By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | HTML | PDF ]

Look for this book on Amazon

We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: The Boy's Book of Industrial Information
Author: Noyce, Elisha
Language: English
As this book started as an ASCII text book there are no pictures available.
Copyright Status: Not copyrighted in the United States. If you live elsewhere check the laws of your country before downloading this ebook. See comments about copyright issues at end of book.

*** Start of this Doctrine Publishing Corporation Digital Book "The Boy's Book of Industrial Information" ***

This book is indexed by ISYS Web Indexing system to allow the reader find any word or number within the document.

  │                                                                │
  │                      Transcriber’s Notes                       │
  │                                                                │
  │                                                                │
  │  Punctuation has been standardized.                            │
  │                                                                │
  │  Characters in small caps have been replaced by all caps.      │
  │                                                                │
  │  Non-printable characteristics have been given the following   │
  │  transliteration:                                              │
  │      Italic text: --> _text_                                   │
  │                                                                │
  │  This book was written in a period when many words had         │
  │  not become standardized in their spelling. Words may have     │
  │  multiple spelling variations or inconsistent hyphenation in   │
  │  the text. These have been left unchanged unless indicated     │
  │  with a Transcriber’s Note.                                    │
  │                                                                │
  │  The symbol ‘‡’ indicates the description in parenthesis has   │
  │  been added to an illustration. This may be needed if there    │
  │  is no caption or if the caption does not describe the image   │
  │  adequately.                                                   │
  │                                                                │
  │  Transcriber Notes are used when making corrections to the     │
  │  text or to provide additional information for the modern      │
  │  reader. These notes are not identified in the text, but have  │
  │  been accumulated in a single section at the end of the book.  │
  │                                                                │

                            NEARLY READY,

    Cloth Gilt, PRICE FIVE SHILLINGS, Elaborately and Profusely
        Illustrated by THE BROTHERS DALZIEL, uniform with the


    The object of the Author is to give a simple, clear, and lucid
    description of the Universe under the following divisions:--

        The Sky.      The Earth.       The Vegetable Kingdom.
        The Air.      The Waters.      The Animal Kingdom.

               London: WARD & LOCK, 158, Fleet Street.

  Illustration: (‡ Composite of several Industrial Scenes.)

  Illustration: (‡ Illustrated Title Page.)

                            THE BOY’S BOOK


                       INDUSTRIAL INFORMATION.


                            ELISHA NOYCE.


                        THE BROTHERS DALZIEL.

                   WARD & LOCK, 158, FLEET STREET.


In putting this work before the public, the Author has endeavoured
to supply a clear and brief description of the materials, processes,
and apparatus made use of in the various examples of industry and
skill constantly before our eyes, so that the reader may acquire a
knowledge of such things, and an interest in those, who, by their
hard work and patient ingenuity, supply them; for every article and
process can be made to have a value and an interest, in proportion to
the amount of knowledge we possess respecting them.

                   *       *       *       *       *

There is no attempt in this work to describe every article and
process, but such only as are most interesting and instructive. All
the mere trades and handicrafts--the results of which are so various,
and depend so completely upon the skill of the artisan, that any
description of their particulars would scarcely be profitable or
interesting to the reader--have been avoided. The illustrations of
this work have been prepared with the greatest care, and drawn from
reality. By the kind permission of Lord Panmure, the artists were
allowed to make whatever drawings were necessary in the Arsenal at
Woolwich; and thanks are due to many of our eminent manufacturers for
similar favours with respect to their several factories and machinery.

                   *       *       *       *       *

In the first division of this work have been placed all those
materials which exist in nature, either isolated or combined, and
which have merely to be extracted or separated, as the earths,
metals, &c. Under the second division, “Manufactured Products,”
such results of manufacture as are known by the common designation
“stuff,” and are of an uniform and particular quality, as soap,
soda, &c., not existing in Nature as such. In the third division,
individual articles, the result of skilled labour, each compounded
and made up of several substances, or of particular forms. In the
fourth section are the processes made use of in the production of
the various necessaries or elegancies of life. Some of these might
have been placed under the second and third divisions, but the Author
thought proper to place them here, on account of the processes being
more readily described than their results. The fifth division is
devoted to the most usual forms of Apparatus and Machinery of general
application, avoiding all mere tools and machines for specific
purposes. The last division is a mere outline of those important
engineering works which of late have acquired an increased interest
from the addition of railways and electric telegraphs to their number.


The inquiring mind uses all its senses to obtain some new idea, and
to apply it to some useful purpose; it is this spirit of research
that has led to all the great results in Art and in the mechanical
and chemical sciences, which we now enjoy and admire; but it is only
by very slow degrees, and by great perseverance, that such results
are obtained, although the accumulation of a few years makes an
enormous aggregate. Look back a generation or two--where was then
the steam engine, where the tall stalks which indicate the sites of
complicated and ingenious manufactures? the blacksmith then worked
at his anvil, and wrought out with his hands what he required in
iron; but what is now done with this treasure of the mine? behold
the Leviathan and the Britannia Bridge,--count their thousands of
tons of plate iron rolled out by machinery, and think of the work
of their removal, the millions of rivets to fix them together, the
elevation of the one, and the launching of the other. Could this be
done without that machinery which has become gradually perfected by
thought and perseverance? Visit the iron works and see the powerful
“steam hammer” moulding into form a mass of red-hot iron, many tons
in weight; see the powerful and beautiful contrivances for rolling
into plates, drawing into bars and wire, or cutting up this stubborn
metal, and call it stubborn no more! See the powerful “locomotive”
carrying along the trams hundreds of tons of goods at a rate that
can hardly be equalled by the bird that flies through the air on
its light pinions; and the huge steam ships which cut their rapid
way across the seas, holding in contempt those very winds upon
which alone the mariner used to depend! See with what rapidity and
accuracy almost every kind of “textile” material is produced by the
steam-worked loom, and remember that these have all arisen, with
hundreds more, from small beginnings, and step by step.

Nor does the mechanical genius bound the works of civilisation.
From studying the various properties of the elements of nature, and
the results of their combination in various proportions and under
various conditions, the chemist arrives, not only at their uses
and applications, but obtains results before quite unthought of!
Instance the electric telegraph, and think how it conveys one’s
thoughts half round the globe before you can express an exclamation
of surprise that such things can be! See also the wonderful results
of the photographic art, copying the most elaborate picture,
machine, or portrait, in a few seconds, and see the results of
electro-deposition, which by an invisible agent, coats with pure
gold or silver any article subjected to its action, or produces in a
mould the article itself of the most elaborate form or pattern, and
in solid metal, extracted by this all-powerful agent from liquids
which the uninformed would never believe could contain any metal at
all. Think of the beautiful colours of our carpets, draperies, silks,
&c.--the chemist has devised the dyes with which they are stained;
and in our chemical factories, what tons of vitriol, soda, bleaching
powder, and scores of other chemical agents are daily produced. All
this is the result of study and perseverance. Neither have the Fine
Arts been behind in contributing to civilisation, as may be seen in
the structure and decoration of our houses, churches, and public
buildings; in our glass and pottery ware; paper hangings, and other
artistic designs; in engraving and the copious illustration of our
books, saving a long and tedious description, and often presenting to
the eye forms that words could not express. And now let us consider
one by one the “materials” and processes from which all these results


        Metals and Alloys
        Plaster of Paris

        Alcohol, or Spirit
        Coal Gas
        Acetic Acid, or Wood Vinegar
        White Lead
        Prussian Blue
        Prussiate of Potash
        Sulphate of Iron
        Sulphate of Copper
        Chloride of Lime
        Sulphuric Acid
        Glue and Size
        Chocolate and Cocoa
        Tin-plate, and Galvanised Iron
        Coal-tar Naptha
        Wood Naptha, or Pyroxylic Spirit

        Bricks and Tiles

        Wood and Plate Engraving
        Flax Manufacture
        Cotton Manufacture
        Woollen Manufacture
        Calico Printing
        Sugar Refining
        Silvering Looking Glasses
        Silver Plating
        Electro-plating and Deposition of Metals
        Soldering and Brazing
        The Smelting of Metals
        Glass-blowing and Casting
        Glass Cutting

        Steam Engines
        Bellows and Blowing Machines
        Screw Propellers
        Fire-arms and Projectiles
        Percussion Caps
        Pumps and Fire Engines
        Stopcocks or Taps
        Mowing Machines
        Thrashing Machines
        Reaping Machines

        Electric Telegraphs
        Artesian Wells
        Canals and Locks

                           NATURAL PRODUCTS.


  Illustration: (‡ Illustrations of:)
    2. GARNET.     4. RUBY.                   6. ROCK CRYSTAL.

All earths are metals in combination with oxygen: that is to say,
they can all be separated into a metal and oxygen. The chief earths
used are Alumina, found as clay or slate; Lime, found as chalk or
limestone; and Silica, found as sand, flint, or rock-crystal. These,
in various proportions, combined with some few other matters, form,
by far, the greatest portion of the earth we dwell on. The earths,
when pure, are all white substances, not very heavy, and having
scarcely any of the properties of the metals from which they are
derived. The next frequent of the earths are Baryta and Strontia;
but these may be said to be useless when compared with the three
former. Alumina, in its various forms of clay, is used for brick and
tile-making, and for pottery; hardened into the form of slate, it is
much used for roofing and for making cisterns. Lime, in the form of
carbonate, constitutes the best building stones, including marble,
so valuable for ornamental carving and decoration, and when burnt,
to separate the carbonic acid, forms lime itself, which is invaluable
as a cement when mixed with sand; lime, in union with another acid
(sulphuric) forms plaster of Paris, also a most useful article
in the arts, &c. Silica, in the form of sand, is very extensively
used for glass making, and, in the form of flint, it is ground and
used for pottery: all such stones as quartz, rock-crystal, Scotch
pebble, agate, cornelian, &c. are but various forms of Silica, either
crystallized or deposited in layers. Most of the precious stones
are composed of the earths in a crystalline state and colored by
some foreign ingredient, such are the emerald, ruby, garnet, &c.
The diamond is not an earth but composed of pure carbon.

                          METALS AND ALLOYS.

Metals may be known from all other substances by certain properties:
they have that peculiar brilliancy, called, for that reason, the
“metallic” lustre; they are rapidly heated, and as rapidly cool,
hence they are said to be good conductors of heat; they are all
opaque, and most of them very heavy; some indeed, as gold and
platinum, are the heaviest substances known, being about twenty times
heavier than water; they have, moreover, other valuable properties
such as the capability of being melted, of being drawn out into wire,
of being beaten into thin plates, &c.

All metals are simple bodies; that is to say, they cannot be made
out of other substances, although two or more metals may be combined
and be again separated, or they may be combined with numerous other
substances, as oxygen, and also again separated. There are upwards
of fifty metals known to chemists, yet but few are used to any extent
in the arts or manufactures. All the metals in use for the very many
purposes to which they are applied are not simple metals, but are
what are called “alloys,” that is to say, compounds of two or more
metals. The chief metals in use are--

                    IRON,                 MERCURY,
                    COPPER,               NICKEL,
                    LEAD,                 GOLD,
                    TIN,                  SILVER,
                    ZINC,                 PLATINUM.

But in the state of oxide many are used which are seldom seen in the
metallic state, such are the earths and alkalies; and for colors, and
several other purposes, many other preparations are in use. The chief
alloys, or compound metals in use, are, brass, made of copper and
zinc; pewter, made of lead and tin; bell metal and gun metal, made
of copper and tin; and solder, which is a kind of pewter, and made of
the same metals; the silvering for looking-glasses is made of mercury
and tin; the gold and silver used for coin are not pure metals, but
alloyed with two parts of silver or copper to every twenty-two of the
pure metal, and this forms the “standard” gold or silver. The gold
used by jewellers has often a much greater proportion of alloy--for
this name is given both to a compound metal and the cheaper metal
made to combine with the more precious. The object gained by thus
alloying the coinage, is that of rendering the metals harder, so that
they shall not suffer much loss in wearing; thus a small quantity
of copper mixed with either gold or silver, renders them both harder,
although itself softer than either. The combination of certain metals
forming alloys, is often not exactly the mean of their respective
qualities, for instance, a small quantity of silver is sometimes
fused with cast steel for penknife blades, and although the silver is
itself much softer than the steel, yet the combination is found to be
both closer in the grain and harder; it is known as silver-steel in
commerce. Bismuth, although itself not very fusible, increases the
fusibility of other metals; a combination of 2 parts tin, 3 lead, and
5 bismuth, forms a metal fusible by boiling water.


  Illustration: NATIVE OXIDE OF IRON.

Iron stands first in usefulness of all the metals, for railways,
bridges, ships, and a thousand other purposes; it can be both cast
and wrought, having that peculiar property, the capability of being
“welded,” that is to say, of softening while hot to such an extent
that when two pieces are made white hot and laid together, a few
blows of the hammer will cause them to unite into one piece, and it
is by means of this most useful quality that large masses of wrought
iron are produced, such, for instance, as anchors and cranks for
steam-boats. This property of welding, and the abundance of the ores
of iron, render it one of the most useful materials supplied by
nature for the various purposes of manufacture. In combination with
carbon it forms that hardly less useful article known by the name of

Cast Iron has scarcely any of the metallic lustre, and is only fitted
for solid work; it is brittle, like steel, without its elasticity,
and is too soft and too porous to be made into any of the numerous
tools and instruments for which steel is so eminently suitable.
Cast iron contains many impurities, the chief of which are carbon,
sulphur, and silica, got from the coke whilst being smelted in
contact with it, and from the fluxes used in the process; it is
coarse in grain, and much more fusible than wrought iron, which
is iron in a nearly pure state and can be fused only by the very
highest heat capable of being produced. Cast iron is converted into
wrought or malleable iron by being re-melted and stirred for a long
time in contact with the air, this process is called “puddling,”
its object is to get rid of all the impurities (chiefly carbon and
sulphur) which, by being brought into contact with the air at a high
temperature, are said to be burnt out, that is to say, they combine
with oxygen and form carbonic and sulphurous acids. After puddling,
the iron is rolled or hammered out, folded up, and again extended,
and as a general rule it may be said, the more this is continued the
purer and softer is the iron.


  Illustration: NATIVE COPPER.

Copper is a reddish-coloured heavy metal, much used for sheathing
the under part of ships, for making boilers, &c. It is about
eight-and-a-half times heavier than water, and is too valuable to be
used for many purposes where either iron, tinned iron, or zinc are
applied, but for which purposes its great durability would fit it,
as it is easily rolled out or beaten into plates, and is not quickly
acted on by the weather. It is used as coin in pence, halfpence, and
farthings; all vessels for cooking purposes, when made of copper, are
tinned inside to prevent the food becoming poisonous from verdigris,
which is the rust of copper, and is very injurious. Copper is found
chiefly combined with sulphur, forming “native sulphuret of copper.”
Copper melts at a full red heat.


  Illustration: SULPHURET OF LEAD.

Lead is a heavy metal, of a dull blueish tint, and very soft; it is
extensively used for covering roofs, for cisterns, and for pipes for
conveying water, as it is easily bent and joined, and is not acted
on by the water which passes through it. Lead melts at a heat below
that of redness, and, in combination with oxygen and carbonic acid,
forms the “white lead” of commerce so largely used as a paint. Oxide
of lead, called “litharge,” enters into the composition of flint
glass, and in combination with a larger quantity of oxygen forms “red
lead,” a substance much used in painting. Lead is found in many parts
of England, especially Cornwall, where many lead mines exist; it is
got from the sulphuret called “galena,” which is lead in union with
sulphur. What is called “black-lead” is not lead at all, but is an
ore of iron, being iron in combination with carbon. Lead is about
eleven-and-a-half times heavier than water.


  Illustration: OXIDE OF TIN.

Tin is a white metal, almost as white as silver, it is found chiefly
in Cornwall. It is a light, soft metal, and, like lead, is easily
melted; it is used chiefly for coating vessels of harder metal, such
as iron and copper. It is used to mix with copper to produce bronze,
bell metal, and gun metal, and with lead to produce pewter, which
used to be so extensively used as table-ware before the manufacture
of earthenware became general for that purpose. Tin does not easily
tarnish or rust by exposure to the air, hence the use of tinned
iron-plate. Tin, united with mercury, forms the silvering for
looking-glasses. Tin is about seven-and-a-half times heavier than


  Illustration: SULPHURET OF ZINC.

Until the last quarter of a century, zinc was but little used, but
of late it has taken the place for many useful purposes where lead
was formerly used, principally owing to its cheapness and lightness.
Zinc is a hard metal of a grayish colour, not easily bent but rather
brittle, but when made nearly red hot, it is capable both of being
rolled out into sheets and being beaten into form by the hammer. Zinc
is about six-and-three-quarter times heavier than water. Like many
other metals, zinc is volatile, that is to say, when heated to a
certain extent it passes off into vapour, and there is no doubt, the
reason that zinc was not known or used of old was that it was chiefly
lost in “smelting,” or getting it from its ores. Zinc is now obtained
by a sort of distillation; the ores are mixed with the flux, &c.,
in a large earthen crucible or pot, from which an iron tube passes
into a vessel of water, the lid is securely fastened on, and as the
heat is urged the zinc is driven off in vapour, passes down the tube
and condenses in the water. The zinc of commerce is obtained chiefly
from the ore known by the name of “calamine stone,” which is zinc in
combination with oxygen and carbonic acid. A substance called “zinc
white” has been lately introduced as a substitute for white lead, and
would certainly supersede it, but the zinc is found to be deficient
in “body,” which means, the power of covering anything over which
it is laid-on in a thin layer, but as zinc white does not blacken
in foul air, and white lead does, it has a great advantage, and it
is to be hoped that some improvement in its manufacture may improve
its “body.” Zinc is chiefly used for roofs, gutters, water-pipes,
cisterns, and various vessels for holding water, as it does not rust
so easily as iron. What is called “galvanised iron,” is iron dipped
into melted Zinc in the same way that tin-plate is.


Mercury, or quicksilver, is known from all other metals by being
fluid at the ordinary temperature of the air. This is only owing to
its extreme fusibility, for at 72 degrees below the freezing point
of water, it also becomes solid, and may be hammered out or cut by a
knife; it is very heavy, being about fifteen-and-a-half times that of
water, so that most of the metals will float on its surface; it has
a bright lustre and is almost as white as silver. It is found both in
the fluid metallic state, and in combination with sulphur, in which
last state it is called “cinnabar;” this is a heavy mass of a deep
red color, and when ground to powder, of a most magnificent red,
and is the vermillion so well known as a pigment; this vermillion is,
however, most frequently manufactured by combining the mercury and
sulphur, both first purified, in this way a more brilliant color is
produced than can be got from the cinnabar. The metal is extracted by
heating the cinnabar with iron-filings or lime in a retort, by which
means the mercury distils over and the sulphur is left behind united
with the iron or lime.

Mercury is used for many purposes in the arts and sciences, for
barometers, thermometers, compensating pendulums for clocks, &c., and
also in the processes of water-gilding, looking glass silvering, and
in the Daguerreotype process. The combinations of mercury with other
metals are called “amalgams.”


  Illustration: GOLD (‡ NUGGET).

Gold is the heaviest of the metals with the exception of Platinum,
being rather more than nineteen times heavier than water; it is of
a bright yellow color, and is not tarnished by exposure to the air
or moisture, hence its usefulness in ornamenting frames, cornices,
&c. Gold is chiefly used, in the form of coin, as the medium of
exchange; for ornamental purposes, such as jewellery; for gilding,
and for staining glass, to which it gives a beautiful ruby-red color.
Gold coin contains about one twelfth part, by weight, of copper,
this is added to give it hardness and consequently cause it to lose
less by wear in use. Gold is not dissolved by any of the pure acids,
but a mixture of hydrochloric and nitric acids will dissolve it in
consequence of giving out chlorine, an element which freely dissolves

Gold is capable of being beaten out into leaves of extreme thinness,
and also of being drawn into wire of such thinness that five hundred
feet of it weigh but one grain.


  Illustration: SILVER.

Silver is the whitest of the metals; it is about ten-and-a-half
times heavier than water; it does not easily tarnish by the air,
and is not converted into dross by heat continued for any length of
time, or, in chemical language, it is not oxydised; it is chiefly
used for coin and for ornamental purposes where its cleanliness and
beauty are strong qualities to recommend it. Many kinds of lead ore
contain silver, and when this is in sufficiently large proportion to
pay for its extraction, the reduced lead is subjected to the flame
of a furnace which is blown on to it with a strong blast, the flame
melts the lead and converts it into an oxide called “litharge,”
which is in the form of reddish scales, and as these are formed the
blast blows them off; in this way the lead is gradually consumed,
leaving the silver with but a small quantity of lead, this is put on
to a cup made of bone ashes called a “cupel,” hence this operation
is called “cupellation,” the heat is then raised, and the lead
which remains with the silver, forming a liquid glass with the bone
ashes, sinks into them, leaving the silver bright and pure. Silver
in some districts is extracted from its ores by what is called
“amalgamation;” the finely powdered ore is mixed with water, some
cuttings of iron and quicksilver, and turned round in a barrel for a
considerable time, when the quicksilver is drawn off through a small
hole, and is found to contain all the silver in the ore, together
with some other metals. The quicksilver is got rid of, first by
pressing and then by distillation; so that it is all recovered for
a second operation. What remains is separated from the other metals,
which it may have been mixed with by different processes, according
to the nature of these metals.

The standard silver of the Mint is what is called 22 carats fine
(nearly), that is to say, 22 parts in 24, the two parts being copper;
this is done to harden it. The silvering of looking-glasses is made
of a compound of tin and mercury, but a process for really silvering
looking-glasses has been patented by Mr. Drayton; it consists of
precipitating silver from its solution by means of the oil of Cassia,
or some other volatile oil: the process is far too expensive for
general use or for large plates. Silver leaf is made and used in the
same way that gold leaf is.


Platinum is a metal of a white color, and is the heaviest substance
known, being more than twenty-one times heavier than water. It is
capable of being welded and wrought out by the hammer like iron; it
is not acted on by any of the acids, but, like Gold, is dissolved
by chlorine or a mixture of hydrochloric and nitric acid; it does
not tarnish by exposure to air, and is extremely difficult to melt,
requiring the very highest heat that can be produced; these qualities
render it one of the most useful of the metals to the chemist,
furnishing him with retorts, crucibles, and evaporating dishes
suitable for many purposes; its high price, however, renders it not
so generally used as it would otherwise be.


This metal is of a white color and very difficult to melt, it is
about eight times heavier than water and is chiefly obtained from the
ore known as kupfer-nickel, found very plentifully in Germany; this
kupfer-nickel is a native arseniuret of nickel, that is, nickel in
chemical combination with arsenic. It is very difficult to separate
these two metals, but an effectual and cheap process has lately been
devised to do so.

Nickel is attracted by the magnet similar to iron but in an inferior
degree. Till lately nickel was but little used, but it now forms the
basis of those compound metals known as nickel-silver, German-silver,
and British-plate, all which varieties are generally employed as
an economical substitute for silver; it is also used largely as a
foundation on which to deposit pure silver by the electro-plating
process, for which purpose it is most admirably suited being very
superior to copper in consequence of its color, as the silver always
wears off unequally and exposes the ground work of metal beneath.
German-silver is composed of copper, nickel, and zinc, in various
proportions. Nickel always forms one of the constituents of meteoric
iron, those mysterious masses called aerolites, which sometimes fall
to the earth.



This, the richest product of the mine, the well-known fuel used in
almost every branch of industry as well as for warming our houses,
is got from the depths of the earth, where it exists in certain
localities forming what are called “coal fields” or “basins.” It is
the result of changes produced during many ages upon vegetable matter
buried during the various convulsions which the earth has undergone,
and pressed into layers or strata of various thicknesses. To raise
this valuable fuel, powerful machinery is used and deep shafts are
sunk at an enormous expense.

Coal exists in various forms: the following are the most easily

1.--Cubical coal; shining and easily broken into squarish fragments.
It burns brightly.

2.--Slate coal; dull in color, splits like slate. Burns well.

3.--Cannel coal; dull color, breaks like resin, and somewhat
resembles jet. Burns brilliantly, and splits with a crackling noise
when in the fire. It affords the best gas.

4.--Glance, or Kilkenny coal; steel-grey color and metallic lustre.
Burns without flame or smoke, somewhat like charcoal.

5.--Lignite, or brown coal; is an imperfectly formed coal.

The quantity of coal used is rapidly increasing owing to the
extensive number of steam engines used, especially for navigation
and railway transit; and it is a problem, not yet determined, how
long the coal existing in Great Britain is likely to last; the lowest
statements make it but little below a thousand years.


Sulphur, also called Brimstone, is a natural production, and is
found either pure, or combined with metals forming ores, for the
most part called “pyrites,” as, iron pyrites, copper pyrites, &c.
In chemical language these compounds are called “sulphurets” or
“sulphides.” Sulphur is one of the elements; that is to say, it is
a simple body, or one neither capable of being made nor separated
into other ingredients. It is crystalline, of a bright yellow color,
very inflammable and volatile, burns with a blue flame and gives off
pungent fumes of sulphurous acid. It is got pure by distillation from
various substances containing it, and in Sicily is found nearly pure
as a volcanic product. Sulphur is chiefly used for the manufacture of
sulphuric acid and gunpowder, and was also largely used for making
matches, but phosphorus (a still more inflammable substance) has
almost superseded it in the manufacture of this necessary article.

                     PLASTER OF PARIS, OR GYPSUM.

Plaster of Paris is sulphate of lime--a combination of lime and
sulphuric acid; and exists abundantly in various degrees of purity;
it occurs plentifully in the locality of Paris, and is brought here
in masses of a greenish, pink, or brown color. To prepare the gypsum
it is first made red hot, to separate the water which it contains,
and then ground to powder of various degrees of fineness. Plaster of
Paris has the peculiar property of uniting with a certain quantity
of water and forming a solid compound with it; upon this property
all its usefulness depends. If a portion of Plaster of Paris be
mixed with sufficient water to form a liquid of the consistence of
cream, in a few minutes it will harden and become quite set, and
as it dries, it will harden still more, till it is of a hardness
almost equal to stone: this useful property causes it to be much used
for casting figures and ornaments; cheap plaster figures, &c., are
generally cast hollow, to save the plaster; this is done by pouring
into the mould a certain quantity of the plaster mixed with water,
and quickly turning the mould about so that it shall adhere and form
a layer on all the inside of the mould; when set hard, the mould is
taken to pieces and the figure finished by scraping off the marks
where the mould was joined. Plaster of Paris, combined with whiting,
forms what is called by plasterers “putty,” and is much used for
ceilings, and similar purposes.


Salt is one of the most widely spread and plentiful minerals which
the earth gives for the use of man; all the water of the ocean
derives its saline taste from salt; many springs are completely
saturated and are hence called “brine springs,” and it also exists
crystallized in beds within the earth of immense thickness and
extending for miles each way. The salt mines of Cheshire are the
finest and most extensive in England, and in some places the stratum
or layer of salt is more than one hundred feet thick, perfectly white
and crystallized. Salt is not a simple body, but is composed of two
simple bodies or elements, chlorine and sodium, hence it is called
by chemists the chloride of sodium, it can be formed by putting
carbonate of soda into hydro-chloric acid (sometimes called muriatic
acid,) until no more effervescence takes place, the result will taste
salt and yield pure salt on evaporation. The waters of the sea are
in some places evaporated by the heat of the sun in shallow hollows
dug out in the beach, this is called “bay salt” and is very impure;
but the chief part of the salt of commerce is procured by evaporating
the waters of brine springs; this water is pumped up into large iron
cisterns placed beneath slight sheds to keep the rain off, and having
flues running beneath them, the first impurities are thrown away,
and as evaporation goes on, the salt crystallizes and falls to the
bottom of the cistern in a fine white powder; this is taken out with
wooden shovels and placed in conical vessels with a hole in their
lower part to drain off all the moisture; it is then dried by stoves
and is fit for use; when no more salt falls down, the impure liquor,
called “bittern,” is drawn off and used to procure Epsom salts from,
by mixing it with sulphuric acid. The bittern contains chloride
of magnesium, and the sulphuric acid changes it into sulphate
of magnesia, which, when purified, forms the Epsom salts sold by

About half a million tons of salt are made in England every year.
Salt, besides its general use as a condiment, and in preserving
food for storing ships, &c., is also used for several manufacturing
purposes. By adding sulphuric acid and heating it, the acid called
“hydrochloric” is given off, which is largely used for many purposes;
but the chief use made of salt by the manufacturing chemist is to
prepare soda for cleansing and soap making.


  Illustration: STONE QUARRY.

Stone for building is chiefly of four kinds:--lime-stone, sand-stone,
granite, and marble. Slate is never used for building, but is very
suitable for roofing. The most common stone is limestone, and that
brought from Portland Island is especially good for building-stone;
it is called Portland stone, and it is of this stone that St. Paul’s
Cathedral is built, and most of the other public buildings of London:
it is rather soft when first dug from the quarry, but hardens with
age. Sandstone is a very coarse kind of stone, and is only used
where not much exposed to the weather; it consists of grains of
sand adhering so firmly together as to form a stone of considerable
hardness. Granite is a very hard stone, and very durable; so hard
that it cannot well be carved, and is therefore only used where
durability and plain solidity are required; London Bridge and the
Euston Square Terminus of the Birmingham Railway are built of
granite. Marble is a very fine heavy kind of limestone, sometimes
quite white, and generally partly transparent; the white kind is
very expensive, and is used for statuary, that is to say, for carving
into figures, vases, &c.; it is very durable, but is too expensive
for general use. Chimney-pieces, slabs for washing-stands, and other
articles of that description, are also made of it.

Limestone, marble, and also chalk (a soft kind of limestone), all
become changed into lime if made red hot, hence the name, limestone,
is often applied to all three.

Stone quarries are those places where stone exists of a quality
suitable for building purposes, and in a situation admitting of its
easy removal. All stone, with the exception of granite and marble,
exists in layers or strata as they are called, so that the stone
can be easily split in the direction of these strata or seams. When
a large piece of stone has to be removed, wedges are driven in a
row into these seams, and when the stone has started, it is notched
at the sides and back, so that in general a square piece is thus
removed; if it be not so, it is generally made into a somewhat square
before leaving the quarry, hence the name, derived from the French
“_quarre_.” Granite having none of the lines of cleavage, as they
are called, is broken by a row of wedges driven till a crack forms
from one to the other. Slate is a clay-stone found in layers like
limestone, but much more perfect; so much so, indeed, that it can
be split into slices a quarter of an inch thick and one or two feet
square; these, when sorted into sizes, form the slates for roofing
houses. It has been much used of late in thick slabs, cut by circular
saws, for making cisterns, a purpose for which it is well adapted.


  Illustration: (‡ LOGGERS.)

Wood is an article of universal application; its lightness, strength,
and the facility with which it can be worked, render it almost
invaluable; although in ship-building and many of its applications
to house-building iron has to some extent superseded it, yet there
are so many other ways in which it is indispensable, that it may
be looked upon as one of the greatest boons to mankind. There is
scarcely a use to which wood may not be applied, whether as fuel
for fires, timber for building, furniture both useful and ornamental,
various parts of machinery, vessels to contain wine and other fluids,
handles to instruments, (for in cold climates and cold weather metal
cannot be handled with impunity), and indeed for all uses in which
lightness, dryness, warmth, and variety of form are desirable, wood
serves as an excellent material. The kind of trees that produce wood
fit for building and other useful purposes are those called by the
botanists _exogenous_. Amongst which the pine tribe, oak, ash, elm,
and beech, stand pre-eminent; while mahogany, walnut, and rosewood
are chiefly used for ornamental purposes; box-tree wood is also very
useful on account of its closeness and evenness of grain; it is the
wood used by engravers.

Wood when first cut is wet and heavy, but, by being exposed to the
air, it shrinks and the sap dries up in it, it is therefore liable to
swell and become damp in moist situations this is detrimental to its
usefulness; most woods therefore are improved by being soaked a long
time in water, this cleanses it from saline and extractive matters
which keeps the wood damp, but which, when separated, allow the wood
to shrink and harden permanently, this process is called seasoning,
the same effect may be produced by exposure to the air and rain,
it is generally resorted to when the timber is cut up into smaller
pieces. The structure of wood is porous, hence its lightness, it has
also a grain which runs the whole length of the wood in circles round
its centre to the surface, one of these circles is produced every
year while the tree is growing; wood is therefore capable of being
cleft in the direction of the grain by a wedge, in this way builder’s
laths are made. Wood cannot be cleft across the grain, but must be
cut by sawing or otherwise. The pine or fir tribe produce the largest
and straightest timber, but it is not so strong nor so durable as oak
and many other woods.

Some specimens of the _Araucaria Excelsa_ or Norfolk Island pine,
have stems upwards of three hundred feet high, and in the Crystal
Palace is the bark of another gigantic tree the _Wellingtonia


  Illustration: COTTON (‡ PLANT).

Cotton consists of the fine long hairs which grow from the seeds of
several varieties of _Gossypium_, a plant belonging to the natural
order of _Malvaceæ_. These hairs are so long and numerous that they
completely fill the pod or seed vessel; they are very delicate, and
of the same size throughout, and but seldom jointed, they are each
separate from the other.

The cotton plant is chiefly cultivated in America and India. In
India, and some of the islands in the Indian Ocean, cotton has
been cultivated, spun, and woven into textures from time immemorial.
Cotton fabrics were in use in Mexico before its conquest by the
Spaniards, and have been used in China for many hundred years; its
chief source now is America, where more than two hundred times the
quantity is grown at present than was grown there half-a-century ago;
but the internal communication brought about by railways in India,
may, in all probability, revive the cultivation of cotton in that
country; the cost of conveyance from the interior having been one of
the greatest drawbacks to its exportation.

Cotton is not only cheaper than linen (which is woven from flax),
but has several advantages over it: it takes dyes much better, and
produces brighter colors; the improvements made in the machinery
for spinning and weaving cotton, have not only enabled us to match
the spinners and weavers of India, which, for a long time supplied
nearly the whole of Europe, but at the present time, cotton cloths of
English manufacture are exported to India for the purpose of clothing
the natives of that country.


  Illustration: FLAX (‡ PLANT).

Flax is obtained from the stalks of the flax plant _Linum
Usitatissimum_, it is supposed to have been originally brought
from Egypt, where linens have been woven from its fibres from time
immemorial. It is now found growing wild in this country, and is
cultivated in most parts of Europe, either for its stalks to make
flax, or for its seed (linseed), which is used for fattening cattle,
and yields an oil (linseed oil) much used in the making of paint. The
plant grows to two or three feet in height, bears a blue flower in
July, and has a great hollow stem; when gathered, it is pulled up by
the roots. The fibres of flax are very long and even; it is the inner
part which yields the best fibres.


  Illustration: SILK (‡ WORMS).

Silk is by far the strongest of the textile fabrics, being nearly
three times as strong as flax; it consists of the filaments spun by
the silk-worm, _Phalœna Bombyx Anori_. These filaments are always
double, proceeding from two holes in the head of the worm, and are
united by a sort of varnish which is moist and clammy when the
threads proceed from the insect, and causes them to adhere together.
The silk-worm in spinning, moves the head backwards and forwards,
attaching the threads on alternate sides and all around till it is
completely covered in with a ball of silk; in this state it is called
a “coccoon.” The silk-worm, like others of its class, undergoes four
changes or metamorphoses--the Egg, the Grub or Worm, the Chrysalis,
and the Imago or perfect insect, which, in this case, is a moth. The
worm spins the coccoon to defend itself from injury and cold, but
man, taking advantage of the useful qualities possessed by these fine
filaments, spins them into his most gorgeous apparel. The coccoons
are unwound by placing them in a basin of warm water, which dissolves
the varnish, and they are then slowly wound off; formerly this was
done by hand, but now machinery is chiefly employed which winds off
the silk from a bowl full of coccoons at the same time. The silk
is coiled into hanks or skeins, and in this form is imported into
this country; from these hanks it is wound off on to large six-sided
wheels called “swifts,” and from these on to bobbins or reels; it is
then wound off from two or three of these bobbins on to one other
bobbin, the threads of silk being laid side by side, and in this
process a twist is given to it in one direction and two of these
wound on to another receiving a twist in an opposite direction, this
forms a fine cord called “organzine,” which is used by the silk
weaver in the same way that yarn is by the cotton weaver. The short
and broken pieces are carded and spun like cotton, and is called
floss silk. The raw silk is of a bright buff or golden yellow color,
but there are some kinds which are white.


India-rubber or Caoutchouc which was, a short time back, used only
for the very insignificant purpose of rubbing out pencil marks,
is now used for almost innumerable purposes. India-rubber is the
solidified juice of several trees, such as the _Siphonia_, _Jatropha
Elastica_, _Ficus Elastica_, &c., the juice is got by making
incisions in the trunk of the trees during winter and collecting
the juice, which is caoutchouc combined with water, in the form of
a milky thick fluid, the water is then allowed to evaporate and the
India-rubber remains. It is brought here in all sorts of shapes, and
is purified before it is fit for commercial use by washing in warm
water or steaming; it is then cut into pieces and put into a kneading
machine which cuts and works it together with such rapidity that it
becomes quite hot and the pieces join into one mass. After having
undergone every kind of torture that can be well imagined in the
form of cutting, tearing, and squeezing, it is finally compressed in
a square cast iron mould, where it is kept for a time, and then is
fit for any use it has to be applied to. What is called vulcanized
India-rubber is produced by incorporating it with powdered sulphur,
or some substance containing it, as sulphuret of antimony, or the
vapour of sulphur is kneaded into the mass; this vulcanized rubber is
very elastic and does not harden by cold. Waterproof fabrics are made
by stretching the stuff to be waterproofed on a frame, at one end of
which is a partition having a slit in it, through which it is drawn,
after having been smeared with a solution of India-rubber in naptha;
the slit is so narrow that it scrapes off all superfluous caoutchouc,
it is then dried in the air.


Gutta-percha is a substance possessing many useful and valuable
properties; it was unknown in Europe until within a very recent date,
though it is said to have been in common use, for a long period
previous to our discovery of its utility, amongst the natives of
the Indian Archipelago, chiefly for making axe-handles. It is the
concrete juice of a large tree, supposed to be the _Isonandra Gutta_,
and is brought to Europe in irregular masses of a brown color, and
contains various impurities which are easily got rid of by working
it in hot water. Gutta-percha possesses the desirable properties of
being solid, slightly elastic, not brittle, and very tough, capable
of being melted at the heat of boiling water, and being drawn out
or moulded into almost any form; it resists the action of water and
spirits, unless very strong, oils, alkalies, and weak acids, but
spirits of turpentine, chloroform, and naptha, each dissolve it. A
substance which has so many valuable properties as these, of course
enters into a multiplicity of forms and uses.


This useful substance is produced by bees for the purpose of
building their comb, which consists of hexagonal cells made of wax;
which substance they secrete in scales, between the sections of
the abdomen, and draw out for building their beautiful cells. When
the honey is drained off from the comb, this is washed and melted,
it then constitutes the yellow wax of commerce, commonly called
“bee’s-wax.” To make this into the white wax it is boiled in water,
spread out into thin layers, and exposed to the light and air; this
is repeated until all the color has gone and the wax remains pure
and white. Pure wax is a soft-feeling substance, harder than tallow,
and not greasy to the touch; it is easily melted, and burns with a
clear white flame, hence its most general use--namely, that of making
candles; it is not soluble in water, but unites with oils and fats.


This substance, known also in commerce by the name of saltpetre, is
brought to this country from India, where in certain places, it forms
a sort of efflorescence on the soil; this is taken off together with
the surface of the soil, and mixed with water, which, after all the
earth has subsided holds the nitre in solution. The water is then
evaporated and the nitre crystallizes in six sided prisms.

On most parts of the continent nitre is manufactured from what are
called nitre beds, these consist of old mortar and other matters
containing lime, as the dry rubbish from old building, &c., together
with manure and other animal refuse. These beds are packed up and
kept from the rain for a certain time, when a small part of the lime
is found to be converted into nitrate of lime, this is the white
substance frequently seen to exude from newly built walls in the
form of crystals like snow. The whole mass of the nitre bed is next
washed; the water used for the first portions being poured over the
next, and so on till it is pretty rich in nitrate of lime, this is
then mixed with carbonate of potash, which decomposes the nitrate
of lime forming nitrate of potash, (nitre), and carbonate of lime,
(chalk); this last settles down and leaves the solution of nitre
clear, which is evaporated, and the nitre got pure.

Nitre is used for making gunpowder and fireworks of different kinds,
also for curing meat, especially pork and beef, to which it imparts a
red color; it is also used for making nitric acid, in the manufacture
of sulphuric acid, and as a medicine.


This substance, called by mineralogists “plumbago” and “graphite,”
is found in small quantities in various districts, and in a very
pure state in Cumberland. It is almost pure carbon, having but a
very slight admixture of iron; it is used to make blacklead pencils;
for coating the surface of iron, giving it a bright appearance and
preventing it from rusting; it is also used to prevent friction in
wooden machinery, and, mixed with tallow, as a lubricate for iron
machinery; blacklead, mixed with clay, is also used to make crucibles
for various purposes, these are especially adapted for melting
glasses and enamels, and are known in the trade as blue pots.


This substance is obtained from the oily matter contained in the head
of the spermaceti whale, _Phyceter Macrocephales_, which consists of
sperm oil and spermaceti. The latter crystallizes as the mass cools,
and is afterwards purified. It is white and crystalline, is used
chiefly for candles, or mixed with oil and wax, it forms an ointment.

                        MANUFACTURED PRODUCTS.


  Illustration: (‡ SUGAR CANE FIELD.)

Sugar, like starch, exists naturally formed in many vegetables, and
has to be separated from the various foreign matters with which it is
combined; the sugar used in this country is all extracted from the
juice of the sugar-cane, _Arundo Saccharifera_, but in France a great
portion is extracted from beet-root.

The raw, or Muscovado sugar as it is called, is a brownish compound
of small crystals of sugar held together by molasses or treacle,
which gives the sugar its color and peculiar moistness; when pure,
sugar is quite white and capable of crystallization, as may be seen
in sugar candy, which is crystallized sugar; sugar, if heated,
becomes converted into a dark brown liquid called burnt sugar
or “caramel,” this has an intensely rich color, but scarcely any
sweetness; it is used to color wines and spirits. The tendency of
sugar to be converted into caramel is very great, and the whole
difficulty of sugar refining depends upon this fact, for a solution
of sugar heated is constantly changing into this substance.

To obtain the sugar from the sugar cane, it is first crushed between
powerful rollers, by which all the juice is pressed out, this is
immediately clarified by boiling it strongly with a small quantity
of slaked lime, or it would speedily ferment, it is then put into
evaporating pans, in which it is evaporated till it is ready to
crystallize or granulate; from these pans it is ladled out into a
cooler, and from thence into wooden boxes where it granulates; the
next process is called “curing” this consists of draining the sugar
of its molasses, for this purpose hogsheads or large broad barrels
are arranged on a sloping floor, and having several holes at their
lower part with a piece of plantain leaf put into them; through these
holes the molasses runs out and is collected in a vessel for the
purpose. The best kinds of sugar are partly purified by a process
called “claying;” this consists in putting the sugar into conical
earthen jars, with a hole at the point which is turned downwards;
the top is piled up with a mass of wet clay, the moisture from which
slowly sinks down, carrying with it most of the coloring matter of
the sugar; the cone of sugar is afterwards dried, broken up, and each
part ground up separately, as they form sugars of different value,
the point being the brownest and the base of the cone the whitest.

