By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | HTML | PDF ]

Look for this book on Amazon

We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: Firemen and their Exploits: with some account of the rise - and development of fire-brigades, of various appliances for saving - life at fires and extinguishing the flames.
Author: Holmes, F. M. (Frederic Morell)
Language: English
As this book started as an ASCII text book there are no pictures available.
Copyright Status: Not copyrighted in the United States. If you live elsewhere check the laws of your country before downloading this ebook. See comments about copyright issues at end of book.

*** Start of this Doctrine Publishing Corporation Digital Book "Firemen and their Exploits: with some account of the rise - and development of fire-brigades, of various appliances for saving - life at fires and extinguishing the flames." ***

This book is indexed by ISYS Web Indexing system to allow the reader find any word or number within the document.


              WITH SOME ACCOUNT

                THE FLAMES_.








The present volume, though complete in itself, forms one of a series
seeking to describe in a popular and non-technical manner the Triumphs
of Engineers. The same style has, therefore, been followed which was
adopted in the preceding volumes. The profession of Engineering has
exercised great influence on the work of Fire Extinguishment, as on some
other things; and the subject is, therefore, not inappropriate to the
series of books of which the volume forms part.

The story of the Fire-Engine begins in Egypt about a hundred and fifty
years before Christ. Hero of Alexandria describes a contrivance called
the "siphon used in conflagrations," and some persons are of opinion
that he was not unacquainted with the use of the air-chest. But it was
not until nearly two thousand years later--that is, about the close of
the seventeenth century--that the air-chamber and the hose seem to have
been brought into anything like general use,--if, indeed, the use can be
called general even then.

Much of the story is involved in obscurity, or it may be there was
little story to tell; but by the year 1726, Newsham had constructed
satisfactory fire-engines in London; and Braithwaite the engineer--who
with Ericsson constructed the "Novelty" to compete with Stephenson's
"Rocket" at the locomotive contest at Rainhill in 1829--built a steam
fire-engine about 1830, though it was not until thirty years, or more,
later that the use of the machine became general.

As to Fire-Brigades, the Insurance Companies, which began to appear
after the Great Fire of 1666, were wont to employ separate staffs of men
to extinguish fires; but by the year 1833, the more important had
united, and the London Fire-Brigade had been formed under the control of
Mr. James Braidwood. Many provincial towns followed the metropolitan
model in forming their brigades.

Together with the development of the Fire-Engine and of efficient
brigades has been the introduction of various other appliances, such as
Fire-Escapes, Chemical Extinctors, Water-Towers, and the great
improvement in the water supply. Nothing is more striking in the history
of conflagrations than the comparison between the dry state of the New
River pipes at the Great Fire of 1666 and the copious flood of five
million gallons poured into the city in a few hours by the same company
to quench the great Cripplegate fire of November, 1897.

But, indeed, the whole realm of Fire Extinguishment is a world of
constant improvement and strain after perfection. To describe something
of these efforts, and trace out the main features of their story, is the
object of the present volume.



CHAP.                                                          PAGE



        THE MODERN FIRE-ENGINE                                   36

        FIRE INSURANCE                                           47

  VI. THE STORY OF JAMES BRAIDWOOD                               53



  IX. A VISIT TO HEADQUARTERS                                    83

   X. HOW RECRUITS ARE TRAINED                                   98

  XI. SOME STORIES OF THE BRIGADE                               111

 XII. FIRE-ESCAPES AND FIRE-FLOATS                              123

        THAT WILL NOT FLAME                                     134

        CRIPPLEGATE FIRE                                        144

  XV. ACROSS THE WATER                                          156

[Illustration: OFF TO THE FIRE.]




"Shall we have a quiet night, Jack?"

"Can't say," replied Jack philosophically; "I take it as it comes."


Even as he spoke, the electric fire-alarm rang through the silent
station. The men sprang toward the stables, glancing at the bell-tablet
as they ran.

The tablet revealed the name of the street whence the alarm had been
sounded; and at the clang the horses tossed their heads and pawed the
ground, mad to be off. They knew the sound of the alarm as well as the
men themselves.

"Will it be a life-saving job, d'ye think, mate?"

"May be," was Jack's sententious reply; "you never know."

The horses were standing ready harnessed, and were unloosed at once.
They were led to the engine, the traces hooked on, the crew, as the
staff of firemen is called, took their places, and the doors in front of
them were opened smartly by rope and pulley.


"Aye, aye, sir!"

"Right away!"

In less than two minutes from the ringing of the alarm, the engine was
rushing out of the station, and tearing along London streets with
exciting clatter, the firemen shouting their warning cry, and sparks
flying from the funnel. Soon the engine fire was roaring below, and the
steam was hissing for its work.

How had the firemen obtained a blazing fire and hot steam so soon? When
the engine was waiting in the station, a lighted gas-jet, kept near the
boiler, maintained the water at a high temperature; and while the horses
were being hooked on, a large fusee, called a "steam-match," had been
promptly ignited, and dropped flaming down the funnel. The match fell
through the water-tube boiler to the fuel in the fire-box below; the
draught caused by the rush of the engine through the air helped the
fire; and the water being already so hot, steam pressure soon arose.

"The new escape's close behind!" cried one of the men, as the engine
hurried along.

Something, unusual then, to London streets was rapidly following the
steamer. In the gloom, it looked like a dim spectral ladder projecting
over the horses in front, and several men could be seen sitting on the
carriage conveying it.

"She's a-comin' on pretty fast," exclaimed one of the men; "she travels
as smart as an engine."

Indeed, the new escape was now so near, that it could be seen more
clearly. It was securely mounted on a low car, and its large wheels hung
over the end at the back, not far above the ground. Designed by
Commander Wells, chief officer of the London Fire-Brigade, it was
brought into use in the brigade in July, 1897.

But now it was nearing the fire, and cheers and cries rang loudly from
the excited crowd gathered at the spot.

"Make way for the escape! Hurrah! Hurrah!"

No wonder the crowd were excited. On the second-floor window of a large
building appeared three white, eager faces, framed by the dark sashes,
and crying eagerly for help.

Cheer after cheer rent the air, as the escape drew up opposite, and was
slipped from its car; then, resting on its own wheels, it was pitched
near the burning building, and its ladders run up to the window. The
policemen could scarce keep back the thronging crowd.

Away go the firemen up the rungs of the ladder, and amid continued
cheers, and cries, and great excitement approach the sufferers in their

"They've got one!" shouts an excited voice.

"Aye, and there's another!" cries a second spectator.

"They're all three saved!" vociferates a third; and loud cheers greet
the firemen's triumph.

It was a smart piece of work; and with the rescued persons thrown over
their shoulders in the efficient manner they are taught at drill, the
firemen carefully descend the ladder one after the other, and amid
shouts and plaudits arrive safely on the ground.

The flames dart out of the building more fiercely than ever, as if in
anger at losing their prey; the glare and heat grow more intense; the
smoke rolls off in dense volumes; the fire is raging furiously.

Engine after engine rushes fast to the spot, the loud, alarming cries of
"Fire-ire! Fire-ire!" echoing shrilly along the lamp-lighted
thoroughfares; fireman after fireman leaps from the arriving engines,
and with their bright brass helmets flashing in the glare are quickly
stationed round the huge conflagration.

The "brigade call" has been telephoned all round London, and from east
and west, and north and south, engines and firemen have hurried to the
spot. Steamers with sparks flying, steam hissing, and whistles
shrieking; manuals with the clatter of their handles; hose-carts with
their lengths of flexible pipes; and tall ladders of fire-escapes,
useful, even when no life is to be saved, as high points of vantage
whence firemen can direct streams of water straight into the raging
fire,--all--all are here. One after another they arrive, until the word
is passed that more than twenty engines and a hundred and twenty firemen
are concentrated on the spot.

Hydrants also are at work. They are appliances, permanently fixed under
the pathway, from which firemen can obtain a powerful pressure of water,
ranging from thirty-five to seventy pounds per square inch. From the
steamers and the hydrants the quantity of water poured on the huge fire
is now immense, and the steam and smoke roll off in immense volumes.


"There goes the glass!" cries a fireman; and a few moments later it is
rumoured that one of the brigade has been badly cut in the hands. The
skylight had broken and fallen upon him, showing that it is not only
from heat and smoke that the men are likely to suffer, but also from
falling parts of the burning building.

The huge fire is fought at every possible point. It is prevented from
spreading to surrounding buildings by deluging them with water, and
strenuous efforts are made to quench it at its source. Steadily in the
growing light of day the firemen work on; but the morning had far
advanced before the great conflagration was fully extinguished and the
London Salvage Corps were left in possession of the ruined premises.

"Well, you've had your first big fire, Newall; how d'ye like it?"

"Oh, it's all right, mate; it's pretty hard work, but I don't mind it."

"'Tain't all over yet," said Jack cheerfully; "there's this 'ere hose to
be scrubbed and cleaned, and hung up in the well to dry. I reckon it
will be four or five o'clock before we can turn in."

Jack was right. The wet hose had to be suitably treated to keep it in
good condition, and the engines carefully prepared for the next alarm
that might arise; and when the men turned in to rest, they slept sound

This story not only illustrates the work of the London Fire-Brigade, but
also points to a notable fact in its history. That fact is the
introduction of the horsed fire-escape. The first rescue in London by
this valuable appliance took place on October 17th, 1898. There were, in
fact, two disastrous fires raging at nearly the same time on that day,
and the new appliance was used at one of these.

Early in the morning, a disastrous fire broke out in Manresa Road,
Chelsea. The conflagration originated in the centre of a large
timber-yard, and spread so rapidly that a very serious fire was soon in
progress. Engines and firemen hurried up from various quarters, until
sixteen steamers, three manuals, and more than a hundred men were on the
spot. The fire was completely surrounded, and the enormous quantity of
water poured upon the blazing wood soon took effect.

But before all the engines had left, news came that a still more serious
fire had broken out in Oxford Street. The extensive premises of Messrs.
E. Tautz & Co., wholesale tailors, were discovered to be in flames, and
the alarm was brought to the fire-stations from various sources.

The Orchard Street fire-alarm rang into Manchester Square station, and
resulted in the horsed escape being turned out; then another fire-alarm
rang into Great Marlborough Street fire-station, and the horsed escape
had hurried from this point also. The appliance was new, and for some
time the men of the brigade had cherished a laudable ambition to be the
first to use the escape in what they call a life-saving job. And it was
only by an untoward chance, or simple fortune of war, that the men of
the Manchester Square station, who were first on the spot, missed the
coveted honour.

When they arrived on the scene, no sign of fire was visible in Oxford
Street itself, and the firemen were pointed to North Row, one of the
boundaries of the burning block behind. They made their way thither,
searching for inmates, but were driven back by the fierce flames.

Meantime, the three persons sleeping on the premises--the foreman, Mr.
Harry Smith, his wife, and their little son, aged six years--had been
endeavouring to escape by the staircase, but had been driven back by the
fire. Mr. Smith had been awakened by the dense smoke filling the room,
and he aroused his wife at once and took the boy in his arms.

Not being able to escape by the staircase, they hurried to the front of
the large block of buildings, shutting the doors after them as they
went. So it happened that they appeared at the second-floor windows
facing Oxford Street just as the horsed escape from Great Marlborough
Street fire-station hurried up. A scene of great excitement followed.
The firemen ran the ladders from the escape to the building, and brought
down all three persons in safety; but Mrs. Smith unfortunately had
suffered a burn on the left leg. It is probable that, but for the
rapidity with which the horsed escapes arrived on the scene, the family
might have suffered much more severely; for the fire was very fierce,
and soon appeared in Oxford Street.

The honour, therefore, of the first rescue by the new horsed escape
rests with the Great Marlborough Street station, though the efforts of
their brave comrades of the Manchester Square station should always be
remembered in connection therewith. Commander Wells appreciated this;
for he telephoned a special message to Superintendent Smith, saying:

"Please let your men understand that I thoroughly appreciate and
approve their action on arrival at the fire this morning, although the
honour of rescue falls by the fortune of war to the second

The fire proved very disastrous, and a large force was speedily
concentrated. It was eventually subdued; but it was about two o'clock in
the afternoon before the brigade were able to leave, a large warehouse
belonging to Messrs. Peel & Co., boot-makers, being also involved, and
other buildings more or less damaged.

The horsed fire-escape, which was found so useful on this occasion, is
but one among several appliances for saving life and fighting the fire.
These appliances are worked by highly-trained brigades of firemen, whose
efficient organization, well-considered methods, and ingenious apparatus
form one of the remarkable features of the time.

They did not reach their present position in a day. Indeed, a stirring
story of human effort and of high-spirited enterprise lies behind the
well-equipped brigades of the time. Step by step men have won great
victories over difficulty and danger; step by step they have profited by
terrible disasters, which have spurred them on to fresh efforts.

What, then, is this story of the fight against fire? How have the
fire-services of the day reached their present great position?



No one knows who invented the modern fire-engine.

The earliest machine, so far as is generally known, was described by
Hero of Alexandria about a hundred and fifty years before Christ. He
called it "the siphon used in conflagrations"; and it seems to have been
originated by Ctesibius, a Greek mechanician living in Egypt, whose
pupil Hero became.

It is very interesting to notice how this contrivance worked. It was
fitted with two cylinders, each having a piston connected by a beam.
This beam raised and lowered each piston alternately, and with the help
of valves--which only opened the way of the jet--propelled water to the
fire, but not continuously. The method must have proved very
inefficient, especially when compared with the constant stream thrown by
the modern fire-engine. Indeed, it is this power to project a steady and
continuous stream which chiefly differentiates the modern fire-engine
from such machines as Hero's siphon.

How far this siphon or any similar contrivance was used in ancient times
we cannot say; but no doubt buckets in some form or other were the first
appliances used for extinguishing conflagrations. Whenever mankind saw
anything valuable burning, the first impulse would be to stamp it out,
or quench the flame by throwing water on it; and the water would be
conveyed by the readiest receptacle to hand; then when men had
discovered the use of the pump, or the squirt, they would naturally
endeavour to turn these appliances to account.

In some places the use of water-buckets was organized. Juvenal alludes
to the instructions of the opulent Licinus, who bade his "servants watch
by night, the water-buckets being set ready"; the wealthy man fearing
"for his amber, and his statues, and his Phrygian column, and his ivory
and broad tortoise-shell."

Then Pliny and Juvenal use a term--_hama_--which signifies an appliance
for extinguishing fires; but the true rendering seems to be in dispute,
some translators being content to describe it simply as a water-vessel.
Pliny the Younger refers to _siphones_, or pipes, being employed to
extinguish fires; but we do not know how they were used, or whether they
resembled Hero's siphon.

In fact, the earliest references to fire-engines by Roman writers are
regarded by some as being merely allusions to aqueduct-pipes for
bringing water to houses, rather than to a special appliance. And from
Seneca's remark, "that owing to the height of the houses in Rome it was
impossible to save them when they took fire," we may gather that any
appliances that may have been in use were very inefficient.

A curious primitive contrivance is described by Apollodorus, who was
architect to Trajan. It consisted of leathern bags or bottles, having
pipes attached; and when the bottles were squeezed, the water gushed
through the pipes to extinguish the flames. Augustus was so enterprising
as to organize seven bands of firemen, each of which protected two
districts of Rome. Each band was in charge of a _tribunus_, or captain,
and the whole force was under a _præfectum vigilum_, or prefect of the
watch; though what apparatus they employed--whether buckets or
pipe-bags, syringes or Hero's siphon--we do not know.

But these appliances, or some of them, were no doubt in use at the Great
Fire of Rome in A.D. 66. In July of that year--the tenth of the reign of
the infamous Emperor Nero--two-thirds of the city was destroyed. The
fire broke out at a number of wooden shops built against the side of the
great Circus, and near to the low-lying ground between the Palatine and
the Cælian Hills. The east wind blew the flames onward to the corner of
the Palatine Hill, and there the fire blazed in two directions. It
gained such enormous power, that stonework split and fell before it like
glass, and building after building succumbed, until at one point it was
only stopped by the river, and at another by frowning cliffs.

For six awful days and seven nights the fire raged, and then, when it
was supposed to have been extinguished, it burst forth again for three
more days. The sight must have been appalling. We can picture the huge
sheets and tongues of flame sweeping ever onward, the fearful heat, and
the immense volumes of smoke which mounted upward and obscured the sky.

The panic-stricken people fled to the imperial gardens, but whispered
that Nero himself had originated the fire. To divert suspicion, he
spread reports that the Christians were the culprits; and they were
treated with atrocious cruelty, some being wrapped in fabric covered
with pitch and burnt in the Emperor's grounds. The guilt of Nero remains
a moot point; but he seems to have acted with some amount of liberality
to the sufferers, though his acts of humanity did not free his name
from the foul suspicion.

The conflagration itself stands out as one of the most terrible in
history. Before its furious rage the capable Romans seem to have been
reduced to impotence. Their organization, if they had any, seems to have
been powerless; and their appliances, if they used any, seem to have
been worthless.

We are entitled to draw the deduction that they had no machine capable
of throwing a steady, continuous stream from a comparatively safe
distance. No band of men, however strong and determined, could have
stood their ground sufficiently near the fierce fire to throw water from
buckets, pipe-bags, or even portable pumps. For small fires they might
prove of service, if employed early; but for large conflagrations they
would be worthless. And if Rome, the Mistress of the World, was so
ill-provided, what must have been the condition of other places?

We may infer, therefore, that the means of fire extinction in the
ancient world were miserably inadequate.

Had mediæval Europe anything better to show?



"Prithee, good master, what's o' fire?"

"A baker's house they say, name of Farryner."

"Faith! it's in Pudding Lane, nigh Fish Street Hill," quoth another
spectator, coming up. "They say the oven was heated overmuch."

"It's an old house, and a poor one," said another speaker. "'Twill burn
like touchwood this dry weather."

"Aye, it have been dry this August, sure enow; and I reckon the rain
won't quench it to-night." And the speaker looked up to the starlit sky,
where never a cloud could be seen.

"Have they the squirts at work, good-man?"

"Aye, no doubt. 'Twill be quenched by morning, neighbour. Faith! 'tis
just an old worm-eaten house ablaze, and that's the tale of it."

But it was not "the tale of it." A strong east wind was blowing, and the
hungry flames spread quickly to neighbouring buildings. These houses
were old and partly decayed, and filled with combustible material, such
as oil, pitch, and hemp used in shipwright's work. In a comparatively
short time the ward of Billingsgate was all ablaze, and the fierce fire,
roaring along Thames Street, attacked St. Magnus Church at Bridgefoot.

Before the night was far spent, fire-bells were clashing loudly from the
steeples, alarming cries of "Fire! Fire!" resounded through the streets,
and numbers of people in the old narrow-laned city of London were
rushing half dressed from their beds.

It was the night of Saturday, September 2nd, 1666, a night ever
memorable in the history of London. About ten o'clock, any lingerers on
London Bridge--where houses were then built--might have seen a bright
flame shoot upward to the north. They probably conversed as we have
described, and retired to bed. But the fire spread from the baker's
shop, as we have seen, and the confusion and uproar of that terrible
night grew ever more apace.

Half-dazed persons crowded the streets, encumbered with household
goods, and the narrow thoroughfares soon became choked with the
struggling throng. But the flames seized upon the goods, and the
panic-stricken people fled for their lives before the fierce attack. The
lurid light fell on their white faces, and the terrible crackling and
roaring of the flames mingled with their shrieks and shouts as they
hurried along. Now the night would be obscured by dense clouds of thick
smoke, and anon the fire would flash forth again more luridly than ever.

To add to the alarm, the cry would ring through the streets, or would be
passed from mouth to mouth, that the pipes of the New River
Company--then recently laid--were found to be dry. With the suspicion of
Romanist plots prevailing, the scarcity of water and the origin of the
fire were put down to fanatical incendiaries; or, as an old writer
quaintly expressed it, "This doth smell of a popish design."

When the next morning dawned, the terrible conflagration, so far from
having been extinguished, was raging furiously; the little jets and
bucketsful of water, if any had been used, proved of no avail; and the
narrow streets became, as it were, great sheets of flame.

But was nothing done to extinguish the fire? What appliances would the
Londoners have had?

Here, perhaps, in the early hours of the conflagration, you might have
seen a group of three men at the corner of a street working a
hand-squirt. This instrument was of brass, and measured about 3 feet
long. Two men held it by a handle on each side; and when the nozzle had
been dipped into a bucket or a cistern near, and the water had flowed
in, they would raise the squirt, while the third man pushed up the
piston to discharge the water. The squirt might hold about four quarts
of water.


If one man worked the squirt, he would hold it up by the handles, and
push the end of the piston, which was generally guarded by a button,
against his chest. But, at the best, it is obvious that the hand-squirt
was a very inadequate contrivance.

Not far distant you might also have seen a similar squirt, mounted in a
wheeled reservoir or cistern, the pistons, perhaps, worked by levers;
and, possibly, in yet another street you might have noticed a pump of
some kind, also working in a cistern; while here and there you might
have come upon lines of persons passing buckets from hand to hand,
bringing water either from the wells in the city, or from the river, or
actually throwing water on the fire. Such were the appliances which we
gather were then used for extinguishing fires.

But such contrivances as were then in the neighbourhood of Fish Street
Hill appear to have been burnt before they could be used, and the people
seem to have been too paralyzed with terror to have attempted any

The suggestion was made to pull down houses, so as to create gaps over
which the fire could not pass; and this suggestion no doubt indicates
one of the methods of former days. But the method was not at first
successful on this occasion.

Thus, Pepys, in his Diary, tells us, under date of the Sunday: "At last
[I] met my Lord Mayor in Canning Street, like a man spent, with a
handkercher about his neck. To the King's message [to pull down houses
before the fire] he cried, like a fainting woman, 'Lord! what can I do?
I am spent: people will not obey me. I have been pulling down houses;
but the fire overtakes us faster than we can do it.'" This is a graphic
little picture of the bewilderment of the people; and Pepys goes on to
say that, as he walked home, he saw "people all almost distracted, and
no manner of means used to quench the fire."


In a similar manner, another famous eye-witness, John Evelyn, notes in
his Diary that "some stout seamen proposed, early enough to have saved
nearly the whole city," the destruction of houses to make a wide gap;
"but this some tenacious and avaricious men, aldermen, etc., would not
permit, because their houses must have been of the first."

The main idea, therefore, of extinguishing the fire seems to have lain
in the pulling down of houses to produce a wide gap over which the fire
could not pass. But at first the civic authorities shrank from such bold
measures. On Sunday, then, the flames were rushing fiercely onward, the
ancient city echoing to their roaring and to the cries and shrieks of
the populace. The houses by London Bridge, in Thames Street, and the
neighbourhood were but heaps of smouldering ruins. The homeless people
sought refuge in the fields outside the city by Islington and Highgate,
and the city train-bands were placed under arms to watch for
incendiaries; while, as if the horror of the terrible fire was not
enough, numbers of ruffians were found engaged in the dastardly work of
plunder. The clanging of the fire-bells, the crackling of the huge fire,
the cries and curses of the people, made such a frightful din as can
scarce be imagined; while many churches, attended on the previous Sunday
by quiet worshippers, were now blazing in the fire.

That night the scene was appalling, and yet magnificent. An immense
sheet of fire rose to the sky, rendering the heavens for miles like a
vast lurid dome. The conflagration flamed a whole mile in diameter,
hundreds of buildings were burning, and the high wind bent the huge
flames into a myriad curious shapes, and bore great flakes of fire on to
the roofs of other houses, kindling fresh flames as they fell. For ten
miles distant the country was illumined as at noonday, while the smoke
rolled, it is said, for fifty miles.

