By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII | HTML | PDF ]

Look for this book on Amazon

We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: Physiology and histology of the Cubomedusæ - including Dr. F.S. Conant's notes on the physiology
Author: Berger, Edward William
Language: English
As this book started as an ASCII text book there are no pictures available.
Copyright Status: Not copyrighted in the United States. If you live elsewhere check the laws of your country before downloading this ebook. See comments about copyright issues at end of book.

*** Start of this Doctrine Publishing Corporation Digital Book "Physiology and histology of the Cubomedusæ - including Dr. F.S. Conant's notes on the physiology" ***

This book is indexed by ISYS Web Indexing system to allow the reader find any word or number within the document.

                 Memoirs from the Biological Laboratory
                                 OF THE
                        JOHNS HOPKINS UNIVERSITY
                                  IV, 4
                        WILLIAM K. BROOKS, EDITOR

                        PHYSIOLOGY AND HISTOLOGY
                             THE CUBOMEDUSÆ




                              E. W. BERGER

                         THE JOHNS HOPKINS PRESS


                               PRINTED BY
                        The Lord Baltimore Press
                         THE FRIEDENWALD COMPANY
                         BALTIMORE, MD., U.S.A.

This Memoir is a continuation of the work upon the Cubomedusæ which was
begun by the late Dr. FRANKLIN STORY CONANT, and it contains his notes
of physiological experiments, as well as new results which have been
obtained by Dr. E. W. BERGER from the study of material which had been
collected by Dr. CONANT, who had hoped to make it the object of further

In order that this work may be made public as a continuation of Dr.
CONANT’S researches, his sister, GRACE WILBUR CONANT, has, with the
coöperation of other members of his family, made an adequate and generous
provision for its publication.

For this gift, which is at once a contribution to science and a memorial
of an able and promising investigator, lately student and fellow in
this institution, the Johns Hopkins University returns its grateful

                                    DANIEL C. GILMAN, _President_.
                                    W. K. BROOKS, _Professor of Zoölogy_.



      History                                                            1

      Epitome of Anatomy                                                 2



        Light and Darkness                                               5

        Concretions                                                      8

        Sensory Clubs                                                    9

        Velarium and Frenula                                            11

        Pedalia, Interradial Ganglia, Tentacles                         12

        Stomach, Suspensoria, Proboscis, Subumbrella                    13

        Margin, Radial Ganglia, Nerve                                   15

        Stimulation                                                     17

        Activity of Charybdea                                           17

        Temperature                                                     17

        Food and Feeding                                                18

        Occurrence of Charybdea                                         18

      AURELIA AND POLYCLONIA (_Cassiopœa_)                              19

      SUMMARY                                                           22



        Light and Darkness                                              24

        Sensory Clubs                                                   26

        Nerve                                                           29

        Side, Subumbrella                                               30

        Pedalia, Velarium, Ganglia                                      31

        Tentacles                                                       32

        Proboscis, Stomach, Phacelli                                    33

        Temperature                                                     33

        Food and Feeding                                                33

        Occurrence of Charybdea                                         33

        Activity of Charybdea                                           34

      AURELIA AND POLYCLONIA                                            35

      CASSIOPŒA                                                         39

      AURELIA                                                           39


      Method                                                            40

      Anatomy                                                           41

      Distal Complex Eye--

        General                                                         41

        Cornea                                                          42

        The Lens                                                        42

        The Capsule                                                     44

        The Retina                                                      45

          (a) The Prism Cells                                           46

          (b) The Pyramid Cells                                         48

          (c) The Long Pigment Cells                                    50

          (d) Subretinal Nerve Tissue                                   53

          (e) Discussion of Literature                                  53

          (f) Function of the Retinal Cells, Patten’s Theory, and
              further Literature                                        56

      The Proximal Complex Eye                                          60

      The Simple Eyes                                                   61

      Lithocyst and Concretion                                          63

      The Epithelium of the Clubs                                       64

      Network and Multipolar Ganglion Cells                             67

      The Nerve Tissue                                                  67

      The Supporting Lamella                                            68

      Epithelium of Ampulla and Floating Cells                          68

      The Endothelium of the Peduncle                                   73

      The Tentacles and Pedalia--

        The Ectoderm                                                    74

          (a) Thread Cells                                              74

          (b) Muscle Fibers                                             74

          (c) Ganglion Cell                                             75

        The Endoderm                                                    75

      SUMMARY                                                           77

    LITERATURE                                                          78

    REFERENCE LETTERS                                                   80

    DESCRIPTION OF FIGURES                                              81


This paper may be regarded as a continuation of the Cubomedusan studies
pursued by Dr. F. S. Conant while in Jamaica, in 1896 and 1897, with the
Johns Hopkins Marine Laboratory. His systematic and anatomical results
have since been published as his Dissertation (“The Cubomedusæ”) by this
University. Conant described this paper as Part I, hoping soon to add
a second part on the physiology and the embryology, for which he had
some notes and material at hand. Returning, however, to Jamaica with the
laboratory, in 1897, he continued his physiological experiments, and
preserved material for histological purposes. Upon the untimely death
of Conant, his material and notes were placed in my hands by Professor
Brooks, to whom I here take the opportunity of expressing my appreciation
and sincere thanks for the honor thus conferred and for the many favors

In this paper I shall note at some length Conant’s physiological results
and append his notes. I shall also add my results on the histology of
the eyes and the sensory clubs in general, with some few facts on the
histology of the tentacles. The embryology will be reserved for a future

The forms used in the physiological experiments were Charybdea Xaymacana,
one of the two species (see Literature V, a and b) first found and
described by Conant; Aurelia aurita; Polyclonia and Cassiopœa. The
greater number of Conant’s notes are on Charybdea, and were left by him
just as taken at the time of experimenting. Many of these notes are
highly interesting and in the main fit in well with Romanes’[I] and
Eimer’s[IV] results.

Dr. Conant’s work on Charybdea, in 1897, was wholly done at Port Antonio,
Jamaica. At first Conant had only varying success in obtaining Charybdea,
scouring the harbor and neighboring water at all hours, only to obtain
but few specimens. It was on the forenoon of August 7th, while we were
dredging at the head of East Harbor with a steam launch, that many
Charybdeæ were brought up in the dredge. This gave Conant a clue to
their whereabouts and to the means of obtaining them, and from that time
on he was able to obtain them in abundance. His first physiological
experiments were begun on August 4th and continued thereafter at
intervals of several days until his departure from Jamaica on September

Dr. Conant usually performed his experiments during the second half
of the forenoon, after the animals had stood for a few hours in the

The building that was rented at Port Antonio for a laboratory had, in
the basement, a photographer’s dark-room, which was of great service to
Conant in his experiments.

The experiments on Aurelia, in 1897, were also performed at Port Antonio,
between August 6th and 9th. The experiments on Cassiopœa were probably
made at Port Antonio, where specimens were occasionally obtained.

The notes on Aurelia and Polyclonia, in 1896, were taken at Port
Henderson, between May 12th and June 27th.

In his notes Conant speaks of Polyclonia and Cassiopœa. It is at present
undetermined whether he really had both forms or whether he uses the two
names for the same form. It seems likely that in 1896 he thought the
form to be Polyclonia, while for some reason, in 1897, he supposed it to
be Cassiopœa. I have examined several specimens of these medusæ brought
from Port Antonio and find that they all have twelve marginal bodies and
twenty-four radial canals, according to which (V, Haeckel’s System),
they should be Polyclonia. Conant, however, speaks of removing sixteen
marginal bodies, which seems to indicate that he had Cassiopœa. A careful
classification of this form of medusæ found about Jamaica seems to be a
desideratum. I suppose, however, that for our purpose in this paper it
will make little difference which name is used, the two forms being so
similar in form and structure. I have, therefore, decided to retain both
the names used by Conant.

For the complete anatomy of Charybdea the reader is referred to Dr.
Conant’s dissertation, “The Cubomedusæ” (8b), or the _Johns Hopkins
University Circulars_ (8a), both published by the Johns Hopkins Press.
But, for the convenience of those who may be less familiar with
Cubomedusan anatomy, the following brief summary of the anatomy of
Charybdea is given:

The Cubomedusæ, as the name implies, approximate cubes, with their
tentacles (four in Charybdea) arranged at the four corners of the lower
face of the cube. These tentacles are said to lie in the interradii.
Half way between any two points of attachment of the pedalia (the basal
portions of the tentacles) and a little above the margin of the bell
(cube), in a niche, hang the sensory clubs, one on each side, four in
all. Each sensory club hangs in a niche of the exumbrella and is attached
by a small peduncle whose axial canal is in connection with one of
the four stomach-pockets and in the club proper forms an ampulla-like

Each club is said to lie in a perradius, and, like the tentacles, belongs
to the subumbrella. This is shown by the course of the vascular lamellæ,
bands of cells that, stretching through the jelly from the endoderm to
the ectoderm all around the margin, form the line of division between
sub- and exumbrella.

Each club has six eyes. Two of these on the middle line of the club
facing inwards are called the proximal and distal complex eyes, to
distinguish them from the four simple eyes that are disposed laterally,
two on each side of the line of the two complex eyes. All of these eyes
look inwards into the bell cavity through a thin transparent membrane
of the subumbrella. Besides the eyes and the ampulla already mentioned,
a concretion fills the lowermost part of the club, and a group of large
cells, having a network-like structure and called network cells by
Conant, fill the uppermost part of the club between the proximal complex
eye and the attachment of the club to its peduncle (Plate II, Fig. 13).
What is evidently nerve tissue, fibers and ganglion cells, fills the rest
of the club, with two groups of large ganglion cells disposed laterally
from the network cells. A sensory (flagellate) epithelium covers the club.

Most Cubomedusæ, among them Charybdea, have a velarium (comparable to the
velum of the Hydromedusæ), a membrane of tissue that extends inwards at
right angles all around the margin. This velarium, like a velum, has a
central opening through which the water is expelled from the bell-cavity
when the animal pulsates. In the perradii and in the angle between the
velarium and the body wall, are the frenula, which give support to
the velarium much like brackets support a shelf, except that here the
brackets are above the shelf instead of below.

In the upper part of the bell is the stomach, with the phacelli in its
interradii, and continued ventrally into the manubrium, or the proboscis.
The cavity of the stomach is continued in the perradii through the four
gastric ostia into the four stomach pockets, which occupy the sides of
the bell and extend to the margin. Immediately below the gastric ostia,
and in the bell cavity, are the suspensoria, one in each perradius.
These support the floor of the stomach much as the frenula support the
velarium, except that the suspensoria are placed under the shelf (to
continue Conant’s figure) and not above it as are the frenula.

A nerve ring, underneath the epithelium of the subumbrella, passes from
near the origin of each pedalium at the margin to the origin of the
peduncles of the sensory clubs, a little above the margin, giving off a
branch to each club. Eight ganglia are found in the course of this nerve.
The four pedal ganglia lie near the bases of the pedalia, and are hence
interradial; the four radial ganglia lie near the bases of the peduncles
of the clubs, and are perradial. A small nerve, radial nerve, can be
traced a short distance upwards from each radial ganglion. Underlying
the epithelium of the frenula and the suspensoria are ganglion cells and
nerve fibers in larger numbers than elsewhere (excepting the ganglia
mentioned) in the subumbrella. Otherwise, ganglion cells and nerve fibers
underlie the epithelium of the subumbrella, including the inner surface
of the velarium, as also do muscle fibers, except in the perradii and in
the region of the nerve, where the latter become interrupted.



_Light and Darkness_--Experiments 1-9, 10, 33, 34.--As already stated
in the Introduction, a part of Conant’s experiments were performed
in a photographer’s dark-room, with the animals in a deep glass jar.
In the dark a fair proportion of the animals became nearly quiescent
on the bottom, but upon lighting a lamp many started up immediately,
while others took a longer time to come to the surface and swim. These
experiments were tried a number of times and on different occasions with
very similar results. Some medusæ, however, tried immediately after
being brought in, seemed not to react so well upon being placed in the
dark-room, nor would they become quiescent. This, probably, was due to
the fact that the animals had not yet recovered from the effects of being
caught and placed in new surroundings. (Experiments 1, 2, 3.)

Other experiments (4-8, 33, 34) were tried by carrying the jar with the
animals from the weaker light of a room into the more intense light of
outdoors or into direct sunlight. The usual result was an inhibition of
pulsation and a settling to the bottom, while the medusæ immediately
became active again upon returning with them to the room. These results
were so marked that no doubts can be entertained as to their cause,
though some exceptions occurred in which animals placed in the sun
continued to swim on the surface or soon recovered pulsation. In some
experiments, too, no animals responded to the inhibitory stimulus of the
brighter light or all very soon recovered. (See, however, Temperature.)

Reducing the light by placing a coat over the jar produced the same
effect in some experiments (8, 9, 10) as did reducing the light in other
ways, while removing the coat produced the same effect as exposure to
brighter light. In these instances it appears to be the transition from
weaker to stronger light that inhibits pulsation, rather than the actual
intensity of the light; and _vice versa_. It must be noted, too, that
when left for some time in any one place the animals changed, some
coming to the surface and others going to the bottom.

These experiments show beyond doubt that Charybdea is sensitive to
light, and that it is moderate light that stimulates the animals to
activity, while darkness and strong light inhibit activity. While the
individual exceptions, as Conant himself suggests, are well explained
on the supposition of individual diversity, yet it appears that other
conditions, such as the time of day, temperature, etc., may have been
responsible for some of the exceptional experiments in which no animals
responded as expected.

While light of any intensity seems to have stimulated Romanes’[I] Sarsia
and Tiaropsis (Hydromedusæ) to activity, we note that it is moderate
light that stimulates Charybdea. This fact is evidently correlated with
the circumstance that Charybdea usually lives upon or near the bottom.

It may further be added in regard to Romanes’ Tiaropsis polydiademata,
that when it was suddenly exposed to light it went into a spasm
preceded by a long latent period during which there was a “summation of
stimulating influence” in the ganglia. Sarsiæ would congregate toward
the source of light and in general were more active in light than in the
dark, while sudden darkness often inhibited a swimming bout. Romanes
proves for Sarsia that the marginal bodies are the seat of luminous
stimulation and that it is the light rays and not heat rays that
stimulate. He also remarks that he has obtained similar results on the
covered-eyed (Scyphomedusæ) medusæ, namely, that they respond to luminous

It may here be of interest to note a few observations made by myself at
Wood’s Holl, Mass., on a beautiful Olindiad, which is abundant in the
Eelpond at the above place. I found that in a room, in the ordinary light
of evening, the animals swam actively; but the moment the electric light
was turned on they stopped swimming and settled to the bottom or attached
themselves to a branch of some weed or stem suspended in the water.
This was the result in every trial. It is found, further, to be little
active during the brighter parts of the day, when one must dip quite deep
with a net in order to obtain it. A similar observation is also made by
Murbach[II], who further states that this medusa may be deceived into
laying its eggs by placing it in the dark.

One cannot help but remark how analogous is the behavior of medusæ, in
respect to light and darkness, to the behavior of many of the higher
animals,--and medusæ are among the most lowly organized of the animal

Were one to conclude from the behavior of Charybdea in light and darkness
in the laboratory, that it remained on or near the bottom in the daytime
but became more active near or at the surface evenings, nights and early
mornings, one would probably not be far from the truth. Dr. Conant,
while towing near the bottom with a weighted net, in water four to five
feet (1.2-1.5 m.) deep not far from shore and deeper farther out, found
Charybdea in abundance mornings and afternoons, but very few in the
evening. In the evening some few were usually taken in the surface tow.
(See Introduction, Occurrence and Activity.)

Again, who knows but that Charybdea is active during the day, on the
bottom where it was dredged (the light there would only be moderate),
and quiet at night. This supposition would seem to be true, at least,
for those forms of Cubomedusæ that live in deep water. We can hardly
suppose that they should regularly rise to the surface from great depths
and become active. This much we do know that bright light inhibits
Charybdea’s activities, while it probably would not be active in perfect

I do not know just what interpretation to put upon Conant’s finding
Charybdea at Port Henderson at the surface during the early part of the
forenoon, before the sea-breeze roughened the water (“Cubomedusæ” p. 7).
This fact hardly fits in with my conclusions above. Perhaps Charybdea’s
habits vary with its habitat.

Finally, while I find no experimental evidence in Conant’s notes about
what parts of Charybdea are sensitive to light, yet it would seem
preposterous, from histological evidence and from Romanes’ results on
Sarsia, to doubt that the eyes of the marginal bodies are the seat of
this stimulation.

Dr. Conant further experimented by cutting off certain organs and parts
from the Cubomedusan bell. These excisions consisted chiefly in cutting
out the concretions of the sensory clubs, cutting off the whole club,
eliminating a part or whole of the margin and the velarium, cutting the
bell into sectors, excising the stomach and parts connected with it, and
other parts.

_Concretions_--Experiments 10, 11.--The four concretions were removed
from each of four animals. Two of these (Experiments 10, and another (X),
not appended, to save space) seemed to be little if at all affected by
the operation. One of the two (10) swam actively, at first up and down
more changeably than those intact, but later mostly near the surface.
The other one also swam actively and showed nothing to indicate weakened
sense-perception. The other two (11) did not stand the operation well, as
Conant remarks, and immediately went to the bottom, where they remained,
one swimming, while eight hours later one was still in good condition.

Several attempts with stronger light by removing the coat from the
jar made no difference in the behavior of 10; it continued to swim as
heretofore. Upon a final trial, however, with removing the coat, it went
to the bottom, thus showing a possible reaction to light; but when next
seen it was keeping to the bottom.

That the concretions should function as organs of light sensation, as
the first of the above animals might seem to indicate, I believe is out
of the question.[a] The fact, too, that this same animal (10), together
with another (X), swam actively, immediately changing their course upon
coming to the surface, in reality behaving quite as normal animals,
hardly permits us to conclude from the behavior of the other two (11)
that the concretions function directly as organs of equilibrium or space
relations. May these concretions not function simply as weights for
keeping the sensory clubs with their eyes properly suspended? Since these
concretions lie at the lowermost part of the clubs and in closed sacs and
unsupported by cilia, it would seem that the above suggestion as to their
being weights is not improbable. Direct observation (Experiment 20) by
Conant shows, furthermore, that the clubs always hang with a tendency for
the concretions to be lowermost, regardless of the position of the animal.

Again, while they may function as weights, as just explained, the fact
that the epithelium of the clubs is flagellated (a flagellum, continued
as a nerve fiber, to each cell--see Histology), the supposition lies
near that these flagella are the ones influenced by the concretions as
the clubs bear against one side of the sensory niche or the other. A
somewhat similar view seems to be held by other observers and is noted by
Lang in his text-book (“The outer epithelium of the auditory body carries
the auditory hairs”). It seems, then, that in functioning as weights for
suspending the clubs, they may also serve at the same time for making the
pressure of the club against the niche greater than if they were absent,
and thus in part serve in equilibrium. On this supposition we should
expect, furthermore, that after the removal of the concretions the animal
would be little, if at all, affected, since the clubs themselves, without
the concretions, would still be of sufficient weight to be influenced
by gravity and thus to bear against the walls of the sensory niche. It
must be noted, however, that Conant’s experiments upon equilibration in
Charybdea are negative. Also, that Charybdea has any auditory sense is
negatived by two attempts of Conant’s with a violin--one attempt with the
violin near the animals, and another with it in contact with the dish.
(From an unpublished note.) Hence, some other word such as sensory or
equilibrating should perhaps be substituted for “auditory” in the above

Removing the concretions from Aurelia gave negative results very similar
to those on Charybdea. (Experiment 42.)

_Sensory Clubs_--Experiments 12-19, 20, 24.--The entire sensory clubs
were removed from a number of animals. A paralysis of pulsation followed
by a rapid recovery was the usual result. In some instances, however,
there was no paralysis, while in others no recovery followed paralysis.
This is true in a general way whether one club only or all were removed.
While no permanent paralysis followed the removal of one or two clubs,
yet permanent paralysis did occur after the removal of a third club, as,
of course, also after the removal of a fourth. It is evident, too, that
as the removal of the clubs progressed recovery seemed to be weaker after
each cutting, except in one case when pulsation seemed to be quickened
after the removal of a second club. The pulsations after recovery seemed
to be not so strong and regular, often quite feeble, and in one instance
in groups. Pieces of tissue with a club attached and pulsating regularly,
ceased pulsating after removal of the club, in one instance, however,
still giving occasional contractions.

These results are quite the same as those of Romanes[I] on Aurelia,
Cyanæa, etc., and of Eimer[IV] on Aurelia, Rhizostoma, Cotylorhyza,
etc.[b] In these forms Romanes sometimes obtained complete paralysis
after the removal of the sensory clubs only, as also after the removal of
the whole margin, though this was not marked in Aurelia. In Cyanæa and
other forms motor centers seemed to be more abundant than in Aurelia,
so that paralysis was oftener followed by recovery. He concludes that
while the principal motor centers reside in the lithocysts, other centers
doubtless exist that may function vicariously, but that the centers of
the margin are more definitely limited to the marginal bodies in the
Scyphomedusæ than in the Hydromedusæ, in which the whole margin seems
to be replete with centers. He feels positive, furthermore, that no
motor centers exist in Aurelia’s margin outside of the marginal bodies
(lithocysts). Eimer’s results are essentially the same as Romanes’, so
that for a more detailed comparison of the two, Romanes’ works should be

Romanes’ conclusion for the Hydromedusæ is that the motor centers are
not so definitely localized in the marginal bodies, but in the margin
generally, the excision of the marginal bodies alone producing only
partial paralysis, as would also the removal of the margin from between
the marginal bodies, but not so marked. For the Hydromedusæ he concludes,
then, that all the centers of spontaneity are definitely localized in
the margin, but not limited to the marginal bodies. To this he mentions
one exception, namely, _Staurophora laciniata_, in which another center
is found near the margin and two others in two opposite arms of the

I made the remark in an abstract (VI) on Conant’s notes that Romanes did
not obtain recovery of pulsation after removal of all the lithocysts in
Aurelia. As noted above, he did obtain recovery, so that Conant’s results
on Charybdea and also Aurelia (see Polyclonia and Aurelia) are quite in
agreement with Romanes.

