocks and matters of every kind.
There are also some other volcanos in India, as at Sumatra, and in the
north of Asia, but those are not considerable.

In Africa, there is a mountain, or rather a cavern, called
Beniguazeval, near Fez, which always emits smoke, and sometimes flames.
One of the islands of Cape de Verd, called the Fuogo, is only a large
mountain which burns continually; this volcano throws out cinders
and stones; and the Portuguese, who have attempted several times to
erect habitations in this island, have been constrained to abandon the
project through dread of the volcano. The Peak of Teneriffe, considered
as one of the highest mountains of the earth, throws out fire, cinders,
and large stones; from its top rivulets of melted sulphur flow across
the snow, where it forms veins that are distinguishable at a great
distance.

In America there are a great number of volcanos, particularly in the
mountains of Peru and Mexico; that of Arequipa is one of the most
famous; it often causes earthquakes, which are more common in Peru
than in any other country in the world. The volcano of Carrappa and
that of Malahallo are, according to the report of travellers, the most
considerable, next to that of Arequipa; but there are many others in
these parts of which we have no exact knowledge. M. Bouguer, in his
voyage to Peru, published in the Memoirs of the Academy of the year
1744, mentions two volcanos, called Cotopaxi and Pichincha; the first
at some distance from, the other near the town of Quito; he was witness
of a conflagration of Botopaxi in 1742, and of the orifice which was
made in that mountain; this eruption did no other damage than melting
the snow and producing such torrents of water, that in less than three
hours inundated a tract of country 18 leagues in extent, and overthrew
all they met with in their way.

At Mexico the most considerable volcanos are Popochampeche, and the
Popoatepec; it was near this last that Cortes passed in his voyage
to Mexico; some of the Spaniards ascended to the top, where they saw
the mouth, which was about half a league in circumference. Sulphurous
mountains are also met with at Guadaloupe, Tercera, and other islands
of the Azores; and, if we were to consider as volcanos all those
mountains which smoke, or emit flames, we might reckon more than sixty;
we have only spoken of those formidable volcanos, near which no person
dares to inhabit.

These volcanos which are in such great numbers in the Cordeliers, as I
have formerly said, cause almost continual earthquakes, which prevent
the natives from building with stone above one story high, and to
construct the upper stories of their houses with reeds and light wood.
In these mountains are also many precipices and large vents, the sides
of which are black and burnt, as in the precipice of Mount Ararat, in
Armenia, which is called the Abyss; these abysses are the mouths of
extinguished volcanos.

There was lately an earthquake at Lima, the effects of which were
dreadful. The town of Lima and Port Callao were almost entirely
swallowed up; but the evil was still greater at Callao. The sea rose
and covered every building in that town, drowned all the inhabitants,
and left only one single tower remaining. Of twenty-five ships that
were in this port, four were carried a league upon land, and the rest
were swallowed up by the sea. At Lima, which was a large town, there
remains only twenty-seven houses standing; a great number of persons
were buried in the ruins, particularly monks and religious persons, as
their buildings were higher and constructed of more solid materials
than the other houses. This misfortune happened at night, in October
1746; the shock remained fifteen minutes.

There was formerly near the port of Pisca, in Peru, a famous city,
situate on the sea shore, which was almost entirely destroyed by an
earthquake that happened the 19th of October 1682, for the sea having
extended beyond its common bounds, swallowed up this unfortunate place
with every person that was in it.

If we consult historians and travellers, we shall find relations of
many earthquakes and eruptions of volcanos, whose effects have been
as terrible as those we have just mentioned. Pesidonius, whom Strabo
quotes in his first book, relates, that a city in Phoenicia, near
Sidon, was swallowed up by an earthquake, with the neighbouring
territory, and even two thirds of Sidon; this effect was not so sudden
but that many of the inhabitants had time to avoid it by flight.
This shock extended throughout all Syria, and as far as the Cyclade
islands, and into Euboea, where the fountains of Arethusa suddenly
stopped, and did not reappear for many days after, and then by many
new springs remote from the old ones; that this earthquake did not
cease from shaking the island, sometimes in one part and sometimes
in another, until the earth opened in the valley of Lepanta, and
ejected a great quantity of lava and other inflamed matters. Pliny,
in his first book, chap. 84, relates, that in the reign of Tiberius an
earthquake happened which overthrew twelve towns in Asia: and in his
second book he mentions a prodigy caused by an earthquake. St. Augustin
records, that by a great earthquake there were towns overthrown in
Lybia. In the time of Trajan, the town of Antioch, and a great part of
the adjacent country were swallowed up by an earthquake; and in the
time of Justinian, in 528, it was a second time destroyed by the same
cause, with upwards of 40,000 of its inhabitants. Sixty years after,
in the time of St. Gregory, it felt the effects of a third earthquake,
when 60,000 of its inhabitants perished. In the time of Saladin, in
1182, most of the towns of Syria and Judea were destroyed by the same
calamity. In Calabria and Apulia, there have been more earthquakes
than in any other part of Europe. In the time of Pope Pius II. all the
churches and palaces of Naples were overthrown, and above 30,000 of
its inhabitants killed; the remainder were obliged to live in tents
till houses were built. In 1629, there were earthquakes in Apulia,
which destroyed 7000 persons, and in 1638, the town of St. Euphemia
was swallowed up, and there remains only a stinking lake in its place.
Ragusa and Smyrna, at the same time, were also almost destroyed. There
was an earthquake in 1692, which extended into England, Holland,
Flanders, Germany, and France; it was chiefly felt on the sea coasts
and near large rivers; it shook at least 2600 square leagues; it lasted
only two minutes, and the motion was more considerable on mountains
than in vallies.[O] On the 10th of July, 1688, there was an earthquake
at Smyrna, which began by a motion from west to east; the castle was
at first overthrown, its four walls being divided and sunk six feet in
the sea; this castle stood upon an isthmus, but is at present a real
island, about 100 paces distant from the land. The walls from east to
west are fallen down, those from north to south are yet standing; the
city, which is ten miles from the castle, was destroyed shortly after;
in many places the earth opened, and subterraneous noises were heard;
five or six shocks were felt as night came on, the last continued
only half a minute; the ships in the roads were shaken; the ground of
the town was lowered about two feet; not above a quarter of the town
withstood the shock, and those principally the houses which stood on
rocks; from 15 to 20,000 persons are computed to have been buried under
the ruins.[P] In 1695, an earthquake was felt at Bologna, in Italy, and
it was remarked as a particular circumstance, that the water was much
troubled a day before.[Q][R]

[O] See Ray's Discourses, page 272.

[P] See the Hist. of the Acad. des Sciences, anno 1688.

[Q] Ibid. anno 1696.

[R] See the Voyages of Mandelso.

At Tercera there happened an earthquake on the 4th of May, 1614, which
overthrew in the town of Angra eleven churches and nine chapels,
besides private houses; and in the town of Praya it was so terrible,
that scarcely an house was left standing. On the 16th of June 1628,
there was an earthquake in the island of St. Michael, the effects of
which was so great, that in a place where the sea was more than 150
fathoms deep an island was thrown up more than a league and a half
long, and upwards of 60 fathoms high. Another happened in 1691, in the
island of St. Michael, which began the 6th of July, and lasted till the
12th of the following month: Tercera and Fayal were agitated the next
morning with so much violence, that they appeared to move; but these
frightful shocks returned there only four times, whereas at St. Michael
they did not cease a moment for several days. The islanders quitted
their houses, which they saw fall before their eyes, and remained all
the time in the fields exposed to the injuries of the weather. The
whole town of Villa Franca was overthrown to its very foundation, and
most of the inhabitants buried under its ruins. In many parts the
plains rose into hills, and in others, mountains were flattened into
vallies. A spring of water issued from the earth, which flowed for four
days, and then ceased all on a sudden. The air and sea, still more
agitated, resounded with a noise which might have been taken for the
roaring of a number of wild animals. Many persons died with the fright;
the ships in the harbour suffered dangerous shocks, and those which
were at anchor, or under sail at 20 leagues distant from the islands,
received great damage. Earthquakes are frequent in the Azores, and
about twenty years before a mountain in St. Michael was overturned by
one of them.[S]

[S] Hist. of Voyages.

In Manilla, in the month of September, 1627, an earthquake levelled one
of the two mountains called Carvallos, in the province of Cagayon; in
1645, one third of the town was destroyed by a like accident, and 300
persons perished. The succeeding year it experienced another; and the
ancient Indians say they were more terrible formerly, which was the
reason they build their houses only of wood; a custom still continued,
and which the Spaniards follow.[T]

[T] See le Voyage de Gemelli Careri, page 120.

"The quantity of volcanos in this island confirms that assertion;
because at certain times they vomit forth flames, shake the earth, and
perform all the effects Pliny attributes to those of Vesuvius; that
is, they change the beds of rivers, drive back the adjacent sea, fill
with cinders the neighbouring plains, and throw out stones to great
distances, with reports louder than those of cannons.

"In 1646, a mountain in the island of Machian split by an earthquake,
with a dreadful noise; from this opening issued a number of flames,
which destroyed several plantations with the inhabitants and all that
was therein. In the year 1685, this prodigious crack was to be seen,
and probably is still apparent; it is called the path of Machian,
because it descends from the top to the bottom, like a road hollowed
out, but which at a distance appears like a path."[U]

[U] See the Hist. of the Conquest of the Malaccas, vol. ii. p. 318.

The history of the French Academy mentions in the following terms, the
earthquakes that took place in 1702 and 1703. "The earthquakes began in
Italy in October 1702, and continued, till July 1703; the country which
suffered the most by them, and where they began, is the town of Norcia,
with its dependencies under the ecclesiastical government, and the
province of Abruzzo, which are situated at the foot of the Apennines on
the south side.

"They were often accompanied with terrible noises in the air, which
also were heard without any dreadful effects, when the sky was serene.
The earthquake which happened on the 2d of February 1703, was the most
violent; it was accompanied, at least at Rome, with a great serenity
of sky and calmness in the air. It lasted at Rome half a minute, and
at Aquila the capital of Abruzzo three hours. It destroyed the whole
town of Aquila, buried 5000 persons under the ruins, and made great
havock in the environs. The vibration of the earth, according to the
observations made by the lamps in the churches, was from south to north.

"It opened two places from whence issued a great quantity of stones,
which entirely covered it and rendered it barren; after the stones they
threw out water above the height of the trees; this lasted half an
hour, and inundated the adjacent fields. The water was whitish, like
soap suds, and had not any remarkable taste.

"A mountain near Sigillo, a city twenty-two miles distant from Aquila,
had on its summit a very large plain surrounded with rocks like a wall.
The earthquake of the 2d of February, changed this plain into a gulph
of unequal breadth, whose greatest diameter is twenty-five fathoms and
the least twenty; the depth of it has not been discovered, although a
line 300 fathoms has been let down in it. At the time this opening was
made, flames were seen to issue out, and afterwards a great smoke which
lasted three days with some interruptions.

"At Genoa on the 1st and 2d of July 1703, there were two slight
earthquakes, the last was felt only by the people on the pier: at the
same time the sea in the port sunk six feet, and remained so a quarter
of an hour.

"The sulphurous water in the road from Rome to Tivoli it diminished two
feet and a half, both in the bason and in the canal. In many places
of the plain, called Testine, the springs and rivulets, which formed
morasses, are all dried up. The waters of the lake called l'Enfer is
also lowered three feet. In place of the ancient springs new ones have
appeared at above a league distance, so that possibly they are the same
waters which have changed direction[V].

[V] Anno 1704, page 10.

"The same earthquake which, in 1538, formed Monti di Cinere, near
Pozzoli, filled lake Lucrin with stones, earth and cinders, so that
this lake is now a marshy ground.[W]

[W] See Ray's Discourses, page 12.

"There are earthquakes also felt at some distance at sea, says Mr.
Shaw; in 1774, being on board the Gazella, an Algerine vessel, mounting
50 guns, three violent shocks were felt one after the other, as if
every time a weight of 20 or 30 tons had been thrown on the ballast.
This happened on a part of the Mediterranean that was more than 200
fathom deep. He relates also, that others had felt earthquakes much
more considerable in other parts, and one among the rest at 40 leagues
west from Lisbon."[X]

[X] See Shaw's Travels.

Schouten, speaking of an earthquake in the Malacca islands, says,
that the mountains were shaken, and the vessels at anchor in 30 or 40
fathoms water were shook, as if they had struck against rocks or banks.
"Experience, continues he, teaches us every day that the same happens
in the open sea, where no bottom is to be met with, and that ships are
tossed to and fro by earthquakes, even where the sea is tranquil."

Gentil, in his voyage round the world, speaks of earthquakes in
the following terms: "I have, says he, made some remarks on these
earthquakes; first, that half an hour before the earth is agitated
every animal is struck with fear; horses snort, break their fastenings,
and fly from the stable; dogs bark; birds, as if stupified, fly into
houses for safety; and rats and mice quit their holes. Secondly, that
vessels at anchor are so violently agitated, that every part of them
seems as if going to pieces, the cannons force themselves loose, and
the masts break in several places. These facts I should scarcely have
given credit to if many unanimous testimonies had not convinced me.
I know the bottom of the sea is a continuation of the land, and that
if one is agitated it will communicate to the other; but I could not
conceive how every part of a vessel, floating in a fluid, should be
affected in the same manner as if she was on the earth: it appeared to
me that her motion should have been such as she experiences in a storm;
besides, in the circumstance which I speak of, the surface of the sea
was smooth, and there was no wind. Thirdly, that if the cavern of the
earth, where this subterraneous fire is contained, has a direction
from north to south, and if the buildings of an adjacent town are in a
parallel line with it, all the houses are overthrown, whereas if this
vein or cavern executes its effects by the breadth of the town, the
devastation of the earthquake, is much less considerable."[Y]

[Y] See Gentil's Voyages, vol. I. page 172, &c.

In countries subject to earthquakes, when a new volcano breaks out
earthquakes cease, and are only felt in the violent eruptions of the
volcano, as is observed in the island of St. Christopher.[Z]

[Z] See Abridgement of Phil. Trans. vol. XI. page 302.

The enormous ravages produced by earthquakes have made some naturalists
think that mountains and other inequalities of the surface of the
globe were only the effects of subterraneous fires, and that all the
irregularities must be attributed to the violent shocks which they have
produced. This, for example, is the opinion of Mr. Ray; he imagines
that all mountains have been formed by earthquakes, or the explosion
of volcanos, as Monti di Cinere, the new island near Santorini, &c.
but he has not considered that the slight elevations formed by the
eruption of a volcano, or by the action of an earthquake, are not
internally composed of horizontal strata, as all other mountains are;
for by digging in the Monti di Cinere we meet with calcined stones,
cinders, burnt earths, metallic dross, pumice-stones, &c. all mixed
and confounded like a heap. Besides, if earthquakes and subterraneous
fires had produced the great mountains of the earth, as the Cordeliers,
Mount Taurus, the Alps, &c. the prodigious force necessary to raise
these enormous masses might, at the same time, have destroyed a great
part of the surface of the globe; and earthquakes, requisite to produce
such effects, must have been of inconceivable violence, since the most
famous of which history makes mention have not had sufficient power to
form a single mountain; for example, in the time of Valentian I. an
earthquake happened, which was felt throughout all the known world;[AA]
and yet not a mountain was thrown up by it.

[AA] As Ammianus Marcellinus relates, lib. 26. cap. 14.

It is nevertheless certain, that although we might be able to find an
earthquake sufficiently powerful to throw up the highest mountains, it
would not be sufficient to disorder the rest of the globe.

For supposing that the chain of the highest mountains which cross
South America from the Magellanic lands to New Grenada, and the Gulph
of Darien, had been produced by an earthquake, and then let us see by
calculations the effect of this explosion. This chain of mountains is
near 1700 leagues in length, and commonly 40 in breadth, comprehending
the Sieras, which are not so lofty as the Andes. The surface therefore
is 68,000 square leagues; I suppose the thickness of the matter
displaced by the earthquake to be about one league, that is, the
height of these mountains taken from the top to the caverns, which
according to this hypothesis must support them, is one league, then I
say, the power of an explosion must have raised a quantity of earth
equal to 68,000 cubical leagues to a league in height. Now the action
being equal to the re-action, this explosion must have communicated
the same motion to the rest of the globe. The whole globe consists of
12,310,523,801 cubical leagues, from which subtracting 68,000, there
remains 12,310,455,801 cubical leagues, the quantity of which motion
will be equal to that of 68,000 cubical leagues raised one league; from
whence we perceive that the force which will have been great enough to
elevate 68,000 cubical leagues would not have displaced the whole globe
a single inch.

There would therefore be no absolute impossibility in the supposition
that mountains have been raised by earthquakes, if their internal
composition as well as their external form were not evident proofs of
their being the work of the sea. Their internal parts are composed
of regular and parallel strata, intermingled with shells, and
their external consists of a figure whose angles are every where
correspondent: is it credible then that this uniform composition and
regular form should have been produced by irregular shocks and sudden
explosions?

But as this opinion has prevailed among some philosophers, and as the
nature and effects of earthquakes are not well understood, it may
possibly be pertinent to hazard a few ideas with a view of explaining
those intricate subjects.

The earth has undergone great changes on its surface; we find at
considerable depths, holes, caverns, subterraneous rivulets, and
void places, which sometimes communicate by chinks, &c. There are
two kinds of caverns; the first are those produced by the action of
subterraneous fires and volcanos; the action of this fire uplifts,
burns, and throws out to a distance the matters that are above, and
at the same time divides and deranges those which are on the sides,
and thus produces caverns, grottos, and irregular holes, but which
however is only effected in the environs of volcanos; and these kinds
of caverns are more rare than those produced by water. We have already
observed that the different strata which compose the terrestrial globe
are all interrupted by perpendicular fissures: the waters which fall
on the surface descend through them; collect when stopped by clay,
and form springs and rivulets; by their natural propensities they seek
out cavities or small vacancies, and always incline to open a passage
till they find a vent, carrying along with them sand, gravel, and other
matters they can divide and dissolve; by degrees, in the internal part
of the earth they form small trenches; and at last issue forth in the
form of springs, either at the surface of the earth, or bottom of the
sea; the matters which they carry along with them, leave caverns whose
extent may be very considerable, the origin of which is quite different
from those produced by volcanos or earthquakes.

There are two kinds of earthquakes, the one caused by the action of
subterraneous fires, and the explosion of volcanos which are only
felt at small distances at the time of eruptions: when the matters
which form subterraneous fires ferment, heat, and inflame, the fire
makes an effort on every side to get out, and if it does not find a
natural vent, it raises the earth above and forces itself a passage by
throwing it out; such is the beginning of a volcano whose effects and
continuation are in proportion to the quantity of inflammable matters
they contain. If the quantity of matters is not considerable, an
earthquake may ensue, without a volcano being formed. The air rarefied
by the subterraneous fire may also escape through small vents, and in
this case there will be only a shock without any eruption or volcano.
But when the inflamed matter is in great quantities and confined by
solid and compressed bodies, then a commotion and volcano is certain
to ensue; but all these commotions form only the first kind of
earthquakes, and can only shake a small space of ground. A violent
eruption of Ætna will cause, for example, an earthquake throughout
the whole island of Sicily; but it will never extend to the distance
of three or four hundred leagues. When any new mouth bursts out in
Vesuvius, there are earthquakes at Naples, and in the neighbourhood of
the volcano; but these earthquakes never shake the Alps, nor extend
into France, or other countries remote from Vesuvius. Therefore
earthquakes produced by volcanos, are limited to a small space, are
properly but the effects of the re-action of the fire; and they shake
the earth, as the explosion of a powder magazine produces a shock
perceptible at many leagues distance.

But there is another kind of earthquake very different in its effects,
and perhaps equally so in its cause; such are felt at great distances,
and shake a long course of ground, without any new volcano, or eruption
in the old ones appearing. We have instances of earthquakes being felt
at the same time in England, France, Germany, and even in Hungary;
these earthquakes always extend more in length than breadth; they shake
a zone of ground with greater or less violence in different places,
and are almost always accompanied with a rumbling noise like that of a
coach rolling over the stones with rapidity.

With respect to the causes of this kind of earthquake, it must be
remembered that the explosion of all inflammable matters produces, like
gunpowder, a great quantity of air; that this air by the heat is in a
state of very great rarefaction, and that by its state of compression
in the bowels of the earth, it must produce very violent effects. Let
us suppose, that at a depth of one or two hundred fathoms, pyrites
and other sulphurous matters are collected in great quantities, and
that by the fermentation produced by the filtration of the water, or
other causes, they inflame; what must happen? First these matters
are not placed in horizontal layers, as are the ancient strata, which
have been formed by the sediment of the waters; on the contrary, they
are formed in perpendicular fissures, in caverns, and in other places
where the water can penetrate. Inflaming, they produce a quantity of
air, the spring of which being compressed in a small space, like that
of a cavern, will not only shake the ground directly above, but will
seek out for passages by which it may escape. The roads which offer
themselves are caverns and trenches, formed by subterraneous rivulets:
into these the rarefied air will precipitate with violence, form in
them a strong wind, the noise of which will be heard at the surface,
accompanied with shocks of the earth, &c. this subterraneous wind,
produced by the fire, will extend as far as the subterraneous cavities,
and cause an agitation more or less violent as it is distant from
the vent, and finds the passages of a larger or lesser extent: this
motion being made longitudinal, the shock will be the same, and the
earthquake be felt through a long zone of ground. This air will not
produce any eruption, or volcano, because it will find sufficient space
to expand, or rather because it will have found vents, and issue forth
in form of wind and vapour. Even should it not be allowed that there
exist internal passages, by which the air and vapours can pass, it
may be conceived that in the place where the first explosion is made,
the ground being lifted up to a considerable height, that the most
adjoining to this spot must divide and split in an horizontal manner by
the force of its motion; and by this means passages communicating one
with the other may be opened to great distances; and this explanation
agrees with every phenomena. It is not at the same moment or hour that
an earthquake is felt in two distant places. Neither fire nor eruption
attend those earthquakes which are heard at a distance, and the noise
always marks the progressive motion of this subterraneous wind. This
theory is confirmed by two other facts; it is well known that mines
exhale unhealthy air and suffocating vapours, independent of the wind
produced by the current of water: it is also known that there are
holes, abysses and deep lakes in the earth, which produce winds, as the
lake Boleslaw, in Bohemia, which we have already spoken of.

All this being considered, I do not see how it can be imagined that
earthquakes produce mountains, since the cause itself of these
earthquakes are mineral and sulphurous matters, which are generally
found only in perpendicular clefts of mountains and other cavities
of the earth; the greatest number of which have been produced by the
operation of water; since this matter by inflaming produces only a
momentary explosion and a violent wind which follows the subterraneous
roads of the water: since the duration of the earthquakes at the
surface of the earth is so short that their cause can only be explosion
and not a durable fire: and in short, since these earthquakes, which
extend to a considerable distance, very far from raising chains of
mountains, do not produce the smallest hills throughout their whole
extent.

Earthquakes are, in fact, most frequent in places near volcanos, as
in Sicily and Naples, but it is known, by observations, that the most
violent earthquakes happen in the time of the greatest eruptions of
volcanos; that they are very limited, and cannot produce a chain of
mountains.

It has been sometimes observed, that the matters thrown out of Mount
Ætna, after laying for many years and afterwards moistened with
the rain, have rekindled and thrown out flames with such violent
explosions as even to produce a slight shock.