Evelyn describes the scene in his Diary, under date September 3rd: "I
had public prayers at home. The fire continuing, after dinner I took
coach with my wife and son and went to the Bankside in Southwark, where
we beheld the dismal spectacle, the whole city in dreadful flames near
the water-side; all the houses from the Bridge, all Thames Street, and
upwards towards Cheapside, down to the Three Cranes, were now consumed:
and so returned exceeding astonished what would become of the rest.

"The fire having continued all this night (if I may call that night
which was light as day for ten miles round about, after a dreadful
manner) when conspiring with a fierce eastern wind in a very dry season;
I went on foot to the same place, and saw the whole south part of the
city burning from Cheapside to the Thames and all along Cornhill....
Here we saw the Thames covered with goods floating, all the barges and
boats laden with what some had time and courage to save, as, on the
other [side], the carts, etc., carrying out to the fields, which for
many miles were strewed with moveables of all sorts, and tents erecting
to shelter both people and what goods they could get away. Oh the
miserable and calamitous spectacle! such as haply the world had not seen
the like since the foundation of it, nor be outdone till the universal
conflagration of it! All the sky was of a fiery aspect, like the top of
a burning oven, and the light seen above forty miles round about for
many nights. God grant mine eyes may never behold the like, who now saw
above ten thousand houses all in one flame; the noise and cracking and
thunder of the impetuous flames, the shrieking of women and children,
the hurry of people, the fall of towers, houses, and churches, was like
a hideous storm, and the air all about so hot and inflamed that at the
last one was not able to approach it, so that they were forced to stand
still and let the flames burn on, which they did for near two miles in
length and one in breadth. The clouds also of smoke were dismal, and
reached, upon computation, near fifty-six miles in length. Thus I left
it this afternoon burning, a resemblance of Sodom or the last day."

On Monday the Royal Exchange perished in the sea of flame. By evening
Cheapside had fallen, and beside the water's edge it was blazing in
Fleet Street; while it had also burned backward, even against the wind,
along the eastern part of Thames Street, toward Tower Hill. The heat was
so terrible that persons could not approach within a furlong, while the
very pathways were glowing with fiery heat. Some persons chartered
barges and boats, and, filling them with such property as they could
save, sent them down the Thames. Others paid large sums for carts to
convey property far beyond the city walls. A piteous exodus of sick and
sound, aged and young, crawled or fled to the spacious fields beyond the
gates. The ground was strewn with movables for miles, and tents were
erected to shelter the burned-out multitude.

At length St. Paul's succumbed. It had stood tall and strong in the
space of its churchyard, lifting its head loftily amid the billows of
flame; but at last the terrible fire, driven toward it by the east wind,
lapped the roof, and seized some scaffold-poles standing around. The
lead on the roof melted in the fierce heat, and ran down the walls in
streams; the stones split, and pieces flew off with reports like
cannon-shots; and beams fell crashing like thunder to the ground.

Evelyn notes, under date September 4th: "The burning still rages, and it
was now gotten as far as the Inner Temple; all Fleet Street, the Old
Bailey, Ludgate Hill, Warwick Lane, Newgate, Paul's Chain, Watling
Street now flaming, and most of it reduced to ashes; the stones of
Paul's flew like granados, the melting lead running down the streets in
a stream, and the very pavements glowing with fiery redness, so as no
horse nor man was able to tread on them, and the demolition had stopped
all the passages, so that no help could be applied. The eastern wind
still more impetuously driving the flames forward. Nothing but the
almighty power of God was able to stop them, for vain was the help of

On the eastern side of St. Paul's, the old Guildhall fell to the fire.
On Tuesday night, it was, says a contemporary writer, the Rev. Thomas
Vincent, in a little volume published a year afterwards, "a fearfull
spectacle, which stood the whole body of it together in view, for
several hours together, after the fire had taken it, without flames (I
suppose because the timber was such solid oake), in a bright shining
coale as if it had been a Pallace of gold, or a great building of
burnished brass."

The fire had now become several miles in circumference. It had reached
the Temple at the western end of Fleet Street by the river, and was
blazing up by Fetter Lane to Holborn; then backward, its course lay
along Snow Hill, Newgate Street--Newgate Prison being consumed--and so
past the Guildhall and Coleman Street, on to Bishopsgate Street and
Leadenhall Street. It seemed as though all London would be burnt, and
that it would spread westward even to Whitehall and Westminster Abbey.

But now the King (Charles II.) and his brother the Duke of York and
their courtiers were fully aroused; and it must have become clear to
even the meanest intelligence that houses must be blown down on an
extensive scale, in order to create large gaps over which the fire could
not pass. All through Tuesday night, therefore, the sound of explosions
mingled with the roaring of the fire.

By the assistance of soldiers, and by the influence of the royal
personages, buildings were blown up by gunpowder in the neighbourhood of
Temple Bar, which then, of course, spanned the western end of Fleet
Street; at Pye Corner near the entrance to Smithfield, and also at other
points of vantage. These bold means, together, no doubt, with the
falling of the wind, and also the presence of some strong brick
buildings, as by the Temple, checked and stopped the fire. Some began
now to bestir themselves, "who hitherto," remarks Evelyn, "had stood as
men intoxicated with their hands across." On the Wednesday, therefore,
the fire extended no farther west than the Temple, and no farther north
than Pye Corner near Smithfield; but within this area it still burned,
and the heat was still so great that no one would venture near it.

During the Wednesday, the King was most energetic. He journeyed round
the fire twice, and kept workers at their posts, and assisted in
providing food and shelter for the people. Orders were sent into the
country for provisions and tents, and also for boards wherewith to build
temporary dwellings. On Thursday the Great Fire was everywhere
extinguished; but on Friday the ruins were still smouldering and
smoking, and the ground so hot that a pedestrian could not stand still
for long on one spot. From St. Paul's Churchyard, where the ground rises
to about the greatest height in the old city, the eye would range over a
terrible picture of widespread destruction, from the Temple to the Tower
and from the Thames to Smithfield. Two hundred thousand homeless persons
were camping out, or lying beside such household goods as they had been
able to save, in the fields by Islington and Highgate. It has been
computed that no fewer than 13,200 houses, 89 churches, including St.
Paul's, 400 streets, and several public buildings, together with four
stone bridges and three of the city gates, etc., were destroyed, while
the fire swept over an area of 436 acres.

Now, in connection with this great calamity, we cannot find any
appliance at work corresponding to our modern fire-engine. The
inhabitants of London seem to have been almost, if not quite, as badly
provided against fire as Rome in the days of Nero.

In fact, the chief protection in early days in England seems to have
been a practice of the old proverb that prevention is better than cure,
care being exercised to regulate the fires used for domestic purposes:
we see an instance in the arrangement of the curfew-bell, or
_couvre-feu_, a bell to extinguish all fires at eight at night. Still,
when conflagrations did occur, we may suppose that buckets and
hand-squirts, as soon as mankind came to construct them, were the
appliances used.

Entries for fire-extinguishing machines of some sort have been found in
the accounts of many German towns: for instance, in the building
accounts of Augsburg for 1518, "instruments of fire" or "water-syringes"
are mentioned.

Fires appear to have been very frequent in Germany in the latter part of
the fifteenth and in the sixteenth century. And though we do not know
much of the contrivances used in Europe in the Middle Ages, it is not
until 1657 that we have any reliable record of a machine at all
resembling Hero's siphon on the one hand, or the modern fire-engine on
the other.

This record is given by Caspar Schott, a Jesuit, and tells of an engine
constructed by Hautsch of Nuremberg, a city long famous for mechanical
contrivances. The machine was really a large water-cistern drawn on a
wheeled car, or sledge; and the secret of its propulsive power, Schott
supposes was a horizontal cylinder containing a piston and producing an
action like a pump. The cistern measured 8 feet long by 4 feet high, and
2 feet wide; its small width being probably designed for entering narrow
streets. It was operated by twenty-eight men, and it forced a stream of
water an inch thick to a height of about eighty feet. Hautsch desired to
keep the methods of its construction secret; but, apparently, it was not
furnished with the important air-chamber, and does not seem to have
differed very materially from Hero's siphon. Schott also says he had
seen one forty years before at Königshofen.

Notwithstanding, therefore, the danger of great conflagrations, mankind
does not seem to have made much progress in the construction of
fire-engines from the days of Ctesibius until the time of Charles II., a
period of about eighteen hundred years. On the other hand, we must
remember that syringes and water-buckets can be of very great service
when promptly and efficiently used. Even to-day London firemen find
similar appliances of great value for small conflagrations in rooms.

But we get a vivid little picture of the helplessness of even the
seventeenth-century public before a fire of any size, in a description
left by Wallington of a fire on Old London Bridge in 1633. Houses were
then built on the bridge, and Wallington says: "All the conduits near
were opened, and the pipes that carried the water through the streets
were cut open, and the water swept down with brooms with help enough;
but it was the will of God it should not prevail. For the three engines
which are such excellent things that nothing that ever was devised could
do so much good, yet none of them did prosper, for they were all broken,
and the tide was very low that they could get no water, and the pipes
that were cut yielded but littel. Some ladders were broke to the hurt of
many; for several had their legges broke, some their arms; and some
their ribes, and many lost their lives." More than fifty houses, we may
add, were destroyed by this fire.

Of what character were the engines to which he refers we cannot tell. We
do not know whether any engine like Hautsch's was established in London
at this time, or at the date of the Great Fire; but if so, it was not
apparently much in vogue. It must be remembered that the term "engine"
was applied indiscriminately to any sort of mechanical contrivance, and
even to a skilful plan or method (Shakespeare uses the word to designate
an instrument of torture); if, therefore, the word is used for a
fire-extinguishing appliance by any old writer, it does not follow that
the so-called engine would resemble Hautsch's machine or a modern

A.D. 1667.]

Judging from some Instructions of the Corporation after the fire,
hand-squirts and ladders and buckets were still chiefly relied upon in
1668. The Instructions are, moreover, interesting, as showing what
action the Corporation took after the Great Fire.

The city was divided into four districts, each of which was to be
furnished with eight hundred leathern buckets, fifty ladders varying in
sizes from 16 to 42 feet long, also "so many hand-squirts of brass as
will furnish two for every parish, four-and-twenty pickaxe-sledges, and
forty shod shovels." Further, each of the twelve companies was to
provide thirty buckets, one engine, six pickaxe-sledges, three ladders,
and two hand-squirts of brass. Again, "all the other inferior companies"
were to provide similar appliances; and aldermen were likewise to
provide buckets and hand-squirts of brass. The pickaxes and shovels were
for use in demolishing houses and walls if necessary, or dealing with
ruins; and though some kind of engine is mentioned, we know not whether
it was a hand-squirt mounted in a cistern, or some sort of portable

We may regard these regulations, however, as fixing for us the
hand-squirt and the bucket as the principal means of fire extinguishment
in Britain up to that date.

But now a great development was at hand, and a new chapter was to
commence in the story.



How to force a continuous stream of water on the fire!

That was the problem which puzzled an unknown inventor about the year
1675. He probably saw that hitherto the appliances for extinguishing
conflagrations failed at this point, and we may suppose that he
cudgelled his brains to hit upon the right remedy.

Then one day, no one seems to know when, he thought of inventing, or
adapting, the compressed air-chamber to a sort of portable pump, and,

The Modern Fire-Engine was born!

The invention was introduced, probably, after the Great Fire, because
authorities describe it as first mentioned in the French _Journal des
Savans_ in 1675, and Perrault states that an engine with an air-chamber
was kept at Paris for the protection of the Royal Library in 1684. If,
therefore, Hero knew of the air-chamber, as some assert, it does not
appear to have been much used. But probably the great disaster in London
stirred invention, and the addition of the air-chamber was the result.
It may not, however, have been a distinct invention, for an air-chamber
had been found of great value in various hydraulic machines.

What, then, is this invention, and what is its great value to a

Briefly, it enables a steady and continuous stream of water to be thrown
on a fire. It is the vital principle of the modern fire-engine, and
renders it distinctly different from all squirts, syringes, and portable
pumps preceding it. Instead of an unequal and intermittent supply,
sometimes, no doubt, falling far short of the fire, we have now a
persistent stream, which can be continuously directed to any point, in
reach, with precision and efficiency.

How, then, are these results obtained? How does the air-chamber work?

It depends on the elasticity and power of compressed air. The water,
when drawn from the source of supply by two pistons, working
alternately, is driven into a strong chamber filled with air. The air
becomes compressed, and is driven to one part of the chamber; but when
it is forced back to occupy about one-third of the whole space, the air
is so compressed that, like the proverbial worm which will turn at last,
it exerts a pressure on the water which had been driving it back. If the
water had no means of escape, the chamber would soon burst; but the
water finds its way through the delivery-hose. If the hose issue from
the top of the chamber, it is fitted with a connecting pipe reaching
nearly to the bottom to prevent any escape of air.

Now, as long as the pumps force the water into the air-chamber to the
necessary level--that is, to about two-thirds of the space--the pressure
is practically continuous, and thus a constant jet of water is
maintained through the hose. The ordinary pressure of air is about 14·7
pounds per square inch; and when compressed to one-half its usual bulk,
its elasticity or power of pressure is doubled, and of course is
rendered greater if still further compressed.

This power, then, of the compressibility and elasticity of air is the
secret of the fire-engine air-chamber; but though introduced about 1675,
it was not until 1720 that such engines seem to have become more
general. About that date, Leupold built engines in Germany with a
strongly-soldered copper chest, and one piston and cylinder, the machine
throwing a continuous and steady jet of water some twenty or thirty feet

In the meantime, what was being done in England?

Here again the story is obscure; but we imagine the course of events to
have been something like this:

In the dismal days after the Great Fire, people began to cast about for
means to prevent a recurrence of so widespread and terrible a calamity.
Fire-insurance offices were organized, and they undertook the
extinguishment of fires. It is not unreasonable to suppose that in some
form--perhaps by offering prizes, perhaps by simply calling attention to
the need for improvement, perhaps by disseminating information such as
of the engine mentioned by Perrault at Paris--these offices stimulated
invention; perhaps the memory of the Great Fire was enough to stir
ingenious effort without their aid.

Now, there was a pearl-button maker named Newsham, at Cloth Fair, not
far distant from Pye Corner, who obtained patents for improvements in
fire-engines in 1721, and again in 1725; while the _Daily Journal_ of
April 7th, 1726, gives a report of one of his engines which discharged
water as high as the grasshopper on the Royal Exchange. This apparently
was not only due to the great compression of air in the air-chamber, but
also to the peculiar shape he gave to the nozzle of the jet; and it is
said he was able to throw water to a height of a hundred and thirty feet
or more.

In France a man named Perier seems to have been busy with fire-engines,
though how far he worked independently of others we cannot tell.

The hose and suction-pipe are said to have been invented by two men
named Van der Hide, inspectors of fire-extinguishing machines at
Amsterdam about 1670. The hose was of leather, and enabled the water to
be discharged close to the fire. It is worthy of note that this
invention also appears to have been after the Great Fire of London.

Remembering, therefore, that Newsham was probably indebted to others
for the important air-chamber and flexible leathern hose--though how far
he was indebted we cannot say--we must regard him as the Father of the
Modern Fire-Engine in England. Especially so, as his improvements have
been regarded as in advance of all others in their variety and value. It
is also worthy of note that the first fire-engines in the United States
were of his construction.

Little is known of Newsham's life. The reasons leading him, a maker of
pearl buttons, to turn his attention to fire-engine improvement are not
clear. At his death in 1743, the undertaking passed by bequest to his
son. The son died about a year after his father, and the business then
came into the hands of his wife and cousin George Ragg, also by bequest;
and the name of the firm became Newsham & Ragg.

One of Newsham's engines may be seen in the South Kensington Museum
to-day, having been presented to that institution by the corporation of
Dartmouth. The pump-barrels will be found to measure 4½ inches in
diameter, with a piston-stroke of 8½ inches. The original instructions
are still attached, and are protected by a piece of horn.

The general construction of Newsham's engines appears to have been
something like this:

The body, which was long and narrow, measured about 9 feet by 3 feet
broad; this shape enabled it to be wheeled in narrow streets, and even
through doorways. Along the lower part of the body, which was swung on
wheels, ran a pipe of metal, which the water entered from a feed-pipe.
The feed-pipe was intended to be connected with a source of supply; but
if this failed, a cistern, attached to the body of the engine, could be
filled by buckets, while a strainer was placed at the junction between
the cistern and the interior pipe to prevent dirt or gravel from
entering it.


On the top of the body was built a superstructure, which looked like a
high box--greater in height than in breadth, and larger at the top than
at the bottom. This box contained the all-important air-chamber and the
pumps. The water in the interior pipe was forced into the air-chamber by
the two pumps, and then thrown on the fire through a pipe connected with
a hose of leather projecting from the top of the air-chamber. This pipe
descended within the chamber almost to the bottom, so that when water
was pumped into the air-chamber it flowed round the bottom of the pipe,
and prevented any ingress or egress of air. As the water rose, the air
already in the chamber became compressed in the top part of the chamber,
and in turn exerted its power on the water.

The pumps were worked by levers, one on each side of the engine, and
alternately raised and lowered by the men operating the machine; while
this manual-power was much increased by one or two men working treadles
connected with the levers, and throwing the weight of the body on each
treadle alternately.

The principle of the force-pump may be thus briefly explained:

When a tight-fitting piston working in a cylinder is drawn upward, the
air in the cylinder is drawn up also, and a partial vacuum created; if
the cylinder is connected with water not too far distant by a pipe, the
water will then rush upward to fill the vacuum. Then, if the bottom of
the cylinder be fitted with a valve opening upward only, it is closed
when the piston is pushed down again; and the water would burst the
cylinder, if enough power were applied to the piston, but escape is
afforded along another pipe as an outlet, which in the case of the
fire-engine opens into the air-chamber, and which is opened and closed
by another valve. Thus is the water not only raised from the source of
supply, but is forced along another channel.

And the modern fire-engine--which we date from Newsham's engines in
England about 1726--is a combination of the principles of the force-pump
and of the air-chamber, which acts by reason of the great elasticity of
compressed air.

Other inventors made improvements as well as Newsham, namely, Dickenson,
Bramah, Furst, Rowntree, and others, though the differences were chiefly
in details. An engraving mentioned in an old work of reference sets
forth that a London merchant named John Lofting was the patentee and
inventor of the fire-engine. His invention must have been since the
Great Fire, because the Monument is depicted in one corner of the
engraving and the Royal Exchange in another. Rowntree made an engine for
the Sun and some other fire-offices, which protected the feed-pipe more
efficiently from mud and gravel; and Bramah devised a hemispherical
perforated nozzle, which distributed water in all directions, so that
the ceilings, sides, and floor of a room would become equally drenched.

Bramah also applied the rotary principle to the fire-engine. He studied
the principles of hydraulics, and introduced many improvements into
machinery for pumping, a rotary principle being one of them. He attained
this object by changing the form of the cylinder and piston, the part
acting directly on the water being shaped as a "slider," and working
round a cavity in form of a cylinder, and maintained in its place by a
groove. He applied the rotative principle to many objects, one being the
fire-engine. His fire-engine was patented in 1793; but we cannot
discover that it changed any vital principle of the machine, which, as
we have seen, consists in essence of a movable force-pump, steadied and
strengthened by a compressed air-chamber and a flexible delivery-hose.

Joseph Bramah, however, is doubtless best known to fame as the inventor
of the hydraulic press, though he is also celebrated for the safety-lock
which bears his name. He was a farmer's son, and was born at
Stainborough in Yorkshire in 1748; but an accident rendering him lame,
he was apprenticed to a carpenter. Engaging in business as a
cabinet-maker in London, he was employed one day to fit up some sanitary
appliances, and their imperfections led him to devise improvements. He
took out his first patent in 1778 and this contrivance proved to be the
first of a long series. His lock followed, and then, assisted in one
detail by Henry Maudslay, he introduced his hydraulic press, a machine
which he foresaw was capable of immense development.

Several of his improvements are concerned with water, such as
contrivances connected with pumps and fire-engines, and with building
boilers for steam-engines. It is also said he was one of the first
proposers of the screw-propeller for steamships. Altogether, he was the
author of eighteen patents; though it has been pointed out that he
improved and applied the inventions of others, rather than originated
the whole thing himself. While he contributed improvements to the
fire-engine, the vital principle of the air-chamber and the flexible
hose remained the same. Up to about the year 1832, the larger engines
generally in use in London seem to have thrown some eighty-eight gallons
a minute from fifty to seventy feet high.

The next notable development was the application of steam to work the
force-pumps. But this addition, which was made about 1830 by John
Braithwaite, also did not alter the principle of the air-chamber.

John Braithwaite came of an engineering family. He was born in 1797, the
third son of John Braithwaite, the constructor of one of the first
diving-bells. The ancestors of the Braithwaites had conducted an
engineer's business, or something analogous to it, at St. Albans ever
since the year 1695.

The younger John entered his father's business, and from 1823, after his
father and brother died, conducted it alone. Those were the days when
steam was coming into vogue, and he began to manufacture high-pressure
steam-engines. Together with Ericsson, he constructed the "Novelty," the
locomotive which competed in the famous railway-engine contest at
Rainhill in 1829, when Stephenson's "Rocket" won the prize.
Braithwaite's engine, though it did not fulfil all the conditions of the
competition, yet is said by some to have been the first locomotive to
run a mile a minute--or rather more, for it is held to have covered a
mile in fifty-six seconds. He used a bellows to fan the fire; and in his
steam fire-engine, he also employed bellows, though on one day of the
Rainhill contest the failure of the bellows rendered the locomotive
incapable of doing work.

In the fire-engine, the bellows were worked by the wheels of the
machine, and eighteen or twenty minutes were required to raise the
steam. At the present time, a hundred pounds of steam can be raised in
five minutes in the biggest engine of the London Brigade, this result
being due, in one respect at least, to the use of water-tube boilers.

Braithwaite's engine of 1830 was fitted with an upright boiler, and was
of scarcely six horse-power; but, nevertheless, it forced about fifteen
gallons of water per minute from eighty to ninety feet high. The pistons
for the steam and water respectively were on opposite ends of the same
rod, that for steam being 7 inches in diameter, and for the water 6½
inches, and both having a stroke of 16 inches.

The engine was successful in its day. During an hour's work, it would
throw between thirty and forty tons of water on a fire; while another
engine, also made by Braithwaite, threw the larger quantity of ninety
tons an hour.

The steam fire-engine was first used at the burning of the Argyle Rooms
in London in 1830; it was also used at the fire of the English
Opera-House in the same year, and at the great fire at the Houses of
Parliament in 1834. But, curiously enough, a great prejudice existed
against it, and the engine was at length destroyed by a London mob. The
fire-brigade were also against it. So Braithwaite gave it up; but he
built a few others, one at least being for Berlin, where it seems to
have given great satisfaction.

Braithwaite, who became engineer-in-chief to the Eastern Counties
Railway, also applied steam to a floating fire-engine, and constructed
the machinery so that the power could be rapidly changed from propelling
the vessel to operating the pumps.

The brigade could not long disregard the use of steam. In 1852, their
manual-float was altered to a steamer, the alterations being made by
Messrs. Shand & Mason. Six years later, the firm made a land steam
fire-engine, which, however, was sent to St. Petersburg; and then in
1860--thirty years after Braithwaite had introduced the machine--the
London Brigade hired one for a year. The experiment was successful, and
a steam fire-engine was purchased from the same makers. But only two
steam fire-engines were at work at the great Tooley Street fire.

Then, in July, 1863, a steam fire-engine competition took place at the
Crystal Palace, the trials lasting three days. Lord Sutherland was
chairman, and Captain Shaw, who was then chief of the London Brigade,
was honorary secretary of the competition committee. In the result,
Merryweather & Son won the first prize in the large-class engine, and
Shand & Mason the second prize. Shand & Mason also took the first prize
in the small class, and Lee & Co. the second prize in the small class.
The value of the steam fire-engine was fully established.