Sugar is made from the beet root in the same way as from the cane,
the roots being rasped up into a pulp by a wheel with a notched edge
acting against them. Beet-root sugar crystallizes better than cane
sugar; otherwise it is exactly like it, and purifies as well.

                          ALCOHOL, OR SPIRIT.

Alcohol, commonly called spirits of wine, is procured from any liquid
which has undergone the vinous fermentation, such as wine and beer.
The spirit used in England is procured from a wash made by pouring
boiling water upon ground malt, as for making beer; this, when
fermented and distilled, produces a colorless spirit, which, by being
again distilled at a gentle heat, called rectifying, produces a very
strong spirit; but even this contains some considerable quantity of
water, and to get rid of this, for certain chemical purposes, it
is necessary to add carbonate of potash, quick lime, or some other
ingredient greedy of water, and again distil it. Brandy, rum, and
whiskey, are but various forms of spirit colored and flavored with
different substances. Brandy is distilled from wine; rum from the
molasses, a sort of treacle produced in sugar making; and whiskey
from malt. The strongest brandy does not contain more than one half
of its bulk of pure spirit.

Alcohol, when pure, is a very limpid, colorless fluid, lighter than
water, in the proportion that 792 bears to 1000. It is very volatile,
boiling at 172 deg. of Fahrenheit, and highly inflammable, it
dissolves resins and volatile oils, and is, therefore, used largely
in perfumery. The well known lavender water and eau de Cologne, are
solutions of volatile oils of various kinds in pretty strong alcohol,
and what are called spirit-varnishes, are most of them solutions of
various kinds of resin in strong alcohol, although some of them, as
mastic varnish, are made with spirit of turpentine, a volatile oil,
in place of alcohol.


Starch exists naturally in various kinds of grain, as wheat and
barley, and in the roots and tubers of many plants, as potatoes.
The process of extracting the starch, and separating it from the
other constituents of the seed or root, consists, essentially, of
crushing it, and wishing out the starch with cold water; the liquid
resulting from this mode of treatment is of a milky whiteness, and
deposits starch by sediment. This liquid is passed through five
sieves to separate the husks and skins, and when the starch has
settled, and the liquid fermented and become sour, it is drawn off;
it is allowed to become sour as the gluten of the grain is more
completely separated by so doing. The starch is repeatedly stirred,
allowed to settle, and the water drawn off, till it is quite pure;
the top of the starch is scraped to separate any slime adhering, and
the pure starch dug out with wooden shovels and put in a box lined
with linen, in which the moisture drains off; the cakes taken from
these boxes are cut up into squares, put upon bricks, and dried by a
gentle heat; the squares are then scraped clean and packed in paper
for sale, in these packages it breaks up into pieces, so that when
they are opened, the starch has that peculiar appearance so familiar,
and almost resembling six-sided columns. Arrow-root is the starch
obtained from a West Indian plant called _Maranta Arundinacea_.

Cassava and Tapioca are starches from the manioc, and Sago, from
the sago palm. Starch, under the microscope, appears in the form
of minute globules, and is quite insoluble in cold water, in which
it falls to the bottom, leaving the water at the upper part quite
clear; but water that is nearly boiling (that is to say at 160 deg.
of Fahrenheit’s thermometer, or above), breaks or dissolves the
granules, and the starch forms with it a sort of paste, this is
the liquid used for stiffening linen and other articles in domestic

The starch sold in this country is colored blueish by smalt or
indigo; but on the continent is used of its natural white color. If
starch be baked in an oven at the temperature of about 300 deg. it
becomes, to a great extent, soluble in cold water, forming what is
called “British gum,” this is largely used for calico printing and
other purposes; if boiled in water under great pressure, so that
the temperature can be raised to the same degree, it is also changed
into an adhesive sort of gum--this is the substance made use of
by the government authorities to spread over the backs of postage
and receipt stamps to make them adhere. The starch of grain during
germination, or growth, becomes converted into sugar; the same effect
can be produced by heating starch with diluted sulphuric acid.


  Illustration: (‡ SOAP MAKING.)

  Illustration: CUTTING SOAP.


This very useful article is produced by a combination of tallow or
oil with soda or potash; with soda, hard soap is formed; with potash,
soft soap. The yellow soap of commerce has also an addition of resin
or turpentine, and often palm oil, these give it its yellow color
and peculiar smell; pure white soap is made by boiling a solution of
soda with tallow or olive oil; ordinary soaps are generally made by
mixing a solution of the soda of commerce, (carbonate of soda) with
quick lime, this takes away the carbonic acid and makes the soda what
is called “caustic;” this solution is drawn off, and kitchen stuff,
tallow, turpentine, and sometimes palm oil, are added and boiled
together, until all is converted into soap, but a large quantity of
water remaining, it is necessary to separate the soap from this, for
this purpose salt is added until the water becomes so heavy that the
soap rises to the surface, whence it is removed into moulds or frames
and allowed to cool, when it is cut into bars for sale.

  Illustration: FILLING YELLOW SOAP.

  Illustration: MOTTLED SOAP FRAMES.

Soft soap is made in the same way, using potash instead of soda,
and, generally, a large quantity of train-oil. Castile soap is pure
soda soap, and the blueish or red mottled appearance is produced by
stirring in some sulphate of iron (green vitriol); when new it is of
a blueish color, but gets red by exposure to the air.

Oils and fats combine with the oxides of several of the metals, and
a combination of oxide of lead with olive oil forms a firm solid
substance, or plaister, which, with the addition of a little resin,
is used in surgery, and when spread upon linen or calico, forms the
common adhesive plaister.

Oils and fats all consist of a combination of organic acids,
(stearic, oleic, and margaric), with glycerine. When these fats
are boiled with soda, potash, or metallic oxides, a combination of
the oxide and fatty acid takes place, and this constitutes soap.
The glycerine is then set free, and, when purified, forms a sweet,
oily, colorless fluid, very similar to syrup, but not so sweet; it
has lately been used for several purposes, especially as a remedy
for chapped hands; a soap called “glycerine soap,” has lately been
used for the same purpose; it is a soap made without separating the


The above illustration represents an ingenious contrivance for the
purpose of cutting soap.


The Stearine Candles, so much in use of late, are made of what
chemists call “stearic acid.” It is extracted from tallow by the
following process:--The fat is first melted, then boiled with
water and quick lime; the lime forms a solid insoluble soap with
the stearic acid of the fat. This, when cold, is dug out of the
cistern and separated from the watery parts; it is then melted in
a wooden cistern by means of perforated iron pipes, through which
steam passes; the steam not only melts it, but condenses and runs
to the bottom, thoroughly washing it; it is again allowed to cool,
separated when it is mixed, stirred well with sulphuric acid and a
large quantity of water, and allowed to settle. This separates all
the lime, which settles to the bottom, leaving the stearine floating
on the top, from whence, when cold, it is taken and again well
washed with steam. The mass, after cooling, is cut into shavings by
a machine consisting of a wheel, having knives attached to its edge;
the shavings are put into hair-cloth bags and subjected to the most
powerful pressure by means of the hydraulic press; each hair-cloth
bag having a warm iron plate interposed between it and the next bag.
The oily parts of the mass are, by these means, all pressed out; the
remainder is again cut up and a second time pressed, leaving the pure
stearine, white and crystalline like spermaceti.


  Illustration: (‡ SODA FURNACE.)

The Soda of commerce is a carbonate of soda, and it is made from
sea salt. It is used in large quantities for the general purposes
of washing and cleansing, and very extensively in bleaching and
soap making. Soda occurs in two forms--soda ash and in crystals;
the first is the crude soda before crystallization. To make soda,
oil of vitriol (sulphuric acid) is poured, by degrees, on a layer
of sea salt, in a sort of funnel connected with a tall chimney; on
the addition of the vitriol, copious fumes of the hydrochloric acid
are given off; this is the acid formerly called spirit of salt. When
the furnace is heated and all the acid driven off, the dried residue
is taken out, it is sulphate of soda. It was formerly the custom to
allow the hydrochloric acid to pass up a very tall chimney so that
it may be dispersed in the air; but such an injurious effect was
produced on the surrounding vegetation that this could no longer be
allowed; the plan adopted was, to cause the acid to be condensed by
filling the chimney with coke, and causing water to trickle through
it; the acid vapours, coming into contact with this porous wet
surface, is condensed into a liquid, which runs down into a cistern
placed to receive it. The sulphate of soda, when taken from the
furnace and cooled, is next ground in a mill with rather more than
its weight of chalk, and about half its weight of coal. This mixture
is placed in a furnace and raised to a sufficient heat to partly
fuse it, during which time it is stirred about; the black mass which
results is called by the workmen “black ball.” It is taken out and
put into a cistern; water is then poured over it, and after stirring,
it is drained off and evaporated to a dry mass; this is impure soda.
It is mixed with coal-dust, again burnt, again washed and evaporated,
by this second process the soda ash is produced, which, being
dissolved, filtered and evaporated, produces large crystals of soda.
The large quantity of hydrochloric acid produced in the first part
of the process, is used in the of making chloric of lime. A few years
back, soda was got from the ashes of the plant called “salsola soda,”
and sold in the form of an impure carbonate called “barilla.”


  Illustration: WINE MAKING.

Wine is made from the juice of grapes. When the grapes are ripe, they
are gathered and at once put into a press, by which all the juice
is squeezed out, and the skins, stalks, and seeds left in the press.
This juice, which is called “must,” is allowed to ferment, which it
does of its own accord, in the countries where grapes most abound,
and at the season of the year when they are gathered, without the
addition of yeast or other ferment; in a few days nearly all the
sugary matter contained in the “must” becomes converted into spirit,
and it has now the pungent taste of wine; (if the wine is allowed
to ferment too long, it is very apt to become sour), the wine is now
put into casks and kept for a time, during which a slow fermentation
goes on, and that substance, which is called “tartar,” is deposited
in the form of a thick crust of an acidulus taste and brown color;
when purified till it is quite white, it forms the cream of tartar of
the druggists’ shop. The color of wine depends upon the color of the
grapes used, whether white or black.

Wine, at a general average, contains about 20 per cent. of spirit
or alcohol; when port wine is put into bottles, a slow fermentation
continues to go on, and a crust of tartar is deposited similar to
that described above, and it is the separation of this tartar which
causes port wine to improve by age.

What are called British wines, are liquids mostly made by fermenting
the juice of the fruits whose name they bear, as currant wine,
gooseberry wine, &c.; but as the climate of this country is not
favorable to the growth of grapes, or the spontaneous fermentation
of their juice, the grape wine of England is very inferior to the
foreign. The juice of any fruit required to make wine of, has to be
fermented artificially; this is generally done by making it slightly
warm, and floating on the surface a piece of bread soaked with
yeast; the wines thus produced are very apt to become sour, and it
is generally necessary to add brandy to preserve them. Many of the
British wines sold in London are made of an impure weak spirit called
“faints,” sweetened and flavored with various substances, as ginger,
orange-peel, &c. and sell for ginger or orange wine.



Vinegar is produced by fermenting and exposing to the air any liquor
which contains sugar, such as wine, infusion of malt, cyder, &c.; by
the addition of yeast, this sets up a fermentation, by means of which
the sugar in any of these liquors is converted, first into spirit,
and afterwards into vinegar; this contains a certain quantity of
acetic acid, which makes the vinegar sour. In warm countries, vinegar
is made by simply exposing the poorer kinds of wine to the sun’s
rays, when they ferment and become sour. In England, all the vinegar
produced is made by fermenting wort made of malt, this is fermented
for three or four days, and is then put into casks, with the bunghole
left open for several weeks, or until it is thoroughly sour. In
ordinary vinegar, there is about five or six parts only in the
hundred of real acetic acid, but this acid, when pure, is so strong
as to blister the skin when dropped on it; it is often extracted from
vinegar for chemical purposes, and to smell too; for when scented,
it constitutes aromatic vinegar. Vinegar, besides acid and water,
contains a little unchanged spirit, much coloring matter, and some

  Illustration: BOILER OR COPPER.

  Illustration: COOLING APPARATUS.

Vinegar is chiefly used as a condiment, and for making pickles, and
has considerable powers of preserving vegetable or animal substances;
if common vinegar be distilled, a weak colorless acid comes over,
commonly known as white or distilled vinegar. It is a common thing
to sprinkle a sick room with vinegar, under the impression that it
has disinfecting properties, but this is an error; although the
odour is very refreshing. Vinegar has, of late, been made by means
of the vinegar plant, which is a fungus, causing a species of slow
fermentation, and converting the sugar or treacle used into acetic

  Illustration: FILLING CASKS.

The heading of this section gives a good idea of the large scale
on which vinegar is made; being an accurate representation of the
extensive works of Messrs. Beaufoy & Co. at Lambeth.

                               COAL GAS.

  Illustration: (‡ COAL GAS DISTILLERY.)

  Illustration: SECTION OF RETORT.

  Illustration: FIG. 1. (‡ RETORT FURNACE.)

  Illustration: FIG. 2. (‡ RECEIVER TUBE.)

  Illustration: FIG. 3. (‡ CONDENSER.)

  Illustration: FIG. 4. (‡ RESERVOIR.)

  Illustration: FIG. 5. (‡ GASOMETER.)

Gas, for lighting, is made from coal, by subjecting it to heat in
iron tubes and collecting and purifying the gas which is produced;
the following is a summary of the process:--The vessels in which the
coal is put are called “retorts,” they are six or seven feet long,
one-and-a-half broad, and one high, generally fitted up six to a
furnace, in such a way that the flame may entirely surround them (see
fig. 1); from each retort an iron tube passes, and these all dip into
a large horizontal tube, reaching nearly to its bottom (fig. 2), this
is the receiver for all the gas from the retorts; it is connected
with a pit for tar and ammonical liquor, which copiously condenses
from the hot newly-formed gas.

The object of causing the tubes to dip nearly to the bottom of the
receiver is, that the fluid in it may close the end of each tube, and
so prevent the gas returning when any of the retorts are opened for a
fresh supply of coal; from the receiver, the gas passes by tubes bent
up and down inside of a great cistern of water (fig. 3) kept cold by
a constant change of its contents; this is the condenser, it causes
the separation of all the tar and ammonia that remain; but the gas is
still contaminated with sulphur, and this is got rid of by causing it
to pass into a broad iron cylinder perforated with holes and dipping
into a reservoir of lime and water mixed together and stirred about
with a machine contrived for the purpose; the gas enters this lime
mixture in hundreds of bubbles through the holes, and the sulphur
the gas contains is attracted by the lime with which it unites.

The gas now rises to the top of this reservoir, which is, of course,
air tight, and from thence passes for use to the gasometer; this is
the store-house where the gas is kept to supply the service pipes
_b_, _c_, under the streets. The gasometer is made of plates of iron
rivetted together. The lower part of this cylinder (see figs. 4 and
5) is received into a circular deep channel cut in the ground (_b b_,
fig. 5) and filled with water, so that the gasometer _d_, which is
suspended and balanced by means of the chains and weights _e e_, may
be raised or depressed at pleasure.

When the gasometer is quite down, the inside of its top, _a_, rests
on the ground; when the gas enters, it raises it up till the lower
edge is but a few inches below the water, and is prevented from
rising higher by frames which support it; when some of the weights,
_d d_, are removed, the huge cylinder, _a_, slowly sinks down and
forces the gas through the tubes, _c c_, to be burnt by thousands of
consumers. About four cubic feet of gas is produced from every pound
of coal used; the gas is lighter than air in the proportion of 650
to 1000, and it is owing to this lightness that balloons ascend when
filled with it, not from any peculiar power it has of ascending, but
because the air, being heavier, presses downwards and forces it up.
When gas is mixed with air it becomes very explosive, and when any
escape is suspected in a room, the windows of the room should be
opened _at the top_, and the door also opened, before any light is
introduced; a few minutes will then suffice to ensure safety.

One ton of good coal produces--

           1 Chaldron of Coke, weighing             1494 lbs.
          12 Gallons of Tar        ”                 135  ”
          12 Gallons Ammoniacal liquor               100  ”
        9500 Cubic feet of Gas, weighing             291  ”
             Loss (chiefly water)   ”                220  ”
                                                    2240 lbs.

A cubic foot of gas weighs 514 and a-half grains.


  Illustration: (‡ TAR FACTORY.)

Tar is one of the results left in the distillation both of wood and
coal; in places where wood is plentiful and tar in request, it is
produced by burning the wood for that purpose; and in some of the
pits in which charcoal is produced, an arrangement is made to collect
the tar also. Coal-tar and wood-tar are different in some respects,
and are both distilled to procure the napthas which bear the
respective names. From wood-tar, creasöte is also extracted, and it
is this substance which gives the peculiar tarry flavor to provisions
cured or preserved by being smoked over wood fires, such as ham,
bacon, or herrings. Tar is used as a sort of paint for covering
wood-work and cordage, when much exposed to wet, which it resists
better than anything else at the same price; but the tar chiefly used
for these purposes, is that produced by burning fir or deal wood and
condensing the tar in a pit below the stack of wood, it is called
Stockholm tar, as it comes chiefly from that place.

                     ACETIC ACID, OR WOOD VINEGAR.

Acetic acid forms a considerable article of commerce. It is not only
used in medicine and the culinary art, but is extensively employed
in forming acetate of iron for dyeing and calico printing. To
prepare it, large iron cylinders, about eight feet long and three in
diameter, are embedded in brickwork in a row, and in such a manner
that furnaces placed below may heat them red-hot; these cylinders
have a tube leading from each into a main tube, where the liquid
products from each cylinder are received for condensation; the other
end of the cylinder has a plate of iron fitting closely to it. The
cylinders are filled with logs of wood, either oak, beech, birch, or
ash, the door is closely fastened and the joints smeared with clay;
the fires are now lighted and kept up all day, till the cylinders
are red-hot; at night they are allowed to cool. About seven or eight
hundred weight of wood is put into each cylinder. In the morning,
the charcoal, into which the wood is now converted, is withdrawn,
and a fresh charge supplied; from this charge of wood about thirty
or forty gallons of liquid is condensed in the main tube from each
cylinder, the remainder being charcoal and gases which pass off;
the liquid is acid, brown, and very offensive, and contains acetic
acid, tar, and several other ingredients, among which may be named
creasote; it is from this source all the creasote, so famous for the
cure of toothache, is obtained. The next process is to purify this
liquid; it is first distilled, and this separates much tar, it is
then mixed with lime, evaporated to dryness, and heated to expel the
remaining tar and other impurities; it is next mixed with sulphate
of soda and water and the whole stirred together, the soda, now in
unison with the acetic acid, is washed out from the lime and strained
quite clear; it is afterwards evaporated till it crystallizes, and
vitriol (sulphuric acid) then added; finally, the acetic acid is
distilled over, and the acid left in unison with the soda, forming
sulphate of soda, to be used in a similar process for the next batch
of acid; the acetic acid is now quite colorless, transparent, and
very sour, possessing a fragrant and agreeable smell. This acid is
not pure acetic acid, but contains a considerable quantity of water.
The acetic acid of commerce, mixed with seven times its bulk of
water, forms an acid of about the strength of malt vinegar, perfectly
wholesome, and, to many, more agreeable as a condiment.

Pure acetic acid may be made by mixing dry acetate of potash with oil
of vitriol in a retort, and distilling the acetic acid into a very
cold receiver; this, when flavored with various volatile oils, forms
the aromatic vinegar sold by druggists. It is a very strong acid, and
if applied to the skin will quickly blister it.


Varnishes are solutions of various resinous substances that will
dry with a bright surface on exposure to the air. They are used to
protect different substances from the action of the atmosphere, and
to give them an elegant bright surface; woods and painted work are
the chief things varnished; metals are coated with a kind of varnish
called “lacquer,” this is to prevent the bright surface of the metal
from being dulled by the air or damp, and to give an artificial
appearance to some metals; tin, for instance, if lacquered with
yellow lacquer, acquires somewhat the appearance of brass. Mastic
varnish is the varnish generally used for paper and pictures; it is
made by dissolving gum mastic in oil of turpentine. Copal varnish
is that most generally used for carriages and wood, it is made by
adding boiled linseed oil to melted copal, and afterwards thinning it
with oil of turpentine. A common varnish, fit for many purposes, may
be made by adding common resin to oil of turpentine, and warming it
till dissolved. Lacquers are made by dissolving shellac and various
other gums in strong spirits of wine, and in some cases coloring it,
either yellow, by means of gamboge, or red, by dragon’s blood (a kind
of resin). French polish is nearly the same as lacquer, but the mode
of applying it is different; the grain of the wood is first filled
up by means of drying oil and chalk rubbed in, when this becomes
thoroughly dry, a rubber of flannel is covered by a piece or two of
clean old linen, and some of the polish put on it, just enough to
moisten it, and then a little oil, this is slowly rubbed round and
round, the varnish adhering to the wood, and the oil preventing the
rubber sticking to it, and at the same time, polishing the surface of
the varnish as it dries. This process requires a good deal of art to
produce a perfect surface. Old work, before being varnished with any
varnish that contains oil (as copal varnish), should be thoroughly
freed from grease or greasy matter, or the varnish will never dry.
Good varnish should dry in twenty-four hours so that dust will not
adhere to it.



Oils, whether animal or vegetable, have pretty much the same
properties. The vegetable oils are got by crushing and pressing
certain seeds, as linseed; the animal oils are obtained chiefly
from the whale and seal tribe, or from fish, as the cod and sturgeon.
They are viscid and of a pale yellow color, lighter than water, and
therefore float upon it, and are very combustible. Oils are used for
a multiplicity of purposes: for burning in lamps, for making paints
and varnishes, preventing the friction of machinery, in making soap,
and numerous other processes. Oils are generally divided into fixed
and volatile oils; as an example of the first, linseed oil may be
selected; of the last, oil of lavender.

Some of the fixed oils are called drying oils, and it is this
kind that are used for varnish making; as linseed oil possesses
the properties of this class very perfectly, it may serve as a
description of all. Linseed oil has the power of drying when spread
out in a thin layer, becoming of a resinous consistence like varnish,
and upon this quality depends the drying powers of paint, for the
other non-drying oils, as olive oil, may be exposed to the air for
months without drying at all; the drying powers of linseed oil are
greatly increased by boiling it with litharge (oxide of lead). This
forms the drying or boiled oil used in painting, and is employed
in making varnishes, printers’ ink, and for other purposes. Oiled
silk is formed by brushing silk over with this oil and exposing it
to the air till it is dry; this oiled silk is the same that is used
for sponge-bags and bathing-caps. Of the non-drying oils, the chief
are those used for burning in lamps, as sperm oil. Salad oil is
expressed from the olive, and is called olive oil. Of the volatile
oils, the most useful is oil of turpentine, commonly called spirit of
turpentine; it is got by distilling common turpentine (the concrete
juice of trees of the fir and pine tribe), it has a strong odour,
is very inflammable, and is volatile, that is to say, if spread out,
will evaporate, leaving nothing behind; this oil is capable of mixing
with drying oils, and it not only increases their drying powers, but,
by thinning them, makes them more applicable to many purposes. Oil
of turpentine dissolves resin and many resinous substances, and forms
useful varnishes with them. Mastic varnish is mastic dissolved in oil
of turpentine; it is the varnish always used for varnishing pictures.
Many of the volatile oils are used as perfumes, and the odour of
plants and flowers depends upon the volatile oil which evaporates
from them, as lavender, cloves, and others. Peppermint water, dill
water, and cinnamon water are produced by distilling water mixed with
the substances, and is simply water containing a small quantity of
the volatile oil of these substances in solution; but eau-de-Cologne
and lavender water, although called “waters,” are mixtures of
volatile oils and spirit of wine, and contain no more water than
is comprehended in the spirit used.


Inks are fluids of various kinds suitable for writing with pens.
The chief inks in use are black, blue, and red writing inks, and
indelible or marking ink, intended for marking linen which has to
be washed. Indian ink is not used as an ink, properly so called.
All the black inks in use are composed of green vitriol (sulphate
of iron), in union with some astringent vegetable matter, the best
is the gall-nut, although, for cheapness, logwood and oak bark have
each been used. An excellent black ink may be made by putting into
a gallon stone bottle twelve ounces of bruised galls, six ounces of
green vitriol, and six of common gum, and filling up the bottle with
rain water, this should be kept three or four weeks before using,
shaking the bottle from time to time. Blue ink has lately been much
used, it is made by dissolving newly-formed Prussian blue in a
solution of oxalic acid. To make it, dissolve some yellow prussiate
of potash in water in one vessel, and some sulphate of iron in
another, adding a few drops of nitric acid to the sulphate of iron;
now mix the two liquids, and a magnificent blue color will appear in
the form of a light sediment; this is to be put upon a paper filter,
and well washed by pouring over it warm water and allowing it to run
through; a warm solution of oxalic acid should now be mixed with it,
and the Prussian blue will dissolve into a bright blue ink.

Red ink is made by boiling chips or raspings of Brazil wood in
vinegar, and adding a little alum and gum; it keeps well, and is
of a good color. A red ink of more beautiful appearance, but not so
durable, may be made by dissolving a few grains of carmine in two
or three tea-spoonfuls of spirit of hartshorn.

Marking ink is made by dissolving nitrate of silver in water, and
then adding some solution of ammonia, a little gum water, and some
Indian ink to color it. Printers’ ink is made by grinding drying oil
with lamp-black.


  Illustration: (‡ CHARCOAL OVENS.)

Charcoal is made by burning wood in such a manner that but little
air shall be admitted during the operation, that is to say, only
sufficient to keep up the combustion of the more easily destroyed
parts of the wood, leaving a black residue called charcoal. The best
charcoal is made when the wood is quite excluded from the air, as
in making acetic acid, but where large quantities of charcoal are
used for common fuel, as in France, of course this process is too
expensive. The usual way is to pile up billets of wood and cover
the whole with turf; when fired, the wood consumes gradually and
the charcoal is left behind. Charcoal is light and porous, and of
a shining black color; it weighs about one quarter as much as the
wood used, and burns without flame or smoke, giving out a strong
heat. When charcoal burns, it combines with part of the air, and is
converted into a gas called carbonic acid, which, although invisible,
is much heavier than air, and is a deadly poison; it is therefore
necessary, where charcoal is burning, to always have some opening
at the _bottom_ of the room. Many fatal accidents have arisen from
people sleeping in a small room with a pot of burning charcoal, and
no outlet for the poisonous vapour but the chimney, up which it
will not pass on account of its weight. Charcoal enters into the
composition of gunpowder, and is used for several other purposes.
It is an excellent sweetener of foul water, and a few pieces should
always be kept in the top of the filter when the water has any
bad odour, or in the cistern or butt, where a filter is not used;
powdered charcoal has also the power of taking away the color of many
liquids, as well as the bad smell; vinegar, if warmed with powdered
charcoal, and then strained, will be almost colorless. Water butts
are sometimes burnt or charred inside, that the water may be the
better preserved in them.

Chemically considered, charcoal consists of carbon with a certain
amount of earthy matter (the ashes or earthy part of the wood
from which it was made), but these ashes may be easily removed
by maceration in an acid; the charcoal then remains unaltered in
appearance and consists of carbon, but its structure is exceedingly


In various processes, cements of different descriptions are required
for a variety of purposes. The common cement used in building, which
is called mortar, is made of sand and quicklime mixed with water.
Roman and Portland cements consist of certain kinds of clay burnt
and ground. Plaster of Paris forms a useful cement, it is to be
mixed with water to the consistence of cream, and it hardens in a
few minutes. Glue is an invaluable cement for wood and many other
purposes, it also joins any kind of broken glass or china that will
not have to be subjected to much wetting. Shellac dissolved in spirit
is a useful cement; and isinglass, dissolved in weak spirit, and
having some gum ammonicum added to it, forms the “diamond cement” for
uniting china. China and glass which require to be much wetted, are
best united by being made very hot and having the broken edges rubbed
with a piece of shellac, this melts on them, and forms, while hot,
a sort of cement; if they be immediately applied and pressed firmly
and accurately together, and then permitted slowly to cool, they will
unite so as to be almost as strong as before breaking.


  Illustration: (‡ COKE OVENS.)

Coke is produced by the partial burning of coal, in the same way
that charcoal is from wood. The great source of coke is the gas
manufactory, where it is sold in large quantities, being the result
left in the retorts after the gas has all been driven off; but the
consumption of coke by locomotive engines, &c., where coal would
not be admissible on account of the smoke produced, has become so
great that it is necessary to burn coals for its production; this
is done by a range of ovens fitted up for that purpose, having iron
doors which can be closed to any extent required so as to regulate
the draught of air. Dr. Ure gives the following in his account of
the coke ovens belonging to the London and North Western Railway
Company:--“An excellent range of furnaces for making a superior
article of coke for the service of the locomotive engines of the
London and Birmingham Railway Company, has been erected at the Camden
Town Station, consisting of eighteen ovens, in two lines, the whole
discharging their products of combustion into a horizontal flue
which terminates in a chimney-stalk one hundred and fifteen feet
high. Each alternate oven is charged, between eight and ten o’clock
every morning, with three-and-a-hall tons of good coals, a wisp of
straw is thrown in on the top of the heap, which takes fire by the
radiation from the dome, which is in a state of dull ignition from
the preceding operation, and inflames the smoke then rising from the
surface by the reaction of the hot sides and bottom upon the body of
the fuel, in this way the smoke is consumed at the very commencement
of the process, when it would otherwise be most abundant. The coke
being perfectly freed from all fuliginous and volatile matters by
a calcination of upwards of forty hours, is cooled down to moderate
ignition by sliding in the dampers and sliding up the doors, which
had been partially closed during the latter part of the process.
It is now observed to form prismatic concretions, somewhat like a
columnar mass of basalt. These are loosened by means of iron bars,
lifted out upon shovels furnished with long iron shanks, which are
poised upon swung chains with hooked ends, and the lumps are thrown
upon the pavement, to be extinguished by sprinkling water upon them
from the rose of a watering can, or they may be transferred into a
large chest of sheet iron set on wheels, and then covered up. Good
coals, thus treated, yield eighty per cent. of an excellent, compact,
glistening coke, weighing fourteen cwt. per chaldron.”

  Illustration: (‡ OVEN TOOLS.)

Coke burns without smoke, and not so rapidly by far as charcoal, it
is, moreover, considerably cheaper than that article is.


Gunpowder is a mixture of nitre, sulphur, and charcoal, and the more
completely they are mixed, the more finely ground, and the purer they
are, the more perfect will be the gunpowder. The proportions used of
these ingredients differ slightly in different powder mills; but the
average is about seventy-four parts nitre, ten sulphur, and fourteen
charcoal, by weight; the sulphur and nitre can easily be completely
purified, but the charcoal differs very much in almost every
specimen, and charcoal that has been burnt long ago and exposed to
the air and moisture is almost unfit for the purpose, that charcoal
which has the least ash when burnt is found to be the best, and the
charcoal which has been made in iron cylinders, is better than that
made in the usual way, when each of the ingredients are separately
powdered and sifted through a kind of sieve of silk called a bolting
machine (such as is used in dressing flour), they are mixed in the
proper proportions and taken to the mill, where they are moistened
with water and ground to a smooth paste, this is pressed hard and
then broken up into pieces which are put into a copper sieve, the
bottom of which is perforated with small hole; a flat wooden ball is
put into each sieve with the pieces of damp powder, and the sieves
are all put into a circular motion by machinery, this causes the
wooden ball to turn round in the sieve and so rub the damp powder
through the little holes; it is collected below in small grains or
“corns,” this process is called “corning,” this is now dried, and
then put into a “reel” (a sort of barrel which turns round) and
the grains, by rubbing against each other, become smoothed on the
surface; the dust is now removed by a sieve, too fine to let the
grains through; the powder is now fit for use.

Gunpowder was first known in England about five hundred years ago.
It is not only used to discharge firearms, but in the more peaceful
occupations of quarrying stone, mining, and to get rid of rocks both
below and above water; these processes are called “blasting.”

                              GUN COTTON.

To prepare gun cotton, make a mixture of three parts sulphuric acid
and one part nitric acid; when this has cooled (for it becomes hot
on mixing), put into it some cotton wool, and let it be stirred
about with a glass rod, then taken out, and all the superfluous acid
strained from it; it is then to be covered up for an hour or so. It
should now be thoroughly washed in cold water, so that all the acid
be removed; to ensure this completely, let it be afterwards washed
in a very weak solution of potash, and then dried by a very gentle
heat, produced by either steam or hot water; when dry, soak it in
a solution of nitre and dry it again. It is now so explosive that
great care is required in its management, being about three times
as explosive as gunpowder.


This substance, since the general use of lucifer-matches, has become
an important article of manufacture; whereas, but a few years ago,
it was a mere chemical curiosity. It is prepared by mixing bone ashes
with sulphuric acid, straining off the liquid part, and evaporating
it to a syrupy consistence; with this, about a quarter of its weight
of powdered charcoal is mixed, and the whole stirred and evaporated
to a dry powder; this is put into earthenware retorts, which are
connected by copper tubes to receivers filled with water; the retorts
are raised to a white heat and maintained at this high temperature
as long as any phosphorous passes into the receivers, the water in
which is kept warm, so that the phosphorous melts and runs to the
bottom, from whence it is taken and strained through chamois leather
bags, under warm water, and then cast in glass tubes into sticks.
Phosphorous is of a whitish color, like wax, is easily melted,
readily takes fire even by slight friction, and, in the air, gives
off fumes which in the dark appear luminous. It is chiefly used in
the manufacture of lucifer matches, and, mixed with flour, butter, or
sugar, is used to poison rats, mice, and other vermin, under the name
of “phosphorous paste.” Phosphorous is poison, and most dangerous
stuff to handle, minute particles often getting under the nails and
causing painful sores.

                              WHITE LEAD.

  Illustration: WHITE LEAD BED.

  Illustration: FIG. 1. (‡ LEAD GRATE.)

White Lead is used in very large quantities by painters, not only as
white paint, but to mix with and qualify every shade of color, and to
give body to them. It is prepared by different processes, and several
patents have been taken out for improvements in its manufacture; but
the most usual, and, perhaps, the best process, is as follows:--A
layer of spent tan (from the tanner’s pits) is spread out three or
four feet thick, and in it a number of earthen pots are arranged
in rows, each partly filled with a mixture of vinegar, water, and
treacle, or some other acid fermenting liquid, each of these pots is
covered with a piece of lead made in the form of a grating (fig. 1),
and over all these a flooring of boards, and then again a layer of
tan, pots covered with lead, and boards, two or three times repeated;
this is called a white lead bed, and is left for several weeks; the
tan ferments and gets warm, causing the acid vapours to rise and
corrode the lead, at the same time giving off carbonic acid. At the
end of about three months the leaden covers are found to have become
completely changed into a white shining substance (carbonate and
oxide of lead), this is washed from impurities and ground in a mill,
under water, to a fine powder. It is the white lead of commerce; but
what is familiarly called white lead, is this substance ground up
with linseed oil into a thick paste so as to be ready for the use
of painters.

White lead is a very poisonous substance, and produces the disease
called painters’ colic, when taken into the system in minute
quantities and for a long time, so that all who have much to do
with this dangerous substance, as house-painters and artists, should
be extremely careful that their hands are well washed frequently,
and especially before going to meals. Cisterns of lead, used for
containing water, very soon become coated inside with a thin film
of sulphate of lead, this prevents the water from acting further
on the lead, and the water from such cisterns is never found to be
poisonous; but, if distilled water were used, it would act rapidly on
the lead, corroding it, and causing a deposit in the water of white
lead, which would render such water dangerous in the extreme.

                            PRUSSIAN BLUE.

This beautiful blue color is made by mixing solutions of sulphate
of iron (green vitriol) and prussiate of potash together, when the
Prussian blue falls in the form of a precipitate, or moist powder,
of a pale greenish color, but which, by exposure to the air and
the addition of a little nitric acid, becomes intensely blue; but
the Prussian blue of commerce is never pure, for the solution of
prussiate of potash is used as it comes from the factory, before
being crystallized, and contains carbonate of potash, to get rid
of which, alum is added, and the result is, the formation of a
considerable amount of alumina, which is a white earth produced from
the alum, and which falls down in the precipitate mixed with the
Prussian blue, which is thereby increased in bulk and but little
injured in color; when a larger quantity of this alumina is purposely
produced, the result is a blue of a rather less intense color,
called “Antwerp blue.” The chemical name for pure Prussian blue is
percyanide of iron. Chinese blue is this substance in its purest

                         PRUSSIATE OF POTASH.

Prussiate of potash is the commercial name given to what chemists
call “ferrocyanide of potassium,” it is used largely for the
production of Prussian blue, and also in the art of electro-plating,
which, of late, has greatly increased the demand for its manufacture,
and many patents have been taken out for various modifications in the
form of production, the result, however, is the same, and it occurs
in commerce in magnificent crystals of a square form, with bevelled
edges, and of a yellow color; there is, however, another kind called
the “red prussiate,” which is much used in the process of calico
printing. Prussiate of potash is made by heating together carbonate
of potash, scraps of iron, and any kind of animal refuse, as blood,
horns and hoofs, clippings of skin or old woollen rags; these are
stirred together, and the heat raised, till they form a sort of paste
of a black color, which, when cold, is thrown into water and all the
soluble parts washed out; this fluid is filtered till quite clear,
evaporated, and set aside that crystals may form; these are dissolved
and again crystallized. The red prussiate is made by passing chlorine
over the yellow prussiate in powder dissolving and crystallizing.

The most deadly of all poisons, prussic or hydrocyanic acid, is
obtained from the ferrocyanide of potassium, or prussiate of potash,
by adding diluted sulphuric acid and distilling the vapour into an
ice-cold receiver. This experiment should never be made by any but
those well conversant with such matters.

                           SULPHATE OF IRON.

Also called “Green Vitriol” and “Green Copperas,” is a combination
of sulphuric acid and oxide of iron, and may be made by putting iron
filings or pieces of iron into a mixture of sulphuric acid and water,
and when all action has ceased evaporating the liquid, and setting it
by till crystals form--these are of a pale green color. The sulphate
of iron of commerce is formed by exposing the iron pyrites found in
the coal districts to the air till it falls to powder; water is then
poured over this substance, and the fluid collected and evaporated.
Sulphate of iron is used chiefly to form the black dye so much in
demand to dye cloth, and also in making writing ink.

                          SULPHATE OF COPPER.

This substance is also known by the names, “Blue Vitriol” and “Blue
Stone.” It is a combination of sulphuric acid with oxide of copper,
and may be made by uniting those substances; but what is used on a
large scale for commercial purposes is obtained from the waters which
flow into copper mines where “copper pyrites” abound; this water
is evaporated, and the sulphate of copper crystallizes. Sulphate of
copper has of late been in great demand for the electro-deposition
of copper.

                           CHLORIDE OF LIME.

Chloride of lime or “bleaching-powder” is made for the purposes of
bleaching calicoes, linens, &c., and also for purifying foul air,
which it does by giving out chlorine, a gas capable of uniting with
and changing the injurious properties of foul air (which generally
contains some combination of sulphur and hydrogen). Chloride of lime
is made on the large scale by mixing hydrochloric acid with black
oxide of manganese. This mixture gives off chlorine. This is made
to pass over a layer of slaked lime, which absorbs it greedily, and
becomes converted into the bleaching powder. The hydrochloric acid
used is a product resulting from the manufacture of soda, and was
formerly wasted; it is now used in large quantities for the process
above described. “Burnett’s Disinfecting Fluid” is a solution
of chloride of zinc. It is made by dissolving scraps of zinc in
hydrochloric acid; hydrogen gas is given off, with effervescence, and
the liquid remaining is the solution of chloride of zinc, which acts
like chloride of lime, by giving off chlorine; for the chloride is
slowly decomposed by the air, the oxygen of which takes the place of
the chlorine, uniting with the zinc to form oxide of zinc, while the
chlorine is set free.

                            SULPHURIC ACID.

This was formerly called “Oil of Vitriol,” because it has an oily
consistence, and was originally distilled from green vitriol.
Sulphuric acid is one of the most useful chemical agents known;
scarcely a process in chemical manufacture can be performed without
its assistance. Sulphuric acid is colorless, and very heavy, being
nearly double that of water (the proportion is 1·842, while water is
1,000); it is powerfully acid, even when largely diluted with water,
and during this mixture with water gives out great heat, a mixture
of equal parts will become hotter than boiling water; if it be mixed,
however, with snow instead of water, it becomes extremely cold (below

Sulphuric acid is made by burning sulphur in a furnace, and causing
the vapours to pass into a large chamber lined with lead, and having
some water at the bottom; into this chamber the vapours arising from
nitre mixed with sulphuric acid are also admitted, together with
air and a jet of steam. These arrangements require to be properly
and nicely regulated, and it was only by study of the complicated
changes which take place between these gases (sulphurous acid, nitric
oxide, and atmospheric air), that this arrangement has been devised
and adopted, a great part of the product having been formerly wasted
in a more clumsy mode of preparation. The sulphuric acid condensed
in the water at the bottom of the leaden chamber is too weak for
use, and is concentrated by evaporating the water from it; for this
purpose it is placed in shallow leaden pans placed on the bars of a
furnace, and finally distilled in glass retorts, or retorts of iron
lined with platinum. Sulphuric acid has such a powerful attraction
for water, that an open vessel half-full of strong acid placed in
a damp situation will attract enough water from the atmosphere to
cause it to be quite full before long. This power of attracting water
has been taken advantage of to procure ice in those places where it
is not to be had naturally, as India, &c. If a vessel of water be
placed under the receiver of an air-pump, and the receiver exhausted
of air, the vapour of the water will speedily fill it, taking the
place of the air, and so stop any further evaporation; but if another
vessel containing some sulphuric acid be placed also in the receiver,
the acid will absorb the vapour of water as fast as it is formed,
and this rapid evaporation continuing produces such cold, that the
remaining water is shortly frozen. Iron and zinc dissolve rapidly
in diluted sulphuric acid, giving off abundance of hydrogen gas, and
this was the way this gas was formerly produced for the inflation of
balloons, but the common coal-gas being easily obtainable in almost
any quantity in all towns, it is now used for that purpose instead
of hydrogen gas. Sulphuric acid (chemically considered) consists
of 1 equivalent of sulphur with 3 of oxygen, and 1 of water. Pure
sulphuric acid (without water) is in the form of fine crystals, much
resembling snow, which, on exposure to air containing the slightest
quantity of moisture, absorbs it, and becomes converted into the
ordinary sulphuric acid.

If this acid (even when greatly diluted) be spilt on cotton or
linen it destroys it, producing a hole; this is owing to the acid
converting the fibre into sugar. A proposition was once made to
produce sugar from this source, but linen and cotton rags are in
too great demand for paper-making to allow of its being done.


  Illustration: TAN-YARD AND PITS.

Tanning is the name given to the process for converting the skins
of animals into leather, by combining them with a substance called
“Tannin.” This tannin exists in many vegetable substances, such
as oak-bark, gall-nuts, catechu, sumach, &c.: all of these, and
many more, are used for tanning, but, on account of its cheapness,
oak-bark is the usual substance employed. It is tannin which gives
the quality of astringency to many vegetables, and this very taste of
astringency is produced by a partial combination of the tannin with
the surface of the mouth.