In a furious eruption of Ætna in 1669, which began the 11th of March,
the summit of the mountains sunk considerably;[AB] which proves the
fire of this volcano comes rather from the top than from the bottom of
the mountain. Borelli is of the same opinion, and says, "That the fire
of volcanos does not proceed from the centre, nor from the foot of the
mountain, but that it issues from the summit, and flames kindle but at
a small depth."[AC]

[AB] See Trans. Phil. Abridged, Vol. II. page 387.

[AC] Borelli, De incendiis Montis Etnae.

Mount Vesuvius in its eruptions, has thrown out great quantities of
boiling water. Mr. Ray, who thinks that the volcanean fire proceeds
from a great depth, says, that it is the water of the sea which
communicates by subterraneous passages with the foot of the mountain;
he gives, as a proof of it, the dryness of the summit of Vesuvius,
and the agitation of the sea at the time of these eruptions, which
sometimes retreats from the coasts, and leaves the Bay of Naples almost
dry. But, if these facts are true, they do not prove, in a solid
manner, that the volcanean fire proceeds from a great depth; for the
water which is thrown out is certainly rain water, which penetrates
through the fissure, and collects in the cavities of the mountains.
Rills and rivulets flow from those containing volcanos as well as other
lofty mountains, and as they are hollow, and have been more shaken,
it is not astonishing that the water collects in their caverns in
their internal part, and that these waters are thrown out in the time
of eruptions with other matters. With respect to the motion of the
sea, it proceeds solely from the shock communicated to the waters by
the explosion, which causes them to advance or retreat according to
different circumstances.

The matters which volcanos generally throw out, come forth in the form
of a torrent of melted minerals, which inundates all the environs
of those mountains; these rivers of liquified matters extend to
considerable distances, and in cooling form horizontal or inclined
strata, which for position are like the strata formed by the sediment
left by the waters: but it is very easy to distinguish the one from the
other. First, because strata of lava are not throughout of an equal
thickness: secondly, because they contain only matters which have
evidently been calcined, vitrified, or melted; and thirdly, because
they do not extend to any great distance. As there are a great number
of volcanos at Peru, and as the foot of most of the mountains of the
Cordeliers is covered with matters thrown out by eruptions, it is not
astonishing that marine shells are not met with there, as they must
have been calcined and destroyed by the fire; but I am persuaded, if
we dig in argilaceous earth, which, according to M. Bourguet, is the
common earth of the valley of Quito, shells would be found there, as
they are in other places, at least where the ground is not covered,
like that at the foot of the mountains, with matters thrown out of a
volcano.

It has often been asked, why volcanos are all met with at the top of
mountains? I think I have partly given a satisfactory answer to this
question in the preceding article, but I have thought it necessary not
to finish this without farther explaining what I have said on this
subject.

The peaks or points of mountains were formerly covered with sand and
earth, which the rain gradually washes along with it into the vallies,
and has left only the rocks and stone, which forms the nucleus of
the mountain. This being left bare will have been still worn by the
injuries of the air, the frost will have loosened the large and small
parts, which of course have rolled to the bottom. The rocks, at the
base of the summit, being left bare, and no longer supported by the
earth which surrounded them, will have given way a little, and by
dividing one from the other formed small intervals. This separation
of the lower rocks could not be made without communicating a greater
motion to the upper. By this means the nucleus of the mountain would
be divided into an infinity of perpendicular clefts, from the summit
to the base of the lower rocks; the rain will have penetrated into all
these clefts, and loosened, in the inside of the mountain, all the
mineral parts and other matters that it could carry away or dissolve;
they will have formed pyrites and other combustible matters, and when
by length of time these matters were accumulated in great quantities,
they fermented, and by inflaming produced explosions and other effects
of volcanos; perhaps likewise, within the mountains, there were masses
of these mineral matters already formed before the rain could penetrate
therein; in that case, as soon as holes and clefts were made, which
gave passages to the water and air, these matters inflamed and formed a
volcano. None of these motions could be made in plains, since all is at
rest and nothing can be displaced. It is not therefore surprising that
volcanos are found only in high mountains.

When coal-mines are opened, which are generally met with in argile
earth, at a great depth, it sometimes happens that the mineral
substances have taken fire: there are even mines of coal in Scotland,
Flanders, &c. which have burnt for a number of years. The admission of
the air suffices to produce this effect; but these fires produce only
slight explosions, and do not form volcanos, because all being solid
and full in these places, fire cannot be excited like that of volcanos,
in which there are cavities and void places where the air penetrates,
which must necessarily extend the conflagration and augment the action
of the fire, so as to produce the terrible effects we have just
described.



ARTICLE XVII.

OF NEW ISLANDS, CAVERNS, PERPENDICULAR CLEFTS, &C. &C.


New islands are formed either suddenly by the action of subterraneous
fires, or gently by the deposit of the sediment of waters. Ancient
historians and modern travellers relate facts on this subject which
put it beyond all kind of doubt. Seneca assures us, that in his time
the island Therasia appeared suddenly in the sea, to the astonishment
of many mariners who beheld it. Pliny relates, that formerly thirteen
islands in the Mediterranean sprung at the same instant out of the
sea, and that Rhodes and Delos are the principal of them: it appears,
from him, as well as Ammianus Marcellinus, Philo, and others, that
these thirteen islands were not produced by an earthquake, nor by
any subterraneous explosion, but that they were formerly hid under
the water, which lowering left them uncovered. Delos had the name of
Pelagia given to it, from having formerly belonged to the sea. Whether
the origin of these thirteen islands is to be attributed to the action
of subterraneous fires, or to some other cause which might occasion
a sinking of the water in the Mediterranean, is uncertain. But Pliny
relates, that the island Hiera, near Therasia, had been formed of
ferruginous masses, and earth thrown from the bottom of the sea; and in
chapter 89, he speaks of other islands formed in the like manner; but
on this subject we have more clear and certain facts of later date.

On the 23d of May 1707, at the sun's rising, there was seen, at some
little distance from the island of Therasia, or Santorini, something
like a floating rock in the sea; some persons, to satisfy their
curiosity, went towards it, and found it a shoal which had issued
from the bottom of the sea; it increased under their feet, and they
brought with them the pumice-stone and oysters, which the rock still
had attached to its surface. There was a slight earthquake at Santorini
two days before this shoal appeared: it increased considerably till
the 14th of June, it was then half a mile round, and from 20 to 30 feet
high; the earth was white, and a little argilaceous; after that the sea
became more and more troubled; vapours arose which infected the island
Santorini; and on the 16th of July several rocks were seen to issue at
one time from the bottom of the sea, and unite into one solid body.
This was accompanied with a dismal noise, which continued upwards of
two months. Flames issued from the new island, which kept increasing in
circumference and height, and the violent explosions frequently threw
large stones to more than seven miles distance. The island Santorini
itself was deemed among the ancients as a modern production, and in
726, 1427, and 1573, it increased in size, and small islands were
formed near it.[AD] The same volcano, which in the time of Seneca
formed the island of Santorini, in that of Pliny produced Hiera or
Volcanella, and in our time the shoal above-mentioned.

[AD] See the Hist. of the Acad. 1708, page 23, &c.

On the 10th of October 1720, near the island Tercera, a very
considerable fire arose out of the sea; some mariners were sent by the
order of the governor to take a view of it, and who having come near
it, perceived, on the 19th of the same month, an island which appeared
only as fire and smoke, with a prodigious quantity of ashes thrown to
a distance, as if caused by the force of a volcano, with a report like
that of thunder. An earthquake happened at the same time, which was
felt in the circumjacent places, and great quantities of pumice-stones
were observed floating on the sea around the new island; pumice-stones
indeed have sometimes been seen swimming in the midst of the high
seas.[AE]

[AE] See Phil. Trans. Abridg. vol. VI. part ii. page 254.

The historian of the academy, anno 1721, says on this event, that after
an earthquake in the island of St. Michael, one of the Azores, there
appeared between this island and Tercera a torrent of fire, which gave
birth to two new shoals; and the next year he gave the following detail:

"M. de l'Isle has informed the academy of many particulars concerning
the new island among the Azores, which he received in a letter from M.
de Montagnac, consul at Lisbon.

"Being in a vessel, which was moored the 18th of September 1721, before
the fortress of the town of St. Michael, M. de Montagnac learnt the
following account from the pilot:

"On the 7th of December 1720, at night, there was a great earthquake in
Tercera and St. Michael, which are about 18 leagues apart, and between
which a new island sprung up: it was remarked at the same time, that
the point of the island of Peak, 30 leagues distant, and which before
threw out fire, was sunk and emitted none; but the new island kept
throwing out a constant thick smoke, and which I plainly perceived
from the vessel I was in. The pilot assured us that he had gone round
the island, rowing as near it as he conceived to be safe. On the south
side he threw a line of sixty fathoms without finding any bottom; on
the west side the water was greatly changed, appearing white, blue
and green, and which extended two thirds of a league, where it seemed
ready to boil. On the north-west, the part from which the smoke issued,
he found, at 15 fathoms, a bottom of thick sand; he threw a stone in
the sea, and where it fell the water seemed to boil and bubble with
impetuosity; the bottom was so hot that it twice melted some grease
fastened at the end of the sounding line. The pilot observed also on
that side that smoke issued from a small lake bounded by a sand bank.
This island is almost round and high enough to be perceived at the
distance of seven or eight leagues in clear weather.

"It has since been learnt from a letter of M. Adrian, French consul in
the island of St. Michael, dated March 1722, that the new island had
considerably diminished, that it was almost level with the water, and
there was every appearance it would not last long."

It is therefore by these, and a great number of other facts of a
similar nature, very evident that inflammable matters are enclosed in
the earth under the bottom of the sea, and that they sometimes cause
violent explosions. The places where this happens might be termed
marine volcanos, and which differ from common volcanos only by the
shortness of the duration of their effects; for the fire having opened
itself a passage, the water must penetrate therein and extinguish it.
The elevation of new islands must consequently leave a void space which
the water would shortly occupy, and this new earth, which is only
composed of matters thrown out by the marine volcano, must resemble
that of Monti di Cinere and other eminencies which terrestrial volcanos
have formed. Now as the water rushes in, during the violence of the
explosion, and fills the vacancies that it occasions, that is clearly
the reason why these marine volcanos act less frequently than other
volcanos, although the causes of both are the same.

These subterraneous, or sub-marine fires are doubtless the cause of all
those ebullitions of the sea, which sailors have remarked in various
places, and as well as of the water-spouts we have before mentioned;
they likewise produce storms and earthquakes, which are not less
felt on the sea than on the land. Islands formed by these sub-marine
volcanos, are generally composed of pumice-stone, and calcined rocks,
and produce, like those of the land, violent earthquakes and commotions.

Fires have been often observed on the surface of the water. Pliny tells
us that the lake Thrasimenia appeared inflamed over all its surface.
Agricola relates that when a stone was thrown into the lake Denstat, in
Thuringia, it appeared, as it descended in the water, like a train of
fire.

In short, the quantities of pumice-stones which travellers affirm are
met with in many parts of the ocean, and the Mediterranean, prove
there are volcanos at the bottom of the sea, similar to those we are
acquainted with, and which differ not in the least from them, neither
by the matters they cast out, nor by the violence of the explosion, but
solely by the rarity and shortness of the duration of their effects.
From hence we may fairly infer that the bottom of the sea in every
respect resembles the surface of the earth.

We shall find many connections between land and sea volcanos; both are
found at the summit of mountains. The islands of Azores and those of
the Archipelago are only peaks of mountains, some of which rise above
the water, and others are underneath. By the account of the new islands
among the Azores we see that the part from whence the smoke issued was
only 15 fathoms under water, which, compared with the common depth of
the ocean, proves that even this part is the summit of a mountain; as
much may be said of the new island near Santorini, which could not be
any great depth, since oysters were found attached to the rocks which
rose above the water. It appears also that marine-volcanos have, like
those of the land, subterraneous communications, since the summit of
the volcano of St. George, in the island Peak, sunk at the time the new
island among the Azores arose. It must also be observed, that these new
islands never appear but near the old ones, and that we have no example
of new islands in the high seas; we must therefore look on them as a
continuation of the adjacent islands; and when ancient islands have
volcanos, it is not astonishing that the ground adjacent should contain
matters proper to form them, and which inflame, either by fermentation
alone, or by the action of subterraneous winds.

Islands produced by the action of fire and earthquakes are but few,
but there are an infinite number produced by the mud, sand, and earth,
which the rivers or the sea transport into different places. At the
mouth of rivers earth and sand accumulate in such quantities as to form
islands of a moderate extent. The sea, retiring from certain coasts,
leaves the highest parts of the bottom naked, which forms so many new
islands; so likewise the sea, by extending itself on certain shores,
covers the lowest parts, and leaves the highest, which appear as so
many islands; and thus it is we may account for there being so few
islands in the open sea, and so many bordering on the continents.

Water and fire, whose natures appear so different and so contrary,
produce many similar effects, independent of the particular productions
of these two elements, some of which bear so striking a resemblance
as to be mistaken for each other, as glass and crystal, natural and
fictitious antimony, &c. There are in nature an infinity of great
effects produced by them, which are scarcely to be distinguished.
Water, as has been observed, has produced mountains and formed most
islands, while others owe their origin to fire. There are likewise
caverns, clefts, holes, gulphs, &c. some of which owe their origin to
subterraneous fires, and others to waters.

Caverns are met with in mountains, and few or none in plains: there
are many in the Archipelago, and in other islands, because they are in
general only the tops of mountains: caverns are formed like precipices,
by the sinking of rocks, or large abysses, by the action of the fire;
for to make a cavern form a precipice or abyss, we need only suppose
the tops of adjacent rocks had fallen together and formed an arch,
which must often happen when their bottoms are shaken and dislodged by
time or earthquakes. Caverns may be produced by the same causes which
produce holes, the shaking and sinking of the earth, and which causes
are the explosion of volcanos, the action of subterraneous vapours and
earthquakes; for they occasion caverns, holes, and hollows of every
kind by their shocks and commotion.

St. Patrick's cavern in Ireland is not so considerable as it is famous;
it is the same with the Dog's Grotto in Italy; and that which throws
out fire, in the mountain of Beniguazeval in the kingdom of Fez. In
the county of Derby, in England, there is a very considerable cavern,
much larger than the famous cavern of Beauman, near the Black Forest,
in Brunswick. I have been informed by a person as respectable for his
merit as his name, Lord Morton, that this large cavern, called the
Devil's Hole, at first presents a very considerable opening, larger
than any church door; that through this opening a rivulet flows; that
in advancing the vault of the cavern becomes so low, that persons
who are desirous of continuing their road are obliged to lie flat in
a boat and be pushed through this narrow passage, where the water
almost touches the roof; but after having passed this part of the
vault, the arch rises to a considerable height, and continues so for
some distance, when it sinks again so low as to touch the water, and
where the cavern ends. The source of the rivulet which issues from it
sometimes encreases considerably: it transports and heaps up a great
quantity of sand in one part of the cavern, which is formed like a
kind of alley, whose direction is different from that of the principal
cavern.

In Carniola, near Potpechio, is a very spacious cavern, in which is
a large lake. Near Adelsperg is a cavern, in which we may travel two
German miles, and where very deep precipices are to be met with.[AF]
There are also large caverns and beautiful grottos under the mountains
of Mendip, in Wales; mines of lead are found near these caverns, and
whole oaks at fifteen fathoms deep. In the county of Gloucester there
is a very large cavern, called Pen Park-hole, at the bottom of which
there is thirty fathoms water, and mines of lead are also found.

[AF] See Act. erud. Lips. anno. 1689, page 558.

The Devil's Hole, and other caverns, from whence issue large springs or
rivulets, have plainly therefore been formed by the water, and their
origin cannot be considered as the effects either of earthquakes or
volcanos.

One of the most remarkable and largest caverns known is that of
Antiparos, a description of which is given by M. de Tournefort. We
enter a rustic cavern about thirty feet broad, divided by some natural
pillars; between two of which, on the right, the ground is on a gentle
slope, and then becomes more steep to the bottom, about twenty feet;
this is the passage to the grotto, or internal cavern, which is very
dark, and cannot be entered without stooping and the assistance of
torches. We then descend an horrible precipice by the assistance of
a rope, fastened at the entrance, into another still more frightful,
the borders of which are very slippery, with dark abysses on the left.
By the assistance of a ladder we pass a perpendicular rock, and then
continue to go through places somewhat less dangerous: but when we
think ourselves in a safe path, we are stopped short by a tremendous
obstruction, and are obliged to crawl on our hands and knees, or slide
on our back, the length of a large rock, and then descend by a ladder.
When we are at the bottom of the ladder, we still have to stumble over
pieces of rocks for some time, and then we reach the celebrated grotto.
It is computed to be three hundred fathoms deep from the surface of the
earth, appears to be forty fathoms high by fifty broad. It is filled
with large beautiful stalactites of various forms, as well from the
roof of the vault as on the bottom.[AG]

[AG] See the Voyage de Levant, page 188, and also Remarks in a Journey
from Paris to Constantinople, which contains a copious description of
this astonishing phenomenon.

In part of Greece called Livadia (the Achaia of the ancients) there
is a large cavern in a mountain which was formerly famous for the
oracles of Trophonius; it is between the lake Livadia and the adjacent
sea; at the nearest part it is about forty miles; and there are forty
subterraneous passages across the rock, through which the waters
flow.[AH]

[AH] See Gordon's Geography, 1733, page 179.

In all countries which produce sulphur, volcanos, and earthquakes,
there are caverns. The ground of most of the Archipelago islands is
cavernous; the islands of the Indian ocean, principally that of the
Malacca's, appear to be supported by vaults and cavities. The land
Azores, the Canaries, the islands of Cape de Verd, and in general
almost every small island, is in many parts hollow and cavernous;
because these islands are, as we have observed, only points of
mountains where considerable ebullitions are made, either by the action
of volcanos, of the water, of frosts, or other injuries of the weather.
In the Cordeliers, where there are many volcanos, and where earthquakes
are frequent, there are also a great number of caverns.

The famous labyrinth of the island of Candia, is not the work of nature
alone; M. de Tournefort assures us that it has evidently been greatly
enlarged by men; and most likely this cavern is not the only one which
has been augmented by human labour. Every day mines and quarries are
digging, and when abandoned for a long time, it is not easy to discover
whether they have been the productions of nature, or formed by the
hands of men. We know of quarries of considerable extent; for example
that of Maestricht, where it is said 50,000 men may conceal themselves,
and which is supported by upwards of 1000 pillars, twenty-four feet
high, and the earth and rock above is more than twenty-five fathoms
thick.[AI]

[AI] See Abridg. Phil. Trans. vol. XI. page 461.

The salt mines in Poland form still greater excavations than the above.
There are generally vast quarries near large towns. But we cannot
proceed farther in particulars; besides, the labour of man, however
great, will ever hold but a small place in the history of nature.

Volcanos and waters which produce caverns internally, form also
external clefts, precipices, and abysses. At Cajeta, in Italy, there
is a mountain which had formerly been separated by an earthquake, in
a manner so as to appear as if the division was made by the hands of
men. We have already spoken of the divisions in the island of Machian,
of the abyss of mount Azarat, of the gap in the Cordeliers, and that
of Thermopyle, &c. To these may be added, the gap in the mountain of
Troglodytes, in Arabia, which nature only sketched out, and which
Victor Amadeus caused to be finished. Water as well as subterraneous
fires produce considerable sinking of the earth, fall of rocks, and
overthrow mountains, of which we can give many examples.

"In the month of June 1714, a part of the mountain of Diableret, in
Valois, fell suddenly, and some time after, the sky being serene, it
appeared to have taken a conical figure. Fifty-three huts belonging
to the boors were destroyed, together with several people and a great
many cattle, covering a square league with the ruins it occasioned. A
profound darkness was caused by the dust; the heaps of stones thrown
together were above thirty perches in height, stopped the currents of
the water, and formed new and very deep lakes. In all this there was
not the least trace of bitumen, sulphur, lime, nor consequently any
subterraneous fire, and apparently the base of this great rock was
perished and reduced to dust.[AJ]"

[AJ] Histoire de l'Academie des Sciences, anno 1715, p. 4.

We have a remarkable example of these sinkings near Folkstone, in
the county of Kent; the hills in its environs sunk gradually by an
insensible motion, and without any earthquake. These hills internally
are rocks and chalk, and by their sinking they have thrown into the sea
rocks and earth which were adjacent to it. The relation of this fact
may be seen in the Abridgment of the Philosophical Transactions, vol.
VI. page 250.

In 1618, the town of Pleurs, in Valtelino, was buried under the rocks,
at the bottom of which it was situated. In 1678, there was a great
inundation in Gascony, caused by the sinking of some pieces of one
of the Pyrennees, which forced the water to spring forth that was
contained in the subterraneous caverns of those mountains. In 1680,
there happened a still greater in Ireland, by the sinking of a mountain
into caverns filled with water. We may easily conceive the cause of
these effects. It is well known there are subterraneous waters in an
infinity of places; these waters carry off by degrees the sand and
earth over which they pass, consequently may in time destroy the bed
of earth on which the mountain rests; and this bed of earth being more
deficient on one side than on the other, the mountain of course must be
overthrown; but if this base is worn every where alike, the mountain
will sink and not be overthrown.

Having remarked on the sinkings and other changes on the earth,
occasioned by what may be called the accidents of nature, we ought
not to pass over the perpendicular clefts found throughout the strata
of the earth: these clefts are perceptible not only in rocks and
quarries of marble and stone, but also in clays and earths of every
kind, which have never been removed. I call them perpendicular clefts,
because, like the horizontal strata, they are oblique, by accident
only. Woodward and Ray speak of these clefts, but in a confused manner;
and they do not term them perpendicular clefts, because they thought
they might be indifferently oblique or perpendicular. No author has
explained the origin of them, although it is apparent that they have
been produced, as we observed in a preceding article, by the dryness
of the matters which compose horizontal beds. In whatsoever manner
this drying happens, it must have produced perpendicular clefts; for
the matters which compose the strata could not have diminished in
size without splitting in a perpendicular direction to these strata.
I comprehend under this name of perpendicular clefts all natural
separations of rocks, as well as those which may have been occasioned
by any convulsive accident. When some considerable motion happens to
masses of rocks, these clefts are sometimes found obliquely placed,
but this is because the mass is of itself oblique, and with a little
attention it is always easy to discover that these clefts are in
general perpendicular to the horizontal strata, particularly in
quarries of marble, lime, stones, and all large chains of rocks.

Mountains internally are principally composed of stone and rocks in
parallel beds: between the horizontal beds small strata of a softer
matter than stone is found, and the perpendicular clefts are filled
with sand, crystals, minerals, metals, &c. these last matters are of
a more modern formation than the horizontal beds in which we find
sea-shells. The rains have by degrees loosened the sand and the earth
on the upper parts of mountains, and have left the stone and rocks
entirely naked, in which we readily distinguish the horizontal strata
and perpendicular clefts: in plains, on the contrary, the rain-water
and flood having brought a considerable quantity of earth, sand,
gravel, and other such matters, have formed a bed of tufa, soft and
dissoluble stone, sand, gravel, and earth, mixed with vegetables. These
beds contain no marine shells, or at least only fragments, which have
been detached from mountains, with gravel and earth. We must carefully
distinguish these new beds from the old, where almost always a great
number of entire shells are found placed in their natural situation.