At the present time, Messrs. Shand & Mason have an engine capable of
throwing a thousand gallons a minute; while one of the water-floats of
the London Brigade will throw thirteen hundred and fifty gallons a
minute. These powerful machines form a striking development of Newsham's
engine of 1726, and afford a remarkable contrast to the old
fire-quenching appliances of former times.

But while the development of the modern fire-engine had been proceeding,
a not less remarkable organization of firemen had been growing. It arose
in a very singular, and yet under the circumstances a not unnatural,
manner. And to this part of the story we must now turn our attention.



"Cannot provision be made against loss by fire?"

Looking at the terrible ruin caused in 1666, prudent men would naturally
begin to ask this question. And some enterprising individual declared
that a scheme must be launched whereby such provision might be made.

So, although proposals and probably attempts for fire insurance had been
made before, by individuals or clubs, and by Anglo-Saxon guilds; yet we
read that "a combination of persons"--which, in the words of to-day, we
suppose means a company--opened "the first regular office for insuring
against loss by fire" in 1681.

Of course, another speedily followed. That is our English way. But both
of these have disappeared. One, however,--the appropriately named
Hand-in-Hand, which was opened in 1696,--still survives, and added
life-insurance business in 1836. The Sun was projected in 1708 and
started in 1710, the Union followed four years later, the Westminster in
1717, the London in 1720, and the Royal Exchange in the same year.

[Illustration: LONDON FIREMAN IN 1696.]

Therefore, the close of the seventeenth and the beginning of the
eighteenth centuries saw the practice of fire insurance well established
in Britain as an organized system. Now, these offices not only undertook
to repay the insurers for losses, but also to extinguish the fires
themselves. This latter, indeed, was fully regarded as an integral part
of their business. Thus, one of the prospectuses of an early fire-office
states that "watermen and other labourers are to be employed, at the
charge of the undertakers, to assist at the quenching of fires." And it
is worthy of note that, while the earliest men employed were watermen,
the London Fire-Brigade to-day will only accept able-bodied sailors as
their recruits.


The offices dressed their men in livery, and gave them badges; the men
dwelt in different parts of the city, and were expected to be ready when
any fires occurred. Even to-day the interest of the companies in the
extinguishment of fires is recognized, and their early connection
therewith maintained; for they pay the London County Council £30,000
annually toward the support of the brigade.

By the beginning of the nineteenth century, the fire-offices had notably
increased in numbers. Thus, in 1810 there were sixteen, and some of
their names will be recognized to-day. In addition to the Hand-in-Hand
and the Sun, were the Phoenix (1782), the Royal Exchange, the North
British (1809), the Imperial (1803), and the Atlas, dating from 1808;
there was also the Caledonian, dating from 1805.

Each company fixed its badge to the building insured, a course which
appears to have been suggested by the Sun, and adopted so that the
firemen of the different companies might know to which office the
burning house belonged.

The badge was stamped in sheet-lead, and was painted and gilded; but the
badges for the firemen appear usually to have been of brass, and were
fixed to the left arm. Each company not only kept its own engines and
its staff of firemen, but also clad its men in distinctive uniforms. The
dress for the Sun Office consisted of coat, waistcoat, and breeches of
dark-blue cloth, adorned with shining brass buttons. The brass badge
represented the usual conventional face of the sun, with the rays of
light around, and the name placed above.

The helmet was of horse-hide, with cross-bars of metal. It was made of
leather inside, but stuffed and quilted with wool. This quilting would,
it was hoped, protect the head from falling stones or timbers, dangers
which are still the greatest perils threatening firemen at their work.

By-and-by, Parliament made some effort towards organizing fire
extinction. In 1774, a law was passed, providing that the parish
overseers and churchwardens should maintain an engine to extinguish
fires within their own boundaries. These engines were doubtless manned
in many parishes, especially in rural districts, by voluntary workers,
who sometimes were probably not even enrolled in an organized voluntary
brigade; the police also in certain places undertook fire duty. But
"what is every one's business is no one's business," and for various
reasons numbers of these parish fire-engines fell into disuse.

In short, the organization for the extinguishment of fires was
thoroughly unsatisfactory. The men belonging to the different companies
were too often rivals, when they should have been co-workers; each
naturally gave special attention to the houses bearing their badges. We
obtain a remarkable picture of the inefficiency prevailing in a letter
from an eye-witness, Sir Patrick Walker, in No. 9 of the _Scots
Magazine_ in 1814. It refers to Edinburgh, but doubtless is true of
other places.


(_From a portrait._)]

Sir Patrick had taken an active part in endeavouring to arrest a
conflagration, and he remarks on "a total absence of combined and
connected aid, which must often render abortive all exertions." The
chief defect, he declares, lies "in having company engines, which
creates a degree of jealousy among the men who work them." When all
success depended on their united efforts, then they were most
discordant. There were often more engines than water to adequately
supply them, consequently no engine had probably enough to be efficient.
The remedy, he held, was to abolish all names or marks, and form the
whole into one body on military principles.

Curiously enough, the brigade that was formed in London has come to be
regulated rather on naval than on military principles; but the essence
of Sir Patrick's suggestion was undoubtedly sound. He also complained
greatly of the waste of water by hand-carrying, which, moreover, created
great confusion.

These grave defects were, no doubt, also felt keenly by the London
fire-offices, and in 1825 some of them combined to form one brigade.
They were the Sun, the Phoenix, the Royal Exchange, the Union, and the
Atlas; and seven years later, in the memorable year 1832, all the more
important companies united.

In this action they were led by Mr. R. Bell Ford, director of the Sun
Fire-Office. The organization then formed was called the London
Fire-Engine Establishment, and had nineteen stations and eighty men. It
was placed under the superintendence of Mr. James Braidwood, a name
never to be forgotten in the story of fire-brigades and their work.

But to learn something of this great man and his daring deeds and noble
career, we must change the scene to Edinburgh.



"Something must be done!"

Many an Edinburgh citizen must have expressed this decision in the
memorable year 1824. Several destructive fires had occurred, and at each
catastrophe the need of efficient organization was terribly apparent. It
seemed as though the whole city would be burned.

Then the police took action. The commissioners of the Edinburgh police
appointed a committee, and a Fire-Engine Corps, as it was called, was
established, on October 1st of the same year. The new organization was
to be supported by contributions from various companies, from the city
of Edinburgh, and from the police funds.

"But who was to superintend it?"

Now, a gentleman had become known to the commissioners, perhaps through
being already a superintendent of fire-engines; and though only
twenty-four years of age, he was appointed.

His name was James Braidwood. He was born in 1800 in Edinburgh, and was
the son of a builder. Receiving his education at the High School, he
afterwards followed his father's business. But in 1823, he was appointed
superintendent of the fire-engines, perhaps owing to his knowledge of
building and carpentry; and when the corps was established, he was
offered the command.

He proceeded to form his brigade of picked men. He selected slaters,
house-carpenters, plumbers, smiths, and masons. Slaters, he said
afterwards, become good firemen; not only from their cleverness in
climbing and working on roofs--though he admitted these to be great
advantages--but because he found them generally more handy and ready
than other classes of workmen.

They were allowed to follow their ordinary occupations daily; but they
were regularly trained and exercised every week, the time chosen being
early in the morning. Method was imparted to their work. Instead of
being permitted to throw the water wastefully on walls or windows where
it might not reach the fire at once, they were taught to seek it out,
and to direct the hose immediately upon it at its source.

This beneficial substitution of unity, method, skill, and intelligent
control for scattered efforts, random attempts, lack of organization,
and discord in the face of the enemy, was soon manifest.

Five years after the corps had been established under Mr. Braidwood, the
_Edinburgh Mercury_ wrote: "The whole system of operations has been
changed. The public, however, do not see the same bustle, or hear the
same noise, as formerly; and hence they seem erroneously to conclude
that there is nothing done. The fact is, the spectator sees the
preparation for action made, but he sees no more. Where the strength of
the men and the supply of water used to be wasted, by being thrown
against windows, walls, and roofs, the firemen now seek out the spot
where the danger lies, and, creeping on hands and feet into the chamber
full of flame or smoke, often at the hazard of suffocation, discover the
exact seat of danger, and, by bringing the water in contact with it,
obtain immediate mastery over the powerful element with which they have
to contend. In this daring and dangerous work, men have occasionally
fainted from heat, or dropped down from want of respiration; in which
case, the next person at hand is always ready to assist his companion,
and to release him from his service of danger."

Not only exercising great powers of skilful management, Braidwood showed
remarkable determination and presence of mind in the face of danger.
Hearing on one occasion that some gunpowder was stored in an
ironmonger's shop, which was all aflame, he plunged in, and, at imminent
risk of his life, carried out first one cask from the cellar, and then,
re-entering, brought out another, thus preventing a terrible explosion.

In 1830, Mr. Braidwood issued a pamphlet dealing with the construction
of fire-engines, the training of firemen, and the method of proceeding
in cases of fire. In this work he declared he had not been able to find
any work on fire-engines in the English language--a state of things
which testifies to the lack of public interest or lack of information in
the matter in those days. The book is technical, but useful to the
expert before the era of steam fire-engines.

But in a volume, issued a few years after his death, Mr. Braidwood takes
a comprehensive glance at the condition of fire extinguishment in
different places. The date is not given; but it was probably about 1840.

In substance he says: "On the Continent generally, the whole is managed
by Government, and the firemen are placed under martial law, the
inhabitants being compelled to work the engines. In London, the
principal means ... is a voluntary association of the Insurance
Companies without legal authority; the legal protection by parish
engines being, with a few praiseworthy exceptions, a dead letter. In
Liverpool, Manchester, and other towns, the extinction of fires by the
pressure of water only, without the use of engines, is very much
practised. In America, the firemen are generally volunteers enrolled by
the local governments, and entitled to privileges."

From this bird's-eye view, it will be seen that organization for fire
extinction and the use of efficient appliances for fighting the flames
were still in a very unsatisfactory state; yet the increasing employment
of lucifer-matches and of gas in the earlier years of the nineteenth
century tended to increase conflagrations.

Moreover, it is curious that the public seemed but little aroused to
this unsatisfactory condition of affairs. Perhaps they saw their way to
nothing better; perhaps, if they took precautions, they regarded a fire
as unlikely to occur in their own house, even if it might happen to
their neighbour. Whatever the cause, they seem to have been but little
stirred on the subject.

It was probably Mr. Braidwood's pamphlet of 1830 that led to his
appointment as chief of the newly-formed London Fire-Engine
Establishment. The publication showed him to be an authority on the
subject, and one likely to succeed in the post. He came with the cordial
good wishes of his Edinburgh friends. The firemen presented him with a
gold watch, and the committee with a piece of plate.

He was ever careful of his men. He watched their movements, when they
were likely to be placed in positions of peril; and he would not allow
any man to risk unnecessary danger. Yet he was himself as daring as he
was skilful, and never shrank from encountering personal risk.

This was the sort of man who came to lead the London Fire-Engine
Establishment. He found it a small force, composed of groups of men
accustomed formerly to act in rivalry, and having between thirty and
forty engines, throwing about ninety gallons a minute to a height of
between seventy and eighty feet, and also several smaller hand-hauled
engines, comparatively useless at a large fire. In addition to the
establishment of the associated companies, there were about three
hundred parish engines and many maintained at places of business by
private firms.

By his energy and skill, Mr. Braidwood kept the fires in check, and came
to be regarded as a great authority on fire extinguishment and
protection from fire. On these subjects, he was consulted in connection
with the Royal Palaces and Government Offices, and held an appointment
as a chief fire inspector of various palaces and public buildings. He
became an Associate of the Institute of Civil Engineers, and read
several papers before that body, and also before the Society of Arts, on
the subject of the extinction and prevention of fires.

The force under his command was increased from eighty to a hundred and
twenty men; but it still remained the Establishment of the Fire-Offices.
Throughout the country, the extinguishment of fire continued largely in
the hands of voluntary workers, assisted by various authorities, even
the fire-brigades being sometimes supplemented by the police and the
water companies, as well as the general public.

And then an event occurred, which not only thrilled London with horror,
but probably led to one of the most remarkable developments in the
efforts for fire extinction that England had known.



About half-past four o'clock in the afternoon of June 22nd, 1861, an
alarm of fire reached the Watling Street station.

The firemen turned out to the call; but little did they think, as they
hurried along, that the fire to which they were summoned would burn for
a whole month, and would become known as one of the most serious in the
history of London.

The call came from Tooley Street, on the south side of London Bridge.
Some jute in the upper part of a warehouse had been discovered
smouldering, and bucketsful of water had been thrown upon it; but the
smoke became so thick and overwhelming, that the men were compelled to
desist, and the flames grew rapidly.

By this time the alarm had been sent to Watling Street. Quickly the
fire-engines arrived on the spot, and the men found dense masses of
smoke pouring from buildings at Cotton's Wharf. A number of tall
warehouses, rising up to six stories high, and filled with inflammable
goods, stood here and near by, among the goods being oil, tallow, tar,
cotton, saltpetre, bales of silk, and chests of tea. In spite of all
efforts, the fire burned steadily on, and dense volumes of smoke poured

Mr. Braidwood had speedily arrived, and two large floating-engines, in
addition to others, were got to work. He stationed his men wisely, and
huge jets of water were speedily playing on the fire.

Great excitement soon rose in the neighbourhood. Surging crowds of
eager people thronged the streets approaching the wharf, and a dense
assemblage pressed together on London Bridge. Even the thoroughfares on
the opposite side were blocked. But the spectators could see little just
then, except thick clouds of smoke and great jets of water. On the
river, vessels struggled to escape from the proximity of the burning
building; while on land, the police forced back the people from the
surrounding streets, so as to give greater freedom to the firemen.

[Illustration: JAMES BRAIDWOOD.]

Then, about an hour after the alarm had been given, a loud explosion
startled the people; a bright tongue of flame shot upward through the
smoke, and seemed to strike downward also to the ground, while the whole
building became a sheet of fire.

The neighbouring buildings became involved; rivers of fire burst out of
windows, ran down walls, and actually flowed along the streets. It even
poured on to the waters of the Thames itself. Melted tallow and oil
flowed along as they burned, like liquid fire. No wonder the
conflagration spread rapidly. Less than two hours after the call had
been received--that is, at about six o'clock--the fire had extended to
eight large warehouses.

The heat now became overpowering. Drifting clouds of smoke obscured the
calm evening sky, and spread like a pall overhead. In spite of all
efforts, the fierce conflagration gained continually on the men; it
leaped over a space between the buildings, and attacked a block of
warehouses on the opposite side. The roaring of the flames, the thick
smoke, and the curious, disagreeable smells arising from the various
goods which were burning, became almost unbearable.

The men suffered greatly from exhaustion; and Mr. Braidwood, seeing
their distress, procured refreshments. He was dividing them among the
men as he stood near the second building which had caught fire, when
again a loud explosion rent the air, and the wall of the warehouse was
seen to be falling.

"Run for your lives!" was the cry; and the men, seized for once with
panic, rushed away. Mr. Braidwood and a gentleman with him followed; but
unhappily they were not in time, and with a loud crash the huge wall
fell upon them, and crushed them to the ground with tons of heavy

"Let us save them!" cried the men; and a score hurried to the spot. But
again a third explosion occurred, a mass of burning material was hurled
on the fatal heap, all around fell the fire, and rescue was seen to be

[Illustration: THE TOOLEY STREET FIRE, 1861.]

As if in triumph, the flames swept on and mounted higher. Wharf after
wharf was involved, and warehouse after warehouse. The Depôt Wharf,
Chamberlain's Wharf, and others caught fire. Night seemed turned into
day by the blaze. Ships near the wharves, laden with the same
inflammable materials of oil, and tar, and tallow, became ignited; and
the blazing liquids poured out on the river, forming a lake of fire a
quarter-mile long by a hundred yards wide.

People crowded everywhere to see the sight. They thronged house-tops and
church-steeples. Boatmen ventured near to pick up such goods as they
might be able to find, and were threatened with dire peril. Some fainted
from the heat. A barge drifted near with three men aboard, who were so
overcome that they could not manage their cumbersome craft; a skiff
approached sufficiently near to rescue the men, after which the barge
drifted nearer still, and was burnt.

Though greatly dispirited by the loss of their captain, the firemen
fought doggedly on. But still their efforts seemed unavailing. Flakes of
fire fell in all directions, and huge volumes of flame flashed upward to
the sky. The whole of Bermondsey seemed in peril, and at one period the
fire blazed for close upon a quarter-mile along the river-bank.

Through the night more engines clattered up from distant stations, and
the firemen fought the flames at every step of their destructive career.
Tons of water were poured upon each building as it became threatened,
only, however, to yield in course of time.

The wind saved the old church of St. Olave's, and also London Bridge
Station; but the fire raged along the wharves. Sometimes great warehouse
walls fell into the river with a gigantic splash, revealing the inferno
of white-hot fire raging behind them.

At length the fire reached Hay's Wharf, which was supposed to be
fireproof, and for long it justified the name. But at last it also
yielded; the upper part began to blaze, and, in spite of the quantities
of water thrown upon the roof and walls, the fire gradually increased.

Now beyond the building lay a dock, in which were berthed two ships. The
tide had been too low to allow of their removal. If they could not be
towed out in time, the fire would probably seize them, and thus be
wafted over the dock to the other side.

Would the tide rise in time to allow the ships to be hauled out? It was
a critical moment, and the firemen must have worked their hardest to
keep the building from flaming too quickly.

Gradually the tide flowed higher and higher. No matter what happens in
the mighty city, twice in the day and night does the Thames silently ebb
and flow; and now the quiet flowing of the tide helped to save the great
city on its bank. Just in time two tugs were able to enter the dock. The
towing-ropes were thrown aboard; but even as the vessels were passing
out, the flames, as if determined not to lose their prey, darted from
the building, and set the rigging of one ship aflame.

But the firemen were as quick as their enemy. An engine threw a torrent
of water on the burning ship, and promptly quenched the flames. And so,
amid the plaudits of the huge crowds on both sides of the river, the two
ships were slowly towed to a place of safety, and the fierce fire was
left face to face with the empty dock.

The quiet dock was successful. The wide space filling up with water from
the flowing tide stopped the progress of the fire. This stoppage must
have occurred about five o'clock on the following morning; but within
the area already covered by the conflagration, fire continued to burn
for a month.

Even after the first seven days, a fresh explosion and flash of flame
showed the danger of the conflagration, now fortunately confined within
limits. In fact, July 22nd had dawned before it was entirely
extinguished, the total loss being estimated at about two millions

Nearly all the goods destroyed were of the most inflammable description.
There were nine thousand casks of tallow and three hundred tuns of
olive oil, beside thousands of bales of cotton, two thousand parcels of
bacon, and other valuable merchandise. The tallow, no doubt, burned the
fiercest and the most persistently. Melting with the intense heat, it
poured out into cellars and streets, where much of it speedily caught
fire. The floors of nine vaults, each measuring 100 by 20 feet, were
covered two feet deep with melted tallow and palm oil, and all helped to
feed the fire. No wonder it burned for days, if such material fed the
flames, although the firemen continued to pour water on the ruins. Some
of the tallow, found floating on the river, was collected, and sold at
twopence per pound.

Mr. Braidwood's body was found on June 24th, so charred as to be
scarcely recognizable. He was buried at Abney Park Cemetery, and was
accorded the honour of a great public funeral. The London Rifle-Brigade
attended, as well as large bodies of firemen and of the police, and an
immense concourse of the general public. So large a multitude, it was
said, had not attended any funeral since the obsequies of the Duke of

A proposition was made to raise a public fund for the benefit of Mr.
Braidwood's widow and six children, and a large sum was subscribed; but
it was announced that the Insurance Companies had amply provided for his

The neighbourhood of Southwark, where the fatal fire occurred, has been
the scene of many remarkable conflagrations. In the same year as the
famous Tooley Street fire, Davis's Wharf at Horselydown was burnt,
involving a loss of about £15,000; while at a large fire at Dockhead two
or three years later, vast quantities of saltpetre, corn, jute, and
flour were consumed. A brisk wind favoured the flames, and hundreds of
tons of saltpetre flashed up into fire. Bright sparks and flame-coloured
smoke floated over the conflagration, and were wafted by the wind,
accompanied by deafening reports and great flashes of fire.

Numbers of other conflagrations have occurred in this neighbourhood. The
streets were narrow, and the district was full of warehouses, containing
all kinds of merchandise, which burnt like tinder when fairly ignited.
Imagine coffee and cloves, sulphur and saltpetre, oil, turpentine, and
tallow all afire! What a commingling of odours and of strange-coloured

The bacon frizzles; the corn parches and chars; the flour mixes with the
water, then dries and smoulders in the great heat, and smells like
burning bread; the preserved tongues diffuse an offensive odour of
burning flesh; while the commingling of cinnamon and salt, mustard and
macaroni, jams and figs and liquorice, unite to make a hideous
combination of coloured flames, sickening smells, and thick and lurid
smoke. The huge warehouses built in this district since the closing
years of the eighteenth century are filled with all kinds of goods from
various parts of the world; but of all the disastrous fires which have
ravaged the district, the great Tooley Street fire of 1861 has been the

Moreover, it will always be memorable for the death of Braidwood. Even
now you may hear men in the London Fire-Brigade speak of Braidwood or
Braidwood's time, and his memory has become a noble tradition in the
service. So great an authority had he become on the subject of fire
extinction, and so highly was he held in public esteem, that his
terrible death in the performance of his duty was regarded as a national

But the conflagration also revealed with startling clearness the
inadequacy of the Companies' Fire Establishment. More appliances and
more men were wanted. The companies were asked, "Will you increase your
organization?" And their answer, put briefly, was, "No."

Thereupon, in 1862, a Parliamentary Commission was instituted to enquire
into the matter, and in due time the commission reported. It recommended
that a brigade should be established; the companies consulted with the
Home Secretary and the Metropolitan Board of Works; and in 1865 an Act
was passed placing the brigade under the Metropolitan Board, the change
to take place as, and from January 1st, 1866.

This was practically the establishment of a Municipal Fire-Brigade,
though it was also provided that every company insuring property for
loss by fire in London should contribute to the cost of the brigade at
the rate of £35 for every million pounds of the gross amounts insured,
except by way of reassurance; the Government were also to pay £10,000 a
year for the protection of public buildings; while the Metropolitan
Board itself was empowered to levy a rate not exceeding a halfpenny in
the pound in support of the organization.

In 1863, the Fire-Engine Establishment had increased to a hundred and
thirty men with twenty stations; but the Metropolitan Board were given
power to construct further engines and stations, to act in conjunction
with a salvage corps, to obtain the services of the men, and to divide
the metropolis into suitable districts. Such powers would enable the
Board greatly to strengthen the brigade.

The Act also provided that the firemen should be placed under command of
an officer, to be called the Chief Officer of the Metropolitan
Fire-Brigade; and a gentleman was appointed who had had experience of
similar duties at Belfast, and who was for long to be popularly known in
London as Captain Shaw.

And on the very day when the new arrangements came in force a great fire
occurred, as if to roughly remind the organization of its
responsibilities and test its powers.



"The dock is on fire!"

On New Year's Day, 1866, some hours after St. Katherine's Dock had been
opened for work, several persons came running to the gates from the
adjoining streets, crying loudly, "The dock is on fire!"

At first the policemen would not believe the report. "We can see
nothing," said they.

"But flames are bursting from the roof! Look! look!"

