Home
  By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | HTML | PDF ]

Look for this book on Amazon


We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: From Paper-mill to Pressroom
Author: Wheelwright, William Bond
Language: English
As this book started as an ASCII text book there are no pictures available.


*** Start of this LibraryBlog Digital Book "From Paper-mill to Pressroom" ***


  _With the compliments of the_
  GEO. W. WHEELWRIGHT PAPER CO.,
  BOSTON, MASS.


  FROM
  PAPER-MILL TO
  PRESSROOM

[Illustration: ANCIENT PAPER-MAKING

_The tools of the primitive paper-maker consisted of a pulp vat for the
fiber-laden water, a frame, or mold across which was stretched a mesh
of closely-spaced wires, and a removable frame known as the deckle;
hence the term “deckle edged.” The beating was done by iron shod
hammers which were raised and released by cams on a shaft turned by
water power: this machine called a stamper is shown in the foreground
of this picture._]



  FROM
  PAPER-MILL TO
  PRESSROOM

  _By_
  WILLIAM BOND WHEELWRIGHT
  _Author of “How Paper is Made,” etc._

  The Collegiate Press
  GEORGE BANTA PUBLISHING COMPANY
  MENASHA, WISCONSIN
  1920



  COPYRIGHTED 1920
  BY
  WILLIAM BOND WHEELWRIGHT


  PRINTED AND BOUND BY
  GEORGE BANTA PUBLISHING CO.
  MANUFACTURING PUBLISHERS
  MENASHA, WISCONSIN



  TO MY FATHER
  GEORGE WILLIAM WHEELWRIGHT
  AND TO THE MEMORY OF HIS FATHER
  WHO ENTERED THE PAPER BUSINESS IN 1834
  THESE PAGES ARE
  RESPECTFULLY INSCRIBED



TABLE OF CONTENTS


  _Chapter_
        INTRODUCTION                                            ix
     I. Tradition and History of Paper-Making                    1
    II. Raw Materials                                           10
   III. Future Fiber Possibilities                              18
    IV. The Constituents of Paper                               24
     V. The Constituents of Paper                               32
    VI. Paper-Making                                            41
   VII. Paper-Making                                            51
  VIII. The Physical and Chemical Aspects of Paper              60
    IX. Appraising and Testing Paper                            67
     X. Pressroom Difficulties                                  76
    XI. The Paper Trade                                         89
   XII. Importance of a Knowledge of Printing                   97
        INDEX                                                  101

NOTE--_This book is printed on Wheelwright’s “B.P.F.” paper 25x38-70._



LIST OF ILLUSTRATIONS


  ANCIENT PAPER-MAKING                                Frontispiece
  RAGROOM, PIONEER MILL, CRANE & CO.                            23
  RAG BOILER ROOM, CRANE & CO.                                  25
  WOOD GRINDER                                                  30
  WET MACHINES, THE BROWN CO.                                   33
  CYLINDER MACHINE FOR DRYING PULP, THE BROWN CO.               35
  THE BEATER-ROOM, CRANE & CO.                                  37
  FOURDRINIER MACHINES, CRANE & CO.                             45
  FOURDRINIER MACHINE, S. D. WARREN & CO.                       50
  CYLINDER VATS, MADE BY THE PUSEY & JONES CO.                  53
  COATING ROOM, APPLETON COATED PAPER CO.                       57
  FINISHING-ROOM, CRANE & CO.                                   58
  SUPERCALENDER STACKS, APPLETON COATED PAPER CO.               66



INTRODUCTION


In the following pages I have endeavored to present a treatise on paper
free from confusing technicalities, yet sufficiently intimate to be of
service alike to the manufacturer, the salesman, and the consumer of
paper viewing the subject in a broad way from the paper mill to the
pressroom. The manufacturer and the consumer may notice the omission
of some details, as I have aimed to touch mainly on such points as are
essential to a good understanding of the work-a-day problems of paper
after it reaches the printer.

I am convinced that in many cases the problems of the pressroom are
too slightly understood by the “paperman,” while the technicalities of
paper-making are only too vaguely comprehended by the printer. I also
feel that both should have at least an acquaintance with the history
and progress of paper-making.

            WILLIAM BOND WHEELWRIGHT.

  Appleton, Wisconsin,
  January, 1920.



CHAPTER ONE

THE TRADITION AND HISTORY OF PAPER-MAKING


It would be difficult to single out among the diversified objects
of human investigation,” wrote John Murray in his remarks on “Modern
Paper” (published in 1829), “a question more curious or interesting
than the medium which bears the symbols that register the circumstances
and events of past ages.... It is through such wonderful media that we
are introduced into the multitudinous throng of a world’s tenantry, and
from their inscription learn what they thought, and said and did.... In
deciphering these transcriptions of ideas and memorials of humanity we
virtually converse with minds long since numbered with those who people
the world of spirits; and even the mummy from his cerements in his
sycamore coffin, recovered from the vaults of eternal pyramids, talks
with us by virtue of the roll of papyrus which he holds in his hand.”

From this substance of Egyptian origin is derived the name of its
modern successor--paper. Paper, which in convenience and varied utility
is as much in advance of its forerunner as papyrus was in advance of
brick, stone, lead, copper, brass, leaves, bark, wood and skins, the
successive media for the transcription of human thought.

The exact date of the origin of paper-making has probably yet to
be discovered, though the researches of Dr. Aurel Stein and others
have traced its antiquity back into the second century, B. C. (see
Encyclopædia Britannica).

According to R. W. Sindall (“The Manufacture of Paper,” 1908), the
earliest reference to the manufacture of paper is to be found in the
Chinese Encyclopædia, wherein it is stated that Ts’ai-Lun, a native of
Kuei-yang, entered the service of the Emperor Ho-Ti in A. D. 75, and,
devoting his leisure hours to study, suggested the use of silk and
ink as a substitute for the bamboo tablet and stylus. Subsequently
he succeeded in making paper from bark, tow, old linen and fish-nets
(A. D. 105).

The art thus originated and nurtured by the Chinese remained to be
transmitted to Europe by the Arabs after their conquest of Samarkand in
A. D. 751.

The first centers of the industry founded in the eleventh century were
in Spain, at Toledo, Valencia and Xativa. From Spain the craftsmen
migrated to Sicily, Italy, France and the Netherlands.

A mill was established at Hainault, France, as early as 1190.

The oldest-known document on cotton paper is a deed of King Roger of
Sicily, dated 1102. It is probable that the famous mills of Fabriano
sprang from Sicilian sources; their establishment was followed in 1360
by a mill in Padua, and later in Treviso, Bologna, Palma, Milan and
Venice, while the first paper-mill of Germany was that of Ulman Stromer
at Mainz in 1320.

A most interesting account of this period of paper-making is given
as follows by Harold Bayley in his volume, “A New Light on the
Renaissance:”

“In the Dark Ages there existed in the south of France a premature
civilization far in advance of that of the rest of Europe. Among the
arts and industries that flourished in Provençe and the surrounding
districts, paper-making was one of the foremost. Not only was this
district the cradle of European paper-making, but for many centuries it
remained the center of this industry.

“The freedom and prosperity of Provençe attracted large numbers of
persecuted Jews and heretics, who took refuge there, and by their
industry and intellect augmented the power and influence of the
country. So deeply, indeed, did heresy enter into the politics of
Provençe, that in 1209 the Church of Rome considered it necessary to
launch a crusade against the infected district.

“During a period of twenty years the heretical inhabitants were either
extirpated or driven into perpetual exile. Those who escaped carried
with them a passionate affection for their destroyed fatherland, and an
undying hatred against the tyranny of the Church of Rome.

“It will be shown that from the appearance of the first water-mark in
1282 these mysterious marks are, speaking broadly, the traditional
emblems of Provençe.

“From the fact that fundamentally the same designs were employed all
over Europe, we can deduce the inference that Provençal refugees
carried their art throughout Europe, just in the same way as at a later
period and under somewhat similar circumstances Huguenots carried new
industries into strange countries. It will also be shown that the same
code which unlocks many of the obscurities of paper-marks elucidates
the problems of printers’ marks, and evidence will be brought forward
that paper-makers and printers were originally in close touch with each
other, held similar views, and were associated in identical aims.”

Gradually the secrets of the craft pursued their northward trail into
the Netherlands. Saardam, in the Duchy of Holland, became in the
eighteenth century an important center, employing, it is said, one
thousand persons.

In England, which for many years imported all its paper, the first mill
was erected about 1498, as is attested by an entry for that year in
the privy-purse expenses of King Henry VII. Further corroboration is
also to be found in the following quaint verse from Wynken de Worde’s
edition of “De Proprietatibus Rerum”:

    And John Tate the younger Joye mote he broke,
    Which late hathe in England doo make this paper thynne
    That now in our Englyshe this book is written inne.

England, however, achieved no reputation for fine papers until the
establishment of the famous James Whatman, in 1760.

In the meantime, the trade had taken root in our own country when,
in 1690, William Rittenhouse started the first American mill on the
Wissahickon river at Roxborough, near Philadelphia, and thirty years
later New England’s first mill was established by David Hinchman at
Milton, Massachusetts.

The migratory characteristics of the trade were made possible by the
simplicity of the machinery which was required in these times. Pictures
of early mills depict a mortar and pestle in which to macerate the rags
to pulp, a small vat for the paper stuff, a mold on which the paper was
formed, and a screw press with which to squeeze out the water from the
new-formed sheets.

Mechanical improvements came with painful slowness, and no doubt each
small advance was a jealously guarded secret.

The mortar and pestle were succeeded by a machine mechanically
imitating the handwork of beating the rags to pulp. This was called a
stamper. The old mortar remained, but the beating was done by iron-shod
hammers, which were raised and released by cams on a shaft turned by
water-power. Note the stamper in the foreground of the picture of
Ancient Paper-making on page II.

The Dutch improved upon this device by the invention of the Holland
beating engine about 1770, which in its essentials is practically the
same thing to-day on a much larger scale.

Until the year 1798 there had been no further advance in mechanical
inventions for paper-making, but let us pause a moment for a
consideration of the paper itself.

The early raw material consisted solely of cotton and linen rags, and
there was very little variety of output. Until 1750 all the paper
was made on molds, the seats of which were made by fine parallel
wires supported by heavier wires, which ran at right angles to them.
Consequently all the paper was what is called “laid.” In 1750, at the
instance of the famous Printer Baskerville, a mold was made with a
woven-wire seat, and the first “wove” paper was used in his famous
Edition of Virgil.

The characteristics of the earlier paper are well summed up by Mr.
De Vinne in an article on woodcut printing which appeared in Volume
XIX, No. 6, of _Scribner’s Magazine_, a reading of which impresses
one with the limitations of ancient paper-making as contrasted with
the complexity of modern paper-making, and all the study which its
variations impose upon the modern printer who seeks proficiency.

“Much of the paper made in the sixteenth century,” he says, “was
unsuitable for woodcuts. By far the larger portion was made of linen
stock, hard and rough as to surface, laid, or showing the marks of the
wires upon which the pulp had been crushed, or ragged edges, unsized
and very sensitive to dampness, uneven in thickness, usually thin in
the center and thick at the edges....

“The paper selected was, in most cases, too rough and hard to be
forcibly impressed against the delicate lines of fine woodcuts. It was
the usage everywhere to soften the paper by a careful dampening.

“When the paper was sized it was more weakened by this dampening, which
really lightened the labor of the pressman. But unsized paper was only
about half the price of sized, and the inducement to use it was great.
The unsized paper was dampened with difficulty, it greedily sucked
up water, and when fully wet became flabby and unmanageable. Under
searching pressure of the woolen blanket which was always put between
the paper to be printed and the printing surface, this flabby paper was
forced around the finer lines of the cut, making them much thicker than
was intended.”

Let those whose shallowness leads them to regard modern paper-making as
an abortion of a once noble art take thought!

The transition from the old ways of paper-making to modern processes
was sudden. The century which gave them to us stands out in radiance
against the dark ages of heavy toil at the vat and press.

First came the mechanic whose genius caused tons to be produced in the
time that pounds were made of yore. Next came the chemist who developed
unthought-of raw materials to supply the ever-growing demands of
“papivorous” civilization, until it has been said with so much truth
that ours is the paper age.

In 1798 an obscure French workman, Louis Robert, of Essonne, announced
that he “had discovered a way to make, with one man, and without fire,
by means of machines, sheets of paper of a very large size, even twelve
feet wide and fifty feet long.”

Times were hard on the continent, yet the Government of France,
recognizing the importance of the invention, awarded Robert eight
thousand francs and a patent for fifteen years. Furthermore, permission
was given to carry over the small working model to England, with the
hope of interesting British capital.

A successful attempt to make paper on Robert’s machine having been
made in the mill of François Didot, in France, Leger Didot purchased
the patent and, accompanied by an Englishman of the appropriate name
of John Gamble, proceeded to England and employed Mr. Bryan Donkin to
construct a machine.

Being in need of funds, they interested two wealthy London stationers,
Messrs. Henry and Sealy Fourdrinier, in their proposition, and in 1804
the first successful machine was started at Frogmore. Much credit is
due Mr. Donkin, by whose ingenuity the mechanical difficulties were
mastered, but the Fourdriniers, for whom the machine was named, are no
less entitled to the honor, as their persistent faith in the machine
finally led them into bankruptcy.

After having expended sixty thousand pounds and being reduced to
penury, they finally petitioned Parliament for compensation for their
losses. Their labors were fortunately appreciated, and a sum of seven
thousand pounds was voted them.

Surely all these early pioneers deserve a place in the hall of fame
beside that of Gutenberg.

In 1812 the type of machine known as “cylinder” was invented by John
Dickinson, whose name is still associated with paper-making, and so
different is the machine in principle that Dickinson’s name should
also be placed alongside of Robert’s as a benefactor to mankind.
Neither of these machines had any means for drying paper, consequently
their production was decidedly limited. This lack was supplied by
the invention of driers by T. B. Crompton in 1821, who later took
out a patent for slitter-knives. Suction boxes were contributed by
the ingenuity of M. Canson, a Frenchman, in 1826. John Wilks, an
Englishman, produced the first dandy roll in 1830, while Thomas Barratt
conceived the idea of making water-marks by means of this roll.

And so, one after another, various useful additions came into
existence, until we have the modern paper-machine, which differs mainly
in width, length and productive power from the machines of the thirties.

In the meantime, researches for new paper-making materials had been
in progress. As early as 1719, Reamur, observing how wasps made their
nests from wood, threw out the hint to paper-makers, but for over a
century there was no important result.

In 1727, Dr. Brueckmann, a German naturalist, published a work on
stones, four copies of which are said to have been printed on paper
made with asbestos.

In 1751 M. Guettard in France published his experiments and showed
samples of paper made from bark, leaves and wood; while in 1765 Jacob
Christian Schaffers, of Ratisbon, published a volume, a copy of which
exists in the Smithsonian Library, upon the different sorts of paper he
could make without rags.[A]

    [A] A copy of the second edition of this work is in the Library of
        the University of Michigan at Ann Arbor.

Matthias Koops in 1801 printed some account of his patents for
utilizing waste papers, straw and wood. This volume, printed on straw
paper, with one signature on paper claimed to be made of wood, is well
worth reading, and is to be found both in the Boston Public Library and
in the Harvard College Library, and quite likely elsewhere.

These experiments are only interesting as forerunners. In their own
time they came to naught. Not until 1840 was ground wood-pulp invented
by Keller.

The production of cellulose from straw and esparto by the soda process
was discovered by Routledge, an Englishman, in 1860, while the first
patents for making wood soda pulp were those of Watt and Burgess in
1854.

To an American belongs the credit for the important invention of the
sulphite process, Benjamin C. Tilghmann, of Manayunk, Pennsylvania,
having taken out the first patents in 1866.

Although excellent fiber was obtained, the engineering difficulties
proved so serious that experiments were temporarily abandoned in the
United States. But the process was afterward put upon a successful
commercial basis by Fry and Ekman, at Berzwik, Sweden, in 1870.
Americans soon took up the problem with renewed energy, and the late
Charles S. Wheelwright, of Providence, Rhode Island, after a visit to
Sweden in 1882 on which he obtained the rights to the Ekman patents,
introduced the process at the plant of the Richmond Paper Company, in
Providence, and while a commercial success was not realized, it was
an important step in the development of the industry, and not many
years passed before the United States gained a leading position in the
production of wood-pulps.[B]

    [B] See Little & Griffin, “The Chemistry of Paper-making.”

Thus in less than ninety years, from Robert’s invention of 1798 to the
early eighties, the world witnessed a complete revolution of the paper
industry, which had struggled along in the same old rut for some two
thousand years.

To-day the United States leads the world in the production of paper.
According to the census of 1909, we produced 4,216,708 tons, valued
at $232,741,049, an amount which exceeds in tonnage the combined
production of England, Germany, France, Austria and Italy.

Well may we be proud of this great industry, which after all is largely
the reflection of a nation’s intelligence and culture, and commercial
activity.



CHAPTER TWO

RAW MATERIALS


Paper has been defined as “an aqueous deposit of cellulose,” and
while this is incomplete as a catalogue of the materials composing a
sheet of modern paper, it is an excellent epitome of the foundation
of paper-making. Minute cellulose fibers, derivatives of various raw
materials, are deposited upon a wire cloth by the passage of a volume
of water in which they have been suspended. The pulpy film thus formed
becomes a sheet of paper, after the expulsion and evaporation of the
water which served as a medium for their deposit.

The minute fibers composing this hypothetical sheet of paper may have
been isolated from one of several sources of raw materials in present
commercial use, or the sheet may be composed of a mixture of different
fibers, all more or less pure cellulose, in accordance with the
preliminary treatment each has undergone.

The principal sources from which American paper fibers are derived are
cotton and linen rags, hemp, jute, wood, straw; and waste papers.

Previous to the year 1840, the sources were limited to rags. These are
almost wholly composed of pure cellulose fibers, which give up their
non-cellulose concomitants with slight resistance. The more severe
chemical treatments necessary for the isolation of cellulose fibers,
from wood, for example, half of which is non-cellulose in structure,
were unknown to early paper-makers, and only became possible after the
discovery of bleaching-powder by Tennant, and the manufacture of soda
by Le Blanc.