If we observe the order and internal disposition of matters in a
mountain, composed, for example, of common stones, or calcinable
lapidific matters, we generally find a bed of gravel under the
vegetable earth, of the nature and colour of the stone which
predominates in this ground; and under the gravel we meet with stone.
When the mountain is divided by some trench, or deep cut, we easily
distinguish all the strata of which it is composed. Each horizontal
stratum is separated by a kind of joint, which is likewise horizontal,
and their thickness generally increase in proportion as they lower
from the summit of the mountain, and are all divided vertically by
perpendicular clefts. In common, the first stratum which is met
with under the gravel, and even the second, are only thinner than
the beds which form the base of the mountain, but are so divided by
perpendicular clefts, that pieces of any length are not to be seen:
they perfectly resemble the cracks of ground which is very dry, but go
not very far, gradually disappearing in proportion as they descend, and
towards the bottom there are no great number but where they divide
the strata in a more regular manner. These beds of stone are often
many leagues in extent, without any interruption; we almost always
meet with the same kind of stone in the opposite mountains, whether
divided by a small neck or a valley; and the beds of stone disappear
only in places where the mountain sinks and becomes level with some
large plain. Sometimes, between the first stratum of vegetable earth
and that of gravel, marl is found, which communicates its colour and
other qualities to the other two: then the perpendicular clefts of the
quarries which are beneath are filled with this marl, where it acquires
an hardness in appearance equal to that of stone, but by exposing it to
the air it crumbles, softens and becomes ductile.

In most quarries the beds of stone formed on the summit of a mountain
are soft, and those near the base are hard; the first is commonly
white, of so fine a grain as scarcely to be perceived; it becomes more
grained and harder in proportion as it descends, and the lowest stone
is not only harder than that of the upper, but it is also closer, more
compact and heavier its grain is fine and glossy, and often brittle,
and breaks as clear as flint.

The interior part of a mountain is therefore composed of different beds
of stone, the upper of which are of soft stone and the lower of hard,
and much broader at the bottom than at the top; which indeed almost
necessarily follows, for, as they become so much the harder as they
descend, it may be fairly supposed that the currents and other motions
of the water which have hollowed the vallies and given a shape to the
turnings of a mountain, will have laterally worked on the matters of
which the mountain is composed, and have worn them away in proportion
as they were hard or soft. Now the upper strata being the softest, it
will naturally have suffered the greatest diminution. This is one of
the causes to which the inclination of mountains may be attributed, and
this inclination will be still less steep in proportion as the earth
and gravel have been washed away by the rain; and for these reasons
it is, that hills and mountains composed of calcinable matters, have
an inclination much less than those composed of live rock and flint
in large masses; the last in general are of considerable heights and
nearly perpendicular, because, in these masses of vitrifiable matters,
the upper beds, as well as the lower, are of great hardness, and have
alike resisted the action of the waters.

When on the top of a hill, whose summit is flat, and of a pretty large
extent, we meet with hard stone directly under the stratum of vegetable
earth, we must remark, that what appears to be the summit, is not so in
fact, but only the continuation of some higher hill, whose upper strata
are soft stone and the lower hard; and it is the prolongation of these
last strata that we meet with again at the top of the first hill.

On the summit of mountains which are not surmounted by any considerable
height it is generally only soft stone, and we must dig very deep to
meet with hard. Banks of marble are never found but between these beds
of hard stone, which are diversely coloured by the metallic earths
which the rain introduces into the strata by filtration, and possibly
in every country where there is stone, marble would be found if dug for
to a sufficient depth; _Quoto enim loco non suum marmor invenitur?_
says Pliny. In fact it is a much more common stone than it is thought
to be, and differs from other stones only by the fineness of its grain,
which renders it more compact and susceptible of a brilliant polish;
and from which quality it took its denomination from the ancients.

The perpendicular fissures and joints of quarries are often filled
and incrusted with concretions, which are sometimes as transparent as
crystal, of a regular figure, sometimes opaque: the water flows through
the perpendicular clefts, and penetrates even the compact texture of
the stone; the stones which are porous, imbibe so great a quantity of
water, that the frost splits and divides them. The rain by filtrating
through the beds of marle, stone, and marble, load themselves with
every matter they can take up or dissolve. These waters at first run
along the perpendicular clefts, afterwards penetrate the beds of
stone, and deposit between the horizontal joints, as well as in the
perpendicular clefts, the matters they have brought with them, and form
these different congelations according to the nature of the matters
they have deposited; for example, when the water filters through marle,
chalk, or soft stone, the matters which they deposit are a very pure
and fine marle, which generally enters in the perpendicular cleft
of the rocks under the form of a porous, soft substance, commonly
very white and light, which naturalists have called _Lac lunac_, or
_Medulla Saxi_.

When these streams of water, loaded with lapidific matter, flow through
the horizontal joints of soft stone or chalk, this matter attaches
itself to the surface of the blocks of stone, and forms white, scaly,
light, and spongy crust; which some authors have named _Mineral
Agaric_, from its resemblance to Vegetable Agaric: but if the strata
are of common hard stone, proper to make good lime, the filter being
then more close, the water will issue from it loaded with lapidific
matter, more pure and homogeneous, and whose molecules uniting more
intimately, will form nearly concretions of the hardness of stone,
with a little transparency, and we shall find on the surfaces of the
blocks in these quarries, stony incrustations variously disposed, which
entirely fill up the horizontal joints.

In grottos and cavities of rocks, which may be looked upon as the
basons of perpendicular clefts, the diverted direction of the streams
of water, give different forms to the concretion which result
therefrom. They in general have the appearance of a cone attached to
the top of the vault, although they may more properly be considered
as hollow and white cylinders, formed by a concentrical surface; these
congelations sometimes descend, by drops, to the bottom, and form
pillars, and a thousand other figures, as uncouth and ridiculous as
the names which naturalists have been pleased to give them, such as,
_Stalactites_, _Stelegmites_, _Osleocollae_, &c.

When these concretic juices issue immediately from marble and hard
stone, the lapidific matter conveyed by the water being rather
dissolved than loosened, the small constituent parts take a regular
figure, and form columns, terminated by triangular points, which are
transparent and consist of oblique strata; this is called Spar, or
Spall. It is generally transparent and colourless, but when the stone
or marble, from whence it issues, contains metallic parts, this spar
is as hard as stone; it dissolves, like stone, by acid spirits, and
calcines with the same heat; therefore we cannot doubt that it is real
stone, and perfectly homogeneous. It might even be said that it is a
pure and elementary stone, under its proper and specific form.

Most naturalists nevertheless look on this matter as a direct
substance, existing independent of stone; it is the lapidific or
crystalline juice which, according to them, not only binds the parts
of common stone, but even those of flint. This juice, say they,
constantly augments the density of stones by reiterated filtrations,
and at length converts them into real flint. When this juice is fixed
in spar, it continues to receive still more pure juices, which increase
its density and hardness, so that this matter successively becomes
glass, then crystal, and at last a perfect diamond.

But if this is true, why, in whole provinces, does this crystalline
juice form only stone, and in others nothing but flint? Will they say,
that the two soils are not of a like age, and that this juice has not
had time to circulate and complete the end of its natural action? This
is not probable. Besides, from whence does this juice proceed? If it
produces stone and flints, what is it that produces this juice? It is
apparent that it has no existence independent of these matters, which
of themselves can give to the water that penetrates them a petrifying
quality, always relative to their native and specific character;
insomuch that when it filtrates through stones it forms spar, and
when it issues from flints, crystal: and there are as many different
kinds of this juice, as matters from which they proceed. Experience
perfectly agrees with this idea. The waters which filtrate through
stone quarries, generally form soft and calcinable matters like the
stones themselves; on the contrary, those which spring from rock and
flint form hard and vitrifiable congelations, which have all the
other properties of flint, as the first have all those of stone; so
the waters which have penetrated the beds of mineral and metallic
substances produce pyrites, marcasites, and grains.

We have observed, that we might divide all matters into two great
classes, vitrifiable and calcinable; clay and flint, marle and stone,
may be looked upon as the two extremes of each of these classes, the
intervals of which are filled with an almost infinite variety of the
mixt matters that have always one or other of these substances for
their basis.

The substances of the first class can never acquire the nature and
properties of the other. Stone will always be as remote from the nature
of flint, as potters earth is from marle; no known agent will ever be
capable of making them quit the combinations peculiar to their nature:
the country which produces stone and marble will remain to do so as
certainly as those wherein there is only flint and granate will never
have either stone or marble.

If we observe the order and distribution of matters in a hill composed
of vitrifiable matters, we shall commonly find, under the first bed
of vegetable earth, a bed of clay, a vitrifiable matter, analogous to
flint, and which, as I have observed, is only a decomposed vitrifiable
sand: this bed of argilaceous earth or sand answers to a bed of gravel
met with in hills composed of calcinable matters: beneath which we meet
with some beds of free-stone scarcely ever more than six inches thick,
and divided into small pieces by perpendicular clefts. Under these
beds are many others of the same matters, and also beds of vitrifiable
sand, the free-stone becomes harder and its blocks encrease in size
in proportion as we descend; underneath these we find a very hard
matter which I have called live rock, or flint in large masses, which
is so hard as to resist the file, graver, and acid spirits, more than
vitrifiable sand, and even powdered glass, on which aqua-fortis seems
to have some effect. If struck by another hard body it emits sparks,
and exhales a very penetrating smell of sulphur. This massy flint, as
I have termed it, is generally found with beds of clay, earth, coals,
and vitrifiable sand, answers to the strata of hard stone and marbles,
which serve as a base to hills composed of calcinable matters.

Water, by flowing through perpendicular clefts, and by penetrating
the strata of these vitrifiable sands, clays, and earths, becomes
impregnated with the fine and most homogeneous parts of these matters,
and forms many different concretions, such as talcs, amianthus's, and
various other substances produced by distillations through vitrifiable
matters.

Flint, notwithstanding its hardness and density, has, like common
marble and hard stone, its exudations, from whence stalactites of
different kinds result, whose varieties of transparency, colours and
configuration, are according to the nature of the flint which produces
them, and the different metallic or heterogeneous matters which it
contains. Rock crystal, all precious stones, white or coloured, and
even diamonds, may be regarded as stalactites of this kind. Flints
in small pieces, whose strata are generally concentric, are also
stalactites, or parasitical stones; from flints of large dimensions,
and most fine opaque stones, are only species of flint. Matters of
a vitrifiable kind, as we have observed, do not produce so great a
variety of concretions as those of the calcinable class; and these
concretions, produced by flints, are almost all hard and precious
stones; whereas those of the calcareous are only soft matters of no
value.

Perpendicular clefts are found in rocks of flint, as well as in those
of marble and hard stone; they are sometimes even larger there, which
proves that matter is still dryer than stone: hills, whether of
calcinable or vitrifiable matters, are supported by clay or vitrifiable
sand; these are the common and general matters of which the globe is
composed, and which I look on as the lightest parts, or the scoria
of vitrified matter, with which it is internally filled; thus all
mountains or plains have argilaceous earth or sand for their common
foundation. For example, we see that in the pits at Amsterdam and Marly
la Ville, vitrifiable sand was below every other stratum.

In most naked rocks it is observable that the sides of the
perpendicular clefts, whether broad or narrow, correspond as exactly as
those of a piece of slit wood. In the large quarries in Arabia, which
are almost composed of granate, these perpendicular separations are
very frequent; and although some are twenty or thirty yards wide, yet
the ridges exactly correspond and leave a deep cavity between them.[AK]
It is very common to find in perpendicular clefts shells broken in
half, and each piece remaining fastened to the stone on the opposite
side; which proves these shells were placed in the solid stratum, and
before the cleft was made.[AL]

[AK] See Shaw's Travels, vol. II. p. 83.

[AL] See Woodward, page 198.

In some matters the perpendicular clefts are very wide, as in the
quarries quoted by Shaw, which perhaps is the reason that they are not
so frequently met with. In the quarries of flint and granate, the stone
may be cut out in very large pieces without the smallest inconveniency,
as the obelisks and pillars seen at Rome, which are upwards of sixty,
eighty, an hundred, or one hundred and fifty feet long. It appears
that these large pillars were raised from the quarry, and that they
are to be had of any required thickness, as well as some species of
free-stone. There are other matters where these perpendicular strata
are very narrow; as in clay, marl, and chalk, and they are wider in
marble and most hard stones. Some are imperceptible from being filled
with a matter nearly similar to that of the stone itself, which
nevertheless breaks off the continuity of the stone, and are what the
workmen call hairs. I have often remarked that in marble and stone
these hairs cross the blocks entirely, and differ from particular
clefts only because their separation is not complete; these kind of
clefts are filled with a transparent matter, which is a true spar.
There are a great number of considerable clefts in the quarries of
free-stone; this proceeds from these rocks often resting on less solid
bases than marble or calcinable stones, which generally rest on clay.
There are many places where free-stone is not to be met with in large
masses; and in most quarries where it is good it lies in the form of
cubes and parallel pipedes placed on each other in a very irregular
manner, as in the hills of Fontainbleau, which at a distance appear to
be the ruins of ancient buildings. This irregular disposition proceeds
from the base of these hills being composed of sand, which permits the
rocks to sink one on the other, particularly in places that formerly
have been worked, which has occasioned a great number of clefts and
intervals between the blocks; and we may observe, in every country
where sand and free-stone abound, that there are many pieces of rock
and large stones in the middle of plains and vallies; whereas in a
country consisting chiefly of marble and hard stone, these scattered
pieces, which have rolled from the hills and mountains, are very
scarce, which proceeds only from the different solidity of the base on
which these stones rest, and from the extent of the banks of marble and
calcinable stone, which is more considerable than that of free-stone.



ARTICLE XVIII.

OF THE EFFECTS OF RAIN--OF MARSHES, SUBTERRANEOUS WOOD, AND WATER.


We have already observed that rains, and the currents of water they
produce, continually detach from the heights of mountains sand, earth,
gravel, &c. which they carry into plains, from whence the rivers
convey a part of them into the sea. Plains therefore are successively
filled, and by degrees raised higher, while mountains daily diminish.
Joseph Blancanus relates various facts on this subject, which were of
public notoriety in his time, and which prove that mountains have been
considerably lowered. In the county of Derby, in England, the steeple
of the village Craich was not visible in 1572 from a certain mountain,
on account of the height of another which intervened; in eighty or an
hundred years after, not only this steeple but every part of the church
became visible from that very spot. Dr. Plot gives a similar example of
a mountain between Sibbertoft and Ashby, in Northamptonshire. The rain
waters not only carry with them the lightest parts of the mountains, as
earth, gravel, and small stones, but even undermine and roll down large
rocks, which considerably diminish the height of them. The mountains of
Wales are very steep and high, and the fragments of these rocks are to
be seen in large pieces at their feet, which as well as all fragments
of rocks met with in vallies are the works of frosts and water. It is
not mountains of sand and earth alone which the rain causes to sink,
for they attack the hardest rocks, and carry with them large fragments
into the vallies. In a valley in Nant-phrancon, in 1685, a part of a
large rock, which rested on a narrow base, having been undermined by
the waters, fell and broke in many pieces, the largest of which, in
descending, tore up a considerable trench in the plain, and crossed a
small river on the other side of which it stopped. It is to similar
accidents we must attribute the origin of all the large stones found
adjacent to the mountains. We must recollect, as before observed, that
these large stones, scattered abroad, are more common in countries
whose mountains are composed of sand and free-stone, than in those
where their composition is marble and clay, because sand is a less
solid foundation than clay.

To give an idea of the quantity of earth which the rain detaches from
mountains and carries into the vallies, we shall quote a circumstance
related by Dr. Plot; he says, in his Natural History of Staffordshire,
that 18 feet deep in the earth a great number of pieces of money had
been found, coined in the reign of Edward IV. two hundred years before
his time, from which he concludes that the ground which is marshy has
increased above a foot in eleven years, or an inch and a twelfth every
year. A similar observation occurs with respect to some trees buried
seventeen feet deep from the surface under which medals of Julius Cæsar
were found; so the earth, brought from the top of mountains by the
waters, considerably increases the elevation of the ground of plains.

This gravel, sand, and earth which the waters from mountains convey
into plains form strata, which must not be confounded with the ancient
and original strata of the globe. In the former class must be placed
those of soft stone, gravel, and sand, the grains of which are washed
and rounded; to these may be added, the strata of stones which are
formed by a kind of incrustation; neither of which owe their origin
to the motion or sediments of the sea. In these strata of soft and
imperfect stones are found an infinity of vegetables, leaves, land and
river shells, and small bones of terrestrial animals, but never sea
shells, or other marine productions; which evidently proves, together
with their want of solidity, that these strata are formed on the
surface of the dry land; and that they are more modern than those of
marble and other stones which contain shells, and were originally
formed by the sea. All these modern stones appear to be hard and solid
when they are first hewn out, but when, exposed to the weather, the air
and rain presently dissolve them; their substance is so different from
true stone, that when reduced into minute parts, to make sand of them,
they are converted into a kind of earth or clay. Stalactites, and other
stony concretions, which Tournefort took for vegetated marble, are not
real stones, no more than those formed by the incrustations. We have
already shewn that tufa is not of ancient formation, and must not be
ranked in the class of stones. Tufa is an imperfect matter, differing
from stone or earth, but which derives its origin from both by the
means of rain water, as incrustations derive theirs from the deposit
of the water of certain springs; therefore the strata of these matters
are not ancient, nor been formed like the rest, by the sediments of
the sea. The strata of turf are also modern, and have been produced by
the successive assemblage of leaves and other perishable vegetables,
and which are only preserved by a bitumous earth. Among these modern
strata we never meet with any marine production; but, on the contrary,
many vegetables, bones of land animals, and land and river shells, as
may be seen in the meadows, near Ashby, in the county of Northampton,
where a great number of snail shells, plants, herbs, and many river
shells are found all in good preservation, some feet deep in the earth,
but not a single marine shell among them.[AM]

[AM] See Philosophical Trans. Abridg. XI. page 271.

These new strata have been formed by the water which runs on the
surface of the earth, often changing situation and dispersing on
every side. Part of these waters penetrate internally and flow across
the clefts of rocks and stones; and the reason we meet with no water
in high lands, no more than on the tops of hills, is, because all
elevations are generally composed of stone and rocks, therefore to
find water we must dig through the rock till we come to clay, or firm
earth, on which these rocks stand, and we shall not meet with any water
until the stone is pierced to the bottom: therefore, when the thickness
of the rock, which must be pierced, is very considerable, as in lofty
mountains, where they are often upwards of 1000 feet in height, it
is impossible to dig to their base, and of course to have any water.
There are even large parts of land where there is not any water, as in
Arabia Petrea, which is a desert where no rain ever falls, where the
scorching sand covers the whole surface of the earth, where there is
scarcely any vegetable soil, where the few plants found are sickly, and
where springs and wells are so very scarce that only five are reckoned
between Cairo and Mount Sinai, and the water of them is salt and bitter.

When the waters on the surface cannot find vent to flow they form
marshes and fens. The most famous marshes in Europe are those of
Muscovy, at the source of the Tanais; and those of Savolaxia and
Enasak, in Finland; there are also some in Holland, Westphalia, and
other low countries: in Asia are the marshes of the Euphrates, of
Tartary, and of the Palus Meotis; nevertheless there are fewer of them
in Asia and Africa than in Europe but America may be said to be but one
continued marsh throughout all its plains, which is a greater proof of
the modern date of the country, and of the small number of inhabitants
than of their want of industry.

There are very great bogs in England, especially near the sea in
Lincolnshire, which has lost much ground on one side and gained it on
the other. In the ancient ground a great number of trees are found
buried below the new ground, which has been deposited there by the
water. The same also are met with in Scotland, particularly at the
mouth of the river Ness. Near Bruges, in Flanders, in digging to the
depth of 40 or 50 feet, a great quantity of trees were found, as close
to each other as in a forest: the trunks, branches, and leaves, were
so well preserved that the different kinds were easily distinguished.
About 500 years since, the land where these trees were found was
covered by the sea, and before that time there is no trace or tradition
that it ever existed; nevertheless it must have been so, when these
trees stood and vegetated; therefore this ground, which formerly was
covered with wood, has been overwhelmed by the sea, the waters of
which has, by degrees, deposited there between 40 and 50 feet of earth
upon the former surface, and then retired. A number of subterraneous
trees have been also found at Youle, in Yorkshire, 12 miles below
the town, near the river Humber; there are some large enough for
building; and it is said, perhaps improperly, that this wood is as
durable as oak. The people cut them into long thin slips, and sell
them in the neighbouring towns, where they are used for lighting of
pipes. All these trees appear broken, and the trunks are separated from
the roots as if they had suffered the violence of a hurricane, or an
inundation. This wood greatly resembles willow, it has the same smell
when burnt, and makes charcoal exactly like it.[AN] In the Isle of Man
there is a marsh six miles long by three broad, it is called Curragh;
subterraneous trees, like willows, are found there, and although
they are 18 or 20 feet high, they are, nevertheless, firm on their
roots.[AO] Trees are met with in almost every morass, bog, and marsh,
in Somerset, Chester, Lancaster, and Stafford. There are some places
where trees are found under the earth, which have been cut, sawed,
squared, and worked by the labour of man; and even wedges and saws have
likewise been found by them. Between Birmingham and Bromley, in the
county of Lincoln, there are lofty hills of fine light sand, which the
rain and wind sweep away, leaving uncovered the roots of large willow
trees, on which the impression of the axe is exceedingly plain. These
hills, without doubt, have been formed like downs, by the accumulation
of sand, which the waters of the sea has brought there and deposited at
different periods. A great number of these subterraneous trees are also
found in the marshy lands of Holland, Friesland, and near Groningen,
from whence the turfs which they burn are dug.

[AN] See Philosophical Transactions, No. 228.

[AO] See Ray's Discourses, page 232.

In the earth are found trees of almost every kind, as willows, oaks,
firs, aspins, beach, yew, ash, hawthorn, &c. In the fens of Lincoln,
along the river Ouse, and in Hatfield-Chace, in the county of York,
these trees are as straight as we see them in a forest. The oaks are
very hard and used in buildings; they are said to last a long time,
but which I must doubt, as all trees that are dug out of the earth,
at least all those which I have seen, whether oak or others, lose, in
drying, all the solidity, which they appeared to have at first. The ash
is tender, and soon crumbles to dust. There are many trees which have
clearly been shaped and sawed by men, and the hatchets, sometimes found
near them, resemble, in form, the knives anciently used in sacrifices.
Besides trees, nuts, acorns, &c. are met with in great quantities, in
many other fenny parts of England and Ireland, as well as the morasses
of France, Sweden, Savoy, and Italy.[AP]

[AP] See Transactions Philosophical Abridg. Vol. IV, page 218, &c.

In the city of Modena, and four miles round, whatever part of the earth
is dug, to the depth of sixty-three feet, and then bored five more with
an auger, the water springs out with such great force, that the well
is filled instantly; and this water continues always the same, neither
diminishing nor increasing by rain nor draught. What is more remarkable
in this ground, when we reach the depth of fourteen feet, we find the
ruins of an ancient town, as paved streets, houses, different pieces of
mosaic work, &c. After this is a very solid ground, which appears to
have never been stirred; yet below it we find a moist earth mixed with
vegetables; and at twenty-six feet entire trees, as filberds with nuts
thereon, and a great quantity of branches and leaves. At twenty-eight
feet is a stratum of chalk mixed with shells, and this bed is eleven
feet in thickness; after this we again meet with vegetables; and so on
alternatively to the depth of sixty-three, feet, when there is a bed
of sand mixed with gravel and shells, like those formed on the coasts
of the Italian sea; these successive beds are always met with in the
same order, wheresoever it has been dug, and very often the auger
meets with large trunks of trees, which the workmen bore through with
much labour. Bones of animals, coals, flint, and pieces of iron are
also found. Ramazzini, who relates these circumstances, thinks that
the gulph of Venice formerly extended beyond Modena, and, that by the
sediments of rivers in the course of time, assisted perhaps by the
inundations of the sea, this ground has been formed.