And before long the policemen were convinced that a serious fire was,
indeed, in progress. It was in the upper floors of a division of a block
of warehouses named F, six stories high, and by eleven o'clock they
were blazing fast.

"Fire! Fire!"

The alarming cry rang through the dock, and superintendents, dock
managers, and policemen hurried to the spot; while gangs of dock
labourers were taken off their work, and set to quench the fire with

The conditions were somewhat similar to those of the great Tooley Street
fire of five years or so before. The fire broke out on a floor where
bales of jute and coir fibre were stored; and a huge heap of these goods
was seen to be burning, and sending forth such a suffocating and
blinding smoke, that the men were compelled to retreat.

"Shut the iron doors!" shouted the officers; and one after another the
iron doors between the different warehouses were closed, though with one
exception. This was the door connecting the fifth floor of F Warehouse
with the fifth floor of H Warehouse. It was open wide, and one man after
another endeavoured to close it by crawling towards it on the floor. But
the smoke was so suffocating that the men had to be dragged back almost
unconscious before they could reach the door.

Meantime, the dock fire-engines and hydrants had been got to work, and
the dock engineer was able to turn on full pressure, so that soon
powerful jets of water were thrown on the flames. A hydrant is, briefly,
an elbow-shaped metal pipe, permanently fixed to a main water-pipe; and
when the fireman attaches his hose to it, he can get at once a stream of
water through the hose at about the same pressure as the water in the

The flames were spreading furiously, and the two upper floors of F
Warehouse were blazing fast, throwing out such dense clouds of smoke,
that the neighbourhood was darkened as by a thick fog.

The block of warehouses on fire towered up six stories high, and
occupied half of the northern side of the dock next to East Smithfield.
They formed a huge pile about 440 feet long by about 140 feet deep, the
import part of the dock lying on the south side with its ships.

The block was built in a number of divisions or bays, each measuring
about 90 by 50 feet, and separated by strong walls, which rose from
basement to roof. Happily, the communication between these divisions was
afforded by double folding-doors of iron, a space of about three feet
existing between the double doors; they were believed to be fireproof;
and with the one exception they were closed.

But, like the Tooley Street buildings, these warehouses were chiefly
stored with very combustible materials. Tallow was here, which played
such a bad part in 1861; spirits were here also, palm oil, tons of
dyewood, flax, jute, and cotton. Labourers had been at work for some
hours when the alarm was given, and men were busy on every floor. They
were receiving the goods from the quays, and wheeling them along through
the building, when the fire was discovered.

And now Captain Shaw, the chief who succeeded Braidwood as the head of
the fire-brigade, dashed up with a steamer from Watling Street, which
was then the headquarters of the brigade. He had received the alarm at
about twenty minutes to twelve o'clock, and had telegraphed to all
subsidiary stations.

Captain Shaw, who afterwards became Sir Eyre Massey Shaw, K.C.B., was
born the same year as the steam fire-engine was first used--_viz._, in
1830. He was the son of Mr. B. R Shaw, of Monkstown, County Cork, and in
due time entered the army. Retiring in 1860, he became chief of the
Belfast Borough Forces, including police and fire-brigade, being
appointed in the next year the chief of the London Fire-Brigade.


Not only did he telegraph for land steam fire-engines to the
conflagration; but a large steam-float, usually kept off Southwark
Bridge, was also quickly under way. Soon he had eight land steamers and
from seventy to eighty men on the spot, while he himself directed in

Mr. Collett, one of the Dock Company's secretaries, worked hard, and
often at great peril; Mr. Graves and Mr. Stephens, also officials of the
company, were busily engaged in directing removal of valuable materials;
while about seventy men employed by Cubitt & Co. in rebuilding a
warehouse, destroyed by fire in the previous October, rendered

The little army found themselves face to face with a difficult task. The
fire was now burning furiously, and the smoke was well-nigh
overpowering. The flames had reached the fourth, fifth, and sixth
floors, and seemed working downward; while the burning jute sent forth
such dense volumes of smoke, that the men were forced back again and
again. But bravely they returned to their task; and taking advantage of
the moments when the clouds cleared, they directed the hose to the most
needful points.

For six hours the fire raged, until all the three upper floors were
destroyed, and the third floor seriously damaged. The scene in the
waning winter afternoon was sufficiently striking as the smoke gradually
cleared and the blackened ruins became dimly visible. They were very
dangerous, for the walls appeared likely to topple over at the slightest

About five o'clock, the firemen seemed to have gained the mastery, and
Captain Shaw returned home; but later in the evening he was summoned
again. Most mysteriously the flames had burst forth once more in fresh
places, the upper parts of two adjacent warehouses of the same block had
caught, and were in flames. By eleven o'clock the fire was blazing as
furiously as ever.

Captain Shaw returned with new relays of men to assist those on the
spot; and during the night and all the next day the force was busily at
work. On the Monday night two firemen were so overcome by the smoke that
they had to be removed, being nearly suffocated; but happily they
recovered, and no life was lost during the fire. The streams of melted
grease flowed from the burning warehouse into the quay, and thence to
the dock basin, where by-and-by they cooled and solidified, looking
something like snow on a frozen lake. Thirteen steam fire-engines and
one float continued to throw immense quantities of water on the burning
building; but the fire was not really subdued until the morning of
January 3rd.

A few engines remained on the Wednesday and the Thursday, and threw
water on the heated ruins, to cool them down and quench any latent fire;
while on January 4th, men were busy skimming the dock basin,--which was
thickly covered with the solid tallow and oil,--and loading the mass
into barges.

After the conflagration, engines were employed in pumping water out of
the vaults where it had collected, and as much jute was found injured by
water as destroyed by fire. No doubt, it was the jute and the tallow and
oil which rendered the conflagration so obstinate; but it was also found
that while water collected to a great extent in some parts, yet it did
not penetrate to other parts of even the same floor--a result which,
perhaps, was due to the method of packing the jute.

In the end, about three-parts of the block of warehouses was burned. The
amount of tallow in the four burning buildings was calculated to range
between two and three thousand casks, some of which appear to have been
saved; but several hundred barrels of cocoanut oil and palm oil were
lost as well, and the coir fibre, flax, and jute burnt reached to a very
large quantity, the total pecuniary loss being estimated at over

This great fire proved a terrible object-lesson. For about two days and
nights the engines and appliances of the brigade, with some two-thirds
of the men, were engaged at this one conflagration. What if another
great fire had broken out in those dark January days? The situation was
fraught with the gravest peril.

No doubt, voluntary aid at fires used often to be relied upon, and in
1861 payment was given to assistants. But the Metropolitan Board now had
the means of strengthening the brigade, and they proceeded to use it. In
marked contrast to the 130 men and 20 stations of the Fire Establishment
of 1863, were the 591 firemen and 55 land fire-engine stations of the
brigade in 1889, when it passed over to the London County
Council--figures which show a notable development.

[Illustration: SIR EYRE M. SHAW, K.C.B.]

Further, there were also 83 coachmen and pilots, 131 horses, 150
engines (55 being worked by steam), 155 fire-escapes, and other ladders,
with 33 miles of hose. By this time (1889) many provincial towns had
established a fire-brigade on the London plan.

The London County Council, having no restriction as to powers of rating,
adopted Captain Shaw's recommendations--made in April, 1889--of a large
increase in the brigade, and resolved to add 138 firemen, 4 new
stations, with steamers and manuals, and 50 fire-escapes, and to raise
the number of electrical fire-alarms to over 600.

Since then, the increase has still continued, until in 1898 the brigade
had an authorized fire-staff of nearly 1,100 men, with a certain number
of store-keepers, etc.; while the telegraphic arrangements and
distribution of stations were rendered so complete, that 100 men could
be concentrated within fifteen minutes at any dangerous area for large

Furthermore, out of the authorized staff, 134 men are on watch by day,
and 369 at night, giving a total of 503 constantly on duty during the
twenty-four hours--a force that compares wonderfully with the total
strength of about 130 men at Braidwood's death in 1861.

This brigade strength of 1,048 included about 80 officers, 824 firemen,
96 coachmen, 17 pilots, and 32 men under instruction. To these must be
added seventeen licensed watermen for navigating tug-boats,
river-engines, etc., and also stores and office clerks. But twenty-four
additional firemen, however, have been sanctioned, so that the complete
staff would reach to about 1,080 men--a remarkable development of the
staff of 80 men of the London Fire-Engine Establishment of 1832.

These figures are only given to show how greatly the brigade has grown;
for in the course of a few years, it is not improbable that the numbers
may be still further increased.

The number of stations has also been remarkably augmented. The 19
stations of 1832 have grown into nearly 200 for divers uses. Thus, there
are 189 fire-escape stations, 59 stations with engines, 57 with
hose-carts, 9 with hose- and ladder-trucks, 16 permanently established
in centres of wide streets with fire-extinguishing and life-saving
appliances, and 4 river stations.

The appliances of the brigade have also greatly increased. There are 230
fire-escapes and police-ladders, 59 land steam fire-engines, 57 six-inch
manuals, 7 small manuals called curricles, 175 horses which we may rank
as most useful appliances, and 24,284 hydrants.

These last-named are very important. They not only afford a ready and
efficient means of throwing water on conflagrations, a means which is
fast rendering the manual-engines of less and less importance; but they
also yield a quick and ready method of water supply. Thus, in the year
1897 there were only three cases of unsatisfactory water supply.

In addition to 24,284 hydrants of the London County Council, the
corporation of the City have 800 hydrants, which are used for watering
the streets as well as for extinguishing fires. In the year 1897, no
fewer than 466 fires were put out by hydrants and stand-pipes.

The increase of hydrants has been very conspicuous under the County
Council. Thus, in March, 1889, the number was but 8,881, showing that no
fewer than 15,403 were added during the first eight years of the
Council's existence. No doubt, still more will follow. On March 31st,
1898, hydrants had been fixed or ordered in 97½ square miles of the
county area, leaving a comparatively small space unprovided with these
appliances. This space will doubtless be shortly supplied, and it is not
unreasonable to suppose that, with the 800 in the City, the metropolis
will ere long be sown with a total of about 30,000 hydrants, which, as
the twentieth century dawns, may be regarded as among the most effectual
means of fighting the fire at the disposal of the brigade.


The establishment of these excellent appliances dates from 1871, and is
bound up with the system of constant water supply. By the Metropolis
Water Act of that year, it was provided that a water company, after
giving a constant supply, must notify the fact to the local
authority--now the County Council--which must then specify the
fire-plugs or hydrants required, and the Council has the power under the
Act of requiring water companies to provide a constant supply within
parts of their districts. Hydrants are fully charged from the main, and
have a commanding cock or tap attached, so that a supply of water can be
obtained at once.

The use of these appliances is very important. Planted at convenient and
commanding spots,--often at the corners of streets or roadways, and at
varying distances apart, ranging from fifty to about four hundred feet,
according to the circumstances of the locality, and marked also, not
only by the plate in the pavement, but by the letter H, placed in a
conspicuous position near,--the fireman can now, at almost a moment's
notice, find the hydrant, and obtain an ample supply of water for his
engine, or even a jet of water for the fire, before an engine is on the
spot. Very different from the troublesome and hindering work of
floundering about, possibly in fog or rain or snow, to find the
fire-plug, and then to find the turncock which governed the plug. On
snowy or foggy nights, the difficulty and delay were sometimes very
great; and the substitution of an extensive system of hydrants, with
their quickly-obtained water-jets for the old fire-plugs, may rank as
one of the most efficient means of fire extinction in the closing years
of the nineteenth century.

Firemen being thus interested in the pressure of water in the mains, an
apparatus for recording the pressure automatically was fixed up at the
fire-brigade headquarters at Southwark Bridge Road in November, 1898. A
clock stands at the top of the instrument, and under the clock is a
roll of paper, having the hours of day and night marked upon it, and
divided into sections. A small pipe connected with the main runs under
the big engine-room, and acts upon mechanism beneath the paper roll, and
the clock and the column of water, and its pressure per inch, are marked
in red ink upon the sheet, varying perhaps from forty up to seventy-five
or even eighty pounds per square inch.

At noon each day the sheet can be removed, and forms a permanent record
of the variation in water pressure in the mains of the neighbourhood.

But if the number of hydrants is large, the area to be protected by the
brigade is also very large. Including the ancient city of London, which
is estimated to cover about a square mile, the area measures about 118
square miles. Of these, twelve are estimated by the fire-brigade
committee to be covered by parks and open spaces, where fire-hydrants
will probably never be needed. This leaves, however, a net area of 106
square miles, extending from Sydenham to Highgate, and from Plumstead to
Roehampton, to be efficiently protected by the brigade.

Another means of water supply has been suggested. In his evidence at the
Cripplegate Fire Enquiry, Mr. John F. Dane, an ex-officer of the
Metropolitan Fire-Brigade, suggested that at the centre of the junction
of the most important streets surrounded by large buildings underground
tanks should be placed, and supplied by the main water-pipes. The tanks
would be empty until required, and would be under the control of the
brigade, while the hydrants should still be maintained for service. Such
tanks were in use at Leeds and at Salford.

The objection is raised, however, that the streets of the City are
already too crowded with pipes, while advantage of the pressure from the
water-main is lost, and also the vacuum caused by the engine.

Noticing other improvements, we observe that the number of fire-alarm
posts has also been greatly increased. The alarm consists of a red post
in the street, with a glass face at the top front. The glass is readily
broken, and the handle within it pulled, when a loud electric bell rings
at the nearest fire-station. The Post-Office provides and maintains the
fire-alarms; and Commander Wells, chief officer of the brigade, has
devised a portable telephone, which can be plugged into a fire-alarm
post, and a message sent by it from a fire to the station. Arrangements
have been made with the Post-Office to supply the telephones and make
the plug-holes. Over 2,380 fire-alarms were raised in 1897, of which 363
were maliciously-given false alarms. Practical jokes of this kind have
been heavily punished, as they richly deserve.

Many false alarms are also given which cannot be regarded as malicious,
but are genuine mistakes, such as of supposed chimney fires. Over 500 of
these were recorded in one year. In 1898, the number of malicious false
alarms was happily less--_viz._, 270; while the full record of false
alarms reached 830.

The total number of fires in the metropolis in that year was 3,585--an
average of nearly ten per day. This total gives an increase of 571 above
the average; but only 205 out of the whole 3,585 were serious. There
seems no doubt but that the public are learning to use the fire-alarms
more readily and to give earlier intimation of fires. But, as the chief
officer points out, while everybody knows the nearest letter-box, very
few comparatively even now seem to know the nearest fire-alarm.
Lamp-posts near the alarms are now painted red, and are fitted with a
red pane of glass in order to attract attention; and we imagine the
probability is that the alarms will be increasingly used at even the
slightest appearance of fire.

Not only is each fire-station connected with a dozen or more fire-alarms
in its neighbourhood, but it is also in electric communication with
other fire-stations. There are 114 lines of telephone between the
stations, and sixteen between brigade- and police-stations; while
electric communication exists between stations and ninety-eight public
or other buildings. In fact, the whole fire-brigade establishment is
bound together by a web of electric wire, the centre being the
headquarters at Southwark.

The remarkable organization of the brigade, famous for its leaders,
famous for the bravery and skill of its men, and famous for the number
and variety of its efficient appliances, has been a growth of
comparatively few years. Starting in 1825 with the union of a few
fire-office companies, it grew in seventy-three years to a remarkably
strong and increasing force, with a multitude of hydrants, stations,
horsed escapes, fire-alarms, and other appliances.

The development attained in these seventy-odd years, as compared with
the hundreds of years before, is surely marvellous, though doubtless
some seeds of the development--as in the introduction of the modern
fire-engine--were sown before. But step by step it has proceeded,
utilizing now the discoveries of science and now the work of the
engineer, until it has reached its great position of usefulness and of
high esteem.

It would be tedious to mark every detail of development. The work begun
by his predecessors was carried still further by Captain Shaw, and under
him the London Brigade became one of the most efficient in the world.

[Illustration: COMMANDER WELLS.]

He retired with a well-deserved pension in 1891, after about thirty
years of service, and was succeeded by Mr. J. Sexton Simonds. Five years
later Mr. Simonds retired; and in November, 1896, Commander Lionel
Wells, R.N., was appointed chief officer. The brigade has also a second
officer--Mr. Sidney G. Gamble; and in January, 1899, a third officer was
appointed--Lieutenant Sampson Sladen, R.N.

A few months after his accession, and in answer to the request of the
fire-brigade committee of the County Council, the chief officer
submitted a scheme for additional protection, including certain
regulations of brigade management.

Of this scheme, the more prominent features were the introduction of
horsed fire-escapes, and the distribution of the men in small stations,
with horses, whence they can be speedily concentrated wherever required.
In short, the chief officer's object is that, at any call, the firemen
may be able, if the machine leave the station at once, to arrive at the
fire within five minutes' time; while the principle of station-work
should be that each station is responsible for a certain area in its

The committee agreed with the opinions of the chief officer, and on
February 8th, 1898, the full Council adopted the committee's proposals.
Steps were forthwith taken to carry out the scheme, which thus marks
another stage of development.

But let us visit the headquarters, and see for ourselves something of
this great organization actually at work.



"We light our fires differently from everybody else," says the foreman.
"We put shavings on top, the wood next, and the coal at the bottom; then
we strike a steam-match, and drop it down the funnel, and, behold! the
thing is done."

It was the engine fire of which the foreman spoke, and he was pointing
to one of the magnificent steam fire-engines at the headquarters of the
London Brigade.


"Here is a steam-match," he continued, "kept in readiness on the engine.
It is like a very large fusee, and is specially made for us. Water won't
put it out."

He strikes the match, and it burns with a large flame. He plunges it
into some water near by, and it still continues to burn. It evidently
means to flame until the engine fire is burning fast.

The wood also is carefully prepared, being fine deal ends, specially cut
to the required size; while the coal is Welsh--the best for

These details may seem trivial; but they assist in the rapid kindling of
the engine fire, which is not trivial. But the rapid kindling of the
fire is not the only reason why the brigade raises steam so quickly in
its engines; in addition, a gas-jet is always kept burning by the
boiler, and maintains the water at nearly boiling-point before the fire
is lighted. This was a method adopted by Captain Shaw. But even this
arrangement does not explain everything.


To fully understand the mystery, we must leave this smart engine,
shining in scarlet and flaming with brass, and go upstairs to the
instruction-room for recruits.

Here we can see a section of the engine fire-box and boiler. It is very
interesting and very ingenious. But probably a novice would ask, "Where
is the boiler? I see little else but tubes."

That is the explanation. The tubes chiefly form the boiler; for they are
full of water, and they communicate with a narrow space, or "jacket,"
also full of water, and which reaches all round the fire-box.

This fire-box is held in a hollow below the tubes, which are placed in
rows, one row across the other, just at the bottom of the funnel and
above the fire-box. When, therefore, the flaming steam-match is dropped
down the funnel, it finds its way straight down between the crossed mass
of tubes to the shavings beneath; and the tubes full of the hot water
are at once wrapped in heat from the newly-kindled and rapidly-burning
fire. Every particle of heat and smoke and flame that rises must pass
upward between the tubes. Furthermore, the hot water rises and the
colder falls, so that there is a constant circulation maintained. The
colder water is continually descending to the hottest tubes; and when
bubbles of steam are formed, they rise with the hot water to the top. A
space is reserved above the tubes, and around the funnel, called the
"steam-space" or "steam-chest," where the steam can be stored; the steam
pressure at which the engine frequently works being a hundred and twenty
pounds to the square inch.

The result of all these ingenious arrangements is that, starting with
very hot water, a hundred pounds of steam can be raised in five minutes.

"But," it may be asked, "why is a fire not always kept burning, and
steam constantly at high pressure?"

The answer is that a constant fire, whether of coal or of oil, would
cause soot or smoke to accumulate; while the Bunsen gas-burner affords
as clear a heat as any, and maintains the water at a great heat, or even
at boiling-point.

Near the funnel, but not so high, rises a large, gleaming metal
cylinder, closed and dome-shaped. This is the indispensable
air-chamber, without which even the powerful force-pumps could not yield
so steady and persistent a stream.

A small air-chamber is now added to the suction-pipe by which the water
is drawn to the engine. The use of the air-chamber in connection with
this pipe greatly steadies the engine, the vibration caused by the
throbbing of the powerful machinery as it draws and forces along such a
quantity of water being very great. The nozzle of the hose belonging to
one of the largest steam fire-engines measures 1¼ inch in diameter, some
nozzles being as small as ¾ inch; and a large column of water is being
constantly driven along the hose at a pressure of a hundred and ten
pounds to the square inch, and forced through the narrow nozzle; here it
spurts out, in a large and powerful stream, to a distance of over a
hundred feet. It is obvious, therefore, that the power exerted by the
steam-driven force-pumps and air-chamber is very high; and although such
an engine may be in some folks' opinion only a force-pump, it is a
force-pump of a very elaborate character; and not inexpensive, the
average price being about £1,000.

Every steam fire-engine carries with it five hundred feet of hose. The
hose is made in lengths of a hundred feet, costing about £7 a piece,
without the connections. If you examine a length, you will find it made
of stout canvas, and lined with india-rubber, the result being that,
while it is very strong, it is yet very light.

Miles of it are used in the service; and upstairs in the hose-room you
will find a large stock kept in reserve. Every piece is tested before
being accepted.


_Capacity, 350-400 gallons per minute. Delivered to the brigade,
February 9th, 1899, by Messrs. Shand, Mason, & Co._]

Water is forced through it by hydraulic power at a pressure of three
hundred pounds to the square inch, so that when at work, with water
rushing through at a hundred and ten pounds' pressure, it is not likely
to split and spill the liquid on the ground. The splitting of hose in
the face of a fierce fire would be a great calamity. When charged with
water, its weight is very heavy; and to enable it to be carried more
easily, a loop called a "becket" is attached at distances of about ten

The greatest care is taken of the hose. When it is brought back,
drenched and dripping, from a fire, it is cleaned and scrubbed, and then
suspended in the hose-well to dry.

The hose-well is a high space, like a glorified chimney-shaft, without
the soot, where the great lengths of canvas pipe can be hung up to dry.
They are, in fact, not used again until they are once more in the pink
of perfection. The outside public see the fire-brigade and their
appliances smartly at work at big fires, but little know of the numerous
details of drill and of management which are instrumental in producing
the brilliant and efficient service.

Look, for another instance, at the manuals' wheels. You will find them
fitted with broad, wavy-shaped iron tyres, which extend over the side of
the wheel and prevent it from tripping or slipping over tramway-lines in
the headlong rush through the streets. And should a horse fall as he is
tearing to the fire, that swivel-bar, which you will find at the end of
the harness-pole, can be quickly turned, and in a moment the fallen
steed is unhooked and helped to his feet again.

The horses are harnessed quite as quickly. Behind the engine-room and
across a narrow yard you will find five pairs of horses, and, like the
men, some are always on the watch. Here they stand, ready harnessed,
their faces turned round, and looking over the strip of yard to the
engines. The harness is light, but efficient; and the animal's neck is
relieved from the weight of the collar, as it is suspended from the


Directly the fire-alarm clangs, the rope barring egress from the stall
is unswivelled, the suspender of the collar swept aside, and the horse,
eager, excited, and impatiently pawing the ground, is led across the
narrow strip of yard, hooked on to the engine, and is ready for his
headlong rush through the streets.

Horses stand thus ready harnessed at all stations where they may be
kept; and when their watch is over, they are relieved by others, even
though they may not have been called out to a fire. So intelligent have
some of these animals become, that they have been wont to trot out
themselves, and take their places by the engine-pole without human
guidance; and so expert are the men and so docile the horses, that the
whole operation of harnessing to the engine occupies less than a minute,
sometimes, indeed, only about fifteen or twenty seconds. Every man knows
exactly what to do, and has his place fixed on the engine. There is
consequently no confusion and no overlapping of work.