Although experiments in search of suitable substitutes for rags began
to be made in the eighteenth century, it was Keller’s invention of
ground wood in 1840, Routledge’s work on esparto grass and wood with a
soda process in 1854, and our own fellow countryman Tilghmann’s patent
of the sulphite process in 1866, from which we may date the beginnings
of the now extensive use of materials other than cotton and linen
wastes.

The accompanying table, taken from the United States Statistics of
Manufacture for 1909, gives an illuminating indication of the rapid
growth of our paper industry, and also shows the remarkable increase in
the use of wood celluloses.

  Note.--Statistics are taken from U.S. Reports for 1909. Subsequent
  reports are obtainable from the Director of the Census, Washington,
  D.C.

It may be observed that the percentage of increase in the use of
wood-pulp of all kinds for the decade 1899-1909 was 111.6, and of rags,
50. Approximately four and one-quarter millions tons of paper were
produced in 1909, for which the fibers used figured in the following
proportions:

                          Per Cent.
  Wood-pulp                  61.6
  Old and waste papers       21.4
  Rags                        7.8
  Straw                       6.6
  Manila (rope)               2.6

Of the total amount of wood fibers, the various proportions were
approximately as follows:

                          Per Cent.
  Ground wood                47
  Sulphite pulp              42
  Soda pulp                  11

A further investigation as to the species of woods used shows that,
while spruce is still the most important, contributing nearly 60 per
cent, other woods are being increasingly used.

Another noteworthy fact is the mighty increase in imports of
wood-pulps, which jumped from 33,319 tons in 1899 to 307,122 tons in
1909, an amount equal to 12 per cent of all that is used in the United
States.

  ===========================+==============+==============+=============
                             |     1909     |     1904     |     1899
  ---------------------------+--------------+--------------+-------------
         MATERIALS           |              |              |
      Total cost             | $165,442,341 | $111,251,478 |  $70,530,236
                             |              |              |
  Pulpwood, cost             |  $33,772,475 |  $20,800,871 |   $9,837,516
  Wood pulp, purchased:      |              |              |
        Tons                 |    1,241,914 |      877,702 |      644,006
        Cost                 |  $43,861,357 |  $27,633,164 |  $18,369,464
     Ground--                |              |              |
        Tons                 |      452,849 |      317,286 |      261,962
        Cost                 |   $9,487,508 |   $5,754,259 |   $4,361,211
     Soda fiber--            |              |              |
        Tons                 |      154,626 |      120,978 |       94,042
        Cost                 |   $6,862,864 |  $5,047,105  |   $3,430,809
     Sulphite fiber--        |              |              |
        Tons                 |      626,029 |      433,160 |      273,194
        Cost                 |  $27,184,726 |  $16,567,122 |  $10,112,189
     Other chemical fiber--  |              |              |
        Tons                 |        8,410 |        6,278 |       14,808
        Cost                 |     $326,259 |     $264,678 |     $465,255
  Rags, including cotton,    |              |              |
   flax waste and sweepings: |              |              |
        Tons                 |      357,470 |      294,552 |      234,514
        Cost                 |  $10,721,559 |   $8,864,607 |   $6,595,427
  Old and waste paper:       |              |              |
        Tons                 |      983,882 |      588,543 |      356,193
        Cost                 |  $13,691,120 |   $7,430,335 |   $4,869,409
  Manila stock, including    |              |              |
   jute bagging, rope,       |              |              |
   waste, threads, etc.:     |              |              |
        Tons                 |      117,080 |      107,029 |       99,301
        Cost                 |   $3,560,033 |   $2,502,332 |   $2,437,256
  Straw:                     |              |              |
        Tons                 |      303,137 |      304,585 |      367,305
        Cost                 |   $1,460,282 |   $1,502,886 |   $1,395,659
  All other materials cost   |  $58,375,515 |  $42,517,283 |  $27,025,505
                             |              |              |
         PRODUCTS            |              |              |
                             |              |              |
      Total value            | $267,656,964 | $188,715,189 | $127,326,162
  Newspaper:                 |              |              |
     In rolls for printing-- |              |              |
        Tons                 |    1,091,017 |      840,802 |      454,572
        Value                |  $42,807,064 |  $32,783,308 |  $15,754,992
     In sheets for           |              |              |
      printing--             |              |              |
        Tons                 |       84,537 |       72,020 |      114,640
        Value                |   $4,048,496 |   $3,143,152 |   $4,336,882
  Book paper:                |              |              |
     Book--                  |              |              |
        Tons                 |      575,616 |      434,500 |      282,093
        Value                |  $42,846,674 |  $31,156,728 |  $19,466,804
     Coated--                |              |              |
        Tons                 |       95,213 |      [2]     |      [2]
        Value                |   $9,413,961 |      [2]     |      [2]
     Plate, lithograph, map, |              |              |
      woodcut, etc.--        |              |              |
        Tons                 |        6,498 |       19,837 |       22,366
        Value                |     $555,352 |   $1,458,343 |   $2,018,958
     Cover--                 |              |              |
        Tons                 |       17,578 |       22,150 |       18,749
        Value                |   $1,982,853 |   $2,023,986 |   $1,665,376
  Cardboard, bristol board,  |              |              |
   card middles, tickets,    |              |              |
   etc.--                    |              |              |
        Tons                 |       51,449 |       39,060 |       28,494
        Value                |   $3,352,151 |   $2,764,444 |   $1,719,813
  Fine paper:                |              |              |
     Writing--               |              |              |
        Tons                 |      169,125 |      131,934 |       90,204
        Value                |  $24,966,102 | $ 19,321,045 |  $12,222,870
     All other--             |              |              |
        Tons                 |       29,088 |       14,898 |       22,503
        Value                |   $4,110,536 |   $2,928,125 |   $3,673,104
  Wrapping paper:            |              |              |
     Manila (rope, jute,     |              |              |
      tag, etc.)--           |              |              |
        Tons                 |       73,731 |       86,826 |       89,419
        Value                |   $6,989,436 |   $6,136,080 |   $5,929,764
     Heavy (mill wrappers,   |              |              |
      etc.)--                |              |              |
        Tons                 |      108,561 |       96,992 |       82,875
        Value                |   $4,380,794 |   $4,035,588 |   $4,143,240
     Straw--                 |              |              |
        Tons                 |       32,988 |       54,232 |       91,794
        Value                |     $870,419 |   $1,389,348 |   $2,027,518
     Bogus or wood manila,   |              |              |
      all grades--           |              |              |
        Tons                 |      367,932 |      228,371 |      203,826
        Value                |  $19,777,707 |  $10,099,772 |   $9,148,677
     All other--             |              |              |
        Tons                 |      179,855 |      177,870 |       67,338
        Value                |  $10,202,035 |   $8,774,804 |   $3,293,174
  Boards:                    |              |              |
     Wood pulp--             |              |              |
        Tons                 |       71,036 |       60,863 |       44,187
        Value                |   $2,639,496 |   $2,347,250 |   $1,406,130
     Straw--                 |              |              |
        Tons                 |      171,789 |      167,278 |      157,534
        Value                |   $3,750,851 |   $4,367,560 |   $3,187,342
     News--                  |              |              |
        Tons                 |       74,606 |       38,560 |       32,119
        Value                |   $2,215,469 |   $1,174,216 |     $930,531
     All other--             |              |              |
        Tons                 |      514,208 |      253,950 |      131,777
        Value                |  $17,539,768 |   $9,070,531 |   $4,829,316
  Other paper products:      |              |              |
     Tissues--               |              |              |
        Tons                 |       77,745 |       43,925 |       28,406
        Value                |   $8,553,654 |   $5,056,438 |   $3,486,652
     Blotting--              |              |              |
        Tons                 |        9,577 |        8,702 |        4,351
        Value                |   $1,186,180 |   $1,046,790 |     $580,750
     Building roofing,       |              |              |
      asbestos, and          |              |              |
      sheathing--            |              |              |
        Tons                 |      225,824 |      145,024 |       96,915
        Value                |   $9,251,368 |   $4,845,628 |   $3,025,967
     Hanging--               |              |              |
        Tons                 |       92,158 |       62,606 |       54,330
        Value                |   $4,431,514 |   $3,013,464 |   $2,265,345
     Miscellaneous--         |              |              |
        Tons                 |       96,577 |      106,296 |       49,101
        Value                |   $6,869,169 |   $6,729,820 |   $2,795,841
  Wood pulp made for sale or |              |              |
   for consumption in mills  |              |              |
   other than where          |              |              |
   produced:                 |              |              |
     Ground--                |              |              |
        Tons                 |      310,747 |      273,400 |      280,052
        Value                |   $5,649,466 |   $4,323,495 |   $4,433,699
     Soda fiber--            |              |              |
        Tons                 |      155,844 |      130,366 |       99,014
        Value                |   $6,572,152 |   $5,159,615 |   $3,612,602
     Sulphite fiber--        |              |              |
        Tons                 |      444,255 |      376,940 |      271,585
        Value                |  $17,955,748 | $ 13,661,464 |  $10,451,400
                             |              |              |
  All other products, value  |   $4,738,549 |   $1,924,195 |     $919,415
                             |              |              |
         WOOD PULP           |              |              |
                             |              |              |
  Quantity produced          |              |              |
   (including that used in   |              |              |
   mills where               |              |              |
   manufactured), total tons |    2,495,523 |    1,921,768 |      179,535
     Ground, tons            |    1,179,266 |      968,976 |      586,374
     Soda fiber, tons        |      298,626 |      196,770 |      177,124
     Sulphite fiber, tons    |    1,017,631 |      756,022 |      416,037
                             |              |              |
         EQUIPMENT           |              |              |
                             |              |              |
  Paper machines:            |              |              |
        Total number         |        1,480 |        1,369 |        1,232
        Capacity, yearly,    |              |              |
        tons                 |    5,293,397 |    3,857,903 |    2,782,219
     Fourdrinier--           |              |              |
        Number               |          804 |          752 |          663
        Capacity per 24      |              |              |
         hours, tons         |       10,508 |        8,569 |      [3]
     Cylinder--              |              |              |
        Number               |          676 |          617 |          569
        Capacity per 24      |              |              |
         hours, tons         |        6,316 |        4,740 |      [3]
  Pulp:                      |              |              |
     Grinders, number        |        1,435 |        1,362 |        1,168
     Digesters, total number |          542 |          517 |          426
        Sulphite fiber,      |              |              |
         number              |          348 |          309 |      [2]
        Soda fiber, number   |          194 |          208 |      [2]
     Capacity, yearly, tons  |              |              |
      of pulp                |    3,405,621 |    2,644,753 |    1,536,431
        Ground, tons         |    1,809,685 |    1,515,088 |      [2]
        Sulphite, tons       |    1,250,983 |      885,092 |      [2]
        Soda, tons           |      344,953 |      244,573 |      [2]
  ---------------------------+--------------+--------------+-------------

  Table from United States Statistics of Manufacture for 1909, Showing
  Rapid Growth of Paper Industry.

The comparative statement follows:

  ==================+================================================
                    |    QUANTITY, IN CORDS, OF PULPWOOD CONSUMED
      KIND OF WOOD. +-----------+-----------+------------+-----------
                    |   1911    |   1910    |    1909    |    1908
  ------------------+-----------+-----------+------------+-----------
    Total           | 4,328,052 | 4,094,306 |  4,001,607 |  3,346,953
                    |-----------+-----------+------------+-----------
  Spruce, domestic  | 1,612,355 | 1,473,542 |  1,653,249 |  1,487,356
  Spruce, imported  |   903,375 |   902,407 |    768,332 |    672,483
  Hemlock           |   616,663 |   610,478 |    559,657 |    569,173
  Poplar, domestic  |   333,929 |   315,717 |    302,876 |    279,564
  Poplar, imported  |    34,295 |    45,359 |     25,622 |     22,653
  Balsam fir        |   191,779 |   132,362 | [1] 95,366 | [1] 45,309
  Pine              |   124,019 |   105,882 |     90,885 |     84,189
  Beech             |    44,320 |    44,265 |     31,390 |     [2]
  Maple             |    36,979 |    42,621 |     [2]    |     [2]
  White fir         |    36,493 |    30,845 |     37,176 |     [2]
  Cottonwood        |    25,043 |    31,099 |     36,898 |     45,679
  All other         |    88,268 |    97,092 |    151,179 |    140,547
  Slabwood, etc,    |   280,534 |   262,637 |    248,977 |     [3]
  ------------------+-----------+-----------+------------+-----------

    [1] Balsam.

    [2] Included in “All other.”

    [3] Included with other wood by species.

The high point of importation of chemical wood-pulp was reached in
1914, when approximately 3,600,000 tons came in from Europe and 92,000
from Canada. In January 1916 owing to the war, imports for the month
from Europe dropped from an average of 30,694 tons to 12,985 tons,
while Canadian pulp increased from an average of 7,654 to an actual
importation for the month of 28,833 tons.

Although the use of wood now so heavily overshadows that of rags that
it almost seems as though the latter were being slowly abandoned, this
is of course only relatively true, their consumption being actually
greater than ever. The mere cost of the rags in 1909 was slightly in
excess of the total value of all paper products recorded in the United
States Census for 1850, a circumstance which leads us to wonder at the
timely discoveries which made wood cellulose available.

It is evident, however, that to some extent paper history is already
beginning to repeat itself. The visible supplies of wood are markedly
less, as evidenced by their increasing costs, and we are forced to a
much more active attitude than one of mere speculation as to what new
sources may become available to supply our demand for paper, which has
lately been increasing in the value of the annual products by almost 11
per cent.

In the decade from 1899 to 1909 shown by government statistics,
book-paper advanced 104 per cent in quantity, but 120 per cent in
value; writing-paper, 88 per cent in quantity, but 104 per cent in
value; wrapping-paper, 43 per cent in quantity and 72 per cent in
value. It is true that rising wages account in part for these changes
in value, but above and behind all this stands the inexorable law of
supply and demand.

The discrepancies between the percentages of increase in production
and value serve to emphasize the increasing difficulties in obtaining
raw material. That sprucewood is being consumed in this country faster
than it is grown, is indicated by the recourse to less-favored species,
as well as by the steadily increasing imports, both of pulpwood and
wood-pulp. This situation emphasises the great importance of conserving
waste papers, in spite of the fact that 21.4 per cent of the fiber
used in 1909 in the United States were derived from waste papers.
Vast quantities may readily be saved which now go to waste, as was
definitely proved by England’s experience during the war, when the
imports of pulp were shut off and immediate substitutes had to be found.

This is a matter demanding the attention not only of printers, but of
municipalities and nations. It offers an immediate source of relief
from the drain on our forests and is hence a most practical form of
conservation. Furthermore as demonstrated by the city of Cleveland
the revenue from collecting waste papers assists substantially in
offsetting the cost of the collection of municipal wastes.



CHAPTER THREE

FUTURE FIBER POSSIBILITIES


The United States Department of Agriculture, in August, 1911, issued
a treatise on “Crop Plants for Paper-Making,” in which the author,
Charles J. Brand, concluded: “There is some skepticism as to the
failure of pulpwood supplies, but this is certainly poorly grounded.

“During 1909 the quantity of spruce used was less by 40,000 cords
than in 1907, but the cost was $2,000,000 greater. Present efforts in
connection with reforestation of spruce and poplar are not extensive
enough to produce any noteworthy effect upon the available supply
within a generation.

“At the present rate of increase in consumption, it will require
between 15,000,000 and 20,000,000 cords of wood for pulp and paper
fiber in 1950. It will certainly be impossible to furnish this from the
forests. If every acre cut over each year were reforested, it would be
twenty-five or thirty years, or possibly even longer, before the trees
could obtain sufficient size to warrant cutting. The forests can not
recover from overdrafts continually being made on them. Hence it is
only a question of a limited number of years until paper fiber must be
grown as a crop, as are practically all other plants materials entering
into the economy of man. While the conservation of only a few of the
by-products of the farms yielding paper fiber can be accomplished
profitably in the near future, and only a few of the plants promise to
be money-makers immediately if grown solely for paper production, it
seems very probable that raw products, now scarcely considered, may in
a few years play an important part in the paper and pulp industry.”

Two lines of research are now being followed by the United States
Government. The Forest Products Laboratory of the Forest Service is
investigating a large number of coniferous and broad-leaved trees,
which have not hitherto been used in paper-making. These sources
are likely to be the first which manufactures will turn to, as the
processes involved are such as they are already familiar with, and the
apparatus with which they are supplied is suitable.

The second line of research is being followed by the Bureau of Plant
Industry, assisted by the Bureau of Chemistry, and is concerned with
plants other than trees. Private investigations are also being carried
on.

The following five requirements are given by the Bureau of Plant
Industry, Circular No. 82, as to the availability of crop plants:

  1. They must exist in large quantities.

  2. They must be available throughout the year.

  3. They must yield a relatively high percentage of cellulose.

  4. The fiber cells or cellulose, must be of a highly resistant
  character, and must have length, strength and good felting
  qualities.

  5. And must be of such a nature that the cost of obtaining the
  fiber will not be prohibitive.

Fibers complying with these conditions will come into commercial use
whenever the increasing costs of wood-pulp reach a figure approximately
equal to cost of producing cellulose from any other available source.
Up to the present time this has not been brought about, but the steady
increase in the cost of wood-pulp is approaching a level with which
crop pulps may soon compete.

A synopsis of the fibers described in the circular referred to is given
below.

CORN STALKS.--On account of the enormous supply, corn stalks were first
taken up by the Bureau. The yield of stalks per acre is conservatively
estimated at one ton, and the annual product is placed as at least
100,000,000 tons, of which not over one-third is believed to be
utilized by the farmers. Three products have been derived from the
stalks:

  1. Long fiber suitable for paper-making, composing 12 to 18 per
  cent of the bone-dry weight.

  2. Pith pulp, suitable for paper specialties, equal to 15 to 30 per
  cent bone-dry weight.

  3. Corn-stalk extract, obtained by lixivaition, and of value as a
  cattle food, a ton of stalks yielding 200 to 300 pounds of soluble
  solids.