I shall no longer dwell on the varieties in the formation of modern
strata, it suffices to have shewn that they have been produced by no
other causes than the running and stagnate waters, which are upon the
surface of the earth, and that they are neither so hard nor solid as
the ancient strata which are formed under the waters of the sea.



ARTICLE XIX.

OF THE CHANGES OF LAND INTO SEA AND SEA INTO LAND.


By what has been said in the Articles I, VII, VIII, and IX, it appears
that great and general changes have happened to the terrestrial globe;
and it is as certain, from what we have related in other articles, that
the surface of the earth has undergone particular alterations. Although
the order, or succession, of these particular alterations is not
perfectly known, yet we are acquainted with the principal causes; we
can even distinguish their different effects; and if we could collect
all the facts, which Natural and Civil History furnishes on the subject
of the revolutions which have happened to the surface of the earth, we
do not doubt but that the Theory of the Earth which we have, laid down
would receive additional support.

One of the principal causes of these alterations is the motion of the
sea; a motion it has endured from the earliest ages; for since the
sun, moon, earth, waters, air, &c. have existed from the time of the
creation, the effects of the tides, the motion of the sea from east to
west, as well as that of the winds and currents, must have been felt
for the same space; and if even we should suppose the axis of the globe
had formerly another inclination, and that the continents, as well as
the sea, had another disposition, it does not destroy the motion of
flux and reflux, nor alter the cause and effects of the winds: it is
sufficient that the immense quantity of waters, which fill the vast
space of the sea, is found in some part on the globe of the earth, for
wherever they had been collected they would have still been subject to
the same motions, and produced similar effects.

When it was once supposed that our continent was formerly the bottom of
the sea, there was soon no doubt remaining thereon. The devastations
of the sea, which are every where to be met with; the horizontal
situation of the strata of the earth; and the correspondence of hills
and mountains, appear as so many convincing proofs; for by examining
the plains, vallies, and hills, we clearly perceive that the surface of
the earth has been formed by the waters. It is equally evident, when
we look into the interior parts of the earth, that those stones which
contain sea-shells, have been formed by the sediments of the waters,
since the shells are found filled with the same matter as that which
surrounds them; and lastly, by reflecting on the corresponding angles
of opposite hills, we cannot doubt that their directions are the works
of the currents of the sea. It is true, that since the earth has been
left uncovered, the original form of the surface has been constantly
changing; the mountains have diminished in height; the plains have been
elevated; the angles of hills become more obtuse; many matters washed
away by floods, or rivers, have taken a round shape; beds of gravel,
soft stone, &c. have been formed; but the essential matter is still
remaining, the ancient form is still apparent, and I am persuaded that
all the world may be convinced by their own inspection of what has been
advanced on this subject; and whoever attends to the observations and
proofs I have given, will not doubt, the earth was formerly covered
by the waters of the sea, and that it is the currents of the sea which
have given to the surface of the earth, the form we at present perceive.

The principal motion of the sea is, as we have already observed, from
east to west. It also appears that the sea has gained above 500 leagues
of ground on the eastern coasts of both the old and new continents; for
the proofs of which we refer to those given in Article XI. and shall
only add thereto, that all straits which join two seas, are directed
from east to west; the straits of Magellan, Frobisher, of Hudson,
of Ceylon, and those of the seas of Corea and Kamtschatka have all
this direction, and appear to have been formed by the currents of the
waters, which being impelled from east to west, opened these passages
in the same direction, and in which they preserve a more considerable
motion than in any other; for in these straits there are high and
violent tides, whereas in those situated on the western coasts,
like that of Gibraltar, Sund, &c. the motion of the tides is almost
insensible.

The inequalities of the bottom of the sea change the direction of the
water's motion; they have been successively produced by the sediments
of the water, and by matters transported by the tides or other motions;
for we do not consider the motion of the tides as the sole cause of
those inequalities, but only as the principal and first, because it
is the most constant and acts without interruption; the action of the
winds is another cause; the action of which beginning at the surface,
extends to considerable depths, as is plain from the matters that are
loosened and thrown up by a storm from the bottom of the sea, and which
never happens but in tempestuous weather.

We have already mentioned that between the tropics, and even some
degrees beyond them, an east wind continually blows; this wind, which
contributes to the general motion of the sea from east to west, is as
ancient as the flux and reflux, since it depends on the rarefaction
of the air, produced by the heat of the sun. Here then are two united
causes of motion, the greatest of which is near the equator. The first,
the tides which are more sensibly felt in southern latitudes: and the
second, the east wind which blows continually in the same climates.
These two causes have concurred, ever since the formation of the globe,
to produce a motion in the waters from east to west, and to agitate
them more in that part of the globe than in all the rest. It is for
this reason that the greatest inequalities of the surface of the globe
are found between the tropics. The part of Africa, comprehended between
these two circles, is only a group of mountains whose different chains
extend for the most part from east to west, as is evident from the
direction of the great rivers of this part of the world; it is the same
with those parts of Asia and America which are comprised between the
tropics.

From the combination of the general motion of the sea from east to
west, with the flux and reflux of the currents, and the winds, an
infinite number of different effects has resulted, both on the bottom
of the sea, and on the coasts. Varenius says, it is very probable that
the gulphs and straits have been formed by the reiterated efforts of
the ocean against the land; that the Mediterranean sea, the gulphs of
Arabia, Bengal, and Cambay, have been formed by the eruption of the
waters, as well as the straits between Sicily and Italy, between Ceylon
and India, between Greece and Euboea, and that it is the same with
respect to the straits of the Manillas, Magellan, &c. that one proof
of these eruptions, and that the sea has forsaken different lands is,
that but few islands are to be met with in the great seas, and never
a great number of islands close to each other; that in the immense
space occupied by the Pacific sea, not above two or three small islands
are to be found towards the middle of it; that in the vast Atlantic
ocean, between Africa and the Brazils, we only find the small islands
of St. Helena and Ascension; but that all islands are near the great
continents, as those of the Archipelago, near the continents of Europe
and Asia, the Canaries, near Africa, all the islands of the Indian sea,
near the eastern coast of Asia; the Antille islands, close to that of
America, and that only the Azores lie at any great distance in the sea
between Europe and America.

The inhabitants of Ceylon say, that their island was separated from
the peninsula of India by an eruption of the ocean; and this popular
tradition is very probable. It is also imagined the island of Sumatra
has been separated from the continent, and the great number of shoals
and sand banks are a strong proof of it. The Malabars assert, that
the Maldivian islands formed a part of the continent of India, and in
general it may be reasonably supposed that all the eastern islands
have been divided from the continents by eruptions of the ocean.[AQ]

[AQ] See Varenius Geography, page 203, 217, and 220.

There is an appearance that formerly the island of Great Britain
was part of the continent, and that England was joined to France;
the similarity of the stones on the two coasts, and the narrowness
of this strait seem plainly to indicate it. By supposing, says Dr.
Wallis, "that England formerly communicated with France, by an isthmus
between Dover and Calais, it must follow that the sea would be carried
against both sides of it with great violence by the tides twice in
every twenty-four hours, the German ocean, which is between England
and Holland, striking of it on the eastern side, and that of France on
the west, would be sufficient in time to wear away so narrow a neck
of land, as we have supposed. The tides acting with great violence,
not only against this isthmus but also against the coasts of France
and England, must have washed away a great quantity of sand, earth,
and clay, from every part against which the sea was forced: but, being
stopt in its course, it would not deposite, as might be supposed, their
sediments against this isthmus, but transported them into the great
plain that now forms Romney Marsh, which is eight miles long by four
broad; for whosoever has seen this plain, cannot doubt but that it
was formerly covered with the sea, as it would be still overflowed by
spring tides if it was not for the Dikes of Dimchurch."

The German sea must have acted in the same manner against this isthmus,
and the coasts of England and Flanders would convey its sediments into
Holland and Zealand, the ground of which, though formerly covered
with water, is now forty feet above. On the coast of England, the
German sea must have filled up that large valley, where the river
Stour actually flows for more than 20 miles, beginning at Sandwich,
passing Canterbury, Chatham, Chilham as far as Ashford. At this place
the ground is much higher than it was formerly, since at Chatham the
bones of an hippopotamus were found seventeen feet deep in the earth,
together with anchors and marine shells.

It is very probable the sea may form new land, by bringing and
depositing, at particular places, sand, earth, mud, &c. for in the
island of Orkney, which is adjacent to Romney Marsh, there was a tract
of low land continually in danger of being inundated by the river
Rother; but in less than 60 years this ground has been considerably
elevated by quantities of earth and mud being brought thither every
tide, and the channel through which it enters, in less than fifty years
has deepened so much as to admit of the reception of large vessels,
whereas at that time it was a ford over which people might pass.

In this manner, the sand bank was formed which extends obliquely from
the coast of Norfolk to that of Zealand. This bank forms that part
where the tides of the German and French sea meet, since the isthmus
has been broken, and where the earth and sand are deposited which are
washed away from the coasts; nor is it by any means improbable but that
in the course of time this bank may become an isthmus.[AR]

[AR] See Abridgment of Philosophical Transactions, vol. II. page 227.

There is a great appearance, says Ray, that the island of Great Britain
was formerly joined to France, and formed part of that continent: but
it is not known whether its separation was caused by an earthquake,
an eruption of the ocean, or by the labour of man; but that this
island formed part of the continent is evident, from the rocks and
coasts of both being of the same nature, composed of the same matters,
and exactly of the same height; the length of the rocks, along these
coasts, are also nearly the same, about six miles on either side. The
little breadth of the channel, which in this part is not more than
twenty-four English miles, and its shallowness, comparatively with the
neighbouring sea, is another reason to suppose that England has been
divided from France by accident. We may add to these proofs, that there
were formerly wolves and bears in this island; it is not to be presumed
that they could swim over, nor that men transported such destructive
animals; for in general we find the noxious animals of the continent
in the adjacent islands, and never in those which are separated from
them by a great distance; as the Spaniards remarked when they landed in
America.[AS]

[AS] See Ray's Discourses, page 208.

In the reign of Henry I. King of England, a great inundation happened
by an eruption of the sea in part of Flanders. In 1446 by a like
eruption 10,000 persons were drowned in the territory of Dordrecht, and
more than 100,000 round Dullart, Friezeland, and in Zealand. In these
last two provinces upwards of 300 villages were overflowed; the tops of
their towers and steeples are still to be seen rising out of the water.

From the coasts of France, England, Holland and Germany, the sea has
retreated in many parts. Hubert Thomas relates, in his description
of Liege, that the sea formerly surrounded the walls of the city of
Tongres, which is now more than 35 leagues distant from it; this he
proves by many eligible reasons, and, among others, he says; that in
his time the iron rings, to which the ships were moored, were to be
seen remaining in the walls. We may likewise look on as lands deserted
by the sea, the fens of Lincoln in England, Provence in France, and
which has also very considerably retreated from the mouth of the Rhone
since the year 1665. In Italy a considerable tract of land has been
gained at the mouth of the Arno; and Ravenna, formerly a sea-port, is
no longer a maritime town. Holland appears to be an entire new country,
where the surface of the earth is almost on a level with the sea,
although the land is considerably elevated by the daily deposit of
mud and earth from the Rhine, Maese, &c. for it was formerly computed
that the ground of Holland was, in many places, 50 feet lower than the
bottom of the sea.

It is asserted, that in the year 860, a furious tempest drove on the
coast so great a quantity of sand that it shut up the mouth of the
Rhine, near the Cat, and that this river inundated the whole country,
tore up trees and houses, and, at last, emptied itself into the
channel of the Maese. In 1421 another inundation separated the town
of Dordrecht from the main land, submerged 72 villages, many castles,
and drowned 100,000 souls, beside a great number of cattle. The dyke
of Yssel was broken in 1638 by the ice brought down by the Rhine,
which, having shut up the passage of the water, made an opening of some
fathoms, and a great part of the province was overflowed before the
breach could be repaired. In 1682 there was a similar inundation in
the province of Zealand, which destroyed upwards of 30 villages, and
drowned a considerable number of people and cattle, from their being
surprised by the waters in the night. It was a fortunate circumstance
for Holland that a south wind opposed the inroad of the sea, for it
was so greatly swelled that the water was 18 feet higher than the
highest ground of the province.[AT]

[AT] See the Historical Voyages of Europe, vol V. page 70.

At Hithe, in the county of Kent, the harbour has filled up in defiance
of every expence and precaution that was made to prevent it. A
surprising number of sea-shells, &c. are met with for several miles
round, which were formerly heaped together, and which are now covered
by earth, and are beautiful meadows. On the other side the sea has
gained in several places, as for instance, the Goodwin Sands, which was
an estate belonging to an Earl of that name, but at present is no more
than sand covered by the waters of the sea: thus the sea in many places
gains on the land and loses in others, according to the different
situation of the coasts, and other circumstances.[AU]

[AU] See Abridg. Philosophical Trans. vol. IV. p. 234.

On Mount Stella, in Portugal, is a lake in which the wrecks of ships
have been found, notwithstanding this mountain is more than 12
leagues from the sea.[AV] Sabinius, in his Commentaries on Ovid's
Metamorphoses, says, that in the year 1460 a ship, with its anchors,
was found in a mine of the Alps.

[AV] See Gordon's Geography, page 149.

It is not in Europe alone we meet with these vicissitudes of land into
sea and sea into land; other parts of the world might furnish more
remarkable, and in a greater number, if investigated with precision.

Calecut was formerly a famous city and the capital of a kingdom of that
name; at present it is only a trifling town, meanly built, and but
thinly inhabited: the sea, which for a century has gained greatly on
this coast, has overflowed the greatest part of the old city, with a
beautiful fortress of stone which was therein. Vessels at present moor
on their ruins, and the port is filled with a great number of shoals,
and on which ships are frequently wrecked.[AW]

[AW] See Letters Edifiantes Recueil 11. page 187.

The province of Jucatan, a peninsula in the gulph of Mexico, was
formerly a part of the sea. This neck of ground extends 100 leagues in
length, and is not more than 25 leagues at its greatest breadth. The
air is perfectly hot and moist. Although there are neither rivulets nor
rivers throughout so long a space, the water is every where so nigh the
surface as to furnish plenty; and, by opening the earth, so great a
number of shells are found as to leave no doubt that this great extent
may be regarded as a place which formerly was part of the sea.

The inhabitants of Malabar pretend that formerly the Maldivian islands
were attached to the Indian continent, and that the violence of the
sea has divided them from it. The number of these islands is so great,
and some of the channels, which separate them, are so narrow, that
the boltsprits of vessels which pass them tear off the leaves of the
trees on each side, and in some places an active man, by holding by the
branch of a tree, may leap into another island.[AX]

[AX] See the Dutch Travels to the East-Indies, page 274.

The cocoa-trees, which are at the bottom of the sea, is a proof that
the Maldivians were formerly part of the continent: cocoa-nuts are
often detached from them and thrown on the shore by a storm.

It is imagined that the island of Ceylon was formerly united to the
continent, and that the currents, which are extremely rapid in many
parts of India, have divided that as well as Rammanakoil, and many
other islands.[AY] However, it is certain that the island of Ceylon
has lost 30 or 40 leagues of ground towards the north-west side, which
the sea has gained.

[AY] See the Dutch Travels to the East-Indies, vol. II. p. 486.

It appears that the sea has recently forsaken a great part of the
projecting lands and islands of America. We have just observed, that
the ground of Jucatan is filled with shells. It is the same with the
low lands of Martinico and the other Antille islands. The inhabitants
have termed the earth below the surface lime, because they make
their lime with these shells, considerable banks of which are found
immediately under the vegetable earth. In the new voyages to the
islands of America it is said, "lime, which is found in the land of
Guadaloupe, when the earth is turned up, is of the same kind as that
drawn out of the sea, the reason of which is difficult to be assigned.
Might it not be possible, that all the extent of ground, which composes
this island, was, in former times, only a high ground filled with
lime-plants, which having grown and filled the void spaces that were
occupied by the water, have raised up the ground, obliged the water
to retire, and leave all the superficies dry? This conjecture, as
extraordinary as at first it may appear, has, nevertheless, nothing
impossible in it; and if the people who reside there were to dig in
different parts of the earth they would discover what the real soil is,
and by that means destroy or strengthen my conjecture."

There are some lands which are sometimes covered with water and
sometimes uncovered, as many islands in Norway, Scotland, Maldivias,
the gulph of Cambaya, &c. The Baltic has, by little and little, gained
a great part of Pomerania, and covered and destroyed the famous port of
Vineta. So likewise the sea of Norway has projected into the continent,
and formed many small islands. The German sea has projected into
Holland near Cat, insomuch that the ruins of an ancient citadel of
the Romans, which was formerly on the coast, are now very far in the
sea. The marshy grounds in the Isle of Ely, in England, and those in
Provence, in France, are, on the contrary, as we have observed, land
which the sea has abandoned. Downs have been formed by the sea-winds,
which have thrown and accumulated earth, sand, shells, &c. on the
shore. For example, on the western coast of France, Spain, and Africa,
durable and violent westerly winds reign, which impel the waters
towards the shore with great impetuosity, and on which coasts downs are
very frequent. In the like manner the easterly winds, when they remain
any long time, so strongly drive the waters from the coasts of Syria
and Phoenicia that the chain of rocks, which are covered with water
during the westerly winds, are left quite dry. Thus downs are never
composed of stone, or marble, like mountains formed in the bottom of
the sea, because they have not been long enough under the water. In our
discourse on minerals we shall shew that the sea possesses the power
of petrifaction, and that the stones formed in the earth are quite
different from those formed in the sea.

When I had just finished my Theory of the Earth, which I composed in
1744, I received from Mons. Barrere, his dissertation on the origin of
figured stones, and I was pleased to find myself of the same opinion
with this able naturalist, on the subject of the formation of downs,
and the time the water remained on the earth which we inhabit; he
recounts many alterations which have happened to the sea coasts:
"_Aiguis-mortes_, which is now more than a league and a half from the
sea, was a port in the time of St. Louis: Psalmodi was an island in
815, and at present it is inland two leagues from the sea. It is the
same with respect to Maguelone. The greatest part of the vineyards of
Agde, was forty years ago covered by the sea: and in Spain the sea
has considerably retreated within a short space of time from Blancs,
Badalona, the mouth of the river Vobregat, Cape Tortosa, along the
coasts of Valentia, &c.

"The sea may form hills and mountains in many different manners;
first, by the transportations of earth, sand, and shells, from one
place to another; secondly, by depositing sediments, consisting of
small particles detached from the coasts and bottom, and which it
might have transported from a considerable distance; and lastly, by
sand, mud, and other articles, which the sea winds often drive against
coasts, downs and hills may be produced, which the water forsaking,
by degrees, become parts of the continent." The downs of Flanders and
Holland are of this kind, being only hills composed of sand and shells,
which the sea winds have driven towards the land. Mons. Barrere quotes
another example which merits a place in this work. "The sea, by its
motion, detaches from its bottom an infinity of plants, shells, slime,
and sand, which the waves and winds continually drive towards the
shore. Now, all these different operations must continually form new
strata, elevate the beds of earth, gradually raising downs and hills,
retrenching the bounds of the ocean, and by that means extending the
lands on the continents."

"It is visible that new strata have been successively formed by the
same reiterated motion of the waters from the deposition of sediments
and other constant causes from time immemorial; of which I find strong
proofs in the different beds of fossils, shells, and other marine
productions found in Roussillon near the village of Naffiac, about
seven or eight leagues from the sea; these beds of shells which are
inclined from the west to the east, and in different angles, are
separated from each other by banks of sand and earth, are sometimes
from one and a half to two or three feet in thickness. They appear
as if sprinkled with salt in dry weather, and form together hillocks
from twenty-five to thirty fathoms in height: now a long chain of
hills of such an height can only be formed gradually, and at different
successions of time. Such might be the effect of an universal deluge,
which must have disturbed all nature; but which could not have given a
regular form to these different beds of fossil shells, but would have
jumbled them together without any order or regularity."

On this subject I am perfectly of the same opinion as M. Barrere,
excepting as to the formation of mountains, which I cannot agree
ought to be entirely attributed to the causes which occasion the
ocean to gain upon the land on some parts, and lose it upon others.
As I am, on the contrary, of opinion, I could produce many convincing
arguments to prove that most of the eminencies seen on the surface of
the earth have been actually formed in the sea itself. First, because
they have a correspondence of saillant and returning angles, which
necessarily implies the cause we have assigned, that is, the motion of
the currents. Secondly, because downs and hills, which are formed by
the materials that the sea brings on its shores, are not composed of
marble and hard stone, like common hills; the shells also in the former
are generally only fossils, whereas in the latter, the petrifaction is
compleat; besides the beds of earth are not so horizontal in downs
as in the hills composed of marble and hard stone, but are more or
less inclined, as in the hills of Naffiac, whereas in the hills and
mountains, formed under the water by the sediment of the sea, the
strata are always parallel, and very often horizontal, and the shells
and other marble are entirely petrified. I have no doubt of proving
that marble and other calcinable matters, which are almost all composed
of madrepores, astroites, and shells, have acquired their hardness and
perfection at the bottom of the sea; on the contrary, gravel, soft
stones, incrustations, stalactites, &c. which are also calcinable and
found in the earth, and formed since our continent has been discovered,
cannot acquire this degree of hardness and petrifaction which marble or
hard stones have.

In the history of the French Academy for 1708, may be seen the
observations of Saulmon, on the subject of the galets found in many
places. These galets are round and flat flints very smooth, and which
are cast on the shores by the sea. At Bayeux, and at Prutel, which
are a league from the sea, we find them in digging wells or pits. The
mountains of Bonneuil, Broie, and Quesny, which are eighteen leagues
from the sea, are all covered with galets; they are also found in the
valley of Clermont in Beauvois. M. Saulmon likewise relates, that a
hole, 16 feet deep, was bored horizontally into the beach of Tresport,
which is soft earth, and that it entirely disappeared in 30 years: so
that if the sea always encroaches alike, it would gain half a league in
12,000 years.

The motions of the sea are therefore the principal causes of the
alterations which have happened, and which daily happen on the surface
of the globe. But there are many, other causes, which, though less
considerable, contribute to those changes. Running waters, rivers,
streams, the melting of snow, torrents, frosts, &c. have occasioned
many changes; the rains have diminished the height of mountains; rivers
and rivulets have raised plains, and stopped up the sea at their
mouths; the melting of snow, and torrents, have dug hollows in vallies;
and the frosts have split rocks and separated them from their former
stations. We might quote an infinity of examples on the alterations
these causes have occasioned. Varenius says, that rivers convey into
the sea great quantities of earth, which they deposit at a greater or
less distance from the coasts, according to the rapidity of their
currents; these earths fall to the bottom of the sea, and, at first,
form those small banks which daily encrease, become shoals, and, at
last, form islands, which are fertile and inhabitable. This is the
manner in which the islands of the Nile are formed, as well as those
of St. Laurence, the Isle of Landa, situate on the coast of Africa,
near the mouth of the river Coanza, the island of Norway, &c.[AZ] To
these may be added the island of Trong Ming, at China, which has been
gradually formed by the earth that the river Nankin has brought and
deposited it at its mouth. This island is more than 20 leagues long by
five or six broad.[BA]

[AZ] See Varenni Geograph. page 214.