A steam fire-engine has a "crew"--as the brigade call it--of one
officer, one coachman, and four firemen. The officer No. 1 stands on the
"near side" of the engine by the brake; No. 2 stands on the other side
by the brake; No. 3 stands behind the officer, and No. 4 behind No. 2;
No. 5 attends to the steam, and rides in the rear for that purpose;
while the coachman handles the reins on the box.

The positions are taken in a twinkling, the shed-doors open as swiftly,
and away rush the impatient steeds, while the loud and exciting cry of
"Fire! Fire!" rings from the firemen's throats as they speed along.
Wonderfully that cry clears the way through the crowded streets. When
the men arrive at the scene of action, the preparations proceed in the
same orderly manner. Nos. 1 and 2 brake the wheels, and proceed to the
fire; while the coachman, if necessary, removes the horses, and is
prepared to take back any message with them, No. 1 charging No. 2 to
convey the message to the coachman. By the chief officer's plan,
however,--whereby a portable telephone, carried on a fire-engine, can
be plugged into a fire-alarm post,--a message can be sent back from a
fire by telephone instead of by a coachman. Meanwhile, No. 3 is opening
the engine tool-box, and passing out the hydrant-shaft, hose, etc.; and
No. 4 receives the hose, and connects it up with the water-mains, and
places the dam or tank in which water is gathered from the hydrant. No.
3 is then busy with the delivery-hose, which is to pour the water on the
flames; and No. 5 connects the suction-pipe. When ready, No. 4 hurries
away with the "branch," as the delivery-pipe with nozzle is called; No.
3 helping with the hose attached to it--until sufficient is paid
out--and connecting the lengths as required. Then, when all is finished,
every one except the steam-man is ready to proceed to the fire, unless
otherwise instructed. Every engine, it may be added, carries a
turncock's bar, useful for raising the cover from the hydrants.

So each one has his recognized duties in preparing the apparatus, all of
which duties are duly set forth in the neat and concise little pocket
drill-book prepared by Commander Wells. The most complete organization
must be in operation, otherwise a force of a hundred or a hundred and
fifty men, no matter how brave and zealous, gathered at one fire would
only be too likely to get in one another's way. And in a similar manner
the crews of manual-engines and horsed escapes have all their duties
assigned in preparing the machines.

During a conflagration, the superintendent of the district in which the
fire occurs controls the operations under the superior officers; for
London is divided, for fire purposes, into five districts, which are
known to the brigade by letters. A District is the West End, and the
superintendent's station is at Manchester Square; B District is the
Central, and the superintendent's station is at Clerkenwell; C District
is the East and North-East, with district superintendent's station at
Whitechapel: all of these three being north of the Thames. The D
District is the South-East of London, with superintendent's station at
New Cross; and the E District in the South-West, with superintendent's
station at Kennington. The headquarters, which are known as No. 1, and
which used to be at Watling Street in the City, now occupy a central
position in Southwark Bridge Road, and thence the chief officer can
readily reach the scene of a fire.


All these stations are in electric communication, and all telegraph
their doings to No. 1. The lines stretch from No. 1 to the five district
superintendents' stations; from there they extend to the ordinary
stations in each district; and from these stations again they reach to
points such as street stations, and even in some cases to hose-cart
stations. The consequence is, that superintendents and superior officers
can speedily arrive on the spot; and that, if necessary, a very large
force can be concentrated at a serious outbreak in a short time.

Thus headquarters knows exactly how the men are all engaged, and the
character of the fire to which they may be called. Electric bells seem
always clanging. Messages come clicking in as to the progress of
extinguishing fires, or notifying fresh calls, or announcing the
stoppage of a conflagration. And should an alarm clang at night, all the
other bells are set a-ringing, so that no one can mistake what's afoot.

A list is compiled at headquarters of all these fires, the period of
each list ranging from 6 a.m. to the same hour on the next morning. This
list, with such details as can be supplied, is printed at once, and
copies are in every insurance-office by about ten o'clock. The lists
form, as it were, the log-book of the brigade. Some days the calls run
up to seventeen or more, including false alarms; on other days they sink
to a far fewer number; the average working out in 1898 to nearly ten
calls daily.

The Log also shows the causes of fires, so far as can be ascertained;
and the upsetting of paraffin-lamps bulks largely as a frequent cause.
The overheating of flues and the airing of linen also play their
destructive part as causes of fires. The airing of linen is, indeed, an
old offender. Evelyn writes in his Diary, under date January 19th, 1686:
"This night was burnt to the ground my Lord Montague's palace in
Bloomsbury, than which for painting and furniture there was nothing more
glorious in England. This happened by the negligence of a servant
airing, as they call it, some of the goods by the fire in a moist
season; indeed, so wet and mild a winter had scarce been seen in man's
memory." And now, more than two hundred years later, the same cause is


But the upsetting and exploding of lamps is now, perhaps, the chief
cause, especially for small fires; and more deaths occur at small fires
than at large. This is not surprising, when we remember that such lamps
are generally used in sitting or bedrooms, where persons might quickly
be wrapped in flames or overwhelmed with smoke.

Smoke, indeed, forms a great danger with which firemen themselves have
to contend. At a fire in Agar Street, Strand, in November, 1892, a
fireman was killed primarily through smoke. He was standing on a
fire-escape, when a dense cloud burst forth and overpowered him. He lost
his grasp, and, falling forty feet to the earth below, injured his head
so severely that he died.

Again, several men nearly lost their lives through smoke at a fire about
the same time at the London Docks. The firemen were in the building,
when thick smoke, pouring up from some burning sacks, nearly choked
them. Ever ready of resource, the men quickly used some hose they had
with them as life-lines, and slipped from the windows by means of the
hose to the ground below.

Nevertheless, dense smoke is not the greatest danger with which firemen
are threatened. Their greatest peril comes from falling girders and
walls, from tottering pieces of masonry, and burning fragments of
buildings, shattered and shaken by the fierce heat. Helmets may be seen
in the museum at headquarters showing fearful blows and deep
indentations from falling fragments of masonry, and firemen would
probably tell you that they suffer more from this cause than any other.

For small fires in rooms, little hand-pumps, kept in hose-carts, are
most useful. They can be speedily brought to bear directly on the flames
and prevent them from spreading. These little pumps can be taken
anywhere; they are used with a bucket, which is kept full of water by
assistants, who pour water into it from other buckets.

The fire, large or small, being extinguished, a message to that effect
is sent to headquarters, and the firemen return, with the possible
exception of one or two men to keep guard against a renewed outbreak. In
the case of larger fires, perhaps half a dozen men and an engine will
remain; while on returning, the various appliances have all to be
prepared in readiness to answer another alarm. It sometimes happens that
a fireman may be on duty for many hours at a stretch, or may only have
time to snatch an hour's sleep with clothes and boots on; for nearly
every hour a fresh alarm comes clanging into the station, telling of a
new fire in some part of busy London. And for any real need, there is, I
trow, no grumbling or complaint from the brave men. But the miscreant
detected in raising a malicious false alarm would have scant mercy. He
would be promptly handed over to the police, and the magistrate would
punish him severely--perhaps with a month's imprisonment.

When not actually engaged at fires, the men find plenty to do in
painting and repairing appliances, attending to horses, and keeping up
everything to the pink of perfection. The hours on duty and for
specified work are all marked down in the brigade-station routine,
general work commencing at 7 a.m., and ending at one, while allowing for
a "stand easy" of fifteen minutes at eleven. The testing of all
fire-alarms once in every twenty-four hours, excepting Sundays and
before six o'clock at night, also forms part of the brigade-station
routine. Every fireman, however, has a spell of twenty-four hours
entirely off duty in the fortnight; but at all other times he is ready
to be called away. Indeed, men on leave are liable to be summoned in
case of urgent necessity; but such time is made up to them afterwards.

Now, before being drafted into the effective ranks, all the men have to
pass through a three months' daily drill at headquarters. The buildings
are very extensive, affording accommodation for about a hundred men,
thirty-five or so being the recruits. In the centre, enclosed by the
buildings, stretches a large square, in which the drill takes place. To
see the combined drill is something like seeing the brigade actually at
work; and this being Wednesday afternoon, and three o'clock striking,
here come the squad of men marching steadily into the yard.

The evolutions are about to begin.



Tramp, tramp, tramp! Two lines of wiry, muscular young men march into
the centre of the yard.

"Halt! Right about face!"

Quick as thought the men pause and wheel around.

Indian clubs and dumb-bells!

The opening of the drill this afternoon is a course of exercises with
these familiar appliances; but they soon give place to other evolutions,
such as jumping in the sheet, practise with the engines, rescue by the
fire-escape, and the chair-knot.

Round and round whirl the clubs. Every day some section of the drill is
taken; but on Wednesday afternoons, the whole or combined drill is
practised. All candidates must have been sailors; no one need apply who
has not been at least four years an A.B. Further, they must be between
the ages of twenty-one and thirty, and able to pull over the escape;
that is, they must be able to pull up a fire-escape ladder from the
ground by the levers. The height of the ladder is about 28 feet, and the
pull is equal to a weight of about 244 pounds. It is a hard pull, and a
severe test of a man's strength; but after the first twelve feet, the
weight seems lessened, as the man's own weight assists him. In this
test, as in some other things, it is the first step that costs. Should
the candidate pass this test successfully, he is examined by the doctor;
finally, he comes to headquarters for his probationary drills.


"Open order!"

The men break off from their gymnastic exercises, and in obedience to
instructions some of them run for large canvas sheets, and spread them
out, partly folded on the ground. Then others calmly lie themselves
down on these sheets. What is going to happen?

The recruits approach the recumbent figures, which lie there quite
still, and apparently heavy as lead; the lifeless feet are placed close
together, and the limp, inanimate arms arranged beside the body. Then,
at a word or a sign, the bodies are picked up as easily as though they
were tiny children, and carried over the recruits' shoulders--each
recruit with his man--some distance along the yard. The men are
practising the art of taking up an unconscious person, overcome may be
by smoke, or heat and flame, and carrying him in the most efficient
manner possible out of danger.

There is more in this exercise than might at first appear. It might seem
a comparatively easy task--if only you had sufficient strength--to throw
a man over your shoulder and carry him thus, even leaving one of your
hands and arms quite free; but you would find it not so easy in the
midst of blinding flame and choking smoke; you would find it not so easy
to pick your uncertain way through a burning building and over flaming
floors, over a sloping roof or shaky parapet, and even down a

Hence the urgent necessity that the fireman should be so well practised,
that in a moment he can catch up an insensible, or even conscious person
in exactly the most efficient manner, and, with hand and arm free, be
able to find his way quickly out of the fire.

He must be cool and clear-headed, dexterous, and sure-footed, ready of
resource, and quick yet reliable in all his movements; and to these
ends, as to others, the drill is directed.

Captain Shaw's advice to those beginning "in the business of
extinguishing fires" may be quoted here from his volume on "Fire and
Fire-Brigades." "Go slowly," he says, "avoid enthusiasm, watch and
study, labour and learn, flinch from no risk in the line of duty, and be
liberal and just to fellow-workers of every grade."

But shouts of laughter are rising, as presently two or three of the
recruits at the drill appear in a long flowing skirt, and look awkward
enough in their unaccustomed garments as they stride along. They imitate
women for the nonce, and are rescued in a similar manner, the men also
carrying apparently lifeless figures down the ladders of the escapes.

[Illustration: ESCAPE-DRILL.]

The sheets, however, are used for other purposes of drill. See! A group
of men are opening one out, and carrying it below an open window some
twenty-five feet above the ground.

There are fourteen or so of these men, and they grip the sheet firmly
all round, and spread it out a little less than breast-high. A man
appears at the window, twenty-five feet or so above. He is about to jump
into the sheet far below.

At the cry he leaps, or rather drops, down plump into the sheet; and the
force of the fall is so great, that, unless these men were all leaning
well backward, it would drag them toward the ground, and the rescued man
sustain injury. As it is, they are all dragged pretty well forward by
the impact of the fall.

A person jumping like this into a sheet should drop down into it, not
spring, as though intending to cover a great space. And the persons
holding the sheet should lean as far backward as possible. If they
simply held the sheet, standing upright in the ordinary way, no matter
how firm the grip, they would probably all be dragged to the ground in a

The jumping-sheet is made of the best strong canvas about 9 feet square,
and strengthened with strips of webbing fastened diagonally across. The
sheet is also bound round at the edges with strong bolt-rope, and is
furnished with about a score of hand-beckets, or loops. If at a fire all
other means of rescue be unavailable, the sheet should be brought into
use. Volunteers, if necessary, should be pressed into the service, and
instructed to stretch out the sheet by the beckets, holding it about two
feet or so from the ground. They should grasp the becket firmly with
both hands, the arms being stretched at full length, their feet planted
well forward, but their heads and bodies thrown as far back as possible.
Even then the volunteers will probably find great difficulty in
maintaining the sheet, and preventing it from dashing on the ground. If
possible, a mattress or pile of straw or some soft object should be
placed on the ground beneath the sheet. The uninitiated have no idea of
the weight of a body suddenly falling or jumping on to the sheet from a
great height, and this occasion is one for the putting forth of all the
strength of body and determination of will of which a man may be

But, now the sheet is being folded, and men are appearing on the roofs
of the buildings above. A new exercise is beginning. Rescue by rope is
now to be practised, and long threads of rope begin to appear. Imagine
yourself a fireman on the top of a burning house, with smoke and flame
belching out of the windows below, and agonizing screams for help
ringing in your ears. No fire-escape is near, or, if near, not
available; for it sometimes happens that persons cannot be rescued by
ladders, and the staircase is a mass of flames. What would you do?

It is then that the firemen use the chair-knot, or, speaking popularly,
they try rescue by rope. Every engine carries excellent rope of tanned
manilla, and the fireman carries a rope about his body. Quickly the ends
of the rope are fastened to two points, one on either side of the
window--to a chimney-stack, if possible; then, as sailors know how, by
means of what is called a "tomfool's knot," loops and knots are made in
the rope--one loop to be slung under the arms, and the other to support
the knees, and together forming a sort of chair. Speedily the loops are
adjusted round the person to be rescued, and then he is gradually
lowered to the ground. A guiding-rope has been attached, and thrown to
the men below, and is used by them to steady the person's descent, to
prevent him from bobbing hither and thither, or to draw him out of reach
of the flame and smoke.

This exercise being over, there is a rattle and a clatter, and into the
yard dashes a horsed fire-escape. The men pounce upon it at once, and in
a trice whip it off its carriage and wheel it to the building. The
present escapes are great improvements on the old forms, and two men can
extend it with ease.

The first or main ladder of the escape reaches about 24 feet high; and
in the 1897 pattern the 40-feet ladders having one extension. Other
escapes have extending-ladders rising to a height of 50 feet, and even
70 feet, these being in three lengths. But an Act of Parliament now
provides that all buildings above a certain height must have means of
exit attached; this generally takes the form of iron ladders or
stairways outside the building. All parts of an escape are as far as
possible interchangeable, and the ladder-vans are designed to carry any
ladders in the brigade.

And now the escape-drill is about to commence. The machine is placed
against the building, which we must suppose to be burning. Up runs a
fireman, with hands and feet on the rungs, to the window where the top
of the ladder rests. If the window will not open readily, he may, in
case of real need, smash it with his axe to obtain ready entrance.

Then, if you watched him closely, you would see he did something which
you would never think of doing. He fastens the end of his rope to the
rung of his ladder, and, with the rest of the rope coiled over his arm,
disappears into the room. The rope easily runs out as he moves, and
affords him a means of speedily finding his way back to the window
through the smoke; a very valuable arrangement it may prove to be, when
the fireman finds an insensible person or a couple of children to

One child he carries in his arm, and the other he throws across his
shoulder, in the recognized brigade manner; and loaded thus, he gropes
his way, guided by his one free hand, along the rope.

Or there may be more than one adult to save. Then the rescued person is
carried over the shoulder to the top of the trough, or shoot of
netting, with which some escapes used to be fitted at the back of the
escape-ladder, and is slipped down it feet first to the firemen waiting
below; while the plucky fireman above returns for the next person in

The fireman will probably follow the last down the shoot by turning a
somersault and coming down head first; meantime, holding the other's
hands, and regulating the speed of the descent by pressing his knees and
elbows against the sides of the netting. But without the shoot he
descends by the ladder.

Should the fire occur at a house surrounded by garden-wall, shrubs, or
forecourt, the machine is wheeled as close as possible, and the
extension or additional ladders can be placed at a somewhat different
angle from the first, so as to bridge over the intervening space and
reach the farthest window. The ladders of fire-escapes may also be
useful substitutes for water-towers. A water-tower is a huge pipe,
running up beside the ladder, or tower; and as three or four steamers
play into the base of the huge pipe, the water is forced up it, and the
jet at the top can then be directed anywhere into the burning building.

"But we don't want any water-towers," exclaimed a fireman; "we can make
one ourselves, if we need one." That is, by using the fire-escape
ladders to obtain points of vantage.

We soon see this accomplished. With a rush of horses and a whiz of
steam, a fire-engine tears into the yard, the steam raising the
safety-valve at a pressure of a hundred and twenty pounds to the square

Off leap the men, as though actually at a fire; each one attends to his
prescribed duty; and ere long you see one of the men hurrying up the
escape-ladder bearing the branch in his hand--_i.e._, the heavy nozzle
end of the hose. In a second the engine whistles, there is a spurt of
water, and the fireman directs the jet from the distant head of the
ladder to a tank in the centre of the yard.

The beckets on the hose, placed at intervals of seventeen and then
twenty feet, over a hundred-feet length, are made of leather; and are
most useful for fastening it to a chimney or any point of vantage by
means of the fireman's rope. The weight of a hundred-feet length when
complete ranges from sixty to sixty-five pounds, and when full of water
much more.

The hose for the London Brigade is woven seamless, of the best flax; and
the interior india-rubber lining is afterwards introduced, and fastened
by an adhesive solution. Unlined hose is used by some provincial
brigades; and it is contended that the water passing through it keeps it
wet, and therefore not liable to be burned by the great heat of the
conflagration. On the other hand, the leakage is said to be a very
objectionable defect. The internal diameter of the hose is two inches
clear at the couplings, but a little larger within.

The steam-man is taught to remember the great power he rules; otherwise
he may, by neglecting to give the warning whistle, endanger his
brother-fireman's life by suddenly sending the water rushing through the
hose, or bringing a great strain upon it, when the men controlling it
are not prepared.

It may appear an easy thing to stand on a ladder or a house-top, and
direct the jet on the fire; but it is not so easy to carry and to guide
the long, heavy, and to some extent sinuous pipe, full of the heavy
water throbbing and gushing through it at such tremendous pressure,
especially when your foothold is none too secure.

A fireman lost his life one night, when holding the hose on the parapet
of a roof in the Greenwich Road. He overbalanced himself, and fell
crashing, head downward, sixty feet or more below, and met a terrible

Whether this fearful accident was entirely due to the heavy hose, we
cannot say; but unless hose be laid straight, it is apt to struggle like
a living thing. The reason is obvious. The water rushes through it at
great pressure; and if the hose be not quite straight, the pressure on
the bent part of the hose is so great that it struggles to straighten
itself. Consequently, a fireman turning a stream will probably have to
use a great deal of strength.

The increase in velocity of the water by the use of a branch and nozzle
is, of course, very great. A branch-pipe is defined by Commander Wells
as "the guiding-pipe from hose to nozzle." Some branches are made of
metal; but leather branches are being substituted for long metal pipes.
Some of these latter measured from 4 to 6 feet long, and were not only
very cumbersome to carry, but often impracticable to use with efficiency
inside buildings.

Leather branch-pipes are sometimes longer, and are tapered from 2 inches
in diameter to 1½ inch at the nozzle. When, therefore, a stream of water
from two to two and a half inches in diameter, forced along at a great
pressure, and distending the hose to its utmost capacity, is driven
through the narrowing path of the branch-pipe, it spurts out from the
nozzle at a much higher velocity; and it is just this narrowing part of
the hose which the fireman has to handle, and whence he directs the jet.

Some nozzles are like rose watering-can pipes, and are furnished with a
hundred holes to distribute the water. These nozzles are useful in
interior conflagrations and smoky rooms.

Yet, all important as is the engine-drill, and invaluable as are the
engines for serious conflagrations, it is interesting to read in the
Brigade Report that in 1897 no fewer than 808 fires were extinguished by
buckets, and 460 by hand-pumps, while 98 were extinguished by engines,
and, as we have said, 466 by hydrants and stand-pipes.

The brigade bucket carried on the engine holds about 2½ gallons, and is
made of canvas; it is collapsible, cane hoops being used for the top and
bottom rings. Drill is maintained even for bucket and hand-pump; and the
latter appliance is so portable, that the whole of the gear pertaining
to it, including two ten-feet lengths of hose, is carried in a canvas

Hand-pumps are often used for chimney fires. Two men usually attend, and
expect to find a bucket in the house. They pour small quantities of
water on the fire in the grate, and allow as large a quantity of steam
as possible to pass up the flue. When the fire in the grate is quenched,
the men use the hand-pump on the fire in the lower part of the chimney,
and then, mounting to the roof, pour water down the chimney.

As sometimes the ends of wooden joists are built into the flues, an
examination should be made to discover if the lead on the roof or in any
place shows signs of unusual heat, and the joists have caught fire; for
outbreaks of fire have been known to occur from this obscure cause. A
comparatively simple but effective means of dealing with a chimney fire
is to block up both ends of the chimney with thoroughly wet mats or
sacks; while one of the easiest methods is to throw common salt on the
fire. The heat decomposes the salt, and sets free chlorine gas--common
salt being chloride of sodium, and chlorine being a gas which very
feebly supports combustion, and tends to choke and dull a fire, if not
to extinguish it entirely.

And so the drill goes on, with scaling-ladders and long ladders,
hose-carts and horsed escapes, steamers and manual-engines, the object
of the whole being, not alone to perfect the men in their knowledge of
the gear and machines, and skill in using them, but also to develop
quickness of eye, and readiness and firmness of hand. A systematic
routine is followed by fully-qualified instructors, part of the course
being theoretical and part practical; while about the year 1898 a new
syllabus of instruction came into use.

Among other alterations, it was arranged that a selected officer should
take charge of the recruits' drill for about two years, instead of
engineers appointed at comparatively short intervals. Further, it was
decided to permanently increase the authorized number of recruits, with
the anticipation that never fewer than thirty men will be under
instruction; and to prohibit them, if possible, from being called away
to engage in cleaning or other work, so that their instruction drill
should never be interrupted.

When the men have passed through a three months' course of instruction,
they should be ready to be drafted into the ranks as fourth-class
firemen. The men in the brigade are divided into four classes; in
addition to which, there are coachmen, and licensed watermen for the
river-craft, also engineers, foremen, and superintendents, the whole
being in charge of a chief officer and a second and third officer.

First aid to the injured is also included in the instruction of the men;
and the Recruits Instruction-Room and Museum contains a
beautifully-jointed skeleton, kept respectfully in a case, for
anatomical lessons.

[Illustration: RELICS OF THE BRAVE.]

Further, if you search the indispensable boxes on the engines, you will
find among the mattocks and shovels, the saws and spanners and
turncock's tools, a few medical and surgical appliances. Every engine
carries a pint of Carron oil, which is excellent for burns. Carron oil
is so called from the Carron Ironworks, where it has long been used, and
consists of equal parts of linseed oil and limewater; olive oil may be
used, if linseed oil be not procurable. Carron oil may be used on rags
or lint; and triangular and roller bandages are carried with the oil,
also a packet of surgeon's lint and a packet of cotton-wool. Accidents
which are at all serious are, of course, taken as soon as possible to
the hospital. But, alas! some accidents occur which no Carron oil can
soothe, or hospital heal; and on that roll of honour in the little room
beside the big engine-shed, and in the blackened bits of clothing and
discoloured, dented helmets in the museum in the instruction-room, you
find ample demonstration that a fireman's life is often full of
considerable risk.