The paralysis following the removal of the clubs in Charybdea is
evidently, primarily, the result of a loss of a part of its nervous
mechanism (motor centers), and, secondarily, of nervous shock, and
points to the existence of a definite nervous mechanism in the clubs.
The histological evidence is here, as usual, corroborative of the

Another interesting phenomenon observed after the removal of one or
all of the clubs was the strange behavior of the proboscis. This would
reach from side to side, expanding and contracting its lips as if
trying to grasp something. This behavior is very similar to that of the
proboscis of _Tiaropsis indicans_ when Romanes stimulated any part of its
subumbrella, or of _Limnocodium sorbii_, a little fresh-water medusa,
when he stimulated its margin or the region of the radial canals. (Ib.,
p. 242.)

I may add that I observed a very similar movement of the proboscis of the
Olindiad, before mentioned. When I pulled off pieces of its gonads by
means of quick jerks, with a small forceps, it would continually reach
toward the injured part of its subumbrella. This medusa is generally
quite active with its proboscis and can occasionally be seen to reach
with it.

Romanes states in one place that the proboscis is not affected by the
excision of the margin. This is evidently not the case in Charybdea,
in which excision of the sensory clubs (which really belong to the
margin--see “Cubomedusæ”) decidedly stimulated the proboscis to active
movements. This, furthermore, points to the marginal bodies as being
organs of considerable importance in giving information in the life of
Charybdea. In Romanes’ Sarsia and other medusæ, however, the proboscis
did respond to the stimulation of the tentacles and the marginal bodies,
as also would the bell respond to a stimulation of the proboscis
(manubrium), thus showing a reflex nervous connection between these
regions of the bell, similar to that described for Charybdea.

_Velarium and Frenula_--Experiments 18, 29, 30, 41c.--“The power of
originating contractions” to use Conant’s own words, “evidently resides
in the velarium or in ganglion cells of the frenula, just as it does
in the proboscis and the floor of the stomach.” Isolated pieces of the
velarium contracted by themselves as did the whole velarium when all
other tissue had been removed. An isolated velarium with the margin and
the pedalia attached gave irregular contractions. When the pedalia with
the _interradial ganglia_ were removed it still contracted; and when all
the other tissue was cut off contractions continued.

Cutting the velarium caused the _pedalia_ to be strongly contracted
inwards so that the tentacles were brought inside the bell. Cutting away
the velarium did not interfere with the pulsations of the bell, but
progress was much retarded.

Cutting the frenula caused the pedalia to contract but seemed not to
affect the ability to swim. Comparing the velarium of the Cubomedusæ
with the velum of the Hydromedusæ, I recall no observations similar
to the ones here noted, though it seems that the two may have quite
similar functions. It seems somewhat probable that the velum, and also
the velarium, may function in obtaining food,--and this besides their
function in swimming. Their probable function in swimming, as is well
known, is evidently to narrow the mouth of the bell and thus to cause
the water to be forced out in a smaller but more rapid stream, giving
the animal a steady and more prolonged movement through the water at
every contraction of the bell. In regard to taking food, I observed that
a small crustacean, in the process of being swallowed by an Olindiad,
seemed to be held by the velum being firmly contracted about it while
the proboscis was working itself over the crustacean. It would seem,
furthermore, that my supposition is supported for Charybdea by the fact
that the pedalia and tentacles were contracted so as to be brought inside
the bell when the velarium was cut. The stimulus of cutting the velarium
may be comparable to a stimulus from some object touching it, and thus
cause the pedalia and tentacles to come reflexly to aid in capturing or
holding the object, a fish, crustacean, or such, to be captured.

_Pedalia, Interradial Ganglia, Tentacles_--Experiments 15, 23, 27-31,
41b.--When the pedalia were removed, the power of the animal to guide
itself was completely gone. When one pedalium was cut the others
contracted, while stroking the outer edge of the pedalia, touching the
sensory clubs, or sharply pricking the subumbrella, often produced the
same result. (See also Nerve.) The upper part of the subumbrella seemed
not so sensitive and more seldom produced the reflex of the pedalia,
while the base of the stomach did not give it at all. Stroking the outer
edge of the pedalia of _Tripedalia cystophora_, the second of the two
species of Cubomedusæ described by Conant, also caused the pedalia to
be contracted inwards. I may note here that the muscle fibers under the
ectoderm of the pedalia are specially well developed at and near the
inner and outer edges, both in Charybdea and Tripedalia. On the flattened
sides of the pedalia the muscle fibers are fewer.

When the pedalia were cut off far enough up to remove the interradial
ganglia, coördination was not affected and the animal could pulsate well
enough but with little progress. (See above under Velarium and Frenula.)

An isolated tentacle is capable of squirming contractions, and when
stimulated at either end, it would contract wholly or in part only.

The pedalia, then, it would seem, serve also as a steering apparatus, for
which they are admirably fitted, considering their blade-like thinness.

Considering, now, the reflexes noted under this head and the preceding
one, we find that there is an intimate nervous connection between the
velarium and frenula, subumbrella, sensory clubs, nerve, and a single
pedalium, on the one hand, and the pedalia on the other hand. This
is born out fully, furthermore, by the histological evidence--(See
Introduction and “Cubomedusæ”). Considering the subumbral plexus of
ganglion cells and fibers, including the velarium and the frenula, which
is in connection with the nerve ring and this again with the sensory
clubs and the interradial ganglia at the bases of the pedalia, we have
a basis for these reflexes. While Conant failed to demonstrate nerves
(“Cubomedusæ”) from the interradial ganglia to the pedalia, yet, that a
nervous connection exists between the pedalia and the bell is well shown
by his physiological experiments. I have, furthermore, demonstrated
ganglion cells under the ectoderm of the tentacles (see Histology).

Romanes obtained quite similar results in the Hydromedusæ. He found
that when a tentacle of Sarsia was slightly stimulated, it alone would
contract, but when it was more strongly stimulated the other tentacles
also would respond as also the manubrium. I find no evidence in Conant’s
notes of any such response of the manubrium of Charybdea, except when the
clubs were cut off.

The reflex obtained on stimulating the subumbrella of Charybdea, when
the pedalia would contract, is somewhat different from that obtained by
Romanes, who found that the most sensitive part of the subumbrella in
producing a reflex of the margin was at the junction of the manubrium
to the bell and that the subumbrella below this point did not give the

_Stomach, Suspensoria, Proboscis, Subumbrella_--Experiments 12, 18, 19,
24-26, 29, 31.--The proboscis and the stomach with the phacelli when cut
out, contracted with or without the lips removed. The isolated lips also
contracted (twitched).

Pieces of the sides connected only with the stomach and suspensoria, or
with the margin (Experiment 47 (?)) twitched spontaneously, but seldom
did so when these were removed. In one instance the whole side was cut
out so as to exclude the radial ganglion but still connected with a
portion of the suspensorium. This pulsated, or contracted, but on being
halved transversely, the lower half ceased to contract while the upper
half connected with the suspensorium, continued to contract.

Cutting off the whole stomach end of the animal excited to very rapid
pulsations of the remaining part, with the stream of water stronger out
the aboral end than past the velarium.

Conant says, “It seems I get no good evidence of the subumbrella without
connection with special nerve centers being able to contract by itself.”
The piece in which he did get contractions he suspects may have been
intimately associated with some part of the frenula or the suspensoria.
In Polyclonia no such doubt exists, for small pieces of subumbrella
were seen to contract. A small piece of subumbrella of Charybdea with a
sensory club attached could contract by itself.

From the above it would seem that a center capable of inciting to
contractions resided in the suspensoria as well as in the sensory
clubs, and this may be one of the centers that becomes potent upon the
removal of the clubs. This is further supported by Conant’s observation
(Introduction and “Cubomedusæ”) that an extra large number of ganglion
cells is found under the epithelium of the suspensoria. A somewhat
similarly located center of spontaneity described by Romanes for
_Staurophora laciniata_ (Hydromedusa) has already been noted.

As to the rapid pulsations of the bell after cutting out the stomach
end, this also is similar to Romanes’ results on Aurelia and other
Scyphomedusæ, when he cut off parts of the manubrium or an aboral ring
out of the bell. In these instances, however, Romanes soon obtained
a slackening of the rhythm following the temporary acceleration. The
temporary acceleration he attributes to the stimulus of cutting, and the
slackening to a lack of some afferent stimulus from the removed tissue.
Conant obtained the same results on Polyclonia by removing the oral arms
(see Polyclonia) but says nothing about a slackening of the rhythm in
Charybdea. I believe the increased rhythm in Charybdea was in part due to
the decreased amount of labor necessary to force the water out of two
openings instead of one, namely, past the velarium. Just how much this
observation bears upon Romanes’ theory of rhythmic contraction, that the
rhythm is due to an alternate exhaustion and recovery of the contractile
tissue, as opposed to the ganglionic theory of rhythm of physiologists,
one does not wish to speculate much. Yet, I feel that the observation
rather supports this theory. The tissue having to do less work, would
become less exhausted at each contraction and require less time for
recovery and hence have a more rapid rhythm.

I here sum up Romanes’ theory in a few words. The ganglia liberate a
constant and comparatively weak stimulus, one perhaps about minimal. This
stimulus sets off the contractile tissue; but as the tissue contracts
and becomes exhausted the constant stimulus becomes, in relation to it,
sub-minimal, and it does not contract again until it has recovered and
the stimulus is again strong enough to set it off. The ganglionic theory
of rhythmic contraction supposes that the ganglia liberate stimuli to
the contractile tissue at successive intervals. Romanes had this theory
suggested to him by the rhythmic contractions he succeeded in obtaining
by subjecting deganglionated bells to a continuous but weak faradic
stimulus, or by placing them into weakly acidulated water, or into 5 per
cent. glycerine. Romanes claims that his theory better explains muscular
tonus and the contraction of involuntary muscle. He does not, however,
hold this theory to the exclusion of the ganglionic theory, since only
too often does he speak in terms of the latter. He further brings in his
support the fact that the frog’s tongue, in which no ganglia have been
demonstrated, can be made to contract rhythmically when subjected to a
weak and continuous stimulus. He also calls attention to the rhythmic
contractions seen in the Protozoa, the snail’s heart, etc. Finally,
physiologists are much inclined to explain the rhythmic contraction of
the heart and other involuntary muscles, in part, at least, as due to a
property of the contractile tissue.

_Margin, Radial Ganglia, Nerve_--Experiments 18, 21-23, 30.--Complete
removal of the margin did not stop pulsation; but the removal of the
radial ganglia stopped it permanently. While this experiment seems to
have been tried only once, yet, taking into consideration the results of
other operations, it would seem that the principal centers of spontaneity
reside in these ganglia. (It should here be remembered that the
interradial ganglia were probably removed at the removing of the margin.)

Cutting the nerve in the eight adradii caused the _pedalia_ to bend
inwards at right angles to their normal position but did not in the least
affect the coördination of the sides. When, however, the sides were cut
in the eight adradii to the base of the stomach, coördination for the
main part ceased, and each side pulsated in its own rhythm.

I have said that the principal centers of spontaneity reside in the
radial ganglia. Upon further thought this hardly seems warranted. No
doubt, among the principal motor centers must be placed the ganglionic
masses of the clubs, and the radial ganglia, together with the homologous
interradial ganglia, represent centers of equal value. I speak of these
two sets of ganglia as homologous, since strictly speaking, they both
belong to the margin, and the clubs at whose bases they lie probably
represent modified tentacles. Conant’s experiments leave us in the
dark as to the function of these ganglia. Next in order, it would
seem, are the ganglion cells in the suspensoria, as is suggested by
the contractions of an isolated side with a portion of a suspensorium
attached. (See previous head.) While we have seen that the frenula and
the velarium can contract by themselves, yet, I find no evidence that
these can impart their contractions to any adjacent tissue.

Conant’s results on cutting the nerve eight times and then continuing the
cuts to the base of the stomach are quite the same as Romanes and Eimer
obtained upon Aurelia. Romanes, however, concludes that in his Sarsia,
Tiaropsis, etc., coördination was broken when only short incisions were
made in the margin. Charybdea appears, then, to agree with Aurelia rather
than with the Hydromedusæ. Yet, since Romanes at first obtained similar
results to those of Charybdea on Sarsia, but on further experimenting
concluded that coördination had really been destroyed at the first
cutting, we cannot speak with certainty that coördination had not been
destroyed in Charybdea before the cuts had been continued to the base of
the stomach. I say not with certainty, because the injury to the bell
being slight, coördination may have been maintained on the principle of
a simultaneously (simultaneous for the octants) alternate exhaustion and
recovery of the contractile tissue on the principle of Romanes’ theory.

_Stimulation._--Romanes found when he stimulated a deganglionated bell
of a Hydromedusa, that it responded by a single contraction, while that
of a Scyphomedusa responded with several quite rhythmic contractions.
Charybdea in this respect agrees with the Scyphomedusæ. Romanes’ results
were also verified on Aurelia. (Experiments 12c, 15, 50, 51.)

_Activity of Charybdea._--In speaking of the activity of Charybdea, I
cannot do better than refer the reader to the notes. (Experiment 41.)
Conant remarks in his dissertation what an active swimmer Charybdea is,
and this is further borne out by his later observations.

_Temperature._--Ice in the water seemed to have no effect, except when
held against an animal, when a slowing of pulsation followed in a few
instances. On some pulsating actively in the sun the temperature of the
water was found to be 92° F. (Experiments 33-35.)

Conant does not tell us how cold the water became when he placed ice in
it, but judging from his results, it seems that he might have obtained
a decided slowing of pulsation if the water in which the medusæ swam
had been permitted to approach anywhere near the freezing point, say
35-40° F. Romanes obtained decided slowing of pulsation, and even
complete inhibition, on a bell of Aurelia, as also a lengthening of the
latent period on some strips cut from a bell of Aurelia, by lowering
the temperature of the water. Replacing Aurelia in warmer water had
the effect of immediate recovery and increased rhythm. In Aurelia,
raising the temperature increased the rhythm but diminished it when the
temperature of the water became 70-80° F. After a slowing of pulsation
due to such a rise of temperature, it would not quicken again when the
animal was placed in water of its normal temperature. Romanes explains
this by supposing that the tissue of the medusa had been permanently
injured by the abnormally high temperature. It would be interesting to
observe how the tropical Aurelia behaved under such treatment, seeing
that Charybdea pulsated actively and without apparent injury in water at
92° F. _Limnocodium_, noted by Romanes, and probably a tropical species,
lived happily in water at 85° F. in the lily house of the Royal Botanical
Society. The temperature of the water could be raised to 100° F. before
it proved fatal to this medusa. Such facts point to a decided difference
in the constitution of the protoplasm of tropical and temperate medusæ.
Romanes’ Sarsia became frantic when placed in milk-warm water.

While writing the above, I was led to wonder whether the temperature
of the water may not have been the stimulating influence in those
experiments on light (previously noted) in which the medusæ continued to
swim actively in the sunlight.

_Food and Feeding._--See Experiment 36.

I again make note of a few observations made by myself on the Olindiad.
A crustacean became entangled in the tentacles of a medusa; apparently
this wished to retain it, for the proboscis reached in the direction
of the crustacean, which, however, got away. I then placed, by means
of a needle, another small crustacean against one of the tentacles.
This was seized but not retained, for the animal pulsated and it was
washed away by the water. Twice I saw a good-sized crustacean in the
proboscis. In one instance the velum appeared to hold the part of the
crustacean not yet in the proboscis. I noticed another with a crustacean
wholly in the proboscis, which was much lengthened out, the upper part
of the crustacean being in the stomach. The next morning the crustacean
was wholly in the stomach and the proboscis normal. At 5.30 P. M. the
crustacean was ejected, nothing but the shell and some rubbish remaining.

These medusæ seem to pay no attention to being touched by one of their
kind, except to give a pulsation or two.

The proboscis appears very “intelligent” in its actions.[c] First, some
of the tentacles can be seen to contract and to bend inwards, then the
side next the tentacles contracts and the proboscis is seen to reach in
that direction. I could not see, however, what the irritant was.

_Occurrence of Charybdea_--Experiments 37-40.--Dr. Conant’s remarks
(“Cubomedusæ”) on the occurrence of Charybdea at the surface of quite
shallow water and near the shore (which is quite at variance with former
observations, that the Cubomedusæ are essentially deep-sea forms) are
further borne out by his observations at Port Antonio. As already noted
in the Introduction, Charybdea was here found in abundance in quite
shallow water and near shore, but on the bottom instead of at the
surface as at Port Henderson. It is possible that the animals had been
active near the surface earlier in the morning and that some unknown
conditions determined their settling to the bottom earlier in the former
place than in the latter.

Conant’s conjecture, “whether these were their natural conditions,
or whether the two forms,” Charybdea and Tripedalia, “were driven by
some chance from the deep ocean into the harbor and there found their
surroundings secondarily congenial, so to speak,” seems to be borne out
in favor of the former supposition (for Charybdea at least),--that these
are their natural conditions and that Charybdea Xaymacana is essentially
a shore form.


Experiments 42-53.

Many of the observations on these forms relate to the rate of pulsation.
In an Aurelia, following the removal of a lithocyst, there was a pause
followed by pulsations. In about two minutes rhythmic pulsations were
renewed. Four minutes after the operation there were nineteen pulsations
to the half minute, while twenty minutes after there were only nine,
and these in groups of six and three. The normal rate of pulsation was
twenty-five to the half minute.

Polyclonia behaved much in the same manner as Aurelia. Upon the removal
of lithocyst pulsations continued, but in groups with short pauses. The
normal rate of pulsation was twenty-seven to the half minute, while three
minutes after the operation it was seventeen, and eleven minutes after,
fifteen to the half minute. The tissue connected with a removed lithocyst
gave contractions. Placing a Polyclonia in fresh sea-water more than
doubled the rate of pulsation, which, however, soon fell to the normal
rate, and lower in one instance. In small individuals the rhythm is
decidedly more rapid than in those of larger size. The few observations
on this point would seem to show that it is in inverse proportion to the
squares of the diameters of the bells.

The removal of a single oral arm or of the whole eight, in Polyclonia,
had much the same effect as the removal of a lithocyst: there was a
decided slowing of the rate of pulsation, while the immediate effect of
cutting was an acceleration or a return to near the normal rate. About
a day later this same animal had quite regained its normal rate of
pulsation and continued to live over two weeks. A long latent period
followed the cutting of an arm, before the stimulation of cutting
manifested itself.

An Aurelia, with all its lithocysts removed, still gave spontaneous
and coördinated contractions after allowing time for recovery from the
operation. This was the result in one instance, while in several others
only a few contractions were observed. Removal of the sixteen marginal
bodies (lithocysts) in a Cassiopœa produced paralysis for a time but
recovery soon followed. A Polyclonia with its entire margin removed was
paralyzed but had so far recovered in a day as to be able, at intervals,
to give spontaneous pulsations.

The removed margin of a Polyclonia pulsated vigorously. This margin was
then split so as to make a ring within a ring but connected at one point
by a small bridge of tissue. The waves of contraction, which always
originated on the ring with the lithocysts, passed the bridge to the
inner ring quite as Romanes experienced. The outer ring was next split
so as to separate the exumbral portion from the subumbral, when it was
found that the contractions always originated from the latter. Seven
days after its removal, this same margin was still alive and pulsating
vigorously, and broken-off pieces of the subumbral portion were pulsating
by themselves. Fifteen of the ganglia were removed. It was then found
that while most of the pulsations originated at the remaining ganglion,
now and then contractions originated in other parts where no ganglion
remained. Two days later this margin was still alive with contractions
originating as often from other parts as from the ganglion. A similar
observation was made on a margin of Cassiopœa.

A Polyclonia with the eight lithocysts of one side removed, to compare
with a normal one, gave no evidence of affected coördination.

An oral lobe from an Aurelia could give contractions some minutes after

In another Aurelia a circular cut was made about the base of the oral
lobes through the epithelium of the subumbrella. The animal could pulsate
well enough but coördination seemed a little affected, while in another
one with a like cut but semicircular, no effect was noticed.