  Illustration: UNHAIRING THE SKIN.

The skins (called “hides” or “pelts”) are first freed from all loose
pieces of flesh, fat, or skin; the hair is then removed by soaking
them in lime and water. The skins are then laid in the “tan-pit”
between layers of crushed oak-bark until the pit is nearly full;
water is then pumped in, and the whole is allowed to remain for
several weeks or months (according to the thickness of the skin),
during which time, however, the skins are changed in position by
removing them from one pit to another with fresh bark in it, so that
those taken from the top of the first are placed at the bottom of
the next; and this is done from time to time, in order that all may
receive the same pressure and strength of tan-liquor. Very thick
hides take a year to tan perfectly in this way, and consequently many
processes have been tried to quicken the operation; but the leather
made most slowly seems to wear the best, and consequently fetches the
higher prices.

  Illustration: DRYING ROOMS.

Skins which are thin, and to be used for fancy work, and for
book-binding and glove-making, are either tanned with “sumach,” or
with alum and salt made into a paste with flour and yolk of eggs;
this is put into a tub, and the mixture and skins worked together
with the hands till they are thoroughly united.

  Illustration: SUMACH TAN TUBS.

Besides boots and shoes, leather is used for the harness of horses,
covers for seats, gloves, and innumerable other purposes.

  Illustration: SPLITTING MACHINE.

For some purposes the leather is required to be very thin, and of
exactly one thickness. This is obtained by the process of splitting,
for which a machine is used whose exactness is such, that one slice
is taken from the inner part of the whole skin, reducing it in
thickness without cutting a hole in any part. The skin is stretched
tightly round a roller, which slowly revolves against a straight
knife-edge, fixed at a certain distance from it, according to the
thickness of the skin, and which is passed by the machine backwards
and forwards, cutting the skin a little further each time.

                            GLUE AND SIZE.

Glue is made from the clippings of hides or any other refuse of
skins, horn shavings, bones, &c. All these substances are piled up
in a boiler having a second bottom within, perforated with holes,
and kept from the true bottom by short feet; this arrangement is
to prevent the substances boiled from burning at the bottom of the
boiler. After many hours’ boiling the liquid is tested, and if it
“sets” into a sort of jelly readily, the liquor is drawn off into
another boiler, where it is kept warm, that it may not set till used.
From this boiler it is strained through flannel into square wooden
boxes, having ridges at the bottom dividing them into squares (to
direct the workmen where to cut the glue when cold); these boxes are
set apart, and when the contents have become cold and set into a
firm jelly, a knife is passed between the sides of the box and its
contents, and the glue turned out in a large solid square. This is
now cut by means of a wire with a handle at each end into squares
of about eight inches each way and an inch thick; these are now
placed on nets made of cord fixed in frames one above another in a
“drying-room,” which is open to the air at the sides, and able to
be closed up in case of wet weather. In this room the glue dries up,
shrinks, and hardens, until it is quite brittle; the marks of the net
can be seen on every square of glue.

Size is the same as glue, but instead of being dried it is put into
small barrels. Two qualities of size are made, single and double
size. It is much used by whitewashers, paper-hangers, and others,
but for any purpose requiring good size, it may be made by soaking
isinglass or gelatine in cold water till it is softened, and then
standing the vessel in boiling water till it is dissolved; this
produces a jelly nearly pure. A cheaper kind of size, almost as pure,
may be made by boiling clippings of clean parchment till they are
dissolved, and straining off the solution. Gelatine is the same as
glue, but made of materials that are clean and fresh. Isinglass is
the “sound” or swimming-bladder of the sturgeon, cleaned, dried,
and cut up into fine shreds.


Parchment is prepared from the skins of sheep, goats, calves, and
asses. Sheep-skins furnish by far the greater part of all parchment
prepared, indeed all that which is used for deeds and law purposes.
From whatever skin prepared, it is first soaked in lime and water
to remove the hair and greasiness, and then stretched tightly on
a frame, and the surface rubbed smooth with pumice-stone, after
which the skin is allowed to dry. Parchment is used for deeds,
which require to be very durable and not easily torn, both of which
qualities it possesses much more than any kind of paper; it is also
used for book-binding, drum-heads, and many other purposes. Clippings
of parchment boiled for some time, and the liquid strained off, forms
an excellent colorless size. Vellum is a thick kind of parchment,
made chiefly of calf-skin.


What is called catgut is made from the inner or lining membrane
of the intestines of sheep. These are washed, soaked, scraped, and
otherwise prepared, to render them even and clear; they are then
soaked in a solution of pearlash to clear them from grease, twisted,
exposed to the vapour of sulphur, polished by rubbing, and afterwards
stretched and dried. Catgut is used not only for the strings of
violins and other musical instruments, but also for what is called
“clock-makers’ cord,” that is to say, for the bow by which the drill
is turned, and for several other purposes. It is very strong, and
does not easily get ragged, as would any hempen cord.



  Illustration: FIG. 2. PAPER-MAKING MACHINE.

This important article of civilisation is made from rags of various
descriptions and qualities, according to the kind of paper to be
made, the finest white paper being made of old clean linen rags,
while brown paper is made of all sorts of old rope-yarns, sacking,
&c., and some kinds of paper have a considerable amount of straw
bleached and worked up in them. The rags are first sorted and cut up
into small pieces; they are then beaten on a wire screen to separate
all dust, and afterwards put into the washing-machine, through which
a stream of water runs, and in which they are kneaded and torn by
a broad wheel having iron wedges or knives fastened to its edge
(fig. 1) or surface, which work as it is turned against knives of a
similar description fastened to the bottom of the cistern. When the
rags are thoroughly washed, and at the same time torn to a coarse
pulp, it constitutes what the workmen call “half-stuff.” This is
mixed with chloride of lime, and the machine again set in motion;
this is for the purpose of bleaching the pulp; after this has been
effected, more water is turned on, as in the first washing, and all
the chloride of lime washed thoroughly away. The pulp is now either
put into another machine of the same description which cuts sharper
and finer, or else the same machine used at first is so screwed up
as to cause the knives to come more closely together; in either case
the rate of turning is greatly increased, so that the wheel turns
at about 150 revolutions per minute, and completely grinds up the
pulp till it is perfectly smooth: at this part of the process some
“indigo” or “smalt” is added if the paper is to be of a blueish tint,
as in “foolscap” paper. The “stuff” is now run off into a cistern
ready for use. Paper is now nearly all made by machinery, in pieces
of a certain width, but of an indefinite length, and is cut up into
sheets afterwards by a “cutting machine.” These machines (fig. 2)
consist essentially of a vat, A, for the pulp, which flows out on
to a bed of wire gauze, B B B, covered with felt, and bounded on
each side by straps or deckles, and forming a circle or endless band
by being stretched over a succession of rollers, C D E F G, which,
by turning round continually, move its upper surface onwards and
between other cylinders, which press out the superfluous moisture;
it is then carried forward till it arrives at several pairs of large
hollow cylinders, H H H, heated by means of steam which is passed
through them, and which compress and at the same time thoroughly dry
the paper, which comes from them as paper perfectly formed, and of
any length that may be required. It is then glazed on the surface by
the rollers I, and coiled on the cylinder L. Any name, device, or
water-mark can be worked in the bed on to which the pulp flows, and
which, being repeated at definite distances, appears on each sheet
into which the paper is afterwards cut. The apparatus marked K is to
conduct to the earth the electricity developed by the friction of the
paper against the rollers. Beneath the bed of wire gauze, on which
the pulp is laid is a cavity from which the air is pumped, and which
causes the air to press upon the surface of the pulp, and force out
a great deal of its moisture.

  Illustration: FIG. 3. SIZING MACHINE.

If the paper has to be sized (which is the case in all “hard” papers)
it has to pass through a process, the machinery of which is shown in
fig. 3. A is a reservoir for size, B a trough for the paper to dip
into, C the reel of paper to be sized, D rollers to press out all
superfluous size, E a pulley to keep the paper on the stretch, F F F
a succession of hollow “drums,” to prolong the passage of the paper
through the air of the drying-room, which is heated by the furnace
G and the tubes I I. H H are openings to admit fresh air, and K
openings to allow the exit of the steam from the paper as it dries.
L is a series of rollers to glaze it.

  Illustration: FIG. 4. CUTTING MACHINE.

The “cutting-machine” before referred to is represented at fig. 4.
A is a wheel upon which is fixed a plate with projections and
screws for fixing the position of the arm attached to the link B;
B link connecting the wheel A with the lever-arm G, and capable of
adjustment by means of the plate attached to the wheel A, and the
screw D; D a screw regulating the position of the rod B; E the drum
by whose motion the web of the paper is carried forward.

  Illustration: FIG. 5. HAND PROCESS.

But the process, as conducted by hand (fig. 5), will give a much
better notion of how paper is formed from the pulp. A reservoir, A,
is filled with pulp, which is supplied by a wheel in the box B, to a
strainer C, and passed to a vat D, and a man, E, takes in his hands a
mould consisting of a shallow frame of wood of the size the sheet of
paper is to be, having a bottom of fine wires laid side by side, and
having wires crossing at intervals to keep them firm (the marks of
these may be seen in any sheet of laid foolscap paper held up to the
light); he dips this mould edgewise into the reservoir, and brings
it up horizontally full of pulp; this he gently shakes, to make the
pulp lie level and allow all superfluous water to drain through the
wires. It is then handed to another man H, who has a sheet of flannel
or felt spread out on a table F G, on which the mould is inverted,
and the sheet of pulp left on the flannel, which sucks up more of
its moisture; over this is placed another piece of flannel, and then
another sheet of pulp on it, and so on to the number of five or six
dozen F, then the whole is put into a powerful press, and screwed
down till all the water is squeezed out, when they are pretty firm,
and are lifted out and hung on lines to dry, after which they are
immersed in a cistern filled with thin size made by boiling clippings
of skin in water (see “Glue and Size”), and having some alum
dissolved in it--they are once more pressed and dried. What is called
“hot-pressed” paper is pressed between smooth sheets of pasteboard,
having a hot iron plate placed between every three or four dozen
sheets of paper; this gives a smooth surface to the paper. The names,
dates, and other marks seen on hand-made paper are formed by wires
worked into the bottom of the mould, which, projecting, make the pulp
thinner in those places. The water-mark of Bank-notes is made in the
same way. More than half-a-million sterling is paid annually for duty
upon paper--so vast is the consumption!


Barley is the grain generally chosen for producing malt, although
others may be used. It is first soaked in cold water till it is
softened; it is then spread out about two feet thick on the floor of
the malt-house, where it begins to germinate, in the same manner as
if sown in the earth; this is allowed to go on so far only till the
first part of the root and stem make their appearance, in the form
of a little bud and a fibre. During germination the malt gives out
a poisonous gas called “carbonic acid,” and becomes warm, in fact it
would become too warm and be injured, but it is kept stirred by means
of wooden shovels from time to time, and the temperature ascertained
by means of a thermometer. As the process of germination goes on,
all the starchy matter naturally contained in the grain becomes
changed into sugar, and the malt, when made, has a sweetish taste.
As soon as the germination has proceeded to a certain extent it is
stopped by drying; for this purpose the malt is put into a kiln and
heated almost to scorching--if but slightly, it is called pale malt
or “amber,” if more, “brown malt” or roasted malt. Malt, if kept
dry, will remain a long time unchanged. It is used for producing
beer and vinegar, and for “wash,” from which all the raw spirit used
in England is distilled. Whiskey is also distilled in Scotland and
Ireland from malt.

Malt has the property of converting the starch of barley unmalted
into sugar while in contact with it. For example, if barley were
ground and boiling water poured on it, it would form a thick sort
of paste, which is because it contains starch only; while malt
treated in the same way, sinks to the bottom, and leaves a clear
limpid “wort,” which can be strained off, because the starch is
changed into sugar, which is soluble. Now, if equal parts of malt
and ground barley be also treated in the same way, the malt very
shortly converts the starch of the barley into sugar, and the result
is the same as if all had been malt. This was once a matter of great
importance to the brewers, who thereby saved the heavy duty imposed
upon malt.

                         CHOCOLATE AND COCOA.


Chocolate and cocoa are made from the seeds or beans of the
_Theobroma Cacao_. The fruit of this plant somewhat resembles a
cucumber, and contains from twenty to thirty seeds; these are dried
and packed for the market. They come to this country from the West
Indies (Berbice and Demerara). The beans are roasted in an iron
cylinder with holes to let out the vapour, &c.; when cool they are
deprived of their husks, and then crushed by means of rollers turning
on a flat slab, kept warm by stoves or steam. The seeds when crushed
on the warm slab become almost liquid, owing to a kind of butter or
concrete oil which they contain, and which melts by a gentle heat.
When the seeds are rolled by the machine into a smooth paste, this
is either put into a mould of tin and formed into squares and various
other forms, or left rough as it is scraped from the slab (this
is called “rock” cocoa). For chocolate it is mixed with sugar, and
either dried and powdered, or made, as the cocoa, into paste. On the
Continent it is flavoured with “vanilla.”


  Illustration: BESSEMER’S PROCESS.

Steel is usually made by a process called “cementation.” Bars of the
best Swedish or Russian iron, about six feet long, are placed in an
iron box, the bottom of which is covered with a layer of charcoal
powder; over the first row of iron bars some more charcoal is put,
and then another row of iron bars, and so on till the box is full,
when it is carefully closed and kept at a white heat for four or
five days. When cold, the bars are found to be converted into steel,
and, being rough and blistered on the surface, are called “blistered
steel;” this is broken up, and the bars laid side by side and made
hot in a forge, where they are welded together by the blows of a
heavy hammer, and drawn or rolled out by machinery into bars of
“fine steel.” Steel differs from iron in the closeness of its grain,
in being very much “tougher,” and in having that very useful and
peculiar property called “temper,” which is the power of hardening
when suddenly cooled while red-hot. If a bar of steel as soft as
iron be made of a bright red heat, and then suddenly plunged into
cold water, it will be found to have become harder than any other
metal (so hard, indeed, that it will scratch glass), and is as
brittle and readily broken as flint or glass. If now a gentle heat
be applied to it, this extreme hardness of temper gives way. For
instance, if a piece of bright hard steel is held for a moment in
the hollow of a clear fire, a pale straw color appears on its surface,
it is now still very hard (but not so hard as before), and is fit
for razors, surgeons’ instruments, &c; but if held in the fire a
moment or two longer, it becomes of a bright golden yellow, and is
fit for penknives, and other cutting instruments; held longer still,
it becomes bright blue, and is fit for watch-springs, swords, and
other purposes requiring great elasticity but no great hardness; if
the heat be carried still further a brown tinge is seen, and it is
now rather soft, but greatly harder than iron, and is still elastic;
saws, coach-springs, and many other articles are made from steel at
this temper. If the heat be carried on to redness, the steel would be
quite soft when it had slowly cooled, but if suddenly cooled (as by
being plunged into water) the original hard temper comes back again.

Steel, like iron, may be cast, and cast-steel is one of its most
useful forms, and much resembles “fine steel.” The mode of preparing
cast-steel is to melt the “blistered steel” in a crucible, or earthen
pot, and then run it into a mould: this forms an “ingot” of steel,
which may be afterwards rolled or welded as the case may require.

Steel may be drawn into very fine wire, or wrought into the most
minute articles, as the springs and other parts of watches. It
bears a very fine and bright polish, and does not rust or tarnish so
easily as iron. It has lately been proposed to make heavy cannon of
cast-steel, which is much tougher than either cast-iron or gun-metal.

  Illustration: (‡ FIG. 1. and FIG. 2.)


A process has lately been invented by Bessemer to supersede the
long and laborious process of “puddling.” It consists essentially of
transferring the melted iron into a vessel in which there are tubes
inserted at the lower part, and through which air is forced at a
great pressure, which bubbles up in streams through the melted metal,
and, as it does so, unites with the carbon and sulphur of the iron,
converting them into carbonic and sulphurous acids, and at the same
time producing an increased heat, which is quite necessary to the
success of the process, for as the iron becomes purer it also becomes
more difficultly fusible, and would set into a solid mass, but that
this greatly increased temperature keeps it fluid. This rising of
temperature is similar to what takes place upon blowing a common fire
with bellows; for the more air that is admitted to carbon raised to
a very high temperature, the more rapidly does it combine with its
oxygen, or, in other words, the more rapidly does it burn. So that,
in this process of Bessemer’s contriving, the carbon of the iron acts
as fuel to keep up the heat necessary to maintain its fusion, and
at the same time, by being converted into carbonic acid, escapes in
bubbles (like the bubbles which escape from soda-water), and this
rapid production of gas in every part of the fused iron also assists
in bringing about a thorough stirring-up and mixing together of all
its parts. Reference to the accompanying diagrams will illustrate the
working of the process. In figs. 1 and 2, A B are lower chambers,
C is the melted iron, D is an upper chamber for melting scrap-iron,
&c., E in fig. 1 and D in fig. 2 are openings for the escape of gas
and flame, F F is an air-passage running all round and communicating
by G with the tuyere-holes shown at E in fig. 4, H is the fire-brick
lining to the furnace, and I the tapping-hole through which the
fluid iron is discharged. In fig. 3, I is the tapping-hole, K the
main air-tube leading from the blast-engine, L L perpendicular tubes
(marked G in figs. 1 and 2) leading from circular air-passage to
tuyere-holes, M is an opening for the insertion of iron into the
upper chamber, opposite to opening D in fig. 2, and N the tap for
regulating the blast; O indicates the outer casing of wrought iron.

When the process is carried only to a certain point, the result is a
sort of semi-steel, which the inventor of the process expects will be
a very useful article of commerce.

  Illustration: FIG. 4.

During the bubbling up of the whole mass of iron and the extreme
elevation of temperature caused by the union of the carbon of the
impure iron with the oxygen of the air, the oxide of iron as fast as
it forms fuses into a sort of glass, and this unites with the earthy
matters of the impure iron and floats on the upper part as a flux,
thus ridding the cast-iron of all its impurities, with no other fuel
than that contained in the iron itself and the air.

The accompanying illustration represents a horizontal section or
plan of the converting vessel; A the central chamber, B a lining
of fire-bricks, C the main air-tube, D the tapping-hole, E the
tuyere-holes through which the air is forced into the melted iron
to be purified, F is the outside casing of wrought-iron.

                    TIN-PLATE, AND GALVANISED IRON.

What is usually called tin is, in fact, sheet-iron coated with tin,
and of this tin-plate, kettles, saucepans, &c., are made. The art
of coating iron plates with tin has been practised in England hardly
more than one hundred years. The very best soft iron is used for the
purpose of being tinned. It is rolled out into thin plates, which
are cut by shears into squares of usually thirteen inches long and
ten broad, these plates are dipped into weak acid to clean their
surfaces, then rubbed with sand, and finally washed; they are next
dipped into melted tallow, which preserves their surfaces bright
till they can be used. They are then immersed in melted tin, which
has its surface covered with melted tallow, to keep it from being
converted into oxide. When the plates have remained for a short time
in the tin, they are removed, and the superfluous tin is wiped from
the lower edge with a brush made of hemp, and then cleaned from the
grease with dry bran. The objects gained by coating iron with tin
are, increased beauty of appearance (for when tinned ware is kept
bright, it has almost the color of silver), and a protection to keep
the surface from rusting, and consequently being corroded into holes.

Copper and brass vessels are tinned inside, to prevent the formation
of that poisonous substance called verdigris. The mode of tinning
them is as follows:--They are cleaned inside by means of vitriol, and
then made hot, fine grain-tin and a little rosin being put into them,
and turned about and brushed over the surface with a ball of tow: by
this means, the tin is equally spread over the inner surface of the

Tin-tacks, buckles, and other small articles, receive a coating of
tin by being put into an earthen pot together with some grain-tin
and a substance called “sal ammoniac,” and the pot being heated
over a fire sufficiently to melt the tin, is then shaken up till
the articles inside have received a coating of tin.

Iron plates have lately been coated with melted zinc instead of tin,
and the surface thus covered enables them to be used for various
purposes and in situations where they are exposed to the action
of the weather, as on housetops, &c. The plates, thus treated, are
called “galvanised iron,” and they are generally used in a corrugated
form. They withstand the action of the weather very much better than
simple iron plates would, for the latter would be very soon eaten
into holes from rusting.


This most useful and elegant material--now an article of almost
universal application, in various forms--is made on a very large
scale by fusing together sea-sand and alkali (either potash, soda,
or lime), and, in the case of “crystal,” or “flint-glass,” oxide of
lead. The following is about the composition of the chief kinds of
glass in use:--

    FLINT GLASS.         PARTS.        PLATE GLASS.         PARTS.
  Pure white sea-sand      52        Pure white sand          55
  Potash                   14        Soda                     35
  Oxide of lead            34        Nitre                     8
                       ------        Lime                      2
                          100                              -----

  Fine white sand          63        Sea-sand                 80
  Chalk                     7        Salt                     10
  Soda                     30        Lime                     10
                         ----                               ----
                          100                                100

Flint-glass or “crystal” is very heavy, moderately soft (being
easily cut with a file), and very bright and white. It is used for
all table-glass, as decanters, wine-glasses, &c., and for the drops
or lustres of chandeliers. Plate-glass is that kind of glass now in
such general use for shop-windows, looking-glasses, &c. It is cast
on flat iron tables, and rolled out to the sizes required, then cut
and polished by machinery. In the rough state it is called “rough
plate,” and is the substance used in the Crystal Palace, and has of
late become almost a substitute for ground glass, which is simply
ordinary glass ground or roughened on the surface by means of sand,
so that it will admit light and yet not allow objects to be seen
through it. Crown-glass is the ordinary “window-glass.” It is made
in great circular pieces (see “Glass-blowing”), and cut up into the
sizes required. Crown or window-glass made some years back, had a
disagreeable tinge of green, which has been removed in modern glass
by the addition of a minute quantity of oxide of manganese.

  Illustration: FIG. 1. (‡ OVERHEAD DIAGRAM OF FURNACE.)

The ingredients to be made into glass (of whatever kind it may be)
are thoroughly mixed together and thrown a little at a time into
large crucibles or melting-pots placed in a circle (A A, fig. 1) in a
furnace resting on buttresses (B B, fig. 1), and heated to whiteness
by means of a fire in the centre, C, blown by a blowing machine,
the tube of which is seen at D. This furnace is shown in perspective
in fig. 2. The ingredients melt and sink down into a clear fluid,
throwing up a scum, which is removed from time to time. This clear
glass in the fused state is now kept at a white heat till all
air-bubbles have disappeared; the heat is then lowered to a bright
redness, when the glass assumes a consistence and ductility suitable
to the purposes of the glass blower.

  Illustration: FIG. 2. (‡ EXTERIOR VIEW OF FURNACE.)

Artificial gems are all but varieties of glass. What is called
“paste,” “French diamonds,” &c., are glasses of peculiar brilliancy,
well cut and polished. Garnets, emeralds, and other precious stones
are imitated by coloring the “paste” with various substances, chiefly
metallic oxides, as oxide of cobalt, which produces a blue color,
oxide of copper a red, and oxide of chromium a green color, &c.

Glass is used for a variety of purposes besides the one great purpose
of admitting light to houses while air and damp are excluded. It
furnishes an immense variety of beautiful and useful articles in
the form of drinking-vessels, vases, chandeliers, &c., and to the
chemist and manufacturer generally, it is invaluable, for vessels of
glass thoroughly resist the action of all acids (with the exception
of the hydrofluoric) and nearly every other substance. It stands
a considerable heat, and if made equal in substance and rather
thin, will not easily crack by sudden alterations of temperature.
Without glass, microscopes, telescopes, cameras, barometers and
thermometers--upon which some of our best and most useful knowledge
and some very beautiful results of chemical action depend--could
hardly have been constructed.


Soda-water was formerly prepared by the ordinary chemist, but since
it has become so general a beverage has been made a separate branch
of chemical manufacture. Soda-water consists of a very weak solution
of carbonate of soda, holding a large quantity of carbonic acid in
solution, for water has the property of absorbing a certain quantity
of carbonic acid, and this quantity is increased in proportion to the
pressure exerted on the water. This pressure is secured in the first
place by machinery, and afterwards maintained by the bottle being
closely corked and the cork fastened in by means of wire.

  Illustration: FIG. 1. SODA-WATER APPARATUS.

In fig. 1 there is an illustration of the machinery used. It
consists of a small vessel holding sulphuric acid, attached to
another vessel containing chalk and water kept constantly stirred
by a small windlass passing through a hole in the top, and working
air-tight. When some of the sulphuric acid is allowed to run into
the vessel holding the chalk an effervescence takes place, and a
rapid extrication of carbonic acid; this is conducted by a tube to
a gas-holder as a store. A tube leads from this gas-holder into a
sort of air-pump, and a man, by turning a windlass, not only works
this and thereby forces a certain quantity of gas into another vessel
of copper (plated with silver inside), but turns this vessel itself
rapidly round. In this vessel the solution of carbonate of soda is
placed, and is agitated under pressure with the carbonic acid thus
forced into it, and which it rapidly absorbs. From this vessel it
is drawn off into bottles, which are adroitly corked before much of
the carbonic acid can escape, and then wired down, a fresh supply
of solution of soda and carbonic acid being constantly introduced.
Potash-water and Carrara water are made in the same way, using potash
in the former, and chalk in the latter, instead of soda.

  Illustration: FIG. 2. (‡ SODA-WATER BOTTLE.)

The form of a soda-water bottle is shown in fig. 2; it is made of
very thick glass, that it may resist the outward pressure of the
carbonic acid, and so formed that it cannot stand on its bottom, and
when laid on its side the bubble of air shall rise up to the middle
of the bottle and not to the cork, or else it would escape through
the cork before long, however nicely it may be fitted.

  Illustration: FIG. 3. (‡ DISPENSING BOTTLE.)

Fig. 3 is a convenient vessel for holding about a quart of soda-water
or any other effervescing drink, all of which is not at once
required. A tube passes from the top to nearly the bottom of the
vessel, and when this is filled with aerated water, the expansive
power of the carbonic acid forces the water up this tube and out of
the spout when the handle is depressed and the tap opened, and when
sufficient is obtained, the tap can be immediately closed.

A very convenient apparatus called a “Gasogene” has lately been
constructed. It consists of a double vessel, into the upper part
of which a solution of any kind--wine and water, or even plain
water--is put, to be saturated with carbonic acid or “aerated,” and
into the lower one some carbonate of soda and tartaric acid. A tube
leads from this lower to the top of the upper vessel, which screws
on and off. By shaking the apparatus when thus charged and screwed
together, some of the liquid descends through the tube into the lower
vessel and moistens the soda and acid, which therefore act on each
other, and cause carbonic acid to be disengaged; this, rising up
through the tube (which is perforated with small holes at the upper
part), disperses itself through the liquid in small bubbles, and
causes sufficient pressure to enable the liquid to absorb it, which
therefore effervesces when drawn off by the tap and this pressure

                           COAL-TAR NAPTHA.

This is distilled from the coal-tar produced at the gas-house, the
residuum being pitch, and it has a very offensive smell. It is in
demand as a solvent for India-rubber, and also for use in lamps so
constructed as to require no wick, for naptha is very volatile, and
the vapour is burnt as it rises.


This is often called wood spirit, and is procured from the tar
resulting from the distillation of wood for wood vinegar or
pyroligneous acid. It is colorless, without the disagreeable odour
of coal-tar naptha, and very inflammable, burning without smoke, very
much in the manner of spirits of wine. It is used in varnish-making,
and also for burning in lamps where heat and not light is required.

                      PRODUCTS OF SKILLED LABOUR.


  Illustration: (‡ POTTERY WORKERS.)

  Illustration: STAMPERS.

  Illustration: FLINT MILL.

The art of making vessels of earth is one of the oldest of all arts;
the “potter’s wheel” is frequently named in Scripture, and pottery is
found in all the remains of ancient nations. Earthenware is made from
a mixture of clay and powdered flints; the clay is freed from all its
coarser parts by being stirred with water and drawn off after the
gross matters have settled; the fluid is then allowed at leisure to
let fall the pure clay which was mixed with it, and is then fit for
use. The flints are made red-hot, and in that state thrown into cold
water, which makes them so brittle that they can be easily broken up
by the “stampers,” which are perpendicular pieces of iron made to
rise and fall with great force; the flints are then ground in a mill
to a powder, which is treated in the same way that the clay was. When
these two earths are mixed in proper proportions, and beaten together
while moist, they form a substance of the consistence of putty, a
lump of which is thrown into the centre of a piece of board turned by
means of a wheel and treadle; while turning round, it is moulded by
the hands into a rough outline of the vessel required, and afterwards
put aside to dry till it becomes of such hardness, that it can be
easily turned in a common lathe, and formed into the cup, jug or
whatever else it may be intended for. This is then baked in a “kiln”
or oven so contrived that it shall make it red-hot, and keep it so
for about two days. If it has to be ornamented with a design-such,
for instance, as the “willow pattern”--a number of prints on tissue
paper of the subject required are kept ready, and one of these is
stuck on to the vessel with the printed side next to the clay, and
rubbed smoothly on to it; after a little time the paper is washed off
with water, and the pattern is left on the vessel. The next process
is that of glazing; this is done by dipping the vessel into a mixture
generally made of ground flints and oxide of lead made into a thin
fluid with water; when the glazing is dry the vessel is once more
put into the kiln, and made red-hot, when the glazing-mixture on the
surface melts into a smooth glass. Different colours are given to
the pattern by mixing certain metallic substances with the ink used
in printing. The handles, spouts, and other projecting parts are
fixed on after turning, and before the ware is put into the kiln.
Many kinds of pottery are not turned at all, but made in a mould by
being squeezed forcibly into it; this is the case when the article
to be produced is octagonal, or possessed of any form not round, and
therefore not to be produced by turning, and when the surface has a
pattern or figures standing out in relief. Some of these are made by
filling shallow moulds with the clay, and, while moist, affixing them
to the surface, but the handles of common ware are made by forcing
some of the clay through a hole of the required form, so that it
comes out in long strips or ribands, which are cut up into lengths,
bent into the proper form, and stuck on to the ware, some softer clay
being smeared round the joint--the whole, when baked in the kiln,
becoming hard and strong.

Earthenware is often made to possess some color throughout, as drab,
yellow, brown, or black. These tints are produced by admixture of
different kinds of clay and oxides in various proportions, oxide
of iron generally giving a red or chocolate color, and oxide of
manganese a drab, brown, or black color, according to the proportion

Figures, busts, and many other articles, both for ornament and
utility, are made of porcelain by casting, and are produced by
filling hollow casts of plaster of Paris with the materials for
porcelain, mixed with water to the consistence of cream--this is
called “slip,”--and when the hollow cast is filled the porous
plaster absorbs most of the moisture from the portion of liquid
“slip” next to it, so that, after a time, what remains fluid being
poured out, there is found a coating or lining of porcelain mixture
of considerable thickness adhering to the interior of the mould too
solid to be poured out; the whole is then set in a warm place to dry,
and as the porcelain shrinks as it dries, it separates itself from
the mould--which, being made of several pieces fastened together, is
taken apart without injuring the cast; after it has thoroughly dried
it is baked in a kiln or furnace. This is called “Biscuit porcelain.”

                           BRICKS AND TILES.

  Illustration: PUG MILL.

  Illustration: STOOL, OR WORKING SHED.

  Illustration: BARROW FOR WET BRICKS.

  Illustration: BARROW FOR DRY BRICKS.

Bricks are made of clay mixed with sand or ashes. The brick-field is
first covered with either of these to the depth of an inch or two,
and is well dug in and turned about during several weeks; when the
bricks are to be made, the mixture is put into a “pug mill;” this is
a large tub having an upright iron bar passing up from the bottom,
and having several broad iron blades fixed to its sides at the part
which is in the tub; at the top there is a cross-bar of wood, to
which a horse is harnessed; the horse, when driven round in a circle,
turns the upright iron bar and consequently the iron blades. Into
this tub the clay and ashes are now put, a little at a time, and as
the horse goes round they are thoroughly mixed together; a man takes
pieces of this clay of the proper size, and hands them to another
who stands before a table in the shed, and has a mould before him;
this consists of a piece of wood with sides of the size of the brick,
which is always ten inches long, five broad, and three thick, before
burning. The sides of this mould can be turned up and down; they are
now put up, and the piece of clay forced into the mould and scraped
off even at the top, the sides are put down, and the brick placed
carefully on a barrow, which when filled is wheeled off by another
man, and its contents arranged on the ground in long lines having a
small space between each brick, that they may not stick together and
the air may dry them. Long rows of these bricks are formed one on
the top of the other, for four or five deep, and are changed in their
position from time to time till they are quite dry and hard; they
are now ready to be burnt. This is done made by placing the bricks in
long rows, with narrow spaces between each row which are filled with
straw or twigs of wood and cinders (these cinders are got from the
ashes when they are sifted before mixing with the clay); the spaces
being filled they are covered with other bricks, and then the straw,
&c., is lighted. Layer after layer of bricks are next built up around
the fire, so that the heat shall be well kept in, and in this way the
bricks are gradually baked till they are quite hard and fit for use.

  Illustration: BURNING BRICKS.

Tiles are the same as bricks, but of a different form, being flat,
and having two holes in them to receive nails. These are used to form
the roofs of houses, and are nailed on to the rafters, each layer
overlapping the one below it, so that the rain falling on the sloping
roof shall run from the top to the bottom without coming through.

Bricks have lately been made with perforations through them, which
is done by having a mould with a number of iron rods projecting from
its bottom, so that when the clay is forced on them they pass right
through it, and leave holes. The objects gained by this are two; in
the first place, the bricks are much lighter, a great advantage in
building, and in the second place they do not get so much out of form
in burning, as there is no great substance between the holes, and
therefore the shrinking takes place more evenly. Most of these bricks
are of a light straw color, and are used for facing. They are mixed
with a quantity of chalk, which is worked up with the clay, and are
not baked at such a heat as would burn it into lime.

  Illustration: MIXING CHALK.


Tobacco-pipes are made of a fine white clay, found chiefly in the
island of Purbeck, and called, from its use, pipe-clay. Dr. Ure gives
the following account of the manufacture of tobacco-pipes:--“A child
fashions a ball of clay from the heap, rolls it out into a slender
cylinder upon a plank, with the palms of his hands, in order to form
the stem of the pipe. He sticks a lump at the end of the cylinder,
for forming the bowl; which, having done, he lays the piece aside
for a day or two to get more consistence. In proportion as he makes
these rough figures, he arranges them by dozens on a board, and hands
them to the pipe-maker. The pipe is finished by means of a folding
brass or iron mould, channelled inside of the shape of the stem and
the bowl, and capable of being opened at the two ends. It is formed
of two pieces, each hollowed out like a half pipe cut as it were
lengthwise, and these two jaws when brought together constitute the
exact space for making one pipe; there are small pins in one side of
the mould, corresponding to holes in the other, which serve as guides
for applying the two together with precision. The workman takes a
long iron wire, with its end oiled, and pushes it through the soft
clay in the direction of the stem, to form the bore, and he directs
the wire by feeling with his left hand the progress of the point.
He lays the pipe in the groove of one of the jaws of the mould,
with the wire sticking in it, applies the other jaw, brings them
smartly together, and unites them by a clamp or vice, which produces
the external form; a lever is now brought down, which presses an
oiled stopper into the bowl of the pipe while it is in the mould,
forcing it sufficiently down to form the cavity, the wire in the
meanwhile being thrust backwards and forwards, so as to pierce the
tube completely through; the wire must become visible at the bottom
of the bowl, otherwise the pipe will be imperfect. The wire is now
withdrawn, the jaws of the mould opened, the pipe taken out, and
the redundant clay removed with a knife; after drying for a day or
two, the pipes are scraped, polished with a piece of hard wood, and,
the stems being bent into the desired form, they are carried to the
baking kiln, which is capable of firing fifty gross in from eight to
twelve hours. A workman and a child can easily make five gross of
pipes in a day.”

  Illustration: FURNACE.

The pipes known as “meerschaum” are cut and shaped out of a natural
earth or mineral, found chiefly in the island of Samos; it is not a
clay, but consists of silica, magnesia, and lime, and is therefore
a kind of magnesian limestone. It is nearly white, very light and
porous, is easily cut with a knife, and bears a beautiful polish when
saturated with the oil of the tobacco, which at the same time gives
to the pipes a rich dark-brown color.

The meerschaum pipes sold in London are saturated with wax or grease,
to cause them to color more easily, and many are not meerschaum at
all, but are made of the dust produced in the cutting and boring
of the real meerschaum pipes, mixed up with size; these fictitious
pipes are heavier and less porous than the true meerschaum pipes, and
neither color so readily nor bear so beautiful a polish; they are,
moreover, much more easily broken.


For the purpose of gilding very thin leaves of gold are required,
so thin, that although gold is expensive, yet gilded articles (as
picture-frames) are very far from being so. To produce this gold-leaf
is the business of the gold-beater. He first obtains the gold in a
state of purity from the refiner, in the form of small grains, which,
mixed with a small quantity of borax and alloy, are put into an
earthen pot called a crucible (coated beforehand with clay to keep
it from cracking), and then placed in a furnace which is raised to
a white heat. The gold, when melted, is poured into an iron mould
made warm and greased in the inside; this when cold forms an “ingot,”
which weighs two ounces, and is three-quarters of an inch square
and not quite half-an-inch thick. This ingot is now sent to the
“flattening mills,” where it is passed between sets of steel rollers
until it is rolled out into a sort of riband an inch wide and about
twelve feet long (at this degree of thinness a square inch will weigh
six-and-a-half grains). It is now cut into 150 pieces, each an inch
square, which are packed between pieces of vellum, four inches each
way, and surrounded by a sort of bag of the same material, the whole
being then subjected to the blows of a heavy iron hammer (weighing
about fourteen pounds) upon a block of solid stone, till the plates
of gold are beaten out nearly as large as the vellum, when they are
taken out and each cut into four pieces. These quarters are treated
as before, using gold-beater’s “skin” instead of vellum (this skin
is prepared from the intestines of the ox, and a set of these,
consisting of several hundreds, is called a “mould”), and the gold
again extended under the hammer to the size of the mould. The process
is repeated in the same manner a third time, after which the leaves
of gold are taken out, cut square on a cushion of leather, lifted
carefully by means of a sort of tongs made of wood, and placed in
the book. They are now between 600 and 700 times thinner than before
the beating commenced, and it would take about 280,000 of these
leaves to make the thickness of an inch. The leaves are from three
to three-and-a-half inches square, and are packed in books of paper
having the surface of the leaves rubbed with red chalk, to prevent
them from adhering to the gold; each book contains twenty-five leaves
of gold.

The different colors of gold-leaf, such as “pale gold,” “deep gold,”
or “red gold,” are produced by a small alloy of copper or silver,
the former giving a deeper and the latter a paler tinge to the pure
gold. A certain amount of alloy is always mixed with the pure metal,
otherwise it would adhere to the mould, and would not work so well.


  Illustration: SHOT TOWER.

  Illustration: SIEVE FOR MAKING SHOT.

  Illustration: SECTION OF SHOT-TOWER.

Shot are made either of iron or lead. All shot for great guns or
cannon are made of iron, but for small-arms leaden balls are used,
which are cast to fit the bore of the weapon. For sporting purposes
small shot are made, of different sizes; they consist of globules of
lead with a small proportion of arsenic mixed with it--the object
of mixing arsenic is to make the shot divide better, as it has been
found by experience that lead alone does not divide so well--this
mixture, while in a fluid state, is poured through a colander or
sieve made of iron and having the bottom perforated with small holes,
to suit the size of the shot to be made. These colanders are placed
at the top of a high building like a tower, and the melted metal
runs through the perforations in fine streams and separates into
single drops as it falls. At the bottom of the building the shots are
received in vessels of water, to cool them. In these vessels all the
little globules are not exactly of the same size, although the holes
in the colanders regulate this to a certain extent, moreover they are
not all round; they have, therefore, to be sorted, which is done by
placing the shot by handfuls upon a board slightly tilted, so that
the round ones roll to the bottom and are received in a box, those
that are crooked, &c., lag behind on the board, and are put aside to
be re-melted. The shot in the box have next to be sorted as to size;
this is done by means of two sieves; the holes of one sieve are a
little larger than the size of the shot required, and this retains
therefore all that are too large, the next has holes a little less
than the shot, and this retains the right size and lets all the shot
that are too small pass through; by these simple means the shot are
separated into many sizes, which are numbered. The shot have now
to be finished, which is done by turning them, mixed with a little
black-lead, in a sort of barrel, which gives them a beautiful black
shining surface, and rubs off any roughness.


  Illustration: FILE CUTTING.

Files are among the most useful of tools for those who work in
metals, and in many other substances, as ivory, or hard woods. A file
consists of a bar of steel of various shapes, such as flat, square,
three-cornered, round, and half-round; on the surface of this bar of
steel small furrows are formed, with rough projections between them,
and these are again, in most kinds of files, crossed with others.
The mode of making a file is as follows:--A bar of wrought or cast
steel is cut off of the requisite length and of the proper figure,
and forged on an anvil to the required shape--that is to say, rather
tapering at the top and brought to a point (called the “tang”) at the
bottom, so that it may be driven into a wooden handle. The file has
now to be cut. To do this requires great manual dexterity. A man sits
before a bench, and passes a strap over each end of the file so as
to steady it, and these are kept down with the feet. A small chisel
of hard steel is held in the left hand between the thumb and finger
and struck with a short-handled heavy hammer, the effect is to cut
a notch, with an elevation at each side called a “burr;” the small
chisel is slipped up to this “burr,” and struck again, and so on till
the whole file is cut, and this with such rapidity that the eye can
scarcely follow it. When the file is thus notched from end to end, it
has to be hardened, which is done by making it red-hot and suddenly
plunging it into cold water, which makes it so hard that it will
scratch glass and cut away any other metal.

  Illustration: FILE.

  Illustration: RASP.

For softer substances, such as wood, a kind of file is often used
called a “rasp,” which, instead of having furrows cut on it, is
struck into little dints by means of a three-cornered piece of hard
steel, which, as it enters the file, throws up a projection also.

For filing bone and ivory, a kind of file is used with very large
notches, not crossed by others, the edge of each of which acts like
a plane-iron or chisel, and takes off shavings from the bone.


  Illustration: TYPE CASTING.

The casting of types for printing is for the most part done by hand,
and singly, and it is one of those arts in which extreme dexterity
(only to be acquired by incessant practice) enables the founder
to accomplish an amount of labour which would seem to any one not
witnessing the process impossible. To cast each piece of type it
is necessary to dip a little ladle into a pot of melted metal,
to fill the mould, give it a sudden jerk with the left hand so as
to make the melted metal go well into the little mould, open the
mould and take the type out, shut up the mould and fasten it, and
yet a skilful workman can perform these operations five hundred
times in an hour--that is to say, rather more than eight times in
a minute--producing a type each time; this has afterwards to be
finished off by others. The metal of which type is made consists
of lead and antimony--the antimony hardens it and makes it take a
sharper impression. The letters are first cut in steel, and from
these “dies” the moulds are made in brass, by stamping, and in these
the types are cast.

Stereotype consists of plates of metal taken, by casting, from a
forme of type set up for the purpose; an impression in plaster of
Paris is first taken, and from this the metal impression is cast,
so that the original forme of type may be “distributed” or taken
to pieces, and again used, while the stereotyped impression can be
preserved for any future printing.