It would require an immense area to supply a mill of moderate capacity,
and the question of whether the derivatives of corn stalks could be
sufficiently valuable to overcome the costs of harvesting and hauling,
has never been answered by any experiment on a commercial scale.

BROOM CORN.--Broom corn contains a higher percentage of fibers than
corn stalks. In laboratory and semi-commercial tests, fiber yields
of 32 to 40 per cent have been obtained with a comparatively low
consumption of chemicals. The Bureau claims that results “indicate
that this material is suitable for immediate use in paper-making on
the basis of quality of fiber produced and yield of fiber secured.” It
is estimated that 450,000 tons is the approximate annual crop. Food
extracts may also be obtained as well as the fiber.

RICE STRAW.--The Chinese and Japanese have for years used rice straw
in paper-making, and it is regarded by the Government investigators as
one of the most promising crop materials, the annual crop approximating
1,500,000 tons.

COTTON-HULL FIBER.--The lint adhering to the cotton hulls, after the
long fiber has been removed, may be conserved as a by-product of the
cotton-seed oil industry, and this fiber may be reckoned among the
possibilities. Cotton stalks also have been the subject of experiment.
The yield per acre, however, is not estimated at above 1,000 pounds,
so that immense tracts would have to be covered in accumulating any
considerable supply, and after the cotton crop has all been picked,
negro help is very difficult to obtain.

BAGASSE.--Bagasse, or the refuse sugar-cane, is given rather scant
consideration in the Government report. Its individual fibers are
short, and the percentage of pith is large. Several small plants have
had discouraging experiences in attempting to put this material to
commercial use. Nevertheless, recent experiments carried on in the
interests of the United Fruit Company, under the Simmons patents, point
to a promising result. Under this process the cane is not treated in
the usual manner of crushing for the extraction of sugar. Instead, it
is shredded, dried, and the pith separated from the fiber. The product
is then shipped in bales to refineries, where the sugar is extracted.

This method is said to achieve an almost complete extraction of the
sugar, whereas the old method of crushing loses about twenty per cent
of the sugar and injures the fibers. The Simmons process does no
damage to the fibers, which though short, possess excellent felting
properties. The pith, being cellulose of a non-fibrous structure, has a
value for other industries than paper-making.

FLAX STRAW.--There is an abundant annual crop of flax straw. The
average yield per acre is about one ton, and the total annual
production about 3,000,000 tons. In the opinion of the Government
investigators, it is a “most promising” material.

There are practical pulp men who deprecate the findings of the Bureau
of Plant Industry. Martin L. Griffin, chemist to the Oxford Paper
Company, of Rumford, Maine, in an article appearing in Volume XI, No.
2, of _Paper_ for March, 1913, makes the following statement:

“There is a popular view, which has been erroneously fostered by the
Government, that there are exhaustless resources of waste fiber in our
country, suitable for paper, and a substitute for wood. I once thought
so myself. It is very natural to think that the discarded stalks of
sugar-cane, corn, cotton, rice, flax, and other plants, which mature
annually, would prove an abundant substitute for wood.

“These have all been exploited for twenty-five years to my personal
knowledge, with no visible results. A plant has one function to
perform--it is to flower, fruit or make stalk. Its other functions are
subordinate and produce only by-products. The stalk is the main product
of the forest tree. No other fibrous material is so rich in cellulose;
no other which lends itself so easily to paper-mill processing. It has
no seasons of harvest; does not require curing; does not easily decay;
requires no packing, and may be stored best in the rivers. All these
waste stalks are pithy, bulky and perishable, and would require much
labor to gather, pack and ship. These are but a few reasons why we may
expect no practical results from this source. Wood fills a place no
other material can. There is no substitute for it.”

In this argument Mr. Griffin ignores the fact that esparto grass is
a crop which gives a yield of cellulose practically equal to wood,
and of equal, if not superior, quality. Although it is not available
for American mills, it is worth citing in contradiction to the flat
statement that “there is no substitute for wood.” Furthermore, there
is no evidence that the American crops furnish an inferior fiber,
though the cellulose yield is less. It is quite possible that the
low cellulose yield may be compensated for through the production of
by-products along with the paper-making material. Hitherto, however,
this low yield and other considerations, as expense of harvesting and
packing, have been the factors which have retarded their development,
but the increasing scarcity of wood, and its consequent advance in
cost, is hastening the day when crop plants will become not only
valuable, but necessary adjuncts to the paper industry.

[Illustration: RAGROOM, PIONEER MILL, CRANE & CO.

The two girls in the foreground are sorting shirt cuttings. Those
beyond are cutting them into suitable sizes preparatory to boiling.]



CHAPTER FOUR

THE CONSTITUENTS OF PAPER


The technique of paper-making varies greatly in accordance with each
particular product. In fact, so wide is the range of paper products,
that the different branches of paper-making severally require knowledge
so special that an artisan in one branch might be as useless in another
as if it were an entirely different industry. The coating of paper, for
example, is an absolutely different trade from that of paper-making.

This remarkable diversification is entirely the development of a
century, and principally the evolution of the past forty years
consequent to the discovery of wood cellulose. To-day the products of
the paper-mill are no longer confined to the use of pen or press. We
ride on car wheels made in part of paper; sit in paper-seated chairs;
drink from paper cups; eat from paper plates; use paper napkins; wrap
our food in parchment paper; sheath our buildings with paper without,
and wall paper or wall board within; keep out the rain with roofing
paper if we please. Our shoes, even, contain a paper part, said to
be more durable than leather. Millions of packages, mailing-tubes
and boxes are made of paper. It is even spun into a kind of yarn and
woven into imitation cloth, while a surprising imitation silk necktie
is produced from wood-pulp. In electrical engineering, paper as an
insulator is almost indispensable.

All these paper commodities, and more, too numerous to mention, require
special machinery and treatment. To give an exhaustive treatment of the
subject would require volumes, but for the purpose of this book we are
principally concerned with printing and writing papers.

[Illustration: BOILER ROOM, CRANE & CO.

The contents of the rotary boiler have been emptied upon the floor. The
next step is to wash and bleach.]

Broadly speaking, there are five steps in the manufacture of paper:

  1. The isolation of the paper-making fiber from the raw material.

  2. The conversion of the fiber into pulp.

  3. The beating and refining of the fiber, and the admixture of
  non-fibrous components.

  4. The manufacture of the mixture into paper.

  5. The finishing of the paper and its preparation for the market.

Cotton and linen rags, hemp, woods and plants each require their
peculiar treatments. Cotton and linen, being the original paper-making
fibers, will be considered first.


RAG STOCK.

Rag papers may be made from all sorts and conditions of rags, so the
fineness of the finished product depends upon the newness and quality
of the rags. New white cuttings from textile factories are the best, as
their strength is unimpaired by previous use, and they may be prepared
for manufacture with a minimum use of chemicals.

From this high standard, rags are graded down in accordance with their
color, cleanliness and condition. The first sortings are made by
stock-dealers, and the paper-maker orders whatever grades are suitable
to his purpose. After their receipt at the mill, the bales of rags are
opened, dusted by machine and distributed to girls, who sort them, open
up the seams so as to release hidden dirt, remove buttons and other
foreign material.

In the making of the highest grades, the new white rags are cut by hand
into small pieces of uniform size, but ordinarily they are fed into a
mechanical rag cutter. After this they are passed through a dusting
machine to rid them as far as possible from dirt and foreign matter,
which might otherwise appear as specks in the paper.

BOILING.--Dyes and greasy matters are associated with the fibers, and
in order to obtain the pure cellulose fiber the rags are cooked, under
steam pressure, in rotary boilers with alkali. This saponifies and
dissolves the non-cellulose compounds, and the soda in combination
with these soluble materials is subsequently washed out. The amount
of steam pressure, the quantity of chemicals, and the duration of the
cooking, are subject to variation under different conditions. At the
conclusion of the process the manholes in the boilers are opened, and
the contents are deposited on the floor, later to be transferred to the
washer room.

WASHING.--A washing engine consists of an oval tub about four feet
high. It is divided longitudinally by a partition or “mid-feather,”
with a passage left at either end for the circulation of the stock. On
one side is located a large roll, having a continuous parallel series
of knives horizontally inserted in its surface. The floor of the engine
slopes gently to a point under the roll, where a bed plate is set.
Behind the roll is a raised partition or dam, over which the stock is
thrown as it passes between the beater roll and the bed plate. This is
known as the “back-fall,” and assists in the circulation. The roll may
be raised or lowered over the bed plate, and by this means the breaking
of the stock is regulated.

Affixed to the tub are one or more washing cylinders, so arranged that
they may be lowered into the stock. These are constructed in such a
way that during the process of washing the water passes through their
wire-covered surfaces and is drained into the hollow axle of the roll
by an interior arrangement, called buckets. The axle, being open at one
end, permits the wash water to escape.

At first the engine is partly filled with water, then the rags are
gradually thrown in until the tub is full. The revolving roll keeps
the mass in circulation, while the rags are broken and shredded as
they pass beneath it. A continuous stream of fresh water runs into the
tub, and in running out through the revolving washer drums carries
off the dirt, but the fibers themselves can not pass through the wire
coverings, so remain until cleansed. Necessarily the water used must be
free from sediment or mineral impurities, such as iron, otherwise it
would fill the stock with specks. Therefore, a filter plant is usually
maintained.

BLEACHING.--After the washing has been completed the drums are raised
clear of the stock and bleaching liquor is introduced. This is an
important step, and if not carefully managed may impair the stock.
For instance, if bleaching is carried on at too high a temperature,
the white color obtained will not be permanent, and discoloration
will occur after the paper is made. Much of the paper, which at first
displays a brilliant white color, will afterward take on a yellowish
tinge, especially if it is exposed to light. A comparison between the
century-old hand-made papers and modern “fine writings,” makes the
old papers appear a “natural” shade, but place both for a few hours
in the sunlight and often the modern paper will fade, whereas the old
sun-bleached papers remain unaltered. The high artificial bleaching
does not insure permanent results.

After the bleach liquor has been thoroughly mixed in, the stock is
discharged into drainers and allowed to stand for a week or more,
until no traces of chlorine remain. In this state the pulp is known as
“half-stock.”

The treatment of hemp is so similar to that of rags that a description
here of the process is superfluous.


WOOD-PULPS.

Wood-pulps are of two classes, mechanical and chemical. In the lay mind
there often appears to be some confusion between the two, leading to an
unreasonable prejudice against papers made from either class. The fact
is so generally known that news-print, one of the cheapest grades of
paper, is made from wood, that the partially informed person is prone
to think that all wood papers are of low quality, whereas paper of
permanence and excellent quality may be made from the high grades of
wood cellulose chemically prepared.

GROUND WOOD.--The mechanical, or ground wood, as its name implies, is
made by grinding logs from which the bark has been removed. The logs
are shipped, or floated from the lumber camps to the mills, where
they are cut to convenient length and the bark is removed. Next they
are taken to the grinders. One type of grinder consists of a vertical
grindstone encased in an iron jacket. There are three pockets over
its circumference into which the logs are placed. They are held by
hydraulic pressure against the revolving stone, over which flows a
stream of water, and are rapidly reduced to fibers. These fibers are
carried by the flowing water into a chamber below the grinders, passing
through a screen which catches the coarser bits, the fibers of suitable
size thus being separated from the rest. This pulp is still not
sufficiently fine or uniform, so it is pumped into screens and forced
through the finely perforated plates. The fibers are carried through
with a large quantity of water, and are formed into thick sheets by
means of a so-called “wet machine.”

WET MACHINE.--The wet machine consists of a vat, in which a partially
submerged hollow drum rotates. The surface is covered by a wire cloth,
and the hollow axle of the drum acts as a drain for the fiber-laden
water, which, in passing through the drum, deposits a film of fibers
upon the revolving surface. This soft pulp film, continuously forming,
is removed from the top of the drum by an endless felt running tangent
to it, and held in close contact with it by a couch roll, the pressure
of which causes the web of pulp to adhere to the felt.

The felt passes between two squeeze rolls, and the pulp adhering to
the upper roll is wound up until a certain number of layers have
accumulated, when it is cut across by a knife and removed as a thick
sheet.

[Illustration: WOOD GRINDER]

The sheets, folded to a convenient size, separated by alternate pieces
of sacking, are put in a hydraulic press and squeezed to remove the
water. The pulp is taken from the press about fifty per cent moist;
the sheets are separated from the sacking and are now ready for use
or for shipment. It is also quite customary to ship the pulp without
having pressed it. In this case it contains about 70% water, due
allowance for which is made in billing.

This pulp contains practically all the constituents of the original
wood, has little strength, inferior felting properties, and is not of
permanent character. Its utility results largely from its cheapness.
When made into paper with a suitable admixture of sulphite pulp, for
strength’s sake, it proves to be admirably adapted for the fast-running
newspaper presses, as ink dries upon it almost instantly.

It is also used in the making of boxboards, cheap cardboards, pie
plates, wall papers, etc. It should, however, be strictly excluded
from all papers of more than ephemeral purposes, because of its lack
of permanence. The appearance of a paper containing much ground wood
is inferior, as the color is poor and small shives of wood may be
discerned on the surface. An easy and reliable way to ascertain the
presence of ground wood is to moisten the paper with a drop of strong
nitric acid, which develops a dark-brown stain if ground wood is
present. Another good test is phloroglucine, which turns ground wood
to a bright carmine shade. The quantity of ground wood is roughly
indicated by the intensity of the stain.


BLEACHED GROUND WOOD

A quality of pulp intermediate between chemically produced wood
cellulose and ground wood is obtained by bleaching an especially finely
ground quality of pulp wood. This product is excellent as a filler
for medium grades of paper, as it is opaque--fine, and of fair color.
Nevertheless, it is open to the same criticism as other ground wood as
to permanence, though in a less degree.



CHAPTER FIVE

THE CONSTITUENTS OF PAPER--_Continued_


CHEMICAL WOOD-PULPS.--Chemical wood-pulps are obtained by a variety of
processes, all of which have as their object the isolation of the pure
cellulose fiber by the dissolution of non-cellulose components. The
same principles are applied to the treatment of esparto straw or other
plants. The character of the pulp depends not only upon the nature of
the wood, but also upon the solvents used and the duration and severity
of the cooking.

The preparatory steps to any process by which chemical wood-pulp is
made are identical with the preparation of trees for ground wood,
only after the logs have been “barked,” they are reduced to chips by
a mechanical “chipper.” The ordinary practice in America is to sort
out any knotty or imperfect logs as they pass on a conveyor from the
“barker,” and if the log it too faulty it is discarded. As it is
desirable to have a uniform size of chips, the chips are passed through
a screen for this purpose.

The chips are stored in bins convenient to the digesters. The digesters
are of two types, rotary and stationary. The rotary type is horizontal
and the stationary is vertical.

After the digester has been loaded with chips, the chemicals are
introduced and the “cook” is carried on by means of high steam
pressure. The strength of the chemicals, pressure of steam, and
duration of cooking, are the principal factors in determining the
result from any particular wood. Slow cooking at low temperatures
yields the best results.

[Illustration: WET MACHINES WHERE THE PULP IS CUT OFF IN SHEETS, THE
BROWN CO.

To the right are the hydraulic presses for removing moisture from the
pulp. The pulp is shipped about seventy per cent moist.]

SODA PULP.--Soda pulp takes its name from the caustic soda which is
used as a solvent. Rotary digesters are employed in its manufacture.
The principal wood used for making soda pulp is poplar, though
chestnut and aspen are also used. Soda pulp is soft in texture and
of no great strength, but in combination with harder stocks it lends
mellowness to the sheet. It is almost one-third cheaper than bleached
sulphite pulp, quotations for February, 1915, being $2.20 to $2.35 per
hundredweight, whereas bleached sulphite was quoted at $2.80 to $2.95
per hundredweight. The prices since the war have risen over 100% and
were quoted in September 1919 at $4.75 to $5.00 and $5.75 to $6.25,
respectively. One reason for the difference in price between soda and
sulphite pulps, is that the soda is recovered from the spent liquor,
whereas in the sulphite process the liquors go to waste.

SULPHATE PULP.--The solvent used in making sulphate pulp is a mixture
of caustic soda, sulphide of soda and sulphate of soda. Sprucewood,
largely, is used and the pulp produced is exceedingly strong.
Unbleached sulphate pulp is used, notably, in the making of Kraft
wrapping-paper. The soda is recovered from the spent liquors.

SULPHITE PULP.--Sulphite pulp is produced by the use of bisulphite of
lime; this, being acid, necessitates a special brick lining in the
digesters, which are of the vertical type. Sprucewood is the best raw
material and yields a strong, fairly long fiber, capable of being
bleached to a good white color.

MITSCHERLICH PULP.--A special method for making sulphite pulp was
invented in Germany by Professor Mitscherlich. It varies from the
ordinary process in that the cook is continued over four times as long
under lower steam pressure, and yields a fiber of greater strength.

The steps subsequent to cooking chemical pulps of all kinds are
similar. After emptying the digesters, the soft, discolored mass of
fibers is washed and bleached. The yield of cellulose fiber is close
to fifty per cent of the air-dry weight of the wood. The shives and
undigested particles are removed by screening, and the pulp is either
run out like ground wood on wet machines, or made up into rolls,
or sheets, on a paper-machine. The soda pulp is shipped in rolls
and the sulphite in sheets, as this is the most favorable form in
which to handle them at the paper-mill. If the pulp is to be used on
the premises, it is made up into laps on the wet machine and is not
artificially dried. The so-called “air dry” pulp contains about 10%
moisture, and pulp containing not over this amount of moisture is
billed at its actual weight.

[Illustration: CYLINDER MACHINE FOR DRYING PULP, THE BROWN CO.

The web of pulp is shown as it passes from the cylinder mold over the
couch roll toward the driers.]

ESPARTO AND STRAW.--Esparto pulp is made by the soda process from a
grass obtained in the circum-Mediterranean countries, and is used most
extensively in England and somewhat on the Continent, but freights have
been prohibitive for American manufacturers.

Straw pulp is similarly made, and while occasionally used on medium
grades of writing-papers, its principal use in this country is for
strawboard and cheap wrappings. It is expensive to reduce to a clean,
bleached pulp on account of its knots, and the large quantities of
silicious matter it contains.