These results on the removal of the lithocysts (and margin in Polyclonia)
in Aurelia, Polyclonia and Cassiopœa agree quite with those on Charybdea
and, of course, also with Romanes’ and Eimer’s results as to paralysis
and recovery following the removal of the lithocysts, or margin, in
Aurelia, Cyanea, etc. I recall no similar observations, however, on
removing a single lithocyst, and the question of an explanation for
the slowing of the rhythm thus brought about arises. Romanes gives as
an explanation for the slowing of the rhythm (Aurelia, Cyanea, etc.)
following the temporary acceleration upon removing the manubrium or a
portion from the center of the bell, as due to a lack of an afferent
stimulating influence upon the ganglia from the excised tissue. May
a similar explanation not serve to explain the slowing following the
removal of a single lithocyst, above noted? The removed lithocyst could
no longer give its efferent stimulus to the remaining ganglia nor to the
tissue, so that the former would have a weaker stimulating influence,
in consequence of which the latter (the contractile tissue) would be
deprived of a part of the original stimulus of the remaining ganglia as
also of that of the removed ganglion. The whole would thus result in
giving to the contractile tissue a weaker stimulus, which, again, would
require longer and greater recovery on the part of the tissue in order
to be set off by the stimulus at hand. This explanation is given on the
basis of Romanes’ theory of rhythmic contraction previously explained.

Of course, it may be suggested that the musculature had lost tonus,
due to the lack of influence of the removed ganglion (lithocyst), in
consequence of which there was a lowering of irritability on the part
of the contractile tissue. This would require a greater summation of
stimulating influence (Ganglionic theory of contraction) on the part of
the remaining ganglia to set it off. Again, the loss of irritability
on the part of the contractile tissue may have been due to a lack of
nutritive influence from the removed ganglion.

Romanes’ explanation, that the slowing of the rhythm following the
removal of the manubrium and central parts of the bell in Aurelia and
Cyanea is due to a lack of an afferent stimulus on the ganglia from the
removed tissue, likewise explains the similar results obtained by Conant
by removing the oral arms from Polyclonia.

The fact that a margin of Cassiopœa and also of Polyclonia, connected
with but one ganglion, often originated contractions in other parts as
well as from the ganglion, seems to show that motor centers resided
in the margin outside of the ganglia. This would be somewhat at
variance with Romanes’ conclusion, that no such centers existed in the
Scyphomedusæ. Conant does not state whether the Polyclonia margin in
question was kept in fresh sea-water or whether the water was not changed
during the seven days. If the latter is the case, then some poisonous
compounds may have been formed that acted as a stimulus much as weakly
acidulated water served Romanes in producing rhythmic contractions in
deganglionated bells.

Again, while it is true that no ganglia are known to exist in the margins
of the Scyphomedusæ outside of the ganglia in the marginal bodies, yet,
ganglion cells and nerve fibers are found in the subumbral part of the
margin as well as in the rest of the umbrella. And as I know no reason
why scattered ganglion cells may not function as ganglia, it is possible
that the contractions in question were spontaneous.

Finally, is it possible that the remaining ganglion originated the
contractions in different parts of the margin, thus acting at a distance
from the points at which contractions originated? Romanes gives an
instance in which he believed to have evidence that this was the case.
Upon a final consideration I am inclined to this latter explanation.


Summing up for Charybdea, we have seen that it is very sensitive to
light, strong light as also darkness inhibiting pulsations, while
moderate light stimulates it to activity. Also, a sudden change from
weaker to stronger light, or _vice versa_, may inhibit or stimulate to
activity respectively. This behavior of Charybdea seems to be correlated
with its habit of life on the bottom. We have no reason to doubt but that
the eyes of the sensory clubs are the seat of light sensation.

The experiments on equilibration are negative, giving us no certain
light on the function of the concretions, though it appears that they
may serve, in part at least, for keeping the sensory clubs properly
suspended. Their function in giving the animal sensations of space
relations is not, however, excluded.

Excision of the sensory clubs demonstrates that they are the seat of
important ganglionic centers, the removal of which results in temporary
paralysis and weakness. That they also are the seat of organs (eyes,
network-cells, concretions) that are of importance in giving information
in the life of Charybdea, is evident from the reaching motion of the
proboscis after the removal of the sensory clubs. Other centers of
spontaneity in their order of importance probably are: the radial ganglia
(one experiment); the interradial ganglia (?); the suspensoria, as shown
by their supplying stimuli to isolated pieces of the sides connected with
them; the frenula and the velarium, the latter of which gave contractions
when removed with the frenula or in pieces only. No evidence is given
that the frenula or the velarium can impart their contractions to other
tissue, though this seems probable for the former. The proboscis can also
contract of itself.

Reflexes between the velarium, frenula, subumbrella, sensory clubs,
nerve, and any one pedalium, on the one hand, and the pedalia on the
other hand, are very common, and point to the pedalia with the tentacles
as organs of defense and offense. The pedalia serve also as rudders in

Finally, as judged by the results in this paper, Charybdea seems to
occupy, physiologically, a position intermediate between the Hydromedusæ
and the Scyphomedusæ. In its great activity as a swimmer, in its response
to light, and in its reflexes it is Hydromedusan, while in the paralysis
and recovery following the removal of its marginal bodies, as also in its
response with several pulsations instead of one, when a deganglionated
bell is stimulated, it is Scyphomedusan.

The observations on the Discomedusæ, Aurelia, Polyclonia, Cassiopœa,
demonstrate the existence of motor nerve centers in the marginal bodies;
but that other centers are present is shown by the recovery of pulsation
following the removal of the marginal bodies or the margin. These results
are mainly confirmatory of those of Romanes and Eimer. They differ from
these in the fact that margins of Polyclonia and Cassiopœa, with only one
ganglion attached, originated contractions distant from the ganglion.
Removing of a single lithocyst resulted in a slowing of pulsation, as did
also the removal of the oral lobes, though the immediate effect in the
latter case was an acceleration. Isolated pieces of the subumbrella could


Below follow Dr. Conant’s notes. They are printed about as Conant left
them. Their order of succession, however, has been changed to bring
similar experiments together, while useless and often repeated ones
have been omitted, and short elliptical sentences completed. Where the
present writer wished to add any explanation, the same has been placed in


_Light and Darkness._--1. Eight medusæ, in a deep glass jar and covered
by a black coat, except one inch around the top, were placed in the

a. When light from a lamp was thrown on the surface (one inch) layer, the
animals were active near the surface; when the light was withdrawn, one
or two were on the bottom and not moving but were probably pulsating.

b. After four or five minutes in the dark, three or four besides a feeble
one are on the bottom. It took about two minutes to get them all to
swim [by the lamp]. Of the three on the bottom, one, at any rate, was
not pulsating. [Three other attempts like a and b were made, with very
similar results.]

2. Experiment No. 1 was repeated several weeks later. Four in a large
round glass dish were placed in the dark-room. A lamp being held to the
dish all but one were found to be on the bottom. That one quickly went to
the bottom, while two of those on the bottom quickly came to the top. In
two or three minutes the one that had gone to the bottom began to pulsate
and at about the same time the other one that had remained on the bottom
also began to pulsate, while the two that had gone to the top stayed
there swimming very actively. [Repeated with like results.]

3. Fresh ones did not show the reaction to light after darkness so
well as did those in the experiments previously recorded. They were
experimented with about nine A. M., while usually they were tried later
in the day. I had rather suspected from previous work that they would not
react so well when fresh.

4. a. In walking with the jar (1) of jelly-fish of experiment 1 from
the dark-room to the back porch of the laboratory (fifty steps), in the
bright sun and a cool breeze, all were found upon entering the laboratory
door to have settled to the bottom and most of them to have ceased active
swimming. In five minutes two or three were swimming somewhat, and in
five minutes more all but one or two (eight in all) were swimming.

Walking with the jar about the laboratory did not suffice to make any
change in their swimming, nor did blowing on the surface make any
appreciable change.

b. Upon taking the jar to the back porch and placing it on the stone or
cement flags, in the shade and a cool breeze, in four minutes time all
were on the bottom not even pulsating.

Upon replacing them on the laboratory table all began to swim about at
once. [Repeated.]

c. The jar (1) was placed on the back porch again; in fifteen seconds
three were on the bottom; in one-half minute all but one. In three or
four minutes all were on the bottom, but two were swimming lively and the
others pulsating. In another minute all were swimming.

d. The jar (1) was tried again, not resting it on the flags but holding
it by my hands on the sides. The effect was just as quick; they stopped
pulsating at once. By the time I had got back to my table in the
laboratory, one was at the surface and another arrived just as the jar
was set down.

[Several other experiments of an order similar to those just noted were
tried, with very similar results.]

5. Two buckets stood side by side in the laboratory. One bucket (1) had
more Charybdeas in it than the other bucket (2), and also had more since
brought in (about an hour). The water of one (1) was also more discolored
and with more organic matter (sea weed, etc.). In the laboratory the
animals were active on the surface of both buckets. Placed in the
sunlight on the porch, no breeze, the sun slanting so that one side of
the water in the buckets was bright while the other side was shaded, the
jelly-fish in (1) went mostly to the bottom, while those in (2) seemed
unaffected though some showed a tendency to go to the bottom after a
longer exposure. The experiment with (1) was repeated and it took some
five minutes for them all to go to the bottom. In a few minutes after
replacing them in the laboratory several were active again on the surface.

6. Jar (a) with five large ones stood on my table; they were quite
active. Placed in the sun (no breeze), on the porch, one or two sank
to the bottom at once and the others seemed to slow their activities
somewhat but not very markedly. In a few minutes all were swimming,
apparently more actively than before, in the bright sunlight.

[In other experiments Conant shows that it is not the stimulus of walking
that causes them to swim when carried into the room, for they would not
swim when he walked with them on the porch. Also, he shows how they may
change, some swimming, others not, when left for some time in any one

7. In a tumbler were two pulsating very vigorously. Placed in the bright
sunlight, very little breeze now and then, they showed no change whatever.

8. Some in a jar were covered with a black coat. The coat was taken off,
and almost immediately they stopped pulsating, or pulsated but feebly,
and sank to the bottom. The coat was put on again with one part near the
bottom of the jar exposed. Almost at once, the animals, which were quite
motionless, pulsating but little, resumed pulsation, which became more
and more vigorous, and quickly swam to the top again. It seems plainly
to be a reaction to light. [Such experiments as this were repeated at
different times with very like results.]

9. A bucket with several bobbing actively on the surface was set out in a
smart shower, and the animals continued bobbing on the surface as before.
I could not see that they made the slightest attempt to go below.

There can be no doubt but that there is an individual difference in
sensitiveness to the reaction of light after darkness. E. g., I just
removed the coat from a dish with four in it; one went to the bottom at
once, another presently, a third remained active at the surface, the
fourth when noticed was on the bottom.

There is also a difference in the length of time they stay on the bottom
as well as in the quickness in the response to light. Some recover very
quickly, should say in less than a minute, and at once become very
active. Some stay for a long time and only resume activity upon the coat
being placed over them. Perhaps this explains some of the observations in
Experiment 1.

_Sensory Clubs._--10. All four concretions were removed and the animal
stood the operation well. It swam more restlessly, however, than others
did in the same surroundings. It seemed at first to show a trace of loss
of sense-perception. It swam up, and down again, more changeable than
those intact, which stay rather more constantly either on the bottom
or at the surface. This may, however, have been due solely to the
restlessness of the animal after the operation. Later it swam actively
for by far the most part on the surface only, which points to the truth
of the preceding statement.

It showed no reaction to _light_. A coat placed over the jar was removed,
when it was found to be on the surface and it remained there. This was
twice repeated. I noticed specially that on pushing the bell above the
surface of the water it at once turned and went deeper as the normal
animal does. Finally, given another a trial with removing the coat from
the jar, it went to the bottom as the normal animal usually does. After
this, when next seen, it was keeping to the bottom. [This experiment was
repeated on another occasion with almost identical results, no loss of
sense-perception being noticeable.]

Sometimes it seemed as if access of _light_ at removing the coat acted
as a stimulus to one or more of those that were quiescent on the bottom.
This was noticed again on the following day.

11. Two more were operated upon. These did not stand the operation well
and stayed on the bottom, one swimming, while eight hours later one
was in better condition (pulsating) than two left in the same dish for

12. a. Three clubs were cut off leaving only the stalks. A temporary
paralysis of the power to swim was the immediate effect. Later it
partially recovered this power. The proboscis, which was previously
quiet, now showed convulsive twitchings and movements. It continued for
some time to move to one side and then the other (after short pauses of
varied length) as if to grasp some object. The lips of the _proboscis_
were also moving and at times expanding. Often the movements were towards
the side on which the club was uninjured.

b. The fourth club was next removed. A temporary paralysis as before
resulted, followed by a quick recovery of pulsation; but the animal was
now much weakened. The movement of the proboscis continued--shortening,
lips expanding, moving to this side or that. The pulsations of the bell
were kept up even when too weak to swim.

c. The sensory niches of this same animal were treated with 2.5 per cent.
acetic acid by means of a pipette. The stalks of all four clubs showed
white. Pulsations ceased. The velarium showed feeble local contractions.
The movements of the proboscis and suspensoria drawing down the stomach
continued. Upon stirring the animal it gave rather feeble, somewhat
convulsive pulsations with local (fibrillar) contractions; the pulsations
in some cases were pretty well coördinated, but were more on the
twitching kind.

13. Three clubs were removed. The animal pulsated well, only a little
less strongly, perhaps. After a minute or two the fourth club was
removed. It pulsated almost immediately, perhaps thirty seconds after the
operation. It swam very well and pulsated feebly five hours after the

14. One from jar (a) (Experiment 6) was operated upon. When the first
club was cut off there was a paralysis of pulsation followed by a quick
recovery. Cutting off the second club seemed to stimulate pulsation,
the third to diminish it; after cutting off the fourth club it still
pulsated. When placed in a large jar it pulsated on the bottom, but not
strong enough to swim. The pulsations were fairly regular and sometimes
seemed to occur in groups of two, but these groups were not well marked.

15. Another one from jar (a) was taken. One club was cut out, upon
which there was a very temporary paralysis followed by good pulsations
afterwards. The _proboscis_, as in all cases noticed, gave active
movements to this side and that side. These movements of the proboscis
were often very quick and definitely directed as if a well defined
stimulus were given. After the operation one _pedalium_ contracted so as
to be at a right angle to the main axis of the bell; shortly a second
pedalium also contracted. Placed in a small round dish the animal swam

A second club was removed, and it swam as well as before. After fifteen
minutes it was not swimming but pulsating against the jar. Upon stirring
it a little it swam vigorously ten to fifteen strokes and then stopped.
It seemed weak and its movements appeared not so definite, though this
might be due to weakness.

A third club was removed. The only change seemed to be rather greater

After about five minutes the fourth club was removed. Paralysis of
pulsation followed. It had the power to contract its _pedalia_ when these
were rather vigorously stimulated with a needle. It also gave one feeble
pulsation when so stimulated.

16. The sensory clubs were removed from another. After removal of
the third one it still pulsated actively, but stopped completely and
apparently for good after the removal of the fourth club. Another one
stopped pulsating apparently for good upon removing the third club.

17. All four sensory clubs were removed from one, cutting as high up as
possible so as to remove the endodermal tract of nerve fibers of the
peduncle. It pulsated afterwards apparently the same as if the stalks had
been left intact.

18. A small piece surrounding a sensory club and including the _margin_
can contract by itself. The piece observed pulsated with quick pulsations
and rhythmically but intermittently. After a fresh cutting away of such
a piece, the portion of the _velarium_ attached was seen to contract
rhythmically, while the rest of the _subumbrella_ was not so seen. The
part of the subumbrella above the radial ganglion that was cut off did
not contract by itself. The same portion of the velarium cut off did give

19. A sensory club with the surrounding region cut out pulsated
rhythmically; when the club was cut from the end of its stalk pulsation
stopped. This observation was repeated on another, and contractions were
seen after the removal of the club. A piece of the _subumbrella_ wall
from the same animal gave contractions now and then even after an hour.

20. The normal position of a sensory club seems to be with the concretion
almost at the lowermost end; often with it certainly lowermost, but
probably oftener with the perpendicular passing through the center of the
attachment of the club to its peduncle and just by the inner edge of the
concretion. The eyes point inwards.

When the animal is on its side the concretions are always quite
lowermost. When the animal was inverted the tendency was for the
concretions to be lowermost. In this position the eyes may point in
several directions. In one instance those of one club pointed rather
outwards, while of two other clubs they pointed more in the plane of the
body wall. (See also Experiments 24, 29.)

_Nerve._--21. Cutting the nerve eight times, once on each side of each
sensory club, produced no loss of coördination in pulsating. The animal
was weakened, however, by the operation, which was made drastic to insure
cutting the nerve; but it was still able to swim. This experiment was
repeated four times.

22. That coördination was continued after the nerve was cut was
proved beyond doubt by cutting from the edge up (eight times) so as
to perfectly separate the sensory clubs and the pedalia. Pulsations
continued synchronously in all four sides--not the slightest evidence
that one side contracted out of time with the others.

23. The eight cuts were made as in the preceding experiment with no loss
of coördination noted. When the cuts were carried up to the base of the
stomach, however, coördination ceased. The four side pieces seemed to
contract each in its own time. Only two sides could be observed at one
time, and they at any rate did not contract synchronously. One side often
gave two contractions while the other side rested or gave one.

Yet, a little later, three of the sides at any rate showed a pretty
good coördination. The fourth was smaller and did not seem to get into
the game much--it went more on its own schedule. The four pieces were
then cut apart and placed together under a dissecting microscope. No
coördination at all could be made out. No evidence, therefore, of any
definite rate of pulsation inherent in the sensory clubs.

Cutting the nerve causes the _pedalia_ to forcibly contract inwards.

_Side, Subumbrella._--24. A whole side was cut out, the transverse
cut being above the sensory organ so as to take off [leave off] the
radial ganglion also. This pulsated, or rather contracted, nicely. The
upper end had been cut just through the _suspensorium_. It especially
gave twitchings like the twitchings of the stomach. The piece was then
halved transversely, when the upper part containing the portion of the
suspensorium twitched as before while the lower part was not seen to
contract again. This was repeated with the same result, except that a
portion of the lower part gave a slight contraction several times. The
part that contracted was at the upper end of the piece, _i. e._, nearest
the _suspensorium_. The contractions were also more longitudinal than
transverse, as the regular contractions would be.

The piece connected with the sensory clubs of course pulsated nicely.
Upon cutting off the sensory club from the stalk, pulsation ceased, but
twitching of the _velarium_ continued. This was repeated with the same

In the same animal, in cutting off the sides, the stomach was left, the
cut being through the gastric ostium. The floor of the _stomach_ was now
cut off by cutting out the four interradial points of attachment. The
stomach and the proboscis gave vigorous contractions and tied themselves
all up so that I could not cut off the proboscis.

The four pieces of the floor of the stomach left on the interradii gave
contractions nicely. The phacelli continued their squirming movements.

25. Cutting off the whole aboral end of the animal excites to very rapid
pulsations of the remaining part. The stream, as shown by particles
in the water, is apparently stronger out the aboral end than past the

It seems that I get no good evidence that the subumbrella is able to
contract of itself without connection with special nerve centers. In the
one case noted (Experiment 31) I could not be sure but that the part that
contracted was intimately associated with the suspensorium or frenulum.

26. A piece of the subumbrella cut off and having, so far as I could
determine, no connection with ganglia, frenula, or suspensoria, gave
contractions. Another piece was not seen to contract.

A small piece of the subumbrella connected with a club can contract. The
proboscis can give contractions of itself when cut off with the base of
the stomach. Even a cut-off lip can twitch by itself. A portion of the
subumbrella by itself also showed twitchings. (See also Experiments 18,
19, 25, 26, 29, 47, 49.)

_Pedalia, Velarium, Radial and Interradial Ganglia._--27. The pedalia
with their tentacles were cut off at their bases to insure cutting out
the interradial ganglia. The animal could pulsate well enough, but
intermittently and without much progress (the velarium, of course, being
injured). Cutting one pedalium caused the others to contract.

28. When the pedalia were cut off from one, the power of direct motion
was entirely gone. It swam in circles, turned summersaults, changed its
course continually, the oral end getting ahead of the aboral end, or
trying to do so. The whole power of balancing was gone. It seemed excited
by the operation and swam continually. [Repeated.]

29. The pedalia can be made to contract inwards by stroking their outer
edge with a needle. This was noted last year and has been seen several
times this year. Their inner edge is not so sensitive.

Touching a _sensory club_ caused the pedalia to contract inwards in two

The pedalia could be made to contract by giving the subumbrella a
prick,--generally a rather severe one was necessary. The upper part
of the subumbrella seems not so sensitive as the lower part and the
proboscis, and the base of the stomach did not give any reflex at all
(two specimens). One of the two could be made to give the reflex only
with much difficulty. This was a very lively one. It would even stand
severe pricks on the nerve, or even through the region of the sensory
clubs, without contracting the pedalia or stopping pulsations.

Cutting the frenula seemed not to affect the ability to swim well.
Cutting in this region brings about the reflex of the pedalia.

In the preceding fish the _velarium_ was cut away wholly in some places,
in other places it was left only as ragged strips. The pedalia became
very strongly contracted and the _tentacles_ were brought inside the
bell. Pulsations that seemed strong produced much less progress than with
the velarium intact. [Repeated.]

30. One with the whole _margin_ cut off still gave pulsations. Upon the
removal of the region of the _radial ganglia_, however, pulsations were
seen no more.

The _velarium_ in the above continued to give twitchings. The four
pedalia were cut off with plenty of the tissue at their bases to insure
the removal of _interradial ganglia_, and twitchings of the velarium
with irregular contractions continued. No full contraction all around
the velarium was noticed. When all the tissue was trimmed off as nearly
as possible down to the _velarium_, the latter still gave twitchings and
irregular contractions as before,--even more so as if excited by the
operation. The power of originating contractions evidently resides in the
velarium or in the ganglion cells of the frenula just as it does in the
proboscis and the floor of the stomach.