[BA] See Letters Edifiantes, Recueil xi. page 234.

The Po, Trento, Athesis, and other rivers of Italy, bring with them
great quantities of earths into the lakes of Venice, especially during
the time of inundations, which, in course of time, must fill them
up. In many places they are now dry at low water, and, excepting the
canals, which are kept up at a great expence, have no depth of water.

At the mouths of the Nile, the Ganges, the Indus, the Plata, the
Nankin, and of many other rivers, the earth and sand deposited form
considerable banks. Loubere, in his Voyage to Siam, says, that the
banks of sand and earth daily increase at the mouths of the great
rivers of Asia, insomuch that the navigation of them becomes every day
more difficult, and will one day be impassable. The same remark may
be made of the large rivers of Europe, and particularly of the Wolga,
which has more than 70 mouths in the Caspian sea, and of the Danube,
which has seven in the Black sea, &c.

As it seldom rains in Egypt the regular inundations of the Nile proceed
from the torrents which fall therein from Ethiopa. These annually
bring with them great quantities of mud, which they not only deposit
on the land of Egypt but even throw to a considerable distance in the
sea, and thus lay the foundation of a new land, which, in the course
of time, arises therefrom; for, by sounding with the lead, we find,
at more than 20 leagues distance from the coast, the mud of the Nile
at the bottom of the sea, and which is every year increasing. Lower
Egypt, where[BB] Dela at present stands, was formerly a gulph of the
sea. Homer tells us that the island of Pharos was 24 hours voyage from
Egypt, and at present it is almost contiguous to it. The soil of Egypt
has not the same depth of good ground throughout its extent, it lessens
as we approach the sea. Near the borders of the Nile there is sometimes
near thirty feet depth of good earth, whereas at the extremity of the
inundation there is scarcely more than seven inches.[BC] The town of
Damietta, at present more than 10 miles from the sea, in 1243 was a
sea-port. The town of Fooah, which, 300 years ago, was situate at the
mouth of the Canopic, a branch of the Nile, is now more than seven
leagues from it. Within 40 years the sea has retreated half a league
from before Rosetta and Idern.

[BB] See Diodorus de Suc, lib. 3. Aristotle, lib. 1. of Meteors, h.
xiv. Herodotus, f. 4, 5, &c.

[BC] See Shaw's Travels, vol. II. page 185, and 186.

The great rivers of America, and even those which have been but
lately discovered, have suffered great alterations at their mouths.
Charlevoix, speaking of the river Mississipi, says, that at its mouth,
below New Orleans, the country forms a point of land which does not
appear to be very ancient, for by digging but a little into the earth
water is met with; besides, the quantity of small islands which have
recently been formed at all the mouths of this river, leaves no doubt
of this neck of land being formed after the same manner. It appears
certain, says he, that when M. de la Salle went down the Mississipi, to
the sea, the mouth of this river was not as it is at this present time.

"The nearer we approach towards the sea, adds he, the more it becomes
perceptible, the bar has scarcely any water in most of the small
outlets which the river has opened, and which have multiplied so
greatly from the trees that are carried along with the currents, one of
which stopt in a part where it is shallow, will entangle hundreds. I
have seen, continues he, 200 leagues from New Orleans, collections of
trees, one of which would have filled all the timber-yards of Paris.
Nothing can set them free; the mud which the river brings down serves
to cement, and, by degrees, covers them. Each inundation leaves a new
stratum, and, after 10 years, shrubs and vegetables grow thereon: after
this manner most points and islands are formed, which so often change
the course of rivers."[BD]

[BD] See Charlevoix Travels, vol. II. page 440.

Nevertheless all the changes which rivers cause are very slow, and
become not considerable till after a long series of years: but quick
and sudden changes have happened by inundations and earthquakes.
The ancient Egyptian priests, 600 years before the birth of Christ,
asserted, according to the Timæus of Plato, that there was a great
island near Hercules Pillars; called _Atlantis_, which was larger than
Lybia and Asia taken together; and that this island was buried under
the waters of the ocean after a great earthquake. "Traditur Atheniensis
civitas restitisse olim innumeris hostium copiis quæ, ex Atlantico mari
profectæ, prope cunctam Europam Asiamque obsederunt; tunc enim fretum
illud navigabile habens in ore et quasi vestibulo ejus insulam quam
Herculis columnas cognominant; ferturque insula illa Lybiâ simul et
Asiâ Major fuisse, per quam ad alias proximas insulas patebat aditus,
atque ex insulis ad omnem continentem è conspectu jacentem vero mari
vicinam: sed intrà os ipsum portes augusto sinu traditur, pelagus illud
verum mare, terra quoque illa verè erat continens, &c. Post hæc ingenti
terræ motu jugique diei unius et noctis illuvione factum est, ut terra
dehiscens omnis illos bellicosos absorberet, et Atlantis insula sub
vasto gurgite mergeretur." _Plato in Timæus._ This ancient tradition
is not absolutely contrary to all probability. The earths which were
absorbed by the waters are perhaps those which join Ireland to the
Azores, and those to the continent of America; for in Ireland there are
the same fossils, shells, and marine productions as in America, some of
which are different from any found in other parts of Europe,

Eusebius relates two testimonies on the subject of deluges: one of
which is Melo, who says that the plains of Syria had formerly been
laid under water; the other is Abydenus, who says, that in the time
of King Sisithrus there was a great deluge, which had been predicted
by Saturnus, Plutarch _De Solestia Animalium_. Ovid, and other
mythologists, speak of the deluge of Deucalion, which, according to
them, was in Thessaly, about 700 years from the universal deluge. It is
also asserted that there had been one more ancient in Attica, in the
time of Ogiges, about 230 years before that of Deucalion.

In the year 1095 there was a deluge in Syria, which drowned a number
of people.[BE] In 1164 there was so considerable a one in Friezeland,
that all maritime coasts were covered, and several thousands of the
inhabitants drowned.[BF] In 1218 there was another inundation which
destroyed near an hundred thousand people. There are a multitude of
other examples of great inundations, like that of 1604 in England, and
many more.

[BE] See Alsted. Chron. chap. 25.

[BF] See Krank, Lib. 5, cap. 4.

A third cause of the change on the surface of the globe, are impetuous
winds. They not only form downs and hills on the sea shores, but they
often stop and choak up rivers, and change their directions; they tear
up cultivated land, destroy trees, overthrow edifices, and cover entire
countries with sand. We have an example of these inundations of sand on
the coasts of Britany in France: the history of the Royal Academy at
Paris, anno 1722, makes mention of it in the following terms.

"In the environs of St. Paul de Leon, in Lower Britany, there is a
quarter near the sea, which before the year 1666, was inhabited; but
is so no longer, by reason of a sand which covers it to the height of
more than twenty feet, and which gains ground every year. Reckoning
from that time it has proceeded upwards of six leagues into the
country, and is now not more than about half a league from St. Paul, so
that according to all appearance that town must soon be deserted. The
tops of some steeples and chimnies are still seen peeping out of this
sea of sand; the inhabitants of the interred villages have always had
sufficient time to quit their houses in safety.

"An east or north wind increases this calamity, by raising up a sand of
a very fine nature, which sweeps it away in such great quantities, and
with such velocity, that M. Deslandes, to whom the academy are indebted
for this observation, when walking in that country during an east wind,
was obliged, from time to time, to wipe it off his hat and cloaths they
were so loaded with sand, and felt so heavy. Besides, when this wind is
violent, it throws this sand over a small arm of the sea into Roscof,
a small port much frequented by foreign vessels; the sand collects
in their streets to the height of two feet, and the inhabitants are
obliged to have it carted away. There are many ferruginous particles
in this sand, which are easily discovered by a magnet.

"The coast which furnishes this sand extends from St. Paul as far as
Plouefoat, somewhat more than four leagues. The disposition of the
place is such that only the east or the north-east wind can convey the
sand over the lands. It is easy to be conceived how the sand, conveyed
and accumulated by the wind in one part, can again be taken up by the
same wind and carried farther, and that the sand can thus advance into
and cover the country while the mine which furnishes it continues
unexhausted; for without this the sand, by advancing, would always
diminish in height, and would cease its destructive ravages. Now it is
but too possible that the sea throws up or deposits new sand in the
place from whence the wind raises it up, and therefore the dreadful
effects may long continue.

"The disaster is but of modern date, possibly the shoal which furnishes
it has not yet a sufficient quantity to lift itself above the surface
of the sea, or perhaps the sea has but just left it uncovered. There
has been some alteration on the coast, and the sea at present reaches,
at high water, half a league beyond certain rocks that formerly it
never passed.

"This unhappy province justifies what the ancient and modern travellers
relate concerning the tempests of sand in the deserts of Arabia, in
which cities and armies have been enveloped and destroyed."

Mr. Shaw tells us that the ports of Laodicea, Jebila, Tortosa, Rowada,
Tripoli, Tyre, Acra, and Jaffa, are all filled up with sand brought
thither by the great waves which beat on that side of the Mediterranean
when the west wind blows impetuously.[BG]

[BG] See Shaw's Travels, vol. II.

It is useless to give a greater number of examples of the alterations
that have happened on the surface of the globe. Fire, air, and water,
produce continual changes, which become very considerable by time. It
is not from general causes alone, whose effects are periodical and
regular, that the sea successively takes the place of the earth, and
forsakes its own dominions. There are a number of particular causes
which contribute to these mutations, such as earthquakes, inundations,
sinking of mountains, &c. Thus the most solid thing, at least to our
conception, like the rest of nature, undergoes continual and perpetual
vicissitudes.



CONCLUSION

OF THE

_THEORY OF THE EARTH_.


By the proofs we have given in Articles VII. and VIII. it appears
certain that the whole of the present dry land was formerly covered
by the sea. It appears also as certain, from Article XII. that the
flux and reflux, and other motions of the ocean, continually detach,
from the side and the bottom of the sea, shells and matters of every
kind, some part of which are deposited in other places in form of
sediments, and which are the origin of the parallel and horizontal
strata every where to be met with. We have proved in Article IX. that
the inequalities of the globe have been caused by the motion of the
sea, and that mountains have been produced by the successive masses
and heapings of the sediments we have just described. It is evident by
Article XIII. that the currents, which at first followed the direction
of these inequalities, afterwards gave to them all the figure which
they at present preserve; that is, that alternate correspondence of
the saliant angles always opposed to the returning angles. It appears
likewise by Articles VIII. and XVIII. that the greatest part of the
matters which the sea has detached from its sides and bottom were, when
deposited as sediments, in form of a fine impalpable powder, which
perfectly filled the cavities of the shells, whether it was of the same
nature or only analogous to that with which they were composed. It is
certain, from Article XVII. that the horizontal strata which have been
produced by the accumulation of sediments, and which at first were in
a soft state, acquired hardness in proportion as they became dry, and
that this drying has produced perpendicular clefts, which cross the
horizontal strata.

It is impossible to doubt, after perusing the facts in the Articles
X. XI. XIV. XV. XVI. XVII. XVIII. and XIX. that an infinite number
of revolutions, particular changes and alterations, have happened
on the surface of the globe, as well from the natural motion of the
waters of the sea as by the effects of rain, frost, running waters,
winds, subterraneous fires, earthquakes, inundations, &c. and that
consequently the sea has alternately changed places with the earth,
especially in the earliest times after the creation, when the
terrestrial matters were much softer than they are at present. It must
nevertheless be acknowledged, that we can but very, imperfectly judge
of the succession of natural revolutions; that we can still less judge
of the cause of accidents, changes, and alterations; that the defect
of historical monuments deprives us of the knowledge of particular
facts, and experience and time is deficient to us. We do not pay any
consideration that, though the time of our existence is very limited,
nature proceeds in her regular course. We would condense into our
momentary existence the transactions of ages past and to come, without
reflecting that this instant of time, nay even human life itself, is
only a single fact in the history of the acts of the Almighty.



HISTORY OF ANIMALS.



CHAPTER I.

A COMPARISON BETWEEN ANIMALS, VEGETABLES, AND OTHER PRODUCTIONS OF
NATURE.


Amidst the infinite number of objects that offer themselves to our
view, and with which the surface of the earth is every where covered,
Animals hold the first rank both on account of their formation, and
their evident superiority over vegetables and other matters. Animals,
by their senses, form, motion, and many other properties, have a
more intimate connection with those things which surround them than
vegetables; and the latter, by their figure, growth, and variety of
component parts, have also a nearer relation with external objects,
than either minerals or stones, which have not any kind of life or
motion. By this number of properties it is, that the animal claims
pre-eminence over the vegetable, and the vegetable over the mineral.
Man, to consider him by his material form alone, is only superior to
the brute creation by possessing some few peculiar properties, such as
those given to him by his tongue and hands; and although the works of
the Creator are in themselves equally perfect, the animal, according to
our mode of perception, is the most complete, and man the most perfect
animal.

What variety of springs, what forces, and what mechanical motions
are enclosed in this small part of matter which composes the body of
an animal? What properties, what harmony, and what correspondence
between the various parts? How many combinations, arrangements, causes,
effects, and principles, conspire to complete one end, and which we
know only to be results so very difficult to comprehend, that they only
cease from being marvellous by the long custom of not reflecting on
them?

Nevertheless, however admirable this work appears, it is not the
individual that is the most wonderful; but it is in the succession,
reproduction, and duration of species, that nature becomes
inconceivable. This faculty of reproduction, which resides alone in
animals and vegetables; this kind of unity always subsisting, and
seemingly eternal; this procreative power, which perpetually exercises
itself without being destroyed, is a mystery, the depth of which we are
not enabled to fathom.

Inanimate bodies, even the stones and dirt under our feet, have some
properties; their existence alone supposes a great number; and the
least organic matter has an infinity of relations with the other
parts of the universe. We shall not say, with some philosophers, that
matter, under whatever form it may be, is sensible of its existence and
relative faculties. This is a metaphysical question, and of which we do
not here propose to treat, it will be sufficient to observe, that not
having a perfect knowledge of our own relation with external objects,
we cannot doubt that inanimate matters are still more ignorant;
besides, as our sensations do not in the least resemble the objects
which cause them, we must conclude, by analogy, that inanimate matter
has neither sentiment, sensation, nor a consciousness of its existence;
to attribute any of these faculties to it, would be giving it the
power of thought, action, and perception, nearly in the same manner as
we think, act, and feel, which is as much repugnant to reason as it is
to religion.

Inanimate bodies being formed of earth and dust, we have, of course,
some properties in common with them, but they are merely relative to
what arises from general matter, such as extent, impenetrability,
weight, &c. but as these properties, purely material, make no
impression of themselves, as they exist entirely independent, and
do not at all affect us, we cannot consider them as a part of our
being; it is therefore the organization, the soul, and the life, which
constitute our existence. Matter, considered in this light, is less the
principal than the accessor. It is a foreign expansion, the union of
which is unknown, and the presence hurtful to us; and thought, which
is the constituent principle of our being, is very probably entirely
independent.

We exist, therefore, without knowing how, and we think without knowing
why; but whatever is the manner of our being or thinking, whether our
sensations are true or false, the result of them are not less certain.
This order of ideas, this train of thoughts, which internally exist
from ourselves, although very different from the objects that cause
them, give rise to the most real affections, and occasion relations
with external objects, which we may consider as real affinities, since
they are invariable, and always the same. The human species, therefore,
may be said to hold the first rank in the order of nature, the brute
creation the second, vegetables the third, and minerals the last; for
although we cannot clearly distinguish between our animal and spiritual
qualities, and although the brute creation are endowed with the same
senses, possess the same principles of life and motion, and perform
a number of actions like man, yet they have not the relation with
external objects in the same extensive manner we have, and consequently
the resemblance must fail in various respects. The distance is greater
between man and vegetables, and still more so from minerals, as
vegetables possess a degree of animation, while minerals are destitute
of every principle that tends to organization.

To compose, therefore, the history of an animal, we must first nicely
inspect into the general order of his particular relations, and
afterwards distinguish those he has in common with vegetables and
minerals. An animal has nothing in common with a mineral, excepting
general properties of matter; his nature and oeconomy are totally
different: the mineral is a mere senseless and inactive matter, without
organization, faculties, or power of reproduction; a dead mass, fit
only to be trod under foot by man and animals; even the most precious
metals are thus considered by the philosopher, as they possess but
an arbitrary value, subordinate to the will, and dependent on the
convention of men.

In an animal all the powers of nature are united; the properties by
which it is animated are peculiar to it; by its senses it can will,
act, determine, and communicate with the most distant objects: its body
is a centre, to which every thing is connected; a point where the whole
universe is reflected; a world in miniature. These are the properties
which peculiarly belong to it; those which it possesses in common with
vegetables are the faculties of growth, expansion, reproduction, and
increase.

The most apparent difference between animals and vegetables seems
to be the faculty of moving from place to place, which animals are
endowed with and vegetables not. It is true we are not acquainted with
any vegetable that has a single progressive motion; and there are
many kinds of animals, as oysters, &c. to which this motion seems to
have been denied; the distinction, therefore, is neither general nor
necessary.

A more essential difference might be drawn from the faculty of
sensation; but sensation includes such a variety of ideas, that we
ought not to mention the word without giving some explication; for if
by sensation we understand only a motion, occasioned by a check or
resistance, we shall find the _sensitive_-plant is also possessed of
it; if, on the contrary, we would have it signify to apprehend and
compare ideas, we are not certain that brute animals possess it; if
it is allowed to dogs, elephants, &c. whose actions seem to result
from the same causes as those of men, it must be denied to an infinite
number of others, especially to those which seem to be motionless. If
we could give to oysters, for example, the same faculty of sensation as
to dogs, though in an inferior degree, why should we not allow it to
vegetables in a still lesser degree? This difference between animals
and vegetables is not, therefore, general, nor well decided.

A third difference seems to arise from their method of feeding.
Animals, by the means of certain external organs, seize those things
which are agreeable to them: they seek their pasture and chuse their
food. Plants are reduced to the necessity of receiving such nutriment
as the earth furnishes: they have no diversity in the manner of
procuring it; no choice in the kind, but the humidity of the earth is
their only aliment; nevertheless, if we attend to the organization and
action of roots and leaves, we shall presently discover that there are
in those parts external organs, which vegetables make use of to obtain
their food; that the root avoids and turns from an obstacle, or vein
of bad earth, to seek for one that is better; that they divide their
fibres, and even go so far as to change their form to procure nutriment
for the plant. The difference between animals and vegetables cannot,
therefore, be established on the manner in which they receive their
nutriment.

This investigation induces us to conclude that there is no absolute
essential and general difference between animals and vegetables, but
that nature descends, by degrees imperceptibly from an animal which is
the most perfect, to that which is the least, and from the latter to
the vegetable. The water polypus may therefore be considered as the
line where the animal creation ends and that of plants begin.

If, after having examined the distinctions, we search after the
resemblances between animals and vegetables, we shall find the power of
reproduction is general, and very essential to both; a faculty which
would almost lead us to suppose that animals and vegetables are nearly
of the same order of beings.

A second resemblance may be drawn from the expansion of their parts,
a property which is common to both; for vegetables grow as well as
animals, and if the manner in which they expand is different, it is not
totally nor essentially so, since there are very considerable parts
in animals, as the bones, the hair, the nails, the horns, &c. whose
expansion is a perfect and real vegetation; and the foetus, at its
first formation, may be said rather to vegetate than live.

A third resemblance arises from there being some animals which
propagate like plants, and by the same method. The multiplication of
the vine-fretter, which is made without copulation, is like that of
plants by seeds; and that of polypuses, by cutting them, resembles the
multiplication of trees by slips.

We can then assert with greater foundation, that animals and vegetables
are beings of the same order, and that nature passes from one to the
other by insensible links; since the properties wherein they resemble
each other are general and essential, and those on which they differ
confined and particular.

If we compare animals and vegetables by other lights, for example, by
number, situation, size, form, &c. we shall draw fresh inductions from
them.

The number of the animal species is much greater than that of plants.
In the class of insects alone there are a greater number of species
than there are kinds of plants on the surface of the earth. Animals
likewise much less resemble each other than plants; and it is this
resemblance among the latter which makes the difficulty of knowing and
discerning them, and has given rise to so many botanical systems; and
it is for this reason that more labour has been bestowed on that than
on zoology.

Besides, there is another advantage of knowing the species of animals,
and distinguishing them one from another, which is by regarding those
as one and the same species, who, by means of copulation, produce and
perpetuate beings like themselves; and as a different species, those
from a connection between whom nothing is produced, or whose product
are unlike their parents. Thus a fox will be a different species from a
dog, if nothing results from a copulation of a male and female of these
two animals, and when even there should result a bipartite animal,
or a kind of mule, which cannot generate, that will be sufficient to
establish the fox and dog of two different species. There is not the
same advantage to be had in plants, for although some have pretended to
discover sexes, and although divisions of breeds have been established
by the parts of fecundation; yet, as these distinctions neither are so
certain, nor so apparent as in animals, and the production of plants is
made in many modes, that the sex has no part in, and where the parts of
fecundation are not necessary, this idea cannot be made use of with any
success; it is only on a misapprehended analogy that this sexual method
has been pretended to distinguish all the different species of plants.

Notwithstanding the number of animals is greater than that of plants,
yet that is not the case with respect to the number of individuals
in each species. In animals as well as in plants, the number of
individuals is much greater in the small species than in the large.
Flies are, perhaps, a million times more numerous than elephants; so
likewise there are more kinds of plants than trees; but, if we compare
the quantity of individuals in each species, we shall find that the
plant is more abundant than the animal; for example, quadrupeds bring
forth but a small number of young, and at considerable distances of
time; trees, on the contrary, produce every year, a great quantity.
It may be said that this comparison is not exact, and to render it
so, we should compare the quantity of seeds produced by a tree, with
a quantity of germs contained in the semen of an animal, and then,
perhaps, we should find, that animals are still more abundant in their
seed than vegetables. But it should be considered that it is possible
by collecting and sowing all the seeds of an elm, for instance, that
we might have 100,000 young ones from the product of a single year;
and that should we supply a horse with as many mares as he could cover
in one year, there would be a great difference between the production
of the animal and that of the vegetable. I shall not examine into the
quantity of germs; first, because we are not acquainted with it in
the animal creation: and secondly, because possibly there is the same
number of seminal shoots in the vegetable: for the seed of a vegetable
is not a germ, being as perfect a production as the foetus of an
animal, and to which, like that, a greater expansion is only wanting.

To my comparison may likewise be opposed the prodigious multiplication
of certain kinds of insects: as the bee in particular, one of which
will produce thirty or forty thousand. But it must be observed, that I
speak in general of animals compared with vegetables; and besides, this
example of bees, which perhaps is the greatest multiplication among
animals, does not constitute a proof against what we have observed; for
of thirty or forty thousand flies produced by the female bee, there is
but few females; fifteen hundred, or two thousand males, and all the
rest moles, or rather neutral flies, without sex, and incapable of
procreating.

It must be owned, that in insects, fish, and shell-fish, there are
species which seem to be very abundant; oysters, herrings, fleas,
beetles, &c. are perhaps in as great numbers as mosses and the most
common plants; but on the whole, the greatest number of the animal
species is less abundant than the vegetable; and by comparing different
kinds of plants with each other, there is not found such great
differences in the number, as in the animal species; some of which
bring forth a prodigious number, and others only a few; whereas the
number of productions in plants is always very great throughout.

By what we have observed, it appears that the smallest and basest
species seem to be the most prolific: the most minute are the most
plentiful as well in animals as in plants, and in proportion as
the animals are more perfect, they appear to decrease in number of
individuals. Can it be thought, that certain forms of the body,
as those of quadrupeds and birds, requisite for the perfection of
sensation, would cost nature more organic particles than the production
of less important animals?