These are the mute but touching memorials of the men who have died in
the service; to each one belongs some heroic tale. Let us hear a few of
these stories; let us endeavour to make these charred memorials speak,
and tell us something of the brave deeds and thrilling tragedies
connected with their silent but eloquent presence here.

Listen, then, to some stories of the brigade.



Here are two tarnished and dented helmets of brass. They belonged
respectively to Assistant-Officer Ashford and to Fourth-class Fireman
Berg, who both lost their lives at the same great conflagration.

About one o'clock in the early morning of December 7th, 1882, the West
London policemen, stepping quietly on their beat about Leicester Square,
discovered that the Alhambra Theatre was on fire.

A fireman on watch within the building had made the same discovery, and
with his comrade was working to subdue the flames. But they proved too
strong for the men.

The nearest brigade station was speedily aroused, the news telegraphed
to others, and ere long several fire-engines had hurried to the spot.
Quickly they were placed at different points about the building, and
streams of water were thrown on the fire. But in spite of all efforts,
it gained rapidly on the large structure.

The position was fairly high and central, and the flames and ruddy glow
in the sky were visible in all parts of London; even at that hour
spectators rushed in numbers to the scene and crowded the surrounding
streets. It was with difficulty that the police could prevent them from
forcing themselves into even dangerous situations.

The heat was intense, and as far off as the other side of the spacious
square it struck unpleasantly to the face. The flames darted high in the
air as if in triumph, and the huge rolling clouds of smoke became
illumined by the brilliant light. Several notable buildings in the
neighbourhood stood out clearly in the vivid glow as though in the
splendour of a gorgeous sunset, while high amid the towering flames
stood the picturesque Oriental minarets of the building as though
determined not to yield.

The firemen endured a fearful time. Some stood in the windows,
surrounded, it seemed, by sparks of fire. Mounting fire-escapes also,
they poured water from these points of vantage into the burning
building. By half-past one twenty-four steam fire-engines were at work,
and at that time the brigade had only thirty-five effective steamers in
the force. At about two o'clock the minarets and the roof fell in with a
tremendous crash, and still the flames shot upward from the basement.

Crash now succeeded crash; girders, boxes, galleries, all fell in the
general ruin. Moreover, the fire leaped out of the building, and began
to attack other houses at the back. A number of small and crowded
tenements existed here, and the danger of an extended and disastrous
fire became very great. But the efforts of the firemen were happily
successful in preventing its increase to any considerable extent.

It was while working on an escape-ladder that Berg met with his death.
An escape had been placed against the building next to the front of the
theatre, and he was engaged in directing the jet of water from the
extended or "fly" ladder fifty feet high, when from some cause--probably
the slipperiness of the ladder-rungs--he lost his footing, and crashed
head-foremost to the ground.

When taken up, he was found to be insensible; and while the fearful
flames were still raging, and his comrades were still at work, he was
conveyed to the Charing Cross Hospital. Among other injuries which he
had received was a fracture of the head; and after lingering a few days,
and lapsing into long fits of unconsciousness, he died.

Not long after Berg was admitted to the hospital on that fearful night,
another fireman was carried thither from the same place. This sufferer
was Assistant-Officer Ashford, who arrived at the fire in charge of an
engine from Southwark. He was standing behind the stage, when a wall
fell upon him and crushed him to the ground. His comrades hurried to
rescue him, and he was quickly taken to the hospital; but his back was
found to be broken, and he had also sustained serious internal injuries.
After lingering for a few hours in great pain, he died. He had been
thirteen years in the brigade, and was married.

Several other accidents occurred at this great fire. At the same time
that Ashford was stricken down, Engineer Chatterton, who was standing
near him, was stunned, and narrowly escaped with his life. Four other
firemen were also injured, one suffering from burns, one from sprain and
contusions of the legs, one from falling through a skylight and cutting
his hands, and one from slipping from a steam fire-engine on returning
to Rotherhithe and breaking his arm. These incidents show how various
are the heavy risks the firemen run in the course of their work.

When any member of the brigade dies in the execution of his duty, it has
been customary to accord the body a public funeral, and Ashford's
obsequies proved a very solemn and imposing ceremony. At eleven o'clock
on December 14th, a large crowd assembled in Southwark Bridge Road, and
detachments of officers and men had been drawn from various
fire-stations, until nearly three hundred representatives of the brigade
were present. A large number of policemen also joined the procession. It
had a long way to traverse to Highgate Cemetery, where the burial took
place. The coffin, of polished oak, was carried on a manual-engine, and
covered by a Union Jack, the helmet of the deceased and a beautiful
wreath subscribed for by members of the brigade being placed upon the
flag. Three police bands preceded the coffin, and after it came
mourning-coaches with the relatives of the deceased. Captain Shaw
followed, leading, with Mr. Sexton Simonds, the second officer and the
chairman of the brigade committee of the Board of Works; then came the
large body of firemen with their flashing brass helmets; superintendents
and engineers were also present, and the large contingent of police.
Finally, followed six manual-engines in their vivid scarlet, and
representatives of the salvage corps and of volunteer brigades. The
procession marched slowly and solemnly, the bands playing the Dead March
in "Saul." And thus, with simple yet effective ceremony, the crushed and
broken body was borne through London streets to its last resting-place.

It may be interesting to trace here the chief particulars of the fire,
to illustrate the working of the brigade. Of the firemen watching on the
premises, one had gone his round, when about one o'clock, on going on
the stage, he saw the balcony ablaze. He aroused Hutchings, another
fireman who slept at the theatre, and the two got a hydrant to work,
there having been several fitted in the building; they also despatched a
messenger to Chandos Street station, which is quite near. The fire
proved too strong for the hydrant to quench it; and when the
manual-engine from the station arrived, a fairly fierce fire was in

Meantime, directly the alarm had been received at Chandos Street, it
was, as is customary, sent on to the station of the superintendent of
the district, and thence it was circulated to all the stations in the
district, and also to headquarters. Captain Shaw was soon on the spot,
and directed the operations in person. Of course, such a call as "The
Alhambra Theatre alight!" would cause a number of engines to assemble;
and in truth, they hurried from all points of the district: they came
from Holloway and Islington, from St. Luke's and Holborn. But soon "more
aid" was telegraphed for; and then engines came flying from Westminster
and Brompton, from Kensington and Paddington, even from Mile End and
Shadwell in the far east, and from Rotherhithe, Deptford, and Greenwich
across the Thames. In rapid succession, they thundered along the
midnight streets, waking sleepers in their warm beds, and paused not
until the excited horses were pulled up before the furious fire.

In fact, just within half an hour of the first call at Chandos Street
station, twenty-four steamers were at work on the fire, and throwing
water upon the flames from every possible point. Captain Shaw was
assisted by his lieutenant, Mr. Sexton Simonds, and Superintendents
Gatehouse and Palmer. The contents of the building were so inflammable,
or the fire had obtained such a firm hold, that the enormous quantities
of water thrown upon it appeared to exercise little or no effect. But at
length, when the roof had fallen, the firemen seemed to gain somewhat on
their enemy; and they turned their attention to the dwellings in Castle
Street, and prevented the flames from spreading there. Finally, three
hours after the outbreak, that is, about four in the morning, the fire
was practically suppressed. Several of the surrounding buildings were
damaged by fire and heat, and by smoke and water.

In the dim wintry dawn, the scene that slowly became revealed presented
a remarkable spectacle. Looking at it from the stage door, the blackened
front wall could be seen still standing, though the windows had gone,
and within yawned a huge pit of ruin. Scorched remains of boxes and
galleries, dressing-rooms and roof, all were here; while huge girders
could be seen twisted and rent and distorted into all manner of curious
shapes, which spoke more eloquently than words of the fearful heat which
had been raging.

The value of strong iron doors, however, was demonstrated; for the
paint-room had been shut off by these doors from the rest of the
building, and the flames had not entered it.

But to turn to other relics in the museum. Here lies a terrible little
collection,--a part of a tunic, a belt-buckle, an iron spanner, part of
a blackened helmet, and part of a branch-pipe and nozzle. They are the
memorials of a man who was burnt at his post.

Early in the afternoon of September 13th, 1889, an alarm was sent to the
Wandsworth High Street fire-station. The upper part of a very high
building in Bell Lane, occupied by Burroughs & Wellcome, manufacturing
chemists, was found to be on fire. The time was then about a
quarter-past two, and very speedily a manual-engine from the High Street
station was on the spot.

A stand-pipe was at once utilized, and Engineer Howard, with two
third-class firemen, named respectively Jacobs and Ashby, took the hose
up the staircase to reach the flames. Unfortunately, the stairs were at
the other end of the building, and the men had to go back along the
upper floor to arrive at the point where the fire was burning.

Having placed his two men, Engineer Howard went for further assistance.
Amid suffocating smoke, Jacobs and Ashby stood at their post, turning
the water on the fire; and their efforts appeared likely to be
successful, when suddenly, a great outburst of flame occurred behind
them, cutting off their escape by the staircase.

It was a terrible position,--fire before and behind, and no escape but
the window!

Both men rushed to a casement, and cried aloud, "Throw up a line!" The
crowd below saw the men tearing at the window-bars and endeavouring to
break them, while the fire rapidly spread towards them.

Could no help be given? Howard had endeavoured to rejoin the two men,
and, finding this impracticable, turned to obtain external aid. The
ladders on the engine were fixed together, but they fell far short of
the high window. A builder's ladder was added; but even this extension
would not reach the two men caged up high above in such fearful peril.

A moment or two of dreadful suspense, and then the crowd burst forth
into loud cheers. Ashby was seen to be forcing his way through the iron
bars. He was small in stature, and his size was in his favour. By some
means, perhaps scarcely known to himself, he dropped down to the top of
the ladder and clung there, and finally, though very much burned, he
reached the ground in safety.

But the other? Alas! his case was far different. It is supposed that the
smoke overcame him, and that he fell on his face; but he was never seen
alive again. Engines rattled up from all parts of London, and quantities
of water were thrown on the flames, but to no effect so far as he was
concerned. When the fire was subdued, and the men hastily made their way
to the upper floor, they found only his charred remains. He had died at
his post, the smoke suffocation, it may be hoped, rendering him
insensible to pain.

But an even more terrible accident happened to a fireman named Ford, in
October, 1871. His death, after saving six persons, remains one of the
most terrible in the annals of the brigade.


About two in the morning of October 7th, 1871, an alarm of fire reached
the Holborn station. The call came from Gray's Inn Road; and Ford, who
had charge of the fire-escape, was soon at the scene of action. He found
a fire raging in the house of a chemist at No. 98 in the road, and the
inmates were crying for help at the windows.

Placing the escape against the building, he hurried to a window in one
of the upper floors, and, assisted by a policeman, brought down five of
the inhabitants in safety. Still there was one remaining, and frantic
cries from a woman in a window above led him to rush up the escape once
more. He had taken her from the building, and was conveying her down the
escape, when a burst of flame belched out from the first floor and
kindled the canvas "shoot" of the escape. In a second, both the fireman
and the rescued woman were surrounded by fire.

Unable to hold her any longer, he dropped her to the ground, where she
alighted without suffering any serious injury. But the fireman became
entangled in the wire netting of the machine, and it held him there in
its cruel grasp, in spite of all his struggles, while the fierce fire
roasted him alive.

At length, by a desperate effort, he broke the netting, apparently by
straining the rungs of the ladder; but he himself fell to the ground so
heavily, that his helmet was quite doubled up, and its brasswork hurt
his head severely. His clothes were burning as he lay on the pavement;
but, happily, they were soon extinguished, and he was removed, suffering
great agony, to the Royal Free Hospital in the Gray's Inn Road. He
lingered until eight o'clock on the evening of the same day, when he

He was only about thirty years of age, and had been four years in the
brigade, where he bore a good character. A subscription was raised for
his widow and two children, and his funeral was an imposing and solemn
ceremony. The coffin was borne on a fire-engine drawn by four horses to
Abney Park Cemetery, and was followed by detachments of firemen and of

It is a peculiarly sad feature of this case that, after saving so many
lives, he should himself have succumbed, and that the very machine
intended to save life should have been the cause of his death. At the
inquest the jury added to their verdict the remark that, had the canvas
been non-inflammable (means having been discovered to render fabrics
non-inflammable), and had the machine been covered with wire gauze
instead of the netting, Ford's life might have been saved. Considerable
improvements have been made in fire-escapes since then, and machines of
various patterns are in use in the brigade; but, speaking generally, it
may be said that the shoot, when used, is made of copper netting, which
is, of course, non-inflammable.

Happily, all the brave deeds of the firemen do not meet with personal
disaster. One brilliant summer afternoon in July, 1897, the Duke and
Duchess of York were present at the annual review of the brigade on
Clapham Common, and the Duchess pinned the silver medal for bravery on
the breast of Third-class Fireman Arthur Whaley, and the good service
medal was given to many members of the brigade. Whaley had saved two
little boys from a burning building, and his silver medal is a
highly-prized and honourable memorial of his gallant deed.

About one o'clock on the early morning of April 26th, 1897, a passer-by
noticed that a coffee-house in Caledonian Road, North London, was on
fire. Several policemen hurried to the spot; but in three minutes from
the first discovery the place was in flames. The house was full of
people. Mr. Bray, the occupier, was apparently the first inmate to
notice the fire from within, and the others were soon aroused. The
terrified people appeared at the windows, and, impelled by the cruel
fire, threw themselves one after the other into the street below. They
numbered Mr. and Mrs. Bray and four daughters; all except Mr. Bray
appeared to be injured, and were taken to the hospital. Some one also
threw a child into the street, and he was caught by one of the persons
passing by.

And now up came the firemen with their escape from Copenhagen Street.
Pitching it against the house, they hurried to the upper windows. From
one of these they brought down a young woman, who was sadly burnt about
the face, and she was sent also to the hospital. Penetrating still
farther amid the smoke and flame, Arthur Whaley groped about, and found
two lads asleep, and, bearing them out, saved their lives by means of
the escape.

The fire did considerable damage before it was finally extinguished; but
when the stand-pipes were got fully to work, the flames were quickly
subdued. One of the daughters died from severe burns soon after her
admission to the hospital, and it was afterwards found that a girl of
fifteen had been unhappily suffocated in bed. But for the bravery of
Whaley, the two little boys might have suffered the same sad fate.

These true stories of work in the brigade show how various are the
perilous risks to which firemen are liable. Danger, indeed, meets them
at every turn, and in almost every guise. To cope with these risks
requires instant readiness of resource as well as knowledge and skill.
In times when seconds count as hours, it is not enough to know what to
do, but how to do it with the utmost smartness and efficiency.

Improved appliances will greatly assist the men; and Commander Wells's
horsed escape fully justified expectations soon after its introduction.
It can be hurried through the streets at twelve miles an hour, and the
wonder is that the brigade used the old hand-driven machine with its
slow pace so long. In December, 1898, a horsed escape reached a fire in
Goswell Road in a minute from the alarm signalling in St. John's Square
fire-station, and saved three lives,--an instance of very smart work
that might establish a record, except that great smartness is everywhere
the characteristic of the brigade.

Let us, then, look at the story of the fire-escape a little more
closely, and also at some of the new improved appliances, such as the
new fire-engine floats and the river-service.



"Very smart indeed."

The speaker was watching a light van, which had just been whirled into a
yard. Light ladders projected horizontally in front of the van, and
large wheels hung behind, a few inches above-ground. The machine was
glowing in brilliant red paint.

Off jump five men in shining brass helmets.

"Stand by to slip!" cries one of the men, who is known as No. 1.

Thereupon, another man casts off some fastenings at the head of the
van, and controls the ladders until the large wheels touch the roadway;
another man eases away certain tackle; and yet another, as by a magical
touch, brings the ladder to an upright position directly the big red
wheels come in contact with the ground, No. 2 man assisting him.

The whole operation is performed with great smartness, and the
escape--for the machine is one of Commander Wells's new horsed
escapes--is whipped off its van and reared against the house in the
proverbial twinkling of an eye.

Such a scene may be witnessed any afternoon at the London Fire-Brigade
Headquarters, when the horse-escape drill is being practised; and the
superiority of the new machine over the old seems so obvious, that you
exclaim: "I wonder it has not been done before!"

The men's positions are all assigned to them. The "crew," as it is
called, consists of four firemen and a coachman. When hurrying to a
fire, No. 1 takes his place on the near side in front, No. 2 is at the
brake on the off side, No. 3 at the brake on the near side, while No. 4
takes his seat on the off side.

Arrived at the scene of the fire, each man springs to his appointed
duty. When the escape is quite clear, No. 1 goes to the fire, No. 3 is
seen busy with the gear, and the coachman is occupied with his horses.
He removes them from the van if necessary, and is ready to ride with a
message if required to do so.

Moreover, the van carries five hundred feet of hose, and all the
necessary gear for using a hydrant at once; so that water can be thrown
on a fire directly, even without the arrival of an engine.

Life-saving is, however, the special use of the escape itself; and
looking at it superficially, you will say that the ladder of this
machine is not nearly long enough to reach the upper windows of a high

But if you watch the men at work, you will see that the ladder can be
cleverly and quickly extended to a much greater height.

You will observe that the escape is made on the telescopic principle,
and on a sliding carriage; and though when not extended it only measures
about 24 feet over all,--as when riding on the van,--yet when the
extending gear is set to work, it can be made to reach a height of 50
feet, or more than double its usual length.

This gear for extending the ladder is fitted to the levers on each side,
and is easily worked by two men. The 50-feet escapes are in three
lengths, the middle ladder being worked by two separate wires, and the
top ladder by one wire.

The van carrying the escape is specially built for the purpose; and, as
we have seen, the machine can be instantaneously detached, the van being
thus free for other uses if necessary.

Not long after his appointment as chief officer in November, 1896,
Commander Wells submitted plans which he had designed for new escapes 40
and 50 feet in length, and ladders 70 feet in length. The 40-feet escape
was in two lengths, and the others in three lengths; and all of them
were designed to be carried on a van of new pattern.

The County Council authorized the chief officer to obtain patents for
his invention, and also ordered experimental machines to be made. These
proving satisfactory, it was determined to use them; and a considerable
number were ordered, the horsed escape being introduced into the brigade
in July, 1897. The appliance is lighter than those hitherto in use, and
can be manipulated by fewer men with even greater ease.

It has no shoot, or trough, down which a rescued person can be slipped;
and bearing in mind that this operation may prove hazardous, unless the
person have sufficient presence of mind to raise and press his arms
against either side of the shoot so as to break his fall, there is no
reason to regret its absence.

Further, the machine will now be able to reach the scene of action so
speedily, and is so amply manned, that the firemen should be able to
effect a rescue without the need of a shoot. At the same time, it must
be borne in mind that instruction for various patterns of fire-escapes
is given at headquarters, and the shoot may be seen in use on some
machines there.

The new horsed escape follows a series of life-saving appliances,
extending over many years. Ladders of various kinds, of course, form an
important feature; but the necessity of some arrangement whereby the
height of the ladders could be rapidly and efficiently extended would,
no doubt, stimulate invention; and various contrivances were devised for
this purpose. Further, the need for conveying the machine rapidly to the
fire would lead to the ladders being placed on wheels.

Without specifying the various kinds of portable ladders in use, it may
be stated that the Metropolitan Brigade came to use one, consisting of a
main ladder varying from 32 to 36 feet high, and furnished with a canvas
trough along its length. It was doubtless a machine of this sort which
was in use when Fireman Ford lost his life at the Gray's Inn Road fire
in 1871. A second ladder, jointed to the first, extended the height 15
feet; while other ladders in some escapes raised the height to 60 and in
some cases to 70 feet.

The escape in general use by the brigade in 1889 consisted of a main
ladder, having the sides strengthened by patent wire-rope, and finished
at the back with a shoot or a trough of uninflammable copper-wire
netting. A fly-ladder lay along the main ladder, to which it was
jointed, and was raised, when needed, by levers and ropes. A third
ladder, known as the "first floor," which could be jointed to the
fly-ladder, was placed under the main ladder; while a fourth could be
added, bringing the height up to 60 feet. The fly-ladder could also be
instantly detached for separate use if required.

The carriage on which this arrangement of ladders was mounted was
comparatively light, and was fitted with springs and high wheels, and
two men could move it anywhere.

As we have said, drill for various descriptions of escapes is practised
at headquarters; but the general instructions are that, when running the
machine, two men are to be "on the levers," to prevent accident.

There used to be a society to organize the use of fire-escapes. It was
called the Royal Society for the Protection of Life from Fire, and was
first established in 1836. About seven years later its object was more
fully attained, when it was reorganized, and had six escape-stations in
the metropolis. In 1866, it possessed no fewer than eighty-five
stations, while many lives had been saved, and numerous fires had been

But next year, a municipal fire-brigade having been established, the
society handed over its works, and practically made a present of all its
plant to the Metropolitan Board of Works, the Fire-Brigade Act having
been passed in 1865. And so once more municipal organization took up and
developed what voluntary effort had begun.

Various devices have also been employed to afford escape from the
interior of the building. Perhaps the simplest, and yet one of the most
effectual, consists of a rope ladder fastened permanently to the
window-sill, and rolled up near it; or a single cord may be used,
knotted at points about a foot apart all along its length. Like the rope
ladder, the cord may be permanently fastened to the window-sill, and
coiled up under the toilet-table, or in any place where it may be out of
the way, and yet convenient to hand.

Persons may be lowered by this rope, by fastening them at the end--as,
for instance, by tying it under their arms, or placing them in a sack
and fastening the rope to it--and then allowing the rope to gradually
slip through the hands of the person lowering them. Better still, the
rope should be bent round the corner of the window-sill, or round the
corner of a bed-post, when the friction on the hands will not be so
great, and the gradual descent will be safe-guarded.

In descending alone, a person will find the knots of great assistance in
preventing him from slipping down too fast; and he may increase the
safety of his descent by placing his feet on the wall as he moves his
grip, one hand after the other, on the rope; this arrangement prevents
the friction on the hands, which hurried sliding might cause, with its
attendant danger of falling.

Permanent fire-escapes are provided in large buildings by means of iron
ladders or staircases at the back or sides of the structure, with
balconies at each story; while poles having baskets attached, ropes
with weights so that they may be thrown into windows, and various
contrivances and combinations of ladders, baskets, nets and ropes, etc.,
have all been recommended or brought into use during a long course of
years. They are designed to afford escape, either from within, or from
without, the burning building; several, however, being for private


Returning, then, to the public improvements in fire extinction, a new
and remarkable floating fire-engine was designed about the year 1898, by
Messrs. Yarrow & Co. of Poplar, in conjunction with Commander Wells,
chief of the London Brigade. It was intended for use in very shallow

The plan was cleverly based on the lines of the _Heron_ type of
shallow-draught gunboats constructed for use on tropical rivers. Six of
these vessels were built by Messrs. Yarrow for the Admiralty, and two
went to the Niger and four to China. The new fire-float design provided
for twin-screw propellers fitted in raised pipes, or inverted tunnels,
to ensure very light draught combined with high speed, and the
consequent power of manoeuvring quickly quite near to the shore.