Small pieces cut from between the pedalium corners and the frenula, so as
to have tissue on them from neither, could contract by themselves. (See
also for Pedalia, Experiments 15, 23, 41b; Velarium 18, 41c.)

_Tentacles._--31. A cut-off tentacle can contract by itself, sometimes
with squirming contractions. A prick at either end can produce a forcible
contraction. A slight prick at the distal end may produce a local
contraction. The proximal end is more sensitive, but this difference
is not very marked. One with only the tentacles removed seemed to be a
little less able to guide itself well.

_Proboscis, Stomach, Phacelli._--32. The lips of the proboscis are
highly contractile by themselves. The movement of the stomach and the
phacelli goes on, after the lips are cut off, with increased vigor, due
to the stimulus of shock. The vigor and frequency of their contractions,
however, diminish quicker than that of the cut-off lips. (See for
Proboscis, 12, 15, 18, 26, 29; Stomach, 18, 24, 29, 31; Phacelli, 18, 24,

_Temperature._--33. Temperature does not seem to have much effect. Some
placed in a tumbler half full of water, in the bright sunlight, swam
vigorously over three-fourths of an hour. The water was quite warm to the

34. The above experiment was repeated with the same results. A
thermometer placed in the water with them showed 92° F.; hung in the sun
near by, it showed 94° F.

Ice in the water did not stop their pulsating temporarily or permanently,
except that it did for a short time after being held against one. Even
then it took some time (fifteen to twenty pulsations) before it produced
any effect.

35. Ice placed in the water again showed no marked effect. They swam as
lively as ever. Some, after pulsating against the ice for a little while,
seemed to be less vigorous, but quickly recovered in another part of the
jar. Others did not seem to be the least bit affected by contact with the

_Food and Feeding._--36. I tried to feed one. A red and a white copepod
were put into the subumbrella cavity. No attempt to eat it was observed
in either case, though the copepods remained in the subumbrella cavity
for some time.

Animals found in the stomach of Charybdea: small fish were most
frequently seen; at another time a small stomatopod; again, a small
polychæte; small shrimps; amphipod.

Those taken on August 16th (3 to 4 P. M.) seemed to have, for the most
part, food in the stomach, and this more so than those taken in the

_Occurrence of Charybdea._--37. In the first tow on the bottom (with a
net made of mosquito-netting and weighted with rocks in order to sink it)
the haul was forty. I do not think that we could have been towing more
than four or five minutes. The time was about seven A. M. A light breeze
was blowing and there had been a heavy shower a half-hour previous.

38. The usual time of towing was about 6.30 to 7.30 A. M. The water was
four to five feet (1.2 to 1.5 m.) nearest shore but deeper farther out.
At this time of day one could count on getting plenty of the larger sized
(15 to 20 mm.), many small ones, but very few of the smallest. This was
the experience of several mornings.

On August 12th I towed about nine A. M., and got but few of the larger
sized, many small ones, and very many of the smallest.

The next day (7.00 to 7.45 A. M.) those obtained were mostly of the
larger size. On the same day (3 P. M.) others of the party towed at the
same place and obtained but few.

On another day I towed in the afternoon (3 to 4 P. M.) and obtained great
numbers as I usually did in the morning.

39. We towed about 7.30 to 8.30 at night. Very few Charybdeæ were taken.
On this evening we towed five times in the same locality, and obtained
but seven or eight specimens. Towing with the same net on our way home,
it was filled with Aureliæ and five or six Charybdeæ. It seems as if
Charybdea came to the surface at night. Those towed in the evening were
dead the next morning.

The next morning Richard, our colored attendant, towed from 5.30 to 6.30.
There were heavy showers. The usual find of large and medium ones was
obtained. There were only two with planulae.

40. The material of September 2nd was obtained about six A. M. They were
mostly of large size. In all only fifteen or twenty were taken. Richard
explained the small number by saying that the bottom had changed in the
locality where we usually towed and that he got no weeds in his net, but

The next day more were brought in by Richard (6.30 A. M.) There were
rather more than yesterday but the quality was the same. There were three
with planulae.

On another morning Richard brought in a great many, about a hundred.
Among these there were three with planulae (light-colored and budding);
on a previous day there was one with the reddish-brown kind and with a

_Activity of Charybdea._--41. a. About five o’clock in the morning
a Charybdea was taken in the tow. It was in good condition swimming
incessantly round and round without change of direction, in a jar of
about twenty centimeters in diameter. It came to the surface every now
and then, after eight to fifteen pulsations. The tentacles and the
phacelli were of a lilac shade. If a pencil was placed in its way it
would pulsate against it repeatedly without any effort to dodge around it.

     6.58 A. M., 124 pulsations were counted to the minute.
     8.00   “    124    “        “      “      “      “
     9.25   “    136    “        “      “      “      “
    10.15   “    131    “        “      “      “      “
    11.00   “    146    “        “      “      “      “

At 10.15 it went around the dish in eight seconds, taking eighteen or
nineteen pulsations. If a bright platinum spatula or a black pencil was
placed in its circuit it would repeatedly butt against it each time it
came around. After the second or third pulsation against it, however, it
seemed to have some sense to change its direction.

b. The _pedalia_ have no perceptible action of their own. They move
inwards slightly toward the axis at each pulsation, but scarcely as much
as one would suppose from their attachment to the pulsating margin. It
seems as if they were for “winging” the moving animal more than for
anything else.

c. The _velarium_ is loose and it flaps. It seems to take part in
swimming something more than the passive diaphragm function,--i. e., it
straightens out during the recovery after each contraction of the bell.


[The following experiments were performed at Port Henderson, Jamaica, in

42. May 12th. An _Aurelia_ was pulsating normally at the rate of
twenty-five or twenty-six pulsations to the half-minute. One lithocyst
was cut out, when a few contractions, evidently caused by the stimulus
of cutting, followed; then, rest. In the first minute there were only
about five pulsations. In two or three minutes rhythmic pulsations were
resumed. Four minutes after the cutting there were nineteen pulsations
to the half-minute. About twenty minutes after there were nine to the
half-minute, in groups of six and three.

A _Polyclonia_, about four and one-half inches (115 mm.) in diameter,
gave twenty-six or twenty-seven regular pulsations to the half-minute.
After one otocyst was removed, pulsations continued, but in groups with
intervals of pause: _e. g._, thirteen, pause; ten, pause; six. Three
minutes after the removal of the lithocyst there were 5, 3, 1, 3, 5,
or seventeen pulsations to the half-minute. Eleven minutes after the
operation there were fifteen to the half-minute. The removed lithocyst
and surrounding tissue gave contractions.

43. May 13th. The _Aurelia_ was in rather poor condition but would
pulsate upon being stirred. The other seven lithocysts were removed when
only a few contractions originated thereafter.

The _Polyclonia_ was in good condition, but was pulsating only
intermittently when first seen in the morning. When the remaining seven
lithocysts were cut out and no more pulsations were observed, the oral
arms could still move.

May 14th. Both were found dead upon returning in the evening.

44. May 15th. An Aurelia and a Polyclonia were taken in the morning. The
_Aurelia_ was two and one-half to three inches (62.5-75 mm.) in diameter,
with three tufts of phacelli, three oral arms and seven lithocysts.
The _Polyclonia_ was normal and seven or eight inches (175-200 mm.) in

In the _Aurelia_ all the lithocysts were removed. Spontaneous and
coördinated contractions could still occur after time had been allowed
for the shock from the operation to pass away. The next day the animal
was still alive and pulsating, but ragged, and the next day following was
quite dead.

In the _Polyclonia_ the normal rhythm was fourteen pulsations to the
minute. Some pulsations were apparently quicker than others and the
intervals were not the same. Thirteen, ten, and twelve pulsations were
also counted. After putting the animal into fresh sea-water, it pulsated
thirty-three to the minute. Six minutes later it was still pulsating
at the same rate, while in four minutes more eleven pulsations, many
of which were in groups of two, were noted. In five minutes more it
pulsated eleven times to the minute with only one double pulsation. One
_oral arm_ was then cut off and the rhythm counted about one minute
afterward--fourteen pulsations, then a pause of fifteen seconds, then two
pulsations, in all sixteen to the minute were counted. About ten minutes
later there were eight pulsations, two or three minutes later only three,
while in two or three minutes more only three. There was a long latent
period--two or three seconds--before the stimulation of cutting off the
arm made itself evident in the rhythm.

A second oral lobe was removed. Then there followed twenty-four
pulsations, a pause of two seconds, and two pulsations, in all twenty-six
pulsations to a minute. The rate of pulsation soon fell to the previously
abnormal low rate.

Third lobe removed: 21 pulsations in first half minute and then 16, or 37
per minute.

Fourth lobe removed: 17 pulsations in first half-minute plus 13 gives 30
for the minute.

No difference in the coördination of the animal was shown as a result of
the removal of one-half the number of oral arms.

Fifth lobe removed: 17 pulsations plus 15 equals 32 to the minute.

Sixth lobe removed: 17 in first half-minute plus 4 in the second
half-minute gives 21 pulsations for the minute.

Seventh lobe removed: 17 plus 9, or 26 per minute.

In all these instances the rhythm in the second half of the first minute
was irregular and intermittent.

Seventeen and then seven pulsations were provoked after the animal had
become quiescent, or nearly so, by merely handling it.

45. Eighth oral lobe was removed and pulsations stopped. The next day
the animal was in good condition. The pulsations counted in the evening
were 12, 14, 14, 11, per minute. The rhythm was not regular; there was a
tendency to groups of twos, threes, or more, but no prolonged intervals
of rest were observed. When placed into fresh sea-water, the pulsations
were fourteen to the half-minute or twenty-six to the minute; seventeen
to the half-minute, and thirty-three to the minute were also counted.
This specimen gave spontaneous contractions during two weeks, after which
it was thrown out, the aboral end being eaten through and little or no
regeneration having taken place.

46. Two more were operated upon: A. Its rhythm was 18, 14, 17. Its entire
margin was cut off. The separate pieces of the margin pulsated, 6, 7,
4, 6, 7, 9. The animal seemed paralyzed by the operation; it responded
by a contraction now and then to stimulation but gave no spontaneous
pulsations. B. Its rhythm was 17, 15, 12, 12. All its _oral arms_ were
removed. Its rhythm was only raised to seventeen and not perfect. In
twenty-five minutes it had fallen to eleven, in four hours to ten
pulsations [per minute].

May 22nd. A and B are living as also the pieces of the _margin_ of A;
all are giving spontaneous pulsations now and then at comparatively long
intervals--even A, with its margin removed.

May 26th. Everything is still living. The one with the margin cut (A)
counted sixteen and nineteen pulsations per minute, though this was not
kept up all the time.

June 2nd. A and B and pieces are still living and contracting
spontaneously. It is now two weeks, and they were thrown out eaten
through at the aboral end with little or no regeneration.

47. The margin was cut off another one (C) and it was then paralyzed. The
margin contracted vigorously by itself. The margin was next split, but a
connection of about one-half an inch wide was left between the two rings.
Over this bridge the contractions passed from the outer and inner ring.
The inner ring did not originate any contractions. Both rings were then
cut near their connecting bridge of tissue and the larger ring with the
marginal bodies was split longitudinally so as to separate the exumbral
from the subumbral portion. It was found that the contractions started
only from the subumbral portion while the exumbral portion did not
contract at all.

June 5th. Five of the eight small pieces of C were not seen to contract
either to-day or yesterday. A slow rotary motion was observed in
some of the pieces suggesting ciliation, but no cilia or currents
pointing to ciliation were seen with a low power. C was seen to pulsate
spontaneously. Possibly it did yesterday but it was not watched closely.
A piece of the subumbral surface of C broken off (not from the margin)
was found to contract spontaneously.

48. June 6th. In a fresh one (D) from Port Royal, the eight lithocysts of
one side were removed in order to compare its movements with an intact
one. Coördination was apparently unaffected.

June 9th. The margin of C is still pulsating vigorously. Parts of the
subumbrella broken loose from the strip pulsated by themselves now and
then. Fifteen lithocysts were removed, leaving only one at the end of the
strip. It was found that with this single ganglion (lithocyst) left, and
originating most of the contractions, now and then a contraction would
originate at another part of the strip where there was no ganglion. Three
days later contractions originated as often from other parts as from the


[The remaining experiments were all performed in 1897, at Port Antonio.]

49. Removal of the sixteen marginal bodies caused paralysis for a time;
then recovery followed.

Contraction was limited to the subumbrella.

A portion of the _subumbrella_ not from the margin can contract by itself
as well as a portion of the margin with the marginal bodies (lithocysts).

In the _margin_ cut off as a strip with only one marginal body attached
at one end, contractions sometimes started from the opposite end.


50. Size, seventeen or eighteen millimeters. Pulsations, thirty-two.
Lithocysts, nine. The operation consisted in the removal of the
concretions with as little injury to the pigmented parts of the marginal
bodies as possible. One whole marginal body, however, was removed in the
operation. Soon after the operation the pulsations were 28, 26, 20, 20,
per minute.

Another one; size fifteen millimeters. Pulsations were forty per minute.
The operation consisted in the removal of the concretions and pigmented
parts of the marginal bodies with as little injury to the adjoining parts
as possible. After the operation it seemed as if the intervals between
the pulsations were irregular,--not a series at regular intervals. An
hour or so after the operation the pulsations were very intermittent.
During the afternoon it was not seen to pulsate except when it was
stirred up, when six or seven vigorous pulsations followed. These,
however, were rather aimless.

51. One sensory club (marginal body) was cut out, including its basal
part also. In one or two other cases more or less injury was done to
adjoining parts also. Pulsations ceased upon the removal of the last
club, but upon placing it in an aquarium and allowing it to come to rest
for two or three minutes, pulsations were now and then seen. In the
evening, this one and another did not pulsate except when stirred, when
they pulsated with good progress.

52. A circular cut, about two inches in diameter, was made through
the epithelium of the subumbrella around the base of the oral lobes.
The animal pulsated well enough, but the contractions seemed not so
simultaneous in all parts of the margin as normally. After a few days it
had partly regenerated but died. One of the oral lobes cut off had some
power of contraction, and this some time after the operation. A similar
cut, but semicircular, made no difference between the contractions of the
two halves.

53. The whole region of the sensory clubs was cut out when the animal was
not seen to pulsate again, except in the evening, when pulsations were
observed. The oral lobes also moved.


_Method._--The following results on the histology of the sensory clubs,
their eyes, and the tentacles, as already noted, were obtained from some
of Dr. Conant’s preserved material. These results relate almost wholly
to Charybdea, with only a few references to Tripedalia, noted in their
proper place.

A portion of this material was killed after keeping the animals in the
dark for some time, for the purpose of discovering any changes in the
pigment of the eyes. I believe that a retraction of the pigment of the
long pigment cells that project between the prisms and pyramids of the
vitreous body in the retina of the distal complex eye is very evident in
eyes killed in the dark. (But more on this below.)

I obtained my best results from the material preserved in saturated
corrosive sublimate, to which had been added (5 to 10 per cent.) acetic
acid. This also was Conant’s experience in his previous work on Charybdea
and Tripedalia.

My best sections were obtained by embedding the sensory clubs in
celoidin, passing the little blocks of celoidin with the sensory clubs
into chloroform until perfectly transparent, and then into paraffine. I
then cut sections as we ordinarily cut paraffine sections, mounted and
stained them on the slide. My purpose in using this method was to avoid
the displacement of the vitreous bodies of the eyes during embedding
and cutting. This object was fully realized and more besides. Since the
sections cut by the celoidin-paraffine method gave me so decidedly the
best differentiation of the axial fibers of the retinal cells, as also of
the cilia, basal bodies, etc., I am inclined to believe that the celoidin
was in part responsible for this differentiation.

Most of my series were cut 4 µ in thickness. All in all I cut sixty-five
clubs besides making some maceration preparations from material preserved
for that purpose. These sixty-five series represent material from
fourteen bottles. As a whole, my material was good, but the material from
one bottle was decidedly superior for showing the axial fibers of the
prisms and pyramids of the retinal cells. This shows the advantage of
plenty of material. It will be evident that I had plenty of material.

I found iron-hæmatoxylin the most satisfactory stain. I stained for a
shorter or a longer time--one-half to several hours and longer--and then
washed out the sections until under a low power of magnification they
appeared quite unstained, the nuclei and a few other parts only appearing
darkly stained.

Depigmentation I practiced but little. I obtained many of my series
almost wholly unpigmented, especially those I cut last. Others, of
course, were very heavily pigmented. I am not certain but that alcohol
slowly dissolves out the pigment after a long period of preservation.
Slight variations in the technique of killing and preserving may also,
perhaps, determine the stability or solubility of the pigment, as, of
course, also the condition of the pigment at the time of killing.

_Anatomy._--For a short epitome of the anatomy of a Cubomedusa and of a
Cubomedusan sensory club see p. 2 of the Introduction.

_The Distal Complex Eye_--_General_.--The distal (larger) complex eye
(Fig. 7) and the proximal (smaller) complex eye (Fig. 13) are so named
to distinguish them from the lateral simple eyes of the clubs. The
distal complex eye consists of the following parts: a cellular cornea,
continuous with the epithelium of the sensory club; a cellular lens
(externally cellular and internally often quite homogeneous) immediately
beneath the cornea; a homogeneous capsule just internal from the lens,
and evidently a secretion from the lens cells; a vitreous body composed
primarily of prisms and pyramids just beneath the capsule; and a retina
of pigmented cells, with subretinal nerve tissue, ganglion cells and
fibers. To my knowledge all observers (except Carrière, who missed the
capsule) are quite agreed on the anatomical structure of the distal
complex eye as also on the proximal complex eye and the lateral simple
eyes.[d] It is on the histological structure of some of the various parts
that differences exist.

_Cornea._--Little need be said on the cornea except that it consists
of flattened cells applied to the outer surface of the lens. It is
continuous with the epithelium of the club and evidently a modified
portion of this epithelium (Fig. 7). All observers conform to this

_The Lens._--The lens is of cellular origin, but in its interior
the cells are often so changed--absence of nuclei, cell walls, and
protoplasmic structure--as to make a mass quite homogeneous and
structureless. While this internal mass sometimes shows practically no
structure, yet at other times it is found broken up into masses much
the size and shape of cells but without nuclei, while again, cells with
nuclei may be quite evident. This occasional breaking up of this mass is
evidently predetermined by its original cell structure. Iron-hæmatoxylin
stains this inner mass very dark and it is difficult to wash out the
stain. Borax carmine and Lyons blue give the best results on the lenses.
In figure 7 the lens of the distal complex eye is shown as quite
homogeneous internally, while in figure 13 (proximal complex eye) it is
drawn cellular. In this latter lens the inner cells are quite round and
nucleated as they may also appear in the distal eye. What I have said
applies equally to the lenses of both complex eyes, though the cellular
nature of the inside of the lens is more readily demonstrated in the
proximal eye.

It appears that it is in younger specimens that the central mass of
the lens shows the cellular structure best, and that as the animal
grows older this structure is more and more lost until no trace of it
remains. As concerns most of my series I could not well determine which
were from younger and which from older individuals, yet, several series
of quite small (5 mm.) and therefore young animals, in which the eyes
were so small that the lenses were compassed into less than half a dozen
sections, the cellular structure of the lens was very evident.

The external cells of the lens form a spherical shell (both complex eyes)
which, in section, shows as a hollow ring (Figs. 7, 13). The thicker ends
of these cells lie at the inner (toward the capsule) half of the sphere
and the cells taper toward the corneal surface, dovetailing laterally
with their immediate neighbors as also distally with those from the
opposite side of the sphere. The thicker inner ends of the cells contain
the large nuclei with nucleoli. At a point (* Figs. 7 and 13) on the inner
(next the capsule) surface of the lens the cells only approximate each
other and thus leave a place which is easily broken through, as is shown
by portions (drops, probably representing cells or portions of cells)
of the mass within the lens becoming squeezed out into the substance of
the capsule and the vitreous body, and found occasionally also among the
cells of the retina. A considerable portion of the inside of the lens
may be found thus squeezed out, and its path can often be traced. This
phenomenon is evidently brought about by a contraction of the shell of
the lens during fixation and before the inside of the lens has become

In origin the lens is evidently ectodermal, originating from an
ectodermal invagination which becomes pinched off as a hollow sphere,
the outer (_i. e._ next the cornea) half of which becomes the lens, the
inner half the retina (_i. e._ vitreous body plus the so called retina).
(See Retina.) The transition from retinal to lens cells is quite readily
made out at the lower side of Fig. 7, but the corresponding structure on
the upper left side is not so manifest. It is further evident that the
lens is again an invagination into this sphere, and the point at which
the lens cells approximate (where the central mass of the lens may be
squeezed out as above described) represents the place of pinching off
of the original lens-retina sphere. It appears, then, that the lens is
formed in the lens-retina sphere in the following manner: The cells of
the secondary invagination going to form the lens begin to lengthen
distally (_i. e._ toward the cornea) during their invagination to form a
hollow sphere, at the same time dovetailing with each other and budding
off cells to form the inside of the lens (Figs. 7, 13).

At the lower side of the lens, near the margin of the retina, the cells
of the lens are slightly indented or pushed inwards (Fig. 7, ind.). I
believe this to be due to the weight of the lens in the normal position
of the club, when the lens rests against the margin of the retina and the
capsule and adjacent tissue.