  Illustration: FILLING THE BOXES.

These convenient matches, which have completely superseded the old
apparatus of flint, steel, and tinder-box, may be looked upon as
one of the improvements derived from chemistry, for phosphorus--the
necessary ingredient--till lately sold at half-a-crown an ounce;
such a price would, of course, prevent its being used for so
general a purpose as match-making. But when chemistry devised means
of preparing it on a large scale, and at a low price, then its
application was soon perceived.

  Illustration: CUTTING THE MATCHES.

  Illustration: FRAME.

Some years ago a kind of match was used, made of chlorate of potash
and sulphuret of antimony, and ignited by drawing through a folded
piece of glass-paper. Another sort was also for a time in use called
“Prometheans,” but far too expensive for general use. They consisted
of strips of paper rolled up, with a little glass cylinder full of
sulphuric acid sealed up in the end of each, surrounded by chlorate
of potash in powder; the end of the match had to be crushed by a
small pair of nippers, and the glass being broken, the sulphuric acid
came in contact with the chlorate of potash, causing it to take fire.

  Illustration: FILLING THE FRAME.

  Illustration: DIPPING THE MATCHES.

For making lucifer-matches the wood is sometimes split by hand,
and sometimes by machinery. For those the wood of which is rounded,
a peculiar apparatus is used; it consists of a plate having small
steel cylinders let into it, so that their cutting edges are raised
above the plate, and the wood is struck upon this, and not only
divided, but each piece forced through the cylinders and so rounded.
When cut, the wood is dipped in bundles into melted sulphur, and
afterwards into a composition variously made, but usually consisting
of phosphorus ground up with gum arabic and water, colored either
with red-lead or Prussian blue, and in some cases chlorate of potash
is added. This composition is spread out on a board to about the
tenth of an inch in thickness, and the matches which have been dipped
in sulphur are packed into a frame to the number of about 3000, and
dipped by pressing them on the board spread with the composition, so
that a little is attached to the ends of each match. This is a most
unwholesome and dangerous employment, and water is always at hand,
in case of fire, which is chiefly to be feared in the process of
separating them and filling the boxes when the composition has dried.



  Illustration: CUTTING THE WICKS.

Candles are made of either wax, spermaceti, stearine, or tallow, or
some compound or modification of these; but of whatever they may be
made, they are formed either by dipping or casting, and hence the
names “dips” and “moulds.”

  Illustration: HORSE’S HEAD.

  Illustration: COOLING FRAME.

When dips are to be made, a quantity of wicks of spun cotton are
prepared by a machine, and doubled so as to form a loop at the top,
through which a stick is passed. A number of wicks are arranged in
a line on each stick, and several sticks placed side by side on a
frame, which is attached to one end of a balance beam (called by the
workmen the “Horse’s Head”), with weights at the other end, according
to the weight of the candles to be made. The frame, with the wicks
upon it, is suspended over a cistern of melted tallow (kept warm by
a small fire or flue), into which it is lowered, so that the wicks
dip into the tallow; this is repeated two or three times, till a
coating of tallow is formed on the wicks, which are then placed aside
to cool while others are served in the same way, and so on, over and
over again, till each frame weighs enough to exactly counterpoise the
weight at the other end of the beam.

  Illustration: CANDLE-MOULDS.

Mould candles are made by pouring melted tallow into a wooden trough
in the bottom of which pewter moulds, of the size of the candles
required, are fixed in such a way that they open into the trough by
the ends which correspond to the bottoms of the candles to be cast in
them. The other end of the mould is brought to a point, with a small
hole in it, through which the wick is passed and fastened to a stick
running along the moulds; and as the moulds are placed in two lines,
two sticks are sufficient for the trough. Melted tallow or spermaceti
is poured into the trough, and when cold the superfluous quantity
removed, and the candles drawn out of the moulds.

Wax candles are made by pouring melted wax down the wick till
sufficient has adhered to it, then rolling the candle on a marble
slab till it is even, and afterwards polishing with a cloth.


  Illustration: SPINNING THE YARN.

  Illustration: SPINNING-WHEEL.

Is a combination of the fibres of hemp or other material, so arranged
as to form a tenacious cord or band, retaining, as far as possible,
their collective strength. The first process in rope-making consists
in twisting the hemp into thick threads, called rope-yarns. This,
which resembles ordinary spinning, is commonly performed by hand, in
a rope-ground or rope-walk, an enclosed level piece of ground, about
six hundred feet in length, at one end of which a spinning-wheel
is set up, that gives motion by a band to several small rollers or
“whirls,” each of them furnished with a hook on the end of its axis
next the walk. The rope spinner carries a bundle of hemp about three
feet long round his waist, with the fibres all laid even, and having
their ends in front of him, and from these he pulls out sufficient
for the thickness of the “yarn” he is spinning, and after slightly
twisting it with his fingers, attaches it to the hook of a “whirl,”
which is set in motion by the wheel, and as the fibres are twisted he
walks backward, gradually adding more and more, a little at a time,
so as to keep the yarn of the same thickness throughout. When the
spinner has traversed the whole length of the rope-walk, he stops,
and another spinner detaches the yarn from the whirl, and it is
then wound on a reel or bobbin. The yarns being spun, they are next
“tarred” (if they are to be much exposed to wet, as for the rigging
of ships), which is done by drawing them through a kettle full of
melted tar, being wound off from one reel on to another, and the
superfluous tar wiped away by means of tow (rough hemp) fixed in a
hole through which they are drawn.

  Illustration: HAWSER-LAID ROPE.

  Illustration: CABLE-LAID ROPE.

What is called “laying” the rope consists in twisting a certain
number of yarns together, so as to form a strand, and these
strands into a rope. Large ropes are chiefly of two kinds, called
respectively “hawser-laid” and “cable-laid,” the latter including
only the very largest ropes. “Hawser-laid” ropes consist of a certain
number of yarns (according to the size of the rope) twisted into
a strand, and then three of these strands twisted together. The
“cable-laid” rope is composed of nine strands, that is to say, three
strands each composed of three others, and these composed of yarns,
so that three “hawser-laid” ropes, twisted together, would make one
“cable-laid” rope.


Laying the ropes and twisting the yarns into strands are both
accomplished by the same process. The yarns are attached--in
sufficient quantity for the strands--to three hooks, each turning in
the same direction, while the other ends are collected together and
turned in the opposite direction; the three hooks twist the yarns
into strands, and a hook at the other end twists the strands into

Of course, machinery of various descriptions has been applied to
rope-making, and ropes are frequently made entirely by machinery with
great rapidity. The annexed cut represents one mode of rope-making by
machinery, in which the yarn is shown being twisted into cord or rope
from the reels or bobbins on which it was wound after spinning.


  Illustration: COARSE WIRE DRAWING.

  Illustration: FIG. 1. (‡ METAL INGOT, SHEET, STRIPS.)

  Illustration: FIG. 2. (‡ LARGE ROLLERS.)

  Illustration: FIG. 3. (‡ CUTTING ROLLERS.)

  Illustration: FIG. 4. (‡ CLOSE-UP OF CUTTING ROLLERS.)

In the manufacture of wire, the metal from which it is to be made is
first cast or wrought into an ingot (A, fig. 1); it is then passed
between rollers (fig. 2) which flatten it into a sheet (B, fig. 1),
which is next carried between other rollers (fig. 3) having their
surfaces so cut that the projections on one of them fit into the
hollows of the other, forming so many cutting edges or shears
(fig. 4), from which the sheet of metal comes forth at A, fig. 3,
cut into strips or square rods (C, fig. 1). These rods are then drawn
with great force through a plate of hardened steel having a series
of holes, gradually diminishing in size, bored through it, which is
called the “draw-plate;” the wire (of whatever metal it be) has to
be heated red-hot from time to time, to soften or “anneal” it, for
the compression produced by the drawing so hardens it that it becomes
brittle. A pair of nippers holds the end of the wire, and these are
moved along a sort of bench by a “rack and pinion” (fig. 5). When all
has passed the first hole, it is drawn through the second, and so on
to the size required. When the wire is pretty fine, it is attached
to a “cylinder,” which on turning round winds off the wire and at
the same time draws it through the plate, as shown in the engraving,
the wire being made to pass over a small charcoal fire previous to
entering the draw-plate.

  Illustration: FIG. 5. (‡ RACK AND PINION.)

  Illustration: FINE WIRE DRAWING.

Different metals have different powers of “ductility,” that is to
say, some can be drawn much finer than others. Dr. Turner says, “The
only metals remarkable in this respect are gold, silver, platinum,
iron, and copper. Walliston devised a method by which gold wire may
be obtained so fine that its diameter shall be only the 5000th part
of an inch, and 550 feet of it are required to weigh one grain; he
obtained a platinum wire so small that its diameter did not exceed
the 30,000th of an inch. It is singular that the ductility and
malleability of the same metal are not always in proportion to each
other. Iron, for example, cannot be made into thin leaves, but it may
be drawn into very small wires.”

  Illustration: FIG. 6. (‡ WIRE GAUGE.)

The sizes of wires are ascertained by a small instrument called a
“gauge,” which is a plate of steel with an opening diminishing to
a point in it, and marks on the sides corresponding to the distance
the wire will pass down the notch (fig. 6).


  Illustration: FIG. 1. (‡ KNIFE BLADE.)

Table cutlery is made in the following way. The blade is first rudely
fashioned from a flat bar of steel by the hammer and anvil, and this
is then welded to a bar of soft iron half-an-inch square, and cut
off, leaving sufficient to form the “shoulder” or “bolster,” A, and
the “tang,” B, fig. 1, which is first made by the hammer and then
beaten into a sort of mould or die. The blade is finished as far
as can be done with the hammer, made red-hot, and thrown into cold
water, which hardens the steel, and then “tempered” to a full blue
color (see “Steel”) after which it is fit for grinding. Razors and
penknife-blades are made of fine steel, and are forged and hardened
as above, but the tempering is effected by arranging them in rows
with their backs downwards on a plate of hot iron till the color
appears on their surface indicating the temper they have received,
which for razors is a pale straw color.

Cutlery is ground upon stones of different sizes, according to
the kind of article; for saws, and table-knives, which are to be
ground to a flat surface, very large stones are used, while razors,
which have a curved surface, and penknives, whose blades are very
narrow, are ground upon very small stones. These stones are driven
by machinery with great rapidity, and are arranged over a trough
of water, so that their lower parts dip into it, by which plan the
stone is kept wet; if it were used dry, the steel would get too
hot to hold, and the temper of it be injured. The article to be
ground is held at the top of the stone. When ground, the goods are
“glazed” by means of a wooden wheel the edge of which is smeared
with emery-powder, and finally, if they are to be polished (which
is only in the case of the finest steel instruments), they are held
to the edge of a wooden wheel covered with buff-leather, and charged
with “crocus”--this crocus is a red oxide of iron much used for
polishing all sorts of things, as it is both fine, free from grit,
and sufficiently hard.

  Illustration: FIG. 2. (‡ BALANCE-HANDLE KNIFE.)

What are called “balance-handle” table-knives are those which when
laid on the table, will rest with the blade elevated so as not to
touch the cloth (fig. 2). The object sought in this arrangement, is
to keep the cloth from being soiled, and the manner of attaining it
is simply by making the shoulder project a little and running a small
quantity of lead into the hole of the handle before the “tang” of the
knife is introduced. The blade and handle or “haft” are united by
means of rosin, which is put in powder into the hollow of the handle,
and the tang, being made hot, is forced in, melting the rosin, and
fixing when cool.



  Illustration: FIG. 1. (‡ NAIL WITH SHOULDER.)

  Illustration: FIG. 2. (‡ TACK.)

  Illustration: FIG. 3. (‡ CLASP NAIL.)

  Illustration: FIG. 4. (‡ BRADS.)

  Illustration: FIG. 5. (‡ MACHINED BRADS.)

Nails are made both by hand and machinery, the former being called
“wrought,” and the latter “cut” nails. For making nails by hand, a
hammer and an anvil only are used. The “nailor,” having put several
rods of iron of the required size into the fire to get hot, that he
may use one after the other, and so lose no time, takes one out and
with the hammer beats it to a point, leaving a little shoulder (fig.
1). He then places it (at the part where the dotted line is in the
figure) on a wedge fixed to the anvil, and with a blow of the hammer
divides it; it is taken up by tongs, dropped into a hole in the
anvil, and the shoulder beaten flat; this is called a “tack” (fig.
2), for a “clasp nail” the head is made of a different form by a
particular way of striking it (fig. 3), and the form of the hole in
the anvil determines whether they shall be square or round; wrought
“brads” have the form of fig. 4. These are the principal forms of
nails, but many others are made by soldering shanks to cast heads, as
coffin-nails, and some (chiefly used by gardeners and plasterers for
driving into brickwork) are made of cast-iron. Machine-made nails are
cut by compression from a sheet of iron. Brads are cut out, simply,
as in fig. 5, which uses up the whole of the iron without any waste,
and requires no finishing; but other forms of nails are cut first
into simple wedges, and have the heads finished afterwards either by
the blows of a hammer or by compression.

  Illustration: CUTTING BRADS.

Most nails are made flat or chisel-shaped at the point, that they may
not split the wood. In driving a nail with a flat point, the length
of the point should be placed across the grain of the wood, and then
it will hardly ever split it, but if otherwise, the nail, acting as a
wedge, opens the grain and splits the wood.


  Illustration: (‡ SCREW MOULD.)

The screws used by carpenters, smiths, and others, for fastening wood
or metal-work together, are generally made by machinery. A piece of
wire of the required thickness and length is first cut off, which is
then placed in a hole or mould, with its upper orifice “countersunk”
as in the annexed cut, and the head of the screw is formed by beating
the upper part of the piece of wire into the counter-sinking of the
mould. It is then called a “blank,” and a number of these blanks
are dropped into holes bored round the periphery of a wheel which
revolves slowly against a small circular saw driven with great
rapidity, and cutting a “thread” or slit in the head of each blank
in turn as it comes into contact with it; the wheel continuing
to revolve, each screw when it gets to the bottom drops out, so
that the holes when they again arrive upwards are ready to receive
fresh blanks. The worm, if cut by hand, is made by means of a die
of hard steel, having a hollow screw cut in it, which is screwed
slowly by a backward and forward movement on to the blank, cutting
it into a “worm;” when this is done by machinery, the die is held
fast while the screw is worked by a rotatory movement into it. The
best screws for wood are slightly tapered, which enables them to be
driven much more easily, while they hold equally fast. Large screws
for mechanical purposes are cut by a “lathe,” the bar revolving
whilst a cutter is held to it, and moved onwards by a pattern screw.
Small screws for various purposes can be easily cut by means of a
“screw-plate,” having holes of graduated sizes cut inside into hollow
screws, which is placed on the end of the wire, and gently turned
round till it is sufficiently cut.


  Illustration: PIN-MAKING MACHINE.

  Illustration: COIL FOR THE HEADS.

Pins are made from brass wire drawn out in the usual manner (see
“Wire-drawing”). It is first straightened and then cut off into
lengths sufficient for two pins; these are pointed at each end
by holding them to a wheel, about two or three dozen at a time,
turning them all round at once by means of the thumb and fingers.
The wheel is not made of stone, but of steel, having the edge cut
into fine notches like a file (see “File-cutting”). After the wires
are pointed at each end, they are cut in the middle. The heads are
made by coiling some brass wire round another piece of wire exactly
the size of the pins for which they are intended, and with a sort
of chisel cutting off two of these coils at a time. The accompanying
figure represents the coil to be cut up into a string of heads, and
one of them separate. These are fixed on to the pointed wires by a
machine acting by means of a lever, by which they are compressed into
the right shape and at the same time made to hold on tightly. The
pins are then cleaned by boiling in some weak acid or a solution of
tartar, and have next to be “tinned” or “whitened,” which is done
by placing them in layers with grain-tin and cream of tartar, and
boiling them for some time till they are coated with the tin; thus
they are truly “electro-plated,” although at the time when this
process was invented no knowledge of electro-plating existed, and
the theory of the process was not understood. The pins are afterwards
cleaned and brightened by shaking them in leather bags with bran,
which is afterwards blown away by a blowing-machine; the pins are
then placed in papers (folded by a sort of crimping-machine), which
are put into a kind of vice, having a number of notches cut in it
corresponding to the number of pins to be stuck in one row, and
into these notches and through the paper ridges the pins are rapidly
passed by children.

In some manufactories pins are made entirely by machinery, and
these are the “solid-headed pins,” or pins which have the head
formed out of the same piece of wire as the body, which is chiefly
effected by compression, and in order that this may be readily
done, the wires are previously softened by heat, which is one of the
principal objections to their general use, as, in consequence of this
softening, they bend too readily.


  Illustration: DRILLING THE EYES.

The manufacture of needles is one of those arts in which manual
dexterity is acquired by minute subdivision of labour, each artisan
performing only a small part of the process, but so often, that the
most wonderful rapidity and accuracy are obtained, insomuch that
although each needle has to pass through nearly 150 hands (together
with expensive machinery) before finishing, yet they may be bought
at an astonishingly low price.

  Illustration: (‡ STRAIGHTENING PLATE.)

The following is an outline of the process of manufacture. The wire
is first selected, of the best steel and of a proper size, then
wound round a cylinder some fifty times, and the coil is cut in two
places opposite to each other through all the wires. These wires are
placed together in bundles several feet long, each containing about
a hundred wires, which are then cut up into lengths sufficient for
two needles by a pair of shears worked by powerful machinery. As
the wires are crooked, they have to be straightened, which is done
by packing them in bundles and enclosing them in two iron rings
so that they may be rolled forcibly backwards and forwards between
steel plates with grooves cut in them to receive the projecting
rings, and this straightens them thoroughly. The wires are next
ground to a point at each end by holding them, a dozen or two at a
time, against a revolving stone, to which they are pressed with a
piece of leather, at the same time turning or twirling them between
the thumb and fingers; when pointed, they are cut in two by a gauge
which divides them in the middle, and the blunt ends are spread out
in the form of a fan on a small anvil by the thumb and finger of
the left hand, several at one time, and flattened by the blow of a
small hammer. This flattening makes the ends too hard for piercing,
so that they have to be softened by being made red-hot and slowly
cooled; they are then pierced by children, who lay each needle on
a piece of lead and with a small punch and hammer strike out the
eye, but in nearly all cases the eye is drilled, in which case the
wire is held for an instant to the point of a small drill turned by
machinery. The groove which leads to the eye is made either by the
stroke of a small file or by compression, and the end is next rounded
off. In some needles the eyes and grooves are made by punching two
in the middle of a wire, which is afterwards divided. The needles are
tempered, by placing some thousands of them on an iron plate which
is made red-hot, and then throwing them suddenly into a vessel of
cold water; they are by this means made too hard, and have again to
be slightly heated to give the proper degree of temper and toughness
(see “Steel”), which is done by putting them in boiling oil. They
have next to be polished, and this is the most tedious part of their
manufacture. The needles, to the number of about a hundred thousand,
are packed, together with oil and emery-powder, in a strong sort of
bag, so that they all lie side by side, and several of these bags
or bundles are rolled backwards and forwards between wooden beams in
such a way that every needle rubs against others, and the friction
thus produced grinds them bright and smooth. After a time they are
taken out, and the black paste formed by the emery-powder, oil, and
steel, is cleaned off by putting them into saw-dust, and turning
them in a barrel fixed in a frame for the purpose; the saw-dust and
dirt are then blown away by a blowing-machine, and the needles again
undergo the same process several times, using finer emery-powder each
time, so as to polish them; after which they are scoured with soap
and water and wiped dry by rolling them in dry wash-leather. They are
now perfectly bright, every roughness rubbed off, and a finish being
finally given to the points by hand on a hone which turns round, they
are packed, twenty-five in each paper, for sale.


Tubes of lead and brass are cast in short and thick pieces, and then
drawn through holes in a draw-plate, similarly to wire, but having
a rod or “mandril” passed through the length of the tube to keep the
hollow of the right calibre.

  Illustration: TUBE DRAWING.

Iron tubing for gas and water pipes, if more than about two inches
in diameter, is cast; but smaller, or “service-pipes,” are made of
wrought iron plate rolled on a mandril, and welded at the edges by
being drawn at a white heat through a draw-plate.

                              STEEL PENS.

  Illustration: SPLITTING THE PEN.


  Illustration: BENDING THE PEN.

Steel pens, which have almost superseded quill pens, are made in
great quantities, and, like needles and pins, can only be produced
at a sufficiently low price to meet the requirements of the people,
by those who have erected buildings and fitted up machinery so as to
make the process sufficiently rapid to be cheap. The steel is first
selected of the proper quality, and rolled out into sheets of the
thickness required and of breadth sufficient for the length of the
pens to be made; these are punched out of the proper shape by a punch
worked by a screw, which cuts out a piece at every blow, and also the
perforation which terminates the split. The maker’s name or any other
device is stamped on this flat piece of steel, called a “blank,”
which is then coiled up into the shape required (whether a “barrel”
pen or a “nib”) by a sort of press, worked by a girl, as seen in the
engraving, and the split made by a machine, also engraved. In both
these machines the screw is worked with the left hand, while the
right is engaged in placing the pens under it and pushing out the
pen with the finger after it is bent or slit, these operations, from
constant practice, being performed with great rapidity. The pens have
next to be tempered, by being made red-hot and then thrown into water
or oil, and are afterwards polished by putting them into a barrel
with fine sand, which is turned round by a windlass for several
hours. The nibs or points are then finished at a stone which turns
round, and a varnish of a brown color--made by dissolving shellac
and asphaltum in naptha--is given to the surface to keep them from
rusting. Sometimes the surface is “blued,” which is done by heating
the pens on an iron plate till the blue color appears (see “Steel”).

Pens are sometimes made of other metals besides steel, as brass, or
zinc, and sometimes of gold. Those made of gold are, of course, too
expensive for general use, but as they are never corroded by the ink,
they last a very long time, and can always be cleaned by washing; and
as the whole wear is at the point, this is tipped with an alloy which
is exceedingly hard.

                       ARTS AND TRADE PROCESSES.

                       WOOD AND PLATE ENGRAVING.

  Illustration: WOOD ENGRAVING.

Engraving consists principally of two kinds, that in which the design
is made to project, and that in which it is cut in or indented; the
first kind is used in wood engraving, and in engraving metallic or
wooden blocks and cylinders for calico printing, the other is called
“plate engraving,” and is used to produce copper, steel, and zinc
plates for printing.

In wood engraving a block of box wood is used, or several pieces are
screwed or tongued together in order to make a block of the required
size, for the box wood must be cut across the grain, therefore large
blocks are not easily procured. These blocks are about an inch in
thickness, so that they may range with type and be printed with it,
they are made perfectly smooth on the face, which is rubbed with a
little flake-white and Bath brick, to give it a whitish and slightly
roughened surface. On this prepared surface the design is drawn with
a black-lead pencil, and the block is then put into the hands of the
engraver, who cuts away--to the depth of about one-twentieth of an
inch--all those parts which have not been blackened by the pencil,
leaving every line and dot of the drawing projecting, and this serves
as a sort of stamp or type, to print from. (See “Printing.”) In this
way the illustrations to the present work are produced.

In plate engraving the design is copied from the original and cut
into the plate in a manner quite opposite to that of engraving on
wood; for every line intended to be printed, instead of projecting,
is cut in with a sharp edge, so that they may be filled with ink,
instead of being covered, as in wood engraving. When the design is
formed entirely by lines, it is called “line engraving,” and when
formed by dots, it is said to be “stippled,” and these two kinds are
often combined in the same plate. There is a process for engraving
plates, called “etching,” by which the lines or dots on the plate
are not made by cutting, but are corroded or eaten in by the chemical
action of nitric acid; and few plates are now produced by the graver
alone, the design being first etched and afterwards finished off by
the graver, but some are produced by etching alone, whence they are
called “etchings.” The process of etching is as follows:--The surface
of the plate is made smooth and bright, then heated, and afterwards
coated with a mixture of asphaltum, wax, and mastic--called
“etching-ground”--a ball of which is tied up in a piece of silk,
rubbed over the hot plate, and dabbed with a dabber till a smooth
layer or coating is formed all over it; it is “smoked” over the flame
of a candle, to blacken it, and the result is a smooth black varnish,
which covers the surface of the plate, and is capable of resisting
the action of nitric acid. On this surface the design is drawn with
an “etching-point,” a steel instrument which cuts or scratches quite
through the etching-ground, exposing the surface of the copper at the
bottom of each scratch. When the design is finished--in hues or dots,
according to the style required--a ridge or border of wax is made
all round the plate so as to form it into a sort of shallow tray, and
into this the nitric acid, mixed with a little water, is poured, and
carefully watched till in the judgment of the engraver it has bitten
into the plate sufficiently for the fainter parts of the design.
The acid is then poured off, and the plate washed and dried, after
which the parts intended to remain most lightly etched are stopped
out with varnish, and the acid again poured on, to corrode the lines
left exposed to its action more deeply. This is repeated two or three
times, according to the nature of the design, when the plate is again
heated, to melt the etching-ground, and the whole is cleaned off with
turpentine. The plate may now be used to print from, or it may be
further finished by the “graver,” “burnisher,” or “dry point,” which
is simply a point of steel used to make very fine and faint scratches
instead of cuts, for the graver cuts out the piece of copper, while
the dry point merely indents it.

There is another kind of plate engraving, called “mezzo-tinto.” This
is done by first covering the whole plate with a rough granulated
surface--called a “mezzo-tint ground,”--by means of a sort of notched
chisel, called a “cradle” or “grounding-tool,” which is rocked to
and fro over the surface in every possible direction, till the whole
is covered with minute dots; so that if it were then used to print
from, it would produce an even dark surface. On this ground the
engraver works with a “scraper,” scraping gradually away all those
parts which are to appear as lights in the finished picture, and the
more the ground is scraped away the lighter will be the tint, till,
finally, those parts which are to be quite white are scraped smooth
and burnished, so that they shall hold no ink at all. In this way the
engraver proceeds till his design is finished, trying the effect from
time to time. This kind of engraving is often combined with etching,
producing greater sharpness of outline than mezzo-tint alone.



This is the art of producing designs upon stone in such a manner
that impressions may be printed from them. It is often miscalled
“engraving on stone;” properly speaking, it is not engraving, but a
process depending on the want of affinity between watery and greasy
matters, the design being made with a greasy substance, either in
the form of ink or crayon called “lithographic chalk,” as follows.
A close-grained stone called lithographic stone (a kind of magnesian
limestone) is ground perfectly even on the surface, and (if for being
written upon) polished with pumice-stone, or (if for being drawn upon
with chalk) grained with fine sand; the design is drawn with chalk
or ink, each of which is made up of greasy materials--wax, soap,
and asphaltum, colored with lamp-black. When the design is made,
the stone is etched--washed over with a weak mixture of nitric acid
and water--which answers three purposes; it very slightly bites away
the stone in all places except where it is covered with the ink or
chalk, it smoothes the grain in the same places, and it converts the
soap of the ink or chalk into grease. We have now the surface of the
stone quite wet, except where the design is, which, being greasy,
keeps quite dry. The stone, placed in a press, is rolled over with a
roller smeared with greasy printing ink, which will not adhere to the
wet stone, but it readily does to all parts of the design; a piece
of paper is placed over the stone, and a flap of leather covers it;
along this leather the scraper of the press is brought very forcibly
when it is worked, and on removing the paper an impression is found
to be transferred to it from the stone. This process is repeated
again and again, many hundred times, without much injury to the
original design.

Colored lithography, called chromo-lithography, is produced by using
several stones consecutively (each transferring a separate color), so
that the design shall be complete when the whole are printed.


The art of printing consists in producing impressions from a pattern
or types--cut out and projecting, or engraved and indented--by
smearing the projecting parts or filling up the indented markings
with ink, so that impressions, to any number, and exactly resembling
each other, may be taken from them. Printing is comparatively a
modern invention, although impressing or taking impressions from
seals is one of the very oldest. It is divided into two kinds,
plate-printing and surface-printing. Printing from type or blocks
having the marks to be impressed raised, is called surface-printing,
while that in which the lines or marks are cut in, is called

  Illustration: PRINTING-PRESS.

  Illustration: INKING-TABLE.

In surface-printing, when types are used, they are packed up closely
into masses and wedged together in iron frames, so that they form,
as it were, solid blocks; the types or wood-blocks when required to
be printed from are placed in the press, and rolled over by a roller
smeared with printing-ink--this roller is coated with an elastic
substance made of glue and treacle, and resembling India-rubber.
It is worked to and fro on the “inking-table” (a smooth iron slab
fitted with a receptacle for ink), in order that the ink may be
evenly distributed over its surface--a point to which great care
and attention, and no little skill, on the part of the workman, is
directed. The ink, being rolled over the type, covers and adheres to
the surface of the projecting parts. The paper is placed on a frame
turning upon a hinge, and is secured in its place by another frame
brought down upon it. These frames, with the paper, are now turned
down upon the blackened surface of the type, and the whole--paper
and type--passed under the printing press, where, by the working
of a handle, a piece of iron is caused to descend and press evenly
and with great force upon them. On being withdrawn, and the frames
opened, the paper is found to have received a perfect impression,
in ink, of the type upon which it was impressed. This process,
of course, can be repeated to any extent, and as many impressions
produced as may be required.

In plate-printing, the plate is first warmed, and all the engraved
parts are filled in with ink, the superfluous ink being wiped off,
and the surface cleaned bright by using a little whiting (which is
rubbed on the hands), leaving only the indented parts full of ink.
The paper (in a damp state) is then laid on the plate, with a fold
or two of flannel over it, and the whole is carried, by turning the
handles of the press, between two rollers, which compress the plate
and paper together so forcibly that, when removed, the ink is found
to have left the plate and attached itself to the paper, forming an

Printing is now in very many cases done by machinery, worked by steam
power, so that a very large number of impressions can be produced in
a very short time, as in the case of newspapers, the whole impression
of which (amounting to many thousands) is printed in a few hours.

Printing in colors of various tints, so arranged as to form a
picture, has lately been much resorted to. The usual method pursued
is to print one color, and when that is dry, to print the next, and
so on till the picture is complete; but a machine has been invented
by which many colors may be printed at one time.



  Illustration: FIG. 1. (‡ REDUCED VIEWER IMAGE.)

  Illustration: FIG. 2. (‡ LENS ARRANGEMENT.)

  Illustration: FIG. 3. (‡ IMAGE TRANSFERENCE.)

The principle of this art depends upon the property which certain
chemical preparations (chiefly those of silver) possess of being
blackened by exposure to light while in contact with organic matter,
and that in so gradual a manner that every degree of shade may be
represented. Now, as the various appearances of everything we see
depend upon the effects of light and shadow (together with the
peculiar color of the objects themselves), it follows that if these
lights and shadows can be transcribed, we shall have a representation
of the objects, minus their own proper colors--and this is what
photography effects. For the purpose of bringing the objects to be
taken within a small compass, and for increasing their vividness, an
instrument is used called a camera, in which there is an achromatic
arrangement of lenses (shown in figs. 2 and 3), which produces a
picture on the paper or glass to be affected by the light, in the
same way that a common magnifying glass will, if held at a proper
distance from a piece of paper, but much more perfectly (fig. 1).
The effect of this camera-picture on the paper or glass when properly
prepared and subjected to its influence, is to darken the paper in
all those parts which in the camera-picture are the brightest, and
to leave unaffected those parts which are the darkest, thus producing
what is called a “negative picture,” having the lights represented by
shadows and the shadows by lights. This is used to form the true or
“positive” picture, which is done by placing the negative on a piece
of prepared paper, and exposing it to the light. The negative having
been made partly transparent by wax (as will be further explained),
and the parts of the picture which are to be dark being left
transparent, the light passes through them and blackens those parts
of the prepared paper behind, while those which are to be light,
being dark in the negative, exclude the light and thus preserve the
paper at the back from being darkened; the paper is thus affected in
the contrary way to the negative, and is therefore a true picture of
the lights and shadows of the object copied. This is the principle
of all photographic pictures, but with numberless variations in its
practice; it would therefore be impossible here to describe the
particulars of each process, beyond the most simple.

  Illustration: FIG. 4. (‡ PHOTOGRAPHIC PLATE.)

Perhaps of all the various arts discovered by man, this is the
most beautiful, producing a perfect likeness of any being or object
in a few moments, and with a truth not to be equalled by years of
study and practice in other ways. One of the earliest discovered
and simplest modes of forming a sun picture consists in using
the object itself (where this is possible) to form the negative.
This can only be done when the object is flat, as a manuscript, a
picture, a leaf, or a piece of lace-work; a piece of paper washed
over with a solution of common salt, dried, and again washed over
with a solution of nitrate of silver, will answer for this purpose;
it should be prepared by candle-light, as daylight blackens it, and
it should be kept from the light till the moment for use. If this
paper, having the object to be copied placed on it and kept flat by
a piece of glass pressed firmly on by a contrivance shown in fig. 4,
be exposed to the sunshine, it will be blackened in all places but
those kept from the light by the darker parts of the object, and the
lights and shadows will vary accordingly as the various parts of the
object itself are more or less transparent. When the effect has been
produced to a sufficient degree, the paper should be removed and
at once washed in a solution of hyposulphite of soda, which removes
all the superfluous silver (which otherwise would be darkened by the
light); when removed from the hyposulphite of soda it should be well
soaked in clean water. This when finished is a true negative picture
of the object, and can be used to produce the positive. The negative
should first be made partly transparent by brushing it over with some
melted white wax, then placing it between folds of blotting paper
and passing a hot iron over it, the blotting paper will absorb all
the superfluous wax, and the negative will be fit for use. A piece
of paper prepared like the first with salt and nitrate of silver,
should be placed against the front of the negative, kept smooth by
a piece of glass, and exposed to the sunshine for a quarter of an
hour or more, taking care that the back of the negative is exposed
to the light and the prepared paper behind; a positive picture
will be produced, which is to be at once treated with a solution
of hyposulphite of soda and washed with clean water, as was the
negative. Any number of positive impressions may thus be produced.

The “Calotype” or “Talbotype” process may be performed as follows,
recollecting that all these processes must be conducted by
candlelight, or in a room having the window covered with yellow
silk, or some other substance excluding white light. Select a piece
of paper of an even surface and structure, such as Whatman’s paper,
brush it over with a solution of nitrate of silver--about sixteen
grains to an ounce of water--and let it dry, then fold up the edge
of the paper all round and dip the surface to which the solution
of nitrate of silver has been applied into a solution of iodide
of potassium--an ounce to a pint of water--contained in a shallow
vessel, and let it partly dry; float it for a quarter of an hour in
a vessel of clean water, moving it gently about so as to remove all
soluble matter, and hang it up by a corner to dry, taking care to
let nothing touch the surface. When about to be used, this paper must
be brushed over (using a soft camel-hair brush) with a mixture, in
equal quantities, of a solution of nitrate of silver--fifty grains to
an ounce of water--and a saturated solution of gallic acid, forming
what is called the “gallo-nitrate” of silver. Leave this solution on
the surface for ten minutes, and again immerse the paper in two or
three successive portions of pure water, moving it to and fro; this,
when nearly dry, is in a fit state to place in the camera, and is an
exceedingly sensitive paper, which in a good light will be affected
in a few seconds. When the image has been impressed by the camera,
the paper should again be brushed over with the gallo-nitrate of
silver, and held either near a fire or a plate of hot iron, so as
to receive a gentle warmth; the impression will now come out, of
a deep rich colour. Dip it into warm water for a few minutes, and
put it into the hyposulphite of soda bath--an ounce to a quart of
water--from which it is finally removed and placed in a large vessel
of pure water for several hours. When dry, it is complete, forming a
good negative, which, when waxed, may be used to print positives as
before described.

The “Collodion” process is conducted as follows. Having selected a
plate of glass of the required size and of good quality (patent plate
answers well), clean it thoroughly with rottenstone and spirits of
wine, and polish it with a clean dry linen cloth; then hold it on
the tips of the fingers and thumb in a horizontal position, pour
upon it a small quantity of the “iodized collodion,” and so incline
it from side to side, that all the surface shall be covered with the
collodion, that which is superfluous being returned to the bottle
by pouring it from one corner of the glass. In a few minutes the
coating of collodion will be dry, and should form a perfectly even
surface, without air spots or uneven markings. The iodized collodion
is made by dissolving gun-cotton in ether, and adding spirit of wine
and iodide of ammonia. The glass plate coated with collodion is now
dipped into a solution of nitrate of silver--thirty grains to an
ounce of water--and allowed to remain two or three minutes; when all
the superfluous fluid has drained off, the plate is ready for use,
and is extremely sensitive to light. When the impression has been
produced by the camera, a solution of pyro-gallic acid, mixed with
a little acetic acid, is poured over the surface, which brings up
the image; when this is developed to a proper extent, the surface
must be washed with clean water and afterwards with a solution of
hyposulphite of soda, which dissolves out all the silver from those
parts not darkened by the light in the camera, leaving the glass in
those parts quite transparent. A negative is thus obtained fit to
print from in the usual way, but glass being more transparent than
the waxed paper, it produces a more perfect positive. The surface
thus prepared should be coated with a varnish, made by dissolving
amber in chloroform, which is done by pouring it on and decanting the
superfluous varnish similarly to the mode of coating with collodion;
this varnish dries in a few minutes, and preserves the surface from
injury. Sometimes these negatives are converted into positives,
instead of being used to print from; in these cases the surface is
coated with black japan, and the collodion, having a whitish surface,
owing to reduced silver, shows up in comparison with the black
varnish which is seen through the transparent parts. These positives
are extremely sharp and well defined.

The “Daguerreotype” process consists in forming the image on the
surface of a metallic plate (copper coated with silver), which
is first polished to a perfect surface like a looking-glass, then
exposed to the vapour of iodine in a properly-constructed box,
afterwards to the vapour of chloride of bromine, and again to the
vapour of iodine; this produces a thin film of a mixture of bromide
and iodide of silver, which covers the surface of the plate, and is
very sensitive to light, which reduces the iodide and bromide to the
metallic state in a few seconds. The plate is then exposed to the
action of the light in the camera, and when sufficiently affected,
exposed to the vapour of mercury, the mercury being put into a box,
and heated by a spirit lamp; the mercurial vapour adheres to all the
parts of the silver reduced by the light, and forms a light-coloured
amalgam, corresponding to the lights of the objects represented. The
plate is then washed with a solution of hyposulphite of soda, which
removes all the bromide and iodide of silver not reduced by the
light, and exposes the highly-polished surface of the silver, which
forms the shadows of the picture; this is now “fixed” with a very
weak solution of chloride of gold and hyposulphite of soda, which is
poured over the surface and heated while there by applying the flame
of the spirit lamp to the back of the plate for a minute or two; the
solution is then poured off, and the picture when washed with water
is complete.


  Illustration: FIG. 6. (‡ STEREOSCOPIC SLIDE BOX.)

Many photographic pictures, whether Talbotype or Daguerreotype, are
taken double for the “stereoscope” (fig. 5). This is an instrument
having two lenses (one for each eye), through which the two views
may be seen. The principle is this:--Every object is seen by each
eye in a slightly different view; for instance, if you look at the
edge of a print--placing the printed part towards your right hand,
and bringing the edge in front of the lace between the two eyes--by
closing the right eye, the left will see the back of the print only,
but by closing the left eye the front of the print may be seen, and
the front only. The stereoscope presents both of these views to the
eyes at once, as when we look with both eyes, and the objects have
therefore the appearance of projecting, as do read objects. To take
these views, the slide after one view is taken is moved about four
inches on one side, and then the other is taken; the distance moved
corresponds to the distance between the eyes, and therefore produces
the correct view for each. The box for the stereoscopic slide is
shown at fig. 6, in which A is the first view to be taken, while the
other half of the glass is kept dark, at B, and C is the shutter for


  Illustration: FIG. 1. (‡ SEWING-PRESS.)

The sheets of which a book is to be made, when properly folded (into
half for folio, quarter for quarto, &c.) are pressed flat in a press
and then placed, one or more at a time, on a board behind a frame
called a “sewing-press” (fig. 1), which has pieces of string or cord
(called bands) tied in an upright position, and against these the
folded edge of the sheet is brought in such a manner that the bands
may be sewn on to the back of the sheet by a thread being passed from
the inner part of the folded sheet to one side of the string, then in
again on the other, and so on for each cord till they are fastened on
to the first sheet, when another is placed on the top of the first
and sewed in the same way.

  Illustration: FIG. 2. (‡ PLOUGH.)

When all are sewn, the back is glued thickly over, and the book is
fixed between two boards in a press and the back beaten till it is
curved; the sides and front are then cut smooth with an instrument
called a plough (fig. 2), which works in the grooves of a press where
the book is fixed, and a knife (which forms part of the plough) being
passed backwards and forwards, cuts through the edges of the book and
makes them smooth.

  Illustration: FIG. 3. (‡ CUTTING WITH SHEARS.)

  Illustration: FIG. 4. (‡ ENGRAVED TOOLS.)

The covers--made of a thick pasteboard called “millboard,” and cut
to the right size by shears (fig. 3)--are fitted to the sides of the
book, the ends of the string-bands are then passed through holes in
the sides of the boards, and are beaten flat and glued down. The book
is then covered with cloth, vellum, paper, or leather, as desired,
and finally pressed in a powerful press to make the leaves smooth.
Ornaments, such as gilt bands or corner decorations, are produced
by gold-leaf put on and stamped by means of tools engraved at their
ends, or, where the margin is to have a pattern or line on it, by
means of wheels with engraved edges (fig. 4). Leather-backed books
are glazed on the outside with white of eggs, which forms a kind of
varnish when dry.

  Illustration: FIG. 5. (‡ BOOK MOULD.)

  Illustration: FIG. 6. (‡ GLUED BACKING.)

  Illustration: FIG. 7. (‡ SEWN BACKING.)

Books have lately been bound without any sewing, by “Hancock’s
Patent” process. This consists in having all the sheets folded into
double leaves, and the folded parts all brought evenly to a curved
form for the back of the book by means of a mould or hollow cut in
the edges of two upright boards (fig. 5); they are then removed to a
press which holds the book tightly together, leaving this curved back
just projecting in front of the press-boards. The back is smeared
with India-rubber dissolved in naptha, which when dry is several
times repeated, till a coating of sufficient thickness is produced,
when it is covered with cloth or linen and the book is ready to be
finished in the usual way; thus the sewing is quite dispensed with,
for the folded edge of each sheet is held to the next one by a thin
coating of India-rubber. This plan allows great freedom in opening,
and for thick books produces a level surface much superior to those
bound in the old way (figs. 6 and 7).


  Illustration: “GROUNDING” THE PAPER.

This name is given to the process for making paper-hangings for
the decoration of the walls of apartments. The colors used in this
process are all what are called body-colors, or those which are
not transparent, but mixed with whiting or prepared chalk and a
small quantity of size to the required tint. The colors are applied
by means of wooden blocks having their surfaces so engraved that
the pattern shall project; all the pattern is not engraved on one
block, but only that part of it which is to be of one color, and the
number of blocks required depends upon the number of colors in the
pattern--usually three or four. The paper is printed in pieces of
about twelve yards in length; these are first “grounded,” that is,
colored all over with the color intended to form the ground of the
pattern, and hung on poles to dry. The blocks are applied to a sort
of sieve, with a leather bottom, on which some color is spread with a
brush, and when the block is taken up sufficient of the color adheres
to give a good impression on the paper. Each block has a register,
which produces a little mark at the edge of the paper, and serves as
a guide in applying the succeeding blocks, so that when printed they
fit into and correspond with each other.