Let us now pass to the comparison of animals and vegetables, with
respect to situation, form, and size. The earth is the only place
wherein vegetables can subsist. The greatest number grow above the
surface, and are attached to the soil by roots. Some, as truffles,
are entirely covered with earth, and a few grow under the water, but
all require the surface of the earth to exist upon. Animals, on the
contrary, are more generally dispersed; some dwell on the surface, and
others in the bowels of the earth; some live at the bottom, and others
swim in the waters of the ocean: some exist in the air, others dwell in
the internal parts of plants, on the bodies of men and other animals,
liquors, and even stones are not without them.

By the use of the microscope, a great number of new species of animals
have been discovered: but singular as it may appear, we have not
found more than one or two new species of plants by the help of this
instrument. The small moss is, perhaps, the only microscopical plant
spoken of; and we might, therefore, imagine that nature refused to
produce very small plants, while she formed animalcules with profusion;
but we might deceive ourselves by adopting this opinion without
examination, and our error might arise from plants, in fact, resembling
each other more than animals; so that this moldiness, which we only
take for a very minute moss, may possibly be a kind of forest or
garden, filled with abundance of various plants, although we are unable
to mark the difference.

By comparing the size of animals and plants there will be found a great
inequality, for the distance is much greater between the size of a
whale and one of these microscope animals, than between the highest oak
and the moss we are now speaking of. Although bulk be only a relative
attribute, it may, nevertheless, be useful to inspect into the extreme
boundaries nature has allotted to her productions. In bigness animals
and plants seem to have a near equality; a large whale and a large tree
forms a volume not very different; whereas, among the small it has been
asserted there are animals so very minute that a million of them united
together, would not equal, in size, the smallest moss-plant ever seen.

The most general and most sensible difference between animals and
vegetables is that of figure, for the form of animals, although
infinitely varied, has not any resemblance to that of plants; and
although the polypus will, like plants, reproduce by cutting, and may
be regarded as the link between the animal and vegetable kingdoms,
not only by the mode of their reproduction but also by their external
form, nevertheless the figure of the animal is so different from the
external form of a plant that it is difficult to be deceived therein.
Some animals form things resembling plants or flowers, but plants never
produce any thing like an animal; and those admirable insects which
produce and form the coral, would not have been taken for flowers if
coral had not been regarded as a plant. Thus the errors wherein we
might fall, by comparing plants with animals, will never have any
influence but on a few objects which compose the link between both, and
the more observations we shall make the more we shall be convinced that
the Creator has not placed a fixed line between animals and vegetables;
that these two species of organized beings have many more common
properties than real differences; that the production of an animal does
not require of nature more, and possibly, less exertion than that of
a vegetable; that in general the production of organized beings does
not require exertion, and that, in short, the living animated nature,
instead of composing a metaphysical degree of beings, is a physical
property, common to all matter.



CHAPTER II.

OR [BH]REPRODUCTION IN GENERAL.

[BH] This word is used by the author in an enlarged sense of
propagation, for as generation applies to animated beings, so by this
he includes the vegetable as well as animal system.


We shall now make a more minute inspection into this common property of
animal and vegetable nature; this power of producing its resemblance;
this chain of successive individuals, which constitutes the real
existence of the species; and without attaching ourselves to the
generation of man, or to that of any particular kind of animal, let
us inspect the phenomenas of reproduction in general, let us collect
facts, and enumerate the different methods nature makes use of to renew
organized beings. The first, and as we think the most simple method,
is, to collect in one body an infinite number of resembling organic
bodies, and so to compose its substance, that there is not a part
of it which does not contain a germ of the same species, and which
consequently of itself might become a whole, resembling that of which
it constitutes a part. This preparation seems to suppose a prodigious
waste, and to carry with it profusion; yet it is a very common
munificence of nature, and which manifests itself even in the most
common and inferior kinds, such as worms, polypuses, elms, willows,
gooseberry-trees, and many other plants and insects, each part of which
contains a whole, and by the single effect of expansion alone may
become a plant, or an insect. By considering organized beings in this
point of view, an individual is a whole, uniformly organized in all
its parts; a compound of an infinity of resembling figures and similar
parts, an assemblage of germs, or small individuals of the same kind,
which can expand in the same mode according to circumstances, and form
new bodies, composed like those from whence they proceed.

By examining this idea thoroughly, we shall discover a connection
between animals, vegetables, and minerals, which we could not expect.
Salts, and some other minerals, are composed of parts resembling each
other, and to all that composes them; a grain of salt is a cube,
composed of an infinity of smaller cubes, which we may easily perceive
by a microscope; these are also composed of other cubes still smaller,
as may be perceived with a better microscope; and we cannot doubt,
but that the primitive and constituting particles of this salt are
likewise cubes so exceedingly minute as to escape our sight, and our
imagination. Animals and plants which can multiply by all their parts,
are organized bodies, of which the primitive and constituting parts are
also organic and similar, of which we discern the aggregate quantity,
but cannot perceive the primitive parts only by reason and analogy.

This leads us to believe that there is an infinity of organic particles
actually existing and living in nature, the substance of which is the
same with that of organized bodies. As we have just observed, in a
structure of a similar kind, though of inanimate matter, that it was
composed of an infinity of particles which have a perfect semblance to
the whole body, and as there must perhaps be millions of small cubes of
accumulated salts to form a sensible individual grain of sea-salt, so
likewise millions of organic particles, like the whole, are required
to form one out of that multiplicity of germs contained in an elm, or
a polypus; and as we must separate, bruise, and dissolve a cube of
sea-salt to perceive, by means of crystallization, the small cubes of
which it is composed; we must likewise separate the parts of an elm or
polypus to discover, by means of vegetation and expansion, the small
elms or polypuses contained in those parts.

The difficulty of giving way to this idea arises from a prejudice
strongly established, that there is no method of judging of the
complex, except by the simple, and that, to conceive the organic
constitution of a body we must reduce it to its simple and unorganized
parts, and that it is more easy to conceive how a cube is composed
of other cubes than how one polypus is composed of others; but if we
attentively examine what is meant by simple and complex, we shall then
find that in this, as in every thing else, the plan of nature is quite
different from the very rough draught of it formed by our ideas.

Our senses, as is well known, do not furnish us with exact
representations of external objects, insomuch that if we are desirous
of estimating, judging, comparing, measuring, &c. we are obliged to
have recourse to foreign assistance, to rules, principles, instruments,
&c. All these helps are the works of human knowledge, and partake more
or less of the abstraction of our ideas; this abstraction, therefore,
is what is called the simple, and the difficulty of reducing them to
this abstraction, the complex. Extent, for example, being a general and
abstracted property from nature, is not very complex; nevertheless,
to form a judgment of it, we have supposed extents without depth,
without breadth, and even points without any extent at all. All these
abstractions have been invented for the support of our judgment, and
the few definitions made use of in geometry have occasioned a variety
of prejudices and false conclusions. All that can be reduced by these
definitions are termed _simple_, and all that cannot be readily reduced
are called _complex_; from hence a triangle, a square, a circle, a
cube, &c. are simple subjects, as well as all curves, whose geometrical
laws we are acquainted with; but all that we cannot reduce by these
abstracted figures and laws are complex. We do not consider that these
geometrical figures exist only in our imagination; that they are not
to be found in nature, or, at least, if they are discoverable there,
it is because she exhibits every possible form, and that it is more
difficult and rare to find simple figures of an equilateral pyramid,
or an exact cube in nature, than compounded forms of a plant or an
animal. In everything, therefore, we take the abstract for the simple,
and the real for the complex. In Nature, on the contrary, the abstract
has no existence, every thing is compounded; we shall never, of course,
penetrate into the intimate structure of bodies: we cannot, therefore,
pronounce on what is complex in a greater or lesser degree, excepting
by the greater or lesser each subject has to ourselves and to the rest
of the universe; from which reason it is we judge that the animal is
more compounded than the vegetable, and the vegetable more than the
mineral. This notion is just with relation to us, but we know not, in
reality, whether the animal, vegetable, or mineral, is the most simple
or complex; and we are ignorant whether a globule, or a cube, is more
indebted for an exertion of nature, than a seed or an organic particle.
If we would form conjectures on this subject, we might suppose that the
most common and numerous things are the most simple but then animals
would be the most simple, since the number of their kind far exceeds
that of plants or minerals.

But without taking up more time on this discussion, it is sufficient
to have shewn that the opinions we commonly have of the simple and
complex are ideas of abstraction, that they cannot be applied to the
compound productions of nature, and that when we attempt to reduce
every being to elements of a regular figure, or to prismatic, cubical,
or globular particles, we substitute our own imaginations in the place
of realities; that the forms of the constituting particles of different
bodies are absolutely unknown to us, and that, consequently, we can
suppose, that an organized body is composed of organic particles, as
well as that a cube is composed of other cubes.

We have no other rule to judge by than experience. We perceive that a
cube of sea-salt is composed of other cubes, and that an elm consists
of other smaller elms, because, by taking an end of a branch, or root,
or a piece of the wood separated from the trunk, or a seed, they will
alike produce a new tree. It is the same with respect to polypuses,
and some other kinds of animals, which we can multiply by cutting off,
and separating any of the different parts;[BI] and since our rule for
judging in both is the same, why should we judge differently of them?

[BI] See Supplement to this Work, containing History of Birds, Fish,
Insects, &c. vol. V. p. 377.

It therefore appears very probable, by the above reasons, that there
really exists in nature a number of small organized beings, alike, in
every respect, to the large organized bodies seen in the world; that
these small organized beings are composed of living organic particles,
which are common to animals and vegetables, and are their primitive and
incompatible particles, that the assemblage of these particles form an
animal or plant, and consequently that reproduction, or generation, is
only a change of form made by the addition of these resembling parts
alone, and that death or dissolution is nothing more than a separation
of the same particles. Of the truth of this we apprehend there will not
remain a doubt, after reading the proofs we shall give in the following
chapters. Besides, if we reflect on the manner in which trees grow,
and consider how so considerable a volume can arise from so small an
origin, we shall be convinced that it proceeds from the simple addition
of small resembling organized particles. A grain produces a young tree,
which it contained in miniature. At the summit of this small tree a bud
is formed, which contains the young tree for the succeeding year, and
this bud is an organic part, resembling the young tree of the first
year's growth. A similar bud appears the second year, containing a tree
for the third; and thus, successively, as long as the tree continues
growing, at the extremity of each branch new buds will form, containing
young trees like that of the first year. Thus it is evident, that trees
are composed of small organized bodies, similar to themselves, and
that the whole individual is formed by the union of small resembling
individuals.

But, it may be asked, were not all these organized bodies contained
in the seed, and may not the order of their expansion be traced from
that source, for the bud which first appeared was evidently surmounted
by another similar bud, which was not expanded till the second year,
and soon to the third; and consequently the seed may be said really
to contain all the buds, or young trees that would be produced for a
hundred years, or till the dissolution of the tree itself? This seed it
is also plain not only contained all the small organized bodies which
one day must constitute the individual tree, but also every seed, every
individual, and every succession of seeds and individuals, to the total
destruction of the species.

This is the principal difficulty, and we shall examine it with the
strictest attention. It is certain that the seed produces by the single
expansion of the bud, or germ, it contains, a young tree the first
year, and that this tree existed in miniature in that bud, but it is
not equally certain that the bud of the second year, and those of the
succeeding, were all contained in the first seed, no more than that
every organized body and seed, which must succeed to the end of the
world, or to the destruction of the species, were so. This opinion
supposes a progress to infinity, and forms, of each individual, a
source of eternal generations. The first seed, in that case, must have
contained every plant of its kind which have existed or ever will
exist; and the first man must actually and individually have contained
in his loins every man which has or will appear on the face of the
earth. Each seed, and each animal, agreeable to this opinion, must
have possessed within an infinite posterity. But the more we suffer
ourselves to wander into these kind of reasonings, the more we lose the
sight of truth in the labyrinth of infinity; and instead of clearing up
and solving the question, we confuse and involve it in more obscurity;
it is placing the object out of sight, and afterwards saying it is
impossible to see it.

Let us investigate a little these ideas of infinite progression and
expansion. From whence do they arise? What do they represent? The ideas
of infinity can only spring from an idea of that which is limited, for
it is in that manner we have an idea of an infinity of succession, a
geometrical infinity: each individual is an unit, many individuals
compose a finite number, and the whole species is the infinite
multitude. Thus in the same manner as a geometrical infinity may be
demonstrated not to exist, so we may be assured that an infinite
progression or expansion does not exist; that it is only an abstract
idea, a retrenchment of the idea of finity, of which we take away the
limits that necessarily terminate all size; and that, of course, we
must reject from philosophy every opinion which leads to an idea of the
actual existence of geometrical or arithmetical infinity.

The partizans, therefore, of this opinion must acknowledge, that
their infinity of succession and multiplication is, in fact, only an
indeterminate or indefinite number; a number greater than any we can
have an idea of, but which is not infinite. This being granted, they
will tell us, that the first seed of an elm, for example, which does
not weigh a grain, really contains all the organic particles necessary
for the formation of this, and every other tree of the same kind which
ever shall appear. But what do they explain to us by this answer? Is it
not cutting the knot instead of untying it, and eluding the question
when it should be resolved.

When we ask how beings are multiplied? and it is answered that this
multiplication was compleatly made in the first body, is it not
acknowledging that they are ignorant how it is made, and renouncing
the will of conceiving it? The question is asked, how one body produces
its like? and it is answered, that the whole was created at once.
Can we receive this as a solution? for whether one or a million of
generations have passed the like difficulty remains, and so far from
explaining the supposition of an indefinite number of germs, increases
the obscurity, and renders it incomprehensible.

I own, that in this circumstance, it is easier to start objections
than to establish probabilities, and that the question of reproduction
is of such subtle nature, as possibly never to be fully resolved; but
then we should search whether it is totally inscrutable, and by that
examination, we shall discover all that is possible to be known of the
subject; or at least, why we must remain ignorant of it.

There are two kinds of questions, some belonging to the first causes,
the others have only particular effects; for example, if it is
asked, why matter is impenetrable? it must either remain unanswered,
or be replied to by saying, matter is impenetrable, because it is
impenetrable. It will be the same with respect to all the general
qualities of matter, whether relative to gravity, extension, motion
or rest; no other reply can be given, and we shall not be surprised
that such is the case, if we attentively consider, that in order to
give a reason for a thing, we must have a different subject from which
we may deduce a comparison, and therefore if the reason of a general
cause is asked, that is, of a quality which belongs to all in general,
and of which we have no subject to which it does not belong, we are
consequently unable to reason upon it; from thence it is demonstrable,
it would be useless to make such enquiries, since we should go against
the supposition that quality is general and universal.

If, on the contrary, the reason of a particular effect depends
immediately on one of the general causes above mentioned, and whether
it partakes of the general effect immediately, or by a chain of other
effects, the question will be equally solved, provided we distinctly
perceive the dependence these effects have on each other, and the
connections there are between them.

But if the particular effect, of which we enquire the reason, does not
appear to depend on these general effects, nor to have any analogy
with other known effects, then this effect, being the only one of its
kind, and having nothing in common with other effects, at least known
to us, the question is insolvable: because, not having, in this point,
any known subject which has any connection with that we would explain,
there is nothing from whence we can draw the reason sought after.
When the reason of a general cause is demanded, it is unanswerable,
because it exists in every object; and, on the other hand, the reason
of a singular or isolated effect is not found, because not any thing
known has the same qualities. We cannot explain the reason of a general
effect, without discovering one more general; whereas the reason of
an isolated effect may be explained by the discovery of some other
relative effect, which although we are ignorant of at present, chance
or experience may bring to light.

Besides these, there is another kind of question, which may be called,
the question of fact. For example. Why do trees, dogs, &c. exist?
All these fact questions are totally insoluble, for those who answer
them by final causes do not consider that they take the effect for
the cause; the connection particular objects have with us having no
influence on their origin. Moral affinity can never become a physical
reason.

We must carefully distinguish these questions where the _why_ is used,
from those where the _how_ is employed, and more so from those where
the _how many_ is mentioned. _Why_ is always relative to the cause of
the effect, or to the effect itself. _How_ is relative to the mode from
which the effect springs, and the _how many_ has relation only to the
proportionate quantity of the effect.

All these distinctions being explained, let us proceed to examine the
question concerning the reproduction of bodies. If it is asked, why
animals and vegetables reproduce? we shall clearly discover, that this
being a question of fact, it is insolvable, and useless to endeavour at
the solution of it. But if it is asked, _how_ animals and vegetables
reproduce; we reply by relating the history of the generation of every
species of animal, and of the reproduction of each distinct vegetable;
but, after having run over all the methods of an animal engendering
its resemblance, accompanied even with the most exact observations, we
shall find it has only taught us facts without indicating causes; and
that the apparent methods which Nature makes use of for reproduction,
do not appear to have any connection with the effects resulting
therefrom; we shall be still obliged to ask, what is the secret mode by
which she enables different bodies to propagate their own species?

This question is very different from the first and second; it gives
liberty of enquiry and admits the employment of imagination, and
therefore is not insolvable, for it does not immediately belong to a
general cause; nor is it entirely a question of fact, for provided we
can conceive a mode of reproduction dependent upon, or not repugnant
to, original causes, we shall have gained a satisfactory answer; and
the more it shall have a connection with other effects of nature, the
better foundation will it be raised upon.

By the question itself it is, therefore, permitted to form hypotheses,
and to select that which shall appear to have the greatest analogy with
the other phenomena of nature. But we must exclude from the number
all those which supposes the thing already done; for example, such
as suppose that all the germs of the same species were contained in
the first seed, or that every reproduction is a new creation, and
immediate effect of the Almighty's will; because these hypotheses are
questions of fact, and on which it is impossible to reason. We must
also reject every hypothesis which might have final causes for its
object; such as, we might say, that reproduction is made in order for
the living to supply the place of the dead, that the earth may be
always covered with vegetables, and peopled with animals; that man may
find plenty for his subsistence, &c. because these hypotheses, instead
of explaining the effects by physical causes, are founded only on
arbitrary connections and moral agreements. At the same time we must
not rely on these absolute axioms and physical problems, which so many
people have improperly made use of, as principles; for example, there
is no fecundation made apart from the body, _nulla foecondatio extra
corpus_; every living thing is produced from an egg; all generation
supposes sexes, &c. We must not take these maxims in an absolute sense,
but consider them only as signifying things generally performed in one
particular mode rather than in any other.

Let us, therefore, search after an hypothesis which has not any
of those defects, and by which we cannot fall into any of these
inconveniences; if, then, we do not succeed in the explanation of the
mechanical power Nature makes use of to effect the reproduction of
beings, we shall, at least, arrive at something more probable than what
has hitherto been advanced.

As we can make moulds, by which we can give to the external parts of
bodies whatever figure we please, let us suppose Nature can form the
same, by which she not only bestows on bodies the external figure but
also the internal. Would not this be one mode by which reproduction may
be performed?

Let us, then, consider on what foundation this supposition is raised:
let us examine if it contains any thing contradictory, and afterwards
we shall discover what consequences may be derived from it. Though our
senses are only judges of the external parts of bodies, we perfectly
comprehend external affection and different figures. We can also
imitate Nature, by representing external figures by different modes, as
by painting, sculpture, and moulds; but although our senses are only
judges of external qualities, we know there are internal qualities,
some of which are general, as gravity. This quality, or power, does
not act relatively to surfaces, but proportionably to the masses, or
quantities of matter; there is, therefore, very active qualities in
Nature, which even penetrate bodies to the most internal parts; but we
shall never gain a perfect idea of these qualities, because, not being
external, they cannot fall within the compass of our senses; but we can
compare their effects, and deduce analogies therefrom, to answer for
the effect of similar qualities.

If our eyes, instead of representing to us the surface of objects only,
were so formed as to shew us the internal parts alone, we should then
have clear ideas of the latter, without the smallest knowledge of the
former. In this supposition the internal moulds, which I have supposed
to be made use of by Nature, might be as easily seen and conceived as
the moulds for external figures. In that case we should have modes of
imitating the internal parts of bodies as we now have for the external.
These internal moulds, although we cannot acquire, Nature may be
possessed of, as she is of the qualities of gravity, which penetrate
to the internal particles of matter. The supposition of these moulds
being formed on good analogies it only remains for us to examine if it
includes any contradiction.

It may be argued that the expression of _an internal mould_ includes
two contradictory ideas; that the idea of a mould can only be related
to the surface, and that the internal, according to this, must have a
connection with the whole mass, and, therefore, it might as well be
called a massive surface as an internal mould.

I admit, that when we are about to represent ideas which have not
hitherto been expressed, we are obliged to make use of terms which seem
contradictory; for this reason philosophers have often employed foreign
terms on such occasions, instead of applying those in common use, and
which have a received signification; but this artifice is useless,
since we can shew the opposition is only in the words, and that there
is nothing contradictory in the idea. Now I affirm that a simple idea
cannot contain a contradiction, that is, when we can form an idea of
a thing; if this idea is simple it cannot be compounded; it cannot
include any other idea, and, consequently, it will contain nothing
opposite nor contrary.

Simple ideas are not only the primary apprehensions which strike
us by the senses, but also the primary comparisons which form from
those apprehensions; for the first apprehension, itself is always a
comparison. The idea of the size of an object, or of its remoteness,
necessarily includes a comparison with bulk or distance in general;
therefore, when an idea only includes comparison it must be regarded
as simple, and from that circumstance, as containing nothing
contradictory. Such is the idea of the internal mould. There is a
quality in Nature, called _gravity_, which penetrates the internal
parts of bodies. I take the idea of internal mould relatively to this
quality, and, therefore, including only comparison, it bears not any
contradiction.

Let us now see the consequences that may be deduced from this
supposition; let us also search after facts corresponding therewith, as
it will become so much the more probable, as the number of analogies
shall be greater. Let us begin by unfolding this idea of internal
moulds, and by explaining in what manner we understand it, we shall be
brought to conceive the modes of reproduction.

Nature, in general, seems to have a greater tendency to life than
death, and to organize bodies as much as possible; the multiplication
of germs, which may be infinitely encreased, is a proof of it; and
we may assert with safety, that if all matter is not organized, it
is because organized beings destroy each other; or we can augment as
much as we please the quantity of living and vegetating beings, but we
cannot augment the quantity of stones or other inanimate matters. This
seems to indicate that the most common work of Nature is the production
of the organic part, and in which her power knows no bounds.

To render this intelligible, let us make a calculation of what a
single germ might produce. The seed of an elm, which does not weigh
the hundredth part of an ounce, at the end of 100 years will produce a
tree whose volume will be 60 cubic feet. At the tenth year this tree
will have produced 1000 seeds, which being all sown, at the end of 100
years would each have also a volume equal to 60 cubic feet. Thus in
110 years there is produced more than 60,000 cubic feet of organized
matter; 10 years more there will be 10,000,000 of fathoms, without
including the 10,000 encreased every year, which would make 100,000
more; and ten years after there will be three times that number; thus
in 130 years a single shoot will produce a volume of organized matter,
which would fill up a space of 1000 cubic leagues; 10 years after it
would comprehend a 1,000,000, and in 10 years more 1,000,000 times
1,000,000 cubic leagues; so that in 150 years the whole terrestrial
globe might be entirely converted into one single kind of organized
matter. In this production of organized body Nature would know no
bounds, if it were not for the resistance of matters which are not
susceptible of organization, and this proves that she does not incline
to form inanimate but organized beings, and that in this she never
stops but when irresistible inconveniences are opposed thereto. What
we have already said on the seed of an elm may be said of any other;
and it would be easy to demonstrate, that if we were to hatch every egg
produced by hens for the space of 30 years, there would be a sufficient
number of fowls to cover the whole surface of the earth.