WASTE PAPERS.--The next largest source of paper-making fibers to wood
is the waste paper, such as old books, magazines, newspapers, binders’
waste, paper shavings and miscellaneous waste. This stock is collected
by regular packers, sorted, and sold by grade to the mills.

The poorest grade consists of a mixture of miscellaneous papers of all
colors and description. It is only used in the production of boxboards,
sheathing paper, and other coarse varieties, and without undergoing any
preliminary treatment it is shoveled right into the beaters.

A higher grade consists only of mixed papers, printed or unprinted.
Next is a grade containing no ground wood or colored papers, and above
this are graded old ledger and writing papers.

[Illustration: THE BEATER-ROOM, CRANE & CO.

The beater at the far end of the room is equipped with a washing drum.
This drum is lowered into the tub during the process of washing.]

Paper trimmings are divided into four classes, white and mixed, soft
and hard “shavings,” and are especially available, as they may be used
after sorting and dusting without undergoing further treatment, but it
is customary to macerate them in some sort of a pulper before placing
with other stock in the beaters. The printed waste must be boiled in
a solution of soda ash. This makes the ink removable. After about six
hours’ boiling, the stock is transferred to washers and treated like
rags. The ink and dirt having first been removed, bleaching solution is
introduced, and finally the stock is let down into drainers. In some
mills the draining is omitted, the excess bleach is washed out and an
antichlor added; then the stock is pumped over to a beating engine to
be mixed with the other ingredients preparatory to manufacture. This
process is less thorough, and there is more danger of getting residues
of bleach into the paper, as it is rather a nice matter to exactly
neutralize the bleach in the washer, and the maintenance of a uniform
color is endangered.

Printers, or others, who accumulate large quantities of waste papers,
will find that it pays to keep the various grades in separate
receptacles, as a better price may be obtained for it in this way.
Furthermore, by means of a baling press, the papers may be set aside in
compact bales, which occupy less room and are not so great a fire risk
as loose accumulations. The fact that 21.4 per cent of the paper-making
fibers, according to United States Census Report, 1909, are derived
from waste papers, indicates their importance as raw materials, while
their use lessens the drain upon our forests.


THE NON-FIBROUS CONSTITUENTS OF PAPER.

The non-fibrous constituents of paper are the mineral fillers, the
ingredients for sizing, and the coloring pigments and dyes. Mineral
fillers should not be regarded as adulterants. They are used, not as
a means for adding weight, but for the sake of certain effects which
are requisite in many papers. No filler is used on good writings or
ledgers, as the printing requirements do not call for a closely filled
surface or a mellow texture.

In book papers a varying percentage of clay is used, as it improves the
printing quality by filling up the interstices between the fibers and
increases opacity. Papers for half-tone printing require more filling,
in order to have smooth, level surfaces.

There are several kinds of filler in common use. The most common
is China clay, of which the cleanest and finest grades are
obtained principally in England. No equally good deposit has yet
been successfully developed in this country. Clay is a product of
the natural disintegration of feldspar. It is soft, plastic, and
non-crystalline.

Agalite and talc, which are silicates of magnesia, are also used. They
are cheaper and less desirable, both on account of color and their
crystalline nature, which is more or less damaging to cutter knives
and printing-plates. These fillers are used widely in the cheaper
book-papers, and can often be detected by holding a sheet against the
light, as the little, translucent crystalline particles then appear
like pinholes.

Sulphate of lime, commercially known under such names as gypsum, pearl
hardening, satinite, etc., is a white, crystalline substance. This is
used to some extent in paper-making, but principally as a coating.

Barium sulphate, prepared chemically, and known as blanc fixe, is used
largely for coating papers because of its brilliancy and purity of
color.

SIZING MATERIALS.--Starch was one of the earliest materials used for
sizing paper, and is used considerably in addition to other materials,
as it adds a hard, tinny character desired by the trade on certain
grades. Silicate of soda is also used to impart similar characteristics.

Gelatine, or animal size, is obtained by boiling down suitable animal
tissues. As a sizing agent, it is applied after the paper is made by
passing the web of paper through a vat containing the hot liquid size.

Casein, which is sometimes used as sizing, is more important in its
functions as an adhesive for the making of coated paper. It is prepared
by treating skim milk with weak acid.

Rosin size, the most widely used size, is produced from rosin by
cooking with soda ash, which produces a soft soap. The soap when mixed
with water by agitation assumes a milky appearance. In this condition
it is poured into the beater after all other ingredients have entered,
and is precipitated by the addition of alum as a resinate of alumina.

IMPURITIES IN PAPER.--Impurities, either chemical or physical, are
sometimes found in paper, owing to lax methods or inferior materials.

Free acid occasionally occurs, and in some cases would be very
deleterious. In papers that are to be bronzed, for example, this
acid would tarnish the bronze. Needle papers, and paper for wrapping
steelware, must be acid-free, otherwise they will cause rusting. The
presence of free acid may only be determined by an analyst.

Sulphur, which may give rise to the formation of sulphuretted hydrogen,
exists sometimes as an impurity in paper. It causes a brownish halo to
appear around printed letters, because of its action on printing-ink.
It would also cause oxidization of jewelry, mounted upon cardboard
containing sulphur residues.

Free chlorine, or chlorine compounds, the result of inadequate draining
of the stock, may cause final disintegration in the paper. It is the
duty of manufacturers to guard against this and the other deficiencies
noted.

Mineral impurities in paper are not uncommon. Minute particles of iron
worn off the machinery, or getting into the stock in the shape of
wire stitching, can often be discovered by the use of a magnet test.
In photographic papers this must positively be excluded, but in most
papers, if the particles do not show as specks, and are not large
enough to make trouble for the printer, they are not a serious menace.



CHAPTER SIX

PAPER-MAKING


We have now reviewed the various steps preparatory to the process of
beating, and this process is perhaps the most important of all. The
output of a mill depends, first, upon the quality of stock which is
furnished to the beaters, and secondly, on the way the stock is handled
in the beaters. A formula, better known as a “furnish,” is prepared by
the superintendent and given to the beater engineer. This tells him
exactly how to blend his raw materials. Very few papers are made from
one kind of material alone, most papers being a mixture of different
fibers, with the addition of mineral filler, sizing and coloring. All
the ingredients are put together into the beating engine with a large
volume of water similar to a washer, minus the washing drums.


BEATING.

The process is called beating because it has displaced the original
method of maceration by mallets and later by the machine described in
Chapter I as a “stamper.”

The ultimate characteristics of the paper are dependent upon the
handling of the beater roll and the character of the knives. For
example, a blotting-paper is made by a quick beating with sharp
knives. This cuts the fibers clean and short and leaves them in a most
absorptive condition. The very same fibers, treated with dull knives
and slowly beaten, would have an entirely different character. Their
ends would be teased out and ragged, and in the process of manufacture
they would part very slowly from the water absorbed. The paper produced
would have the characteristics of a writing-paper, hard and strong.
This instance will afford some idea of the wide variation in results
which may be brought about by varying the treatment in the beaters. So
important is this step in manufacturing that it has been said with a
good deal of truth that “the paper is made in the beaters.”

After the process has been continued a sufficient length of time, the
stuff is emptied into a chest called the “Jordan chest,” because it
acts as a reservoir for another type of refining engine known as the
“Jordan.” This engine is conical in shape and the inside is lined with
knives. A cone-shaped plug, also shod with knives, fits into this
shell, and by the turn of a screw may either be moved in or out, thus
varying the space between the two sets of knives. By this adjustment
the refining of the pulp which flows through the engine is regulated.

The stock passes through one or more of these “Jordans” into the
machine chest. Thence it is pumped to a level higher than the machine,
and flows through “sand settlers” to a screen. The “sand settler” is a
long, open trough containing a series of baffle boards which collect
any sediment, preventing it from getting into the paper.

Screens are of various types, the main feature consisting of bronze
plates pierced with fine slots through which the fibers are forced. The
object is to give uniformity to the stock which reaches the machine,
and to exclude any knots of stock, strings or foreign substances.

The width of the slots is varied to suit different stocks--some slots
being as fine as 10/1000 of an inch.

We have now described the process of paper-making up to the point where
the stuff is formed into paper, and must pause for a description of the
paper-machine itself.


PAPER-MACHINE.

The paper-machine may be considered in three parts: The wet end where
the paper is formed and pressed, the middle, where it is dried, and the
dry end, where it is calendered, slit and wound.

There are two distinct types of wet ends--the Fourdrinier and the
cylinder. Both are mechanical reproductions in continuous process of
the steps taken in the ancient hand methods, a brief consideration of
which impresses clearly on one’s mind the rationale of the machine.


HAND PROCESS.

The tools of the primitive paper-maker consisted of a pulp vat for the
fiber-laden water, a frame, or mold, across which was stretched a mesh
of closely woven wire, and a removable frame, known as the deckle,
which fitted around the edge of the mold to keep the moist pulp from
overflowing and to help regulate the thickness of the paper.

Grasping the mold by two opposite sides, the vatman submerged the mold
in the water; then raised it out, holding it level. By this means a
film of pulp was caught up, being deposited on the bottom of the mold
by the passage of the water in which the fibers had been suspended.
A lateral shaking motion served to knit the fibers together, and to
deposit them as evenly formed as possible all over the mold. As the
water drained through, the film of pulp solidified. Then the deckle
frame was removed, and there, on the top of the mold, was a sheet of
moist pulp. The edges of this sheet would be thin and feather-like as a
result of the pulp leaking under the deckle. Hence the term deckle edge.

It required a great deal of skill to remove this film, while preserving
it intact. This was accomplished by inverting the mold and pressing the
sheet upon a moist felt cloth. If the act was skilfully performed, the
mold could be lifted away from the sheet, leaving it unbroken upon the
felt. Then it was covered by a second piece of felt and the process was
repeated until a small pile had accumulated.

The pile was removed to a screw press, wherein as much water as
possible was squeezed out of the paper. Cellulose fibers have a strong
affinity for water, however, and it is said that under any pressure
which such a pile could withstand, without becoming crushed and
gruelly, the paper would retain water equal to one-half its weight.
Hence, the last vestiges of moisture, excepting of course that amount
normally retained by air-dried paper, had to be removed by evaporation.
In the old days, this was accomplished by hanging the sheets over poles
to dry.

After that, if the paper required sizing, the sheets were dipped one by
one into a pot of animal size, then dried once more. Lastly they were
finished to the desired surface by being placed between smooth plates
and pressed.


FIBER CHARACTERISTICS.

A few moments’ consideration of the changes which the fibers undergo
from their condition of isolation as they exist mixed in the vat, to
their status as components of a sheet of paper, will help to make clear
much that seems obscure about the behavior of a sheet of finished
paper, as well as to explain the reason for the different processes
executed on the paper-machine.

The fiber is a hollow, collapsed tube, the ends bruised and frayed by
the treatment in the beating and refining engines. Absorptive in nature
to a marked degree, it swells with the water it takes up and is limp
and flaccid. As the mold is raised horizontally out of the vat in the
process of forming sheets, all the fibers which had been suspended in
the water which passed through the meshes of the mold are caught like
so many fish in a net, and lie spread in a limp, impressionable mass
over the surface of the mold until they are transferred by the “coucher
man” to the felt. Little alteration can take place in the general
position of the fibers after they have been “couched,” consequently
the formation of the sheet is the most important stage of the process.
As the water is pressed out, each fiber contracts to some extent, and,
from a consistency like gruel, the formed sheet passes to a more stable
state, wherein it can be gently handled without disintegrating.

[Illustration: FOURDRINIER MACHINES, CRANE & CO.

A good view of the surface-sizing vat is obtained in the machine on the
right hand. The paper is being slit just before its introduction into
the vat.]

As the drying proceeds there is a marked shrinkage in the dimensions of
the sheet, caused by the shrinking of each individual fiber, until the
fibers are thoroughly set, enmeshed one with the other.

The addition of size glazes over each fiber and makes it less
susceptible to moisture. The addition of clay permeates the structure,
filling up the interstices. Up to a certain point the clay does not
materially weaken the structure, as a certain percentage of empty
air space would exist without it. Beyond that point the clay will
fill places that conceivably would be filled by fibers, and having no
adhesive strength, the structure of a sheet overloaded with clay is
weakened in proportion to its overload.

While the fibers are more or less moist, they are susceptible to
alteration in structure, and may in this state be flattened by
calendering to a smooth surface, and the presence of clay helps to
fill in the microscopic valleys between the fibers so that the surface
becomes level to human vision.


THE FOURDRINIER

Now to return to a sketch of the wet ends of paper-machines. The
Fourdrinier part consists of a head box, which resembles the case of
an upright piano. Where the keyboard might be, is a broad portal for
the passage of a stream of pulp, the width of the machine, onto a
horizontal, endless wire belt. This wire belt is suspended in a frame
some thirty feet long and held taut by being stretched over a number of
rolls. The large roll near the head box is known as the breast roll.
The still larger roll at the other extreme of the frame is called the
lower couch roll, on top of which is a felt-jacketed couch roll. The
wire is kept level by a transverse series of “table rolls” closely
set, and the under part of the wire is held down by stretch rolls.
Directly under the top part, and continuing from the breast roll for
about two-thirds the length of the frame, is a shallow tray called a
“save-all,” as it catches all the drippings which contain filler, and
some fine fibers which are returned to the screens by stuff-pumps,
maintaining a continuous circulation so that nothing goes to waste.
Into this save-all water may be admitted to regulate the consistency of
the stuff.

Near the couch roll the wire passes over two or three suction boxes,
and on top of the wire, between the suction boxes, turns a wire-covered
roll called a “dandy.”

On either side of the machine is a frame which may be contracted or
expanded. It carries a series of pulleys over which run rubber deckle
straps, the under parts of which rest on the wire and keep the wet
pulp within bounds. By this means the width of the web of paper is
regulated. As a little pulp leaks under these straps machine-made paper
has deckle edges on both sides of the web. Artificial deckle edges may
also be produced by squirting a fine stream of water upon the web near
the couch roll, but it is not possible to produce this effect across
the web. Except on special papers the deckle edges are trimmed off by
slitters at the end of the machine.

Near the flow box, running at right angles across the machine, are two
so-called “slices” about eight inches apart. These may be adjusted
at various heights from the wire, in order to regulate the thickness
of the paper. Their most important function is to make the thickness
uniform from one side to the other of the sheet, and to create a pond
which assists in forming the paper.

The frame of the Fourdrinier has a joint near the first suction box,
and a mechanical arrangement called a “shake” is located near the head
box to impart a lateral shaking motion to the frame while the wire runs
straight ahead, thus imitating the shaking of the hand mold.

Beyond the couch roll is a series of press rolls, between which run
endless felts to carry the soft, moist paper.

Then follows a large series of steam-heated cylinders. Next a stack of
iron calender rolls, and a set of reels. As soon as one reel is full
a new reel is started and the paper from the first reel is slit by
rotary slitters and made up into rolls of the desired widths on the
winder.


PAPER IN PROCESS

It is an almost dramatic moment when the machine is ready to start. The
machine tender opens the valves which admit the stuff from the flow
box and a stream spreads out onto the wire. At a given signal the back
tender starts the wire, and the endless white stream moves smartly
forward. Then ensues the mechanical imitation of making paper by hand,
only instead of forming sheet by sheet, the formation is a continuous
process in the web. The shake of the machine mixes the position of the
fibers in the “pond” behind the slices; the water runs like a downpour
of rain through the moving wire into the save-all, leaving behind its
burden of fiber, or “stuff,” as the mixture is at that stage called, in
a white film.

The suction boxes accelerate the expulsion of water, and the dandy roll
closes the fibers together as the film passes beneath it. Then the web
is carried between the couch rolls, when the water fairly pours out
in the squeeze. As the top roll is felt-jacketed, the film sometimes
sticks to it, as a slight suction is created in the pores of the felt.
The back tender stands by with a hose to wash down the paper if it
starts to adhere to the jacket. The paper is prevented from completely
going around this top roll by a guard board which is fixed across the
top. Many machines are now equipped with a “suction couch roll,” which
does away with the need for a top roll, as the water is sucked, instead
of pressed, out of the paper.

At a given signal the back tender starts one edge of the film forward,
by a skilful slap of the hand, which picks up the edge of the film and
transfers it to the felt carrier between the press rolls. The remainder
of the web is made to follow the lead of the first section, till
finally the full width is transferred to the first felt, which carries
it through the first series of press rolls.

An arrangement similar to the guard board, called a “doctor,” runs
across the top press roll, so that the paper may be allowed to roll
up if desired, while the machine tender regulates the flow of water
until the consistency of the stuff is right. The doctor also keeps the
press roll clean. Quite often the long end of paper first started at
the couch roll is passed right along from the first felt to the second,
carried through the second set of press rolls, and the third, if three
there be, to the steam driers, and thence over the entire battery of
driers, through the calenders onto the reel.

From the press rolls it is led by the back tender, assisted by a third
hand, and if all goes well the paper may be winding up on the reel
inside of ten minutes.

But there is many a chance for mishaps before the wet end of the
machine is adjusted and the heat in the driers is regulated to a nicety.

The weight of the paper depends upon the quantity of stuff let onto the
machine, the dilution of the stock, and the speed at which the machine
is run. Given a certain volume, the faster the wire runs the thinner
the stuff is spread, and vice versa. Before things are settled down,
considerable worthless paper may be turned off.

The width of the web is controlled by the distance between the deckle
straps. These are adjustable, but an allowance of ten inches or so must
be made for the shrinkage of the web in drying.

The preliminaries to a run of paper may be likened to the make-ready on
a printing-press, though they do not, as a rule, last nearly so long.
Yet this is the reason why small odd sizes and odd shades of paper are
not popular with the manufacturer, unless he can get a sufficient extra
price to compensate for the “make-ready” costs.

WATER-MARKS.[C]--The water-mark in paper is effected by raised
lines on the dandy roll. The design, being impressed in the moist
web, displaces the fibers and leaves thin areas in the paper, which
consequently show when the sheet is held against the light, as they are
more translucent than the adjoining areas.

    [C] The study of ancient water-marks is quite fascinating in
        connection with early Printers’ marks. See “A New Light on the
        Renaissance,” by Harold Bailey.