“Flock” paper is produced by printing part of the pattern in a
varnish of boiled oil and whiting, and laying the paper so printed in
a trough or tray over which the flock is sprinkled. The flock is made
by grinding shreds of cloth of the required color in a mill. This
rough surface gives a very rich and velvety appearance to the paper.

                           FLAX MANUFACTURE.

Flax, before being spun into “yarn” for weaving linens, undergoes
several processes, to separate its fibres sufficiently, and to rid
them of all short and uneven portions. The first operation consists
in a kind of fermentation called “retting,” the stalks of the flax
being packed up in bundles and steeped in water, or exposed to
damp air, spread out, till they soften and become fit for the next
process, called “breaking.” This is done by contrivances which beat
and bruise or give it several sharp bends, the object being to break
off the outer part, called the “boon,” and leave the inner fibres
or “harl” free; this, which is the part to be used, is thus in a
great measure freed from the outer part, but to do so completely it
is scraped with a blunt kind of knife till all the “boon” is gone.
The next process is called “heckling,” a sort of combing, in which
the flax is dragged through brushes of fine iron spikes, used closer
and closer till the flax is combed out quite fine and perfectly free
from knots or uneven pieces, being beaten from time to time to break
or separate the fibres. During this process much of the short and
uneven fibres collect in the “heckle,” and is called “tow,” which
has to be separated and the fibres arranged similarly to “carding”
cotton (see “Cotton Manufacture”). The flax has now to be drawn
out, doubled, and drawn out again into “slivers,” also in the same
way that is described for drawing out cotton, and these slivers are
finally twisted into yarn, being previously wetted to take off their
stillness. The yarn is then wound upon bobbins, forming the material
from which linens, muslins, and other goods are woven.



  Illustration: PAINTING.

Of glass-painting there are two kinds, the one being known as
“painted,” and the other as “stained glass.” In the former the design
and coloring are produced by the application, to the surface of
colorless glass, of transparent pigments of various colors, which,
under the action of the furnace, become vitrified and incorporated
with the body of the glass. In this manner of glass-painting--which
is capable of none of the powerful and rich effects of color
peculiar to stained glass--it will be understood that the process
much resembles the practice of the picture painter. In the one
case canvasses are used, and in the other sheets of colorless glass;
the picture-painter using colors mixed with oils and varnishes,
the glass-painter colors made of earths and metals, and mixed with
a flux, which, under the action of fire, vitrifies his work. It
is quite possible to produce a large composition, containing many
figures and a great variety of colors, on but few pieces of glass.
Indeed, one of the necessities of making a window of “painted glass”
in several pieces, is simply to avoid the danger of breakage, in
using sheets of too large a size. The various pieces are joined
together with lead work of precisely similar nature to that which
is used in the diamond “quarry-glass” seen in the windows of country

  Illustration: CUTTING ROOM.

  Illustration: GLAZING THE WORK UP.

  Illustration: FURNACE.

“Stained glass” differs from glass-painting in very many particulars.
In this case the colors, instead of being laid on with a brush as in
painted glass, are formed in the substance of the glass itself. This
necessitates the use of separate pieces of glass for every color or
tint required, and thus the process in some degree resembles that of
mosaic work, a term, indeed, which is often applied to this kind of
glass-painting. The first process in producing a stained glass window
is the making of the design, colored or otherwise. This office is, of
course, that of the artist, who is at the head of his establishment.
From his design, which is always made to a small scale, the
full-sized drawings or cartoons are made, by the artist and his
assistants. When finished, with all details and colors determined,
they are placed in the hands of the glazier, who cuts with his
diamond the glass of the required shapes and colors, respectively,
so that when his task is complete, the window, as laid out on the
“cutting-board,” much resembles a child’s puzzle--each piece of
glass, although often of the most complicated form and minute size,
fitting with accuracy to the other pieces by which it is surrounded.
This process completed, the next course is for the painter to produce
on the blank piece of colored glass prepared for him by the glazier
the various outlines and shadings, as represented in the cartoon, it
being his business to take such means as will ensure the production
of a faithful copy. This outlining and shading is produced by the
use of a brownish or warm grey tint, which is generally used a little
over all the colors represented in the work. There are some slight
gradations of these brown tints used occasionally, principally when
it is desired to paint the flesh shadows with some separate tint,
but generally it may be understood that the office of the painter
in stained glass is not to produce the colors, but by his brown
shadowing to bring out the design and forms of the composition.
When the glass, thus shaded and outlined, has passed through the
furnace--where the shadows are vitrified--and been allowed gradually
to cool, the glazier fits it together with lead-work, soldering in
all the pieces, then the whole is made weather-tight, and the stained
glass window is complete.

                          COTTON MANUFACTURE.

  Illustration: MULE FRAMES.



  Illustration: LAP FRAME.

  Illustration: CARDING MACHINE.

  Illustration: DRAWING MACHINE.

After the cotton is sorted, and the grosser impurities picked from
it by hand, it is dressed by the “combing machine,” or subjected to
a machine (called a “willow,” as it was originally a sort of basket)
contrived to open out and mix the cotton well together, at the same
time blowing off all dust and allowing the heavier impurities to
fall through a grating. The next process is called “scotching,”
and the machine is sometimes called a “blowing machine.” From this
the cotton is passed in a “lap” or thin layer, which is beaten as
it passes, to get rid of dust, and a draught of air produced by a
blowing apparatus assists in the same object; it is thus entirely
freed from all impurities. The cotton is then carried to the “carding
machine,” for the purpose of having its fibres all laid parallel with
each other; this machine is, in fact, a sort of comb, and consists
of cylinders having fine wires projecting from their surfaces acting
in different directions, so as to draw out the fibres till they all
lie in one direction, forming a kind of “fillet,” called a “card,”
which is carried by rollers into a tin can and then subjected to a
process called “drawing and doubling.” As the “card ends” are not
yet sufficiently parallel in their fibres, they have to be passed
between three sets of rollers, the undermost of which are fluted
on their surfaces, the upper ones being covered with flannel. These
rollers act in a peculiar manner; the first pair pass the cotton
at a certain rate on to the second pair, which would pass it on to
the third unchanged if they revolved at the same rate as the first
pair, but they are turned a little faster, and therefore stretch
the fillet of cotton at an even and regular rate, and in such a
manner that it is not broken; the third pair, going faster than
the second, again stretch the fillet. After the fillet has passed
through it is doubled, passed through again and again, till it is
quite uniform in its structure, and drawn out by these stretchings
very fine, it is then called a “sliver.” When it is drawn as fine
as the kind of cotton admits, the first twist is given to it by the
“roving” machine, which twists it into a soft card, delivers it wound
on “bobbins,” and it is finally twisted into yarn by the “winding

  Illustration: BOBBIN FRAME.

  Illustration: WINDING MACHINE.

These processes are carried on with great precision and rapidity,
and, by the aid of these machines, one man is able in a day to
produce as much yarn as the most expert spinner by hand could furnish
in a year! Cotton, until about 1760, was all spun by hand. A little
later, James Hargreaves invented the “spinning-jenny,” and Arkwright
afterwards improved the “carding machine;” the “mule-jenny” (see
Heading), invented by Crompton, was a still further improvement.

The cotton, when spun, is called yarn, which is used for weaving
into calicoes and other cotton goods. Cotton thread is made by
twisting (by machinery) two or more yarns into one, which are
afterwards dressed with starch, and wound on reels or into balls.

                         WOOLLEN MANUFACTURE.

Wool is almost exclusively derived from the fleece of the sheep,
goats’ wool being only occasionally used. Wool differs from hair in
possessing a notched surface, giving it the very useful quality of
“felting,” and enabling the fibres to adhere into a mass when pressed
and beaten together, the notches catching into each other. Woollen
articles are chiefly of two kinds, “woollens,” or those partly
felted and made from “short” or “clothing” wools, called “cloths,”
and those made without felting from “combing” or “long” wools, as
“merinos,” “stuffs,” &c. Wool undergoes a numerous succession of
processes before it is complete in its manufacture. It is first
sorted according to the quality required, next scoured and washed in
a warm solution of soap, and then rinsed in cold water, to get rid of
the “yelk” or grease with which the wool is naturally coated. It is
then passed between rollers to dry it, next dyed, and then “willowed”
(this last process is to disentangle the fibres and at the same time
get rid of any dust which may have been mixed with it); afterwards it
is spread out and sprinkled with a small quantity of olive oil being
thoroughly beaten with rods, to spread the oil over the surface of
every fibre. It next undergoes a process called “scribbling,” which
is effected by a machine which combs out the fibres and lays them
in layers, in a parallel direction; the wheels which effect this are
armed on their surfaces with wires and the wool passes from one set
to another, finer and finer, till at last it passes out in threads
or “cards” and these are spun by the “slubbing machine” into “yarns”
for weaving. After being woven, the oil is again washed out with
warm soap and water, and the fabric is then stretched by means of
“tenter-hooks” stuck in a margin or “list” of coarser worsted, left
on each side of the cloth for that purpose, and it is allowed to dry
in this position.

The material is now fit for “felting,” or “fulling,” as it is
called, which is done in the “fulling mill.” The process consists in
thoroughly beating the cloth with heavy wooden mallets or “stocks”
for ten or twelve hours, it being at the same time wetted with soap
and water, and folded into a mass of many layers. This beating causes
the fibres to interlace and adhere together till the cross-bar
pattern made by the warp and weft in weaving is obliterated, and
the cloth has the appearance of a felted surface, which, however, is
rugged and uneven. It is next “teazled,” a process formerly performed
by means of a bundle of thistle-heads--called “teazles”--which were
dragged over the cloth, so as to raise the ends of the woollen fibres
perpendicular to the surface; but this is now performed by machinery,
the teazles being fixed round a roller turning one way, while the
cloth is moved in an opposite direction. In some machines wire
brushes are used instead of teazles. The cloth is next “milled,” or
“sheared,” which is done by stretching it out on a perfectly level
surface, where a pair of circular knives fixed to a wheel work over
it and “shear” off the fibres, leaving the surface perfectly even.
It is now wetted, brushed, and finally dried and packed in a finished


The art of weaving threads of various descriptions is one of the
oldest, and is frequently mentioned in the Scriptures and other
ancient records. It consists in so crossing or interlacing the fibres
that they shall form fabrics fitted for the various requirements to
which they are applied.

Weaving, as now performed by machinery, for the production of what
are called “textile fabrics,” is far too complicated to be here
described in detail, the machines which are used being amongst the
most complicated contrivances of men’s hands. Dr. Ure says of the
weaving of “bobbin-net,”--“It may be said to surpass every other
branch of human industry in the complex ingenuity of its machinery;
one of ‘Fisher’s spotting-frames’ being as much beyond the most
curious chronometer as that is beyond a common roasting-jack.” The
principle is, however, nearly the same, whether performed by hand
or by machinery, but some of the more complex fabrics could only be
produced by hand, and by those few who may have devoted great talents
and years of application to the acquirement of the requisite skill,
whereas a machine once made can be imitated by ordinary workmen, and
itself worked by unskilled mechanics.

  Illustration: FIG. 1. (‡ LINEN WEAVE.)

  Illustration: THE JACQUARD LOOM.

  Illustration: FIG. 2. (‡ HEDDLE RAISED.)

  Illustration: FIG. 3. (‡ SHUTTLE.)

  Illustration: FIG. 4. (‡ TWILLED FABRIC.)

In plain weaving, as in fig. 1, of which linen or calico may be
the examples, the yarn or threads simply cross each other, going
alternately above and below. The thread which runs from end to end
of the cloth is called the “warp,” and that from side to side the
“weft” or “woof.” In nearly all wearing the weft is the same, but in
“figured” or “twilled” fabrics the warp is so arranged that a pattern
shall be formed, as is seen on towels, table-cloths, &c. In plain
weaving, the threads are first wound off, of the required quantity
and length, on a frame called a “warping frame;” they are then wound
on a roller, side by side, and attached to the “loom,” or machine for
weaving, through which they run, also side by side. Near the end they
are attached to what are called heddles, which consist of threads
stretched in an upright frame, having loops near their centres; a
pair of these is used in plain weaving, one half of the warp threads
being attached to the loops of one, and the rest to those of the
other heddle, alternately, thus--first a thread through a loop of
one heddle, then another through a loop of the other heddle, and
so on. These heddles can be raised alternately by a pulley attached
to treadles worked by the weaver’s feet, and it follows, that when
one of the heddles is raised, every alternate thread of the warp
is raised also, a space of a triangular form being left (fig. 2).
Through this space the weaver throws the “shuttle” (fig. 3), which
is a piece of wood pointed at each end, bearing a reel of “weft” in
its centre, which weft-thread unwinds as it is thrown through. The
other heddle is then raised, and the shuttle thrown back again, each
time leaving a line of weft behind it. In this way the crossings of
all plain fabrics are produced, a contrivance being used between each
throw to press the weft close to the former one. If instead of one
half of the warp-threads being up and the other half down at the time
the shuttle is thrown, one only is raised at every fifth thread, the
intervening four being down, and the one that is raised differing
at each throw of the shuttle, a kind of structure is produced called
“tweeled” or “twilled,” such as satin, bombazine, &c.; fig. 4 shows
the appearance of the edge of such a structure. If the warp consists
of alternate threads of different colors, white and blue for example,
it is clear that either color will predominate where the warp thread
of that particular color is most seen. In fig. 5, _a a a a_ represent
white, and _b b b b_ blue threads, and this will show how the pattern
on any structure, although the same on both sides, is blue on the one
side where it is white on the other, as in damasks, or raised on one
side where it is sunk on the other, as in dimity, or diaper.

  Illustration: FIG. 5. (‡ DUAL COLOR WEAVE.)


  Illustration: BLEACHING WORKS.

The chief object of bleaching is to get rid of the natural coloring
matter which always tinges cotton, silk, &c., as produced from the
raw material, and also to get rid of any greasy matters, or stains
from accidental causes. Cotton is not only required to be bleached
when intended to remain white, but also before dyeing or printing,
the colors being thereby rendered more uniform and brilliant. The
oldest method of bleaching consisted in simply exposing the goods,
moistened with water, to the action of light and air, by spreading
them out on the grass, and hence the term “grass-bleached;” but
this is by far too tedious a process for the present day, when the
manufacture is so great and the consumption so rapid.

The process of bleaching cotton goods consists in boiling them first
in water, then in a mixture of lime and water, and then in a solution
of soda, soaking them in a solution of chloride of lime, afterwards
in water acidulated with sulphuric acid, and finally in pure water.
Linens are chiefly bleached by repeated boilings in solutions of
potash or pearlash, and afterwards in chloride of lime; wool by
soaking in warm water, exposing it to the vapour of sulphur, and
finally washing in a solution of soft soap.


  Illustration: DRYING APPARATUS.

Before being printed, it is necessary that all the loose fibres
should be removed from the surface of the goods. This is effected by
“singeing,” which is done by causing the goods to pass over a red-hot
roller, setting fire to the fine fibres projecting from the surface
only, but with a motion too rapid to allow the fabric to be scorched.
This process, and also the apparatus by which the articles are
dried after bleaching, are shown in the accompanying illustrations.
The latter consists of a series of hollow rollers heated by steam,
over which the goods to be dried are passed, a current of air being
admitted to carry off the vapour.



  Illustration: FIG. 1. (‡ PRINTING SCHEMATIC.)

Calico-printing is executed either by hand (with wooden blocks having
the pattern engraved--projecting--on their surfaces) or by means of
machinery. Printing by hand-blocks is a tedious operation, and is now
almost superseded by the cylinder. The hand process is very similar
to that made use of in paper-staining (which see). Cylinder-printing
is a much more rapid process, conducted by means of a brass cylinder
with the pattern engraved on its surface, which is made to revolve
against another cylinder covered with flannel, and charged with color
from a trough into which its lower part is dipped. The calico is
passed over a large cylinder made to revolve in contact with that on
which the pattern is engraved, and which is charged with color from
the one below it. Fig. 1 shows this arrangement, _a_ being the large
cylinder with the calico round it, _b_ the engraved cylinder, _c_ the
color cylinder, and _d_ the color trough. As the engraved cylinder
revolves, it prints the pattern at each revolution, and this is
repeated again and again, to the whole length of the piece of calico.
In some machines there are several engraved cylinders, each printing
its own color, and so arranged that the colors shall fit into the
parts of the design requiring them, the whole making up the complete

  Illustration: AGEING PROCESS.

  Illustration: DRYING ROOM.

Before being printed, the calico is prepared by being passed through
a preparation, called a mordant, capable of fixing the colors, and
preventing them being washed out, and several of these are used,
according to the colors required. The colors are thickened with
paste, so as to prevent them from running into each other when
printed. Muslins, chintzes, &c., are printed in a similar manner to

When the pieces of calico come from the printing cylinders, they are
made to pass upwards through holes in the ceiling to a room above,
where they pass over surfaces of iron heated by steam, so as to
thoroughly dry them; they then descend through the floor into the
printing room, where they are packed. The process called “ageing”
consists in exposing the calicoes to the air for a certain time,
to take off the harshness and stiffness peculiar to new goods.

In some cases the colors themselves are not printed on the goods, the
mordants being used instead, and the whole piece is then boiled in a
vat of dye-stuff, which, however, only adheres to the parts printed
with the mordant, all the rest being easily got rid of by simple


  Illustration: (‡ DYEING PROCESS.)

The art of dyeing does not simply consist in coloring the different
substances; if this were the case, the color would be washed out as
easily as imparted. Nearly all the colors used in dyeing being of
vegetable origin, it is necessary to apply some substances to the
fabrics to be dyed which shall fix the colors in the grain. Of these
(called “mordants”) the chief are acetate of alumina, acetate of
iron, and chloride of tin (substances well known to chemists), which
have the property of making the coloring matter insoluble, so that it
cannot be washed out.

There are various ways of dyeing. If the fabric has to be dyed all
one color, it is dipped in the mordant, dried, and afterwards boiled
in a solution of the dye-stuff. If a colored ground with white
figures is required, then the figures are printed on it with what
is called a “resist,” that is, some substance thickened with gum,
paste, or pipe-clay, which will resist the action of the mordant and
dye-stuff, so that when the fabric is afterwards rinsed these figures
remain white. If the ground is to be white and the pattern dyed on
it, then this is printed with the mordant and the color adheres
only to the parts printed, although the whole be boiled with the
dye-stuff, what little may adhere to the ground being easily washed
out in the rinsing. Sometimes the kind of mordant used determines the
color of the dye; for instance, madder will dye red with the chloride
of tin, and black with the acetate of iron. If we now suppose a piece
of cloth to be printed in lines of acetate of iron, and figures of
chloride of tin, when the whole is boiled in the madder vat, the
cloth comes out with black lines and red figures on a white ground.

Another point to be considered is the kind of stuff to be dyed,
whether cotton, silk, or woollen, or a mixture of either, for what
will take one kind of dye will not always take another, and advantage
is taken of this to dye two colors at once, or part white and part
colored. A table-cover, for instance, woven with worsted and cotton,
can be boiled in various kinds of dye, and produce white and blue, or
white and red, for that dye is selected which will attach itself only
to one kind of fabric, and leave the other.

  Illustration: SCOURING.

Many other chemical qualities of the substances used as dyes, and of
the substances to be dyed, are also taken into consideration. One of
the chief of these is shown in dyeing with indigo. This substance
(a vegetable extract) as brought to England is quite insoluble in
water and unfit for use as a dye; but it is made soluble, and at
the same time almost colorless, by mixing with lime, sulphate of
iron, and water. These substances deprive it of its oxygen, and the
straw-colored solution is then used for dyeing, the substances boiled
in it attaining--as the indigo regains its oxygen on exposure to the
air--a deep blue color.

With dyeing is often associated the art of “scouring,” for a
knowledge of the properties of the dye-stuffs used enables the
workman to discriminate between what will brighten and what would
injure the goods to be cleaned.


The process of calendering is resorted to for producing a fine
smooth surface on calicoes and other goods, and for rendering them
sufficiently even to be printed upon (see “Calico-printing”). The
calendering machine consists of a set of five rollers, constructed
to revolve at unequal rates, so that the one which turns upon the
face of the calico not only rolls it between itself and its fellow,
but--turning faster--_rubs_ it and gives a gloss to the surface
similar to the effect which would be produced if the goods were
laid on a table, and the roller rubbed over them instead of being
rolled. These rollers are very curiously constructed. They are made
by packing many hundreds of round pieces of pasteboard--having each
a square hole in the centre, and several smaller circular ones in the
margin--on to a central bar of iron, with similar bars through the
smaller holes, until a sufficient number have been added to produce
the length of roller required. Nuts are then fitted to the ends of
the smaller iron bars, and these being screwed tightly, compress the
whole into so solid a mass, that it can be turned in a lathe to a
perfectly smooth surface, which is (unlike wood) not liable to crack,
and, being slightly elastic, does not crush the goods, as metal
rollers would.

                             BREAD MAKING.

This process is much the same whatever kind of meal or flour may
be used, whether wheaten, barley, &c. A certain portion of the
flour is mixed with warm water (in which a little salt is generally
dissolved), some yeast or “barm” (the froth from the fermentation of
beer) is added, and the whole worked together to a pasty consistence,
this is put into a pan to keep warm, and is called “the sponge;”
besides flour and water nearly every baker mixes his sponge with
a certain proportion of potatoes boiled to a “squash,” and passed
through a sieve to separate the rinds. In an hour or so it swells up
to double its original size, from the fermentation which is going on
producing a kind of gas called “carbonic acid,” which being formed
in every part of the “sponge,” inflates it to a great extent. After
a time it sinks down (most of the gas escaping), and begins to rise
again; it is then mixed with the remainder of the flour (and some
water if necessary), and the whole thoroughly kneaded together with
the hands till it is all of an equal consistence--this should be
neither too stiff, nor so soft as to stick to the hands. It is now to
be cut up and weighed out into pieces to form each loaf. The oven in
which the bread is baked is made of “fire-brick,” and so embedded in
earth or brickwork that when heated it shall not readily cool; this
is heated with coal or wood till it is nearly red-hot and the loaves
are put in and left till baked.

                            SUGAR REFINING.

When brown or raw sugar is refined it forms the white crystalline
product known as loaf sugar. The process involves many ingenious
arrangements in its detail, but the essential object to be obtained
is the separation of all coloring matter from the raw material
without producing any more by the process, which is a greater
difficulty than would at first appear, for all solutions of sugar
evaporated in the open air become to a great extent colored, and the
longer the exposure, and the higher the temperature, the worse the
product; a substance forming called “caramel,” which discolors it.

  Illustration: FIG. 1. (‡ CONICAL POT.)

  Illustration: FIG. 2. (‡ FILLING CONICAL POTS.)

The brown sugar is first mixed with a very small quantity of boiling
water, just sufficient to form a thick pasty mass, which is put
into conical pots (figs. 1 and 2), and allowed to drain, the small
quantity of water washes out only the brown part, and leaves the
crystals pretty white; they are then dissolved in water, mixed with
some bone-black and bullock’s blood; the bone-black is the charcoal
from burnt bones, and has the power of taking away the color of
most vegetable solutions, the bullock’s blood is used as affording
a cheap kind of albumen, which when the solution of sugar is boiled
coagulates and entangles all the floating matters so that they may
be removed by filtration.

  Illustration: VACUUM-PAN.

  Illustration: FIG. 3. (‡ SUGAR LATHE.)

The liquid is boiled for a time, and then put into a cistern excluded
from the light, having holes at the bottom into which long tubes
of thick twilled cotton are fastened, through which the solution
runs as bright as water; they all hang down into another cistern
below, also kept from the light, from which it is pumped up into the
evaporating apparatus--a copper vessel entirely air-tight, heated by
steam and having a powerful air-pump attached to it by which all the
vapour and air are removed as the syrup becomes hot; this is called
a “vacuum pan” (see engraving), and by this the syrup is condensed
to the proper consistence, and is put into moulds of the shape the
loaf is to be, having holes at the lower part which are plugged up,
the syrup as it cools forming a solid mass of crystals; these moulds
are arranged in rows over a channel leading to a proper receptacle,
the plugs are taken out from the holes at the bottom of each and some
pure concentrated syrup is poured on to the upper part; this slowly
descending filters through the sugar, carrying with it any “caramel”
that may have formed, finally escapes at the hole, and runs into the
cistern; this completely whitens the sugar, and gives it a brighter
and coarser grain. The loaves are then taken from the moulds, dried
in an oven at a gentle heat, and finally packed in paper for sale.
If the pointed ends are discolored or ragged the loaf is put into
a lathe (fig. 3) and the end turned to a proper figure or cut off.


  Illustration: THE VATS.

  Illustration: FERMENTING ROOM.

  Illustration: ENGINE ROOM.

  Illustration: MASH TUN.

  Illustration: BOILER.

Beer is made by pouring boiling water upon ground malt, and after a
time drawing it off, which is repeated until all its soluble parts
are removed and dissolved in the water; the liquor resulting is
called “sweet wort,” which is then boiled with a certain proportion
of hops (the dried “stobules” or flowers of the hop plant), and the
liquor allowed to cool. It is then mixed with a small quantity of
“yest,” which is the scum thrown off by a former brewing, and the
whole is allowed to ferment till nearly all the sweet sugary matter
which was got from the malt is converted into spirit, it is then put
into casks and allowed to ferment slowly, in which process it throws
off more yest, which is collected, as seen in the cut, for the next
brewing. It is then bunged up in the barrels and kept for a time,
when it is fit for use. In large breweries machinery of various kinds
is employed, such as pumps for pumping up water, taps for drawing it
off machinery for stirring up the mash in the “mash tun,” and also
the hops in the boiler, to prevent them burning at the bottom of it.
The “cooling floor” is a contrivance for cooling the wort, consisting
of a series of pipes which pass in a serpentine manner through it,
and through which cold water is made to flow. The kind of beer,
whether ale or porter, chiefly depends upon the kind of malt used;
for ale, very pale malt, called “amber,” while for porter, burnt malt
is employed, and hence the color of these two descriptions of beer.
If the fermentation is not carried far enough the beer will be too
sweet, and if too far it will be sour.

  Illustration: COOLING FLOOR.


  Illustration: (‡ DISTILLERY.)

The process of distilling consists in converting the fluid to be
distilled into vapour, and condensing it into a fluid in another
vessel. By this process the more volatile parts of any fluid are
separated from the rest; for example, if brandy be distilled, the
spirit or alcohol it contains will be converted into vapour and will
condense in the receiver comparatively pure (see “Alcohol”), leaving
behind in the still the water, coloring matter, &c., so that the
spirit is colorless, although the brandy may have been quite brown.
Also, if common water be distilled, pure water will pass over, and
the earthy matters which the water had contained will be left behind
(for all ordinary water contains considerable quantities of earthy
matters, dissolved out from the earth over which it flows). The
vessels used for distilling are very various in their forms, to suit
the different fluids, both as to quantity and quality (see “Still”).
There is a contrivance lately used for distilling spirit from the
fermented wash containing it, by which it is allowed to flow into an
apartment full of double floors, a few inches above each other, the
upper ones being made of thin copper perforated all over with minute
holes, and on which the wash is allowed to flow to the depth of about
an inch. Into the space between the upper and lower parts of each
floor steam is admitted, which, rising through the little holes, is
condensed by the wash, giving out its heat to the spirit contained
therein, and causing it to be converted into vapour, which passes
off from the spaces between the floors to a condensing apparatus with
which they all communicate.


Gilding consists in covering the surfaces of various articles with
a thin layer of gold, and may be divided into two kinds, quite
different processes and practised by different artisans. The first is
“oil-gilding,” which is a mechanical application of gold-leaf to some
adhesive surface, the second is “water-gilding,” and is a chemical

In oil-gilding, where frames, &c., are to be covered with gold-leaf,
the first thing necessary is to obtain a smooth even surface on which
it will lie, but as carved frames are expensive, ornaments of a kind
of putty are fixed to the frame, and coated with whiting and size.
The gold-leaf is made to adhere easily to this clammy surface, by
simply damping it, and pressing the gold on by means of a piece of
cotton wool, afterwards gently brushing it into all the markings.
Wood and other articles to be gilt are coated with “gold-size,”--a
sort of varnish--and when this is nearly dried, so as to be what
is called “tackey,” it will hold the gold in the same way. When
lettering is to be done in gold, the painted or varnished surface
is first brushed over with whiting, which prevents the gold adhering
where it is not wanted, the writing is then executed in gold-size,
and the gold-leaf applied by pressing the book on to the surface, and
finishing off with cotton wool, which rubs off all the superfluous
gold-leaf and smooths it on the surface.

Water-gilding (a process, however, in which no water is used)
consists in covering the surface of metal with a thin coating
of gold; the best metal for water-gilding is either brass, or a
mixture of brass and copper. A mixture of gold and mercury, in
the proportion of one part of gold to eight of mercury, is made
hot over a fire till they have united; it is then put into a bag
of chamois-leather, and the superfluous mercury pressed out. What
remains is called an “amalgam;” it is soft, and of a greasy nature,
so that it can be smeared over any surface with the fingers. The
articles to be gilt are made perfectly clean on the surface, and a
liquid made by dissolving mercury in nitric acid (aqua-fortis) is
brushed over them by means of a brush made of fine brass wire, called
a “scratch-brush.” The mercury immediately adheres to the surface of
the metal, making it look like silver, when this is done, a little
of the amalgam is rubbed on, and the article evenly covered with it.
It is now heated in a charcoal fire till all the mercury evaporates,
and the brass is left with a coating of gold, which is very dull but
may be burnished with a steel burnisher and made bright if necessary.
In former times articles were inlaid with thin plates of gold, which
were placed in hollows made with a graver and melted in, a little
borax being applied between.

When a solution of “chloride of gold” is mixed with ether, the ether
takes the gold away from the solution, and may be poured off the top
charged with it. This solution, if applied to polished steel by means
of a camel-hair pencil, rapidly evaporates, leaving a film of gold
adhering to the steel, which, when burnished with any hard substance,
has a very elegant appearance. In this way any ornamental design in
gold may be produced, but it is not very durable. The gilt ornaments,
scrolls, and mottoes on sword-blades, &c., are sometimes done in this

“Gilding refined gold” would appear a great absurdity, but something
very like it is often practised in the process called “coloring,”
used by jewellers. This is however never applied to “refined gold”
but to gold that is not quite so good in color as it should be.
It is boiled in a liquid containing chemical substances capable of
dissolving the alloy from the surface of the article and depositing
a thin coating of pure gold, giving it the appearance of being
made of better gold than it really is. This is in truth a species
of electro-plating, but was in use very many years before the
electro-depositing process had been discovered.

                      SILVERING LOOKING-GLASSES.

Although this process is called “silvering,” yet no silver is
used; the substance at the back of the glass is a mixture of tin
and mercury, called an “amalgam,”--indeed, the term “amalgam”
applies to all mixtures of mercury with other metals. The process
is as follows:--A sheet of “tin-foil” (tin rolled out to about the
thickness of paper) the size of the glass to be silvered is placed on
a perfectly level table, covered with cloth; upon the tin-foil some
mercury is poured, and spread evenly and quickly over the surface
with a hare’s foot. The plate of glass is in the meanwhile to be
made perfectly clean and dry--not the slightest speck or smear must
remain. A sheet of tissue paper, also clean and dry, is laid over the
surface of the mercury, the plate of glass is placed on the paper and
made to correspond with the mercurialised tin-foil beneath. Weights
are now placed on the plate of glass to keep it firmly down, and the
sheet of paper is drawn out steadily and slowly; as it passes over
the surface of the mercury it brings away all film or dust, and the
surface being left perfectly bright, adheres so firmly to the dry
glass that it is not easily removed. A great difficulty is to prevent
air-bubbles from finding their way between the glass and mercury. The
table is now raised slightly at one end, and the superfluous mercury
allowed to drain off. After a few hours the tin-foil will be found
to be completely united all through with the mercury, and will be so
brittle that it can be scraped off in powder from the glass. Great
care and practice are required to silver large plates, but any one by
a few trials may succeed perfectly with a piece of glass a few inches
square. Glass globes are silvered inside by shaking in them a mixture
of mercury and tin filings until it adheres to the surface of the
glass, which must first be made perfectly dry and warm.

                            SILVER PLATING.

Plated goods consist of metallic articles coated with a thin plate
of silver; the metal is made of a mixture of brass and copper, which
is cast into flat slabs or ingots about an inch-and-a-half thick,
the surface on one or both sides is filed flat and smooth, and a
plate of silver of about the thirtieth part of an inch thick, but a
little smaller than the metal, is applied smoothly to it, the edges
are covered all round with borax ground fine with water and the
plates tied tightly together with wire. The whole is then put into a
furnace and closely watched till the silver begins to melt, when it
is at once taken out and allowed to cool; by this mode of treatment
the silver adheres so firmly to the metal that they become as one
piece. It is then passed between steel rollers and rolled out to the
required substance, the silver and metal both becoming thinner in
about the same proportion, so that on a plate of metal, of whatever
thickness, the silver is somewhere about a fortieth or forty-fifth
part of its thickness; these plates of metal coated with silver are
worked by stamping, punching, or passing between rollers the edges
of which have mouldings, curves, &c., cut on them, and the parts
of each article when moulded are afterwards soldered together so
as to form what is intended. Wires of various forms are plated in
the same way and afterwards drawn out by means of draw-plates (see
“Wire-drawing”). Electro-plating has to a great extent superseded
this process (see “Electro-plating”).


  Illustration: (‡ ELECTRO-PLATING PROCESS.)

This art has for its objects the coating of metallic articles with
other metals of more value, beauty, or durability, such as gold,
silver, or copper, by means of electricity, and the formation (by
the same means) of other articles by the deposition of metals, from
liquids containing them, upon moulds or engraved surfaces capable
of modelling them. When the deposit forms a coating intended to be
permanent, and which adheres to the article so as to be incapable
of removal, it is called “electro-plating,” but when a fac-simile of
any surface is required, or a cast of a mould which may be removed,
forms the object to be produced, it is called “electrotyping” or


  Illustration: GILDING RINGS.

By way of experiment, procure two vessels, A and B, fig. 1, in one
of them, A, put some dilute sulphuric acid and two plates, one of
zinc, Z, the other of copper, _c_, these must not touch each other,
but may be separated about half an inch by two or three pieces of
wood or cork, and bound round with string; each of these plates must
have a piece of wire fastened by soldering to their upper parts.
In the vessel B put some solution of sulphate of copper and a small
quantity of dilute sulphuric acid, and attach another copper plate to
the wire which comes from the copper plate in the acid; this second
copper plate is to be immersed in the solution of sulphate of copper,
and to the wire from the zinc plate is to be fixed the object to be
coated with copper. If a medallion or other object is plaster, it
should be soaked in very hot wax and then brushed over with blacklead
until the surface is perfectly blackened and bright; the wire should
be bound all round the margin and soldered (as it were) with melted
wax to the medallion, taking care that this wax also is well coated
with blacklead. If the object be now immersed in the sulphate of
copper solution and kept at a short distance from the plate (it
must not touch it), a coating of copper will soon cover the surface
and form a perfect cast, which when of sufficient thickness may be
removed by filing the edge all round (if instead of the plaster cast
a copper coin or other copper object be used, the blackleading is not
required, but the surface must be first made clean and bright). With
the same arrangement, but using instead of the sulphate of copper
a solution made by dissolving cyanide of silver in a solution of
cyanide of potassium, a coating of silver will be deposited, and the
same of gold (if cyanide of gold be used), but these coatings will
not adhere. If it be intended that the coatings shall adhere, to
plate the article with silver or gold, it should be first thoroughly
cleaned, then brushed over with a solution of nitrate of mercury,
washed in clean water, and put into the gold or silver solution;
the nitrate of mercury will cover the copper article with a thin
coating of mercury, which will be taken up as the gold or silver
is deposited, and this coating will adhere, the article being thus
“electro plated.” As in using the solution of sulphate of copper, a
copper plate was immersed in the solution and united by the wire to
the copper plate in the vessel A, so in using the solution of cyanide
of silver, a silver plate must be used, and in the gold solution a
gold plate, these plates being dissolved as the metal is deposited,
the liquid remaining pretty much the same and serving for future
operations. The gold and silver thus deposited are dull, but may be
burnished with a steel burnisher, all over or in parts as the design
may require. In manufacturing, these processes are much modified, and
powerful galvanic batteries or electro-magnets used; in the latter
case the electro-magnetic machine is often driven by a steam-engine
and the troughs of depositing liquids contain often many dozens of
articles, which are all receiving a coating at once.

                        SOLDERING AND BRAZING.

The art of uniting metals by another metal or alloy, is called
soldering (which includes “hard and soft soldering,” and “brazing”).
If any metal be applied in a melted state to the surface of a piece
of cold metal, under ordinary circumstances it will not adhere, but
runs off in globules, this is owing to the surface being covered with
“oxide” or rust, but if the surface be scraped or filed bright and
some substance applied which will defend it from the air, and at the
same time become fluid at the heat of the melted metal, then it will
adhere. For this purpose borax is used in hard soldering and brazing,
that is in soldering with metals which require a considerable amount
of heat to melt them; and sal ammoniac, rosin, oil, &c., in cases of
soldering with “soft solder,” or solder that will readily melt. This
soft solder is made of a mixture of lead and tin, and if required
to melt very easily (as in soldering pewter), then some “bismuth”
is added. Bismuth itself does not melt more readily than lead, but
it has the property of causing other metals to melt more readily.

If the edges of two pieces of tin, for example, have to be soldered
together, an iron with a wooden handle and a piece of copper joined
to the other end is used. This is made red-hot, and the pieces of
tin being placed smoothly together and their edges sprinkled with
rosin or sal ammoniac, the hot iron (first touched on a piece of
rosin to clean it) is then applied to the joint, a piece of soft
solder being applied at the same time, and as this melts it is drawn
in a melted state by means of the hot iron (to which it adheres)
down the joint. An excellent substance for soldering: all sorts of
small work, such as pieces of brass, copper, or tin, is chloride of
zinc-this may easily be made by putting pieces of zinc into spirit
of salt, (hydrochloric acid), and allowing them to remain as long as
any effervescence continues; this solution may be kept in a bottle
and applied to any edge to be soldered, by means of a small brush
or feather. When iron and copper have to be “brazed,” the joints
are made bright, and then coated with borax ground into a paste
with water. A mixture of brass and zinc (called spelter) in small
grains is sprinkled on the joint and it is then put into the hollow
of a bright fire which is urged by bellows till the spelter melts.
Silver is joined by hard or “silver” solder, which is a mixture of
silver, zinc, and copper, and the fusion is generally effected by a
blow-pipe, (see “Blow-pipe”); gold is soldered by a mixture of gold
and copper. Leaden pipes are joined by having the ends to be united
scraped bright and introduced a short way one within the other, some
melted solder is then poured from a small iron ladle on the joint at
the same time that it is rubbed round with a piece of folded cloth
greased on the surface. Joints in cisterns, etc., are generally made
by scraping the edges clean with a steel scraper, and applying some
lamp-black and size by means of a brush to the parts beyond, leaving
a bright space of an inch or so on each side of the joint, a ladle of
melted solder is then gradually poured on the joint and rubbed down
with a piece of greased cloth, the lamp-black and size preventing the
solder adhering to any part but that left bright, and in this way a
straight neat joint is produced.

                        THE SMELTING OF METALS.

All metals are got from the earth where they exist in the form
of “ores” (in reality metals combined with other matters), and
“smelting” is the process of getting rid of these other matters,
the chief of which are sulphur and oxygen. The ores when dug from
the mine are generally stamped into powder, then “roasted,” that is,
made hot and kept so for some time to drive off water, sulphur, or
arsenic, which would prevent the “fluxes” acting properly. The fluxes
are substances which will mix with, melt, and separate the matters to
be got rid of, the chief being charcoal, coke, and limestone. The ore
is then mixed with the flux and the whole raised to a great heat; as
the metal is separated it melts, runs to the bottom of the “smelting
furnace” and is drawn off into moulds made of sand; it is thus
cast into short thick bars called “pigs,” so we hear of pig-iron,
pig-lead, &c. Iron is smelted from “ironstone,” which is mixed with
coke and limestone. The heat required to smelt iron is so very great,
that a steam-engine is now always employed to blow the furnace
(before the invention of the steam-engine, water-mills were used
for the same purpose). The smelting is conducted in what is called a
blast furnace. When the metal has all been “reduced” or smelted, and
run down to the bottom of the furnace, a hole is made, out of which
it runs into the moulds; this is called “tapping the furnace.”

Smelting is often confounded with melting, as the names are somewhat
alike, but the processes are entirely different; in melting, the
metal is simply liquified, in smelting the metal has to be produced
from ores which often have no appearance of containing any, as in the
case of iron-stone, which looks like brown clay. By way of experiment
let the reader take a small portion of “litharge,” which is a reddish
powder, mix it with a drop of oil into a thick paste and place it on
the end of a flat piece of charcoal or wood, and direct the flame of
a candle upon it by means of a blow-pipe; a slight hissing noise will
be heard, and in a moment or two a small, bright globule of lead will
make its appearance.



Founding is the art of casting metals into various forms by means of
moulds. The products of smelting are of a coarse kind, and have to be
remelted before the process of casting or founding begins. Before any
article can be cast in metal, a pattern must be formed in wood, clay,
or other suitable substance. The floor of the foundry is made up of
sand and powdered charcoal to the depth of several feet, serving to
imbed the moulds which are used, and in several places deep pits full
of the same material are formed for large castings; an iron frame,
corresponding to another like it, and capable of being united to it
by pins and sockets, is used to contain the moulding sand and pattern.


Let it be supposed, for simplicity, that a cannon ball has to be
cast, one of the frames is filled with moulding sand moist enough
to bear a good impression, and a cannon ball pressed half-way in;
the surface is now dusted over with red ochre (to keep the upper
half from sticking to it), and the other frame applied and united
with the lower one, this is now filled with the sand and beaten or
trodden down firmly. On separating the two and removing the pattern,
there is an impression of half a ball in each half of the mould, and
when these are again put together there is a hollow corresponding
to the pattern used. There are, however, two things more to be
attended to, one is to have an opening for the melted metal to be
poured in, the other an opening for the air to escape, and this is
effected by attaching to the pattern two pieces of wood or iron which
project upwards through the upper half of the mould, and when this
is carefully lifted up two holes appear which on being united to the
lower half lead into the round hollow. When the moulds are ready they
are put into a room heated by means of stoves, and thoroughly dried.
They are then buried in the floor of the foundry, leaving the holes
for pouring the metal exposed, channels being formed in the sand,
so that when the furnace is “tapped” the melted metal may flow down
these and fill the moulds. Some forms are so complicated that the
moulds have to be made in several pieces, and the ingenuity of the
founder is taxed to the utmost to produce those required.

                      GLASS BLOWING AND CASTING.

  Illustration: CASTING PLATE GLASS.


  Illustration: FIG. 2. (‡ BLOWING ON THE PUNTIL.)

  Illustration: FIG. 3. (‡ BEGINNING GLASS FORM.)

  Illustration: FIG. 4. (‡ GLASS GLOBE WITH HOLE AT END.)