Anticipating the description of the retina, it may here be added, that
the retina is formed from the inner half of the lens-retina sphere. The
cells of this portion of the sphere become differentiated into prism
cells, pyramid cells, and long pigment cells, while laterally, beyond the
margin of the vitreous body, they are differentiated into pigmented iris
cells (Figs. 7, 6a).

Above are my results on the lens. Haake[2] speaks of the lens as
consisting of a cellular “Kern” with a covering of lamellated cells.
Carrière describes it as cellular and filled internally with a
“Gerinsel,” or coagulation. Carrière and Haake are each in part right.
Claus describes it as wholly cellular. Schewiakoff regards the lens as
wholly cellular, and like Claus has not noted that internally this cell
structure may be quite obliterated. Schewiakoff regards the lens and
retina as formed from an invaginated sphere, and shows the transition
from the lens cells into retinal cells as I have figured. Conant also
gives the structure of the lens for the complex eyes as cellular but
missed the change of structure that the interior of the lens may undergo.

_The Capsule._--The capsule of the lens (Figs. 4, 7) lies immediately
below (inward from) the lens. In structure it is homogeneous, except for
certain fibers from the long pigment cells of the retina that traverse
it, while sometimes also other fibers can be seen which, possibly, are
branches from the fibers just mentioned or continuations from the fine
fibers of the prism cells of the retina soon to be described. I have,
however, no evidence that the fibers from the prism cells extend beyond
the prisms in whose axis they lie. The capsule lies very closely applied
to the lens, never becoming separated from it in sections, and is, hence,
regarded as a secretion from the lens cells. Just what its function
may be is difficult to surmise. The proximal complex eye possesses no
capsule. I have thought, however, that if the lens should be adjustable,
the capsule might serve as a protection to the prisms of the vitreous
portion of the retina during the adjusting movements of the lens. (But
more on this below.) To my knowledge all previous observers are quite
agreed on the structure of the capsule. Carrière and Haake, however,
missed it altogether.

_Retina._--While I have enumerated (following previous observers) the
vitreous body and the so-called retina as distinct parts, yet, as the
sequel will show, they are, histologically, different parts of the same
thing--namely the sensorium proper of the eye--and I propose to use
the term retina for both taken together, while I retain the expression
vitreous body (as hitherto used) for the vitreous portion of the retina.
This simplifies matters; and using a word that is already used for
analogous structures of other eyes (vertebrates, anthropods, molluscs)
is conducive to clearness. I have been tempted, furthermore, to use the
words _rods_ and _cones_ for the prisms and pyramids that I find in
the vitreous bodies of the retinas of the complex eyes. But since the
prisms in reality approximate prisms and the pyramids pyramids, in their
shape, I have decided to retain the words prism and pyramid for these
structures. The former of these terms (prism) was first used by Conant in
his description of the complex eyes.

What I shall call the retina, then, in the distal and proximal complex
eyes of Charybdea, consists of three kinds of elements: the prism cells,
the pyramid cells, and the long pigment cells. (Figs. 4, 7, 22, prc,
pyrc, lp.) We may also describe the retina as composed of three zones:
the vitreous zone (vitreous body of authors), the pigmented zone, and the
nuclear zone. (Figs. 4, 7, 22, vb, pz, nz.)

The cells composing the retina form a single layer in the shape of a
hollow cup, into which cup the lens with its capsule fits. (Fig. 7.) This
single layer of cells takes in the thickness of the vitreous zone, the
pigmented zone, and the nuclear zone. Indeed, the distinctions vitreous
zone (vitreous body), pigmented zone, and nuclear zone characterize three
topographical regions of the retinal cells.

That the retina is made up of three kinds of cells is most readily
demonstrated in transverse sections through the vitreous body. Fig. 1 is
such a section, taken quite near the pigmented zone (at about the level
x, Fig. 4). Three different kinds of areas are readily made out in such
a section. The more numerous areas (pr) are transverse sections of the
distal prisms of the prism cells, the less numerous and lighter areas
(pyr) are transverse sections of the pyramids of the pyramid cells, and
the large oval heavily pigmented areas (lp) are the transverse sections
of the long pigment cells. The dots within the two first named areas
represent fine fibers in the axes of the prism and pyramid cells, to
be described below. The presence of three kinds of cells can again
be readily seen in such Figs. as 4 and 7, in which the elements of
the retina are cut parallel to their long axis. (Fig. 22.) Again, a
transverse section through the most distal part of the pigmented zone of
a slightly pigmented retina (Fig. 2) also shows us the presence of three
kinds of elements. The larger and more heavily pigmented areas (lp) are
the long pigment cells; the smaller, lighter areas (pyrc) with a central
dot are the pyramid cells, and the more numerous dots, with no definite
polygonal areas outlined about them (prc), belong to the prism cells.
Thus, I believe, we have conclusive evidence of the existence of three
kinds of cells in the retina of the distal complex eye.

(a) The prism cells are the more numerous, and, as the name implies,
end distally in a vitreous polygonal prism (Figs. 4, 7, 22, pr). The
prismatic structure of the vitreous body is also shown in Figs. 10 and
11, which are drawn from a macerated preparation of Conant’s. (See the
descriptions of these figures.)

In Figs. 4 and 7 the prism cells correspond to the cells with the darker
nuclei (npr); in Fig. 2 they are represented by the dots without defined
polygonal areas about them (prc), and in Fig. 1 by the most numerous
areas (pr). These cells, then, consist of a centrad portion with nucleus,
a pigmented portion with granules of a dark-brown pigment, distal from
the nucleus, and a distal vitreous prism which extends to the capsule of
the lens.

In the axis of each prism is a fine darkly-staining fibril extending
the entire length of the prism. I found no good evidence that this
fiber extends into the capsule. Centrad this fiber is continued through
the pigmented part of its cell and approaches to or near the nucleus
(Fig. 2, dots without defined polygonal areas; Fig. 7, part of retina
left unpigmented). In some instances I could trace this fiber quite to
the nucleus, while in others it ended before reaching the nucleus or a
little to one side of it. I am inclined to believe, however, that it
extends past the nucleus and is continued as a nerve fiber. I believe
this to be so because the fiber is evidently sensory, and _a priori_ we
should expect it to be so continued. Further, I find decided evidence in
sections of the simple eyes to show that the fibers there extend past the
nucleus into the subretinal tissue where I could not trace them farther.
(Fig. 16.) Again, that the flagella of the epithelial cells of the club
are also continued into the cells, in some instances could be traced past
the nuclei (Figs. 12 and 26), and the fact, too, that the retinal cups of
the eyes represent invaginated epithelium (the axial fibers of the prisms
are hence cilia?)--all this leads me to believe that the axial fibers
of the prism-cells extend centrad past the nuclei through their cells
and are continued as nerve-fibers. (See below under pyramid-cells and
under epithelium). Immediately upon entering the pigmented part of its
cell the axial fiber of a prism-cell has a dumbbell-shaped enlargement
which lies quite at the distal edge of the pigmented part of the cell
(Fig. 7, unpigmented part of figure). This, of course, can be seen only
in unpigmented retinas. This dumbbell-shaped body, (Basalkörperchen of
Apathy), which name I give it, since it evidently is homologous to the
basal bodies described by others for the cilia of epithelia, can be most
beautifully seen as two minute spheres lying close together and in line
with the nucleus. These two little spheres of the basal bodies put to the
test the highest powers of the microscope; but, when, after a prolonged
and careful study, one satisfies himself of their existence and exact
shape, the very difficulty with which they are resolved adds a zest to be
appreciated. The length of a basal body is about one-fifth to one-fourth
that of the nuclei of the prism-cells.

The structure of the nuclei of the prism-cells is that of a dense network
(Figs. 4, 7, npr) which stains dark with hæmatoxylin. A nucleolus can
often be seen in these nuclei. In some few series, again, these nuclei
did not show a network-like structure, but the chromatin was arranged in
masses (Fig. 5, npr). These nuclei can usually be distinguished from
those of the other cells of the retina by their denser, darker-staining
network (Figs. 4, 7, npr), or as shown in Fig. 5 (npr). Their denser
structure and staining capacity are a distinguishing characteristic of
the nuclei of the prism-cells. I must add, however, that not in every
series is this apparent.

That portion of a prism-cell that contains the nucleus rarely contains
any pigment; and when pigment is present, I believe that it has been
dissolved in from the pigmented zone. The nucleus, again, lies a little
centrad from the pigmented part of its cell, so that an unpigmented zone
is seen in the retina between the pigmented zone and the row of nuclei
(Figs. 4, 7, 22).

Centrad the prism-cells are continued as a single process (Figs. 6, b,
c, d, and 8a, b, c, d). In some sections I thought I could trace these
processes to the basement membrane, but I could not satisfy myself that
such appearances were not due to artificial splitting in the tissue.
Schewiakoff makes a similar remark about his supporting cells, which
cells I believe are the same as my long pigment cells, but these do not
extend to the supporting lamella.

At the margin of the retina the cells do not develop prisms but remain
pigmented and form an iris (Fig. 7), which was so named by Claus and also
described by Schewiakoff. These cells also assume a somewhat different
shape (Fig. 6a). This cell (Fig. 6a) is seen from its broader side with
which it is applied to the capsule or the lens. Schewiakoff figures
similar cells. That the cells of the iris are prism cells without the
prisms does not necessarily follow. They simply represent cells of the
retinal cup that have become differentiated to serve as an iris.

As to the exact origin of the prisms, and pyramids (to be described
below), it is difficult to say anything definite. If the so-called basal
bodies of the axial fibers are really homologous with the basal bodies
of flagella, then it would seem that they (the prisms and pyramids) are
secretions comparable to cuticular secretions.

(b) The pyramid-cells, like the prism-cells, are differentiated into
three regions: a distal vitreous pyramid, a pigmented part, and a centrad
part with nucleus. The pyramids are seen in transverse section in Fig. 1
(pyr) and in longitudinal section in Figs. 4 and 7 (pyr).[e]

Each pyramid extends between the bases of the prism-cells about one-third
to one-half the depth of the vitreous body (Figs. 4, 7, 12 (pyr)). The
pyramids are also a shade lighter than the prisms, which fact is
characteristic. In the axis of each pyramid is a darkly-staining fiber
quite like the one described for the prism-cells (Figs. 1, 4, 7, 22).
That this fiber extends distally beyond the limits of the pyramids I
could not determine, but I do not think that it does. Centrad this fiber
extends into the pigmented portion of its cell quite to or near the
nucleus as was described for the fibers of the prism-cells (Figs. 7, 22).
Whether or not these fibers extend past the nucleus and become continued
as nerve fibers, the same course of reasoning holds as was given for the
fibers of the prism-cells. Each of these fibers possesses a basal body
just on its entrance into the pigmented part of the cell (Fig. 7), but
I could not determine that it was dumbbell-shape. In form it represents
an enlargement of the fiber itself, which gradually tapers again to its
normal size. The continuations of these fibers within the pigmented
parts of the pyramid-cells, as also the basal bodies, could only be
demonstrated in unpigmented series.

Patten[5] describes axial fibers extending centrad through the rods
(vitreous portions) of retinal cells (“retinophora”) into the region
of the nucleus and past the nucleus (arthropods and molluscs). My
retinal cells (prism and pyramid cells) evidently correspond to Patten’s
retinophora, but I find no evidence that one of my retinal cells
represents more than a single cell, while Patten gives evidence that
his retinophora are made up of two cells closely applied to each other
as twin cells. If this were also true for the retinal cells that I have
described, I believe my macerated preparations would have shown it.
Schreiner[12b] and Hesse[13] also figure and describe axial fibers for
the rods of the visual cells in polychætous annelids, and Schreiner[12a]
also for molluscs. Neither of these observers finds the fibers to extend
distally beyond the rods nor centrad toward the nucleus as Patten and
myself show. Neither Schreiner nor Hesse figures these cells as twin
cells as Patten does, so that to my knowing Patten stands alone in this
respect. Andrews[14] describes and figures rods for the visual cells of
polychæte annelids but no axial fibers. He was the first to describe
these rods in annelids.

The pigmented zone of the pyramid cells, in heavily pigmented series, is
filled throughout with dark-brown pigment granules, and is quite like
that of the prism cells (Figs. 4, 7). In transverse sections, however,
through the most distal part of the pigmented zone, of unpigmented
series (Fig. 2), lighter areas with central dots could occasionally be
demonstrated, which areas are the pyramid cells. In Fig. 2, the more
definite polygonal outline as well as the lighter shade of these areas
was a distinguishing feature. The difference in shade was not wholly due
to a difference in pigmentation but to a structural difference.

The nuclei of these cells are usually a little larger than those of the
prism cells and are filled with a finer and less dense network (Figs. 4
and 7, npyr), in consequence of which they present a lighter appearance
in sections when examined with a high power. It will be seen in the
figures (4, 7) with what regularity these lighter nuclei lie opposite
the pyramids. Some few exceptions occur. These are probably due to the
fact that a nucleus or pyramid was not differentiated by the technique.
If this opposition between the pyramids and the lighter nuclei were all,
I believe it would be sufficient evidence for associating these lighter
nuclei with the pyramid cells.[f]

(c) The _long pigment cells_ are about as numerous as the pyramid cells.
In these cells, as in the prism and pyramid cells, three regions can be
distinguished: the region of the nucleus, a pigmented region (the distal
half of which extends between elements of the vitreous body), and a
distal rod-like portion, or fiber, which is continued between the prisms
into the capsule of the lens (Figs. 4, 7, 9). The pigmented portion is
about twice the length of that described for the other cells, and also
often of greater diameter, so that in transverse sections (Figs. 1, 2, 3)
these cell-areas are larger than those of the other cells. As nearly as
I could determine, these cells are pigmented just like the other retinal
cells described. In quite unpigmented series, however, they often contain
more pigment than the other cells do (Fig. 2). Distally, the pigmented
part becomes narrowed to a strong pigmentless fiber (Figs. 3, 4, 7). This
fiber stains quite dark with iron-hæmatoxylin and appears homogeneous. It
passes between the prisms into the capsule, where it usually bends in a
direction toward the margin of the capsule (Fig. 7) and passes diagonally
across this to the lens. In sections, a space is often seen about these
fibers in the vitreous body, which I regard as a shrinkage space (Figs.
3, 4), since it is not evident in all series (Fig. 1). In Fig. 7, I have
assumed that these spaces are due to shrinkage and have not indicated
them. Also, in this same figure I have assumed that the spiral appearance
of the fibers (Fig. 4) is due to a shortening of the prisms during
fixation, and have drawn them straight. At the lens these fibers seem
to end. In a few instances they were seen to branch upon reaching the
capsule (Fig. 4). In Fig. 9, also, which shows some of these cells from
a macerated preparation by Conant, the rods show evidence of branching
at their distal terminations. In the same preparation I thought I could
see that a fiber became expanded into a membrane spreading over one of
the lens-cells. I could not satisfy myself, however, that this was the
actual condition of things. Judging from Fig. 9, one might conclude that
all the fibers are branched distally; yet, if such were the case I should
have seen more of it in sections, but branching as seen in Fig. 4 is the
exception. Hence, if all these fibers do branch, I am inclined to believe
that it must be among the bases of the lens-cells. Or, if the fibers
do expand into membranes to cover the lens-cells (I could not explain
purpose), the evidence in Fig. 9 may be nothing more than fragments of
this membrane left attached to the ends of the fibers. As is seen in Fig.
7, most of these rods end opposite the cells of the lens, and not usually
between two adjacent cells as Schewiakoff has described for Charybdea
marsupialis. The nuclei of these cells are like the nuclei of the pyramid
cells (Figs. 4, 5, 7, 9) and often have a nucleolus.[g] Centrad these
cells are continued into a number of processes as is seen in Figs. 5, 7
and 9. How far the several centrad processes extend and where they end I
cannot say; but, as seen in Fig. 5, they soon taper to a thin end which I
suppose may be continuous with a nerve fiber. I believe Schewiakoff was
mistaken when he stated that these cells extend to the basement membrane.

I have found no evidence in these cells of the existence of an axial
fiber such as I have described for the prism and pyramid cells. I find no
definite arrangement of the nuclei of the retina into definite layers,
but the nuclei of the three kinds of cells lie quite mixed, sometimes one
kind lying deeper than the other as can be seen in the figures. Again,
they may lie quite at the same level. (This point will be referred to

It is these long pigment cells that I believe retract their pigmented
part from between the prisms and pyramids when the medusæ are placed in
the dark, protruding with their pigment when placed in the light. Fig.
5 is a section from a slightly pigmented retina killed in the dark. The
parts of the cells projecting beyond the pigmented zone, and which would
lie between the prisms and pyramids (here not shown) of the vitreous body
are seen to be narrower than in sections from retinas killed in the light
(Figs. 1, 3, 4, 7) and the cells themselves appear in a condition of
retraction as is shown by their large centrad portions with the nuclei,
which latter, also, here lie at quite a lower level than the other
nuclei. (The pyramid cells were not shown in this series.) I occasionally
found appearances like Fig. 5 in retinas killed in the dark (indeed,
in some the pigmented portions in the vitreous body were much thinner
and more retracted than in Fig. 5). Yet this appearance was not of
sufficiently general occurrence to leave no doubt as to its significance.
As positive evidence, however, I cannot give it any other interpretation
than the one given--that the cells retract themselves with their pigment
when in the dark. Again, it must be added that the nuclei of these cells
may occasionally lie quite deep even in retinas killed in the light.
Indeed, like structures in different retinas may vary considerably in
size and shape. None of my darkness retinas, however, showed such a large
proportion of the pigmented parts of the long pigment cells projected
between the prisms and pyramids as did the light retinas. I examined
and tabulated all my series with respect to the extent the long pigment
cells were projected into the vitreous body, and I found that those which
showed these cells with their pigment least projected between the prisms
and pyramids to be those that had been killed in the dark. I thus feel
satisfied that the pigmented parts of these cells become in part or quite
completely retracted from between the prisms and pyramids of the vitreous
body when in the dark, but just how this is accomplished--whether
the whole cell with its nucleus takes up a deeper position, the cell
substance at the same time collecting in the region about the nucleus,
as shown in Fig. 5 and the diagram (Fig. 22), I cannot with certainty
state. It would seem, too, as though the pigment became less in the cells
exposed to darkness, for I rarely, even in the most retracted heavily
pigmented series, saw the pigment to extend farther towards the nucleus
than commonly. The time of keeping in the dark, prior to fixing, varied
from three-fourths of an hour to one and one-half hours. I could not
bring the amount of retraction into relation with the time of exposure,
except that in general the retinas longest exposed showed the greater
amount of retraction.

(d) The tissue underlying the retina is described by former observers
(Claus, Schewiakoff, Conant) as composed of nerve-fibers and ganglion
cells. I cannot give it any other interpretation, but I must add that
the supposed ganglion cells are seen only as nuclei, no cell bodies ever
being demonstrable in any of my sections. Conant also recognized no cell
bodies. Occasionally, as in Fig. 7, long fibers could be traced for some
distance in this subretinal tissue, in some instances quite to or from
a visual cell. Pigment was not regularly observed in this tissue, as
Schewiakoff describes, and when present I believe it has been dissolved
in from the pigmented zone.

(e) Schewiakoff describes the retina (my pigmented and nuclear regions)
as composed of spindle-shaped visual cells (my pyramid cells?)
alternating with pigmented supporting cells (long pigment cells), with
the nuclei of the former lying more centrad than those of the latter.
The visual cells are pigmented only at their periphery, or surface,
leaving an unpigmented axis, while the supporting cells have pigment
throughout their whole substance within the pigmented zone. Distally,
the visual cells have hyaline rods, or fibers, which extend into spaces
in the vitreous body, and pass through this and the capsule to the lens.
The vitreous body is described as homogeneous, except the spaces for the
visual rods, and a secretion from the retinal cells.

It will thus be seen that my results are quite different from those
just described. I find the vitreous body to be composed of prisms and
pyramids with axial fibers, while the long pigment cells (supporting
cells of Schewiakoff) are continued into the vitreous body, and becoming
narrowed into a non-pigmented fiber, extend to the lens as described.
The prisms and pyramids are, further, the distal continuations of cells
whose pigmented and nuclear parts lie in the so-called retina, but which,
together with the vitreous body, I have named the retina proper. Conant
has so summarily disposed of Schewiakoff’s distinction between retinal
cells based on pigmentation and location of nuclei, that I need not say
more. Schewiakoff’s Fig. 18 corresponds to my Fig. 1. In this figure he
shows the vitreous body as homogeneous with pigmented areas (my long
pigment cells) and with spaces with his visual rods. It is quite evident
that his spaces with the visual rods correspond to my lighter areas with
central dots; _i. e._ my pyramids of the vitreous body are the same as
the spaces shown in his Fig. 18. It is quite evident that Schewiakoff
mistook the lighter areas for spaces. That they are not spaces can
readily be seen by comparing them with real spaces. It is, of course,
possible, too, that the reagents had dissolved the pyramids, leaving
only the axial fibers with a little pyramid substance about them, and
that this is what Schewiakoff saw. I often found small circular spaces
in the centers of the pyramid areas, as also in the prism areas (Fig.
3), which might be taken for hyaline visual rods, fibers, in transverse
section, but in such spaces I could usually see a small dot to one side
of the space that I take to be the rod (fiber) proper. Fig. 14 also
shows such small circular spaces that have very much the semblance of
hyaline rods. This figure is a transverse section of the vitreous body
of the proximal complex eye, in which no long pigment cells or pyramid
cells are present, but it serves well to illustrate the point. The above
explanation also accounts for the large size of the visual rods (fibers)
in Schewiakoff’s figures. That the fibers of the pyramid cells (visual
rods of Schewiakoff) do not extend to the lens is quite evident in my
Figs. 4 and 7.