[Illustration: FOURDRINIER MACHINE, S. D. WARREN & CO.

View showing the “Fourdrinier” part of a modern book paper-machine.]



CHAPTER SEVEN

PAPER-MAKING--_Continued_


TECHNIQUE.--The importance of the formation of the sheet on the
machine wire is the same as on the hand mold, as subsequent pressing
and calendering can only modify faulty formation. The stuff should
be uniform and even in texture. The press rolls must be ground with
absolute accuracy, and slightly crowned to allow for their sagging.
Otherwise water would be unevenly expelled from the web, possibly
causing a damp streak throughout the entire run of paper, which would
show in the finished product.

If a portion were pressed too hard it would contain less moisture as
it reached the driers and become dry before adjacent sections. If the
paper were calendered, the moister parts would take on a smoother
surface than the drier parts.

Another feature to be closely watched on particular papers is to
eliminate, as far as possible, the impress of the weave of the wire
cloth, which is left in the under side of the web. This can be
accomplished to so fine a degree, by a skilful man, that the difference
between the two sides of the paper is scarcely discernible. The
fineness of weave of the one cloth also is an important bearing in
securing an even sided sheet.

Thus we see that it is well-nigh impossible to reduce the making of
paper to an exact science, and a reasonable variation must be expected,
both in weight and finish. The successful management of a paper-machine
depends, from start to finish, on careful, experienced judgment and
alert attention. If the beater-man dilutes one batch of stuff more than
another, the variation will show the minute the altered stuff appears
on the machine, and only an immediate readjustment at the wet end can
avoid considerable variation in the product. Then, from end to end,
the long machine must be watched carefully, so that the pressing,
drying and calendering may all be kept uniform. A bungler should find
no place in the machine-room, but it is desirable that consumers
have sufficient appreciation of human limitations, as applied to
paper-making, to admit proper allowances for normal variations.

CYLINDER MACHINE.--The cylinder machine, invented by John Dickinson
about ten years after the Fourdrinier, is much the same as the wet
machine described in Chapter II, with the addition of press rolls,
driers and calenders. The single-cylinder machine is used for making
light-weight tissues and other thin papers. Cylinder vats can also be
arranged in series, as on board machines, so that the webs formed on
each cylinder can be combined. This is accomplished by an arrangement
of felts which run tangent to the cylinders, picking off the formed
paper automatically from each successive mold.

The felt runs between squeeze rolls, so that the various plies of paper
are pressed together, forming a single thickness. Machines of this type
can make very thick sheets, and are used for making bristol boards,
blanks, boxboard, strawboard, etc.

The number and arrangement of driers on any machine depends on the
product to be derived. Fast-running machines, such as the large news
mills are equipped with, have necessarily a large number of driers,
as they turn off fifty tons or so a day and require a great drying
capacity. Slow running machines, such as are used in fine writing-paper
mills, need a much smaller number, as the average fine writing-paper
machine produces little over three or four tons a day.

[Illustration: CYLINDER VATS, MADE BY THE PUSEY & JONES CO.

The felts which convey the paper are omitted so as to get a clearer
view of the molds.]

HARPER MACHINE.--There is a type of Fourdrinier called the Harper
which differs from it in that it is turned end for end. A long felt
carries the paper from the couch rolls back over the Fourdrinier part,
delivering it to the first press. This is considered advantageous in
making very light papers which otherwise are with difficulty led from
the couch to the press rolls and are apt to break down in the passage.

YANKEE MACHINE.--There is even one type of machine known as the
“Yankee” which has but one drier of very large diameter. This is used
in making machine-glazed wrapping papers, which are very smooth on the
side of the sheet which comes in contact with the drier and rough on
the other side. The “wet” end of this machine is a Fourdrinier type.

The arrangement and number of smoothing and calender rolls is also
dependent on the class of paper to be made. Most writing-paper machines
have no calenders at all as the surface is obtained on special
machinery such as platers and sheet calenders after the paper comes
from the drying loft. One can easily appreciate that, while the general
principles of all paper-making are identical, there is a call for a
wide variety of arrangements, such as those cited, to meet the varying
requirements of different classes of paper.

SURFACE SIZING.--Surface sizing, or animal sizing, necessitates a vat
with squeeze rolls. The paper is first run over enough driers to dry
it; then introduced into the vat of hot size. On the cheaper grades the
size is dried on the machine by a special skeleton drying apparatus,
but the better grades are cut off and piled up by the “lay-boy” at the
end of the machine, then transferred to drying lofts and hung up over
poles to dry. Hence the term “loft-dried.” Any special finish has then
to be applied sheet by sheet.

FINISHING PAPER.--Finishing paper is accomplished either on the
paper-machine itself, or after the paper is turned off on the machine
it may be treated by special apparatus.

WOVE AND LAID PAPERS.--A so-called wove paper is made with a plain
dandy, covered with fine wire cloth the same texture all over. Laid
paper is really a water-marked paper, in which the whole surface is
marked by a specially constructed dandy which imprints a mark in
imitation of the early hand molds. There are heavy lines running with
the grain of the paper and lighter lines running across.

ANTIQUE.--An “antique” surface is obtained by skipping the calender
rolls and leaving the paper rough as it comes off the felt to the
driers. A medium finish is obtained by a slight calendering, while the
highest machine finish, and the so-called English finish, is obtained
by a heavy calendering.

WATER FINISH.--A common method of obtaining a high finish on heavy
papers is by the use of “water doctors,” which keeps two or more of the
calender rolls moist, dampening the paper while it is being calendered.
The surface thus imparted is called a “water finish.”


SHEET CALENDERS

Fine writing-papers may be finished in a variety of ways. A plain,
smoothed surface is obtained by passing the sheets, which are
automatically fed, by a system of tapes, through calender stacks,
called sheet calenders.

PLATING.--Plating was first resorted to as a means of smoothing paper
in the sheet, but when a linen, or pebbled, or any other special finish
is desired, it is also accomplished in a plating machine. This consists
of two heavy rolls. The sheets of paper, with a metal plate top and
bottom, are passed through the rolls under heavy pressure. If a linen
finish is desired, pieces of linen are placed between the plates on
both sides of the sheets so that the linen texture is embossed into the
paper. Similarly any other substance may be used for other effects.

EMBOSSING.--Embossed papers are usually finished from the roll by
running between iron rolls with embossing patterns engraved upon them.
An extra strength is required of paper for this purpose, otherwise the
pattern will cut through the sheet.

SUPERCALENDERING.--Supercalenders are machines, apart from the
paper-machine itself, for making high-finished paper. The rolls vary
in number. Each alternate roll is made of hard paper. In treating
uncoated stock there are also one or two steam boxes to moisten the
paper before it is calendered. This softens the surface fibers, and
they can then be rolled flatter and hence take a shinier surface. The
alternate rolls in a stack for calendering coated papers are made of
cotton, and no steam boxes can be used, because the moisture would
injure the coating.

The paper is run through the calenders in the web. All smooth, or
special, finishes are gained only at added cost. Where the process
takes place on the machine, more breakage is occasioned and more paper
has to be sorted out, as the hard-finishing accentuates spots in the
paper, and little lumps of fibers, which would pass unnoticed in an
uncalendered or antique paper, are squashed down and blackened by
calendering. Hence the higher cost of such papers.

Supercalendering and plating bring into play different workman, so that
the labor cost is increased, and any finishing, sheet by sheet, is
necessarily slow and more costly than that accomplished in a continuous
process from the roll.

COMBINING.--Many kinds of papers, as photo-mounts, double-thick covers
and cardboards, are made by pasting two or more thicknesses together.
This was formerly done in the sheet, but most of the pasting is now
effected in the web. The papers are run over a paste roll, combined,
and passed either through a drying chamber or over a battery of driers
like those of the paper machine. The pasted paper is lastly made into
rolls and taken to the finishing room to be sheeted.

COATED PAPERS.--Coated papers are made by covering the surface of
ordinary paper with a veneer of clay, mixed with some adhesive, as
casein or glue, and suitably colored.

The process is done from the roll; the paper first goes through the
machine where the liquid coating is brushed onto the surface, passing
directly in automatically formed festoons through a long, heated room
to dry, and finally is rewound. The rolls are then taken to the
supercalender room and the paper is given the desired finish.

Dull-finish coated papers require a special kind of coating and receive
very light calendering after being coated.

High-finished coated papers of the best grades are double-coated and
run several times through the calenders.

Another method of producing a high finish is known as “flinting.” In
this process the paper is mechanically polished by smooth flint stones
and gains a very high luster. Such papers are most widely used as box
covering. A similar effect is obtained by friction calenders, which
consist of two chilled iron rolls with an intermediate roll of hard
paper. The top roll rotates at a higher speed than the others.

[Illustration: COATING ROOM, APPLETON COATED PAPER CO.

This view of the “wet end” of the coating machines shows the rolls
going through the coating process, the web of paper traveling along the
drying racks appears in the background.]

The coating may be dyed to any color desired, so that coated and
glazed papers are obtainable in a wide variety of shades.

[Illustration: FINISHING-ROOM, CRANE & CO.

The machine on the right is a plater.]

GUMMED PAPERS.--Gummed papers are made by passing the web through a
machine, which coats it with glue, after which it passes over drying
apparatus and is wound into rolls ready for finishing.

Gummed paper for labels is usually finished in sheets, while for
sealing tape and box stays it is ordinarily made up into rolls.

WAXED PAPERS.--Waxed papers are made by applying a coating of parrafin.
This renders the stock water proof, and it is used largely as a wrapper
for food products.

GLASSINE PAPER.--By a special treatment in the beaters and jordans
cellulose fiber is so treated as to become hydrated. This hydration
makes the paper produced grease proof, and by heavy supercalendering
the character of the sheet is again greatly altered, it becoming almost
perfectly transparent. In this state it makes a most attractive and
hygiene wrapper.



CHAPTER EIGHT

THE PHYSICAL AND CHEMICAL ASPECTS OF PAPER


The size and weight of a sheet of paper of any given quality and
finish are its most obvious features, and when we speak of the weight
of a sheet of paper we refer not to the one sheet, but to the weight
of one ream of similar sheets. Most papers are ordered on a basis of
ream weight for a specified size, as, for example, 25 by 38, 50-pound.
Blanks, cardboards and cover-papers, especially the first two, are more
frequently ordered on a basis of bulk, as two-ply, three-ply, etc., and
thick or double thick in the case of covers. The thinner covers are
usually designated by their ream weight, though frequently quoted, as
are the heavy-weight covers, the blanks and cardboards, in price by the
hundred sheets.

The reason for this difference is probably that such stocks are sold
in comparatively small lots, so that it is simpler to bill them in
accordance with the number of sheets than to figure the weight of a
small number of sheets and multiply by the pound price.

Another thing which facilitates the system is that these kinds of paper
are carried in standard stock sizes, as the majority of orders are too
small to be made in special sizes.

The relation between thickness and weight of a given paper is
approximately a direct ratio. For example, given a sheet of machine
finish 25 by 38, 50-pound, four sheets of which bulk .011 of an inch,
the bulk of the same finish and quality, in 25 by 38, 60-pound, can
be approximately ascertained by the equation 50 : .011 :: 60 : x, the
answer of which is .0132.

The difference in bulk between two papers of the same weight depends on:

  1. The finish.

  2. The percentage of mineral filler.

  3. The nature and treatment of the fiber.

For example, on a bulk of .015 of an inch to four sheets a
supercalendered paper would weigh about 65 pounds, a high machine
finish about 60 pounds, a text or medium finish about 50 pounds, an
antique about 40 pounds. In other words, the density of any given piece
of paper is proportionate to the amount of calendering it receives.
Naturally, the antique paper, lightly pressed and uncalendered, is
loose for texture and full of minute air pockets, so that it is light
for bulk, while the supercalendered paper is squeezed to a hard, dense
sheet containing little air space.

If the proportion of mineral filler is great, the weight will be
still greater in proportion to the bulk, as the specific gravity of
the mineral is greater than that of the fiber, and the fine particles
tend to fill completely the small interstices between the fibers, so
that the air space is reduced to a minimum. If, in addition, a surface
coating is added, we get a paper with the highest possible percentage
of filler, and consequently a glazed coated paper has less bulk in
proportion to its weight than any other kind. Such paper contains from
30 to 40 percent of mineral.

The nature of the fiber brings about a difference, in that some fibers
have thicker walls and smaller canals than others. The treatment causes
a variation, in that a quick beating with sharp knives leaves the
fibers more nearly in their original shape than a prolonged beating
with dull knives, which breaks down the structure of the fibers and
draws them out into minute fabrillæ.

The strength of a paper of given quality will also to a certain extent
be proportionate to the duration of beating, as well as the amount of
pressing and calendering received. The amount of sizing and the drying
also affect its strength.

An antique paper, having large air spaces and loosely knit as it is,
has not the tensile strength it would possess if pressed and calendered
to a greater density.

The addition of loading adds to the weight without increasing the
strength, as it has no binding properties. Moreover, the bulk, in
proportion to the weight, is lessened by the introduction of filler.

Consequently it is axiomatic, that of two given papers of equal weight,
finish and quality of fiber, the one containing the less filler will
be the stronger, as well as bulkier. The addition of filler, however,
increases the opacity, gives mellowness, and improves the printing
quality by equalizing the texture of the surface.

The addition of sizing tends to increase the strength of paper, owing
to its adhesive properties, but if liberally used it detracts from the
mellowness and gives the sheet a tinny “character.”

The length of the fiber also affects the strength, as long fibers give
greater strength and better folding quality than short. It is not
possible to get as close formation with long as with short fibers.

Hence occasions frequently arise wherein customers ask for
characteristics which are somewhat contradictory.

A desires a light, bulky paper with a high finish, but a bulky paper
with high finish must, in the nature of things, be heavy.

B desires a very strong, thin, but opaque paper. It is obvious that the
strength of a thin, opaque paper can be but a relative factor, while
thinness and opacity are irreconcilable features.

C inquires for a closely formed sheet, with good folding qualities, but
the first characteristic is only to be gained at the expense of the
latter.

D wishes to print half-tones on an antique paper. In this case modern
printing inventions have bridged over some of the obstacles of the
past, and the offset press and extra-deep engravings have brought this
last requirement within the realms of possibility, but unless resort is
had to these new methods, the requirements again are irreconcilable to
each other.

It is evident, however, that only through technical paper information
can one solve such problems as necessitate a compromise capable of
giving the maximum possible satisfaction.

The structure of paper, machine made, results in the greater proportion
of the fibers in the formed sheet lying in the direction of the flow
of the stuff. This determines what is called the “grain” of the paper.
When paper is in the roll the grain of course is lengthwise of the web,
but in the sheet the cutting and slitting may be arranged so as to
leave the grain either lengthwise or crosswise of the sheet. This is an
important consideration for a number of reasons.

In the first place, it is easier to tear the paper with the grain than
across, as the fibers are parted rather than fractured in this way.
This is a point which might be utilized by printers when printing
detachable coupons.

Perhaps the most important consideration is the great difference in
folding qualities. Many a paper will fold very nicely with the grain
and crack badly if folded the other way.

Again, a great difference is noticeable in the flexibility of books,
dependent largely on whether the grain runs parallel or at right
angles to the binding. If flexibility is desired, the grain should
run parallel to the back of the binding. Occasionally a wide-paged
pamphlet, especially of light-weight paper, is improved by the rigidity
to be gained from having the fibers run at right angles to the binding.
It is also true that this increases the strength of the binding, as the
sewing or wire stitching passes around more fibers than if the grain
ran up and down the page.

Not infrequently does the middle signature of a pamphlet pull loose
from the binding. Usually in such cases the paper is not strong anyway,
but it could have had more resistance had the grain run at right angles
to the binding.

The tensile strength of a strip of paper is greater with the grain, but
its elasticity is greater across the grain.

A convenient way to ascertain the direction of the grain in papers
that do not show it clearly by folding is to cut two narrow strips a
few inches long, hold them by one end so that they coincide. When held
horizontally, if the loose ends do not part, it indicates that the
lower paper has its grain in the long dimension. If the lower paper has
its grain crosswise, the loose end will sag away from the top strip,
because, as above remarked, a paper is more flexible across the grain.
This test may be applied either to sized or unsized papers.

Another test is to cut a small square and moisten one side; the paper
will curl into a little cylinder and the grain runs parallel to the
length of the cylinder. This test cannot be applied to an unsized paper.

This leads us to a consideration of the effects of moisture and
humidity on paper.

It will be recalled from the chapter on Paper-Making (No. VI) how
plastic paper is in its moist stage, and how tenacious of water are the
cellulose fibers. It will also be recalled that there is considerable
shrinkage across the web of the paper from the time it leaves the
wire to the moment it is reeled. In fact, the very thing which makes
paper-making a possibility is the shrinking of each individual fiber,
occasioned by the expulsion and evaporation of the water, which has
served as a carrier from the machine chest to the wet end of the
machine.

This propensity of each individual fiber does not cease when the paper
is made, but persists forever. A cellulose fiber will absorb moisture
from the air in proportion to the relative humidity, just as the hair
in a barometer is continually shrinking or expanding as the weather
changes.

A definite percentage of moisture is normal to a cellulose fiber in
proportion to the moisture in the air. The fiber swells as it absorbs,
and shrinks as it gives off water.

Herzberg gives as the results of investigation with a good
writing-paper made of rags, sized with rosin, the following report of
the percentage of moisture retained under various degrees of relative
humidity:

  Relative humidity      Moisture contained
     of the air,            in the paper,
     percentage              percentage

        100                     21.5
         90                     13.5
         80                      8.9
         70                      8.4
         60                      6.5
         50                      5.6
         40                      3.4
         30                      2.3

In a sheet of paper, where thousands of fibers lie side by side,
the combined expansion is distinctly noticeable in the changing
dimensions of the sheet. This gives rise to difficulties in securing
accurate register in color-printing, owing to atmospheric changes. The
manufacturer may minimize this difficulty by a careful formation of the
paper and the regulation of the drying, so as to turn out the paper as
nearly as possible containing an average normal percentage of moisture.