The difficulty of working fire-floats close to the shore in all states
of the tide had long troubled the London Brigade, and rendered the best
type of vessel for this purpose a matter of much concern. Originally,
vessels of comparatively large size were used, containing machinery both
for throwing water and for propelling the boat. These vessels, however,
were costly to maintain, and could not be effectively used at all states
of the tide. Captain Shaw, therefore, separated the fire-engine from the
propelling power, using tug-boats which would float in a few feet of
water to haul along fire-engine rafts, which could be used quite near to
the scene of the fire.

The last of the large vessels disappeared from the brigade in 1890, and
the river-service consisted of tugs and floats, the fire-engines or
rafts being familiarly called by the latter name. This system, however,
did not prove satisfactory; for, as the chief engineer pointed out, just
before the appointment of Commander Wells, tugs being necessary to haul
the floats, double the number of river-craft were employed, and there
was a consequent increase in cost of maintenance. He suggested that both
the propelling and the fire-engine machinery should be united on one
vessel, but that it should be of light draught.

The new chief officer was consulted. Now, Commander Wells, who was then
thirty-seven years of age, had enjoyed a long experience in the navy;
and, moreover, had been used to torpedo-boats, which of course are
comparatively light craft. Entering the Service in 1873, he was second
in command of a torpedo-boat destroyer in the Egyptian campaign of 1882,
and for three years was second in command of the Torpedo School at
Devonport. At the time of his election to the chief officer's post of
the London Fire-Brigade, he was senior officer of a torpedo-boat
squadron. He had also been second in command of two battleships, and had
partly organized the London Naval Exhibition of 1891. He was,
therefore, likely to be thoroughly conversant with all the latest types
of light-draught navy vessels.

He pointed out the great disparity existing between the brigade's tugs,
which required nine feet of water, and the fire-engine floats, which
needed only about two feet; and he prepared a rough plan of a craft on
the model of shallow-draught gunboats. The chief engineer approving the
plan, a design was prepared by Messrs. Yarrow & Co., in conjunction with
Commander Wells.

This design, or one similar to it, is probably destined to revolutionize
river fire-engine service. The class of material used would be the same
as that employed for building light-draught vessels for her Majesty's
Government; and the method of raising the steam would be, of course, by
Yarrow's water tube-boilers, having straight tubes, and raising steam
from cold water in fifteen minutes.

The design shows a vessel about 100 feet long by 18 feet beam, and the
draught only about 1 foot 7 inches--_i.e._, five inches less than the
previous floats, though containing its own propelling power. The
engines, twin-screw and compound, would develop about 180 horse-power,
and the speed range from nine to ten knots an hour, while no doubt much
higher speed could be obtained if desired.

But the main feature is the ingenious use of the propellers. How can
they work in such shallow water?

Briefly, the propellers operate in the two inverted tunnels, the upper
parts of which are considerably above the water-line. When the
propellers commence to work, the air is expelled from the tunnels, and
is immediately replaced by water. Thus, a large propeller can be fully
immersed, while the vessel itself is only floating in half or may be a
third of the amount of water in which the propeller is actually working.
The design thus combines maximum speed with minimum draught. Sooner or
latter, it seems likely that some such system must be adopted for
fire-floats used in protecting water-side premises; and so far the
design promises to inaugurate a new era.

The boilers in the design also operate the fire-engine pumps, which
would probably consist of four powerful duplex "Worthingtons," each
throwing five hundred gallons a minute. They discharge into a pipe
connected with a large air-vessel, whence a series of branches issue
with valves connected with fire-hose.

But at the top of the large air-vessel stands a water-tower ladder, the
two sides consisting of water-pipes. At the heads of the pipes are
fitted two-inch nozzles, the direction of which can be varied by moving
the water-ladders from the deck. Branch-pipes can also be led underneath
the deck to either side of the vessel. Suitable accommodation is
provided for the crew, and ample deck space is available for working the
craft. She seems likely to give a good account of herself at any
water-side fire to which she might be called.

Concurrently with this new design, arrangements were made to alter the
London river-stations, and to some extent remodel the river
organization. Previously, there had been five river-stations; but
usually between fifteen and twenty minutes elapsed after a fire-alarm
was received before a tug got under way with its raft or float. This
delay was partly owing to the fact that the men lived at some distance,
and also that a full head of steam was not kept on the tugs.

The chief officer advised that the staff and appliances of the A and B
stations, and also of the C and D stations, should be amalgamated, and
thus a crew could be always on board and ready to proceed to a fire at a
moment's notice. There would be four river-stations--_viz._, at
Battersea, Blackfriars, Rotherhithe, and Deptford--from any of which a
crew with appliances could steam at once. The value of the new
arrangement is obvious. Moreover, the staff of the Blackfriars post are
lodged in the large new fire-engine station at Whitefriars, opened July
21st, 1897, and which is not far from the north of Blackfriars Bridge.

As, therefore, the nineteenth century closes, we see the London Brigade,
which has formed the model of so many others in the kingdom, straining
every nerve, not only to maintain its high reputation, but to develop
and to improve its elaborate organization and its numerous appliances
for coping with its terrible enemy.

But, in the meantime, invention has been busy in other directions. Fire
is so terrible a calamity, and its risks so great, that ingenuity has
been taxed to the utmost to master it in every way; and not only to
extinguish it, but to prevent it from occurring at all. Of a fire,
indeed, it may be said that prevention is better than cure.

What think you of muslin that will not flame, of ceilings that will pour
forth water by themselves, of glass bottles that break and choke the
fire? What think you of chemical fire-engines, some so small as to be
easily carried on a man's back? or of curtains and screens and fabrics
that stubbornly refuse to yield?

All kinds of contrivances, in short, have been cleverly designed. Let
us now see some in operation. Have you ever seen a fire choked in a
minute? and how is it done?



Which structure will be first extinguished?

Imagine yourself gazing at two wooden sheds, both quite filled with
combustible materials, and drenched with petroleum and tar. These are to
be fired, and then one is to be extinguished by water, and the other by
an extinctor, or chemical fire-engine.


At the word, the torch is applied, and the first shed bursts into
flames. It soon blazes furiously. A man steps forward, armed with a
hand-pump, such as is used by the Metropolitan Fire-Brigade, and turns a
jet of water upon it.

Hiss! squish! A cloud of steam rises as the water dashes upon the fire,
and still the stream pours on. Now the fireman pauses to refill his pump
with water, and then again the jet plays on the burning pile.

The fire dims down to a dull red, the flames cease to shoot upward and
outward, and after about five minutes the conflagration is extinguished.
Bravo! A very smart piece of work!

But now the second shed is lighted, and blazes fast. Another man hurries
forward. He has a steel cylinder slung on his back, and in a second,
without any pumping, he directs a jet of fluid upon the fire. The
flames die down, the red gives place to blackness, and, in about half
the time taken by the other method, the extinctor has completely
quenched the fire. How is it done?



Within the steel cylinder is suspended a bottle charged with a powerful
acid, probably sulphuric acid--but the secrets of patents must not be
revealed. The bottle can be instantaneously broken by a lever or weight,
and the acid is precipitated into the cylinder, which is filled with an
alkaline fluid--perhaps a solution of carbonate of soda. The mixture of
these fluids rapidly produces large quantities of carbonic acid gas,
which is a great enemy to fire. Moreover, water absorbs the gas easily;
and when generated in the cylinder, the expansion of the gas causes a
propelling power, varying from seventy to a hundred pounds per square
inch. Consequently, a jet of water propelled by the gas shoots out a
distance varying from thirty to fifty feet; and when it reaches the
fire, the heat evaporates the water, and liberates the gas held in
solution, which chokes the fire.

This is the general principle of most chemical fire-engines. There are
several varieties; but they are, no doubt, chiefly based on the rapid
evolution of carbonic acid gas. If you find the principle difficult to
understand, imagine a soda-water bottle bursting, or the contents
spurting forth if the cork be suddenly removed, and you will not be so
surprised at the stream jetting forth from an extinctor. Soda-water is,
of course, aërated by being charged with carbonic acid gas.

These chemical extinctors are of all sizes; they range from small
bottles upward, to large double-tank machines, and drawn by horses. The
small bottles contain the necessary materials, so arranged that, when
the bottle is thrown down, the gas is generated and the fire choked.
Both Germany and the United States make large use of chemical
fire-engines, some of which are capable of giving a pressure of a
hundred and forty pounds, and perhaps more, to the square inch.

Cases filled with sulphur, saltpetre, and other chemicals are sometimes
used, which, being ignited, send forth a choking vapour, stifling all
fire in a confined space; again, other contrivances discharge ammoniacal
gases and hydrochloric acid.

Extinctors, or fire-annihilators, have been invented or introduced by
several persons. Mr. T. Phillips was responsible for one in 1849, which
generated steam and carbonic acid. Two or three persons seem to have had
a hand in an apparatus developed by Mr. W. B. Dick about twenty years
later, and patented April, 1869. This consisted of an iron cylinder
furnished with tartaric acid, bicarbonate of soda and water, and
generating the carbonic acid gas. The first inventor of this appliance
was a Dr. Carlier, who suggested it, or something like it, a few years

About the same time, Mr. James Sinclair introduced his chemical
appliance, the firm now being the Harden Star, Lewis, & Sinclair
Company. British fire-brigades would not touch the extinctors; but the
Americans seized upon them rapidly, and manufactured them largely. At
the present time, it is said that there is scarcely a fire-brigade in
the States that does not use a chemical fire-engine in some shape or

In Britain, the extinctor, either as the hand-grenade bottle or portable
cylinder, which latter contains about eight gallons, is largely used by
private persons, and is kept in many large establishments. Several
provincial fire-brigades have also adopted the appliances in some form
or other; but, as a rule, the chemical fire-engine has not been used by
the public fire-brigades of the country. Perhaps one reason is, that it
is regarded as more suitable for private use, and not as superior to the
powerful steam-engines, hydrants, etc., operated so efficiently by
trained firemen.

It will be seen that the claims for chemical fire-engines are twofold in
character: first, that they themselves supply propelling power for the
fluid without pumps--a great consideration for private persons; and,
secondly, that the liquid thrown has far greater fire-quenching powers
than water.

To the first of these claims, it is possible that fire-brigades, with
their numerous hydrants and powerful steam-engines, would pay but little
regard; while as to the second claim, only accomplished chemists and
impartially-minded persons of wide and varied experience can form a
fully-reliable opinion.

At the time of the great Cripplegate fire in London, November, 1897,
Americans were very keen in their criticism, much of which was unjust
and inaccurate; but one of their points was the absence of chemical
appliances in the London Brigade.

It is, however, fairly open to argument whether the use of such
apparatus would have mended matters. Even Americans have by no means
abolished the steam fire-engine; and they have sometimes found that the
fire has obtained so firm a hold, that the best they could do was to
prevent the flames from spreading. When quantities of inflammable
substances are crowded in high and comparatively frail buildings in
narrow thoroughfares, you have all the elements of serious fires; and
when once fairly started, it remains to be proved whether a
gas-propelled and gas-laden stream would be more efficient than powerful
and copious jets of water.

The difficulty would appear to be rather that of directly and quickly
reaching the seat of the fire, than of the more or less fire-quenching
properties of rival fluids. From the evidence of Mr. John F. Dane at the
Cripplegate Fire Enquiry, we may gain some idea why the brigade dislike
the chemical fire-engine. He had been twenty-eight years in the
brigade--though he had then left the service, and was a consulting fire
engineer--but at one fire, where he had found a dense smoke, an hour was
occupied in tracing the fire to its source, it being worked upon by
hand-buckets. Had he used a chemical fire-engine, it would, no doubt,
have been played into the dense smoke, and damaged a thousand pounds'
worth of goods, while, after having exhausted the charge, they would not
have found the fire subdued. Chemical fire-engines could not be trusted
to discharge where wanted.

Many modern structures at the Cripplegate fire were comparatively frail.
Iron girders and stone were, no doubt, largely used, and you would
naturally think that iron would be fireproof; but, as a matter of fact,
iron may be worse than wood. That is, cast-iron is very liable to split,
if suddenly heated or cooled; and a jet of water playing on a hot
cast-iron girder would most likely cause it to collapse at once, and
bring down everything it supported in a terrible ruin.

The truth is, therefore, that light iron and stone structures are not
nearly so fireproof as they might appear. The difficulty of building
fireproof structures has not yet been fully solved, though many
suggestions to that end have been made. Wood soaked in a strong solution
of tungstate or silicate of soda is rendered uninflammable and nearly
incombustible. Silicate of soda is, perhaps, the best. It fuses in the
heat, and forms a glaze over the wood, preventing the oxygen in the air
from reaching it. But intense heat will overcome it. Whichcord's plan of
fire-proofing encases metal girders in blocks of fire-clay; other
systems make great use of concrete. Walls, of course, should be built of
brick or stone; while double iron doors are of great value, as in the
case of the warehouses burning at the docks on January 1st, 1866.

At the enquiry into the Cripplegate fire of 1897, Mr. Hatchett Smith,
F.R.I.B.A., declared that the well-holes or lighting-areas in the
warehouses involved, were a source of danger as constructed, and he
recommended that such lighting-areas should be confined by party walls,
and sealed with rolled plate-glass or pavement-lights. Windows facing
the street should be glazed with double sashes, and external walls
should be built with a hollow space of about two inches between them and
their plastering, with an automatic water-sprinkler at the top of the
hollow space. Such a plan of construction would, he contended, confine
the fire to the apartment in which it originated, though it would not
extinguish the fire in that room. The flooring Mr. Smith seemed to take
for granted would be of concrete and fireproof.

Among other fire precautions, the introduction of the electric light in
place of gas may operate as a valuable precautionary measure, especially
in theatres and public places; while a strong iron curtain, to be
quickly dropped down between the stage and the auditorium, is also a
most valuable precaution.

But all such measures may be largely neutralized by the inflammable
contents of the buildings. Some manufactures are remarkably dangerous in
this respect, and the extensive storage of certain goods renders even
spontaneous combustion probable. Thus, if a well-built fireproof
structure contain large quantities of combustible materials, and these
burn furiously, the heat evolved may be so great as to conquer almost
everything in the building. Indeed, the heat in huge fires is sufficient
to melt iron.

Nevertheless, the liability to fire and its destructiveness is much
decreased by wise precautionary measures in building, the idea
underlying them being that walls, floorings, doors, or what not should
be so made as to localize the fire to the apartment in which it

As with buildings, so with clothing. Here is a piece of muslin. Light
it: it will not flame; it slowly smoulders. But even as the problem of
building completely fireproof structures has not been solved, so also
the question of fireproof fabrics has not been completely answered.

Progress, however, has been made in that direction. Methods have been
adopted whereby the flaming of fabrics can be prevented, and their
burning reduced to smouldering.

A solution of tungstate of soda is, perhaps, one of the best chemicals
to use for this purpose, for it is believed not to injure the fibre; but
for articles of clothing, borax is better suited, as it does not injure
the appearance of the clothes, and it is very effectual in its
operation, though it weakens the fibre. Alum, common salt, and sulphate
of soda will also diminish or entirely prevent flaming; but they tend to
weaken the fibre.

A simple experiment illustrates the principle. Any boy who has made
fireworks, or dabbled in chemistry, knows that paper--one of the most
inflammable of substances--after being soaked in a solution of
saltpetre, will not flame, but smoulders quickly at the touch of fire;
hence the name touch-paper, which is used to ignite fireworks.

Some of these salts, then, prevent the fabric from flaming, and also
reduce the burning to slow smouldering, the explanation being apparently
this,--when the fabric is dipped in solutions of certain salts, tiny
crystals are deposited among the fibres on drying, and the
inflammability is diminished; but the effect of the salt upon the fabric
has to be considered, and some, such as sulphate of ammonia, will
decompose when the goods are ironed with a hot iron.

This necessary operation of the laundry, however, does not affect
tungstate of soda; and all the dresses of a household could be rendered
non-inflammable and largely incombustible by dipping them in a solution
of this salt. The proportions would be about one pound of the tungstate
to a couple of gallons of water. For starched goods, the best way to use
the tungstate would be to add one part of it to three parts of the
starch, and use the compound in the ordinary manner.

Various methods have been adopted for fire-proofing wood, the strong
solution of silicate of soda being one of the best. Asbestos paint is
also useful, if it does not peel off, a little trick to which it seems
addicted. By another method, the wood is soaked for three hours in a
mixture of alum, sulphate of zinc, potash, and manganic oxide, with
water and a small quantity of sulphuric acid. But while the
inflammability of wood may be removed, it is questionable if it can be
rendered entirely incombustible. In short, the problem of absolutely
preventing fires by rendering substances perfectly fireproof has yet to
be solved, if, indeed, it is capable of solution.

But if fire cannot be entirely prevented, could not some method be
devised of automatically quenching the flames directly they break forth?

Such a method would appear like the prerogative of the good genii of a
fairy fable, and beyond the reach of ordinary mortals. But science and
human ingenuity which tell so many true "fairy tales" have made some
approach to this also. The device is known popularly as "sprinklers,"
and is contrived somewhat in this way:--

Lines of water-pipes are conducted along the ceilings of the building,
and are connected with the water supply through a large tank on the
roof. To these pipes, the sprinklers are attached at distances of about
ten feet. They are, in some cases, jointed with a soft metal, which
melts at a temperature of about 160 degrees; the valve then falls, and
the water is sprayed forth into the apartment.

Other sprinklers are said to act by a thread, which, it is claimed, will
burn when the heat reaches a certain temperature and release the water.
The essential idea, therefore, is that the heat of the fire shall
automatically set free the water to quench it. Such great importance is
attached to the use of sprinklers by some insurance-offices, that they
offer a large reduction of premiums to those employing them. Again,
other sprinklers are not automatic, but require to be set in operation
by hand.

Nevertheless, in spite of all these varied precautions, it is
unfortunately a platitude to say that fires do occur; but the point to
be noted is, that but for these efforts, they would probably be greater
in number and more destructive in their results.

Even when the flames are raging in fury, much may be done by courageous
and well-trained men to preserve goods from injury; and, indeed, much is
done by a body of men whose work is perhaps too little known. They pluck
goods, as it were, out of the very jaws of the fire, and often while the
flames are burning above them. Would you like to know them, and see them
at work?

Behold, then, the black helmets and the scarlet cars of the London
Salvage Corps.



"Where is the fire?"

"City, sir; warehouses well alight."

"Off, and away!"

The horses are harnessed to the scarlet car as quickly as though it were
a fire-engine; the crew of ten men seize their helmets and axes from the
wall beside the car, and mount to their places with their officers; the
coachman shakes the reins; and away dashes the salvage-corps trap to the
scene of action.

The wheels are broad and strong; they do not skid or stick at trifles;
the massy steel chains of the harness shine and glitter with burnishing,
and might do credit to the Horse Artillery; the stout leather helmets
and sturdy little hand-axes of the men look as fit for service as hand
and mind can make them. Everything was in its right place; everything
was ready for action; and at the word of command the men were on the
spot, and fully equipped in a twinkling.

The call came from the fire-brigade. The brigade pass on all their calls
to the salvage corps, and the chiefs of the corps have to use their
discretion as to the force they shall send. The public do not as a rule
summon the salvage corps. The public summon the fire-brigade, and away
rush men and appliances to extinguish the flames and to save life. The
primary duty of the salvage corps is to save goods. There is telephonic
connection between the brigade and the corps, and the two bodies work
together with the utmost cordiality.

We will suppose the present call has come from a big City fire. The
chief has to decide at once upon his mode of action. No two fires are
exactly alike, and saving goods from the flames is something like
warfare with savages--you never know what is likely to happen; so he has
to take in the circumstances of the case at a glance, and shape his
course accordingly. Should the occasion require a stronger force, he
sends back a message by the coachman of the car; and in his evidence
concerning the great Cripplegate fire, Major Charles J. Fox, the chief
officer of the salvage corps, stated that he had seventy men at work at
that memorable conflagration.

But see, here is the fire! Streams of water are being poured on to the
flames, and the policemen have hard work to keep back the excited crowd.
They give way for the scarlet car, and the salvage men have arrived at
the scene of action. Entrance may have to be forced to parts of the
burning building, and doors and windows broken open for this purpose.

Crash! crash! The axes are at work. And a minute more the men step
within amid the smoke. The firemen may be at work on another floor, and
the water to quench the fire may be pouring downstairs in a stream. The
noises are often extraordinary. There is not only the rush and roar of
the flames, the splashing and gurgling of the water, but the falling of
goods, furniture, and may be even parts of the structure itself.

Walls, girders, ceilings may fall, ruins clatter about your ears, clouds
of smoke suffocate you, tongues of flame scorch your face; but if you
are a salvage man, in and out of the building you go, while with your
brave brethren of the corps you spread out the strong rubber tarpaulins
you have brought with you in your trap, and cover up such goods as you
find, to preserve them from damage. Under these stout coverlets, heaps
of commodities may lie quite safe from injury from water and smoke.

Overhead you still hear terrible noises. Safes and tanks tumble and
clatter with dreadful din; part of the structure itself, or some heavy
piece of furniture, falls to the ground; dense volumes of water poured
into the windows rain through on to your devoted head. But you stick to
your post, preserving such goods as you can in the manner that the chief
may direct. May be you have to assist in conveying goods out of reach of
the hungry fire, and your training has taught you how to handle
efficiently certain classes of goods. Sometimes quantities of water
collect in the basement, doing much damage; and down there, splash,
splash, you go, to open drains, or find some means of setting the water

On occasion, the men of the salvage corps find themselves in desperate
straits. At the Cripplegate fire, one of the corps discovered the
staircase in flames, and his retreat quite cut off. With praiseworthy
promptitude, he knotted some ladies' mantles together into a rope, and
by this means escaped from a second-story window to the road below.

On another occasion, Major Fox himself, the chief of the corps, was
rather badly hurt on the hip, when making his way about a burning
building at a fire in the Borough. The probability of accident is only
too great, and it was no child's play in training or in practice which
enabled the corps to attain such proficiency as to carry off a handsome
silver challenge cup at an International Fire Tournament at the
Agricultural Hall in the summer of 1895.

The duties of the salvage corps do not end even when the fire is
extinguished. They remain in possession of the premises until the
fire-insurance claims are satisfactorily arranged. They do not, however,
know which office is paying the particular claims, and all offices unite
in supporting the corps. It is, in fact, their own institution, though
established under Act of Parliament; and it is not, therefore, like the
London Fire-Brigade, a municipal service.

When the brigade was handed over to the Metropolitan Board of Works by
the Act of 1865, provision was made for the establishment of a salvage
corps, to be supported by the Fire-Insurance Companies, and to
co-operate with the brigade. The corps has now five stations, the
headquarters--where the chief officer, Major Fox, resides--being at
Watling Street in the City. The eastern station is at Commercial Road,
Whitechapel; the southern, at Southwark; the northern, at Islington; and
the western, at Shaftesbury Avenue.

The force consists of about a hundred men. Their uniform somewhat
resembles that of the fire-brigade, being of serviceable dark blue
cloth, but with helmets of black leather instead of brass. They are
nearly all ex-navy men, excepting the coachmen, some of whom have seen
service in the army; indeed, candidates now come from the royal navy
direct, but receive a special training for their duties, such as in the
handling of certain classes of goods. Their ranks are divided into
first, second, and third-class men, with coachmen, and foremen, five
superintendents, and one chief officer.

Their work lies largely outside the public eye. They labour, so to
speak, under the fire; and it is difficult to estimate the immense
quantity of goods they save from damage during the course of the year.
Thousands of pounds' worth were saved at the great Cripplegate fire
alone in November, 1897. That huge conflagration, which was one of the
largest in London since the Great Fire of 1666, may well serve to
illustrate the work of the corps.

The alarm was raised shortly before one o'clock mid-day on November
19th, and an engine from Whitecross Street was speedily on the spot. As
usual, the salvage corps received their call from the brigade; and in
his evidence at the subsequent enquiry at the Guildhall, Major Fox
stated he received the call at headquarters from the Watling Street
fire-station, a warehouse being alight in Hamsell Street.