Again, since the long pigment cells are often not seen to terminate in
a fiber, but a part of the fiber can often be seen in the distal part
of the vitreous body and in the capsule, it will be quite readily seen
how Schewiakoff should associate his visual rods, or fibers, with these
distal parts of the fibers of the long pigment cells and suppose his
visual rods to extend to the lens.

Again, since the long pigment cells sometimes cannot be seen to terminate
distally in a fiber, while the vitreous body at the same time may be
broken away from the pigmented zone (Fig. 4), it is quite evident how
Schewiakoff should have interpreted the parts of the long pigment cells
in the vitreous body as conical pigmented caps placed opposite his
supporting cells (long pigment cells).

Finally, since Schewiakoff had only twelve marginal bodies to study, and
since this tissue is difficult to preserve properly, I do not believe
that I am doing Schewiakoff any injustice by explaining away his results
as I have done. This fact remains, that Conant and myself agree in all
points in which we differ from Schewiakoff.

To Conant belongs the credit of having first demonstrated the prismatic
structure of the vitreous body, and he also regarded the prisms as a
part of the retinal cells. H. V. Wilson[15, 8b] suggested, however, some
years prior to Conant, that the vitreous body might be of a prismatic
structure. Conant had evidence also of both the prism and pyramid fibers,
as is well shown in his figures of transverse sections but he found
his evidence too meager to make any very definite statements. Indeed,
Conant concludes that there are three kinds of fibers in the vitreous
body and complains of finding but two kinds of cells in the so-called
retina (pigmented and nuclear zones) to which to refer them. He saw the
pyramids with their axial fibers as lighter areas in transverse sections
of the vitreous body (his Figs. 64 and 68, and my Figs. 1, 4 and 7), but
suggests that they may be the same as the long pigment cells, the cells
having only to project themselves or their pigment in order to become
long pigment cells. This suggested to him to preserve material both in
the light and in the dark. I do not think Conant’s supposition to be a
fact, for I find the pyramids in specimens preserved in the light as well
as in the dark. It is, of course, possible that the pyramid cells are in
a stage of structural transition to the long pigment cells, for, besides
their pigmentation, they also have like nuclei. Furthermore, I held for
a long time with Conant that there may be only two kinds of cells in the
retina, but I soon found the pyramids so definitely shown as to leave no
doubt but that they represented a third kind of cell. For me it remained
to first definitely see all the fibers in the vitreous body as also the
pyramids in sagittal sections.

Conant describes the long pigment cells with their fibers extending
between the prisms of the vitreous body quite as I have described, and
in this my work is only confirmatory of his. Conant does not, however,
describe the several centrad processes of these cells, nor is he clear
that their distad processes extend to the lens, though he speaks of
fibers within the capsule.

(f) What, now, is the function of these three varieties of cells of the
retina? Schewiakoff regards his visual cells (pyramid cells), as the
name implies, as having a visual function. That they have such it seems
reasonable to suppose, since they have an axial fiber in their pyramids.
If the pyramid cells are visual cells, it appears that the prism cells
also are such. Indeed, since these are the only ones present in the
proximal eye and the more numerous ones in the distal eye, and like the
pyramid cells have an axial fiber in their prisms, it seems that they
are the visual cells _par excellence_ of the Cubomedusan eye. Also, the
analogy between the prisms and pyramids on the one hand, and the rods and
cones of the vertebrate eye on the other hand, does not seem to be so far
fetched. It may be of interest, here, to briefly consider Patten’s theory
of color vision.[5b]

The gist of Patten’s theory is this: In the eyes of certain molluscs
and arthropods, in the parts of the retinal cells corresponding to my
prisms and pyramids, he not only finds an axial fiber (or fibers) but
finer fibrils that extend at right angles from these axial fibers to the
surface of the rods (I shall here, for convenience, call the prisms,
pyramids, etc., rods) where they probably become continuous with other
fibrils in the surface of the rods. These fibrils from the axial fibers
are arranged in superimposed planes, and if I understand rightly, an
axial fiber with its radiating fibrils may be compared to the axial
wire with its radiating bristles of a brush used for cleaning bottles,
provided the bristles of such a brush be arranged in superimposed
planes. The lateral arrangement of the fibrils will, of course, be
modified according whether a rod is circular, hexagonal, square, etc.,
in transverse section. It will also be remembered (p. 49) that Patten
describes the retinal cells studied by him as composed of twin cells,
and he gives the name _retinophora_ to a pair. The system of fibers and
fibrils in the rods he names a _retinidium_. Centrad the axial fibers
are continued past the nucleus as a nerve fiber. The fibrils extending
laterally in superimposed planes from the axial fiber of a rod, Patten
supposes to be the ones stimulated by the incoming rays of light, the
retinophora being so arranged that the light rays entering them are
parallel to the axial fibers or perpendicular to the lateral fibrils of
the retinidium. Again, since the rods are usually the shape of truncated
pyramids or cones the lateral fibrils, which are perpendicular to the
axial fibers, are of different lengths accordingly as they are situated
at the larger or smaller end of a rod. Patten assumes similar fibrils to
exist in the rods and cones (particularly the cones) of the vertebrate
eye, and he thus makes a general application of his theory. He supports
himself in this rather sweeping generalization by the claim to have
demonstrated the twin-cell nature of the cones in amphibia and fishes.

For illustration, Patten supposes that if red light only were admitted
to the retinophora this would stimulate the fibrils near the broader
end of the cone (but that all the fibrils of the retinidium would be
stimulated a little) and that we would thus have the sensation of red
light. Likewise, if violet light only were admitted, the fibrils at the
narrower end of the cone would be stimulated, and we should have violet
light. Similarly, if light including all the different wave lengths of
the spectrum were admitted, all the lateral fibrils would be stimulated
and the sensation of white light produced. The method of stimulation need
not be that of a vibration of the fibrils.

Certain grave objections may be raised against such a theory, the most
serious, perhaps, being the fact that no such fibrils as Patten has
described have as yet been demonstrated for the eyes of those animals
that we know have color vision. Yet, as a whole, the objections are
perhaps no more serious than any that can be brought against other
theories of color vision. What Patten’s theory does do,--it gives us
a definite mechanical basis to work from, and if these fibrils should
be demonstrated for the rods and cones of vertebrates, physiologists
would then have a mechanical basis for color vision quite as they now
have for hearing. As Patten says, the problem is primarily a mechanical
one. However, the theory cannot well pass for more than a suggestion, a
stimulus for future work, and in this lies its present value.

It is quite evident that my results for the retinal cells of Charybdea
are, if any thing, a support to Patten’s theory. While I have not been
able to demonstrate the fibrils that are the essential to Patten’s
theory, yet I have demonstrated the axial fibers of the rods, and if
these fibers should be continued as a nerve fiber to some central
ganglion (as I believe is reasonable to suppose, see p. 47), I do not
see how we can avoid the conclusion that these axial fibers of the prism
and pyramid cells are somehow concerned in vision. In Patten’s theory
these fibers would represent a conducting element, the real sensory
element (fibrils perpendicular to these axial fibers) not having been
demonstrated by me.

I have recently read in a short review of Patten’s theory[9] that the
evidence we at present have points to the tips of the cones (vertebrate
eye) as being the seat of the sensation of red. This would be exactly the
converse of what Patten’s theory supposes. Whether or not this objection
is a real one, future investigation only can determine.

Hesse[13] regards the axial fibers that he describes for the rods in
worms as the primitive fibers of Apathy. In this I agree with him,
regarding the axial fibers I have described as “Primitivfibrillen.”
Further, I believe, if I understand Apathy rightly, that the fibrils
described by Patten as extending laterally from the axial fibers
correspond to Apathy’s “Elementarfibrillen.”

It is the long pigment cells that are the puzzling element. Since there
can be little doubt but that these cells can project and retract their
pigmented parts (as already described), it would seem that a part of
their function is to check the diffusion of light in the vitreous body
when exposed to strong light. This function would be quite analogous to
that of the pigmented cells of the vertebrate retina, which in light
become projected between the rods and cones. Similar observations have
also been made on the compound eyes of arthropods by Herrick[10] and by
Parker[7], who find that the distal retinula cells of Palæmonites project
themselves distad in the dark, thus surrounding the vitreous cones with a
cylinder of pigment, while (Parker) the pigment of the proximal retinula
cells migrates centrad and the accessory cells move distad; in light the
reverse takes place. Other observations of this kind are not wanting for
crustacea, insects and arachnids. To my knowledge, the pigment changes
that I have described are the first of their kind for medusæ.

I suggested while describing the capsule, that the lens might be
adjustable. That the fibers of the long pigment cells extend to the lens
is my principal reason for this. May these cells not represent ganglion
cells and their distad fibers nerve fibers? That they are not sensory
(_i. e._ are stimulated by light waves) seems to be suggested by their
not having any axial fiber and in having several centrad processes.
These facts suggest that they are not sensory but the center of a reflex
mechanism.[h] When the sensory cells proper are stimulated, the impulses
are conducted centrad into some nerve center (it may be the nerve tissue
underlying the retina, or other nerve centers such as the two groups of
ganglion cells in the upper part of the club, or the radial ganglia)
from which center, again, impulses return over fibers leading to the
long pigment cells causing them to project their pigment, and conducting
the impulse to the lens, to produce a change in its adjustment. Since
these cells are not so numerous as the prism and pyramid cells taken
together, but in turn have a number of processes continued centrad (the
sum of which processes approximates the number of sensory cells, prism
and pyramid cells) it appears that these cells are admirably adapted to
function in just such a mechanism as I have described,--each long pigment
cell serving a number of its immediate neighbors.

Further, we may conceive each of the centrad processes of the long
pigment cells as receiving a fiber from one of the sensory cells directly
as well as indirectly, as just described. While I have been able to
demonstrate only a single centrad process for the sensory cells (prism
and pyramid cells), yet this does not exclude the possibility of a nerve
fibril passing out from such a centrad process to one of the processes
of the long pigment cells, and it seems possible that this constitutes
the reflex mechanism. That nerve fibrils ramify in ganglion and sensory
cells, and may even leave these cells to join those of other cells, has
been well demonstrated by Apathy,[6] so that my finding only a single
process of the visual cells leading centrad without giving off lateral
fibers cannot be a serious objection. Again, fine nerve fibers coming
off from the main centrad process of sensory cells in medusæ have been
figured by other observers, among whom I mention the Hertwigs. Careful
macerations at the seashore would probably demonstrate them for Charybdea.

Hesse thinks that the eyes of the Alciopidæ are adjustable. He describes
what he supposes to be muscle fibers just exterior (distal) to the lens,
and believes that a contraction of these fibers would have the effect of
forcing the lens nearer the retina, or _vice versa_. His supposition,
like mine, needs experimental verification. Hitherto the only instance
known of accommodation in the eyes of invertebrates was that described by
Beer[17] for Cephalopods.

_The Proximal Complex Eye._--With four exceptions, the description and
discussion given for the distal complex eye also holds good for the
proximal complex eye (Fig. 13). The four exceptions are: the absence of a
capsule to the lens; the absence of the long pigment cells; the absence
of the pyramid cells; and the different relative position of the lens
and retina. This eye, then, has a cornea continuous with the epithelium
of the sensory club, a lens, in structure and probable origin quite like
that described for the distal complex eye, and a retina of prism cells
with axial fibers for the prisms. Since Conant[8b] has described this eye
quite fully, and discussed Schewiakoff’s conclusions at length, I shall
be brief. Suffice it to say, that Schewiakoff describes two kinds of
cells (supporting cells and spindle-shaped visual cells) for the retina
of this eye just as he described for the distal complex eye. The vitreous
body he likewise describes as being homogeneous and with spaces for the
visual rods (fibers) of the visual cells. It is evident that Schewiakoff
has interpreted the structure of this eye from analogy with his results
on the distal complex eye. Claus likewise has described two kinds of
cells for the retina, and the vitreous body as homogeneous. Conant
and myself find only one kind of cells in the retina of this eye. The
pigmentation that Schewiakoff describes for the vitreous body I believe
to have been dissolved in from the pigmented zone of the retina, for I
find no regular pigmentation in the vitreous body. Haake’s observation,
previously noted (p. 42), applies also to the proximal complex eye.

Conant’s evidence for the axial fibers of the prisms was clearly
insufficient, so that he did not in this respect complete his Fig. 69. I
republish this figure with the prism fibers drawn (Fig. 13).

Since the long pigment cells are absent my reasons for supposing the lens
of this eye to be adjustable vanish.

Finally, a word on the origin of the lens and the relative position of
the lens and retina. The lens and retina in this eye are evidently
not developed from an outer and an inner half, respectively, of the
invaginated and pinched-off lens-retina sphere (as is true for the distal
complex eye) but from proximal and distal halves respectively. It is also
quite easy to understand the connection of the lens in this eye with the
supporting membrane. Since the cells of the ectoderm of the club can in
many instances be seen to extend to the basement membrane, or supporting
lamella, the cells of the lens, which arise from the ectoderm, simply
remain in connection with the basement membrane, this becoming thickened
to form a support for the lens. That the lens of the distal complex eye
has lost its connection with the basement membrane is evidently due to
the fact that the lens is formed from the outer half of the lens-retina
sphere. The cells of the lens are by this so far separated from the
basement membrane as to lose their connection with it. Schewiakoff also
notes the fact that the lens and retina of the proximal complex eye are
developed from proximal and distal halves of the lens-retina sphere. He
further supposes that the portion of the basement membrane that acts
as a support to the lens takes the place of the capsule in the distal
complex eye. This latter supposition I do not think probable, since the
supporting lamella does not form a distinct covering to the lens on its
retinal side.

_The Simple Eyes._--Since the shape and position of these eyes have
already been described (Claus, Schewiakoff, Conant), I shall not tarry
long in this respect. Speaking generally, these eyes are flask-shaped
(Fig. 12), the proximal pair quite so, while the distal pair are drawn
out in the transverse diameter of the club. These eyes are invaginations
of the surface epithelium and the shape of the cells lining these
invaginations is quite like that of the epithelial cells, except that
their distal portions (bordering the lumen of the invagination) are
heavily pigmented. The proximal walls (Fig. 12, left side) of the distal
pair are heavier pigmented than the distal walls and the proximal pair
of eyes. Schewiakoff calls attention to this point. The pigmentation is,
furthermore, not only heavier, but the pigmented portion of each cell is
much longer in the proximal walls of the distal eyes (indeed, the cells
are longer) than in the distal walls. The significance of this I do not
understand. Indeed, I am inclined to believe that in life all these eyes
are pigmented quite alike and that it is the reagents used that alter or
dissolve the pigment in certain places. Yet, the fact that the cells
of the proximal walls of the distal eyes have their pigmented portions
nearly double the usual length, shows some deeper significance.

I also note here the small secondary, non-pigmented invagination into
the tissue of the clubs from each of the distal simple eyes. Schewiakoff
describes this invagination, and it extends in a proximal and dorsal
direction (dorsal-side of club opposite complex eye) from the dorsal
sides of the distal simple eyes. The cells of these invaginations are
not pigmented, but quite like the other pigmented cells in shape, and
like these with distal flagellate fibers. I do not see the necessity
of assuming, however, that these secondary invaginations are the real
sensitive parts of these eyes, while the pigmented parts serve as an
iris, as Schewiakoff does in his general discussion.

The histological structure of both pairs of simple eyes is the same.
Sections and macerations give me evidence of only one kind of cells,
all pigmented alike (except, of course, the non-pigmented secondary
invaginations just noted). The cells in these eyes are very closely
crowded so that their nuclei lie at several different levels. That they
all extend to the lumen of the eyes and are all pigmented could be
demonstrated with certainty in many sections, when some of these cells
whose nuclei lay most centrad could be followed with the greatest nicety
to the lumen (Fig. 12). Macerations (Figs. 8, unlettered cells 21) also
show cells with very long cell bodies pigmented at their distal ends and
occasionally with a distal process or fiber. While there are, therefore,
spindle-shaped cells found, yet they are in every other respect alike,
and their differences of shape and position of nuclei are simply the
result of crowding. There is, therefore, no evidence of supporting
(pigmented) cells and spindle-shaped visual cells (pigmented only
externally) as Claus and Schewiakoff have described and which Conant and
myself cannot corroborate.

Distally, the retinal cells of the simple eyes have each a fiber
(flagellum) that extends into the lumen (Figs. 12, 15, 16, 21). Each
flagellum has a dumbbell-shaped basal body just on its entrance into
its cell quite like the basal bodies described for the visual cells of
the complex eyes (Fig. 12, part left unpigmented). Each flagellum, or
fiber, can usually be seen to extend into the cell. In one series I found
appearances like Fig. 16, which is a drawing of a part of a section
through one of the proximal simple eyes. This section is quite in the
angle between the proximal complex eye and the group of network cells in
the upper part of the club. In this series I could very definitely trace
the distal fibers of the retinal cells centrad, past the nucleus and into
the subretinal nerve-tissue. These fibers could be so easily followed
that no doubt can exist as to the fact noted. It thus appears that the
axial fibers just described pass centrad through the cells and are
continued as nerve fibers. On the evidence of such sections as Fig. 16 I
have indicated these fibers as extending centrad through their cells. The
lumen of the simple eyes is filled with a homogeneous vitreous secretion.
This is often incomplete in some parts; occasionally the secretion
shows a formation of globules, but all this I believe to be due to the
action of reagents. Indeed, I have found simple eyes in which hardly any
secretion was present, while others showed an almost completely filled
cavity. In that portion of the vitreous secretion just outside the mouth
of the distal eyes I occasionally found numbers of very darkly staining
granules. I suspect that these are either bacterial or algal organisms.

As already noted, Claus and Schewiakoff describe two kinds of cells
for the retinas of these eyes which neither Conant nor myself can
demonstrate. Further, I believe I have shown that only one kind exists.
If any doubt should still exist, a section like Fig. 25 (which is from
the epithelium of the club, but similar smaller areas with central
dots could often be demonstrated in transverse sections of the retinal
cells of the simple eyes) I believe should be convincing. Schewiakoff
further describes flagella for the retinal cells (his visual cells) of
the simple eyes quite as I have described them for all the cells. The
pigmentation that Schewiakoff mentions as occurring in the secretions
within the lumina of these eyes I believe to have been dissolved in from
the pigmented zones. I find no definite pigmentation in these vitreous
secretions. These secretions are evidently products of the retinal cells
and have been so regarded by former observers.

_Lithocyst and Concretion._--The cavity filled by the concretion is
lined in places by a single layer of cells, two of which are shown in
Fig. 7. This fact has been noted by both H. V. Wilson and Conant. Such
cells are evidently remnants of the cells that formed the concretion. The
supporting lamella completely surrounds the cavity of the concretion.

The concretion filling the lithocyst has the shape of a hemiprolate
spheroid cut in the plane of the axis of revolution. Whether it is of
endo- or of ectodermal origin, I believe developmental studies only can
determine. Tests made in the Chemical Laboratory show the presence of
calcium sulphate with perhaps a very small trace of phosphate.[i] Nitric
acid slowly dissolves these concretions, but I believe Claus was mistaken
when he said that they dissolve with an evolution of gas. I watched
them dissolve under the microscope, and never could see the least bit
of gas formed. If Claus’s observation is correct, then the composition
of the concretions of C. marsupialis is different from that of the
concretions of C. Xaymacana. The concretions, further, were dissolved out
of the material preserved in formaline and in osmic acid solutions. For
dissolving them in situ I used either nitric or hydrochloric acid, or
both. A slight husk remains after all the lime is dissolved.

_The Epithelium of the Clubs._--The epithelium is thickest on the dorsal
side of a club. The thickening here, as in several other places, seems
to be due to a crowding of the cells, in consequence of which the nuclei
come to lie at different levels, but I believe that all the cells quite
reach the surface. The cells with their nuclei nearest the surface are
pyramidal in shape, with the bases of the pyramids toward the surface,
while those cells whose nuclei lie deeper (where several layers of nuclei
occur) may be spindle-shaped (Figs. 12, 23, 24, 26). Centrad these cells
are continued into a single process, which often seems to extend to the
basement membrane (Figs. 7, 12, 13, 23, 24). Where the epithelium covers
the region of the concretion, the cells become flattened and with the
long axis of their nuclei parallel with the surface of the club (Fig. 7).
The same holds true for the corneal epithelium (Figs. 7, 13).

It is a significant fact that in many places the nuclei form only a
single layer, and in such places one cannot speak of spindle-shaped
cells. I cannot find any evidence of sensory and supporting cells as
Schewiakoff describes. The fact that spindle-shaped cells may exist is
simply a physical consequence of their being closely crowded. Conant
arrived at the same conclusion.

But I have another and better reason for supposing the existence of only
one kind of cells in the epithelium. In a tangential section taken just
through the tips of the epithelial cells (Fig. 25) I find polygonal areas
with a central dot. This section does not at all agree with Schewiakoff’s
Fig. 8, in which he figures two kinds of cells. In Fig. 25 there can be
no evidence of two kinds of cells, unless both kinds have like flagella,
for these dots are the transverse sections of flagella continued within
the cells (Fig. 26).