The same conditions are responsible for wavy edges, which occur
principally along the cross-grain dimension of the sheets. The ends of
the fibers, being exposed, easily absorb moisture as paper lies in a
pile, but the moisture seldom permeates more than a few inches into the
pile. Therefore, the larger part of each sheet is unaffected, but the
fibers exposed to the air expand when absorbing moisture increasing the
area of the exposed end and, consequently, causing it to assume a wavy
formation which is suggestive of a ruffle.

When feeding such sheets to a cylinder press, much trouble may arise
if the waves occur along the “gripper edge,” which is usually on the
longer dimension of the sheet. In some instances the difficulty may
be avoided by ordering paper with the grain running the long way of
the sheet, which also offers another advantage in relation to securing
close register, namely this: the area of the sheet in square inches
will increase least through atmospheric expansion which occurs across
the grain if the cross-grain dimension is the lesser.

[Illustration: SUPERCALENDER STACKS, APPLETON COATED PAPER CO.

For a description of the Supercalendering process, see pages 55 and
56.]



CHAPTER NINE

APPRAISING AND TESTING PAPER


The appraisal of a specimen of paper differs from testing in that
an appraisal comprehends the value of an object in relation to its
usefulness and marketability, whereas testing is merely an arbitrary
method of expressing the chemical or physical properties of the
object. The knack of appraising can be acquired only through practical
experience; and the ability to make tests is gained only by careful
technical training.

In the majority of cases a satisfactory appraisal may be given without
chemical or physical tests, but these are cases when the superficial
characteristics, such as color, finish, feel, etc., are the prime
qualifications, and such considerations as fiber contents, freedom from
impurities, exact tensile strength etc., are of negligible importance.

Although experience, only, leads to the knack of appraising paper,
certain points might be suggested with benefit to the beginner which
would assist him to an earlier acquirement of the art.

COLOR.--Color being a purely relative term as applied to the variations
in so-called “white” papers, it is necessary to make comparisons
with accepted standards of the various grades in order to arrive at
conclusions.

In common parlance, white papers may be described as natural, light
natural, white, blue-white, pink-white. Natural papers are those
in which a minimum of artificial coloring has been added, and the
brilliancy of shade depends entirely upon the quality of the stock.

Almost all paper is colored to some degree while the stock is in the
beater, and the minimum quantity of order of paper, which any mill
will make on a special run is usually limited by the contents of one
beater, and, on account of the time required to wash up, the cost
of special colors is increased. Rose-pink and blue are the colors
used in modifying the natural color of any beater of pulp to produce
a white paper. The so-called “white color” of the cheaper grades of
papers is ordinarily gained by a comparatively heavy use of blue,
and by comparison with a white paper of good quality the blueness is
decidedly noticeable. In judging color, it is well not only to look at
the surface, but also to examine the paper when held up against the
light, making comparison with some acceptable standard, also noting the
clearness of the stock, as indicated by the sharpness of definition of
the shadows of the fingers which hold the sheet. This comparison is
affected, of course, by the bulk of the paper, but two papers of about
equal bulk may be fairly compared in this way. Any judgment as to shade
is, in part, only a question of taste. Permanency of color may easily
be determined by exposing a portion of a sheet to sunlight for a few
hours and noting any alteration in color.

FORMATION.--While examining a paper for color and clearness, the
formation of the sheet should also be observed. In general, a close,
even formation is to be desired. Fibers of the same approximate
length may be loosely or evenly formed, according to the skill of
the machine-tender. The longer the fiber, the harder it is to get a
close, even formation, and it should be remembered that these two
qualifications are to a greater or less extent contradictory.

FINISH.--Whatever the finish of paper, the two sides of an ideal sheet
would look exactly the same. In most papers made on a Fourdrinier
machine the impress of the wire is discernible, and there is a
perceptible difference in texture between the “wire,” or bottom, side
and the “felt,” or top, side, the one tending to reproduce the texture
of the wire cloth, and the other the weave of the felts.

Some manufacturers have perfected their processes to a degree that
renders these differences imperceptible. Papers made on cylinder
machines of more than one vat are apt to be more even-sided, as the
contact with the wire of the molds is less protracted and there is
considerable pressing of the web between two felts as it is carried
along.

The evenness of the finish, and the fineness of texture over all parts
of a sheet, may best be judged by holding it aslant to the light. This
also discloses whether the paper is “fuzzy” or free from lint.

Fuzz, or hairiness, usually occurs on the wire side of the sheet. This
is due partially to the stock, soda pulp being especially likely to
fuzz. It is also due to overdrying, and sometimes to the action of the
suction boxes, which if worked too hard cause the surface fibers to
stand on end.

“Hairiness,” or fuzz is more apt to occur on antique and other light
finishes, but calendering will not entirely overcome it, and such
papers as would be fuzzy uncalendered, become fuzzy with handling.

In fact, the durability of the surface may well be tested by rubbing
the paper between the fingers. In this way, too, one judges the “feel,”
which of all qualities of paper is perhaps the most difficult to
express, but usually described as hard, soft, mellow, harsh, rough,
smooth.

In highly calendered papers, well closed and evenly finished, the light
will be reflected uniformly, as from a well-polished table-top; but
if the formation is “wild,” there will be a blotchy look as the small
knots of unevenly distributed fibers cause thick and thin areas, and
the thick ones get harder squeezing through the calender rolls and,
consequently, a higher finish.

Another cause for unevenness in finish is a variation in the thickness
of the paper as it is made on the machine. This unevenness runs
lengthwise in streaks, and may originate on the wet end of the machine
if the pulp is not deposited uniformly.

Again, the pressing may be faulty at the press rolls, causing a thin
streak. Naturally, the thin part of the paper dries more readily
than the thick, and as even surfacing depends partly upon even
dissemination of moisture in the sheet, a poorly pressed sheet would
have a faulty finish. Dirty felts also cause uneven drying, as water
can not be evenly squeezed through a felt the pores of which are
partially choked. Lastly the unevenness may be caused by the calender
rolls themselves being in poor condition.

It is easy to detect thin areas by examining paper in a pile, as a pile
of papers of uniform thickness will be practically level on top.

Papers for half-tone printing, whether coated or uncoated, should be
even in formation, thickness and surface, otherwise the printer’s
“make-ready,” which is designed to offset inequalities in the plates,
will be discounted by inequalities in the paper.

There are some special papers in which unevenness in formation and
finish are intentional, on account of the unusual effects thus gained;
and other papers, such as wrappings, where such niceties of the
paper-makers’ art are of little importance.

OPACITY.--Opacity may easily be judged, although it is difficult to
express it in any accurate terms, by placing the papers to be compared
side by side over a printed page, the relative merits in this respect
may be immediately perceived.

SIZING.--Sizing may be approximately judged by moistening the stock
and noting the rapidity of the absorption, or tested by drawing lines
with ink and watching to see if they spread afterward. Absorbency in
blotting-papers may be measured by submerging two strips equally and
noting how high the ink is drawn up into the strips. Such papers as are
made without any sizing and are ordinarily called “water-leaf.”

The sizing of coated papers should be neutral, but is frequently
alkaline or acid, since alkali is used to neutralize the lactic acid of
the casein. This may be detected by taste. The retention of a piece of
coated paper in the mouth for a few minutes will reveal through the
taste any tendency of the coating to sour.

WEIGHT AND BULK.--Weight and bulk may be closely approximated by a
practiced hand, but they must also be considered in relation to finish,
as pointed out in the preceding chapter.

There are many convenient forms of micrometer gauges for measuring the
thickness of paper and any one who has much to do with paper should be
provided with one, as it is unsafe to depend entirely upon judgment
when a thousandth part of an inch may account for ten pounds difference
in the weight of a ream of paper or cause serious variations in the
bulk of a book.

QUALITY AND STRENGTH.--Quality and strength may be approximately judged
by tearing the paper in both directions of the grain and observing the
fractured fibers, but these matters are to be more accurately estimated
by mechanical and chemical tests.

It will be observed that cleanliness in paper, and most of the
foregoing characteristics of paper, do not lend themselves to
mechanical tests, but are properties which require the judgment of an
expert.

CARDBOARDS.--In judging thick papers, such as bristol boards, it is
customary to see if they are snappy. An idea of their fibrous strength
may be had by folding in various directions. Pasted cardboards may be
distinguished from unpasted by burning, for if paste has been used the
layers of paper will split apart as the paper burns. This burning will
also give a slight idea of the amount of filler in the stock, as the
ash will be greater as the filler is increased.

PAPER-TESTING.--Tests applicable to paper may be divided into three
classes--microscopical, physical and chemical.

The purpose of microscopical tests is to determine the kind and
character of the fibers, and the proportion of each kind, also to
assist in determining the nature of mineral filler and of impurities.
It is also used in estimating the percentages of the various kinds
of fiber. Chemists are able to estimate this within five per cent.
A minute sample of paper is prepared by boiling in a one per cent
solution of sodium hydroxid, in order to remove everything from the
fibers themselves. The resulting mite of pulp is placed on a slide with
a dissecting needle, the excess moisture is removed and a stain is
added. This stain gives different characteristic hues to the different
kinds of fibers. The color and form of the fibers as observed through
the microscope disclose their character to the trained eye.

By counting the different kinds of fibers under observation, the
analyst estimates the proportions in which they existed in the sample
of paper.

The physical tests are more familiar to most persons, and include (1)
weight per ream, (2) thickness, (3) bursting strength, (4) tensile
strength, (5) folding endurance, (6) absorption, (7) expansion.

1.--There are two kinds of paper-scales. The most common kind gives,
directly, the ream weight from weighing a single sheet, and is of such
convenience that almost all paper-users could well afford to have one.

Sensitive paper-scales for small samples, 4 by 4 inches in size, are of
great assistance also, and should form part of the equipment of every
paper-dealer.

2.--The thickness is determined by a micrometer gauge measuring to
one-thousandth of an inch. In gauging thin papers it will prove more
accurate to take four thicknesses, as the error in reading is thus
quartered. The following table of bulks, which shows the number of
pages per inch from a gauge of four sheets, will be found convenient:

  ======================+==========
    Thickness of four   | Number of
  sheets in thousandths | pages to
                        | one inch.
  ----------------------+----------
   8                    |  1,000
   8½                   |    941
   9                    |    889
   9½                   |    842
  10                    |    800
  10½                   |    762
  11                    |    727
  11½                   |    696
  12                    |    667
  12½                   |    640
  13                    |    615
  13½                   |    593
  14                    |    571
  14½                   |    552
  15                    |    533
  15½                   |    516
  16                    |    500
  16½                   |    485
  17                    |    471
  17½                   |    457
  18                    |    444
  18½                   |    432
  19                    |    421
  19½                   |    410
  20                    |    400
  20½                   |    390
  21                    |    381
  21½                   |    372
  22                    |    364
  22½                   |    356
  23                    |    348
  23½                   |    340
  24                    |    333
  24½                   |    326
  25                    |    320
  25½                   |    314
  26                    |    308
  26½                   |    302
  27                    |    296
  27½                   |    291
  28                    |    286
  28½                   |    281
  29                    |    276
  29½                   |    271
  30                    |    267
  30½                   |    262
  ----------------------+----------

3.--Bursting strength is determined by a variety of testing-machines,
constructed so as to record the pressure per square inch which may be
exerted before rupturing the paper.

In a government bulletin, Report No. 89, United States Department of
Agriculture, the following criticisms of this test are made: “This
pressure is generally believed to represent the mean strength of the
paper--that is, an average of the strength across and with the sheet.
This is not true however, experience indicating that strength as thus
determined more nearly agrees with the strength of the paper in the
cross direction, with the minimum strength rather than with the average
strength of the paper.

“Among other objections to testers of this type, is that to a certain
extent the operator can influence the results at will, and even with
the greatest care there is quite a wide difference between different
tests of the same paper.”

4.--Tensile strength is determined by clamping a strip of paper of
standard dimensions in a machine which exerts a uniform tension until
the strip breaks. The breaking strength is shown on the recorder,
and the amount of stretch before breaking is also registered, thus
indicating the elasticity of the paper. The best known instrument of
this sort is the “Schöpper,” but the machine is very costly, hence is
rarely found except in well-equipped laboratories.

5.--Folding endurance is determined on a machine which folds a strip
of paper back and forth in a slot, the strip being clamped at either
end to a spring device which maintains a uniform tension. The number of
double folds which the strip withstands is automatically registered.
This test is favorably regarded as an indicator of durability, but the
apparatus is expensive and not easily available, hence this test fails
of frequent use.

6.--The absorption tests are applied principally to blotting-paper, and
consist in suspending equal widths of paper so their ends are submerged
in a beaker of colored water. The height the water rises in a given
time demonstrates the capillary attraction.

7.--Expansion is estimated by taking strips of uniform dimension,
dipping in water and measuring the expansion.

Chemical tests are for the determination of (1) the percentage of
mineral filler; (2) the percentage and nature of sizing materials; (3)
qualitative test for starch, acid, sulphur, chlorine, glue, filler
material, dyes, ground wood.

The amount of filler may be determined by incinerating a piece of paper
of known weight. As the filler is non-combustible, the weight of the ash
determines the percentage of filler, although allowance must be made
for the amount of water of crystallization driven off from the mineral.

Tests for acids are important in papers used for mounting tarnishable
substances, such as jewelry.

Tests for sulphur or chlorine are important in determining the
chemical purity of the paper, since such residues militate against the
permanency of color and strength of paper.

The presence of ground wood is easily determined by a drop of either
strong nitric acid, which turns the paper brown, or a drop of
phloroglucine, which gives a reddish-brown tint from contact with
ground wood. Aniline sulphate produces a yellow tinge.

The presence of starch may be ascertained by using a dilute solution of
Iodine which leaves a black stain in contact with starch.


  Note.--For more technical information see “Paper Technology” by
  R. W. Sindall.



CHAPTER TEN

PRESSROOM DIFFICULTIES


Technical difficulties with paper in the pressroom arise from many
sources. They may be conveniently classified into three groups:
Difficulties for which the manufacturer is responsible; difficulties
for which the printer is responsible, and difficulties due to
atmospheric and other natural conditions not entirely within human
control. Let us consider some of the first group.

UNIFORMITY.--Probably the most frequent source of trouble is lack of
uniformity, either in weight, thickness or finish. This is chargeable
to carelessness on the part of the paper-machine tender. A run of
paper which varies in weight will naturally vary in thickness, and,
obviously, this could account for uneven color in presswork. These
variations would not necessarily be accompanied by a variation in
finish. To make paper uniform in all three respects necessitates,
firstly, uniform consistency of the pulp--or “stuff,” as it is
technically called--at the point where it flows onto the machine. A
uniform volume of stuff and uniform speed of the machine are also
demanded. The speed of the machine and the volume of stuff are quite
readily controlled, but as the amount of water used by the beater-man
in preparing the stuff is usually judged by the appearance of the pulp
in the beater, there are always such variations as are peculiar to this
human factor.

The difficulties of the machine-tender may often be traced to the
beater-man, not only on account of the amount of water in the mixture,
but also because of the irregularity in the length of fiber from one
beaterful to another.

Assuming that the stuff is right and the formation on the machine is
good, the pressing of the paper next demands close attention. It is
obvious that any unevenness of pressure will result in the water being
expelled unevenly from the web of paper, with a consequent variation in
thickness. In this case there would also be a damp streak in that part
of the web where the pressing was too light.

The result is that such paper can not be dried evenly all the way
across the machine because this damp streak will still have an excess
of moisture after the adjacent areas of the web have become properly
dried.

FINISH.--In running through the calenders the damper portion will
take a higher finish. It may even be so damp as to cause a blackening
or crushing of the paper; whereas, if the moisture is sufficiently
evaporated from this streak, the rest of the paper may be so dry that
it will not finish smoothly enough.

On the other hand, there are cases where the pressing and drying may be
perfectly uniform, but the whole web vacillates from being too dry to
being too moist, while between times the manipulation is exactly right.

The result, obviously, will be a variation in finish over the whole
width of the paper instead of over a portion. Moreover, too much drying
makes the paper fuzzy and likely to become wavy, besides weakening the
fibers.

Another result of uneven pressing is to make the paper thinner where
the pressing is hardest. Such a defect is quite obvious in a pile of
paper, as the top will not be as level as it would be in paper that is
uniform in thickness throughout.

Assuming that the paper is perfect as it leaves the driers there is
still a chance that one or more of the calender rolls may get out of
true, especially when starting a run after they have been idle long
enough to get cold. Under such conditions they often heat up and expand
unevenly so that the pressure is harder in some sections than in
others. The result is a thin streak in the paper. Whether the thinness
be caused by poor pressing or calendering, it can easily be detected
in a roll of paper, as the thin streak makes a soft spot in the roll
which can quickly be located by tapping the roll all the way across. A
muffled rather than a ringing sound discloses soft places.

This defect, if bad, may cause considerable trouble on a web press, as
no amount of manipulation will make the paper draw evenly as it runs
into the press if the edge of the roll is slack.

Occasionally, segregated areas in paper are found to vary in finish,
and when these do not run in continuous streaks they may often be
caused by the felts which carry the paper through the press rolls
having become clogged up in spots so that the water can not pass out
evenly from the paper through the felt. This must be guarded against by
occasionally stopping the machine and washing the felts, or changing
them, as the occasion dictates.

Such damp spots in the paper crush in the calendering and make
blackened areas in the paper. Uneven drying may also have been
occasioned by slackness of the drier felt which holds the paper
against the driers. In sheeting the cheaper grades of book paper it is
customary to cut off from a number of rolls simultaneously, which often
accounts for a variation in finish or bulk in sheets from the same case.

Of course, when any of these symptoms appear it is the duty of the
men on the machines to correct them, and in the continuous course of
paper-making it is inevitable that felts become filled up and require
washing or changing, or that the variations of consistency in the stuff
should call for some form of regulation. Stuff which runs too moist on
the wire will often “crush” under the couch roll, producing a curdled
appearance. Stuff run with insufficient water will not form evenly. The
skilful machine-tender avoids these extremes.

TRADE CUSTOMS.--In recognition of the many variable elements in
paper-making, trade customs have been established, such as allowances
for a normal variation in the weight of paper above or below the
nominal ream-weight, and reasonable allowance should be made for normal
variations in other characteristics.