Glass-blowing requires great practice and manual dexterity, for the
material used being red-hot cannot be touched with the hands, and
has to be very rapidly worked, or it becomes cooled and hard; to
any one unused to work with it, it is the most unmanageable material
conceivable, but by practice the glass-blower contrives to produce
almost any form required, and of a size quite astonishing--as, for
instance, the globular bottles seen in druggists’ windows, which
often hold twelve gallons, also glass shades, which are of an uniform
thickness, and two or three feet high. This is all done by means of a
hollow rod of iron called a “puntil,” on the one end of which a mass
of molten glass is collected (fig. 1), and the workman blows into
the other, at the same time turning the tube rapidly round in his
hands (fig. 2). When the kind of glass called “crown-glass” has to be
made, the end of the iron tube is put into the pot of melted glass,
and turned round till a ball of it is collected about the size of
one’s head, the workman then blows in at the other end, still turning
the rod in his hands; it has now the appearance presented at fig.
3. An iron rod is stuck on to the side of the globe opposite to the
“puntil,” which is then pulled suddenly away, leaving a round hole.
The globe of glass is again made red-hot, and spun round rapidly,
the hole increasing in size until it resembles fig. 4. By continuing
the rapid twirling of the rod, the hole opens wider and wider till
at last one broad sheet is produced; it is then separated from the
rod by putting a drop of cold water at its junction with the glass,
which causes it to crack across at that part. It is now about six
feet in diameter, perfectly round and flat, and when cold it is cut
into halves and packed with straw in a “crate” for carriage. The knot
of glass often seen in kitchen or stable windows, is the part in the
centre of the glass where the iron rod has joined it, and is called
the “punty.”

  Illustration: FIG. 5. (‡ ELONGATED BLOW GLASS.)

Sheet-glass is commenced in the same way as crown, but instead of a
hole being made the blowing is continued till a great round ball is
formed, the rod and this ball are then swung round at arm’s length--a
hole being sunk in the ground for the purpose--which causes the globe
to become elongated, as in fig. 5. It is then laid upon an iron
table, and rapidly slit up, the compressed air escaping from within
opening it out into a broad sheet, which is instantly cut square
while yet soft.


  Illustration: FIG. 6. (‡ GRINDING THE PLATE GLASS.)

Plate glass is cast by pouring it from a large pot on to a flat iron
table with a ridge all round it, and on which an iron roller is so
placed that when the molten glass flows on the table it passes over
and flattens it out to the required thinness, which is regulated by
elevating or depressing the ridges at the sides of the table, made
moveable for that purpose (the process is illustrated by the cut at
the head of this article). When cold, the surface of the plate is
ground perfectly flat and even by means of emery-powder (fig. 6), and
then polished with a cloth rubber charged with a fine red oxide of
iron called “crocus” (fig. 7). The grinding and polishing are both
performed by steam machinery.

  Illustration: FIG. 7. (‡ POLISHING THE PLATE GLASS.)

  Illustration: FIG. 8. (‡ BLOWING GLASS INTO FORM.)

Bottles, and such like articles are either simply blown into the form
required, or into moulds made to close upon the ball of soft glass,
and again open when the required form has been given (fig. 8).

Many articles of glass are cast, or “struck-up” by compression in a
mould, and are often made to resemble cut-glass articles, but they
are much inferior in appearance. The best articles of glass are first
blown, and afterwards cut and polished (see “Glass-cutting”). Of
whatever kind the article of glass may be, it is so brittle that the
slightest blow would break it, a bad quality which is got rid of by
a process called “annealing.” This consists in placing it while quite
hot on the floor of an oven, which is allowed to cool very gradually
indeed. This slow cooling takes off the brittleness; and articles of
glass well annealed, will scarcely break with boiling water, and are
very much tougher than others.


  Illustration: GLASS-CUTTING.

The kind of glass generally used for ornamental cutting is
flint-glass. Decanters, wine-glasses, &c., are also made of it;
it is very bright, white, and easily cut. Glass is cut by means of
wheels of different sizes and materials, turned by a treadle, as
in a common lathe; some are made of fine sandstone, some of iron,
others of tin or copper; the edges of some are square, some round,
and some are sharp. They are used with sand and water, or emery and
water, but stone wheels are used with water only. The glass-cutter
also uses rods of copper with knobs at their ends, for making round
indentations; these turn on their axis, so that the end cuts a round
hollow in the glass. The work is at first cut roughly, afterwards
smoothed off with the sandstone or tin wheel (the latter has to be
smeared with emery and water), and finally polished by a wooden wheel
with finely-powdered pumice-stone applied to its edge, and moistened
with water. The glasses for spectacles and optical instruments are
cut by concave or convex moulds of brass moistened with emery and
water, and polished by means of a mould of pitch wetted with crocus
and water. Great art and accuracy are required to grind the glasses
for optical instruments, especially very large or very small ones, as
for microscopes, the various “powers” of which constitute their chief
expense--one of the sixteenth of an inch in diameter costing about
twelve pounds.


  Illustration: BRICKLAYING.

  Illustration: FIG. 1. (‡ UNSTABLE STACKING OF BRICKS.)

  Illustration: FIG. 2. (‡ ENGLISH BOND.)

  Illustration: FIG. 3. (‡ FLEMISH BOND.)

  Illustration: FIG. 4. (‡ PLUMB.)

  Illustration: FIG. 5. (‡ TROWEL.)

  Illustration: FIG. 6. (‡ HOD.)

Nearly all houses are built of bricks, as they are less expensive
than stone, and more durable than wood, besides being less liable to
be burnt. Walls of brick may be formed of any required thickness, and
as the length of a brick is twice its breadth, they admit of being so
laid that the wall shall not part in pieces, which would be the case
if laid as in fig. 1, as the seams of mortar run continuously through
the wall, which in bricklaying is always avoided, by different
methods. Formerly bricks were laid in what was called “English bond”
(fig. 2), but this is not now used, “Flemish bond” (fig. 3) having
superseded it. The mortar with which bricks are laid is made of
lime and sand, mixed with water to a convenient consistence; it sets
quickly, hardens with age, and resists the action of rain and time.
The ordinary mode of laying bricks is to stretch a line from end
to end of the course on which they are to be laid; the surface of
the under course is spread for a short distance with mortar, and the
bricks intended to form the outer surface of the wall are laid first,
in an exact line with the cord, the “plumb” (fig. 4) being frequently
used to ascertain if they are perpendicular. The “plumb” is a piece
of board with a notch at the centre of the top, and a hole, also in
the centre, near the bottom; a piece of cord is passed through the
notch, with a leaden ball attached, which swings in the hole as the
plumb is placed at the side of the wall. The ball of lead just falls
in the hole if the wall is upright, and in this way a wall may be
built to any height, exactly perpendicular. The corner of brickwork
where windows occur, is called the “arris,” and has to be made
upright both in front and at the side. When very thick walls are to
be made (as in railway cuttings), the outer surface and back of the
walls are laid in the usual way, the space between is filled with
a layer of bricks, and thin liquid mortar is poured on and scraped
about with a sort of hoe till the spaces between the bricks are all
filled up and the surface left level, when another course is laid
in the same manner. Fig. 5 is a trowel, or instrument used to take
up and spread out the mortar, and fig. 6 is the hod, in which the
labourer carries supplies of bricks or mortar to the spot where the
bricklayer is working.

                            STONE CUTTING.

  Illustration: STONE-CUTTING.

  Illustration: FIG. 1. (‡ IRON PICK.)

  Illustration: FIG. 2. (‡ CHISEL AND SCRAPER.)

Some stones, as “Bath stone” can be cut with a common toothed saw,
and are but little harder than chalk; others, as marble, Portland
stone, &c., require to be cut with a flat blade of iron stretched in
a frame and having a supply of sand and water. A man sits in a shed
having this heavy saw suspended from two poles, and balanced by a
piece of stone swung over a pulley; he alternately pushes and pulls
the frame, allowing the water to trickle into the seam as it forms,
the sand being rubbed between the edge of the saw and the stone as
the saw is moved backwards and forwards, slowly cutting the stone
(see illustration). By this slow and tedious process building stones
are cut into squares, slices, slabs, or any other form required.
Granite is too hard for even this slow process, and after the pieces
are chosen as nearly as can be got of the size and shape required,
they are worked with a heavy iron pick (fig. 1), which at each blow
strikes off a little piece not bigger than a pea, by which method the
stone is shaped into the form required. Smaller cuttings of stone for
building purposes, such as carvings, &c., are formed by the mallet
and chisel (fig. 2), the work being finished with a rasp or steel

                       APPARATUS AND MACHINERY.



The great improvements in machinery--whether for looms, locomotive
engines, or steam-ships, for forging anchors, boring cannon,
rolling out and rivetting iron plates together for tubular bridges
and boilers, or any other kind of work--are chiefly owing to the
wonderful ease with which these machines can be driven by the power
of steam. It matters not whether the object to be wrought is the
head of a pin, or the crank of a steam-ship, it is done with both
delicacy of touch and power of arm, a hundredfold beyond what could
be effected by hand in the same time. The motive power of steam
is derived from the property which water has of being expanded
into vapour when heated to a certain degree, and of again resuming
the form of water when cooled; this moreover takes place in the
most easily manageable manner, and either by degrees or suddenly,
according as the heat and pressure balance each other; moreover
water, being easily obtained, and in sufficient quantity for the
purpose, in all places where machinery is required, can always be
applied. Before the use of steam, wind, water, horse, and hand power
were chiefly in use; water-mills were, of course, only erected in
those situations where a good supply of water could be obtained,
and this even often failed in dry weather; windmills also depended
on that uncertain element. Horse and hand powers are limited in
their extent, and are moreover very expensive. The first attempts
at a steam-engine were those in which the steam was only used that
by its condensation a vacuum might be formed in a cylinder under a
piston, so that the weight of the air should cause this to descend
with considerable force--15 lbs. on the square inch. The piston
was balanced by a weight, so that the steam might raise it with
scarcely any pressure; the steam beneath the piston being condensed
by a stream of cold water, the weight of the air again forced down
the piston into the vacuum. This therefore was not a steam but an
air-engine, as all the power exerted was derived from the weight
of the air, and the steam merely used to procure a vacuum. After
this came the low-pressure or condensing engine, and then the
high-pressure or non-condensing engine, both of which are now used,
the former in marine engines and the latter in locomotives.




The steam-engine consists essentially of a boiler or steam-generator,
with a furnace adapted to it, connected by a steam-pipe to a cylinder
having a piston working accurately in it, and valves so contrived
that the steam shall enter alternately above and below the piston. In
the condensing engine, each compartment, above and below the piston,
communicates with the condenser--the vessel in which the steam is
suddenly condensed by cold water--and the valves are so arranged that
when the steam enters above the piston, the space below is opened
to the condenser, and is therefore a partial vacuum; by the time
the piston is driven down by the force of the steam above it, the
space is shut off from the condenser and opened to the steam-pipe,
while the space above is shut off from the steam-pipe and opened
to the condenser. In this way one side of the piston is alternately
pressed by the steam while there is a vacuum on the other side. In
the non-condensing engine the space above and below the piston is
alternately pressed by steam at a great degree of tension; while at
the opposite side of the piston, the space is opened to the air by a
valve. These valves are what are called “sliding valves,” being both
in connection with the same action, which shuts one while it opens
the other; that is, when the piston has nearly descended, it slides
the valve which shuts off the steam from the space above and opens it
to the air, the same action opening the steam-valve below the piston
and shutting it from the air. In this kind of engine the piston is
moved simply by the power of the steam, which first presses it down
and then presses it up again, and as the steam escapes at each stroke
of the piston, and has to be at a great tension or pressure, a large
and rapidly-formed supply of steam is required. In the locomotive and
other high-pressure engines this is effected by having a great number
of tubes passing through the boiler leading from the fire-place to
the flue, so that the fire and heated air shall pass through them
before reaching the flue, and consequently, as these all pass through
the water in the boiler, producing a very rapid generation of steam.
Of the various forms of boilers, the most simple was that in which
the heat was merely applied to the lower part (fig. 1); next may be
named the wagon-head boiler, in which the flue passed all round; some
were made with a cylindrical flue passing though the whole length,
and some with two (fig. 2). Of whatever form the boiler may be, it
should be strong enough to well resist the pressure of the steam,
but to make this sure, a contrivance called a safety-valve is always
used; this consists of a valve held down by a weight, which would
be raised by the steam if it should press so hard as to endanger
the boiler in the least degree; when the safety-valve is forced up,
the steam escapes and the pressure is taken off. Most steam engines
require the up-and-down motion of the piston to be converted into
a circular motion, and this is effected by means of a “crank,”
(see “Cranks”); but this circular motion needs in most cases to be
regulated by a fly-wheel which is so heavy, that upon being set in
motion it continues to revolve for a time by its own weight, so that
the intermitting pulls exerted by the piston-rod on the crank are
blended into one continuous action (see cut); but in steam-ships, and
locomotive engines, fly-wheels cannot be used. In these cases there
are two cylinders and pistons, each fixed to a crank formed in one
axle united to the two wheels, and these cranks are so arranged that
the greatest power is exerted on one when the least is exerted on the
other, and for this purpose they are placed so that when one crank is
upright the other is horizontal. The stroke of the piston-rod is not
always made to act directly on the crank, but has a “beam” interposed
working on bearings in its centre, hence the term beam-engine (see
cut). This beam moves the crank at the opposite end to that which
is moved by the piston and at the same time works the air-pump,
feed-pump, and cold-water-pump, by means of jointed rods.

  Illustration: FIG. 3. (‡ GOVERNOR.)

In those engines which have to perform unequal work, and in which
sometimes a great drag is suddenly removed from the engine, some
contrivance is necessary to prevent the too rapid motion which would
ensue, to the great risk of damaging the engine; this is effected by
what is called the “governor;” a contrivance by which a part of the
steam is struck off when the action is too rapid, and again let on
when it has diminished. This arrangement is shown in fig. 3; the two
heavy iron balls swing round as the engine works, and the faster they
revolve the more they tend to separate, from the natural tendency to
fly off called “centrifugal force,” and in separating they bring the
other ends of the rods to which they are attached nearer together,
and so push up a collar, A, attached to the levers which turn off the
steam-tap; and as the action subsides the balls sink down together
and the collar also, the steam being thus turned on again. In order
that the pressure of the steam in the boiler may be known, a “gauge”
is used, which acts on the principle of the barometer, consisting of
a column of mercury which is pressed up by the force of the steam,
the height to which it rises indicating the pressure. With respect to
the details of the steam-engine, they are too various and complicated
to be enumerated or described here; but the motion--being regular,
continuous, and powerful--can be applied to almost any sort of work
by being adapted to the machine suitable for such work, and which
receives its motion from the steam-engine, the same as though it were
worked by water or by hand.


Boilers are vessels in which fluids are boiled or heated, and are
almost of every form and size. Some boilers, such as those attached
to steam-engines, are more strictly called “steam generators,” as
they are constructed solely for the production of steam at the lowest
possible expense of time and fuel, and also to resist the pressure
which the steam exerts at high temperatures; these boilers are not
only used to produce the steam for the motion of engines, but are
extensively used in its production for heating evaporating-pans and
boilers (in the strict sense of the word), and also for warming and
ventilating buildings. They are more particularly noticed under the
head “Steam Engines.”

Boilers for all purposes were formerly made of metal (usually copper
or iron), and were exposed directly to the fire intended to heat
their contents, but since the properties of steam have been more
fully recognised, it is now very frequently employed for heating
boilers--especially where a heat at or below the boiling point of
water is required. There are great advantages arising from this
plan, one of which consists in doing away with the risk of the
materials in the boiler being burnt. Some boilers are now made of
wood, having steam-pipes running through them, and in those cases
in which the admixture of water is no detriment steam--in the form
of jets--is thrown directly into the fluid to be heated, which very
quickly raises it to the boiling point. Boilers of cast-iron, lined
with platinum or enamel, are also used for various purposes, as the
condensation of acid substances, &c., which would act on most metals.
Glass and glazed pans, too, can be used with a steam apparatus,
without any danger arising from breakage, which would frequently
occur if they were directly applied to the fire.


  Illustration: FIG. 1. (‡ REVERBERATORY FURNACE.)

  Illustration: FIG. 2. (‡ BLAST FURNACE.)


Furnaces are fire-places constructed to serve particular purposes,
and are chiefly of two kinds, “Wind furnaces” and “Blast furnaces.”
Of the first kind the common house grate is an instance, of the
second the blacksmith’s forge. The fire in a wind furnace is more
or less shut up, so that the draught of air entering it shall pass
from the ash-pit right up into the fire, and through it into the
flue or chimney--the latter being tall, and of certain proportions,
so as to ensure the requisite draught. These furnaces are used where
heat of the very highest degree is not required, as in glass-houses,
pottery-kilns, &c. The “Reverberatory furnace” is a modification of
the wind furnace, and is used to throw heat on to the surface of
substances, as in roasting ores of metals, to drive off the sulphur,
arsenic, &c., or in the making of soda, litharge, and other processes
where the admission of hot air with the flame is either beneficial,
or at least not detrimental; fig. 1 shows the construction of this
kind of furnace. Blast furnaces are for the production of the very
highest degrees of temperature, and in these the air is forced
into the fire by blowing machines or bellows, often worked by
steam-engines; such furnaces are used for the smelting and casting
of iron, &c. (fig. 2). A good blast furnace for small purposes may
be made by two crucibles--those made of coarse blacklead and clay,
and called “Blue pots,” are the best--one placed inside the other,
the outer one having a hole at the lower part for the nose of the
bellows, the inner one having the bottom cut off and a grating of
iron put in to lodge just above the lowest part; the space between
the two should be filled with powdered fire-brick or broken-up
crucibles (fig. 3).

                     BELLOWS AND BLOWING MACHINES.

  Illustration: FIG. 1. (‡ BLACKSMITH BELLOW.)

  Illustration: FIG. 2. (‡ DOUBLE-BELLOW.)

  Illustration: FIG. 3. (‡ FAN WHEEL.)

  Illustration: FIG. 4. (‡ FAN WHEEL HOUSING.)

The common bellows is the most familiar form of blowing machine. It
consists of two boards bound together with leather, having folds so
arranged that the upper board may be raised or depressed, and the
whole is made air-tight; in the lower board is a hole with a leather
flap-valve opening inwards. When the upper board is raised, the air
rushes in at the hole, pushing up the valve, and when the board is
lowered the air presses the valve down, and so shuts it close, it
has therefore no exit but at the nose of the bellows, from which it
passes out. Blacksmiths’ bellows (fig. 1) are made double, for the
purpose of keeping up a continuous stream of air, instead of the
separate puffs produced by the common single bellows. The arrangement
of the double bellows is as follows:--There are three boards bound
together with leather folded as in the common house bellows; the
board in the middle is fixed, and to this the nose is fastened, but
it opens only into the space above; the upper and lower boards are
united to the middle one by a hinge, and are capable of being moved
up and down; the middle and lower ones have each holes and valves
opening upwards as in the common bellows, and when the lower board
is raised it presses the air in the space between it and the middle
board through the hole in the latter, into the space between it
and the upper one, and so raises it; this has a heavy iron weight
placed on it which makes it sink down and force the air out through
the nose. While this weight is sinking the lower board is pushed
down, and is ready to force a fresh quantity of air into the upper
space, so that one continuous stream of air issues at the nose of
the bellows. The handle is fixed to the lower board, and generally
has a cord uniting it to a wooden handle, which is worked like a
pump-handle (fig. 2). For large furnaces, blowing machines of various
kinds are used, generally consisting of a pair of large cylinders
having pistons worked in them by steam power, and pumping air into
a large air-chamber, from which it proceeds in three or four pipes
to the furnace, or sometimes to numerous furnaces, each having a
tube and stop-cock by which the “blast” may be turned on, similarly
to gas or water, the air-chamber being always kept filled at a
great pressure by the cylinders, and furnished with a safety-valve
to prevent the pressure bursting it. There is another kind of
blowing-machine, consisting of a fan wheel turning very rapidly in
a round box (figs. 3 and 4), from which a tube proceeds, and having
holes in the sides to admit the air, which is thrown forwards by the
fans of the wheel.

                           SCREW PROPELLERS.

  Illustration: SCREW STEAM-VESSEL.


  Illustration: FIG. 2. (‡ PROPELLER.)

These are instruments placed at the back part of steam-vessels for
the purpose of propelling them through the water. Fig. 1 will show
the position they occupy, and fig. 2 the shape of the propeller. When
first used, they had one or two entire turns round the axis, but are
now made with two blades, each forming about one-sixth part only of
one turn, and this is found to give more power with less friction.
The propeller is turned rapidly round in the water, from which it
meets with resistance in a direction perpendicular to the surface
of its blades, but as this is oblique to the direction of rotation
the force is exerted in two directions, one directly opposes this
rotation, and is overcome by the power of the steam-engine, the other
is in a direction towards the ship, overcoming the inertia of the
vessel and the friction and resistance of the water, so that the ship
is moved along, and the propeller winds its way through the water in
a spiral direction as an ordinary screw does through the hollow screw
made to fit it, the vessel travelling at a speed proportionate to the
screw’s revolutions.


  Illustration: FIG. 1. (‡ ANCHOR WITH WOOD STOCK.)

  Illustration: FIG. 2. (‡ ANCHOR WITH IRON STOCK.)

  Illustration: FIG. 3. (‡ SPACE-SAVING ANCHOR.)

  Illustration: FIG. 4. (‡ ANCHOR AT REST.)

  Illustration: FIG. 5. (‡ “WEIGHING” ANCHOR.)

These ponderous instruments are used for the purpose of securing
ships and other vessels, that they may not be driven onwards by the
wind or tide. They are attached to a strong rope or chain, called
the “cable,” and when not in use are kept swung at the fore-part or
bow of a ship, the cable being wound round an apparatus called the
capstan, which serves to let it out or draw it in. Anchors are made
of iron, and are of the form delineated in fig. 1. The straight part
from the ring to the bend is called the “shank,” the curved part is
made up of the two “arms,” and the centre where it joins the shank
is called the “crown.” At the end of each arm is a plate of iron of
triangular form, called a “fluke,” and crossing the shank close to
the ring is the “stock,” which is made of two pieces of oak bound
together with iron bands; sometimes it is made wholly of iron, as
in fig. 2, in which case it runs through a hole in the shank, and
has one of its ends curved for the purpose of packing more closely
and saving space (fig. 3). The anchor, when let fall from the ship,
carries the cable with it, and generally falls on the crown, then
tilts over so that the stock lies flat on the bottom and one of the
flukes sinks in to a considerable depth by its great weight; when the
ship drags at the cable it lifts up the stock and throws the whole
weight of the anchor on the fluke, and makes it sink completely; any
further pull must bring up a large piece of the earth before it can
be moved. In “weighing” anchor, that is in pulling it up from the
bottom to bring it on board again, the cable is slowly wound up by
the capstan, and as the cable is shortened the ship is drawn along
to a point nearly over where the anchor rests, when--the pull at the
cable continuing--the shank is raised into an upright position, and
the fluke and arm, instead of dragging up a great piece of earth,
remove but a small portion, as may be seen by the dotted lines in
figs. 4 and 5, which show the earth to be removed before the anchor
can be drawn from its hold.

Large vessels carry four anchors, the “best bower,” the “small
bower,” the “sheet,” and the “spare” anchors, their size depending
on the size of the ship, the rule in the Royal Navy being a
hundred-weight for each gun; so that an eighty-gun ship carries
anchors of four tons each, or eighty hundredweight. Anchors are
made of the best and toughest wrought iron, and the greatest care is
necessary in forging them in order that there may be no flaw in the
welding, for a ship may be lost by an anchor breaking.


  Illustration: FIG. 1. (‡ LINK CHAIN.)

  Illustration: FIG. 2. (‡ WHEEL CHAIN.)

  Illustration: FIG. 3. (‡ CHAIN WITH STAY.)

  Illustration: FIG. 4. (‡ CHAIN WITH EXTENDED STAY.)

Chains are made up of separate links of rigid metal which having
no flexibility in themselves are yet so united that each shall
move freely on the next links to it, and thus produce a flexible
whole. For ornamental purposes there is almost an endless variety
of patterns, as may be seen in jewellery-work--but for the purposes
of business and machinery there are chiefly but two, the ordinary,
as fig. 1, and that which will only bend in one plane, as in fig.
2--this is chiefly made use of in passing round wheels, as in clocks.
Chains are used where rough wear is required, in which case rope
would be rapidly worn through. Cables of chain are now much more
generally used than hempen ones, as they are more to be depended
on, take up less room, and are not so liable to be cut or worn by
rough rocks at the bottom. In chain cables a “stay” is placed in
every link (fig. 3), which greatly increases its strength, but the
best form of chain cable is shown at fig. 4; in this the links are
somewhat angular, and the stays longer. Chains are chiefly made by
machinery; the rods are first drawn out of the proper size, pieces of
the required length are then cut off and bent to the right form, and
the stay and this link are then both made white hot, placed in their
right position, and welded together by pressure.


  Illustration: (‡ YARD CRANE.)

  Illustration: FIG. 1. (‡ WHEEL ASSEMBLY.)

  Illustration: FIG. 2. (‡ FLOOR CRANE.)

  Illustration: FIG. 3. (‡ LANDING CRANE.)

  Illustration: FIG. 4. (‡ LANDING CRANE.)

  Illustration: FIG. 5. (‡ JIB CRANE.)

  Illustration: FIG. 6. (‡ SWING CRANE.)

These machines are used for raising heavy bodies in a perpendicular
direction. They are of various forms suitable for almost every
purpose, and to most of them are adapted two or more wheels with
teeth, one small and one large, for the purpose of obtaining power
at the expense of time (fig. 1); the small wheel is turned by a
windlass, and turns the larger one very slowly but with great power.
The common warehouse or cellar crane is generally an iron frame with
two pulleys, and the arrangement shown at fig. 1. which is usually
inside the warehouse, while the crane is outside to raise goods from
carts, &c., into the floors above (fig. 2). Cranes at the sides of
canals or rivers for landing goods are sometimes made as figs. 3 and
4; in the last there is a heavy stone placed to balance the weight
at the end of the crane. What is called the “jib crane” is often
“rigged” up on shipboard for shipping and unshipping goods (fig.
5). Cranes for very heavy purposes have been made upon the tubular
principle and consist of iron plates rivetted together so as to form
a hollow curved crane, similar to the hollow girders used in bridges.
Where goods have to be brought from one particular spot to another,
as in fig. 6, the swing crane is used. Amongst cranes may be named
the hydraulic lift; this is exactly similar to the hydraulic press,
only applied in a different manner, and is used to lift very heavy
weights but short distances, as for raising heavy goods on to railway
trucks, &c.


  Illustration: (‡ KNIFE-GRINDER.)

  Illustration: (‡ PISTON CRANK.)

Cranks are bends in the axle of any part of a machine by which an
up-and-down motion is converted into a circular or rotatory one,
as in the common knife grinder’s machine; in this arrangement
a fly-wheel is necessary to continue by its momentum (tendency
to go on) the motion begun by the upward and downward action of
the treadle, piston-rod, &c., as the case may be. The cranks of
steam-vessels are among the heaviest pieces of forging that are
wrought by Nasmyth’s steam hammer, cast-iron being too brittle to
be used for the purpose.

                      FIRE-ARMS AND PROJECTILES.


  Illustration: FIG. 1. MUSKET BORING.

  Illustration: FIG. 2. RIFLING PROCESS.

In the manufacture of fire-arms the chief parts consist of the metal
tube from which the projectiles are to be expelled, the stock of
the musket and the carriages of great guns or cannon being only
varieties of the same thing, namely a convenient platform from which
to fire the tube, which is the real instrument. In the manufacture of
muskets, pistols, and cheap fowling-pieces, the barrel is made from
a sheet of soft iron rolled up lengthwise round a rod or “mandril,”
the edges overlapping each other, which are then welded together; but
in the best guns the barrels are twisted, that is, a slip or fillet
of iron half-an-inch broad and of sufficient length is twisted in a
spiral round the mandril, and then the whole is welded together. The
barrel is “bored” by means of a square-headed drill of steel turned
in a kind of lathe (fig. 1), and the interior afterwards polished
with oil and emery-powder until it is perfectly bright and even; the
breech is then made separately, and screwed in. The best iron for
gun-barrels is called “stubb iron,” consisting of old horse-shoe
nails welded together, and is very soft and even in its grain. The
barrel is made red-hot and suffered to cool very slowly; this is
called “annealing,” and it prevents any part being brittle, and
therefore liable to burst with the charge in firing. Rifled barrels
are those which have one or more grooves cut in the inside of the
barrel from the muzzle to the breech in a spiral direction, each
making one turn before it completes the length of the barrel (fig. 2).

  Illustration: FIG. 3. (‡ PERCUSSION CAP BREECH.)

  Illustration: FIG. 4. (‡ HAMMER MECHANISM.)

  Illustration: FIG. 5. (‡ RIFLE WITH BAYONET.)

The old “flint” lock has now quite gone out of use, having been
superseded by the “percussion.” This is a contrivance to cause that
part of the lock called the cock or hammer to strike the percussion
cap with great force, and so discharge it (figs. 3 and 4). The cap is
put on to a small projection called the “nipple,” which has a hole at
the top communicating with the barrel, and down which the spark from
the percussion cap passes.

In rifled guns, of late, the use of conical balls has been
introduced, for the effect of the charge in propelling a ball rapidly
out of a barrel with spiral grooves is to turn it as it passes out
of the barrel, and consequently to “spin” it with great velocity in
one direction, like a top; the effect of this is to balance every
part of the ball in the air and so cause it to take a true direction,
for if the merest notch or hollow existed in a spherical ball, that
part being lightest and having the least momentum would not maintain
its rate so long, and by lagging behind cause the ball to describe a
part of a circle in its course. It is thus that the balls from common
muskets, although rightly directed, often fall extremely wide of the
mark. Military muskets and rifles are fitted with bayonets, that they
may act both as lances and fire-arms (fig. 5).

  Illustration: GUN-MOULD.

  Illustration: GUN-BORING MACHINE.

“Ordnance,” or great guns are made of cast-iron or of gun-metal
(a mixture of copper and tin), but experiments have lately been
made with wrought-iron and cast-steel, with the view of obtaining
a tougher and more durable material. They are cast solid, and
afterwards bored with a machine. The following account of gun-casting
at Woolwich Arsenal appeared in the “Times” of January 22, 1858:--“As
the plug was drawn the glowing mass leapt out like a stream of
silver, filling up the moulds for two twelve-pounder howitzers
that were to be cast, and leaving a bright, hungry-looking flame
playing over them, making everything red-hot which it approached.
In this workshop about twenty men and boys produce twelve brass guns
per week, as well as tangent-scales for ships’ guns, lock-covers,
brass fittings for machinery, &c., and iron castings. Each gun
cast requires two days to cool, when it is removed to the turnery
to be bored; and it was to this workshop that the royal party
next proceeded, and saw the guns in all their stages of trimming,
finishing, and boring. Three-quarters of an hour suffice to cut a
gun to its proper length and remove the rough sand which adheres
to it after casting. It is then turned over to another man and
another machine, and the whole of its outside shaping and marking
is completely finished in two days, when it is again turned over
to a fresh machine, and bored and drilled ready for service in a
day-and-a-half more. With the present machinery the turnery at
Woolwich could finish thirty brass guns in a week, though at this
time it never completes more than ten or twelve.”

  Illustration: FIG. 6. (‡ FIELD GUN).

The ordinary form of “gun” is shown by fig. 6. The knob at the
right-hand side of the cut is called the “button,” the next division
the “vent field,” beyond this to the rim the “first reinforce,”
further on, the “second reinforce,” from which a cylindrical bar
projects on each side for attaching the gun to the carriage, called
“trunnions.” Beyond this to the next rim is called the “chace,” and
beyond this again to the end the “muzzle.” Guns are chiefly used to
throw solid round shot of cast-iron, accurately turned to a sphere,
and the weight of these determines the character of the gun, as a
thirty-two pounder, &c., the words “heavy” and “light” designating
the thickness and consequent weight of the metal composing it. There
is a smaller and shorter kind of gun, called a “carronade,” which
is held to the carriage by a projection underneath, having a hole
for a bolt to secure it, instead of trunnions. Another kind of gun,
called a “howitzer,” is of shorter proportions than the ordinary gun
and larger in the bore; it is chiefly intended to throw shells at a
slight elevation. The mortar is still shorter, and of much thicker
metal; it is held to a sort of platform by trunnions at its extreme
end, and is intended to throw shells to great distances, and at a
great elevation.

  Illustration: FIG. 7. SHELL CASTING.


  Illustration: FIG. 8. (‡ BULLET MOULD.)

  Illustration: FIG. 9. (‡ BULLETS.)

  Illustration: FIG. 10. (‡ NIPPERS.)


The sizes of howitzers and mortars are expressed by the diameter
of the shell they are intended to throw; the largest of which at
present in general use is the “thirteen-inch.” This immense shell
when charged weighs nearly 200 pounds. These shells or “bombs” as
they were formerly called, are cast hollow (fig. 7), with a small
opening into which a “fuze” or wooden tube filled with combustible
matter is inserted; they are charged with gunpowder, which on being
ignited by the fuze burning down to it, explodes and bursts the
shell into fragments, which fly about with terrible force. What are
called “shrapnel-shells,” are those shells which are filled with both
gunpowder and leaden bullets, to be scattered about by the explosion.
Case-shot is a name given to a packet of bullets inclosed in a tin
canister and used as a projectile, the case bursts and the bullets
are scattered. Grape-shot is the name given to a collection of nine
iron balls packed up so as to be used as one. Hand-grenades are small
shells of about three pounds’ weight, to be cast by hand. Bullets for
the ordinary musket are simple balls of lead, in some cases cast six
at a time in moulds (fig. 8), and coming out in one piece as seen at
fig. 9, which are afterwards separated and finished off by a sort of
nippers as seen in fig. 10; but for the most part musket and rifle
bullets are formed by compression. The bullets for the Minié rifle
are made by machinery; they are of a conical form, with a hollow at
the base into which a small plug of box wood is fitted, this end
being towards the powder receives the whole force of the explosion,
the effect of which is to drive in the plug and open out the bullet,
thus fitting it tightly into the grooves of the rifle and preventing
any loss of power by the escape of the gases resulting from the
combustion of the powder. The machine for making these bullets is
shown at fig. 11. The following is an account of it, taken from the

“Like all the machines here, these are perfectly automatic. Coils of
solid leaden piping are hung in it, which it unwinds, cuts to the
required length, stamps with steel dies into the form of a Minié
bullet, and then conveys away into boxes. Each machine has four dies,
which cut, stamp, and pass into boxes thirty-six bullets per minute,
giving for each machine an average of 7,000 per hour. There are four
of such machines, which thus each day turn out 300,000 Minié bullets;
but, of course, as they never tire, the number produced can at any
time be doubled by leaving them to work all night. They are so simple
in their construction that one man could easily attend to them all.
It was a curious contrast to the silent rapidity with which these
deadly messengers were formed, to watch a number of men and boys
working near them casting round musket-balls for Shrapnel shells,
in the old style of hand work. By this method two persons can only
rough-cast seven cwt. of bullets per day, or about 12,500, which it
takes two persons another day to trim. Thus, four hands, with a great
consumption of fuel to keep the lead always melted can only produce
6,000 bullets per day or 1,000 less than each machine produces in one

The machines for making the box wood plugs are also described:--

“Each of these was managed by a child, who kept it properly fed with
small sticks of box, which the machine converted into plugs at the
rate of 15,000 in nine hours, or nearly 300,000 per day for them all.”

Rockets, as used for projectiles, are similar to those in ordinary
use, but that they have iron cases and are made to start from an iron
tube, down which the stick passes, and which directs the course of
their flight. They are made of various weights, the largest being
thirty-two pounds. These enormous rockets pass to a very great
distance and are made either to explode like shells, or burn fiercely
for several minutes, like what are called “carcases,” thus setting
fire to houses, &c., against which they may be directed; but hitherto
their course has been but little under control, and therefore not
much to be depended on. They cause great confusion in masses of
troops, when directed against them.

                           PERCUSSION CAPS.


  Illustration: FIG. 1. (‡ PERFORATED COPPER.)

  Illustration: FIG. 2. (‡ CAP.)

  Illustration: FIG. 3. (‡ PERFORATED PLATE.)


  Illustration: FIG. 5. (‡ TAMPING MACHINE.)

  Illustration: FIG. 6. (‡ VARNISHING MACHINE.)

These are little hollow cups of copper having a fulminating substance
at the bottom, so that when put on to the “nipple” of the gun and
struck by the “hammer,” the fulminating powder explodes, and the
spark passing down the hole in the nipple discharges the gun. To
prepare the fulminating powder for these caps, let 100 grains of
mercury be dissolved in a measured ounce-and-a-half of nitric acid,
and when cold let two ounces of spirits of wine be added, and the
whole put into a Florence-oil flask made perfectly clean, and let it
be placed in the open air; copious fumes will pass off and a violent
action take place, during which a white crystalline powder will be
deposited; as soon as all action has ceased and the liquid cooled,
pour the whole on a filter of blotting paper, and let the fluid pass
through, wash the powder which remains on the filter with a little
water, and let it dry, without heat. This is fulminating mercury,
which is a highly dangerous compound, and should be kept in a bottle
with a cork, and not a stopper, as the friction of this against
the neck of the bottle might cause an explosion. At the Arsenal at
Woolwich is a machine (shown at the head of this article) which
makes the caps complete. It is fed by a band of thin copper about
two inches wide, out of which pieces are punched in the form of a
thick cross, leaving the perforated copper as shown in fig. 1; these
pieces are punched or “struck up,” and expelled as perfect caps of
the form of fig. 2, at the rate of about 1000 per minute. The caps
have next to receive their charge of fulminating powder, which is
done by dropping them into a perforated plate (fig. 3), capable of
receiving many hundreds; this is covered over by two other plates,
each perforated to correspond, but the upper one made to shift, so
that in one position the holes correspond, and in the other they do
not, but remain as small shallow dints. A portion of the fulminating
powder is put on this plate and scraped all over it by means of a
piece of paste-board (fig. 4), so as to fill all the little dints;
the plate is then shifted and the holes made to correspond, when the
powder falls through into the percussion caps, each one of which thus
receives a definite charge. The next process is to press it down
into the cap, so as to prevent it falling out. For this purpose the
plate full of caps is removed to a machine (fig. 5), having a row of
little stoppers, which are moved rapidly up and down, the pressure
being exactly regulated by flat leaden weights, suspended so as to
give only so much pressure as will consolidate the powder, without
exploding it. They are next removed to a third machine called the
“varnishing machine” (fig. 6). This has a trough of varnish, made
by dissolving shellac in spirits of wine, into which a row of wires
dip, and by a turn of the hand convey the minute portion of varnish
on their points into the caps, row after row. This varnish dries in
a few minutes, and causes the fulminating powder to adhere; the caps
are now complete. The old form of caps was a simple short cylinder,
but it is found better to allow the four little flaps to remain on,
that the right end may be distinguished and instantly placed on the
nipple the proper side downwards, which cannot otherwise so readily
be done in the dark, and when the hands are benumbed with cold.

                        PUMPS AND FIRE ENGINES.

  Illustration: FIG. 1. (‡ COMMON LIFTING PUMP.)

Pumps are used for lifting fluids above their level into some higher
situation, such as from the hold of a ship or from a well. Fig.
1 shows the different parts of a common “lifting pump;” _a a_ is
a cylinder, _b_ a piston rod or “plunge,” _c_ the sucker made of
leather to fit nicely the cylinder, _d_ a valve in the sucker to open
upwards, _e_ a valve fixed to the cylinder, also to open upwards,
_f_ a box with a spout.

  Illustration: FIG. 2. (‡ AIR PUMP.)

The piston being raised by lowering the handle of the pump, a partial
vacuum is formed below the upper valve, which shuts down directly
the piston is raised by the pressure of the air; this vacuum causes
the external air to force the water some way up the tube _g_. On
the piston descending, the lower valve is forced down and the upper
one opened, this keeps the water where it is and allows the piston
to descend without forcing the water down again, and on its being
raised a second time the upper valve shuts and the lower one opens,
the water being drawn up still higher, and this takes place till the
box at the top is full to the spout, when it runs out. The air-pump
is on the same principle, and is generally made with two cylinders
worked by means of a “rack” and wheel (fig. 2); this is only to
save time, instead of pumping water it pumps out air from any vessel
called a “receiver,” because it receives any object to be placed in
a “vacuum,” that is to say a partial vacuum, for the air-pump cannot
produce a vacuum, as the air is only partly removed by each stroke
of the piston, leaving the air more rarefied inside; and although
each stroke of the piston increases the rarefaction, yet it cannot
get all, as it merely takes part, and always leaves part.

  Illustration: (‡ FIRE ENGINE.)

  Illustration: FIG. 3. (‡ AIR CHAMBER.)

Fire and garden engines are only applications of the pump to
different purposes. The fire-engine has generally two cylinders and
pistons, and has moreover an air-chamber for the purpose of making
the stream of water continuous. It acts in this way:--The water
is forced by the power of those who are pumping the engine into
a vessel air-tight and full of air, having an opening which joins
the “hose” at its lower part; the result is, that as the water is
forced in faster than it can well escape, the air above it--becoming
greatly compressed, and by its expansion between each stroke of the
pistons--forces the water out, and so continues the stream or jet.
Fig. 3 shows this air-chamber; _a_ joins to the hose _c_, and _b_ is
in union with the forcing-pumps of the engine. The air is represented
as it would be compressed to about half its bulk, for it at first
filled all the air-chamber down to the openings.


  Illustration: FIG. 1. (‡ FLAPPER VALVE.)

  Illustration: FIG. 2. (‡ BALL VALVE.)

  Illustration: FIG. 3. (‡ PLUG VALVE.)

  Illustration: FIG. 4. (‡ CLOSED PISTON VALVE.)

  Illustration: FIG. 5. (‡ OPEN PISTON VALVE.)

Valves are contrivances to admit the passage of fluids or gases by
their own pressure in one direction, and in such a manner that the
same pressure shall of itself prevent their return or passage in the
opposite direction, as in fig. 1, which is the piston of a common
pump. There are almost innumerable varieties of valves, one consists
of a ball of metal fitting into a cup which has a hole at the bottom
(fig. 2). Another (fig. 3), is a plug of a conical shape fitting
in the same way, and having a rod affixed to the top which passes
through a hole in a piece of metal so as to guide it in its ascent
and descent; this is the kind of valve used as a “safety-valve”
in steam boilers, but having the pressure regulated by a spring
or weights. Figs. 4 and 5 are representations of a kind of valve
which forms the piston itself, and is very useful as a piston for a
square wooden tube for temporary purposes, as on board ship, where
any number may be fitted up at little trouble, time, or expense.
There are many other valves besides these, as the sliding valves of
steam-engines, &c.


  Illustration: FIG. 1. (‡ FLY-WHEEL.)

  Illustration: FIG. 2. (‡ POWER GEARS.)

  Illustration: FIG. 3. (‡ BEVELED GEARS.)

  Illustration: FIG. 4. (‡ SIDE-COGGED GEAR.)

  Illustration: FIG. 5. (‡ RATCHET GEAR.)

  Illustration: FIG. 6. (‡ CAPSTAN.)