These kind of calculations demonstrate that organic formation is the
most common work of Nature, and, apparently, that which costs her
the least labour. But I will go farther; the general division which
we ought to make of matter seems to me to be in _living_ and _dead
matter_, instead of organized and brute; the brute is only that matter
produced by the death of animals or vegetables; I could prove it by
that enormous quantity of shells, and other cast-off matters of living
animals, which compose the principal part of stones, marble, chalk,
marle, earth, turf, and other substances, which we call brute matter,
and which are only the ruins of dead animals or vegetables; but a
reflection, which seems to me well founded, will, perhaps, make it
better understood.

Having meditated on the activity of Nature to produce organized bodies,
and seen that her power, in this respect, is not limited; having
proved that infinity of organic living particles, which constitute
life, must exist; having shewn that the living body costs the least
trouble to Nature, I now search after the principal causes of death and
destruction, and I find that bodies in general, which have the power
of converting matter into their proper substance, and to assimilate
the parts of other bodies, are the greatest destroyers. Fire, for
example, turns into its own substance almost every species of matter,
and is the greatest means of destruction known to us. Animals seem to
participate of the qualities of flame; their internal heat is a kind of
fire; therefore, after fire, animals are the greatest destroyers, and
they assimilate and convert into their own substance every matter which
may serve them for food: but although these two causes of destruction
are very considerable, and their effects perpetually incline to
the annihilation of organized beings, the cause of reproduction is
infinitely more powerful and active; she seems to borrow, even from
destruction itself, means to multiply, since assimilation, which is one
cause of death, is at the same time a necessary means of producing life.

To destroy an organized being is, as we have observed, only to separate
the organic particles of which it is composed; these particles remain
separated till they are re-united by some active power. But what is
this active power?--It is the power which animals and vegetables have
to assimilate the matter that serves them for food; and is not this
the same, or at least has it not great connection with that which is
the cause of reproduction?



CHAPTER III.

OF NUTRITION AND GROWTH.


The body of an animal is a kind of internal mould, in which the
nutritive matter assimilates itself with the whole in such a manner
that, without changing the order and proportion of the parts, each
receives an augmentation, and it is this augmentation of bulk which
some have called _expansion_, because they imagined every difficulty
would be removed by the supposition that the animal was completely
formed in the embryo, and that it would be easy to conceive that its
parts would expand, or unfold in proportion as it would increase by the
addition of accessory matter.

But if we would have a clear idea of this augmentation and expansion,
how can it be done otherwise than by considering the animal body,
and each of its parts, as so many internal moulds which receive the
accessory matter in the order that results from the position of all
their parts? This expansion cannot be made by the addition to the
surfaces alone, but, on the contrary, by an intimate susception which
penetrates the mass, and thus increases the size of the parts, without
changing the form, from whence it is necessary that the matter which
serves for this expansion should penetrate the internal part in all
its dimensions; it is also as necessary that this penetration be made
in a certain order and proportion, so that no one point can receive
more than another, without which some parts would expand quicker than
others, and the form be entirely changed. Now what can prescribe this
rule to accessory matter, and constrain it to arrive perpetually and
proportionally to every point of the internal parts, except we conceive
an internal mould?

It therefore appears certain that the body of an animal or vegetable
is an internal mould of a constant form, but where their masses may
augment proportionably, by the extension of this mould in all its
external and internal dimensions. That this extension also is made
by the intus-susception of any accessory or foreign matter which
penetrates the internal part, and becomes similar to the form and
identical substance with the matter of the moulds themselves.

But of what nature is this matter which the animal or vegetable
assimilates with its own substance? what can be the nature of that
power which gives it the activity and necessary motion to penetrate the
internal mould? and if such a power does exist, must it not be similar
to that by which the internal mould itself would be produced?

These three questions include all that can be desired on this subject,
and seem to depend on each other so much, that I am persuaded the
reproduction of an animal or vegetable cannot be explained in a
satisfactory manner, if a clear idea of the mode of the operation of
nutrition is not obtained; we must, therefore, examine these three
questions separately, in order to compare the consequences resulting
therefrom.

The first, which relates to the nutritive nature of this matter, is
in part resolved by the reasons we have already given, and will be
fully demonstrated in the succeeding chapter. We will shew that there
exists an infinity of living organic particles in Nature; that their
production is of little expence to Nature, since their existence is
constant and invariable, and that the causes of death only separate
without destroying them. Therefore the matter which the animal or
vegetable assimilates is an organic matter of the same nature as the
animal or vegetable itself, and which consequently can augment the
size without changing the form or quality of the matter of the mould,
since it is in fact of the same form and quality as that which it is
constituted with. Thus, in the quantity of aliments which the animal
takes to support life, and to keep its organs in play, and in the sap,
which the vegetable takes up by its roots and leaves, there is a great
part thrown off by transpiration, secretion, and other excretory modes,
and only a small portion retained for the nourishment of the parts and
their expansion. It is very probable, that in the body of an animal
or vegetable there is formed a separation of the brute particles of
the aliments and the organic; that the first are carried off by the
causes just mentioned; that only organic particles remain, and that
the distribution of them is made by means of some active power which
conducts them to every part in an exact proportion, insomuch that
neither receive more or less than is needful for its equal nutrition,
growth, or expansion.

The second question, What can be the active power which causes this
organic matter to penetrate and incorporate itself with this internal
mould? By the preceding chapter it appears, that there exists in
Nature powers relative to the internal part of matter, and which have
no relation with its external qualities. These powers, as already
observed, will never come under our cognizance, because their action is
made on the internal part of the body, whereas our senses cannot reach
beyond what is external; it is therefore evident, that we shall never
have a clear idea of the penetrating powers, nor of the manner by which
they act; but it is not less certain that they exist, than that by
their means most effects of Nature are produced; we must attribute to
them the effects of nutrition and expansion, which cannot be effected
by any other means than the penetration of the most intimate recesses
of the original mould: in the same mode as gravity penetrates all parts
of matter, so the power which impels or attracts the organic particles
of food, penetrates into the internal parts of organized bodies, and
as those bodies have a certain form, which we call the internal mould,
the organic particles, impelled by the action of the penetrating force,
cannot enter therein but in a certain order relative to this form,
which consequently it cannot change, but only augment its dimensions,
and thus produce the growth of organized bodies; and if in the
organized body, expanded by this means, there are some particles whose
external and internal forms are like that of the whole body, from those
reproduction will proceed.

The third question, Is it not by a similar power the internal mould
itself is reproduced? It appears, that it is not only a similar but
the same power which causes expansion and reproduction, for in an
organized body which expands, if there is some particle like the whole,
it is sufficient for that particle to become one day an organized
body itself, perfectly similar to that of which it made a part. This
particle will not at first present a figure striking enough for us to
compare with the whole body; but when separated from that body, and
receiving proper nourishment, it will begin to expand, and in a short
time present a similar being, both externally and internally, as the
body from which it had been separated: thus a willow or polypus, which
contain more organic particles similar to the whole than most other
substances, if cut into ever such a number of pieces, from each piece
will spring a body similar to that from whence it was divided.

Now in a body, every particle of which is like itself, the organization
is the most simple, as we have observed in the first chapter; for it
is only the repetition of the same form, and a composition of similar
figures, all organized alike. It is for this reason that the most
simple bodies, or the most imperfect kinds, are reproduced with the
greatest ease, and in the greatest plenty; whereas, if an organized
body contains only some few particles like itself, then, as such alone
can arrive to the second expansion, consequently the reproduction will
be more difficult, and not so abundant in number; the organization
of these bodies will also be more compounded, because the more the
organized parts differ from the whole, the more the organization of
this body will be perfect, and the more difficult the production will
be.

Nourishment, expansion, and propagation, then, are the effects of one
and the same cause. The organized body is nourished by the particles
of aliments analogous to it; it expands by the intimate susception
of organical parts which agree with it, and it propagates because
it contains some original particles which resemble itself. It only
remains to examine, whether these similar organic particles come into
the organized body by nutriment, or whether they were there before,
and have an independent existence. If we suppose the latter, we shall
fall in with the doctrine of the infinity of parts, or similar germs
contained one in the other; the insufficiency and absurdity of which
hypothesis we have already shewn; we must therefore conclude that
similar parts are extracted from the food; and after what has been
said, we hope to explain the manner in which the organic molecules are
formed, and how the minute particles unite.

There is, as we have said, a separation of the parts in the nutriment;
the organic from those analogous to the animal or vegetable, by
transpiration and other excretory modes; the organical remain and serve
for the expansion and nutriment of the body. But these organic parts
must be of various kinds, and as each part of the body receives only
those similar to itself, and that in due proportion, it is very natural
to imagine, that the superfluity of this organic matter will be sent
back from every part of the body into one or more places, where all
these organical molecules uniting, form small organized bodies like
the first, and to which nothing is wanting but the mode of expansion
for them to become individuals of the same species; for every part
of the body sending back organized parts, like those of which they
themselves are composed, it is necessary, that from the union of all
these parts, there should result organized bodies like the first. This
being admitted, may we not conclude this is the reason why, during the
time of expansion and growth, organized bodies cannot produce, because
the parts which expand absorb the whole of the organic molecules which
belong to them, and not having any superfluous parts, consequently are
incapable of reproduction.

This explanation of nutrition and reproduction will not probably be
received by those who admit but of a certain number of mechanical
principles, and reject all which do not depend on them; and as what
has been said of nutrition and expansion comes under the latter
description, they will possibly treat it as unworthy dependance. But
I am quite of a different opinion from these philosophers; for it
appears to me that, by admitting only a certain number of mechanical
principles, they do not see how greatly they contract the bounds of
philosophy, and that for one phenomenon that can be explained by a
system so confined, a thousand would be found exceeding its limits.

The idea of explaining every phenomenon in nature by mechanical
principles was certainly a great and beautiful exertion, and which
Descartes first attempted. But this idea is only a project, and if
properly founded, have we the means of performing it? These mechanical
principles are the extent of matter, its impenetrability, its motion,
its external figure, its divisibility, and the communication of
movement by impulsion, by elasticity, &c. The particular ideas of each
of these qualities we have acquired by our senses, and regard them as
principles, because they are general and belong to all matter. But are
we certain these qualities are the only ones which matter possesses,
or rather, must we not think these qualities, which we take for
principles, are only modes of perception; and that if our senses were
differently formed, we should discover in matter, qualities different
from those which we have enumerated? To admit only those qualities
to matter which are known to us, seems to be a vain and unfounded
pretension. Matter may have many general qualities which we shall ever
be ignorant of; she may also have others that human assiduity may
discover, in the same manner as has recently been done with respect
to gravity, which alike exists in all matter. The cause of impulsion,
and such other mechanical principles, will always be as impossible to
find out as that of attraction, or such other general quality. From
hence is it not very reasonable to say, that mechanical principles are
nothing but general effects, which experience has pointed out to us in
matter, and that every time a new general effect is discovered, either
by reflection, comparison, measure, or experience, a new mechanical
principle will be gained, which may be used with as much certainty and
advantage as any we are now acquainted with?

The defect of Aristotle's philosophy was making use of particular
effects as common causes; and that of Descartes in making use of only
a few general effects as causes, and excluding all the rest. The
philosophy which appears to me would be the least deficient, is that
where general effects are only made use of for causes, and seeking to
augment the number of them, by endeavouring to generalize particular
effects.

In my explanation of expansion and reproduction, I admit the received
mechanical principles, the penetrating force of weight, and, by
analogy, I have strove to point out that there are other penetrating
powers existing in organized bodies, which experience has confirmed. I
have proved by facts, that matter inclines to organization, and that
there exists an infinite number of organic particles. I have therefore
only generalized some observations, without having advanced any thing
contrary to mechanical principles, when that term is used as it ought
to be understood, as denoting the general effects of Nature.



CHAPTER IV.

OF THE GENERATION OF ANIMALS.


As human and animal organization is the most perfect and compounded,
their propagation is also the most difficult and least abundant; I here
except those animals which, like the fresh-water polypus or worms, are
reproduced from their divided parts, as trees are by slips, or plants
by their divided roots or suckers; also those which may be found to
multiply without copulation; it appears to me that the nature of those
have been sufficiently explained in the preceding chapter; and from
which, in every kind where an individual produces its resemblance, it
is easy to deduce the explanation of the reproduction from expansion
and nutrition.

But how shall we apply this mode of reasoning to the generation of man
and animals distinguished by sexes, and where the concurrence of two
individuals is required? We understand, by what has just been advanced,
how each individual can produce its like; but we do not conceive how a
male and a female produces a third.

Before I answer this question, I cannot avoid observing, that all those
who have written upon this subject have confined their systems to the
generation of man and animals, without paying any attention to other
kinds of generation which Nature presents us with, and reproduction
in general; and as the generation of man and animals is the most
complicated of all kinds, their researches have been attended with
great disadvantages, not only by attacking the most difficult point,
but also by having no subject of comparison, from which they could draw
a solution of the question. To this it is that I principally attribute
the little success of their labours; but by the road I have taken
we may arrive at the explanation of the phenomena of every kind of
generation in a satisfactory manner.

The generation of man will serve us for an example. I take him in his
infancy, and I conceive that the expansion and growth of the different
parts of his body being made by the intimate penetration of organic
molecules analogous to each of its parts, all these organic molecules
are absorbed in his earliest years, and serve only for the expansion
and augmentation of his various members, consequently there is little
or no superfluity until the expansion is entirely completed; and this
is the reason why children are incapable of propagation; but when
the body has attained the greatest part of its growth, it begins to
have no longer need of so great a quantity of organic particles, and
the superfluity, therefore, is sent back from each part of the body
into the destined reservoirs for its reception. These reservoirs are
the testicles and seminal vessels, and it is at this period that the
expansion of the body is nearly completed, when the commencement of
puberty is dated, and every circumstance indicates the superabundance
of nutriment; the voice alters and takes a deeper tone; the beard
begins to appear, and other parts of the body are covered with hair;
those parts which are appointed for generation take a quick growth; the
seminal liquor fills the prepared reservoirs, and when the plentitude
is too great, even without any provocation, and during the time of
sleep, it emits from the body. In the female this superabundance is
more strongly marked, it discovers itself by periodical evacuation,
which begin and end with the faculty of propagating, by the quick
growth of the breasts, and by an attraction in the sexual parts, as
shall be explained.

I think, therefore, that the organical molecules, sent from every part
of the body into the testicles and seminal vessels of the male, and
into the ovarium of the female, forms there the seminal liquor, which
is, as has been observed, in both sexes, a kind of extract of every
part of the body. These organical molecules, instead of uniting and
forming an individual, like the one in which they are contained, can
only unite when the seminal liquors of the two sexes are mixed; and
when there is more organical molecules of the male than of the female,
in such mixture the produce will be a male; and, on the contrary, when
there is more of the female then a female will be the result.

I do not mean to say that the organic molecules of either could unite
to form small organized bodies of themselves, but that it is necessary
a mixture of the seminal fluid of both sexes should take place, and
that it is only those formed in that mixture which can expand and
become individuals. These small moving bodies, called _spermatic
animals_, are seen, by a microscope, in the seminal liquor of every
male, and are, probably, small organized bodies, proceeding from the
individual which contains them, but which cannot expand or produce any
thing of themselves. We shall evince that there are the same in the
seminal liquor of the female, and shall indicate the place where this
liquor is to be found.

It is very possible that organical molecules are, at first, only a
kind of foetus of a small organized body, in which there are only
essential parts. We shall not enter into a detail of proofs, in this
respect, but content ourselves with remarking, that the pretended
spermatic animals, which we have been speaking of, might possibly be
but imperfectly organized, or that these pretended animals are only
living organic particles, common both to animals and vegetables, or, at
most, only the first union of those particles.

But let us return to our principal object. How can we conceive, it may
be asked, that the superfluous particles can be sent back from every
part of the body, and afterwards unite when the seminal liquor of the
two sexes are mixed? Besides, is it certain that this mixture is made?
Has it not been pretended that the female did not furnish any fluid of
this kind? Is it certain that the liquor of the male enters the matrix,
&c.

To the first question I answer, if what I have said on the subject
of the penetration of the internal mould by organic molecules, in
nutrition or expansion, be well understood, it will easily be conceived
that these molecules, not being able any longer to penetrate those
parts they did before, they will be necessitated to take a different
road, and consequently arrive at some part, as the testicles or seminal
vessels; for to explain the animal economy, and the different movements
of the human body, solely by mechanical principles, is the same as if
a man would give an account of a picture by shutting his eyes and
feeling on it; for it is evident that neither the circulation of the
blood, nor the motion of the muscles, nor the animal functions, can
be explained by impulsion, nor other common laws of mechanics: it is
as evident that nutrition, expansion, and reproduction, is made by
other laws, why therefore not admit of acting and penetrating powers
on the masses of bodies, since we have examples of it in gravity, in
magnetical attractions, and in chemical affinities? And as we are
now convinced by facts, and the multitude of constant and uniform
observations, that there exists in nature powers which do not act by
the mode of impulsion, why should we not make use of those powers as
mechanical principles? Why should we exclude them from the explanations
of effects, which we are convinced they produce? Why should we be
confined to employ only the power of impulsion? Is not this like
judging of a picture by the touch, and explaining the phenomena of the
mass by those of the surface, and the penetrating power by superficial
action? Is not this making use of one sense instead of another; and,
on the whole, is it not confining the faculty of reasoning on a small
number of mechanical principles, totally inadequate to follow the
various productions of nature.

But those penetrating powers being once admitted, is it not natural
to suppose that the most analogous particles will unite and bind
themselves intimately together; that each part of the body will
appropriate the most agreeable to itself, and that from the superfluity
of all these particles there will be formed a seminal fluid, which
will contain all the organic molecules necessary to form a small
organized body, perfectly like that from which this fluid is extracted?
A power like that which was necessary to make them penetrate into each
part, and produce expansion, may be sufficient to collect them in an
organized form, like that of the body in which they originated.

I conceive, that in the aliments we take there is a great quantity
of organical molecules, which needs no serious proof, since we live
on animals and vegetables, which are organized substances. In the
stomach and intestines a separation is made of the gross parts,
which are thrown off by the excretories. The chyle, which is the
purest part of the aliment, enters into the lacteal vessels, and from
thence is transported into every part of the body. By the motion of
the circulation it purifies itself from all inorganical molecules,
which are thrown off by secretion and transpiration; but the organic
particles remain, because they are analogous to the blood, and that
from thence there is a power of affinity which retains them afterwards;
for as the whole mass of blood passes many times through the body, I
apprehend, that in this continual circulation every particular part
of the body attracts the particles most analogous to it, without
interrupting the course of the others. In this manner every part is
expanded and nourished, not, as it is commonly said, by a simple
addition of the parts, and a superficial increase, but by an intimate
penetration of substance, produced by a power which acts on every point
of the mass; and when the parts of the body are at a certain growth,
and almost filled with these analogous particles, as their substance is
become more solid, I conceive they then lose the faculty of attracting
or receiving those particles, but as the circulation will continue
to carry them to every part of the body, which not being any longer
able to admit them as before, must necessarily be deposited in some
particular part, as in the testicles or seminal vessels. This fluid
extract of the male, when mixed with that of the female, the similar
particles, possessing a penetrating force, unite and form a small
organized body like one of the two sexes, and no more than expansion
is wanting to render it a similar individual, and which it afterwards
receives in the womb of the female.

The second question, Whether the female has really a seminal liquor
similar to the male? demands some discussion. I shall first observe,
as a certain matter, that if such a fluid exists, the manner in which
the emission of the female is made is not so apparent as by the male,
being in general retained within the body.[BJ] The ancients so little
doubted of the female having a seminal liquor, that it was by the
different mode of its emission that they distinguished the male from
the female. But physicians, who have endeavoured to explain generation
by the egg, or by spermatic animalcules, insinuate that females have no
particular fluid, that we have been deceived by taking the mucus for
the seminal, and that the supposition of the ancients upon this subject
was destitute of all foundation. Nevertheless this fluid does exist,
and it has only been doubted by those who chose to give way to systems,
and from the difficulty of discovering the parts which serve for its
reservoirs. The fluid which issues from the glands at the neck of the
womb, and at the orifice of the urethra, has no apparent reservoir,
and as it flows outwardly it cannot be thought to be the prolific
liquor, since it cannot concur in the formation of the foetus which
is performed within the matrix. The prolific fluid of the female must
have a reservoir in another part. It flows even in great plenty,
although such a quantity is not necessary, no more than in the male,
for the production of the embryo. It is sufficient for propagation if
ever so little of the male fluid enters the matrix, so it meets with
the smallest drop of that of the female; therefore the observations
of some anatomists, who have pretended that the seminal liquor of
the male does not enter the womb, makes nothing against what we have
advanced, especially as other anatomists, who rely on observations,
have pretended the contrary. But the subject will be better discussed
in the subsequent pages.

[BJ] Quod intra se semen jacit fæmina vocatur; quod in hac jacit, mas,
Aristotle, art. 18 de Animalibus.

Having thus given answers to possible objections, let us now look into
the reasons which may serve as proofs to our explanation. The first is
derived from the analogy there is between expansion and reproduction;
expansion cannot be explained in a satisfactory manner, without
employing those penetrating powers, and those affinities or attractions
we have already made use of to explain the formation of small organized
beings, resembling the great ones which contain them. A second analogy
is, that nutrition and reproduction are both not only produced by
the same efficient, but also by the same material cause, the organic
particles of the nutriment. And a proof that it is the superfluity of
those particles which serves for reproduction, is the body not being
in a condition to propagate before they have done growing; and we
daily see in dogs, and other animals, who more exactly follow the laws
of nature than we, that they nearly attain their full growth before
they attempt to copulate, and by which we may know whether a dog will
increase any more or not; for we may be assured he will not after being
in a condition to engender.

It is another proof that the superfluous nutriment forms the seminal
liquor, that eunuchs, and all mutilated animals, grow larger or
thicker than those who have not that deficiency. The superabundance of
nutriment not being able to evacuate, for the defect of proper organs,
alters the habit of the body; the thighs and haunches of eunuchs grow
very large: the reason is evident; after their body has attained the
common size, if the superfluous organic molecules found an issue, as
in other men, this growth would no longer increase; but as there are
no longer organs for the emission of the seminal fluid, which is no
more than the superfluous matter which served for growth remains, it
endeavours to expand the parts beyond their usual dimensions. Now it
is known, that the growth of the bones is made by the extremities,
which are soft and spongy, and when they have once acquired solidity,
they are no longer capable of extension; and for this reason, the
superfluous organic particles can only expand the spongy extremities
of bones, which causes the thighs, knees, &c. of eunuchs to thicken so
considerably.

But what more strongly proves the truth of our explanation, is the
resemblance of children to their parents. A son, in general, more
resembles his father than his mother, and the daughter more her mother
than her father; because a man has a greater resemblance to a man than
to a woman, and a woman resembles more a woman than a man, in respect
to the whole habitude of the body; but for the features and particular
habits, children sometimes resemble the father, sometimes the mother,
and sometimes both. They will have, for example, the father's eyes,
and the mouth of the mother, or the complexion of the latter, and the
size of the former; which is impossible to be conceived, unless it is
admitted that both parents have contributed to the formation of the
child, and that consequently there was a mixture of the two seminal
fluids.