Eternal vigilance and alert judgment are certainly required for setting
high standards in the manufacture of paper. It is a matter of common
observation that mills using practically the same raw materials vary
widely in their reputation for uniformity and excellence of product.
The reason for this is to be found in the human element.

CALENDER DEFECTS.--A number of difficulties may arise from much less
excusable causes than those mentioned. For example, the paper sometimes
may run slack through the calenders, with the result that it wrinkles
and cuts in diagonal jags called “calender cuts.”

Sheets containing such defects sometimes elude the finishers, and on
the printing-press such a sheet may crack and go around one of the ink
rollers. On a web press the trouble from such a defect would be even
worse, causing breaks and necessitating delays on the press. It is more
difficult to exclude calender cuts from roll paper, as it is not always
easy to see them in the fast-running paper, so that an occasional cut
is not an unforgivable sin.

Among other defects arising on the calenders are little scarlike
depressions in the paper, made by small scraps of paper which have
become lodged on a calender roll and are embossed into the web at each
revolution of the roll.

HOLES, DIRT, ETC.--In very light papers, holes are sometimes found,
the most likely cause of which may be picking under the dandy roll or
grease spots on the wire cloth. Of less frequent difficulty are the
so-called pinholes, caused by sand or grit, while slime spots, or spots
caused by slight bundles of fibers, are also occasionally noticed.

Dirt and specks originate from careless handling of rags or paper
stock, and are also derived from shives of undigested wood in the
wood-pulp.

Streaks in the paper may originate from a crease in the wire, and
mottled effects denote some fault in the handling of the paper in the
wet stages of making.

Again there are times when sheets are not cut quite square, which is,
of course, inexcusably careless. Likewise, the packing of paper may
be done in a careless manner, and cases too loosely packed, if set on
end, often cause a wave in the paper, which sags in the case instead
of remaining tight and flat. It is desirable that cases of paper be
kept flat in storage and not set on end. Cases should be made from
well-dried boards, and waterproof lining-paper should be used to
exclude all dampness. When paper is finished in rolls it is fair to
demand that the rolls should be wound evenly and hard, and all breaks
should be carefully spliced and flagged.

COLOR.--The foregoing troubles are mechanical. Other difficulties
may exist, even when the paper is handled well on the machine, owing
to errors in composition. The color may vary, and the term “color”
includes the various shades called white, as well as tints. Color is
affected by water conditions. In the case of mills which depends upon
river water, the water sometimes becomes so dirty that it severely
handicaps the paper-maker, in spite of his filtering apparatus, and at
such times it becomes difficult to get as bright and lively shades as
under favorable conditions.

Dyestuffs do not always work uniformly, and, therefore, absolute
matches of color from run to run are not to be expected. Shortcomings
of this nature should be regarded with some lenience.

In this class of difficulties, discrepancies in sizing are the
less pardonable and are more apt to be noticed when hard sizing is
requisite, as in writing-paper or index bristol. In such cases a lack
of sufficient sizing is an incurable fault, for which the manufacturer
is responsible. There are occasions when excess of sizing would be
troublesome--for example, in a smooth-finished book-paper it would be
likely to cause offsetting, but this trouble may be alleviated by using
less ink, or, if necessary, by slip-sheeting.

It would be difficult to catalogue all possible sources of trouble, but
we have at least covered the principal defects of uncoated papers.

PACKING.--Occasionally troubles may be charged to faulty packing--cases
too loosely packed when stood on end permit the paper to sag, thus
causing a curling tendency at one end of the sheets.

The use of unseasoned case lumber or cases and inferior case lining
give access to moisture, the effect of which is discussed herein at
length.

The susceptibility of coating to picking may be determined by applying
hot sealing wax. If the wax after cooling is pulled off with only
the coating adhering it may be assumed that a “tacky” ink would work
the same, whereas if the paper tears out with the wax--it proves
conclusively that the coating is well sized.

COATED-PAPER TROUBLES.--Coated papers have their characteristic
shortcomings. The picking of small particles of the coating is perhaps
the most common fault, and is caused by insufficient adhesive elements
in the coating mixture. Other troubles are traceable to some of the
defects of the body stock. Irregularity of the finish is sure to come
from faulty application of the coating or careless calendering. Grit
or bubbles in the coating is likely to result in a porous surface. The
sour odor of some coated papers is due to decomposing casein or glue.

Casein used as an adhesive in most coated papers is a product from skim
milk. It contains lactic acid which must be neutralized in preparing
the coating mixture. For this purpose an alkali such as soda or ammonia
is used, and when properly handled the coating should be neutral. An
alkaline coating will cause re-etching on lithographic plates or stones.

Starch coatings or combinations of starch and casein are cheaper than
full casein and do not yield as high a finish and when improperly used
have often been the cause of picking.

THE PRINTER’S RESPONSIBILITY.--The second group of difficulties,
or those for which the printer is to blame, may originate with the
improper storage of the paper. As pointed out, the standing of cases on
end is conducive to wavy paper. Dampness is a prime cause of trouble,
as will be sufficiently shown later on, but it is elementary to say
that paper should never be exposed to moisture.

ENGRAVINGS.--The troubles of ignorant or inefficient pressmen and
foremen are often laid to the paper, especially where half-tone
printing is involved. In the first place, too little attention is given
to securing proper originals for the half-tones. Retouching is omitted
in a fit of false economy, for at this very stage of the game it was
never truer that “An ounce of prevention is worth a pound of cure.” Too
much care can hardly be given to securing good engravings.

Secondly, the selection of a proper half-tone screen is frequently
overlooked. While no hard-and-fast rules may be set, the best one,
when in doubt, is to include with the engraver’s order a sample of the
paper on which the cuts will be printed. He can judge, taking into
consideration the subject and the stock, which screen is advisable. In
general, it may be affirmed that 120 or 133 line screens are best for
uncoated smoothly finished papers, and 150 or 175 line screens are most
satisfactory for coated stock.

INKS.--Next comes the suitability of the ink, and there again the
ink manufacturer’s advice, always available, is often neglected; but
experience proves that certain papers yield best results with certain
inks. Such matters can only be determined by actual experience, but
when in doubt consult the ink-man.

MAKE-READY.--Finally, the make-ready should be intelligently varied
according to the subject and the paper. The best printers agree
that different papers to some extent require individual treatment.
A make-ready suitable for a coated paper is not necessarily equally
satisfactory for an uncoated half-tone paper or even a dull-finished
coated stock. But it is not within my province to go further than to
emphasize these warnings.

GRAIN.--The question of the grain in paper is certainly, in many cases,
within the control of the printer when ordering his paper, but its
importance is very frequently overlooked. In machine-made papers there
is a distinct grain that is caused because a majority of the fibers
point in the direction that the stuff flows on the machine, just like
logs floating in a river.

This grain direction is noticeable in folding, the crease being
smoothest with the grain, because folding across the grain encounters
the most resistance and breaks many of the fibers. This is especially
noticeable in fairly heavy book-papers, in bristol boards and
cover-stock, all of which should be scored for folding.

Cut cards, to have the maximum stiffness, should be so trimmed out of
the sheet as to have the grain run in the long direction of the card.

Even in book-papers, where flexibility is desirable, it is necessary
to have the grain run up and down the page. There are occasional
cases when the grain is deliberately arranged to run across the page
to acquire more rigidity. A wide page of light-weight paper might
otherwise be too limp. Moreover, this arrangement makes for stronger
bindings, as the stitches or wires pass around the bundles of fibers
instead of cutting between them. The English books are mostly made up
in this way, but they do not open so easily as when the grain runs
parallel to the binding. Paper is materially weaker across the grain
and can withstand only about half the tensile strain that it could bear
with the grain, although crosswise it is more elastic.

There is one very serious objection to making books or catalogues
“cross-grained.” This is on account of the way fibers are affected
by moisture. The cellulose fiber expands in diameter on absorbing
moisture, for which it has a great affinity. Indeed, a cellulose fiber
is only stable under uniform atmospheric conditions. The expansion of
each fiber in diameter makes paper expand much more across than with
the grain. Obviously, the total expansion of a sheet equals the amount
each fiber expands times the number of fibers that side by side go to
make up the sheet.

When the glue is applied to a book in process of binding, it causes an
expansion of all the moistened fibers.

If the grain runs parallel to the shelf-back no harm results, as the
paper is free to expand toward the side margin, but if the grain is
at right angles it usually makes a cockle in the binding because the
moistened edges of the leaves expand while the dry portion beyond where
the moisture penetrates retains its shape and resists the elongation
of the wet edges. Consequently the expansion of the fibers expresses
itself by cockling.

REGISTER.--In all printing, when close register is necessary, the
danger of poor register from the expansion of paper is minimized when
the dimension across the grain is the shorter. Lithographers invariably
prefer to have the grain run the long way of the sheet on this account.
Moreover, they rack the paper before printing in order to get it
thoroughly seasoned. To protect it from atmospheric changes that may
occur during the printing process, they use slip-sheets of considerably
larger dimensions, so that there is a generous margin of slip-sheet
around each printed sheet, which helps to exclude the air from the
edges of the printed paper.

MOISTURE IN PAPER.--It is true that some papers are more prone to
expand than others, especially if they have been run too dry on the
machine. Paper is not naturally bone-dry. Under average weather
conditions, it contains six or seven per cent of moisture.[D] When in
the making it is turned off far below its normal moistness, it seeks
to obtain this moisture from the air at the first opportunity, and
in acquiring it expansion takes place. Unless the expansion pervades
the entire sheet, wavy edges will result. Similarly when the air
becomes dry exposed edges of paper give off some moisture and shrink
accordingly leaving a boggy center to the sheets.

    [D] See Herzberg table, page 64.

SEASONING.--This process of acquiring normal moisture is usually
called “seasoning.” As paper is probably never turned off at its
full normal moisture, it is most desirable that it should be allowed
time to season. It is not unusual to have people speak of new paper
being too “green.” This may not have been an uncommon condition of
hand-made papers which were dried entirely naturally, but, so far as
machine-dried paper is concerned, I doubt if it is ever too green,
though it is frequently made too dry.

CONDITIONS BEYOND ABSOLUTE CONTROL.--Believing it to be impracticable
to leave the precise normal moisture in machine-made paper, I have
deliberately refrained from classifying this difficulty with faults
chargeable to manufacture, and the general recognition of this
circumstance indicates the wisdom of ordering paper long enough in
advance to permit of a period of seasoning. In fact, this phenomenon
of expansion or contraction of cellulose fibers places difficulties
originating from this source in the class of conditions beyond absolute
human control, but a study and understanding of the subject will
enable one to prevent, or at least to minimize, such troubles. It
consequently becomes the business of the printer to inform himself as
thoroughly as possible on the subject. Static electricity is an element
beyond absolute control and the source of much trouble. Both phenomena
could be controlled by proper atmospheric conditions in storage and
press rooms, but it is an expensive matter to equip rooms and install
the necessary apparatus. The amount of trouble arising from these
elements is often sufficiently costly in time and material to warrant
investigation as to the expense involved.

The least a printer can do is to maintain hygrometers in his pressroom
so as to keep track of atmospheric variations, and be guided
accordingly.


STATIC ELECTRICITY IN PAPER

Among the “paper troubles” due to conditions for which neither the
paper-maker nor the printer is responsible, none is more bothersome
than the presence of static electricity in paper. These static charges,
which are created by friction either in the making or handling of
paper, develop magnetic propensities in the sheets, causing them to
behave in ways which seem nothing but freakish until their nature is
understood. Some sheets stick together as if they were glued, while
others appear repellent to one another. Likewise, they may act in the
same manner toward the fly-bars of the press. It is next to impossible
to “feed” sheets so charged, and there is every likelihood of the ink
from one sheet offsetting to another.

Every one familiar with the magnet knows that there are in magnetism
two poles, the positive and the negative; that two substances of
opposite polarity attract one another, but that substances of the
same polarity repel each other. Static electricity--or frictional
electricity, as it is also called--exists both in positive and negative
charges, and sheets of paper containing static charges are governed
accordingly.

Paper, when dry, is an insulator to electricity, but when moist it
becomes an excellent conductor. Consequently, too much drying in
manufacture increases the likelihood of electrical troubles, because it
makes the paper more retentive of electricity with which it may become
charged.

Pure air is also an insulator of electricity, which finds its paths
through the air by means of the dust particles in suspension. Moisture
in the air forms a connection between the dust particles through which
the electricity easily passes into the ground, but when the air is dry
this medium is lacking, so that substances containing static charges
are deprived of these channels of conductivity. Cold air can not hold
so much moisture as warm air, so that its insulating properties are
increased. It is, consequently, in cold weather when this sort of paper
trouble is at its worst.

These facts suggest the first steps of prevention to take against
static electricity. First keep the air in the pressroom warm, and, if
necessary, increase its humidity. It is also advisable to keep the
paper in a warm room, for it has often been noticed that paper coming
cold into a pressroom gives much trouble.

The entire virtue of the so-called electric annihilators for moistening
the tympan of a press comes from the moisture they contain. Ordinary
glycerin, which is cheaper, will answer as well. These applications
are undesirable because they cause the packing to swell, and, in
consequence, detract from the adjustment of the overlays.

There is a simple and not very expensive device on the market called
the Thompson electrical neutralizer that has been found helpful. It is
provided with a tinsel cord such as is used in decorating Christmas
trees. The cord is stretched across the press so that the sheets are
brushed by it as they pass to the delivery board, and are thus offered
a connection whereby the static charges may escape into the ground. A
second device of merit consists in a gas pipe with flames at frequent
intervals over which the printed sheets pass in close proximity on
their way to the delivery board.

The most successful neutralizer with which the writer is personally
familiar is the Chapman. By means of an alternating current of
electricity, it supplies through a special apparatus alternating
discharges of positive and negative electric currents against the
sheets of paper as they are carried along the press. In the presence of
such a current the charges on the paper become their own destroyers, as
they draw out of the alternating current only the kind and quantity of
electricity which is sufficient for their complete neutralization.

There have been quite a number of other inventions, an account of which
the writer published in _The Printing Art_, Vol. XIX, No. 1, March,
1912. All are based on one of the following principles:

  1.--Making paper a conductor by moistening.

  2.--Making the air a conductor by humidifying.

  3.--Inducing static charges out of the paper by means of grounded
  wires or gas flames.

  4.--Neutralizing the static charges in the sheet with charges of
  opposite polarity.

Another solution of this problem, as well as of the problem of
expansion of paper and consequent poor register, could be reached by
the construction of an insulated pressroom. The air for this room
should be supplied through an apparatus in which it could be brought
to any required degree of temperature and humidity. The paper would
naturally have to undergo sufficient airing in such a room as to
become acclimated. After that, if the conditions remained constant,
there could be no difficulty in getting register, so far as the paper
was concerned, and a proper amount of warmth and moisture would also
dissipate all static electricity.

It is difficult to anticipate or to completely cover all conceivable
paper troubles, and when some one which may not be diagnosed on the
basis of the general principles enumerated, consultation with some
paper expert should clearly be sought. The author will be glad to
communicate on such subjects.



CHAPTER ELEVEN

THE PAPER TRADE


The distribution of paper is cared for in part by direct sales from the
mills to consumers, such as large publishers of newspapers, magazines,
and books, and manufacturers of paper commodities, such as tags, boxes,
stationery, toilet accessories etc.

The sale is also conducted to some extent by brokers, who operate
principally in a few of the larger cities, especially those located
within easy shipping distance from the mills, where the handicap of not
carrying a large warehouse stock is at a minimum.

The broker carries no stock as a rule, with the exception of a supply
for regular contracts. Occasionally the mills will carry a stock for
the broker. A few firms specializing on contract business have made
distinct successes in this branch of the paper business, but the broker
is not an important figure in the paper trade, taking the country as a
whole.

The most important distributing factor to the printing trade, is the
paper merchant, who with his large purchasing power, accumulates ample
and varied stocks, at minimum cost (having the advantage of carload
prices and freight rates), and stands ready to distribute in large or
small quantities, whatever is required. He also helps in a considerable
measure to finance his trade by extending credit.

There is a distinct tendency toward “chain stores” one of the more
prominent of which now comprises eight warehouses and seventeen branch
offices, covering practically the entire country. These large factors
frequently control the entire output of several mills, and sell to the
smaller jobbers, as well as to the printers and consumers.

Statistics on distribution are apparently lacking, since the Government
has never regularly compiled them, and the National Paper Trade
Association, composed of paper merchants was unable to furnish
any. The only estimate the author has obtained, comes through the
President of the American Paper & Pulp Association, (The Manufacturers’
Association), who wrote on Jan. 22nd, 1914--


  THE PAPER TRADE

  “In writing paper I should estimate that 95 per cent is sold
  through the jobbers.

  In book paper I should say not over 33½ per cent is sold through
  jobbers.

  In news paper probably not over 10 per cent is sold through jobbers.

  In wrapping paper I should say about 95 per cent is sold through
  jobbers.

  In box boards probably not over 25 per cent is sold by jobbers.

  Tissue paper, perhaps 25 per cent is sold through jobbers.

  (The balance is sold direct to manufacturers who re-manufacture it,
  like toilet paper manufacturers).”

The indications therefore are, that the very large consumers of
printing papers buy direct from the mills, as do many of the large
manufacturers of commodities composed largely of paper.

The printers who in the aggregate consume large quantities of writing,
catalog, and miscellaneous printing paper, but whose orders are
composed principally of many small items, buy almost wholly from the
paper jobbers. In localities far removed from the Mills, the jobber
very naturally occupies a more conspicuous position than elsewhere, and
his superior facilities for handling the business make him a stronger
factor than in the markets adjacent to the mills, and enable him to
handle much of the largest business to advantage.

In the _New England Letter_ issued in January, 1913, by the First
National Bank of Boston, the following interesting statement was made
in regard to paper.

“The Paper trade is essentially a hand-to-mouth trade in all branches
except the news print department. In general, purchases are made
only as required, and fluctuations in price effect but slightly the
demand. In short, an analysis of the production of the Paper Mills of
the country, taking into consideration stocks on hand, is specially
significant as an index of current trade conditions.