  Illustration: FIG. 7. (‡ PULLEYS.)

  Illustration: FIG. 8. (‡ ENDLESS BAND PULLEYS.)

Scarcely any kind of machinery can be constructed without wheels of
some kind--they serve almost numberless purposes. The fly-wheel (fig.
1) serves to produce a continuous motion, from its size and weight
giving it a tendency to go on, and in this way causing it to fill up
the intervals of unequal action, as in the ascent and descent of the
piston in a steam-engine. The toothed-wheel serves to give motion
to other wheels, and this at a certain rate either greater or less
than its own, according to its size, and consequently the number of
its teeth; thus a wheel with a hundred “cogs” or teeth united to one
with but fifty, causes this to go round twice while the larger one
passes round but once; but a large wheel turned round by a small
one, although it moves more slowly yet does so with increased power
just in proportion to its slowness (fig. 2). The bevel-wheel (fig. 3)
is used to change the direction of a shaft, and for all the other
purposes of a toothed-wheel, from which it differs only in the
position of the teeth or cogs. Wheels are sometimes made to answer
the purposes of bevel wheels, by having the cogs on the surface of
the one wheel, and the other as an ordinary toothed-wheel (fig. 4).
The ratchet-wheel (fig. 5) is a wheel with its teeth pointing
in one direction like the teeth of a saw, and into which a tongue
of iron is made to fall, so that the wheel can only be turned in
one direction. These wheels are used where the machinery is liable
to run back if left, as in the “crane,” &c. The capstan (fig. 6)
is a kind of ratchet wheel, and is so made that long spokes may be
placed in the holes, to be moved round by men, and taken away when
out of use; it is a very powerful piece of machinery, and is used
for “weighing anchor” (see “Anchors”). The pulley (fig. 7) is a
series of wheels used to increase power by diminishing the rate of
movement; they are much used in the rigging of ships, and are then
called “blocks.” There are different ways of connecting wheels so as
to communicate the motion of one to another; they may be toothed as
before described, or a “lathe-band” may be passed over them. This
may be either round or cord-like, and made of cat-gut, or flat and
made of leather or gutta-percha. This mode of producing motion is
very useful where evenness and smoothness of action are required,
or where the wheels are at a considerable distance apart; they have
their ends united so as to form a ring, or endless band, and are
sometimes used to communicate motion to a great many wheels, as
seen in fig. 8. The eccentric-wheel has its axis out of the centre;
it is used for the same purpose as a crank, but the action is more
continuous and even. While the crank is most frequently used to
produce a circular or rotatory motion from an up-and-down motion,
the eccentric-wheel is more commonly used to produce an up-and-down
motion from a rotatory one (fig. 9). Wheels take almost every variety
of form, and are not, in some cases, even round; in winding yarn on
to bobbins, where a motion is required of a constantly varying rate,
two elliptical wheels are made to act on each other, the end of
one being approximated to the centre of the long axis of the other,
(fig. 10).

  Illustration: FIG. 9. (‡ ECCENTRIC-WHEEL.)

  Illustration: FIG. 10. (‡ TWO ECCENTRIC-WHEEL GEARS.)

Wheels for carriages are used to diminish friction, by causing the
“tire” or smooth outer edge to roll upon the surface instead of
being rubbed; all the friction in wheels is in the centre or axle,
which being turned smooth, and greased or oiled, works very easily.
Carriage wheels are made to revolve upon a fixed axle, and each wheel
revolves independently of the other, but in railway-carriages and
engines, the wheels are united in pairs, and the axle revolves with
them, the weight being borne outside of the wheel on a small part of
the axle which projects. The various parts of a wheel are the box or
“nave” which is the centre part, the “spokes” or those bars which
connect it with the centre edge or felloes, and the “tire,” an iron
band binding the whole together. Wheels for gun-carriages are made
at Woolwich Arsenal by machinery. The following is a description of
them, taken from the “Times” newspaper:--

“Here a few unskilled labourers superintending the machines produce
forty complete gun-carriage wheels a day, though all their component
parts are made of the hardest woods--viz., elm for the naves, oak
for the spokes, and ash for the felloes. The novelty here was the
new mode in which a wheel is fitted together. Instead of by hand,
as formerly, the pieces are all laid together on the ground, and
of course in a circle, around the outside of which are six small
hydraulic rams, with the head of the piston of each curved so as to
form a segment of a circle touching the outside portion of the wheel.
One small steam-engine pumps the water into all these with an equal
pressure, which, as it increases, forces the felloes into the spokes
and the spokes into the nave of the wheel, with such force as to
compress the whole, by a strain of 250 tons, into the solidity of
one piece.”

Paddle-wheels are made to revolve with their lower part in water,
and are furnished with a series of short boards fixed to the tire of
the wheel, which is generally double, that they may be better held
on; these boards or paddles take a great hold on the water and cause
the resistance which is necessary to move the vessel. The wheel of a
watermill is constructed in the same way.


  Illustration: (‡ WATERMILL.)

Watermills are those kind of mills, the motion of which is derived
from the flow of a stream of water against the lower part of a large
wheel, provided with paddle-boards similarly to the paddle-wheels
of steam-vessels; or else by the weight of a stream of water
falling against the upper part of the wheel from a spout or trough;
the former of these is called the under-shot, and the latter the
over-shot mill. The former is used where there is a large body of
water flowing at a sufficiently rapid rate, and the latter kind where
there is but a small supply, the whole of which is often used for
driving the mill; but other circumstances, of position, &c., may
determine which shall be used. The large wheel being thus driven
round, any kind of machinery may of course be attached, according to
the nature of the work to be done. Like windmills these watermills
are for the greater part superseded by steam power; the locality,
&c., must determine which can be used with most advantage.


  Illustration: (‡ WINDMILLS.)

These picturesque objects are buildings containing machinery, to be
driven by the wind, for grinding corn, sawing wood, and any other
purpose that may be required. They consist of a basement, generally
of stone or brick, and a superstructure surmounted by a sort of dome
capable of being turned round. From this dome projects the shaft of
a wheel, and on this is fastened four fans or sails made of long bars
of wood crossed by shorter ones; these being covered with canvass,
form a surface to catch the wind. These sails are placed obliquely to
the front of the cross, so that when the wind blows upon them right
in front, they are at an angle with it, they are therefore turned
round; for the wind which pushes them from the front, as they are
oblique, tends also to push them on one side; when once in motion,
being heavy, they form a sort of fly-wheel to the machinery. The
dome has several small wheels attached to its lower border, to act
as friction rollers and cause it to be easily turned round (which
is often required), that the sails may be made to face the wind in
whatever direction it may blow; this is sometimes done by ropes
attached to the dome, but is more frequently effected by means of
a small set of sails, shown in the cut, which are placed at right
angles to the large set, so that when the wind acts on the large
sails the small ones are not affected; but should the wind shift,
these small ones begin to move, and they are connected with a toothed
wheel acting upon a band which surrounds the dome; this is therefore
caused to turn round whenever the small sails are turned, and as the
dome turns, it brings with it the large sails until they are in the
right position. These sails are generally fixed not quite upright,
but inclined with their fronts looking a little upwards, which is
found to be the best position to catch the wind.


  Illustration: FIG. 1. (‡ SUCKING SYPHON.)

  Illustration: FIG. 2. (‡ GLASS BALL ON SUCKING TUBE.)

Syphons are bent tubes for drawing off liquids from cisterns, butts,
&c., where there is no tap, and where it would be inconvenient to
make any second opening. Fig. 1 gives the outline of the most usual
form of syphon; these are only used for liquids that may be drawn
into the mouth without injury, such as spirits from casks. The mode
of using the syphon is this--the bottom of the longest leg _a_ is
stopped with the palm of the hand, the tap is then turned on and
the mouth applied to the small tube _c_, the air is then drawn out
by sucking; the liquid rises and fills both legs of the instrument,
the tap is turned off, and the syphon is full. Now as the leg _a_
is longer than the leg _b_, the fluid in it weighs more than that
in _b_, and sinking down draws the fluid in _b_ up, and so on till
all is drawn from the cask. Syphons are generally made of copper,
but gutta-percha would answer exceedingly well. Fig. 2 represents a
contrivance for drawing off acids, &c., which would injure the mouth;
the ball prevents the acid rising into it, as the mouth is removed
directly it begins to fill, which as the instrument is of glass, can
easily be seen.

                          STOP-COCKS OR TAPS.

  Illustration: FIG. 1. (‡ OPEN TAP.)

  Illustration: FIG. 2. (‡ CLOSED PLUG.)

  Illustration: FIG. 3. (‡ OPEN PLUG.)

  Illustration: FIG. 4. (‡ CLOSED TAP.)

  Illustration: FIG. 5. (‡ SPOUTED TAP.)

Taps are used for the purpose of letting off or stopping at pleasure
the flow of liquids from vessels or through pipes. The forms of
stop-cocks are very various, but the form shown at fig. 1 is by
far the most general; it consists of a short curved tube, having an
upright cylinder in the centre in which a plug with a handle turns;
this plug is perforated in the direction of the length of the handle,
so that when this is turned crosswise the communication is shut
off (figs. 2, 3, and 4). The “nose” or end of the tap is sometimes
prolonged into a spout, for filling bottles, &c., as in fig. 5.

  Illustration: FIG. 6. (‡ OPEN SAFETY TAP.)

  Illustration: FIG. 7. (‡ CLOSED SAFETY TAP.)

  Illustration: FIG. 8. (‡ AMERICAN WOODEN TAP.)

  Illustration: FIG. 9. (‡ SAFETY TAP KEY.)

  Illustration: FIG. 10. (‡ 4-WAY TAP (a-b, c-d).)

  Illustration: FIG. 11. (‡ 4-WAY TAP (a-c, b-d).)

The safety tap differs somewhat from the ordinary tap, a section is
seen in figs. 6 and 7; the plug is hollow and forms the nose or spout
itself, this plug is only perforated on one side, so that it has to
be turned round half-way instead of quarter-way as in the common tap.
The upper part of the cylinder has an opening (of different shapes)
leading to the top of the plug, &c., a key being made to fit it (fig.
9). The American wooden taps (fig. 8), are just like it, but have
the handle united instead of a key. The four-way tap is a clever
contrivance for uniting four passages in alternate pairs; figs. 10
and 11 indicate the different positions of the plug. This kind of tap
was formerly an important part of the steam-engine, and allowed the
steam alternately to enter above and below the piston.


  Illustration: FIG. 1. (‡ BLOTTING-PAPER FILTER.)

  Illustration: FIG. 2. (‡ FILTERING STONE.)

Filters are contrivances for separating substances from liquids
which are not dissolved in them; but in the most common acceptation
of the term, filters are vessels used for separating the impurities
from water. Filters on the very large scale required by the water
companies consist of sand or gravel so contrived that the water shall
drain through them. This, indeed, is the natural way in which well
or spring water is filtered; for the rain falling on the surface of
the earth sinks down through such substances as gravel and sand, and
lies in beds at the bottom, when it meets with stone or clay, through
which it cannot sink (see “Artesian Wells”). This water when drawn
up is in most cases very bright, as it has been strained through the
sand or gravel in passing downwards. The best substance through which
to filter water for household use is sponge pressed together with
some force, and this is the usual plan adopted in all the earthenware
filtering vessels sold; but there is usually a layer of sand or some
other substance placed below, which is useless or worse, as it often
becomes foul and taints the water. If the water has a bad odour, a
few pieces of newly-burned charcoal placed in it above the sponge
will purify it (see “Charcoal”). Filters for other purposes, and
for any small quantity of liquid, may be made by cutting a piece
of white blotting paper round, and then folding it into quarters
and partially opening it (fig. 1); this if put into a funnel forms
a convenient filter for any substance to be brightened, as water,
vinegar, or wine. A particular kind of porous sandstone used to be
hollowed out and used as a filter, but these filtering-stones are
now but seldom used, except in the case of self-filtering cisterns,
which are made by enclosing the inner opening for the tap in slabs
of porous stone, so as to form a box within the cistern (fig. 2);
by this contrivance, when the tap is turned, only that water escapes
which has been filtered. It is necessary to have an air-tube to let
the air in as the filtered water runs out, and to let the air out as
the water filters in from the cistern. Even in these cisterns a box
of slate or other substance having several holes with sponges pressed
into them would answer much better, as these could be removed from
time to time, washed, and returned. Filters, of course, can only
separate mechanical impurities, such as dust, insects, &c., for if
sugar or salt were put into the water, all the filtering that could
be used would not separate them when dissolved, and thus it is that
well and spring water, although perfectly bright, are still very
impure, containing much lime and carbonic acid dissolved in them,
together with other matters, as iron, &c., which are not separable
by filtration; if it be desirable to separate them, distillation must
be had recourse to (see “Distillation”). Some of these, however, as
lime, may be separated by boiling the water for some time, which
causes the lime to fall down in the form of chalk, and adhere to the
bottom of the vessel--hence the “fur,” as it is called, in kettles.
Water containing lime, although quite “hard” and unfit for washing
purposes, is made sufficiently “soft” for use by boiling.


Presses are contrivances for compressing or squeezing together
substances that may require to be so treated, as in the case of
extracting the oil from seeds, &c. The earliest presses were simply
heavy stones or pieces of metal, put on one after the other; but
the great inconvenience and loss of time incurred in putting on and
taking off these, soon led to the screw and lever, which form the
usual screw press. The screw is fixed at one end in a socket and
is turned round by a long bar of iron or wood, and as the “worm”
works in a corresponding hollow screw which is fixed, it ascends or
descends slowly but with great power. But by far the most powerful
contrivance of this kind is the “hydraulic” press; this machine is
not only used as a press, but also to raise great weights, and for
many other purposes. The hydraulic press consists of a strong iron
cylinder having a solid piston exactly fitting to it, this piston is
raised by forcing water under it by means of a pump; the principle
depends upon the peculiar property which water and every other fluid
has, of exerting, when confined in a given space, an equal pressure
upon every part of that space; thus if one pound pressure be made
upon one square inch, the water will press with one pound power
upon every square inch of surface that it comes into contact with;
for example, suppose a cylinder, the piston of which is one foot
measurement on the face--this foot contains 144 square inches--and
from the bottom of the cylinder a tube should be made to rise a few
feet above the piston, and that this tube should have an area of one
inch; then one pound weight of water poured in at the top of this
tube would raise 144 pounds weight placed on the piston, for these
144 pounds would press but one pound on each inch, and the pound of
water would have the whole of its weight on the one inch of the tube,
they would therefore balance each other. But instead of pouring in
the water, let a piston be fitted to the tube; a man with his hand
can easily exert 100 pounds pressure on this, and the result would
be that he would raise 14,400 pounds or nearly six-and-a-half tons,
and if to this small piston a handle and valves be fixed so as to
make a pump of it he can easily pump in water at a pressure of two
or three hundred pounds to the square inch; and if instead of the
large piston containing one foot area it has three or four feet, then
the weight raised would be very great; indeed there is no limit to
the power of this instrument but the strength of the material used.
It must however be observed that when the piston descends, say six
inches, it does not raise the six-and-a-half tons six inches, but
only a hundred-and-forty-fourth part of that distance, so that the
piston would have to be raised and depressed six inches 144 times
in order to raise the six-and-a-half tons six inches. But this is
such a saving and concentration of labour that the application of
the hydraulic press is becoming more in demand every day.


  Illustration: FIG. 1. (‡ RETORT.)

  Illustration: FIG. 2. (‡ COMMON STILL.)

  Illustration: FIG. 3. (‡ SMALL PORTABLE CONDENSER.)

These are vessels of different kinds used in distilling, that
is, when any volatile product has to be converted into vapour and
afterwards condensed, for the purpose of separating it from various
matters not otherwise separable. One of the oldest forms of still is
that even yet used in most chemical operations, called the “retort”
(fig. 1). It is blown out of glass in one piece, is easily made
of all sizes, not exceeding a few gallons; it is chiefly used for
distilling small quantities of fluids, and those which act on metals,
as the acids. For some purposes, chiefly those requiring a very
high temperature, earthenware retorts are used, and in other cases
retorts made of platinum; the retort is often “tubulated,” a name
given to those with an orifice in the upper part having a stopper
fitted to it, this opening is useful to introduce any substance
while the body of the retort is already partly filled with its
contents, or to add more of anything from time to time as it distils
over. An indispensable adjunct to the retort is a “receiver” for
condensing the liquid distilled; this is generally of a globular
form, with an opening to receive the spout of the retort, which is
also frequently “tubulated” that it may be attached by a bent tube
to a second or third receiver. The receiver is to be kept cool, and
this is generally done by a stream of cold water being poured on
it, or a cloth dipped in cold water being spread over it, &c. The
stills properly so called, such as are used in the manufacture of
large quantities of liquids, as, for example, in the distillation
of spirit, are generally made of copper tinned inside to prevent
the formation of verdigris, and consist of a body, a head, and a
condenser, the common form of which is seen at fig. 2. The condenser
consists of a long tube coiled up into a spiral and placed in a
large tub of water, having a supply tube to let in cold water at the
bottom, and one for the exit of the hot water at the top, for hot
water being lighter than cold, rises up to the top of the tub. A very
good form for a small portable condenser may be seen at fig. 3, in
which a constant current of cold water is made to pass through the
outer tube, and so keep the inner one cold.

  Illustration: FIG. 4. (‡ FLASKS AND BENT TUBE.)

  Illustration: FIG. 5. (‡ TWO TUBES.)

A distilling apparatus for experiments in chemistry can easily be
made with flasks and bent glass tubes, fig. 4, or even by means
of pieces of tube alone as in fig. 5, one being bent and the other
straight; the tubes and flasks can be united by means of corks
perforated by a round or keyhole file. Empty oil-flasks serve well
for this purpose, they can readily be cleansed by putting a little
oil of vitriol into them, shaking it well about, and then washing
them out with clean water.


  Illustration: _a._ (‡ COMMON BLOWPIPE.)

  Illustration: _b._ (‡ RESERVOIR BLOWPIPE.)

  Illustration: _c._ (‡ RESERVOIR BLOWPIPE.)

  Illustration: _d._ (‡ HOME-MADE BLOWPIPE.)

Blowpipes may be considered as miniature blast-furnaces. They are
little instruments used to force--by means of air blown from the
mouth--the flame of a lamp or candle into a jet of flame so fierce
that the very highest heat can be produced by it. Various forms
of blowpipes are shown in the figures; the common blowpipe, used
by gas-fitters, tinmen, &c., is shown at _a_; better blowpipes
have generally some reservoir to contain the condensed breath and
so prevent it issuing into the jet; the bulb shown at _b_ is for
this purpose and also the conical part of _c_. Very good and cheap
blowpipes may be made by bending a piece of glass tube into the
form shown at _d_, adding a perforated cork and a small piece of
bent glass tube fixed as in the figure. The end of the small tube,
intended to produce the jet, should be held in the flame of a lamp
or gas till it is red hot and turned round all the while; in this way
the hole will gradually become smaller as the melted sides collapse,
forming a neat round hole about the size to admit a fine needle; with
this blowpipe a very great heat can be produced, and it can be easily
repaired. The oxy-hydrogen blowpipe is a contrivance for forcing a
jet of oxygen and hydrogen gases--mixed together in the proportions
in which they form water--through a small orifice and setting fire
to it; this produces the very highest heat. Almost any substance can
be fused by it, but the experiment should not be made unless with
a proper apparatus, as the flame will be sure to run down the tube
and explode the mixed gases with dangerous violence. A common flame
is merely a cone of vapour burning on the surface where it comes
into contact with the air, and therefore gives out but little heat,
but when air is forced into it, a small blue cone of solid flame is
projected, which gives off more heat than the hollow cone.


  Illustration: FIG. 1. (‡ BULB AND STALK WITH MERCURY.)

  Illustration: FIG. 2. (‡ SCALED THERMOMETER.)

  Illustration: FIG. 3. (‡ REGISTER THERMOMETERS.)

The thermometer is an instrument for determining the temperature
of the air or any other fluid into which it may be introduced. The
thermometers in general use contain mercury, but some contain colored
spirit; yet, as mercury is most generally used, it will be only
necessary to say of spirit thermometers, that they act on the same
principle. A thermometer consists of a glass ball having a long thin
hollow tube rising out of it and attached to a graduated scale--the
bore or hollow of the tube is very small, scarcely sufficient to
admit a piece of sewing cotton. The ball or bulb and part of the
stalk are filled with mercury by holding a lamp to the ball till
the air is nearly all expelled by its expansion--for heat expands
air very greatly--and putting the end of the stalk into a vessel of
the fluid. When the lamp is removed the air in the bulb cools and
therefore contracts, by which means the mercury is forced up the fine
tube, very nearly filling the bulb. The bulb is then held downwards
and the mercury so heated that it expands, as did the air, till it
fills the whole of the bulb and stalk up to the very top; the top
is then melted with the blow-pipe (see “Blowpipes”), and the glass,
running together, closes up the bore at the end. As the mercury cools
it contracts, and consequently, occupying less space, falls down in
the stalk pretty close to the bulb, the space above it is therefore
empty, and forms a “vacuum.” Now, therefore, we have an instrument,
consisting of a bulb and stalk half-filled with mercury (fig. 1).
Upon any amount of heat being applied to the bulb, the mercury in it
expands, and rises in the stalk in proportion to the amount of heat
applied, or shrinks and sinks down again as it cools. The next thing
to be done is to form a “scale” by which the height of the mercury
in the stalk may indicate some known or recognised temperature.
There are three scales in use, “Fahrenheit’s,” “Reaumur’s,” and the
“centigrade.” The scale universally used in England is Fahrenheit’s,
although both this and Reaumur’s are sometimes marked on the same
thermometer (fig. 2). Fahrenheit’s scale is formed thus:--The bulb
of the thermometer is placed in boiling water, and the height to
which the mercury rises is marked by a scratch on the stalk; it is
then put into snow or ice in the act of melting, and another scratch
is made where the mercury has descended to. The space between these
two marks is divided into 180 equal parts called degrees, and these
divisions are carried upwards to nearly the end of the stalk and
downwards to near the bulb; the upper scratch, indicating the heat
of boiling water, is marked 212, and the lower one, which marks the
freezing point of water, being 180 divisions lower, will be 32; and
of course, 32 degrees lower will be 0, and is called “zero.” On the
scale of Reaumur’s thermometer the zero or point marked 0, is at the
freezing point of water, and the boiling point is marked 80 (fig. 2).
The centigrade differs from Reaumur’s only in having the space
between the boiling and freezing point of water divided into 100
parts instead of 80. What are called “register thermometers” have
two bulbs, stalks, and scales, on the same instrument (fig. 3); one
bulb is filled with mercury, and the other with colored spirit. In
each stalk a piece of enamel, about half-an-inch long and fitting
the cavity, is introduced; the one in the mercury is to register
the highest, and that in the spirit to register the lowest degree
of heat. They act in the following manner:--The spirit, being very
liquid or thin in its nature, wets the enamel and passes by it when
it rises in the stalk, so that the elevation of temperature does
not affect its position, but when the spirit sinks down it drags
the enamel with it, thus registering the lowest temperature, so that
the distance the enamel is found down the stalk indicates how low
the spirit may have descended in any particular time, say a night.
With respect to the mercury, it is not of a nature to adhere to
the enamel, and therefore instead of passing it pushes it up in the
stalk as it rises, but on descending leaves it behind, the height
at which the enamel is found up the stalk indicating the highest
point to which the mercury had risen, and consequently the highest
temperature. To adjust the instrument, a slight tap or shake will
make the index in the spirit tube fall to the surface of the spirit,
where it is held by the adhesive quality of the liquid, and by the
same process that in the mercurial stalk will fall to the surface of
the mercury, but will not penetrate it, owing to its great density.


  Illustration: FIG. 1. (‡ BENT GLASS TUBE.)

  Illustration: FIG. 2. (‡ TUBE IMMERSED IN MERCURY.)

  Illustration: FIG. 3. (‡ WEATHER GLASSES.)

The barometer is designed to indicate the weight or pressure of
the air on any surface, at any particular time or place; for the
air, although invisible, is still of considerable weight, as there
are many miles of it pressing from above downwards on all parts
of everything upon the earth, and the barometer is for the purpose
of ascertaining how much this pressure amounts to. It is formed as
follows: a piece of glass tubing, about three feet long, is first
closed at one end, then turned up at the other and expanded (fig. 1);
when this tube is filled with mercury and held with the bulb
downwards, the mercury sinks in the stalk to a certain height (say
twenty-nine inches), and that height shows the weight or pressure of
the air. The reason of this will be understood by supposing a piece
of straight glass tubing, three feet long, to be closed at one end
and then filled with mercury; if the finger be placed on the end
not closed, and that end turned downwards and put into a basin of
mercury (fig. 2) before the finger is withdrawn, the fluid, if the
air exerted no pressure, would all sink down from the inside of the
tube into that in the basin, leaving a “vacuum” or empty space in the
hollow of the tube, but it is evident if the air exerted any pressure
on the surface of the mercury in the basin, this pressure would
force the mercury up the tube (for there is no opposing pressure in
an empty space), and that the mercury would rise higher and higher
the greater the the pressure. Well, then, the air really exerts this
pressure, and to such an extent as to raise the mercury somewhere
about thirty inches in height, and the pressure necessary to do
this is found by calculation to be about fifteen pounds upon every
square inch of surface. The barometer tube is divided into a scale
of inches and fractions of inches. What are called weather glasses,
are barometers having the lower part brought up by a curve, and a
small weight resting on the mercury in it, which being attached to a
corresponding weight by means of a cord running over a little wheel
or pulley fixed to hands moving round a sort of dial, turns them as
the mercury rises or sinks (fig. 3), for as the mercury falls in the
stalk it must of course rise in the short stalk of the curve; the
hands by these means are turned round, and the rise or fall of the
fluid will cause them to point to “fair,” “rain,” &c., as the case
may be, for these names are marked where a corresponding change of
the weather may so influence the weight of the air, as to raise or
depress the mercury, and so bring the hands in a position to point
to them.


  Illustration: FIG. 1. (‡ GRIDIRON PENDULUM.)

  Illustration: FIG. 2. (‡ MERCURIAL PENDULUM.)

Any weight attached to a rod or wire so that it can swing freely
may be called a “pendulum.” But for the purpose of time-keeping,
a much more accurate instrument is required; the rate of vibration
or oscillation of the pendulum, does not depend upon the weight of
the ball or “bob” at the lower end, but upon the distance of this
from the point at which the upper end turns, nor does the rate
of oscillation depend upon the distance through which the weight
traverses, for every pendulum will vibrate at the exact rate (with
certain restrictions) at which it is set off, until it ceases,
although the distance through which it traverses, decreases at
every vibration; these facts are taken advantage of in adapting
the pendulum to the purposes of regulating the time a clock shall
keep--the longer the pendulum the slower the vibrations. Now, as
everything in nature is expanded by heat and contracted by cold,
so a pendulum is constantly varying in length by every change of
temperature, and, as a consequence, the rate of the clock to which
it is attached will also vary. Pendulums which have an arrangement
to obviate this variation, are called “compensating” pendulums;
the best in use are of two kinds, one called (from its appearance)
the “gridiron,” the other the “mercurial,” this last is the most
accurate, and is used in nearly all good astronomical clocks.
The gridiron pendulum is made of iron and brass, or zinc, and is
constructed as shown in fig. 1; the rod and outer frame, A, is
made of iron, the two rods inside this of zinc or brass, B B. The
principle of the instrument is this--brass or zinc contract and
expand much more than iron does, and the short bars of these metals
will expand or contract as much as the long bar of iron forming the
rod of the pendulum, so that as this expands and lets the “bob” down,
the short bars expand and draw it upwards so that it keeps its place
at any temperature; this requires very accurate adjustment. The
mercurial pendulum is shown at fig. 2; it is on the same principle,
but is easier to regulate, and more manageable, the vessel in the
centre being partly filled with mercury, and forming the weight
itself, and thus as the mercury expands upwards it compensates for
the elongation of the rod, the same as in the gridiron pendulum.

The nearer any pendulum is to the centre of the earth the more
quickly does it vibrate; this has been used by scientific men, to
determine by the difference of rate in one placed on a hill, and
another at the bottom of a deep mine, the amount of matter which
constitutes our globe; indeed by these trials the world may fairly
be said to have been weighed!


Ploughs are instruments used to perform more rapidly what may be
effected by the spade, namely, the cutting-up and turning-over the
surface of the ground so as to destroy all grass and weeds growing
in it, loosen, so as to expose it to the influence of the air, and
render it fit to receive the seed.

  Illustration: (‡ PLOUGH.)

The plough has been in use from the very earliest ages, and has been
but little altered for many centuries; it is drawn by horses attached
to the chain A at the end of the “beam,” and guided by a man holding
the “stilts” or handles B B, the coulter, C, cuts a perpendicular
slice in the ground, and the “share” or “slade,” D, following, cuts
horizontally, so as to separate a long piece of earth which the
breast or mould-board E, placed obliquely, turns over on one side;
the plough returning at regular distances, successive cuttings are
thus laid side by side, forming narrow ridges; F is an additional
coulter called the “skim-coulter,” for removing the surface of the
earth, and is only occasionally used.

There are a great many kinds of ploughs, each suitable to the kind of
soil to be ploughed, whether light and dry or heavy and moist.


  Illustration: HARROW.

These instruments are used to stir up, pulverise, and mix together
the earth, also to tear up any roots that may be left after
ploughing, and to cover up the seed after sowing. The cut represents
the usual form of harrow, having a number of iron spikes or teeth
attached to frames of which two or more are united together by chains
and attached to a bar, that the horses may drag them over the surface
of the soil.

Bush-harrows consist of a bundle of brush-wood held together by a
pair of frames, and drawn over the soil when it is very dry and
light; they are used chiefly to cover up the seed after “drilling.”


  Illustration: (‡ UNDULATED ROLLERS.)

In clay and other heavy soils, it is necessary after ploughing to
break up the large pieces by means of rollers, and in light soils
to press it together; for these purposes rollers are used, either
with smooth or undulated surfaces, as in the figure; these last form
furrows into which the seed falls, causing it to come up in rows.
Rollers of a lighter kind are used after mowing to level the surface.

                           MOWING MACHINES.

  Illustration: FIG. 1. (‡ SCYTHE.)

  Illustration: FIG. 2. (‡ DRAY MOWING MACHINE.)

Mowing is an operation generally performed by manual labour, by means
of that well-known instrument, the scythe (fig. 1), which is a long,
flat, curved blade of steel attached to a handle having a peculiar
bend, and with two short pieces of wood attached, by which the mower
swings it round with a measured sweep, cutting off the grass almost
close to the ground, walking gradually forward as he mows; but of
late years machines of various kinds have been invented and used
for this purpose. Fig. 2 represents one which not only mows, but at
the same time rolls the grass, so as to make it smooth and level.
It consists of a heavy iron roller turning a large wheel, which,
being united to a small one, causes it to revolve very rapidly. In
connection with the small wheel is a series of four spiral knives
wound round a cylinder, which cut off the grass close to the ground,
throwing it up into a box placed to receive it. There are several
varieties, but this is the kind made by Dray & Co., London, for
mowing short grass, as in gardens and lawns. Those used for cutting
long grass for hay, are exactly similar to the reaping machines.


  Illustration: (‡ THRASHING MACHINE.)

The operation of thrashing, performed for ages by means of the
“flail”--two sticks tied together and wielded by the hands,
inflicting heavy blows on the bundle of corn spread on the
thrashing-floor, so as to separate the grains from the ear--is now
being rapidly superseded by the thrashing-machine. It is a sort of
box having a cylinder inside with an iron wheel at each end united by
bars of iron; this wheel revolves by steam, causing the bars to fall
upon the corn with a gliding motion, thrashing out the grain, which
falls through and is received below.

                           REAPING MACHINES.

  Illustration: (‡ DRAY) REAPING MACHINE.

  Illustration: SICKLE.

Machines have lately been produced to effect more rapidly, what has
hitherto been done by hand, with the sickle, namely, the reaping of
corn. These machines are of various kinds, but the one that seems
most perfect has been patented by Messrs. Dray & Co.; it consists of
a heavy wooden frame drawn by a horse, and having wheels attached,
which on turning round set in motion a line of spear-headed knives;
these knives are made sharp at each side, to cut both ways. The
motion communicated to them is very rapid, and from side to side, so
as to cause the knives to pass through long narrow openings made to
fit them in a series of iron points which are placed one between each
knife. This action causes the point and knife to act like the blades
of a pair of scissors, only that the points are fixed and the blades
move through them, cutting off the corn at any distance from the
ground that may be required; at the side furthest from the horse is
a point of iron, having two diverging pieces prolonged from it, and
which pierces the corn and separates the portion to be cut from what
is to be cut at the next return of the machine; for it is drawn up
and down, cutting at each time a belt about four or five feet wide;
when cut, the corn falls on a platform balanced on its centre, and
capable of being turned so as to incline forwards or backwards. A
man sits on the machine with a rake, and as the platform fills with
cut corn, he pushes it with the rake, tilting the platform back and
delivering the corn behind, where women attend to bind it up. These
machines can reap ten or eleven acres in a day.


  Illustration: DRILL.

The drill is used when it is desirable to sow seed in rows at
intervals from each other, so as to give room for the plants to
grow, to free them from weeds and admit air, light, and moisture;
it is a machine which contains the seed for sowing, and at the same
time makes a series of furrows to receive it. There are a great many
varieties of drills, but they act upon the same principle, namely,
that of a cylinder, taking up and pouring small portions of the
seed into funnels so arranged that they shall follow a set of small
coulters forming furrows in the ground, into which the seed falls;
the drill is generally followed by a bush-harrow which covers up the
seed. Some drills have two compartments, one for containing manure,
the other for seed; the manure must be dry and pulverised, such as
ground bones, ashes, &c., which arrangement allows the seed and
manure to be both drilled together, so that the manure shall only be
applied where it is wanted. The cut represents this machine; A A are
portions of the cylinders which are turned round by toothed wheels
attached to the ordinary wheels of the machine, and which can be put
in or out of gear at any time, so as to stop the action of the drill;
B B represent the funnels into which the seed is poured, and C C
the coulters which cut the furrows for the seed. These coulters are
pressed into the ground by means of iron weights attached to the ends
of levers joined to them, and which can be regulated by small chains.

                          ENGINEERING WORKS.


  Illustration: (‡ LOCOMOTIVE AND TENDER.)

The great advantage of railways over ordinary roads is the diminished
friction, which is produced by the wheels passing over the smooth
iron instead of rough stones. It was found when iron rails were first
used, before the introduction of locomotives, that the horse-power
requisite was diminished to one-fortieth; for instance, ten horses
on a railway could do the work of four hundred on a common road, this
being the case, and the great power of the locomotive engine being
superadded, there can be no wonder that the difference of the rate
of speed between the train and the wagon should be so great. When
it has been settled what general direction the railway shall take,
it is then to be determined whether or to what extent the elevations
or depressions that may occur can be conveniently overcome, so that
the line may take a straight course, or whether the road shall go
out of the straight line, and how far to avoid them. The route it
should therefore take ought to exactly balance the objections to
each extreme, that is the expense, &c., of going straight on through
hills and over valleys on the one side, and the increased distance
and consequent loss of time which a winding track would cause to the
transit on the other.

  Illustration: FIG. 1. (‡ TERRAIN SCHEMATIC.)

  Illustration: FIG. 2. (‡ TERRAIN SCHEMATIC.)

  Illustration: FIG. 3. (‡ RAIL TYPES.)

  Illustration: FIG. 4. (‡ RAIL “CHAIR.”)

With respect to the “level” at which the line should be laid, a
section of the route, showing all the elevations and depressions, is
first made, then such a course is chosen that the material produced
by cutting through the higher parts shall be just sufficient to form
the embankments for filling up the lower parts; fig. 1 will give
some idea of this arrangement. Of course a line perfectly level
would be the best, just as would be one perfectly straight; but as
the difficulties of the one must be balanced, so must those of the
other, and a line as nearly level should be obtained as is consistent
with expense. For instance, suppose A and B, fig. 2, to be towns to
be connected by a line of railway, and the chief of the intermediate
ground to be above their level; of course it would be very expensive
to cut through the whole distance, as shown at the dotted line
_a_, this level would therefore be too low; but if a higher level
were taken, as at the dotted line _b_, then only the centre of the
distance would have to be cut through, and the material (earth, &c.)
produced by the cuttings would suffice to fill up the hollows at the
ends. These considerations and many others must therefore determine
the level at which the railway shall be constructed; but the line is
seldom (if ever) on one level from end to end, nor at one continuous
“gradient” or slope, for the course of the line is so arranged as to
make as little cutting and filling up as is consistent with a road
whose gradients shall never exceed a specified amount, which must
be determined by local circumstances. The excavation and filling
up being finished, the “trams” have to be laid; these are bars of
wrought iron about fifteen feet long, of the form shown at A and
B, fig. 3. The most usual form is that marked A. They are made of
wrought-iron, passed while hot between rollers cut at their edges
into the form required. These trams are laid upon bars of wood called
“sleepers,” at about four feet apart, and united to them by what are
called “chairs,” which are pieces of cast-iron of the form shown at
fig. 4, fastened to the sleepers by iron spikes, and into these the
trams, or “metals,” as they are called by the workmen are wedged.
These bars of iron are laid very evenly and perfectly parallel at a
certain distance apart, which must exactly correspond to the distance
between each wheel of a pair belonging to the carriages and engines;
this distance is called the “gauge,” the wide gauge (as on the Great
Western) is seven feet, and that called the “narrow gauge,” is four
feet eight-and-a-half inches, and the space between the lines is of
sufficient width to prevent any danger of collision in the trains on
passing each other; they are generally six feet apart.

  Illustration: FIG. 5. (‡ RAILWAY SWITCH.)

  Illustration: FIG. 6. (‡ TURN-TABLES.)

  Illustration: FIG. 7. (‡ LOCOMOTIVE ON TURN-TABLE.)

  Illustration: FIG. 8. (‡ WHEEL WITH FLANGE.)

  Illustration: FIG. 9. (‡ CARRIAGE BUFFER.)

  Illustration: FIG. 10. (‡ CARRIAGE BUFFER.)

As it is necessary that trains should at certain places be “shunted”
or shifted from one line of rails to another, particularly at
stations where a great many tracks run side by side, and cross each
other to branch off to different parts, there are arrangements called
“points,” shifted by a lever or “switch,” so that they shall direct
the course of the train, and cause it to leave the former track
and enter upon a new one; this arrangement may be seen at fig. 5,
where the points are in the position to direct the engine coming in
the direction of the arrow on to the curved line A, and the dotted
lines indicate the position into which they would be shifted, if
necessary for the train to go straight on to the line B; this action
is effected by moving a lever which shifts the two bars a few inches
either way. When an engine or carriage has to be turned on to a
track at right angles to the one on which it rests, or where there
is not room for “shunting,” an apparatus called a “turn-table” is
used, which is shown at figs. 6 and 7; it is a round platform of iron
turning on its centre, and supported by friction rollers at the edge,
having on its surface raised rails in two or more directions, so that
it may be turned round half or quarter distance, according to the
position required. The engines and carriages used to run on railways
are of various constructions, but to a certain extent agree in their
chief particulars; the wheels are fixed to their axles, so that each
pair and the axle which joins them may be considered as one piece.
The axle projects a little way beyond the wheel, and on this part
it supports the engine or carriage, which is wider than the distance
from one wheel to its fellow. They are therefore entirely underneath.
They are of iron, made by machinery and have a projecting edge on the
inside of the “tire” of each, which is called the “flange” (see fig.
8); this flange does not run on the rail but within it to prevent the
wheels from slipping off. These flanges, when the pair of wheels and
axle are united, exactly fit in between the rails, so as to touch the
inside of each and form a sort of guide. Each carriage has two pairs
(except in a few cases, where three pairs are used), the engines have
usually three, and sometimes four pairs. The carriages rest upon
powerful springs, and are moreover furnished with springs to diminish
the concussion of one carriage against another; these last are acted
on by a sort of piston-rod, one of which is placed at each corner
of the carriage, and are called “buffers” (figs. 9 and 10); they
all coincide with each other, and form a set of springs all along
the train, which greatly reduces the shock which would otherwise be
felt when it is stopped. Another set of springs is connected with
the binding screws which unite each carriage, and these prevent the
sudden jerk which would result from the starting off of a train quite
inelastic in its length.

The engines used are of that class called high-pressure or
non-condensing, and there are two cylinders and pistons, which have
a stroke of about eighteen inches. The boiler is so contrived that a
large quantity of steam shall be rapidly produced; for this purpose
tubes of brass are made to pass side by side from the fireplace
through the boiler, and through these tubes the flame and hot air
must go before reaching the funnel, giving out in its course a great
amount of heat to the water and converting it rapidly into steam.
The steam from each cylinder passes at each stroke of the piston
into the funnel, assisting to form a draught which draws the flame
from the fire through the tubes and increases the fierceness of the
combustion. The necessity for two cylinders and pistons is owing to
the impossibility of having a fly-wheel, and as the driving wheels
of the engine have to be turned at an equal rate, the axle has two
cranks so placed that the greatest power of one piston is exerted
where the other exerts the least (see “Steam-engine”).

  Illustration: FIG. 11. (‡ SIGNAL TOWER.)

  Illustration: FIG. 12. (‡ SIGNAL TOWER.)

  Illustration: FIG. 13. (‡ SIGNAL LAMPS.)

As the trains when going at a considerable speed cannot be
suddenly stopped, it is necessary to have signals placed in certain
conspicuous positions, that the engine driver may begin to stop the
train (when necessary) in time; this he effects by what is called
a “break,” a contrivance by which two pieces of wood are made (by
turning a screw) to grasp firmly each of a pair of wheels, and so
prevent them turning round, this produces so much friction against
the trams that (after the steam is turned off) the onward motion of
the train is soon stopped. The signals are of three kinds generally,
a red flag to indicate danger, a green one to caution, and a white
one to show that the way is clear; these are (on most occasions)
held by a man and waved to and fro to attract attention, but there
are however a great many occasions for fixed signals, as at stations
and bends in the line where the engine driver can only see a short
distance ahead; these fixed signals consist of tall posts placed
where they can be seen at a considerable distance. These posts have
an arrangement at the top consisting of a lamp with a “bull’s-eye” or
lens at each side pointing up and down the line, and a pair of arms
capable of being let down into the post, raised at right angles with
it, or into a position midway between the post and a right angle (as
shown in figs. 11 and 12). One side of each arm is painted red, the
other white, one arm serving for a signal up the line and the other
down; attached to the joint of each arm, close to the post, are two
iron frames each holding a piece of colored glass, one red the other
green, and so arranged that when the arm is at right angles to the
post, the red glass is before the lamp and when the arm is let half
way down the green glass comes in front of the lamp (fig. 13), thus
the same action serves both for day and night signals. When the arm
showing the red side projects in a horizontal direction, it indicates
(in the day) “danger,” and so does the red light at night; when the
arm is let down half way, it shows that caution is required, and the
green glass then before the lamp shows the same signal at night; when
the arm is let quite down out of sight, it shows safety, and so does
the white light of the lamp thus freed from both screens of colored

  Illustration: FIG. 14. (‡ ENGINE WHISTLE.)