I acknowledge that resemblances raised many difficulties in my own
mind; before I had maturely examined the question of generation, I
was prepossessed with ideas of a mixed system, by which it appeared
that I could explain in a probable manner every phenomena, excepting
resemblances, and these I thought I had found very specious reasons
to doubt, and which deceived me a long time, until having minutely
observed, with all the exactness I was capable of, a great number
of families, and especially the most numerous, I have not been able
to resist the multiplicity of proofs; it is only after being fully
convinced in this respect, that I have began to think differently, and
to credit what I now believe to be the fact.

Besides, although I had found the mode to avoid those arguments that
would be made on the subject of mulattos, mongrels, and mules, I could
not be prevented from observing that every explanation, where a reason
could be given for the phenomena, cannot be satisfactory; and I am
now perfectly convinced that the objections which might be used with
respect to them, as well as particular parental resemblances, instead
of opposing would confirm my explanation.

I now proceed to draw some consequences. In youth the seminal fluid
is less abundant, although more stimulating; its quantity encreases
to a certain age, because in proportion as we approach that age, the
parts of the body become more solid, admit less nutriment, send back a
greater quantity to the common reservoirs, and consequently produce a
greater abundance of seminal fluid. When the external organs have not
been used, persons of a middling age, and even old men, more easily
engender than young ones. This is evident in the vegetable system, the
older a tree is, the more fruit or seed it produces.

Young people who emit, or force irritation, draw a greater quantity of
seminal fluid towards the organs of generation than would naturally
arrive there, the consequence is, they cease from growing, become
thin, and fall at length into consumptions, and that because they lose
by premature, and too often reiterated evacuations, the necessary
substance for the growth and nutrition of every part of the body.

Those whose bodies are thin without emaciation, or fleshy without being
fat, are the most vigorous; as soon as the superabundant nutriment has
begun to form fat, it is always at the expence of the seminal fluid,
and other faculties of generation. When also, not only the growth of
every part of the body is entirely completed, but the bones are grown
solid, the cartilages begin to ossify, the membranes have received
all the solidity possible, the fibres are become hard and rough, and
at length every part of the body can no longer scarcely admit of
nutriment, the fat considerably increases, and the quantity of seminal
fluid diminishes, because the superfluous particles, stopped in every
part of the body, and the fibres, having no longer any suppleness or
elasticity, cannot return it into the reservoirs of generation.

The seminal liquor not only becomes more abundant till a certain age,
but it also becomes thicker, and contains a greater quantity of matter
under the same bulk. A person, very observant in this point, assured me
that the seminal fluid is as heavy again as the blood, and consequently
specifically heavier than any other fluid of the body.

When a man is in good health the evacuation of this fluid produces
an appetite, and he soon feels the necessity of repairing, by a new
nutriment, the loss of the old; from whence it may be concluded, that
the most efficacious check to every kind of luxury is abstinence and
fasting.

A number of other things remain to be said on this subject, but which
I have treated of in the History of Man; however, before I entirely
close, I shall make some few observations. The greatest part of animals
do not seek for copulation until they are nearly arrived at their
full growth; those which have only a particular season in the year
have only seminal liquor at that time. A very capable observer of
Nature[BK] not only saw this liquor forming in the roe of a Calmar, but
even observed the spermatic animals and the roe itself, which have no
existence till the month of October, the time when the Calmar spawns
on the coast of Portugal, where Mr. Needham made these observations.
As soon as the season is over neither seminal liquor nor spermatic
animals are longer seen in the milt, which then dries up and becomes
imperceptible till the season returns in the succeeding year, when
the superfluous nutriment renews the milt, and fills it as before. In
the history of the stag we have an opportunity of remarking on the
different effects of rutting; the most general is, the increased size
of the animal; and in those kinds of animals whose rutting or spawning
is only made at great intervals, the extenuation of the body is
proportionably great.

[BK] Mr. Needham's New Microscopical Discoveries, London, 1745.

As women are smaller and weaker than men, of a more delicate
temperament, and eat much less, it is natural to imagine that their
superfluous organic particles are not so plentiful; from hence their
seminal liquor will be weaker, and less in quantity, than that of men.
Since, likewise, the seminal liquor of females contains fewer organic
particles than that of males, must there not result a greater number
of males than females from the mixture of these two liquors? This is
really the case, for which it has hitherto been thought impossible
to find a reason. About a sixteenth more male children are born than
females; and we find that the same cause produces the same effect
in all kinds of animals on which we have been able to make this
observation.



CHAPTER V.

EXPOSITION OF THE SYSTEMS IN GENERATION.


Plato[BL] not only explains the generation of man, animals, plants,
and elements, but even that of heaven and the gods, by reflected
representations and images extracted from the Divine Creator, which,
by an harmonic motion, are ranged according to the properties of
numbers in the most perfect order. The universe, according to him,
is a copy of the Deity: time, space, motion, and matter, are images
of his attributes; and secondary and particular causes are results
of numerical and harmonical qualities of those representations. The
world is the most perfect being, and to have a complete perfection it
was necessary that it contained every other animal, every possible
representation, and every imaginable form, of the creative faculty.
The essence of all generation consists in the unity and harmony of the
number Three, or of the triangle, viz. that _which_ generates, that
_in which_ generation is performed, and that _which is_ engendered.
The succession of individuals in the species is only a fugitive image
of the immutable eternity of this triangular harmony, the universal
prototype of every existence and every generation; for this reason
two individuals are required to produce a third, and it is this which
constitutes the essential order of father, mother, and child.

[BL] See the Timæus.

This philosopher is a painter only of ideas; disengaged from matter
he elevates into the regions of abstraction, and, losing sight
of sensible objects, perceives and contemplates the intellectual
alone. One cause, one end, and one sole mode, form the whole of his
perceptions. God is the cause, perfection the end, and harmonic
representations the modes. What can be a more sublime idea! This plan
of philosophy is replete with simplicity, and the views truly noble!
but how void and destitute for speculation? We are not purely spiritual
beings, nor have we the power to give a real existence to our ideas.
Confined to matter, our rather dependent on what causes our sensations,
the real substance can never be produced by the abstracted. I answer
Plato in his own language, "The Creator realizes every thing he
conceives; his perceptions engender existence: the created being, on
the contrary, conceives nothing by retrenching them but from reality,
and the production of his ideas do not amount to any thing."

Let us then content ourselves with a more humble and more material
philosophy; and by keeping within the sphere Nature has allotted us,
let us examine the rash steps and the rapid flight of those who attempt
to soar beyond it. All this Pythagorean philosophy, which is purely
intellectual, turns entirely on two principles, one of which is false
and the other precarious: those are, the real power of abstraction,
and the actual existence of final causes. To take numbers for real
beings; to say that unity is a general individual, which not only
represents every individual, but even communicates existence to them;
to pretend that unity has the actual power to engender another unity
nearly similar to itself, and constituting two individuals, two sides
of a triangle, which can have no bound or perfection without a third
side, or by a third individual, which they necessarily engender. To
regard numbers, geometrical lines, and metaphysical abstractions, as
efficient and real physical causes, on which the formation of the
elements, the generation of animals and plants, and all the phenomena
of Nature depend, seems to me to be the most absurd abuse of reason,
and the greatest obstacle that can be put against the advancement of
our knowledge. Besides, what can be more false than such suppositions?
Admitting, with Plato and Malebranche, that matter does not exist,
that external objects are only ideal images of the creative faculty,
and that we perceive every thing in the Deity, must it be concluded
from thence that our ideas should be of the same order as those of the
Creator, or that they can produce existences? Are not we dependent on
our sensations? Whether the objects that cause them are real or not;
whether this cause of our sensations exists outwardly or inwardly;
whether it be the Creator or matter we perceive, what does it signify
to us? Are we less certain of being always affected in the same manner
by the same causes? Have not our sensations an invariable order of
existence, and a necessary relation between them and the objects? This,
therefore, is what must constitute the principles of our philosophy;
and what has no relation with it is vain, useless, and false in the
application. Can a triangular harmony form the substance of the
elements? Is fire, as Plato affirms, an acute triangle, and light and
heat properties of this triangle? Air and water, are they rectangular
and equilateral triangles? Is the form of the terrestrial element a
square, because, being the least perfect of all the four elements,
it recedes as much as possible from a triangle without losing its
essence? Do the male and female embrace only to complete the triangle
of generation? These platonic ideas have two very different aspects.
In speculation they seem to flow from noble and sublime principles, but
in application nothing but false and puerile consequences can be drawn
from them.

Is it difficult to discover that our ideas proceed only from our
senses? that the things we look on as real and existing are those of
which our senses have always rendered us the same testimony? that
those which we conceive to have certain existence are those which ever
present themselves in the same order? that consequently our ideas,
very far from being the causes of things, are only effects, and so far
from resembling particular things, become less similar to the objects
as they are more general; that at length our mental abstractions are
only negative beings, which do not exist even intellectually but by the
retrenchment which we make of sensible qualities to real beings.

From hence is it not plain that abstractions can never become
principles, neither of existence nor real knowledge? on the contrary,
our knowledge can only proceed from the results of properly comparing
our sensations. These results are what is termed _experience_, the sole
source of all real science. The adoption of every other principle is an
abuse, and every edifice built on abstracted ideas is a temple founded
on error.

Error bears a much more extended signification in philosophy
than in morality: in morals a thing may be false, only because
it is misrepresented. Metaphysical falsehood consists not in
misrepresentation alone, but in crediting that which has no existence,
and even in not being of any mode whatever. It is in this kind of
error, of the first order, that the Platonists, the Sceptics, and the
Egotists have fallen into, their false suppositions have obscured the
natural light of truth, clouded reason, and retarded the advancement of
philosophy.

The second principle made use of by Plato, and by most of the
speculative philosophers, is a final cause. Nevertheless, to reduce
this principle to its just value, a single moment of reflection is
only requisite. To say there is light because we have eyes, and sounds
because we have ears, or to say that we have ears and eyes because
there is light and sound, is it not exactly the same thing? shall we
ever discover any thing by this mode of explanation? Is it not evident
that final causes are only arbitrary relations and moral abstractions,
which should impose on us still less than metaphysical abstractions,
because their origin is less noble and a more false supposition; and
although Leibnitz has endeavoured to raise this principle to the
highest degree by the name of _sufficient reason_, and Plato has
represented it by the most flattering portrait, under the title of
_perfection_, yet it cannot prevent our seeing it as trifling and
precarious. Are we better acquainted with the effects of Nature, from
being told that nothing is made without a reason, or that all is made
in view of perfection? What is this sufficient reason? what is this
perfection? are they not moral beings created by intellects purely
human? are they not arbitrary relations which we have generalized? on
what are they founded? on moral affinities which, far from producing
any physical or real existence, only alter the reality and confound the
objects of our sensations, perceptions and knowledge, with those of our
sentiments, our passions and our wills.

I could adduce many arguments on this subject, but I do not pretend to
make a treatise on philosophy, and shall return to physics, from which
the ideas of Plato on universal generation made me digress. Aristotle,
who was as great a philosopher as Plato and a much better physician,
instead of losing himself in the region of hypotheses, relied, on
the contrary, on collected facts, and speaks in a more intelligible
language.

Matter, which is only a capacity of receiving forms, takes in
generation a form like that of the individual which furnishes it; and
with respect to the generation of animals that have sexes, he thinks
that the male alone furnishes the prolific principle, and that the
female affords nothing that can be looked upon as such.[BM] For though
he says elsewhere, speaking of animals in general, that the female
emits a seminal fluid within herself, yet he does not regard that as a
prolific principle: nevertheless, according to him, the menstrual blood
serves for the formation, growth, and nutriment of the foetus, but
the efficient principles exist only in the seminal fluid of the male,
which does not act like matter, but as the cause. Averrhois, Avicenna,
and other philosophers, who followed the sentiments of Aristotle, have
sought for reasons to prove that females have no prolific fluid; they
urge, that as females have a menstrual fluid that was necessary and
sufficient for generation, it does not appear natural to suppose they
possess any other; particularly because it begins to appear, like the
seminal fluid in the males, at the age of puberty; besides, continue
they, if females have really a seminal and prolific fluid, why do they
not produce without the approach of the male, since they contain the
prolific principle as well as the matter necessary for the nutriment
and growth of the embryo? This last reason seems to be the only one
which merits any attention. The menstrual blood seems to be necessary
for the support, nutriment, and growth of the foetus, but it can
have no part in the first formation, which is made by the mixture of
two fluids alike prolific. Females therefore may have, as well as the
males, a prolific fluid for the formation of the embryo, besides the
menstrual blood for its nutriment and expansion; and certainly a female
being possessed of a prolific fluid, extracted from all parts of her
body, as well as the necessary means of nourishment and expansion, it
is no impossible imagination that she would produce females without any
communication with the male. It must be allowed, that this metaphysical
reasoning which the Aristotelians adopt to prove that females have no
prolific fluid, may become the most considerable objection that can be
made against all systems of generation, and particularly against our
explanation.

[BM] See Aristotle, de gen. lib. i. cap. 20 and lib. xi. cap. 4.

Let us suppose, it may be said, as you have attempted to prove, that
the superfluous organic molecules are sent back into the testicles
and seminal vessels of the male, why, by the power of your supposed
attracting forces, do they not form small organized beings, perfectly
resembling the male? and for the same reason similar beings in the
female? If you answer, that there is an appearance that the liquor of
the male contains only males, and that of the female only females, but
that all these perish for want of the necessary means for expansion,
and that there are only those formed by the mixture of both which can
expand and come into the world; may we not be asked why this mode
of generation, which is the most complicated, difficult, and least
abundant, is that which Nature prefers in so striking a manner, that
almost all animals multiply by this mode of communication of the male
with the female?

I shall content myself at present with answering, that the fact is such
as we have represented it; the objection becomes a fact question; to
which, as we have observed, there is no other solution to be given
than that of the fact itself. It may be insisted, it is the most
complicated mode of production; yet this mode, which appears the most
complicated to us, is certainly the most simple for nature, because,
as we have remarked, what happens the most often, however difficult
it may appear to our ideas, must in reality be the most simple; which
does not prevent us from conceiving it to be complex, as we judge of it
according to that knowledge which our senses and reflections can give
us thereon.

The assertion of the Aristotelians, that females have no prolific
fluid, must fall to the ground, if we pay attention to the resemblance
of children to their mothers, of mules to the female that produces
them, of mongrels and mulattos, all of which resemble more the mother
than the father. If, besides these, we consider the organs of females
are, like those of the males, formed so as to prepare and receive the
seminal fluid, we shall be readily persuaded that such a fluid must
exist, whether it resides in the spermatic vessels, the testicles, or
in the matrix: or whether it issues, when provoked, by the passages of
de Graaf, situated at the neck, and near the external orifice of the
urethra.

But it is right here to examine the ideas of Aristotle more generally
on the subject of generation, because this great philosopher has
written the most on the subject, and treated it the most generally.
He distinguishes animals into three classes; first, those which have
blood, and, excepting some few, multiply by copulation; the second,
those which have no blood, but, being at the same time both male and
female, produce of themselves, and without copulation; and thirdly,
those bred by putrefaction, which do not owe their origin to parents
of any kind. I shall first remark, that this division must not be
admitted of; for though in fact all kinds of animals which have blood
are composed of males and females, it is not equally true, that animals
who have no blood are for the most part male and female in one; for we
are only acquainted with the snail and worm on earth which are in this
state; nor can we ascertain whether all shell-fish, and other animals
which have no blood, be hermaphrodites. With respect to those animals
which he says proceed from putrefaction, as he has not enumerated
them, many exceptions occur; for most of the kinds which the ancients
thought engendered by putrefaction have been discovered by the moderns
to be the produce of eggs.

After this he makes a second division of animals; those which have
the faculty of moving themselves progressively, as walking, flying,
swimming, and those which have no such faculty. All animals which
can move, and have blood, have sexes; but those which, like oysters,
are adherent, or who scarcely move at all, have no sex, and are, in
this respect like plants, distinguished only, as he says, into males
and females by difference of size. It is not yet ascertained whether
shell-fish have sexes or not; there are in the oyster-kind fruitful
individuals, and others which are not so; those which are fruitful are
distinguished by a delicate border which surrounds the body of the
oyster, and they are called males.[BN]

[BN] See the observation of M. Deslandes, in the Tracte de la raine,
Paris, 1747.

But to proceed, the male, according to Aristotle, includes the
principle of generative, motion, and the female contains the material
parts of generation. The organs which serve for this purpose are
different in the different kind of animals; the principal are the
testicles in the males, and the matrix in the females. Quadrupeds,
birds, and cetaceous animals, have testicles; fish and serpents are
deprived of them; but they have both proper conduits to receive and
prepare the seed. These essential parts are always double, both in the
male and female, and serve in males to stop the motion of the blood,
which forms the seed. This he proves by the example of birds, whose
testicles swell in the season of their amours, and diminish so greatly
when this season is over that they are scarcely perceptible.

All quadrupeds, as horses, oxen, &c. which are clothed with hair,
and cetaceous fishes, as dolphins and whales, are viviparous; but
cartilaginous animals, and vipers, are not truly viviparous, because
they produce an egg within themselves before the live animal appears.
Oviparous animals are of two kinds, those which produce perfect eggs,
as birds, lizards, turtles, &c. and those which produce imperfect eggs,
as fishes, whose eggs augment and come to perfection after they have
been laid in the water by the female; and in all kinds of oviparous
animals, excepting birds, the females are generally larger than the
males, as fishes, lizards, &c.

After having mentioned these general varieties in animals, Aristotle
begins with examining the opinion of the ancient philosophers, that the
seed, as well of the male as of the female, proceeded from all parts of
the body; he declares against this opinion, because, he says, although
children often resemble their fathers and mothers, they also sometimes
resemble their grandfathers; and, besides, they resemble their parents
by the voice, hair, nails, carriage, and manner of walking. Now the
seed, he continues, cannot proceed from the hair, voice, nails, or
any external quality, like that of walking; therefore children do not
resemble their parents because the seed comes from every part of the
body, but for some other reason. It appears to me unnecessary here to
point out the weakness of these arguments; I shall only observe that it
appears to me this great man expressly sought after methods to separate
himself from the sentiments of those philosophers who preceded him;
and I am persuaded, that whoever reads his treatise on generation with
attention, will discover that a strong design of giving a new system,
different from that of the ancients, obliged him always to give the
preference to the least probable reasons, and to elude, as much as he
could, the force of proofs, when they were contrary to his general
principles of philosophy.

According to Aristotle the seminal liquor is secreted from the blood;
and the menstrua, in females, is a similar secretion, and the only one
which serves for the purpose of generation. Females, he says, have
no other prolific liquor; there is, therefore, no mixture of that of
the male with that of the female. He pretends to prove this from some
women conceiving without receiving the least pleasure, and because few
women emit this liquor externally during copulation; that in general
those who are brown, and have a masculine appearance, do not emit at
all, yet engender equally with those who are more fair in complexion
and feminine in appearance, and whose emissions are considerable. Thus
he concludes woman furnishes nothing but the menstrual. This blood
is the matter of generation; and the seminal fluid of the male does
not contribute as matter but as form; it is the efficient cause, the
principle of motion; it is to generation what the sculptor is to a
block of marble: the liquor of the male is the sculptor, the menstrual
blood the marble, and the foetus the image.

The menstrual blood receives from the male seed a kind of soul, which
gives life and motion. This soul is neither material nor immaterial,
because it can neither act upon matter nor enter in generation as
matter, the menstrual blood being all that is necessary for that
purpose. It is, says our philosopher, a spirit, whose substance is
like that of the starry region. The heart is the first work of this
soul; it contains in itself the principle of its own growth; and it has
the power to arrange the other members. The menstrual blood contains
every other principle of all the parts of the foetus: the soul,
or spirit, of the male seed, makes the heart begin to act, and that
communicates the power of bringing the other viscera to action; and
thus, successively, is every part of the animal unfolded and brought
into motion. All this appeared very clear to our philosopher; there
only remained to him one doubt, which was, whether the heart was
realized before the blood; and in fact he had reason for this doubt;
for, although he had adopted the opinion of the heart existing first,
Harvey has since pretended, by reasons of the same kind as those used
by Aristotle, that it was not the heart but the blood which is first
realized.

This is the system that great philosopher has given us of generation,
and I shall leave it to the opinion of the reader whether that of
the ancients, which he rejects, can be more obscure or more absurd
than his; nevertheless, his system has been followed by most of the
learned. Harvey has not only adopted the ideas of Aristotle, but has
added new ones of the same kind. As this system of generation is of
the same kind as the rest of Aristotle's philosophy, where form and
matter are the grand principles; where the vegetative and sensitive are
the active beings in Nature; and where final causes are real objects;
I am not surprised that it has been received by scholastic authors;
but it is astonishing that so able a physician and observer of Nature
as Harvey was, should be carried away with the stream, while every
physician followed the opinion of Hippocrates and Galen; which we shall
explain in order. We must not, however, imbibe a disadvantageous idea
of Aristotle from the above exposition of his System of Generation.
It would be like judging of Descartes by his Treatise on Man. The
explanations which these two philosophers give of the formation of the
foetus should not be considered as complete systems on the subject
of generation; they are rather general consequences drawn from their
philosophical principles.


_END OF THE SECOND VOLUME._



Transcriber Note

Non-standard capitalization has been retained. Hyphenation was
standardized. All obvious typographical corrections made. The following
list of changes were also made:

  Page  Change
  ====  ===================================================
    47  Added missing endquote first paragraph
    50  Harleim was changed to Haarlem
    58  "which" was added: " ... causes [which] agitates and
          disturbs it ..."
   155  Added missing endquote first paragraph
   225  Added missing endquote first paragraph
   246  Timaeo was changed to Timæus.





*** End of this Doctrine Publishing Corporation Digital Book "Buffon's Natural History, Volume II (of 10) - Containing a Theory of the Earth, a General History of - Man, of the Brute Creation, and of Vegetables, Mineral, - &c. &c" ***

Doctrine Publishing Corporation provides digitized public domain materials.
Public domain books belong to the public and we are merely their custodians.
This effort is time consuming and expensive, so in order to keep providing
this resource, we have taken steps to prevent abuse by commercial parties,
including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the files We designed Doctrine Publishing
Corporation's ISYS search for use by individuals, and we request that you
use these files for personal, non-commercial purposes.

+ Refrain from automated querying Do not send automated queries of any sort
to Doctrine Publishing's system: If you are conducting research on machine
translation, optical character recognition or other areas where access to a
large amount of text is helpful, please contact us. We encourage the use of
public domain materials for these purposes and may be able to help.

+ Keep it legal -  Whatever your use, remember that you are responsible for
ensuring that what you are doing is legal. Do not assume that just because
we believe a book is in the public domain for users in the United States,
that the work is also in the public domain for users in other countries.
Whether a book is still in copyright varies from country to country, and we
can't offer guidance on whether any specific use of any specific book is
allowed. Please do not assume that a book's appearance in Doctrine Publishing
ISYS search  means it can be used in any manner anywhere in the world.
Copyright infringement liability can be quite severe.

About ISYS® Search Software
Established in 1988, ISYS Search Software is a global supplier of enterprise
search solutions for business and government.  The company's award-winning
software suite offers a broad range of search, navigation and discovery
solutions for desktop search, intranet search, SharePoint search and embedded
search applications.  ISYS has been deployed by thousands of organizations
operating in a variety of industries, including government, legal, law
enforcement, financial services, healthcare and recruitment.



Home