The situation is shown by the following table which gives an idea of
the paper output, the stocks on hand, and the number of days’ supply
available for November, 1912.

  _Output and Stocks for November, 1912, of American Paper (in tons)_

  ==================+=========+=========+==========+=================
                    |  Normal |         |          |
                    |  Output | Actual  | Stk. on  | No. days supply
                    |   per   | Output  |   hand   |  on hand Output
                    |  month  |  Nov.,  | Nov. 30, +---------+-------
                    |  Nov.,  |  1912   |   1912   | Normal  | Actual
                    |  1912   |         |          |  Basis  |  Basis
  ------------------+---------+---------+----------+---------+-------
  All Grades        | 367,154 | 348,640 | 163,557  |   13    |  13
  Newsprint         | 113,516 | 106,715 |  43,504  |   11½   |  12
  Board Paper       |  83,174 |  78,243 |  11,249  |    4    |   4¼
  Book Paper        |  63,474 |  62,134 |  31,200  |   15    |  15
  Wrapping Paper    |  50,674 |  49,168 |  27,065  |   16    |  16½
  Writing Paper     |  16,198 |  14,024 |  23,137  |   48    |  49
  Coated Book Paper |  10,868 |   9,922 |  10,750  |   30    |  32
  Tissue Paper      |   5,642 |   5,455 |   2,187  |   11½   |  12
  ------------------+---------+---------+----------+---------+-------

It is noticeable from this table what the merchants’ service means
to the Printer, for in the lines that are sold very largely, direct
on making orders from the mill to the consumer, the number of days’
supply on hand is small, whereas among the items most often used in the
average print shop, anywhere from two to seven weeks’ supply is carried
in stock.

The Jobber unquestionably occupies a permanent and important
position as the distributor of paper, not only because he affords a
centralization of information and stocks, which is more economical
than if every manufacturer had to maintain separate channels of
distribution, but also because he relieves the Printer of the necessity
of tieing up a large amount of money in paper. In earlier times,
when there were but few kinds and a small consumption of paper, the
situation was very different, and there was no need for the middle man.

Today the elimination of the merchant would mean the elimination of
the majority of Printers, for it is inconceivable that the printing
industry, in which according to Government Statistics, 86% of the
establishments do a yearly business of less than $20,000, and 52% less
than $5000, could finance itself without the aid of well organized
Jobbing Houses.

Certainly the Printers are in the total, large and important from the
merchants’ viewpoint, but there exists a strong inter-dependence,
which both should realize and recognize, as a most natural basis for
coöperation, in the expansion and increase of the demand for printing.


MERCHANDISING

Having considered the channels of trade we come to the methods of
merchandising.

Mills that sell their products direct to consumers necessarily maintain
a sales organization at their main offices, and as circumstances may
require local representatives, in the larger markets, such as New York
and Chicago, these men keep in personal touch with the customers,
furnishing samples, making contracts, following up shipments and
adjusting claims. Knowing the possible customers, this direct method
suffices without any accessory effort, such as advertising.

Their business is as a rule, strictly a wholesale proposition. It
happens in some instances that the same mills which sell some classes
of paper direct, manufacture other grades for distribution through the
dealer. While other mills rely entirely upon the merchant for their
distribution.

Formerly the paper re-sold by the merchant, was with few exceptions
handled under the private brand of the merchant. A grade of paper
so handled would be called by as many different names as there were
merchants selling it.

Frequently the manufacturer conceded the exclusive sale in given
territory to one merchant, but in other cases the same paper has been
handled by two or more merchants in the same City, sold under different
names, but not invariably at the same price. Such a condition is not
unusual, even today, but it obviously works to perpetuate the “Caveat
emptor” theory, which standard advertised brands in all branches of
merchandising is steadily eliminating.

Paper sold in this way is usually advertised at the entire expense of
the jobber. If the grade is a stock article it is listed in the price
book and shown in the sample set.

The competition between merchants has extended to their methods of
sampling, and no important dealer today is without a well arranged
Catalog and price list, giving complete data as to the standard sizes,
weights, and grades, etc., and also substantial sample cabinets, which
are distributed to paper buyers.

A comparatively recent development in the paper business, is the
exploitation of “mill brands.” That is to say, a mill manufactures and
stocks in the most merchantable sizes, a grade of paper. This is marked
with the mill brand. Agencies are established as far as possible with
a desirable chain of paper merchants, usually restricted to one for
each City. The mill prepares sample books at its own expense, which
are either mailed direct or divided among the appointed agents for
distribution. The agent lists the paper in his price lists, and gives
his salesmen the necessary information about it.

This represents the simplest form of merchandising mill brands. It has
been elaborated however, until most mills with connections of this
sort, do more or less advertising to assist in creating a demand for
their brands. They can afford to do this on a scale which would not be
warrantable for the individual dealer with a more restricted market.
Hence it has come about that many handsome specimen books, far more
elaborate than any the merchants had usually issued, have been put out
by the mills.

It is generally admitted that the influence on printing has been good,
and an appreciation and demand for better printing, especially on the
part of advertisers, has resulted.

A few mills have carried their campaigns beyond the field of direct
advertising, which includes the mailing of samples and printed
circulars, and the dissemination of printed samples in trade journals,
such as _The Printing Art Suggestion Book_, _The Pacific Printer &
Publisher_, or the direct mailing of folders or specimen books.

They also take advertising space in the _Printing Art_, _Inland
Printer_, _The American Printer_ and other printing trade journals.
Outside of these has come the use of such class magazines as _System_,
_Printers’ Ink_ and _Advertising & Selling_, and some have even
extended their appropriations to include national magazines, notably
_The Saturday Evening Post_. In one campaign a Chicago newspaper was
among the media selected; but the use of newspapers for paper publicity
is practically nil.

General Magazine advertising of paper has been principally devoted
to writing paper. This is natural, since of all paper products this
commodity has the largest number of buyers, and the matter of taste is
not so over-shadowed by technical considerations, as in the case of
printing papers.

The specifications for general printing, involve more knowledge of
printing processes than most people possess, hence the final decision
rests in a majority of cases on the printer’s judgment, so that
logically the printer is the most necessary individual to convert.

Although there has been a marked increase of late in the exploitation
of mill brands, there is no indication of the disappearance of
jobbers’ brands. A consumer today may fill nearly every requirement
at will from either class, and this condition will probably continue
indefinitely, although the tide seems to be setting for the moment
toward the mill brands.

This condition is not confined to the paper trade, and is probably due
largely to the aggressive advertising of manufacturers. Such promotion
work is still in its infancy, and a continuation of a growing demand
for mill brands may safely be predicted for sometime to come.


TRADE ASSOCIATIONS

There are two principal trade associations in the paper business, one
composed of manufacturers and the other of jobbers.

The American Paper & Pulp Association, composed entirely of
manufacturers was organized in 1877. Its purposes were described by its
President at the Annual Meeting of 1914, as “entirely educational.” It
collects and distributes statistics of production, and consumption,
among its members, aims to develop cost systems, agrees upon trades
customs, and seeks to bring about uniformity in these respects.
Technical education has been the subject of much study by the
Association, and it is hoped will lead to the establishment of trade
schools.

A labor bureau is maintained, which helps manufacturers to find help,
and laborers to secure work.

The Association is separated into divisions; News, Wrapping, Boards,
Tissue, and Writing. A Book division was formerly included, but the
manufacturers of book paper recently formed a separate organization
solely concerned with their special branch of the industry.

The Association has also played a prominent part in representing the
industry in tariff matters. The membership represented in 1915--246
mills.

The National Paper Trade Association was organized in 1903.
Membership consists of jobbers and includes the following subsidiary
associations; Baltimore & Southern Association, Central States Paper
Dealers’ Association, Empire State Association, New England Paper
Jobbers’ Association, Northwestern Paper Dealers’ Association, Pacific
Coast Paper Association, Paper Association of Philadelphia, Paper
Association of New York City, Western Paper Dealers’ Association. The
total membership in 1916 was 236.

The work of the Association has included credit organization for the
exchange of information as to credits; the study and installation
of cost systems; consideration of the relations between jobbers and
manufacturers.

There are a number of standing committees which have special details
assigned to them. They make regular reports at the annual meeting.

The existence of both associations is of distinct benefit to their
members, and to the trade in general. The establishment of standard
trade customs throughout the country facilitates the conduct of
business upon an equitable basis. Copies of these rules are to be found
in the price list of most paper jobbers, and as they are subject to
occasional changes it seems inadvisable to reprint them here.

A third organization known as the Paper Makers Advertising Club,
consisting of 15 Mills, was organized in 1914. Its purpose is to
develop the growth of printing by disseminating information about the
purpose and uses and planning of “direct-by-mail” advertising. Its
membership is open to any paper mill which sells its product in whole
or in part under its own brands.



CHAPTER TWELVE

IMPORTANCE OF A KNOWLEDGE OF PRINTING


The study of printing should be more general in all our schools--but
not as it is taught so often--by teachers incompetent to glimpse and
grasp its widest possibilities--to make it live and thrill with all its
latent power.

If its mechanical aspects are over emphasized it must fail to appeal
to intellectual scholars, since it cannot sufficiently stir their
imaginations to command interest.

The printing and publishing industry stands among the six largest from
the point of view of annual value in dollars--in this country--and has,
of course, boundless possibilities for good and evil. Nothing is more
essential to civilization intellectually or commercially, than printing.

The allied industries are also relatively important. The United States
produces more paper than any other five nations combined and hence
offers countless opportunities for a good livlihood in this line.

Six hundred million dollars and more are annually expended for
advertising in the United States and advertising invariably involves
printing of some sort.

Aside from the positions that require a knowledge of printing more or
less complete, such as proofreading, publishing, librarians’ work,
etc., there are jobs connected with the paper industry where this
knowledge, which as a matter of fact is rarely found, would prove of
great advantage.

It is evident, moreover, that some practical knowledge of printing may
prove useful if not essential for practically all men who engage in
commerce or manufacturing. They are all buyers of printing, and it is a
difficult commodity to purchase intelligently.

For authors or editors a knowledge of typesetting is very valuable.
They should know the mechanics of it, for “author’s corrections”
are the bugaboo of most printers and the cause of much unnecessary
expense and misunderstanding about the cost of printing, because the
inexperienced author seldom realizes that the change of a word may
involve the resetting of an entire paragraph.

When we have agreed that a grounding in printing is desirable for
prospective authors and business men, we have included a high
proportion of our population. Even professional men will find it
beneficial, though possibly not in proportion to the time required for
its mastery.

From a purely educational point of view, I can emphatically state from
personal experience, that nothing ever helped me more in acquiring
concentration of mind than typesetting.

There is a wholesome discipline in the performances involved in
products of the press. Nor should the aesthetic aspect be ignored. It
seems a pity that cultured persons should be so generally ignorant of
what constitutes good printing.

The same people who would not wish to admit that they could not
recognize a Sheraton chair, or a Rubens painting, have no sense of
omission from their educations because of their inability intelligently
to appreciate a beautiful example of printing, as mere printing. A
collection of well-printed books is an indulgence within the reach of
modest incomes and the source of much satisfaction.

Considering that Printing is the “Art preservative of all arts” does
it not seem like a subject which should be generally touched upon, at
least collaterally, in every institution of higher education?

To sum up a bit: Printing is an industry of basic importance to
civilization. It means, therefore, the livlihood directly or indirectly
of many persons. The opportunities open to young men well equipped with
a knowledge of printing are numerous, and the young man so prepared has
an advantage over his competitors.

So much for the commercial aspect.

Aesthetically, printing has risen in the past, and does still,
occasionally rise to high levels. Its encouragement as an art should
come from the better educated people, as well as from the hard headed
business men, who, by producing beautiful catalogs, have actually done
much to encourage and bring in an age of better printing.

Educationally, I would like my own children to undergo this training
which possesses so much that is fascinating, but is at once exacting
and disciplinary to the mind, the eye and the hand.

There is no escape from the consequences of one’s work. It remains
proved in black and white, or even in many colors, as a credit or
otherwise to one’s imagination, conception and workmanship. It is my
conviction that there are large educational advantages in the study of
Printing if it be taught by trained enthusiasts in a way to make it
live and vibrate with all its far-reaching and inexhaustible power.



INDEX


  Advertising, 93

  Agalite, 39

  American Paper & Pulp Assn., 95

  Antique, 55

  Atmospheric Effects, 64


  Bogasse, 21

  Barium Sulphate, 39

  Barratt, Thomas, Water Marking, 7

  Baskerville--first wove paper, 4

  Blanks, 52

  Bleaching, 28

  Bleaching Powder, discovery of, 10

  Blotting, 41

  Boxboard, 52

  Breast-roll, 46

  Bristol boards, 52

  Broom corn, 20

  Brueckmann, Dr., 7

  Bureau of Chemistry, 19

  Bureau of Plant Industry, 19

  Burgess and Watt, 8

  Bursting strength, 73


  Calender defects, 78

  Calenders, sheet, 55, 56

  Calenders, super, 55, 56

  Canson, M. inventor of suction boxes, 7

  Cardboard, 5, 6, 71

  Casein, 81

  Chapman neutralizer, 87

  Chemical Texts, 73, 74

  China Clay, 39

  Coated Papers, 56, 58, 81

  Color, of Paper, 67, 68

  Color, 79

  Combining, 56

  Corn Stalks, 19

  Cotton-hull fiber, 20

  Coucher-man, 44

  Couch roll, 46, 47

  Cover papers, 60

  Crompton, T. B., inventor, 7

  Crop plants, 18

  Cylinder Machine, 7, 47, 52


  Dandy Roll, 7, 47

  Deckle Straps, 47

  Deckle Edges, 47

  De Vinne, 5

  Dickinson, Co., 52

  Dickinson, John, 7

  Didot, François, 6

  Distribution of Paper, 89

  Doctor, 49

  Donken, Bryan, 6

  Dryers, invention of, 6


  Electricity, Static, 86, 87, 88

  Ekman, 8

  Embossing, 55

  Esparto, 36


  Fiber Characteristics, 44

  Fillers, 39

  Finish, 68, 76, 77

  Finishing, 54

  Flax Straw, 21

  Flow Box, 47

  Folding Endurance, 74

  Forest Products Laboratory, 18

  Formation, 68

  Fourdrinier, Henry and Sealy, 6

  Fourdrinier Machine, 43, 46

  Fry, 8


  Griffin, Martin L., 21, 22

  Ground Wood, 29, 31

  Guard-board, 49

  Gummed Papers, 59

  Glassine Paper, 59

  Grain of Paper, 63, 64, 83, 84


  Hand Process, 43

  Harper Machine, 52

  Head Box, 46

  Hertzberg’s Table, 65

  Hinchman, David, 4

  Holland Beating Engine, 4


  Impurities in Paper, 40

  Inks, 82


  Jordan Engine, 42


  Keller, 8

  Koops, Matthias, 8


  Laid Paper, 54


  Make-Ready, 82

  Merchandising, 92, 94

  Mill Brands, 93

  Mitscherlich, 34

  Moisture in Paper, 84, 85

  Murray, John, 1


  National Paper Trade Assn., 89, 95


  Opacity, 70


  Packing, 80

  Paper-Making, Origin of, 1

  Paper Maker’s Advertising Club, 96

  Paper Trade Associations, 96

  Papyrus, 1

  Platers, 55

  Press Rolls, 47

  Printers’ Responsibility, 82


  Rag Stock, Preparation of, 26, 27

  Reamur, 7

  Reels, 47

  Register, 84

  Richmond Paper Co., 8

  Rittenhouse, William, 4

  Robert, Louis, 6

  Routledge, 8


  Samarkand, Conquest of, 2

  Sand Settler, 42

  Save-all, 46, 47

  Schaeffers, Jacob Christian, 7

  Screens, 42

  Seasoning, 85

  Sizing Materials, 39, 70

  Slices, 47

  Slitters, 48

  Soda Pulp, 32, 34

  Stamper, 4

  Statistics of Manufacture, 12, 13, 14, 15

  Suction Boxes, 8

  Strawboard, 52

  Straw Pulp, 36

  Sulphate Pulp, 34

  Sulphite Pulp, 34

  Sulphate of Lime, 39

  Supercalendering, 55, 56

  Surface Sizing, 54

  Starch, 39, 81


  Talc, 39

  Tate, John, 3

  Tennant, 10

  Tensile Strength, 73, 74

  Testing, Paper, 70, 71, 72, 73, 74

  Tilghman, Benjamin C., 8, 11

  Trade Customs, 78


  Vatman, 43


  Waste Papers, 16, 17, 36

  Watermarks, 49

  Water Finish, 55

  Watt and Burgess, 8

  Waxed Papers, 59

  Wet Machine, 29

  Whatman, James, 3

  Wheelwright, Charles S., 8

  Wilks, John, 7

  Wire, 46

  Wood Pulps, 28, 32

  Wood Pulp Importations, 15

  Wove Paper, 54


  Yankee Machine, 54



Transcriber’s Notes


Punctuation, hyphenation, and spelling were made consistent when a
predominant preference was found in this book.

Discovered typographical errors were corrected. The non-trivial ones
are noted below.

Ambiguous hyphens at the ends of lines were retained.

Index not checked for proper alphabetization or correct page references.

“livelihood” was consistently spelled as “livlihood”; not changed here.

Copyright page: The spelling of the author’s name has been changed from
“Wheelright” to “Wheelwright” to match the spelling used throughout the
rest of the book and the cover.

Page 11: The “Note” originally was at the bottom of the first page of
the chapter.

Page 15: The attribution at the end of the long table originally was
printed at the bottom of each of the pages containing that table.

Page 59: “parrafin” was printed that way.

Page 81: “may be charged to” was misprinted as “changed”.

Page 81: “case lining give access to moisture” was misprinted as “case
linning five access to moisture”.

Page 85: “when the air becomes dry exposed edges” was misprinted as
“when the air becomes due exposed edges”.

Page 91: No closing quotation mark for the paragraph beginning, “The
Paper trade is essentially”.

Page 97: “CHAPTER TWELVE” was misprinted as “CHAPTER THIRTEEN”.





*** End of this LibraryBlog Digital Book "From Paper-mill to Pressroom" ***

Copyright 2023 LibraryBlog. All rights reserved.



Home