The epithelium, then, is flagellate, a flagellum to a cell. Whether there
are flagella on the epithelium covering the region of the concretion, I
could not determine. But I believe that in all other parts, excepting,
of course, the corneas, it is flagellated. The fibers (flagella) of the
simple eyes are evidently the flagella of the invaginated epithelium.
Each flagellum has a basal body, and I could in many instances determine
that it was dumbbell-shaped (Fig. 12). This fact was not always evident,
however, and it was only occasionally that I felt sure of it. Often
the flagella showed only a general thickening within the cells (Fig.
26) while, again, the thickening (basal body) might be quite localized
near the surface of the cell. Each flagellum extends into its cell,
and occasionally I could trace one clear past the nucleus into the
subepithelial nerve-tissue (Fig. 26), just as I did for the axial fibers
of the retinal cells of the simple eyes. In those instances in which I
could do this, the fibers could so clearly be traced that little if any
doubt can exist. I have thus made bold and have drawn the flagella as
continued through their cells into the subepithelial nerve-tissue for all
the cells of the epithelium of Fig. 12.

A word on the epithelium covering the network cells of Fig. 13. Conant
and Schewiakoff here describe fibers from the supporting lamellæ that
pass in bundles in among the network cells. These fibers are supposed to
be a part of the supporting lamella which reaches out to be a support
for the epithelial cells. (Schewiakoff also describes similar fibers for
other parts of the epithelium.) Now, as Conant himself shows in Fig.
13, these coarse fibers are not of the same consistency and staining
capacity as the supporting lamella. I found them to stain just like the
intracellular parts of the flagella or like the central continuations
of the axial fibers of the cells of the simple eyes. I could, also,
occasionally trace them to the surface of the epithelium, and beyond,
when they became continued as short blunt processes or flagella (Fig.
13). I, therefore, conclude that they are sensory fibers like those I
have described for the other epithelial cells. Yet, that they pass to
the supporting lamella, just as Conant shows in Fig. 13, would seem to
indicate that they are fibers from the supporting lamella or processes of
the epithelial cells. While this stands as an objection to their being
sensory fibers, yet I cannot explain away their being continued distally
as a flagellum, except I assume this continuation to be an artefact.
This does not seem probable. Perhaps they serve both purposes; namely,
that the cell body with its axial fiber is continued to the supporting
lamella, the cell proper ending there, while the axial fiber is continued
as a nerve fiber. I believe this to be the proper explanation.

The epithelium of the peduncle is quite like the epithelium of the
club just described. Sections through the tips of the epithelial cells
of the peduncle and also sections sagittal to the axis of these cells
give sections like Figs. 25 and 26. I, therefore, conclude that this
epithelium is a sensory flagellate epithelium like that of the clubs.
Nerve tissue and unstriped muscle fibers underly the epithelium of the
peduncles. Claus and Conant also describe a small ventral endodermal
tract of nerve tissue, which according to Conant is connected with the
endodermal nerve tissue found in the region of the radial ganglia.

To sum up, the epithelium of the club and the peduncle is a flagellate
sensory epithelium whose flagella are continued through the cells as
nerve fibers into the nerve tissue below. _A priori_, judging from the
mass of nerve tissue underlying the epithelium, we should expect the
epithelium to be one strictly sensory. What sense it serves is difficult
to surmise. In the physiological part of this paper I suggested that it
might be tactile, serving in connection with the lithocysts in giving the
animal sensations of space relations.

Claus mentions having seen patches of flagella on the epithelium of the
clubs. Schewiakoff supposes that his spindle-shaped sensory cells have
only a single flagellum, while his supporting cells have many cilia.
In the latter supposition he was evidently mistaken. Conant (from an
unpublished note) saw the flagella of the epithelium on the living
object and does not think that there could be more than a single one to
each cell. He also concludes from living specimens squeezed out under a
cover-glass, that there is only one kind of cells in the ectoderm.

Cilia and flagella extending into the cells to which they are attached
are described by a number of observers.

I shall not endeavor to discuss the subject further, but shall append the
literature on the subject that has come to my notice. (See Literature).
Some of these observers ascribe a nervous function to these centrad
continuations. I am inclined to believe that they represent the primitive
fibrils of Apathy, whether the cilia or flagella are motile or sensory. I
should mention, however, that Apathy has traced the “Primitivfibrillen”
to be continuous with cilia, and also traces them into the sensory rods
of the sensory cells in the sense organs of leeches. Eimer also describes
cilia as continued centrad.

_The Network Cells and the Multipolar Ganglion Cells._--Conant is the
first to accurately describe the true structure of the network cells
(Fig. 13) that fill the upper part of the club between the proximal
complex eye and the attachment of the peduncle. I cannot add anything
to Conant’s description. As their name implies, they are filled with
a coarse network-like structure with a central nucleus and nucleolus.
Schewiakoff erroneously described them as ganglion cells and Claus as
supporting cells. I have sometimes thought that they are not made up of
a network, but of a vesicular structure; _i. e._ the network we see is
really produced by the sections of planes that intersect to form little
polyhedral cavities. I could not, however, satisfy myself on this point.
I further saw similar but smaller cells, with a finer network, disposed
in small groups laterally and distally from the attachment of the
peduncle to the club.

What the function of these network cells is can only be guessed. In size
and shape they somewhat resemble some of the cells found in luminous
organs. Conant, however, nowhere mentions that Charybdea is luminous.

Lateral to the larger group of network cells lie two groups of large
multipolar ganglion cells (a group on each side). Claus describes these
cells, but Schewiakoff does not specially note them, and evidently
considered them a part of the network cells, which he erroneously
described as ganglion cells.

_The Nerve Tissue._--I cannot add anything new on this. It consists of
fine fibers and ganglion cells, quite as described by Claus, Schewiakoff,
and Conant, and fills the club between the ampulla and the epithelium,
except the spaces occupied by the eyes, lithocyst, and network cells.
It is likewise present under the ectoderm of the peduncle, where also
a small tract is found under the endoderm. (See preceding head, or
Claus[3], and Conant[8b]). As already noted, under the distal complex
eye, I find only large nuclei to represent the ganglion cells. By saying
this, however, I do not wish to dispute their ganglionic nature. The
large multipolar ganglion cells I have noted under the preceding topic.

_The Supporting Lamella._--The supporting lamella is a continuation,
through the peduncle, of the jelly of the bell. It completely surrounds
the ampulla and the lithocyst, and also forms a partition between them,
so that, as already noted, the lithocyst becomes completely surrounded
by it. It also sends a partition ventrally between the complex eyes
(Figs. 7, 13). Its thickening to form a support for the lens of the
proximal complex eye has already been noticed. I shall limit myself in
the discussion of the supporting lamella to the above short resumé, since
Schewiakoff gives further detail.

_The Endothelium of the Ampulla and the “Floating Cells.”_--The ampulla
is lined by a secreting epithelium. This is shown by the large masses
of a secretion within the bases of the cells, and by smaller masses
scattered in the central and more distal parts (Figs. 7, and 27, lower
half). The section of the cells is such in Fig. 7, that the bases of some
(those nearest the supporting lamella) are taken, the central nuclear
region of others, and the tips of those farthest from the supporting
lamella. The section may be said to be taken diagonally through the bases
and central parts of some of the cells, but owing to the curvature of
the ampulla wall, through the tips of others. The secretion is a colloid
substance, staining yellowish gray with iron-hæmatoxylin, blue with Lyons
blue, and reddish with borax-carmine. Sometimes darkly staining rods and
fibers of unknown origin could be seen within the larger masses of the
secretion (Fig. 7). These rods and fibers could also be seen in spaces
within the cells, from which the secretion had evidently been dissolved.
I think there can be no question but that the masses described are a
secretion. Many series, however, do not show it; indeed, an examination
of Conant’s slides gave me little evidence of a secreting function,
though I could demonstrate it in his sections both within the endothelium
and also the floating bodies. The presence or absence of this secretion
is evidently correlated with the feeding habits of the animals, or else
it would be more generally present.

The endothelium is thickest (the cells are longest) in the upper part
of the ampulla where the supporting lamella approaches the lens of the
proximal complex eye, and in the lower portion of the ampulla (Fig. 7),
in the angle between the concretion cavity and the region of the distal
complex eye. In general, the cells are longest in the upper part of
the ampulla, while in the lower part, especially where they cover the
concretion cavity and the dorsal wall, they may be quite cubical instead
of columnar. Often they present a vacuolated appearance at their bases
(Fig. 27). Claus and Schewiakoff describe and figure this endothelium,
but not in detail. No one, to my knowledge, has described this secretory

The nuclei of these cells are peculiar. They may contain a network with
a nucleus (Fig. 27). Again, they may show evidence of amitotic division
(Fig. 20, h, i, j). Indeed, Remak’s scheme (Wilson[18] “The Cell,” p. 46)
can be quite readily demonstrated. It is, however, such dumbbell-shaped,
elliptical, or ringed nuclei as seen in Figs. 7 and 20 that are of
special interest.

I have spoken of some of these nuclei as dumbbell-shaped, elliptical, or
ringed. This is so, however, only in sections. They are really flattened
spheres with a rod of tissue, of the same structure as the nuclear wall,
stretching between the poles. One may conveniently compare the shape of
these nuclei with that of an apple, the core of the apple representing
the rod connecting the two opposite flattened or slightly hollowed poles
of the nucleus. For convenience I shall call the rod connecting the two
poles the axis of the nucleus. The dumbbell or elliptical shape would
be obtained by a meridional section through the axis (Figs. 20, a, b,
c, e, g, k, l, m, n, o, 7). Likewise a ringed appearance with a central
dot would be obtained by a section parallel with the flattened surfaces
or perpendicular to the axis (Figs. 20, d, 7). In a section not strictly
meridional the axis would be cut as in Fig. 29, a, or not show at all.
As nearly as I could determine, the inside of these nuclei is a vacuole,
which the axis penetrates.

The walls and axis of these nuclei have the structure of a very fine and
dense network that stains very dark with iron-hæmatoxylin. It stains
quite like the reticulum of any nucleus, but is very dense, as though
all the reticulum of the nucleus had been crowded together at the
surface. Judging from appearances like p (Fig. 20), the hollowing out, so
to speak, of these nuclei, would seem to be a process of vacuolation, the
reticulum becoming crowded aside to the surface. But how, on this view,
to amount for the formation of the axis, I do not know. Perhaps the axis
is formed by a pushing in of two opposite poles of a nucleus, the two
invaginations meeting and fusing. On this supposition one might expect
the axis to be hollow (cylindrical), but I could not determine that it
was. Perhaps the centrosphere (or spheres) (see the next paragraph) has
something to do with the formation of the axis (Fig. 20, b, g, e, etc.).

In the nuclei of Fig. 20 with the dark outlines, and of Fig. 7 a small
reticular body is seen just opposite one end of the axis, or opposite
both ends in g. In d (Fig. 20) this body is seen next the axis just
below (outside) the hollow cup represented by the hollow ring. In this
instance a central granule is seen in the reticular body, as also in
c. I take this reticular body to be the centrosphere, and the central
granule in c and d the centrosome. In k, l, m, n, and o (Fig. 20), which
are from another series, in which the walls of the nuclei did not stain
so dark as in the other nuclei of the same figure, a nucleolus could be
definitely seen, indeed, sometimes quite perched upon the wall of the
nucleus (k, l). In several instances I could see two nuclei, as in o. But
besides these nucleoli, I could in several instances see quite definitely
a reticular body (centrosphere) opposite the axis (m, n, o) quite as I
described for the nuclei with the dark outlines. In a, b, c, d, e and g
the nuclei could not be so readily demonstrated, but I could occasionally
see a darker stained body as in a, c and g, that I have no doubt is the
nucleolus, which here, again, is perched quite upon the surface of the
nucleus. This position of the nucleolus is perhaps due to its having been
crowded to one side by the nucleus becoming hollow. It is no uncommon
thing, either, to find several nuclei in a single cell, sometimes in
process of division or just divided as o and e (Fig. 20), also h, i and
j. The whole nuclear phenomenon that I have described seems to be one of
division. Perhaps it is somehow associated with the giving off of the
secretion of the cells, for these nuclei seem to be found in greatest
abundance in those cells in which the secretion is most abundant. In
Conant’s sections I found but little evidence of these nuclear phenomena
as also little secretion, which all goes to show the association of
the nuclear phenomenon with the secretion. I have failed to find any
descriptions in the literature of nuclei to which I could refer my

The endothelium of the ampulla is flagellated (Figs. 7, 17, 27). It
will be seen that there are two slender flagella to a cell. Each pair
of flagella has a pair of basal bodies that are longer than thick, and
which are continued as a thin fiber towards the nucleus of the cell.
That these centrad continuations of the basal bodies extend to or past
the nucleus I could not determine. Sometimes the basal bodies with the
centrad continuations are pushed quite to one side of the cell (Fig.
27), while in other cells they are applied quite to the distal surface
(Figs. 7, 17, 27). Fig. 17, and the part of Fig. 7 that shows these
points, are taken just through the tips of the cells. The darker lines
within the polygonal areas are the intracellular basal bodies with their
centrad continuations, while the thinner lines are the flagella, and
are supposed to lie in the plane just below the plane of the figure.
In those instances in which the centrad continuations are applied to
the distal surface of the cells they could occasionally be seen to bend
centrad (Fig. 27b). While these cilia with their basal bodies and centrad
continuations are usually separate, as shown in the figures, yet they are
at times applied quite closely to each other so that the double nature
of the basal bodies and their centrad continuations is not evident. When
the intracellular continuations of the cilia become pushed to one side or
applied to the distal surface of the cells, I believe this to be due to
the turgor of the cells consequent upon the deposition of large masses
of secretion within them. But I must add that this explanation is not
altogether satisfactory, since in the endoderm cells of the pedalia of
both Charybdea and Tripedalia I found like conditions with no evidence
of a secreting function. (See below, under tentacles.) No one, to my
knowledge, has described the flagellation in detail, although both Claus
and Schewiakoff state that the endoderm is ciliated.

The “floating cells” in the stomach pockets and in the ampulla, described
by Conant, I believe are in part derived from the endothelial cells of
the ampulla. That a portion of them may arise from the ovary, as Conant
explains, I do not doubt; I have, further, found a mass of floating cells
in a small Charybdea quite as Conant describes for Tripedalia (his Fig.
71). In this Charybdea, however, I could find no traces of any ovary.
Conant speaks of larger and smaller floating cells, and that the smaller
ones are also found in the males. This latter fact agrees with what I
have suggested, that some of the floating cells arise in the ampulla.
My chief reasons for my supposition, however, are the following: I find
globules of the secretion of the ampulla cells in some of the floating
cells and also scattered loosely among them (Fig. 19). These globules
in and among the floating cells have the same general appearance and a
similar staining capacity as the secretion in the ampulla cells. Again,
in spaces within some of the ampulla cells I find bodies resembling
the floating cells with lumps of the secretion within them (Fig. 18).
The conclusion, therefore, lies near that some of the floating cells
originate within the cells of the ampulla, engulf within them some of
the secretion, and are then expelled into the lumen of the ampulla.
Better said, perhaps, they represent portions of the ampulla cells
with some of the secretion. I also found several instances in which a
floating cell had the appearance of being expelled from an ampulla cell.
Conant suggests for a similar observation that the cells were about to
be swallowed by the ampulla cells. I believe, however, that my finding
a secretion similar to that within the cells of the ampulla, in some
of the floating cells, as also bodies very much like them and filled
with secretion within the ampulla cells, together with Conant’s finding
floating cells in males, and finally the observation that the floating
cells are usually quite dilapidated, never showing a healthy cell
structure--all this leads me to conclude that some of the floating cells
originate from the ampulla cells, and that they have a nutrient function
in distributing the secretion. This is quite the reverse of what Conant
supposed,--that they were taken in as nourishment by the ampulla cells. I
also find what appears to be a secretion in the endoderm of the tentacles
of both Charybdea and Tripedalia, and believe this is another source of
the floating cells. (See below, under tentacles.)

I also found other very darkly staining bodies (Fig. 19) both within
the floating cells and free in the ampulla cavity, and more numerous
in the ampulla cells themselves. This again goes to show that floating
cells take their origin from the ampulla cells. What these darkly
staining bodies are, I cannot say. Perhaps they are something akin to the
“Chromatoider Nebenkörper” described by Lenhossek (L), or they represent
another kind of secretion. If these floating cells are derived from the
cells of the ampulla, the active nuclear division within these also
receives an explanation. Some nuclear matter can usually be observed in
the floating cells.

_The Endothelium of the Peduncle._--The endothelium of the peduncle
consists of flagellate columnar cells (Fig. 27, upper half). The cells
are vacuolated at their bases like some of the cells of the ampulla,
and contain a comparatively large nucleus with nucleolus. The flagella
are long and slender, quite like those described for the cells of the
ampulla, except that there is only one to each cell. The basal bodies of
the flagella are of a peculiar shape. They may be described as a bent
spindle, continuous at their distad ends with the cilia and at their
centrad ends with a fiber that can be traced quite to the neighborhood of
the nucleus. I could not trace these fibers into the basal parts of the
cells, except in one instance, and I could not be sure of that (Fig. 27a).

Another interesting observation in connection with the basal bodies is
that they are bent in one direction on one side of the canal and in
an opposite direction on the other side. In Fig. 27, which represents
a longitudinal section of the endoderm and the supporting lamella of
the dorsal (_i. e._ farthest from the eyes) side of the peduncle, the
distal ends of the basal bodies are bent towards the ampulla, while on
the ventral side they would be bent away from the ampulla. This seems
to suggest that the flagella move the contents of the canal in one
direction on the dorsal side of the canal and in an opposite direction
on the ventral side. Conant observed in living material that bodies in
the ampulla and the canal were moving about, and that bodies within the
tentacles were moving in opposite directions at the same time. This
last observation and the histological facts just described, I believe,
are mutually corroborative. Again, _a priori_, we should expect some
such mechanism as the one described to bring about an exchange between
the contents of the ampulla and that of the stomach pockets. I have not
as yet been able to demonstrate a similar flagellate mechanism in the
tentacles. Flagella and basal bodies are present in the tentacles, but I
could not determine that the basal bodies had any definite arrangement
like that shown in Fig. 27. (See under tentacles.) I may add, yet, that
the cells in the canal of the manubrium have cilia, similar to the ones
just described, with large basal bodies, and with centrad continuations.
Finally, I am not certain but that these cells form buds at their ends
quite like those I describe for the endothelial cells of the tentacles
(see below), and that they aid in the formation of the floating cells. I
thought I saw such buds just at the entrance of the lumen of the peduncle
into the ampulla, but could not find conclusive evidence.

_The Tentacles and the Pedalia._--My observations on the tentacles were
begun with the object of demonstrating a flagellate mechanism similar to
the one described above for the endothelium of the peduncle. While I have
failed to demonstrate such a mechanism for the tentacles, yet several
interesting points came to my notice. It will be remembered that the
tentacles of the Cubomedusæ are not directly attached to the bell, but
that a blade-like portion, the pedalium, intervenes between the tentacles
and the bell. For figures of the pedalia and the tentacles the works of
Haake, Claus, Conant and Maas[22] may be consulted.

_The Ectoderm._--The ectoderm of the tentacles is the seat of a number of
differentiations. It is quite thick, as the figures (28 and 29) show, and
in this respect is very different from the pedalia, on which the ectoderm
cells are quite cubical. I found evidence of cilia here and there, but
I can add nothing definite about them. Neither can I add any definite
statements regarding the ectoderm cells proper, but what I have to say
relates to their differentiations.

(a) The _thread cells_ are of two kinds, larger ones and smaller ones.
This is well shown in Fig. 29, which is part of a transverse section of
a tentacle of Tripedalia. Two kinds of nettle-cells are also present
in the tentacles of Charybdea, but they were specially well shown in
Tripedalia. The structure of these thread-cells seems to be typical, and
I have little more to say about them. I wish, however, to call attention
to the five or six unstriped muscle-fibers that are attached to their
basal lateral parts, and which connect them with the basement membrane
(Figs. 28, 29). Claus describes these muscle-fibers and mentions that Fr.
Müller has described them before him, but I have not found them mentioned
elsewhere in the literature of nettle-cells. Professor Brooks tells me,
however, that he has often found them. It would appear from Fig. 29 that
they serve to retract the thread-cells from the surface. Claus suggests
that the muscles are developed from the cnidoblasts.

(b) The plain subectodermal _muscle-fibers_ are of interest. In
Charybdea they lie wholly enclosed within canals of the supporting
lamella (Fig. 32, upper part). They run longitudinally, and near the
base of each tentacle pass out of their canals and become strictly
subectodermal (Figs. 31, 32). This is for Charybdea. In Tripedalia they
rarely come to lie in closed canals as in Charybdea. These facts show
beyond doubt that these muscles are developed from the ectoderm. Claus
has suggested their ectodermal origin, but did not demonstrate it. He
also suggested that they become inclosed in canals by the supporting
lamella pushing up around them and finally fusing above them. This, I
believe, is demonstrated by the conditions in Tripedalia (Fig. 29). Here
the canals usually remain open, but occasionally, as in the left-hand
canal, one may become completely inclosed. This condition of things
suggests the intra-lamellar muscles found in actiniarians. The nuclei
found in the canals with the muscle-fibers probably belong to the cells
from which the muscles become differentiated. Claus figures these
muscle-fibers and nuclei, and it may be added that the supporting lamella
he figures, for C. marsupialis, is much thicker than I have figured it
for C. Xaymacana and Tripedalia cystophora. The number of muscle-canals
also is greater and occupies a much greater depth of the thickness of
the lamella. Since Claus gives a figure of a transverse section showing
the muscles in their enclosed canals, I have not deemed it necessary to
duplicate his figure. In the transition from a tentacle to a pedalium,
the muscles are most strongly developed toward and at the edges of the
pedalium. This is true for the pedalia in general, and accounts for
the readiness with which they can be bent inwards, as noted in the
physiological part of this paper.