He turned out the trap, and with the superintendent and ten men hurried
to the fire. He also ordered other traps to be sent on from the other
four stations of the corps, and left the station at two minutes past

The Watling Street fire-engine had preceded him; and when he turned the
corner of Jewin Street out of Aldersgate Street, he saw "a bright cone
of fire with a sort of tufted top." It was very bright, and he was
struck by the absence of smoke. He thought the roof of one of the
warehouses had gone, and the flames had got through.

Perceiving the fire was likely to be a big affair, he at once started a
coachman back to Watling Street with the expressive instructions to
"send everything."

The coachman returned at thirteen minutes past one, so the chief and his
party must have arrived at the fire about five minutes past one; that
is, they reached the scene of action in three minutes. The major and
superintendent walked down Hamsell Street, and found upper floors "well
alight," and the fire burning downward as well. It was, in fact, very
fierce; so fierce, indeed, that he remarked to his companion what a late
call they had received. The firemen were getting to work, and he himself
proceeded with his salvage operations.

Believing that some of the buildings were irrevocably doomed, he did not
send his men into these, for the sufficient reason that he could not see
how he could get the men out again; but they got to work in other
buildings in Hamsell Street and Well Street, though the fire was
spreading very rapidly. Many windows were open, which was a material
source of danger, causing, of course, a draught for the fire. They shut
some of the windows, and removed piles of goods from the glass, so that
the buildings might resist the flames as long as possible. Eventually,
the staff of men, now increased to seventy in number, cleared out a
large quantity of goods, and stacked them on a piece of vacant ground
near Australian Avenue.

In spite of the heat and smoke and flame, in spite of falling tanks and
safes and walls, the men worked splendidly, and were able to save an
immense quantity of property.

Meantime, the firemen had been working hard. On arrival, they found the
fire spreading with remarkable rapidity, and the telephone summoned more
and more assistance. Commander Wells was at St. Bartholomew's Hospital
examining the fire appliances when he was informed of the outbreak. He
left at once, and reached Jewin Street about a quarter past one.
Superintendent Dowell was with him; and on entering the street, they
could see from the smoke that the fire was large, and that both Hamsell
Street and Well Street were impassable, as flames even then were
leaping across both the streets.

Steamers, escapes, and manuals hurried up from all quarters, until about
fifty steamers were playing on the flames. Early in the afternoon, the
girls employed in a mantle warehouse hastened to the roof in great
excitement, and escaped by an adjoining building.

A staff of men soon arrived from the Gas Company's offices; but the
falls of ruins were already so numerous and so dangerous, that they were
not able to work effectually.

In fact, the whole of Hamsell Street was before long in flames; and in
spite of all efforts, the fire spread to Redcross Street, Jewin
Crescent, Jewin Street, and Well Street. The brigade had arrived with
their usual promptitude; but before their appliances could bring any
considerable power to bear, the conflagration was extending fast and

The thoroughfares were narrow, the buildings high, and the contents of a
very inflammable nature, such as stationery, fancy goods, celluloid
articles (celluloid being one of the most inflammable substances known),
feathers, silks, etc., while a strong breeze wafted burning fragments
hither and thither. Windows soon cracked and broke, the fire itself thus
creating or increasing the draught; the iron girders yielded to the
intense heat, the interiors collapsed, and the flames raged

In Jewin Crescent, the firemen worked nearly knee-deep in water, and
again and again ruined portions of masonry crashed into the roadway.
Through the afternoon, engines continued to hurry up, until at five
o'clock the maximum number of about fifty was reached. The end of Jewin
Street resembled an immense furnace, while the bare walls of the
premises already burnt out stood gaunt and empty behind, and portions of
their masonry continued to fall.


Firemen were posted on surrounding roofs and on fire-escape ladders,
pouring immense quantities of water on the fire, while others were
working hard to prevent the flames from spreading. All around, thousands
of spectators were massed, pressing as near as they could. They
responded readily, however, to the efforts of the police, and order was
well maintained.

This was the critical period of the fire. It still seemed spreading; in
fact, it appeared as though there were half a dozen outbreaks at once.
But after six, the efforts of the firemen were successful in preventing
it from spreading farther. As darkness fell, huge flames seemed to spurt
upward from the earth, presenting a strikingly weird appearance; they
were caused by the burning gas which the workmen had not been able to
cut off. Crash succeeded crash every few minutes, as tons of masonry
fell; while in Well Street, at one period a huge warehouse, towering
high, seemed wrapped in immense flame from basement to roof.

An accident occurred by Bradford Avenue. Some firemen, throwing water on
the raging fire, were suddenly surprised by a terrible outburst from
beneath them, and it was seen that the floors below were in flames. To
the excited spectators it seemed for a moment as though the men must
perish; but a fire-escape was pitched for them, and amid tremendous
cheering the scorched and half-suffocated men slid down it in safety.

Cripplegate Church, too, suffered a narrow escape, even as it did in
the Great Fire of 1666. On both occasions, sparks set fire to the roof,
the oak rafters on this occasion being ignited. But the special efforts
made by the firemen to save it were happily crowned by success, though
it sustained some damage. Also Mr. Nein, one of the churchwardens,
assisted by Mr. Morvell and Mr. Capper, posted on the roof, worked hard
with buckets to quench the flames.

It was late at night before the official "stop" message was circulated,
and eight o'clock next morning before the last engine left. It was found
that the area affected by the fire covered four and a half acres, two
and a half being burnt out; and no fewer than a hundred and six premises
were involved. Fifty-six buildings were absolutely destroyed, and fifty
others burnt out or damaged. Seventeen streets were affected; but
happily no lives were lost, though several firemen were burnt somewhat
severely. The total loss was estimated at two millions sterling, the
insurance loss being put at about half that amount. The verdict, on the
termination of the enquiry at the Guildhall on January 12th, 1898,
attributed the conflagration to the wilful ignition of goods by some one

The quantity of water used at this fire was enormous. Mr. Ernest
Collins, engineer to the New River Water Company, in whose district the
conflagration took place, said that, up to the time when the "stop"
message was received, the total reached to about five million gallons.
No wonder that the firemen were working knee-deep in Jewin Street. The
five million gallons would, he testified, give a depth of about five
feet over the whole area. But, further, a large quantity was used for a
week or so afterwards, until the conflagration was completely subdued.
In addition to the engines, it must be remembered that there were fifty
hydrants in the neighbourhood.

These hydrants can, of course, be brought into use without the turncock;
but, as a matter of fact, that official arrived at two minutes past one,
the same time as the first engine; while the fire was dated in the
company's return as only breaking out at four minutes to one, and the
brigade report their call at two minutes to one.

The water used came from the company's reservoir in Claremont Square,
Islington. But this receptacle only holds three and a half million
gallons when full. It is, however, connected with another reservoir at
Highgate having a capacity of fifteen million gallons, and with yet
another at Crouch Hill having when full twelve million gallons. As a
matter of fact, these two reservoirs held twenty-five million gallons
between them on the day of the fire, and both were brought into
requisition, as well as the Islington reservoir. The drain was, however,

In the course of the first hour, the water in the Islington reservoir
actually fell four feet. It never fell lower, however; for instructions
were telegraphed to the authorities at other reservoirs to send on more
water, and the supply was satisfactorily maintained,--a striking
contrast, indeed, to the Great Fire of 1666, when the New River
water-pipes were dry!

It was about nine o'clock when the chief officer of the salvage corps
felt able to leave. During the eight hours he had been on duty, his men
had saved goods to the value of many thousands of pounds. He had known
to some extent the class of goods he would meet with, for the inspectors
of the corps make reports from time to time as to the commodities
stored in various City warehouses, and he is therefore to some extent
prepared. On the following day, the 20th, the corps were occupied in
pulling down the tottering walls of the burned-out warehouses which were
in a dangerous condition.

This great Cripplegate fire aroused a good deal of attention in the
American papers, and certain discussion also arose in England as to
water-towers and chemical fire-engines. America is very proud of its
well-furnished firemen, and not without cause. Several cities in the
States are, indeed, famous for their well-organized and well-equipped
fire departments. Let us, then, cross the Atlantic, and see something of
the men and their methods in active operation.

We shall find much to interest and to inform us.



"How can the firemen climb up there?"

The question may well be asked; for the tall New York houses seem to
reach to the sky.

"Ordinary ladders won't do."

"I guess not," replies the New Yorker. "Why, as far back as 1885,
fourteen out of every hundred buildings were too high to be scaled that
way. We build tall here."

"Then, how about the fire-escape?" asks the Englishman.

"Wa'll, iron ladders or steps are permanently fixed to some of the top
windows. But the firemen bring their hook-and-ladder; that is a most
valuable contrivance."

Pursuing his enquiries, the Englishman would find that a hook-and-ladder
consisted, briefly, of a strong pole, with steps projecting on either
side, and a long and stout hook at the top. The fireman can crash this
hook through a window, and hang the pole firmly over the window-sill;
the hook, of course, plunging right through into the room.

Climbing up this pole, with another length in his hand, the fireman can
hang the second length into the window next above, and so on, up to the
very top of the building. He has also a hook in his belt, which he can
fasten to the ladder, when necessary, to steady and secure himself. In
fact, a well-trained and courageous fireman can climb up the tallest
structures by these appliances.

These hooked poles are made of various lengths, ranging from about 10 to
20 feet and more. Some single ladders and extensions reach to over 80
feet; but it will be seen at once that a succession of, say, ten- or
twelve-feet hooked-pole ladders can be easily handled to reach from
floor to floor, and that, used by an active and well-trained fireman, it
can become a most important appliance for saving life.

St. Louis appears to have been the pioneer city in the use of this
apparatus; but New York and other corporations have followed suit. Since
1883 every candidate for the New York Fire Department must undergo a
course of instruction in the use of this and other appliances, and the
thorough learning in this work renders them better men for their
ordinary duties.

The ladders are wheeled to the fire on a truck 50 feet long, and called
a "hook-and-ladder truck." It carries ladders of different lengths, and
also conveys pickaxes, shovels, battering-rams, fire-extinguishers,
life-lines, etc., and tools for pushing open heavy doors. The majority
of the ladders are placed on rollers, and can be removed at once without
disturbing those resting above them.


To some extent, therefore, we might say that the hook-and-ladder truck
with its various appliances answers to the horsed escape of the London
Brigade; but, while London firemen make use of the escape as a point of
vantage whence they can discharge water on the fire, the Americans
largely adopt the water-tower. Indeed, they appear to regard this
apparatus as indispensable for high business buildings. Briefly, it
consists of lengths of pipe, which can be quickly jointed together, the
lengths being carried on a van, and varying from about 30 to 50 feet.
When jointed, they can rapidly be raised to an upright position, the
topmost length having a flexible pipe and nozzle for the discharge of
the jet of water. This pipe can be turned in any direction by means of a
wire rope descending below, and the tower can be revolved by simple
apparatus-gearing. The whole appliance is so arranged that it can be
controlled by one man when in action. The water is supplied by a hose
fastened to the bottom of the tower.


As in England, hydrants are largely used in the States, and the steam
fire-engine is also, of course, a very important appliance. The average
American steam fire-engine generally weighs about three tons, with water
in boiler and men in their seats on the machine. The water in the boiler
is kept at steaming-point by a pipe full of steam passing through it, or
boiling water is supplied from a stationary boiler, so that on arriving
at a fire a working-pressure is obtained. The steam-heating pipe,
however, is capable of being instantly disconnected at the sound of the

The alarm, moreover, is so arranged that the first beat of the gong
draws a bolt fastening the horse's halter to the stall. The animals rush
to their posts, the firemen slide down poles from the upper stories to
the lower, through holes in the floors made for the purpose, and, every
one smartly doing his duty, the horses are harnessed, and the engine or
apparatus-van is fully ready to start through the open doors before the
gong has finished striking--unless it be a very brief alarm.

Four snaps harness the horses.

The animals stand on the ground-floor by the sidewalls, facing the
wheels of the engines and trucks. The harness is hung over the
pole-shaft exactly above the place where the horses will stand, the
traces being fastened to the truck; the hinged collar is snapped round
the animal's neck, the shaft-chain is fastened with a snap, and two
snaps fix the reins. One shake of the reins by the coachman detaches the
harness from the suspenders, and away fly the horses.

Arriving at the fire, the engine is attached to the nearest hydrant, and
the delivery-hose is led off to the burning building. The hydrant is
probably of the upright kind, standing up above the roadway level,
though some cities use the hydrant below-ground, and covered with an
iron plate.

But, the water obtained and the engine ready, the method of attacking
the fire at close quarters and inside the edifice is adopted if
practicable; and, to accomplish this purpose, the firemen have to fight
through blinding and suffocating smoke. For hours they may struggle,
well-nigh choked and scorched, though scarce a flash of flame may be
visible. To reach the seat of fire, doors are broken down, and even iron
shutters opened; while hose is led upstairs, or down into cellars, in
order to quench the flames at their source.

Sometimes, however, on arrival at a fire, the chiefs realize that the
conflagration has gained such hold that the firemen's efforts will be
most usefully directed to prevent it from spreading. When the water has
done its work, the fireman can usually turn it off by a relief-valve
without recourse to the engineer, the complete control thus gained
tending to prevent unnecessary damage by water.

The American fire-brigades--or departments, as they are called--may be
broadly divided into two classes: those of great cities, consisting of a
paid staff of officers and men, devoting all their time to the service;
and, secondly, those of smaller places, consisting of a staff of unpaid
volunteers, pursuing their usual daily avocations, but agreeing to
respond to fire-alarms;--these men, though unpaid, are generally exempt
from service as jurymen and militiamen, and sometimes are permitted a
slight abatement of taxation. Some brigades, again, consist partly of
fully-paid firemen, and partly of volunteers.

Many of these organizations are not only charged with the extinguishment
of fires, but also with the regulation of the storage and sale of
combustibles, and in some cities with the supervision of building
construction. It is claimed that this arrangement has led to a much more
economical and efficient administration of this department; and
undoubtedly the fire-brigade has a very lively interest in the security
and stability of buildings. The firemen's efforts to improve them rank
as valuable precautions and preventives of fire.

It is also claimed that some of the American fire departments, as, for
instance, that of New York, are among the best in the world, and their
engines superior in size and capacity and greater in number than those
of other lands. On the other hand, the laws regulating the prevention of
fires are said to have been less stringent than those obtaining in some
other countries.

The terrible fire in New York in 1835, when the loss reached three
million pounds, led to the development of the fire-service and of
apparatus; and prizes were offered for designs for steam fire-engines.
Cincinnati appears to have taken the lead at first; but the New York
Fire Department is now regarded as one of the most perfect. It is under
the control of three commissioners, whom the mayor appoints; and it has
substantially a military organization.

The paid brigades are usually divided into companies, varying from six
to twelve individuals, including both officers and men. A company may be
supplied with a steam fire-engine and tender for hose, or with a
chemical fire-engine, such being called "engine companies"; or with a
hook-and-ladder truck and horses, called "hook-and-ladder companies"; or
with hose-cart only and horses, called "hose companies." A hose-cart
will carry nearly a thousand feet of hose, as well as tools for use at
fires and half a dozen firemen; while some of them also convey short

A water-tower is sometimes placed with an engine or a hook-and-ladder
company; and, again, these two companies are occasionally brigaded
together. Further, many cities are arranged into company districts, the
captain of each company taking general control over all material, and
the enforcement of the laws connected with his department. In some
cities, the companies are combined into battalions under a chief of
battalion, the highest officer commanding the whole being known as the
chief of the department, or may be rejoicing in the imposing title of
the Fire-Marshal.

Some of the larger cities have shown their wisdom in appointing their
firemen for life, including the highest officers, dismissal only taking
place on misconduct; but in others the baneful practice is followed of
dismissing at least the chief officials after a change in local
politics--a plan which does not conduce to great efficiency and
discipline. New York has abandoned this policy since 1867.

In arranging sites for the fire companies, the principle pursued is to
distribute small companies with different appliances over as wide an
area as possible, instead of concentrating men and appliances at certain
central points. By thus placing companies separately, it is believed
that a larger area is served in the same time than by concentrating them
together. On the occurrence of large fires, when many companies are
called out, distant companies are called from various points, like
reserves, to take the places of some of those in action, to meet calls
that may arise in the same districts; while at some stations, or company
houses, the men are divided into two sections with duplicate apparatus,
so that, while one responds instantly to the first call, the second at
once prepares to answer any subsequent alarm.

Among the apparatus used is the jumping-sheet, designed as a last
attempt to save life; circular rope nets some 15 feet in diameter being
carried on the tenders and trucks in New York; while their canvas sheets
have rope handles. Light chemical fire-engines are also largely used in
small places and in the suburbs of large cities, the lightness of the
machine being, no doubt, a great recommendation. An efficient pattern is
the double-tank engine, one tank of which can be replenished while the
other is being discharged. The tanks contain a mixture producing
carbonic acid gas, which is a great foe to fire. The gas is absorbed by
water, and as it expands causes a great pressure, sufficient to force
the fluid through hose, and throw it a distance of about a hundred and
fifty feet. When the water reaches the flames, the gas held in solution
is liberated by the heat and chokes the fire. The mixture will not
freeze, even when the temperature falls to zero; it is thus always
ready. The machine is light, and contains its own propulsive force for
the water; so that we cannot wonder it is widely adopted.

Similar apparatus throws hydrochloric acid and ammoniacal gases, but
opinions differ as to their utility; for though efficient
fire-quenchers, yet a small portion only of the gas appears to be
carried by the fluid and actually reaches the flames.

Another piece of apparatus is a hose-hoister. For using hose on very
high buildings, and also, indeed, for hoisting ladders to great heights,
a simple appliance has been devised, consisting essentially of a couple
of rollers in a frame; the rope, of course, runs over the rollers to
hoist the hose, but the frame is shaped to adjust itself to the coping
or cornice of the wall.

For cities on rivers, fire-boats are in use, some being fitted with
twin-screw propellers, and the crew being sometimes berthed on shore;
while, lastly, as in England, the fire-alarm telegraph forms a marked
feature of the American system. The alarms are fitted with keyless
doors, and the telephone is also largely in use. When, however, the
keyless door of the alarm is opened by its handle, a gong sounds on the
spot, attracting attention, and preventing, it is intended, wrongful
interference with the alarm. When the door is opened, the call for the
fire company is then sent.

As for the horses, they are regularly trained in New York. They are
accepted on trial at the dealer's risk, and placed in a training-stable;
here they grow accustomed to the startling clang of the alarm-gong, to
the use of the harness, and to being driven in an engine or

Passing through these trials satisfactorily, the animal is promoted to
service in a company; and if, after a time, a good report is forthcoming
as to activity, intelligence, etc., it is bought in and placed on the
regular staff. Then it is given a registered number, which is stamped in
lead, and worn round the creature's neck. A record is kept of each
horse, the average term of service working out at about six years.

Some horses are so highly trained that they will stand in their stalls
unfastened; others are simply tethered by a halter-strap, a bolt in the
stall-side holding a ring in the strap. It is this bolt which is
withdrawn by the first beat of the fire-alarm, instantly releasing the

Fire-horses often develop heart disease, as a result of the excitement
of their work, and sudden deaths sometimes occur. When beginning to show
signs of varying powers or of unfitness for their exciting duties, the
horses are sold out of the service, being still useful for many other

It was of one such that Will Carleton wrote in stirring verse. The old
fire-horse was sold to a worthy milkman, and instead of the exciting
business of rushing to fires came the useful occupation of taking around

But one day the old horse heard the exciting cry it knew so well. The
rush of the fire-horses sounded near; the engine rattled past. The
influence was too strong. Regardless of the milk, the old fire-horse
started forward; his eye gleamed with the old excitement; no effort
could restrain him, and he swept along to the fire, with the lumbering
milkcart behind. Over fell the cans; the milk splashed all over the
streets; but on and on tore the steed, until he actually came in front
of the fire-horses, and kept the lead. Then, when he reached the fire,
he halted, moped, and presently fell in the street, and died. He was
game to the last.

This glance at the American fire departments indicates the great
excellence which many of them have reached. The remarkable efficiency is
found both in organization and in appliances, and it no doubt invites
comparison with British fire-brigades. If so, Britain has nothing to
fear. Such comparison, if superficial, is little worth; and if
exhaustive, would consider all the varying circumstances of each
country, and would discover great merit on both sides.

Thus, the immense height of the American edifices, no doubt, renders the
hook-and-ladder a most valuable appliance; but buildings in Britain,
under the present Acts, are not likely to tower so high; and the
improved fire-escapes so deftly handled by British firemen yield as
good, or even better, results for the work they have to do. The question
of the chemical fire-engine is for experts and experience to decide;
and whether, with its fumes and its gases, it is really superior under
all circumstances, and whether it will ever supersede the water-engine
for all purposes, the twentieth century may reveal.

We conclude that absolute superiority cannot be claimed by any one
country. The truth is, that the means of fighting fire have been
developed to very great excellence in many places; and when we consider
the high courage and efficient training of the men, and the valuable
improvements and great usefulness of the various engines and appliances
employed, we may truly regard this immense development as one of the
wonders of the modern world.


Printed by Hazell, Watson, & Viney, Ld., London and Aylesbury.


THE WORLD'S WONDERS SERIES _of Popular Books treats of the present-day
wonders of Science and Art. They are well written, printed on good
paper, and fully illustrated. Crown 8vo, 160 pages. Handsome Cloth
Cover._ +1s. 6d.+ _each_.

By W. F. KIRBY, F.L.S., F.E.S., of the Natural History Museum,
South Kensington.

By Arch. G. BOWIE.

+THE ROMANCE OF THE POST OFFICE+: Its Inception and Wondrous Development.
By Arch. G. BOWIE.

+THE ROMANCE OF GLASS-MAKING+: A Sketch of the History of Ornamental


By LUCY TAYLOR. With Preface by W. THYNNE LYNN, B.A., F.R.A.S.










*** End of this Doctrine Publishing Corporation Digital Book "Firemen and their Exploits: with some account of the rise - and development of fire-brigades, of various appliances for saving - life at fires and extinguishing the flames." ***

Doctrine Publishing Corporation provides digitized public domain materials.
Public domain books belong to the public and we are merely their custodians.
This effort is time consuming and expensive, so in order to keep providing
this resource, we have taken steps to prevent abuse by commercial parties,
including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the files We designed Doctrine Publishing
Corporation's ISYS search for use by individuals, and we request that you
use these files for personal, non-commercial purposes.

+ Refrain from automated querying Do not send automated queries of any sort
to Doctrine Publishing's system: If you are conducting research on machine
translation, optical character recognition or other areas where access to a
large amount of text is helpful, please contact us. We encourage the use of
public domain materials for these purposes and may be able to help.

+ Keep it legal -  Whatever your use, remember that you are responsible for
ensuring that what you are doing is legal. Do not assume that just because
we believe a book is in the public domain for users in the United States,
that the work is also in the public domain for users in other countries.
Whether a book is still in copyright varies from country to country, and we
can't offer guidance on whether any specific use of any specific book is
allowed. Please do not assume that a book's appearance in Doctrine Publishing
ISYS search  means it can be used in any manner anywhere in the world.
Copyright infringement liability can be quite severe.

About ISYS® Search Software
Established in 1988, ISYS Search Software is a global supplier of enterprise
search solutions for business and government.  The company's award-winning
software suite offers a broad range of search, navigation and discovery
solutions for desktop search, intranet search, SharePoint search and embedded
search applications.  ISYS has been deployed by thousands of organizations
operating in a variety of industries, including government, legal, law
enforcement, financial services, healthcare and recruitment.