Each engine is provided with a whistle (fig. 14) blown by steam
turned on from the boiler, which is used as a signal at any
particular time, especially in tunnels or when there is a fog; there
is also an arrangement by which each engine presses on a lever at
the side of the tram as it passes, and causes a bell to ring at the
station, to announce its approach, when about a quarter of a mile
off. In some cases, as in foggy weather, when the usual signals
cannot be seen, a packet of fulminating powder is placed on the rail,
and this being exploded by the wheel of the engine as it passes over
it, gives notice of its approach, &c. There are other signals, but
these are the chief.

                         ELECTRIC TELEGRAPHS.

  Illustration: (‡ ELECTRIC TELEGRAPH.)

The power of transmitting messages to any distance or place to
which a wire can be carried, and in a space of time too small to be
reckoned, is without doubt one of the most wonderful inventions ever
carried out by men’s hands. Although the signals are carried from
place to place with a rapidity almost incredible, yet the electric
fluid travels at a certain, although marvellously rapid rate. It is
thought that light and the electric fluid both travel at the same
rate, namely, 192,000 miles in a second, and if so, a message might
be sent round the world (were it possible to carry on a wire) thrice
in that small space of time.

  Illustration: FIG. 1. (‡ ACID BATTERY CELL.)

  Illustration: FIG. 2. (‡ BATTERY SERIES.)

  Illustration: FIG. 3. (‡ GROUNDING EFFECT.)

The construction of the electric telegraph is pretty much the same
everywhere, only that modifications of the same agent are used in
different countries, and different signals formed; but whether this
agent or influence is obtained from magnetic or galvanic sources,
the result is exactly the same. When a pair of metallic plates are
immersed in a fluid which acts chemically more rapidly on the one
than the other, and a wire connects the upper parts of these plates,
this wonderful agency is set in motion, and circulates from the
one plate to the other (fig. 1). This arrangement may be best shown
by using one plate of zinc and the other of copper, and a dilute
solution of sulphuric acid for the liquid; this, however, produces by
far too little of the agent to be used on a telegraphic line, there
are therefore combinations of such pairs of plates so arranged that
the power of one pair shall be added to the next in such a way that
at the end of the series (called a “battery”) there shall be a great
increase of the power accumulated--this arrangement is shown in fig.
2. Now (if the power be sufficient) it does not signify what length
of wire there may be between the two ends of this arrangement or
“battery,” whether the ends be connected by a few feet of wire, or
as many hundred miles--the electricity passes instantaneously from
one end to the other; and furthermore, it has been found in practice,
that this electrical influence can be transmitted through the earth
in one direction if sent by a wire in the other; for instance, if
a wire from one end of the battery be carried on from London to
Liverpool; instead of having another from Liverpool to London, to
connect the two ends of the battery, it is found to answer the same
purpose if the end of the wire at Liverpool be fastened to a plate
of metal buried beneath the surface of the earth and the other end
of the battery at London, furnished with a similar plate also buried.
In this arrangement, the electricity will pass beneath the surface
of the earth from Liverpool to London, and through the wire from
London to Liverpool, thus completing the circuit. The end from which
the electricity passes is called the “positive electrode,” that to
which it returns the “negative electrode.” Fig. 3 will show this

  Illustration: FIG. 4. (‡ ELECTRO-MAGNET.)

  Illustration: FIG. 5. (‡ ELECTRO-MAGNET TURNED ON.)

  Illustration: FIG. 6. (‡ ANGLED VIEW OF ELECTRO-MAGNET.)

  Illustration: FIG. 7. (‡ EIGHT NEEDLE POSITIONS.)

  Illustration: FIG. 8. (‡ TELEGRAPH POLES.)

  Illustration: FIG. 9. (‡ WIRE INSULATOR.)

  Illustration: FIG. 10. (‡ SIX-WIRE CABLE.)

If a bar-magnet be suspended on a pivot so that it may turn freely,
it will (as is well known) turn with one end to the north, which is
owing to a current of natural electricity passing round the earth
in the direction of east and west, the magnet crossing the current
at a right angle; and if a coil of wire coated with silk (to keep
one part of the coil from another) be placed round, above and below
the long axis of a bar of steel as shown at fig. 4, and a current
of electricity passed through this wire, the steel becomes a magnet
and will take a direction similar to the natural magnet, more or
less at right angles to this coil, as in fig. 5, according to the
intensity of the current; and the instant this electrical current is
stopped it will resume its former direction. This fact has been made
use of to form the principal feature of all English telegraphs; in
the telegraph such a needle is mounted in an upright position, and
instead of its tendency to turn to the north, a tendency to maintain
the upright position is given to it by having one of the arms of
the magnet a little heavier than the other; such a magnet having
a coil of wire surrounding it. When the electric current passes
through the coil, it will turn out of the upright position to either
one side or the other, according to the direction of the current,
from its tendency to assume a position at an angle to the current
(fig. 6); if the current be stopped even for an instant, then the
needle or magnet will again assume its upright position. The pivot
of this magnet is brought forward and has on its front part another
needle, which being on the same pivot turns with it; this is visible
on the outside of the apparatus, and is looked at to ascertain the
movement of the one within. There is also an arrangement called a
“commutator,” so contrived, that by moving a handle to the right or
left, a connection shall be made with either end of the battery, and
thereby cause the direction of the current and needle to be changed
at pleasure; also by moving the handle into an upright position
the current shall be stopped; and finally, by a third movement, a
bell shall be rung. Now, as has already been explained, when the
current goes in one direction, the magnetic needle is deflected in
that direction; and when the current is reversed the position of the
needle is also reversed, and when the current is cut off the needle
will resume its perpendicular position. If two such needles and two
such handles be at each station, when the handles at one station
are moved, the needles at the other station will take on a similar
movement; and when the handles at that station are moved, the needles
at the first station will be moved to correspond. This constitutes
the system of communication kept up by the electric telegraphs
in England; but it remains to be shown how all the letters of the
alphabet, the numerals, &c., can be represented by the movements
of the two handles. These handles can be placed in eight positions
(besides the upright one) by a single movement of each hand, as may
be seen in fig. 7; and these eight signals if repeated, or made twice
in rapid succession will make eight more, and by being repeated three
times will constitute a third eight, making twenty-four; finally,
by a rapid motion right and left, they may be caused to signify a
fourth eight, or thirty-two signals, which are found to be sufficient
for every purpose, and by practice may be both produced and read
off with facility. Before a message is about to be delivered the
commutator is so placed as to ring a bell, which is done by the same
arrangement as in a common alarm-clock, but the action is set in
motion by a peculiar contrivance, which depends upon the property
a bar of soft iron has of becoming magnetic when a wire is wound
round it and a current of electricity passed through this wire; this
magnetic property exists only as long as the current passes, and
stops the instant it is cut off. The catch of the alarm is disengaged
by the movement of a bar of iron being drawn to the magnet while the
current passes, and forced back again by a spring when it is stopped,
thus setting in action the mechanism of the alarm, or in some cases
there is a simple contrivance for causing a rapid flow and stoppage
of the electricity, so that the bar is alternately attracted by the
magnet and released by the spring, and this motion of the bar rings
the bell as long as it is continued. The bell is always rung to give
notice that a message is about to be sent, and at the station where
the bell rings, the bell at the former station is rung in return, to
show that they are prepared to receive the message; the message is
then spelt letter by letter, by moving the handles into the proper
positions, and as the message is being sent, the eye is kept on
the dials having the needles which will communicate any message in
return from the station to which the message is being sent, such as
“repeat,” “not understood,” &c., &c., for which certain single signs
are made and recognised. The wires which convey the electricity
from station to station, are made of galvanized iron (iron coated
with zinc), and must be kept from all communication with the earth
by some substance incapable of conducting it; they are therefore
stretched between wooden poles (fig. 8), and rest upon sockets or
supports of glass or glazed earthenware, which are both substances
incapable of conducting the electricity to the earth (fig. 9). In
certain localities, as in towns, the wires are coated with gutta
percha (another non-conductor), and laid side by side in a tube under
ground; this is also done in the longer tunnels. In the cables which
conduct the electric power along the bottom of the sea as from Dover
to Calais; the wires are first coated with gutta percha, then bound
with yarn soaked in tar, and finally coated with galvanized iron
wires wound round spirally like the strands of a rope (fig. 10), the
whole forming a cable which is coiled up in the hold of a vessel, and
let out as the vessel crosses from one side to the other; in this way
the cable is deposited on the bed of the sea or channel, forming an
electrical connection from country to country. These cables are made
in one piece by machinery. That from Dover to Calais is twenty-five
miles long, contains four copper conducting wires, and weighs about
175 tons; that from Dover to Ostend contains six conducting wires, is
seventy miles long, weighs nearly 500 tons, and cost about £30,000;
its structure (the real size) is shown at fig. 10.


The electric cable now constructed to be laid down between Ireland
and America, is composed of seven small copper wires twisted into
one, and surrounded by gutta percha; this is then surrounded by
eighteen small wire-ropes, each composed of seven small wires
twisted together, the whole being in its section not larger than a
four-penny-piece; 2000 miles of this cable are now ready to be laid
down. A plan was some time ago put in practice by which the correct
time could be kept at various places by electric communication with
the time at Greenwich; a clock thus regulated, is situated at Charing
Cross, and a ball placed at the top of the electric telegraph station
there, is caused by the same means to fall exactly at one o’clock. A
contrivance has of late been patented to work the electric telegraph
by steam, and the following account of it is extracted from the

“A series of gutta percha bands, about six inches wide and a quarter
of an inch thick, are coiled on wheels on drums arranged for the
purpose. These bands are studded down both sides with a single row
of holes at short intervals apart. When a message is to be sent
the clerks wind off these bands, inserting in the holes small brass
pins, which, according to their combinations in twos or threes
(with blank holes between), represent certain words or letters. In
this manner the message is, as it were, “set up” in the bands with
great rapidity, and if the number of bands employed is sufficiently
large--say as numerous as the compositors employed in a large
printing-office--messages equal in length to five or six columns
of this journal could be set up and ready for transmission in the
course of a single hour. Of course this operation in no respect
interferes with the telegraph wire itself, which continues free for
use until the bands of messages are actually being despatched. The
gutta percha bands when full are removed to the instrument-room, a
most simple appliance preventing any derangement or falling out of
the pins while being moved about. In the instrument-room the bands
are connected with ordinary steam machinery, by which they are drawn
in regular order with the utmost rapidity between the charged poles
of an electrical machine in such a manner that, during the moment
of each pin’s passing, it forms electrical communication between
the instrument and the telegraph, and a signal is transmitted to
the other end of the wire, where the spark perforates a paper and
records the message. The only limit to the rapidity of the operation
is the rate at which the bands can be drawn, since the electrical
contact of each pin, even for the 200th part of a second, is more
than sufficient to transmit a word or signal from London and register
it in America. Of course, as the message is recorded (we will say in
America) with the same rapidity as that with which it is transmitted
from London, a number of reading clerks will be requisite in order to
translate it, by dividing it into small portions, with almost as much
facility as it has been sent.”


  Illustration: (‡ TRAIN BRIDGE OVER ROAD.)

Roads, which were formerly of the utmost importance as the only means
of communication between distant places, and on which an enormous
amount of labour and capital have been expended, are now becoming
rapidly subordinate to railways; however this may be, it is quite
clear that roads can never be superseded by the latter. The numerous
streets of great towns are so many short roads, and on some of them
the amount of traffic is so very great, that the utmost skill of the
engineer is required to resist the consequent wear and tear.

The Roman roads, which have been the means of civilisation to the
greater part of Europe, were constructed in a very solid and durable
manner, by first laying down a layer of rough stone set in cement,
and upon this, stones either squared or nicely fitted together and
also cemented; the whole formed a solid mass of masonry, not unlike
the wall of an old castle laid horizontally. Basalt (a volcanic
product) was the stone used for this purpose, where it could be
procured. These roads were generally raised above the surrounding
ground, but excavations, bridges, and tunnels were made where these
were found necessary to continue the road in a direct course.


Roads are now generally made in a less careful manner, and the same
observations as to course and levelling will apply to them, that
are made on these subjects in the article “Railways,” only that less
cutting and filling up are required, as the gradients on common roads
are allowable of much greater steepness than on railways; one in
twenty-five is however about the greatest declivity that should be
made, although old roads exist with slopes much greater. The surface
of a road should be slightly arched and a drain made on each side,
that pools of water may not collect on its surface and soften it so
that it will work into holes. Ordinary roads are made by laying down
a stratum of broken granite or other hard stone a few inches deep,
each piece being of about half a pound weight, when this first layer
is worked in by traffic, a second is laid, and so on till the surface
has become quite firm and level, but in the streets of towns more
care is required. In the suburbs of London, the usual plan is, to lay
a deep stratum of rubbish, consisting of broken bricks, pottery and
oyster-shells (obtained from the dust-bins of London) nearly a foot
in thickness, and on this, broken stone or shingle (consisting of
pebble stones) is laid in repeated layers as it consolidates, but in
the streets having more traffic the roadway is made by a foundation
of “concrete,” consisting of coarse gravel and lime made into a sort
of paste, which sets into a hard cement in a day or two; on this
foundation (which is carefully smoothed on the surface) is laid
a paving of squared granite blocks, placed carefully side by side
either in lines at right angles to the road or else diagonally. When
these are all laid down and rammed to a perfectly even surface, a
mixture of quick lime and sand is made into a thin paste with water,
poured on and swept all over the surface with brooms, so as to fill
up the interstices and cement the blocks of granite firmly together.
In London the roadways are always made arched, so that the centre is
a few inches higher than the sides, and a gutter or drain is placed
on either side between it and the pavements which run on each side,
but in many towns in the country, and on the continent, the gutter is
placed in the middle of the road and each side made to slope slightly
towards it.


The earliest efforts of the civil engineer were in all probability
directed to the construction of roads, but it would be evident that
unless they could be made to cross rivers and water-courses, they
could continue but a short distance in any required direction.
Bridges of some sort must therefore be constructed; small brooks
were doubtless bridged over with timber laid across them, and “fords”
or shallow parts of rivers taken advantage of when the stream was
too wide to be spanned in this way. That these fords were once
very numerous in England, is shown by the constant recurrence of
such names as Stratford, Brentford, &c., and indeed fords are now
in use in many places where the stream is shallow, and the traffic
too little to pay for constructing a bridge. The next improvement
in all probability consisted in placing stones in the fords to
enable passengers to step from one to the next, and cross the stream
dry-footed, which were called “stepping stones;” but the earliest
bridges properly so called, were probably stones piled upon each
other and united by beams of timber.

  Illustration: VIADUCT.

The Chinese, Romans, and several other nations were acquainted with
the use and proper mode of constructing bridges, many centuries ago,
when no such works had been attempted in England. The materials
chiefly now in use for bridges are stone, brick, iron, and wood, and
by far the greatest number, till within the last half century, were
constructed of stone, but iron seems to be rapidly taking its place,
especially since the mode of constructing suspension bridges has been
more perfected. There are several ways of forming the foundation
for the piers, or those parts on which the bridge rests. Old London
bridge and many others of considerable size were based upon “piles,”
these piles consist of great pieces of timber pointed at one end and
driven deep down into the bed of the river close together, so as to
form a solid mass on the top of which the stones for the piers were
laid; these piles have been found scarcely altered after several
centuries of immersion in the mud, but at the parts exposed to the
action of the water they soon become decayed and eaten away by its
inhabitants. For many bridges, when there is good foundation, the
stonework is laid at once on the bed of the river, but in order
that this may be got at, a double ring of piles is driven close
together around the part where the pier is to be built; these piles
are of a flat form, and the two rows inclose a space of about a foot
between them, which space is filled with clay, well rammed in, and
the water within the barrier pumped out, this forms what is called
a “coffer-dam,” and is an expensive proceeding. The bottom of the
river thus exposed can be built upon in the usual way. Another way
of forming a foundation for piers consists in lowering large wooden
frames or boxes filled with concrete which hardens and forms a solid
basis, these are called “cassons.” Wooden bridges are now seldom
made of any great size, but are very numerous in country places
for crossing narrow streams, on account of their cheapness and the
facility with which they can be constructed. Bridges of brick are not
much used, but “viaducts” of this material often occur in the lines
of railways, and very handsome arches of brick-work are used to span
streets in towns where railways pass. Iron girder bridges also, are
frequently employed for this purpose; they are made with girders of
wrought or cast iron which generally pass in a straight line over
the roadway from pier to pier. Some of them are made of iron-plate
rivetted together, while others are strong girders of cast iron
having small arches of brick-work built on them, running the length
of the girders and resting upon ridges in them, so as to fill up the
space between each girder.


Iron bridges are of almost every form and construction conceivable;
some are tubes of iron-plate, as the Britannia Bridge, rivetted
together; some of solid cast iron work as Southwark Bridge, others
called suspension bridges are hung by rods of wrought iron, from
large chains suspended from pier to pier, as Hungerford Bridge.
In many places bridges of boats are used; the boats are moored
to the river’s-bed and have timber-work connecting them. Another
kind, which can hardly lay claim to the name of bridge, called the
“floating-bridge,” is used for the conveyance of carts, horses,
passengers, or merchandise, from one side of a river to the other.
It consists of a sort of platform guided by chains laid down for the
purpose, which pass over wheels or drums on the side of the bridge.
The motive power necessary for turning these wheels, is supplied by
a steam-engine within the structure itself.


    Illustration: (‡ RAILROAD TUNNEL.)

Tunnels are underground passages made for the purpose of continuing
roads, railways, or canals through hills or elevated parts of the
ground. In slight elevations “cuttings” are generally made, and it
becomes a question of expediency for the engineer as to which of
the two shall be chosen, as there will be a much greater quantity of
earth to remove from a deep cutting than from a tunnel; in fact, the
question is often at once determined by the demand for this material,
for if it should so happen that the level of the road is such, that
many or large embankments are required, the earth taken from the
cuttings will be wanted to construct them. As a general rule, tunnels
are only made where a hill has to be penetrated which is too high to
be cut through; another object sought by tunnelling is to cause the
road to pass beneath a canal, river, buildings, or roads, where the
level of the road or railway is far below them. The Thames Tunnel is
the most remarkable example of this kind of work.

Tunnels were constructed by the ancient Greeks and Romans, chiefly
for the purpose of forming aqueducts, and for draining lakes. A few
years back, tunnels were not very frequently undertaken, those that
were made being chiefly on the lines of canals, but they are now far
more numerous, on account of the great number of railways, on which
they frequently occur. Before a tunnel is undertaken, the nature of
the soil should be thoroughly examined by means of “borings,” sunk
down to the intended level, some soils being much less favourable
than others for this purpose. Quicksand, or sand percolated by
water, is one of the greatest impediments to tunnelling, while rock
(contrary to what would at first be thought) is one of the least, as
in this case there is no occasion to line the tunnel with brickwork,
which more than saves the extra expense of excavation, as that can
be rapidly done by blasting, where it is too hard to dig, while
in the former case the difficulty of draining off the water, and
the cost of brickwork of sufficient solidity to support such loose
earth, often prevent the undertaking. Tunnels of great length are
sometimes begun at several different parts by means of shafts sunk
down to the required level, and each made to unite into one, but
this depends upon where the earth is to be deposited; on railways it
is common that the “level” is so chosen that the earth from tunnels
and cuttings is always wanted to fill up hollows in their immediate
vicinity (see “Railways”), and when this is the case a series of
“trucks” drawn by an engine on temporary tramways remove the earth
from the tunnel as it progresses, to the next embankment, both works
proceeding at the same time.

When a small portion of the tunnel is excavated, the casing of
brickwork is begun from the mouth of it, and continued a small
piece at a time, following closely the excavation. The brickwork
is generally begun at each side, and carried up to the height at
which the arch springs; an inverted arch is then constructed from
one side to the other to form the floor, and “centreings” resting
upon uprights are placed, to “turn” the arch upon. These centreings
are only about two feet deep, and span the arch from side to side;
the men work with their backs to the part being excavated, and are
able to reach across the narrow centreing to lay the bricks. When
completed all round, and the spaces between the brickwork of the arch
and the surface of the excavation filled up with earth, the centreing
is shifted further in and a fresh ring of brickwork commenced,
the excavation going on at the same time. In many tunnels, large
perpendicular shafts are sunk down for the purposes of ventilation
and lighting.


    Illustration: DRAIN (‡ DIAGRAM).

    Illustration: DRAIN-PIPES AND TILES.

Drains are constructed for the purpose of carrying off from the
surface of the ground all superfluous fluid, whether it may arise
from want of a proper exit for the rain, from springs rising in the
ground to be drained, or from water coming from some higher level.
Drains are made in towns to carry off the rain from the surface, and
all liquid refuse from the houses. When the surface of any portion of
land has to be drained of its accumulated water, where the soil is of
an impervious nature, like clay, it is usual to cut deep furrows from
the higher to the lower parts and fill these up with gravel stones
or brushwood; the moisture which collects in these is made to flow
into the lowest part, and there form a pond, from which it evaporates
as fast as the drains supply it; or if the quantity be too great, a
main drain or ditch carries it onwards to some stream or river. The
furrows before being filled up with any porous substance are often
laid down with “drain-tiles;” tiles bent into the form of half a
cylinder, and placed with two edges on a flat tile at the bottom of
the drain, or pieces of tubing made of tile. The water finds its way
readily into these through the crevices. In some cases, water can be
kept from flowing over lands and forming marshes, by embankments.
These are more especially useful in land lying below the level of
rivers and lakes; immense tracts are thus preserved in Holland. When
these embankments are very extensive, there is a constant filtration
of the water through them; drains are therefore constructed to
collect it into certain spots, and mills erected to pump it over
the banks. These are usually small windmills, working a large wooden
screw in a cylindrical barrel, causing the water to rise up the
cylinder into a trough, from which it is poured over the embankment;
these mills require little or no attention, and work at all times
when the wind blows. When water accumulates in valleys lying above
the sea, deep cuttings or even tunnels may be necessary to carry off
the water; at Neufchâtel in Switzerland, very extensive tracts of
land have been reclaimed, by boring a tunnel through the surrounding
hills, and thus letting off the water from the lakes formed by the

Sometimes land may be drained by boring through the clay or other
impervious soil, down to a porous stratum, such as sand or gravel.
A knowledge of the structure of the whole district is necessary to
determine whether this is likely to be of service or not. By boring
deep pits in the drains cut in peat mosses, the weight of the mosses
will cause the water to be squeezed out, which rising in these holes
flows off by the drain, producing the same effect as if it were cut
to the depth of the pits. Drains are frequently made by means of
narrow curved spades, but the draining plough effects the purpose
more rapidly, and is very generally used.

The drainage of London and other large towns consists of small drains
from each house, made of earthenware tubes leading to a sewer of
brickwork, running along each street and uniting with larger ones.
The question of effectually draining London is a very difficult one,
schemes of various kinds being at this time propounded, which would
cost several millions of pounds to put into practice; at present all
the sewage runs into the river Thames, and it is a matter of serious
importance to obviate this, by carrying it off to some other place.

                            ARTESIAN WELLS.

  Illustration: FIG. 1. (‡ BENT TUBE.)

  Illustration: FIG. 2. (‡ TAPPED BENT TUBE.)

  Illustration: FIG. 3. (‡ ARTESIAN BASIN.)

  Illustration: FIG. 4. (‡ DRILL BIT.)

The construction of artesian wells depends upon the fact that water,
being at liberty to flow, will always sink to a level; by which it
is meant that the parts which are highest press upon those that are
lower, and tend to raise them, the higher parts sinking in the same
proportion that the lower parts are elevated; this continues until
both are upon a level. Suppose a bent glass tube of the form of fig.
1, be partly filled with water, the surfaces of the water in both
arms of the tube will each be upon a level with the other; suppose
now another such tube to have a small hole at A, the water sinking
in each arm will force out a jet of water, and if a tube be inserted
into this hole it will represent an artesian well, and the water will
rise in it till all three are on a level (fig. 2). Instead of these
tubes there is a layer of some porous material, as gravel, at some
distance beneath the surface of the earth, rising at each end and
forming a sort of basin (fig. 3), which is bounded above and below
by some impervious substance as clay or stone; the well being sunk
at any part (as at _a_, _b_, or _c_) below the level of the gravel,
where it forms the surface of the earth, must cut through the upper
stratum of clay or stone, and thus form a tube into the porous gravel
which holds the water; this water is obtained from the rain, which,
falling on the surface of the earth, drains through the gravel and
fills its lower part. The water will rise in the bore at a height
according to circumstances, if the gravel at each side of the bore
rises to higher ground, a jet of water will be forced out, if not so
high, the well will only partly fill, and so on. Artesian wells are
sunk or bored by means of instruments screwing on to the end of a set
of iron rods each screwing into the end of the other as shown in fig.
4. The first piece is generally a sort of gouge (_a_) two or three
inches wide, and so made as to bring up a cylindrical piece of earth
when forced in and screwed round, the weight of the rods after a few
pieces are added is sufficient to force the gouge into the earth,
except in stony places, when a sort of “pick” is used.

The official report of General Desvaux on the artesian borings
executed in the Desert of Zahara of the province of Constantine,
in 1856-7, states, “that a spring affording 4010 quarts of water
per minute, was the result of one of the borings, and that others
affording 35, 120, and 4,300 quarts respectively were successively
completed.” And he goes on to say: “When the shouts of the soldiers
announced the gush, the Arabs sprang in crowds to the spot, laving
themselves in the welcome abundance, into which mothers dipped their
children; while the old Sheik fell upon his knees and wept, returning
thanks to Allah and the French. At Oum Thiour a well sunk to the
depth of 170 metres and yielding 180 quarts a minute was at once
taken as the centre of a settlement by a portion of a previously
nomadic tribe.... As soon as the water appeared they began the
construction of a village, the plantation of 1,200 date trees,
and entirely renounced their wandering existence.”

According to General Desvaux’s report, these artesian wells are
likely to have a most important influence on Arab life, and greatly
to subdue the roving propensities of many of the tribes.


Mines are excavations made in the earth for the purpose of raising
the various minerals which exist below its surface, such as coal,
rock-salt, and the various ores from which metals are extracted (see
“Smelting”). Mines consist of those which contain minerals that lie
in strata _parallel_ (or nearly so) to the surface of the earth, as
coal, rock-salt, or iron-stone, and those containing the ores and
minerals which are imbedded in seams or fissures of the primitive
rocks, and are nearly _perpendicular_ to the surface. Of the former
kind, coal-mines form the chief examples. When indications of coal
are discovered, a “boring” is commenced to ascertain its existence,
and the depth at which it is placed below the surface. Each piece of
earth raised by the boring-tools is placed one beside the other, in
the exact order in which they are raised, so as to show the kind of
earth being bored through, and the thickness of each strata between
the surface of the earth and the seam of coal; and it sometimes
happens that the boring is stopped on arriving at certain kinds of
rock--the old red sandstone, for example--for it would be useless
to continue boring beyond this, no coal ever existing below it.

When coal is found, and its quality and the thickness of the seam
ascertained to be such as to warrant further expense, a shaft is dug
down of some eight or ten feet diameter, cased with brickwork or wood
to prevent the falling-in of its sides, and in some cases powerful
machinery has to be erected to pump out the water which flows in.
On reaching the coal, galleries--called “gates,” or “bords”--are
dug in it in opposite directions, forming one long straight passage,
and from this other smaller ones, called “headways,” are dug, at
right angles, to the depth of about twenty-four feet, and from these
other “gates” are carried parallel with the first, forming a series
of roadways joined by short passages, and having squares of coal
between them; the height of all these passages is determined by
the thickness of the seam of coal, usually from three to ten feet.
The great masses of coal forming the squares between these passages
are gradually dug away (as far as can be done with safety) and the
gates continued onwards, but before long the ventilation becomes
impeded, and the air foul and dangerous from “fire-damp” (carburetted
hydrogen) or “choke-damp” (carbonic acid), gases which are given off
from the fissures in the coal. It is therefore necessary to produce
a continuous current of fresh air in every part of the mine, which
is done by sinking another shaft at the furthest part of the mine and
keeping a large fire burning at its mouth, over which a tall shaft is
generally erected, from which a column of light air ascends, drawing
fresh air down the other shaft and through every part of the mine,
to supply this “up-cast” shaft, as it is called. This supply of fresh
air is economised and regulated by doors or valves, so placed that
any part requiring extra ventilation can obtain it at any moment by
shutting these doors and letting the whole current go through that
particular part.

The removal of coal is effected partly by digging with the “pick,”
and partly by blasting with gunpowder; a large square mass is cut all
round, and a charge of powder fired behind it, so as to bring down at
once sixty or eighty tons of coal, which is brought along the gates
on “trams” to the bottom of the shaft, where “corves” or baskets
filled with it are drawn up to the “pit’s-mouth” by steam machinery,
one corve ascending full while another is descending empty.

The mines from which most minerals, such as sulphuret of lead
(galena) or of copper, are drawn, belong to the second class,
or those whose shafts “cut” the vein of mineral at a very acute
angle. When the existence of the required mineral and its “dip” or
inclination is ascertained, a shaft is sunk so as to cut its upper
surface, and then carried through it, cross-cuts being formed on to
the vein, and “levels” or galleries right and left in the direction
of the vein. From these levels “winzes” or small shafts are cut
at intervals from one level to that below it, thus leaving square
portions of the mineral vein to be explored, which is done by digging
away the roof or upper part, so that the rubbish and ore falls down,
when it is sorted and carried away.


  Illustration: BUILDING SLIPS.

  Illustration: FIG. 1. (‡ KEEL CONSTRUCTION.)

  Illustration: FIG. 2. (‡ TREENAIL.)

The first part of a ship “laid down” is the “keel;” this is the
projection which runs along the whole length and forms the lowest
part of the ship. The ship is built in what is called the “building
slip,” which slopes towards the water; in this “slip” a row of oaken
blocks are placed at a few feet apart, and about three feet high, on
which the keel is laid; these blocks are for the purpose of allowing
the workmen to cross from side to side below the keel and to form a
foundation for the ship to rest on. In fig. 1, A is this arrangement
of blocks, C the keel, at the hinder part of which is the “dead
wood,” or the timbers filling up the space between the keel and the
curved bottom of the ship, which is more curved than the keel, and
very much so towards the “stern” or hindermost part. Across the keel
are laid the “floor-timbers” or “ribs,” B, which are curved timbers
laid at right angles to the keel and passing outwards and upwards
in the exact curve which the sides of the ship are to assume; these
are too curved and too long to be of one piece, others, therefore,
are added, and joined end to end with the first by wooden bolts or
“dowels;” these curved timbers are cut to a pattern, chalked on the
floor of the “mould-loft.” The ribs as they cross the keel are bound
to it by a piece of strong timber running along inside of or above
them, but parallel to, and exactly over it, which is called the
“keelson,” and is bolted to the keel through the centre of each lower
piece of the ribs or floor-timbers; it is shown at D, fig. 1. In
large ships there are three of these keelsons, running side by side,
and forming a strong support to the masts, which rest upon them.
At each end of the keel a bar of timber rises, the hindermost being
called the “stern-post,” and that in front the “stem-post” (marked E
and F in fig. 1). Across the ribs on the outside and parallel to the
keel, are laid the “planks,” which are boards of oak of from two to
six inches thick, laid close together and touching at their edges;
these are fastened to the ribs by plugs of oak, called “treenails,”
going right through the planks and ribs, and wedged at each end (fig.
2). In large ships, similar planks line the inner side of the ribs,
and oblique or diagonal braces are also sometimes used, to strengthen
the ship and keep it from curving or “arching” when in the water.

  Illustration: FIG. 3. (‡ CROSS-SECTION OF HULL.)

  Illustration: MAST HOUSE.

The masts of a “ship” are three in number, a “schooner” has two, and
a “sloop” but one. These masts pass right down through the decks,
and rest upon the keelson. In small vessels each division is made of
one piece, but in larger ships they are made up of a central piece,
with others fastened round it so as to enlarge and strengthen it.
The first or lower division of the central mast is called the “main”
mast, and that above it the “maintop” mast; the fore mast is divided
into “fore” mast and “foretop” mast, and the after mast is called the
“mizen” and “mizentop” mast, and the pieces above these the “foretop
gallant” mast, “maintop gallant” mast, and “mizentop gallant” mast.
These masts are made, and raised by cranes in a building called a
mast-house, and placed in the right position in the ship floating

The outside of ships, as high as the “water-line,” is covered with
a sheathing of copper to defend it from the action of the “worm”
(_Teredo navalis_), which bores into and destroys the wood exposed to
its ravages; the copper also presents a smooth surface to the water,
and facilitates the motion of the vessel. At the stern of the ship
is placed the “rudder,” a wooden construction turning like a door on
fastenings, and which, by being moved on one side, presents a greater
amount of resistance to the water, and consequently tends to turn the
stern of the ship away from that side, thus altering its course. The
decks of a ship are like the floors of a house, running across from
side to side, and supported on strong beams bolted into the sides;
they are slightly arched, to increase their strength, as they have in
ships of war to support the weight of the guns, &c. A section of the
decks and other parts of a ship is shown at fig. 3. where the general
figure and the different parts described may be seen; the section is
through the middle, from side to side. Most ships of any considerable
size carry several boats with them, either on deck or suspended
between the masts, to serve as a means of escape in case of fire, or
any other accident requiring the crew to leave the ship, also as a
means of keeping up communication with the shore. Ships of war are
named according to the number of guns they carry, as a seventy-four,
a hundred-and-twenty-gun ship, &c.

  Illustration: REPAIRING DOCK.

When ships have to be repaired they are brought into the repairing
dock, which has a pair of gates shutting it off from the river; when
they are closed (at low water) the water is pumped out from the dock,
and the repairs done; when finished the water is let in, and the ship
floats out. In small vessels it is sometimes sufficient to haul them
on shore at high tide, so that when the tide is down they may be
left high and dry and repaired, and when the tide is at the highest,
hauled off again. Steam ships are constructed to be propelled either
by paddle wheels having flat boards fixed to their circumferences,
which on being turned round, take a great hold in the water, and so
cause the motion of the ship; or by the screw-propeller, which has
been described.


  Illustration: BREAKING UP.

The iron ships, which of late have almost superseded those of wood,
are made of plates of wrought iron, rolled, while red hot, between
rollers to the thickness required, which is generally half-an-inch;
these plates have holes punched all round them by machinery, and
are united by rivets placed in the holes red-hot and rivetted by
heavy hammers. The most magnificent specimen of iron shipbuilding
ever attempted is the Leviathan. This ship is 680 feet long, and is
not made of one thickness or case of iron plates, but is upon a new
principle called the “cellular,” consisting of an outer and inner
casing of iron plates held together by partitions of iron so as to
separate them into square compartments or “cells.” The objects gained
by this arrangement are greater strength, and greater safety, for
in case of injury to the outer portion, the water would enter only
between the two in that compartment where the injury happened to be,
and so fill only that small portion with water. The whole ship is
also divided into compartments by means of double screens of iron,
making it like a fire-proof box, and even if a fire should occur in
one of these, the others would be preserved from its effects. The
masts and yards of this great ship are also of hollow wrought iron
plates rivetted together, and are both stronger and lighter than
they would be of wood. A machine is placed at the lower part of each
mast which by compressing, can crush it up, and cause it to break
off and fall over the side of the vessel in case such a thing should
be required, as in a very violent storm; and the standing rigging,
which is of wire-rope, can be let loose in a few minutes so as to
completely free the ship of the mast. This great ship is constructed
to be propelled both by screw and paddles; the screw engines are four
in number, and are each of 1,600 horse power, the paddle engines are
also four, of 1000 horse power each, being 10,800 altogether. They
will require about 180 tons of coal a day to work them; 12,000 tons
of which are capable of being carried. The Leviathan will have six
masts, and be able to spread 6,500 yards of sail, will accommodate
4000 passengers, and when ready to sail, with all on board, will
weigh about 25,000 tons.

                           CANALS AND LOCKS.

  Illustration: DOUBLE LOCK.

Canals are artificial water-courses, either for the purpose of
connecting rivers, or for forming water communication for the
conveyance of goods. There are about 2200 miles of canal-way in
England, which is still in complete requisition, and but little
affected by the enormous goods traffic of the railways. Canals afford
a means of slow but cheap conveyance for heavy or bulky goods, not
requiring a rapid transit, for the more rapid the pace the greater
the resistance of the water. The usual rate of transit is somewhere
about two-and-a-half miles an hour, at which pace a horse can draw
about four times as much on water as he can on a railway, and about
thirty times as much as on a level turnpike road; but if a greater
speed were to be obtained, it is found that the resistance of the
water would impede it so much, that at the rate of five miles an
hour a horse could draw no more than he could on a railway, and at
ten miles only a quarter as much.

In constructing canals, it is important to have a good supply of
water, and this is generally secured by turning all the springs and
streams in its course into it, or deriving its source at its highest
level from a large river. The same works have often to be constructed
on the line of canals that are required on railways, such as bridges,
cuttings, embankments, tunnels, &c., and besides these, contrivances
peculiar to canals, called “locks,” which are now to be described.

Locks are barriers or doors constructed so that these artificial
rivers may be carried over rising ground and through valleys, without
the labour and expense of cutting through the hills and filling
up the hollows as would be required without them. Railways can be
constructed on ground which is not quite level without any embankment
or cutting, as it is not absolutely required that railways shall
be perfectly level. But water always will be level, unless it is
constantly flowing, as is the case with streams, and these only
sink a few inches in a mile, or else they become so rapid, that if
attempted to be imitated in canals, they would be useless; for it
would require too much power to draw any vessel up the canal against
such a stream, and would moreover require more water to supply
them than can commonly be obtained. The means therefore adopted to
overcome this difficulty are gates, or in other words, a pair of
“locks.” The canal is constructed in such a manner that it shall
be perfectly level for a certain distance, then sink down some ten
or twelve feet at once, and again flow on a level and sink down.
These sudden lowerings are effected as follows: two pairs of thick
solid doors of wood are fitted to shut in the water, and another
pair a short distance further on; behind these the bed of the canal
is lowered the required distance. When a barge or other vessel has
to pass down the canal the first pair of gates are opened, and the
barge floated in between them and the second pair, the first pair are
now closed, and the water beyond the second pair being lower, that
between the gates in which the barge floats is let out by means of
a valve worked by a rack and wheel; when this valve is raised the
water flows out and sinks down to the level of the water beyond,
carrying the barge with it; in a few minutes it is so low that, the
second gates being opened, the barge is drawn out and continues on
its way. But suppose the barge had to be brought up the canal, then
it is floated into the space between the gates (as before), and the
one behind the barge closed, the water beyond the gate in front being
higher, is let into the space where the barge is by a valve, and this
filling, lifts up the barge to the level of that in front, the front
gates are then opened and the barge proceeds onwards. These gates are
never made to shut level, but meet at an angle with the point towards
the highest water, which is done that they may resist the great
pressure which the water exerts, and for turning this to advantage,
for this very pressure shuts the gates and keeps them close together.
The canals which have much traffic on them have double locks, as
in the engraving, that barges may go up and down at the same time
without having to wait for each other. The barges and boats are
generally “towed” or drawn by a horse attached to a rope, and walking
on a “towing path” or road at the side of the canal.

                               THE END.

                         Transcriber’s Notes.

    Unit 1, Section: SULPHUR.
        - ‘sulphrous’ replaced with ‘sulphurous’
          (fumes of sulphurous acid)

    Unit 1, Section: FLAX.
        - ‘Llnun’ replaced with ‘Linum’
          (the flax plant _Linum Usitatissimum_)

    Unit 1, Section: SILK.
        - ‘boddins’ replaced with ‘bobbins’
          (on to bobbins or reels;)

    Unit 2, Section: SUGAR.
        - ‘earthern’ replaced with ‘earthen’
          (into conical earthen jars,)

    Unit 2, Section: VARNISHES.
        - ‘varnised’ replaced with ‘varnished’
          (before being varnished)

    Unit 2, Section: WHITE LEAD.
        - ‘earthern’ replaced with ‘earthen’
          (a number of earthen pots)

    Unit 2, Section: WHITE LEAD.
        - ‘extremly’ replaced with ‘extremely’
          (should be extremely careful)

    Unit 2, Section: WHITE LEAD.
        - ‘flim’ replaced with ‘film’
          (a thin film of sulphate of lead)

    Unit 4, Section: GILDING.
        - ‘is’ replaced with ‘in’
          (sometimes done in this way)

    Unit 4, Section: ELECTRO-PLATING.
        - ‘in’ replaced with ‘is’
          (or other object is plaster,)

        - ‘MINIE’ replaced with ‘MINIÉ’

    Unit 5, Section: PERCUSSION CAPS.
        - ‘Woolwhich’ replaced with ‘Woolwich’
          (At the Arsenal at Woolwich)

    Unit 5, Section: PLOUGHS.
        - The ‘skim-coulter’ F is shown in the plough illustration
          as E.

    Unit 6, Section: RAILWAYS.
        - ‘waggon’ replaced with ‘wagon’
          (the wagon should be so great.)

    Unit 6, Section: RAILWAYS.
        - duplicate word ‘part’ removed
          (and on this part it supports)

    Unit 6, Section: RAILWAYS.
        - ‘effect’ replaced with ‘effects’
          (this he effects by what)

    Unit 6, Section: ELECTRIC TELEGRAPHS.
        - ‘commniucation’ replaced with ‘communication’
          (from all communication with the earth)

    Unit 6, Section: ARTESIAN WELLS.
        - FIG. 1. and FIG. 2. were reversed.

    Unit 6, Section: ARTESIAN WELLS.
        - ‘Artisian’ replaced with ‘Artesian’
          (Artesian wells are sunk)

    Unit 6, Section: MINES.
        - ‘ncessary’ replaced with ‘necessary’
          (It is therefore necessary)

    Unit 6, Section: SHIPS.
        - ‘F’ omitted from FIG. 1

*** End of this Doctrine Publishing Corporation Digital Book "The Boy's Book of Industrial Information" ***

Doctrine Publishing Corporation provides digitized public domain materials.
Public domain books belong to the public and we are merely their custodians.
This effort is time consuming and expensive, so in order to keep providing
this resource, we have taken steps to prevent abuse by commercial parties,
including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the files We designed Doctrine Publishing
Corporation's ISYS search for use by individuals, and we request that you
use these files for personal, non-commercial purposes.

+ Refrain from automated querying Do not send automated queries of any sort
to Doctrine Publishing's system: If you are conducting research on machine
translation, optical character recognition or other areas where access to a
large amount of text is helpful, please contact us. We encourage the use of
public domain materials for these purposes and may be able to help.

+ Keep it legal -  Whatever your use, remember that you are responsible for
ensuring that what you are doing is legal. Do not assume that just because
we believe a book is in the public domain for users in the United States,
that the work is also in the public domain for users in other countries.
Whether a book is still in copyright varies from country to country, and we
can't offer guidance on whether any specific use of any specific book is
allowed. Please do not assume that a book's appearance in Doctrine Publishing
ISYS search  means it can be used in any manner anywhere in the world.
Copyright infringement liability can be quite severe.

About ISYS® Search Software
Established in 1988, ISYS Search Software is a global supplier of enterprise
search solutions for business and government.  The company's award-winning
software suite offers a broad range of search, navigation and discovery
solutions for desktop search, intranet search, SharePoint search and embedded
search applications.  ISYS has been deployed by thousands of organizations
operating in a variety of industries, including government, legal, law
enforcement, financial services, healthcare and recruitment.