(c) I have found a single _ganglion-cell_ among the cells of the ectoderm
of the tentacles. This showed so plainly that I have figured it (Fig.
28). Other ganglion-cells no doubt exist, but could probably not be
distinguished from other cells. In its position in Fig. 28 it appears to
be associated with the nettle-cell shown just above it. Its position is
very much the same as that figured by Lendenfeld (25a).

_The Endoderm._--The cells of the endoderm of a tentacle are long and
quite slender (Fig. 31). At their bases they are vacuolated quite like
the cells of the ampulla and the canal of the sensory clubs. They contain
a well-formed nucleus with a nucleolus. In their distal half small light
bodies with a dark center are very evident. These bodies are evidently a

Another peculiar phenomenon presents itself in these cells. The distal
part of each cell becomes separated off from its body by what appears
to be the formation of a transverse cell-wall (Fig. 31, c-d). I have
found the ends of these cells quite separated off in some series. The
formation of the walls seems to begin as a thickening at the sides of the
cells, and a section through this region, transverse to the cells, would
appear like Fig. 30. The dots in the centers of the polygonal areas of
this figure are the centrad continuations of the cilia to be described
below. As already remarked in describing the endoderm of the ampulla, I
believe we here have another place of origin of the “floating cells.” The
secretion just described moves into the distal parts of the cells prior
to their separation (Fig. 31). In some series I could see these secretion
bodies much more numerous within the distal ends of the cells than in
Fig. 31.

As will be seen in Fig. 31, each of the endoderm cells of the tentacles
has a flagellum that extends into the lumen of the tentacle. Each
flagellum has a thickening just within its cell, which may be regarded
as a basal body. From this basal body, again, a small fiber extends
centrad into each cell. It does not appear that the flagella are thrown
off with the distal parts of the cells; at all events, I never found
them connected with any of the floating cells except in a few doubtful

What I have said for the endoderm of the tentacle of Charybdea applies
equally to Tripedalia.

Claus, in his figure of a transverse section of a tentacle of C.
marsupialis shows the endoderm as cubical. I cannot explain why there
should be such a difference between the endoderm of the tentacles of _C.
marsupialis_ and that of the tentacles of _C. Xaymacana_ and _Tripedalia
cystophora_. Claus does not describe the endoderm in detail.

The endoderm cells of the pedalia of both Charybdea and Tripedalia are
cubical and possess flagella, basal bodies, and centrad continuations,
quite like those I have described for the endoderm cells of the ampulla.
The double nature of the basal bodies and the centrad continuations is,
however, not so evident. A secretion I did not find. Histologically,
therefore, the endothelium of the pedalia corresponds rather with that of
the ampulla, and that of the tentacles with that of the peduncle of the


The most important results in the histological part of this paper relate
to the structure of the retinas of the eyes of the sensory clubs.

The retina of the distal complex eye is composed of three kinds of cells:
two kinds of sensory cells (the prism and pyramid cells), and the long
pigment cells (Figs. 1-9). The prism and pyramid cells have each an axial
nerve fiber in their prisms and pyramids respectively. These fibers I
could, however, trace only to the neighborhood of the nuclei. But since
I could trace similar fibers in the retinal cells of the simple eyes
(Fig. 16) past the nucleus into the subretinal nerve tissue, I believe
that the axial fibers in question also extend centrad as nerve fibers
into the subretinal nerve tissue. Other observers also figure such fibers
as extending centrad as nerve fibers. The axial fibers of the prism
cells have each a dumbbell-shaped basal body at their entrance into the
pigmented part of a cell. The evidence for a body of such shape in the
pyramid cells was not conclusive, though a basal body for the axial fiber
exists. The long pigment cells project or retract their pigment in light
or darkness respectively and thus seem to serve to check the diffusion of
light in the retina. I have also supposed that these cells may serve for
conducting impulses to the lens, and that the latter is adjustable.

The proximal complex eye (Fig. 13) has only the prism cells present in
its retina, and not two kinds of cells as Schewiakoff has described (see
text, pp. 53, 60, 63) for all the eyes.

The simple eyes (Fig. 12), two on each side of a club, four in all,
also have only one kind of cells in their retinas, and each cell has
a flagellum extending into the vitreous secretion of the lumen. These
flagella could be traced centrad as a nerve fiber (Figs. 12, 16).
Similarly, a nerve fiber could be traced centrad from the flagella of
the epithelial cells of the clubs. Dumbbell-shaped basal bodies for the
flagella of the simple eyes could also be demonstrated, but the evidence
for this in the epithelial cells of the clubs was not so satisfactory.

Other points of interest are: A secretory epithelium lining the ampulla
of the clubs, and a somewhat similar epithelium lining the canals of
the tentacles (Figs. 7, 27, 31); the partial origin of the “floating
bodies” in the canals of the clubs and tentacles and the stomach pockets
from these epithelia (Figs. 18, 19); two flagella to each cell of
the endothelium of the ampulla and of the pedalia (Figs. 7, 17); the
peculiar nuclei in the endothelial cells of the ampulla (Fig. 20); the
longitudinal muscles of the tentacles being completely inclosed within
canals of the supporting lamella, but near the base of a tentacle
becoming subectodermal. This demonstrates their ectodermal origin. In
Tripedalia it is seldom that any of these muscles become enclosed as in
Charybdea (Fig. 29).

If to the reader my results seem to embody a somewhat heterogeneous
detail, he must remember that the work consists partly in corroborating
and partly in supplementing the work of previous observers, and that,
in general, histological detail does not usually make the most readable



[a] It was at one time supposed that the concretions in the marginal
bodies of medusæ represented lenses and the surrounding nerve tissue the
optic nerve, a supposition so highly improbable that it never gained any
acceptance. (Ib., p. 41, note.)

[b] Eimer’s results I get from Romanes and Hesse[III].

[c] By no means do I wish to attribute intelligence to these animals.

[d] Haake[2] says that in the adult _Charybdea Rostonii_ the vitreous
bodies of the complex eyes are absent but present in the young. It is
difficult to explain this observation except on grounds of imperfect
preservation of the adult material, for in all observations on other
forms a vitreous body is described. Haake evidently did not use sections,
and for this reason his results must be regarded as of doubtful accuracy.
Haake also says that the simple lateral eyes of the clubs are absent in
the adult, but present in the young.

[e] In the series from which Fig. 3 is taken the pyramid-cells are not
so readily demonstrated. Indeed, I missed them altogether at first in
this and some other series and supposed that there were only two kinds of
cells (19), but upon a careful re-examination I could demonstrate them to
my satisfaction. They did not show, however, in the particular section of
Fig. 3, so that they are not indicated in this figure.

[f] I go into this at some length because the cell-walls in the series
that showed the nuclei best differentiated as lighter and darker ones did
not show well, and there might be some doubt that these lighter nuclei
belonged to the pyramid cells. I could, however, in many instances,
trace the axial fibers of the pyramids through the pigmented zone to
these lighter nuclei (as already noted) which fact can leave no doubt
but that some of these nuclei belong to the pyramid cells. (Similar
nuclei, however, are found to belong to the long pigment cells, to be
described below.) Centrad these pyramid cells are continued into a single
process just as the prism cells were shown to be (Fig. 7). Figures 6,
8, 9, and 21 show samples of all the pigmented cells found in macerated
preparations, and none of these (except Fig. 9, long pigment cells) show
more than a single centrad process. Hence, I conclude that centrad both
the pyramid cells and prism cells are continued as a single prolongation.

[g] I have been able to demonstrate nucleoli in all the different nuclei
of the cells of the sensory clubs.

[h] It may be objected that my criterion, the presence of axial fibers,
is not necessarily characteristic of visual cells. However, the great
general occurrence of such axial fibers (Patten,[5] Grenacher,[16]
Schreiner,[12] Hesse,[13] myself, in simple complex eye, see below, and
perhaps others) in eyes in which the retina has only one kind of cells,
would seem to indicate that they are quite characteristic of visual
cells. Note again that in the proximal eye of Charybdea there is only one
kind of cells and with axial fibers.

[i] Mr. J. C. Olsen, of the Chemical Laboratory, kindly made these tests
for me.



I. ROMANES, G. J. a. ’75, ’77. The Locomotor System of Medusæ.
Philosophical Transactions. London. Vol. CLXVI, pt. 1. Vol. CLXVII, pt. 2.

    b. ’85. Jelly-fish, Star-fish and Sea-urchins. London.

II. MURBACH, LOUIS. ’95. Preliminary Notes on the Life-history of
Gonionemus. Journal of Morphology. Vol. XI.

III. HESSE, R. ’95. Über das Nervensystem und die Sinnesorgane v.
Rhizostoma Cuvieri. Zeit. Wis. Zool., B. LX.

IV. EIMER, TH. Zoologische Untersuchungen. ’74. Würzburg Verhandlungen.
VI. Bd.

V. HAECKEL, E. ’79. Monographie der Medusen. Jena.

VI. BERGER, E. W. ’98. Abstract of Dr. F. S. Conant’s Notes on the
Physiology of the Medusæ. Johns Hopkins University Circulars. Vol. XVIII,
No. 137.

VII. (See also 8, below.)


1. CARRIÈRE, J. ’85. Die Schorgane der Thiere. München u. Leipzig.

2. HAAKE, W. ’87. Scyphomedusen des St. Vincent Golfes. Jen. Zeit. f.
Naturwis., Bd. XX., pp. 596-597, 602-604.

3. CLAUS, C. ’78. Über Charybdea marsupialis. Arb. aus dem Zool., Inst.
Univers. Wien., Bd. I.

4. SCHEWIAKOFF, W. ’89. Beiträge zur Kenntniss des Acalephenauges. Morph.
Jahrb., Bd. XV, H. 1.

5. PATTEN, WILLIAM. a. ’89. Studies on the eyes of Arthropods. II. Eyes
of Acilius. Journal of Morphology. Vol. II.

    b. ’98. A Basis for a Theory of Color Vision. American
    Naturalist. Vol. XXXII, No. 383.

6. APATHY, ST. ’97. Das Leitende Element des Nervensystems u. seine
topographischen Beziehungen zu den Zellen. Mitt. Zool. Stat. Neapel., Bd.
XII, H. 4.

7. PARKER, G. H. ’97. Photomechanical Changes in the Retinal Pigment
Cells of Palæmonites, and their Relation to the Central Nervous System.
Bull. Mus. Comp. Zool. Harvard Coll. Vol. XXX, No. 6.

8. CONANT, F. S. a. ’97. Notes on the Cubomedusæ. Johns Hopkins
University Circulars. Vol. XVII, No. 132.

    b. ’98. The Cubomedusæ. Memoirs Biological Laboratory Johns
    Hopkins Univ. Vol. IV, No. 1.

9. A REVIEW OF 5b. ’99. A Theory of Color Vision. Natural Science. Vol.
XIV, No. 85.

10. HERRICK, F. H. ’91. The Embryology and Metamorphosis of the Macroura
(Brooks and Herrick). Natl. Acad. Sciences. Vol. V, p. 454.

11. HERTWIG, O. & R. ’78. Das Nervensystem und die Sinnesorgane der
Medusen. Leipzig.

12. SCHREINER, K. E. a. ’96. Die Augen bei Pecten und Lima. Bergens
Museums Aarbog.

    b. ’97. Histologische Studien über die Augen der freilebenden
    marinen Borstenwürmer. Bergens Museums Aarbog.

13. HESSE, R. ’99. Untersuchungen über die Organe der Lichtempfindung
bei niederen Thieren. V. Die Augen der Polychäten Anneliden. Zeit. Wis.
Zool., B. LXV, H. 3.

14. ANDREWS, E. A. ’92. On the Eyes of Polychætous Annelids. Journal of
Morphology. Vol. VII.

15. WILSON, H. V. ’78. Unpublished Notes.

16. GRENACHER, H. ’84. Abhandlungen zur vergleichenden Anatomie des
Auges. I. Die Retine der Cephalopoden. Abhandl. der Naturf. Gesellsch. zu
Halle. Bd. XVI.

17. BEER, THEODORE. ’98. Die Accomodation des Auges in der Thierreihe.
Wiener klinische Wochenschrift. Nr. 42.

18. WILSON, E. B. ’96. The Cell.

19. BERGER, E. W. ’98. The Histological Structure of the Eyes of
Cubomedusæ. The Journal of Comp. Neurology. Vol. VIII, No. 3.

20. LENDENFELD, R. Die Nesselzellen der Chidarier. (Review and
bibliography.) Biol. Centralbl. Bd. XVII, Nr. 13.

21. SCHNEIDER, K. ’90. Histologie von Hydra fusca mit besonderer
Berücksichtigung des Nervensystems der Hydropolypen. Arch. Mik. Anat.
Vol. XXXV.

22. MAAS, O. ’98. Die Medusen. (Charybdea arborifera, Systematic.) Mem.
Mus. Comp. Zool., Harvard Coll. Vol. XXIII, No. 1.


A. HAECKEL, E. ’72. Die Kalkschwämme. Vol. I, p. 141; Vol. III, Pl. 25,
Figs. 3-5.

B. SCHULTZE, F. E. ’75. Rhizopodien Studien. V. Arch. Mik. Anat. Bd. II,
p. 583.

C. EIMER, TH. ’77. Weitere Nachrichten über d. Bau des Zellkerns, nebst
Bemerkungen über Wimperepithelien. Arch. f. Mik. Anat. Bd. XIV, Taf. VII,
p. 114.

D. BÜTSCHLI, O. ’78. Beiträge zur Kenntniss der Flagellaten, u. s. w.
Zeit. f. Wis. Zool. Bd. XXX, p. 269.

E. ENGELMANN, TH. W. ’80. Zur Anatomie u. Physiologie d. Flimmerzellen
Pflüger’s Arch. Bd. XXIII.

F. HATSCHEK, B. ’85. Entwickelung der Trochophora von Eupomatus uncinatus
Arb. Zool. Inst. Wien., Bd. VI, p. 139.

G. HEIDER, K. ’86. Zur Metamorphose der Oscarella lobularis. Arb. Zool.
Inst. Wien., Bd. VI, pp. 189-194.

H. SCHNEIDER, K. C. ’92. Einige histologische Befunde an Coelenterata.
Jen. Zeit. f. Nat. 27, N. F. 20.

I. HECHT, EMILE. ’95. Contribution a l’Étude des Nudibranchs. Memoirs de
la Société Zool. de France. T. 8, Pl. IV, Fig. 45.

J. MINCHIN, E. A. ’96. Notes on the Larva and Postlarval Development of
Leucolosolemia variabilis, etc. Proc. R. Soc., London. Vol. LX.

K. HENNEGUY, L. F. ’98. Sur le rapports des ciles vibrales avec les
centrosomes. Arch. d’anat. micros., T. 1.

L. LENHOSSEK, H. ’98. Über Flimmerzellen. Anat. Anz. (Supplement.) Bd.

M. PETRE, CARL. ’99. Das Centrum für die Flimmer u. Geisel-bewegung.
Anat. Anz. Bd. XV, Nos. 14 and 15.

N. See also 6.


        a = flagellum in Fig. 27, that is supposed to extend centrad
              beyond the nucleus.

        b = twin flagella in Fig. 27, of which the centrad continuation is
              seen applied against the distal surface of the cells and to
              be continued centrad.

        c = capsule of lens.

       cf = axial fibers of cells extending centrad.

       co = cornea.

    concr = concretion cavity.

       ec = ectoderm.

       en = endoderm.

        f = flagella.

      flp = distal fiber of a long pigment cell.

      fpr = axial nerve fiber of a prism cell.

     fpyr = axial nerve fiber of a pyramid cell.

      frc = axial nerve fiber of the retinal cells of the simple eyes.

       gc = ganglion cells.

      ind = impression of the lens probably due to the pressure of weight
              against the surrounding tissue.

        l = lens.

       lp = long pigment cells.

        m = muscle fibers.

     namp = nuclei of ampulla cells.

       nc = network cells (Figs. 13 and 16), and nettle cells (Figs.
            28, 29).

       nf = nerve fibers and tissue.

      nlp = nucleus of long pigment cell.

       nm = nucleus of muscle cells.

     nprc = nucleus of prism cell.

    npyrc = nucleus of pyramid cell.

       nz = nuclear zone.

       pr = prism of prism cell.

      prc = prism cell.

      pyr = pyramid of pyramid cell.

     pyrc = pyramid cell.

       pz = pigmented zone.

        r = retina.

        s = secretion in endo. of tent. and ampulla.

       sh = shrinkage space.

      sec = vitreous secretion in the lumen of the simple eyes.

       sla = supporting lamella.

        vb = vitreous body or zone.

         x = (1) the approximate level at which Fig. 4 should be cut
                 transversely to give Figs. 1 and 3.

             (2) the thickening of the supporting lamella in Fig. 13 to
                 support the lens.

         * = Point of approximation of cells of lenses in Figs. 7 and 13.



Fig. 1. This figure represents a transverse section through a portion
of the vitreous body of the distal complex eye at about the level x of
Fig. 4. Three kinds of areas are seen, namely, the prisms and pyramids
with their axial fibers and the distal continuations of the long pigment
cells. Towards the lower left of the figure the section is a little more
distal than at the right and the transverse areas of the long pigment
cells are no more so large as at the right of the figure. The dark
granules in the areas of the long pigment cells represent pigment. Camera
lucida sketch. ×920. pp. 45, 46, 48, 49, 50, 51, 52, 54.

Fig. 2. This figure is a camera lucida sketch from a section taken
transverse through the most distal part of the pigmented zone of a
slightly pigmented retina of a distal complex eye. The presence of three
kinds of elements is again evident. The dots without the polygonal areas
represent the centrad continuations of the axial fibers of the prism
cells. The lettering explains the other areas. ×920. pp. 46, 48, 50.

Fig. 3. This is from a section similar to that of Fig. 1, but a little
more distal. At the right, the section is more distal than at the left
of the figure, in consequence of which the long pigment cells are there
taken through their distal fibers. Note the small shrinkage spaces about
the axial fibers of the prisms. The white lines bounding the prism areas
appear as in nature. The pyramid cells are not shown in this figure.
×950. Camera sketch. pp. 50, 51, 52, 54.

Fig. 4. This figure is from a section taken parallel to the long axis
of the cells of the retina of a distal complex eye. It is from a camera
sketch, and nothing has been put into the figure except what could be
clearly seen. The lateral boundary lines of the prisms are not shown.
Note the evidence for the existence of three kinds of cells. ×920. pp.
44-52, 54.

Fig. 5. This figure represents a sagittal section through the nuclear and
pigmented zones and the subretinal nerve tissue of a slightly pigmented
retina of a distal complex eye, that had been killed in the dark. Camera
sketch. The pyramid cells are not shown. ×900. pp. 47, 51, 52, 53.

Fig. 6. These cells are from a preparation by Conant of a sensory club,
macerated in acetic acid. Cell a is evidently an iris cell. The others
are probably prism cells from the proximal complex eye. ×900. pp. 44, 48.

Fig. 7. In this figure I represent a sagittal section through the
distal complex eye. In the middle half of the section, the nuclei, the
prism and pyramid cells with their axial fibers, and the long pigment
cells with their large distal fibers are all strictly camera lucida
sketched. A portion of the pigmented zone has been left unpigmented to
better show its structure. At the right and above the concretion cavity
is shown a portion of the endoderm of the ampulla. The section is not
strictly in a dorsoventral plane of the club, in consequence of which
the cells of the ampulla are cut diagonally and through their tips. Note
the dumbbell-shaped nuclei of the ampulla cells, as also the masses of
secretion. A part of the retina of the proximal complex eye is shown in
the upper part of the figure. ×920. pp. 41-54, 63, 64, 68-71.

Fig. 8. These cells are from a macerated preparation. Cells a, b, c, d
may be either prism or pyramid cells from the distal complex eye or prism
cells from the proximal complex eye. Cells e and f are probably from the
right fourth (Fig. 13) of the retina of the proximal complex eye or from
the simple eyes. The unlettered cells are probably from the simple eyes.
Some of these show a distal process. ×900. pp. 48, 62, 65.

Fig. 9. The cells here figured are long pigment cells from the same
preparation as Fig. 6. ×900. pp. 50, 51.

Fig. 10. This drawing shows an end view of a group of prisms from the
same preparation as Fig. 6. ×900. pp. 46.

Fig. 11. This group of prisms are from the same preparation as Fig. 6.
Two of them are broken off. The fibers seen at the lower end are probably
some of the axial fibers. The fiber at the upper end I believe is
interprismatic and the distal fiber of a long pigment cell. ×900. pp. 46.

Fig. 12. This figure is a summary of my results on the simple eyes.
It is from a camera sketch of one of the distal eyes, but somewhat
diagrammatic. The left side of the figure is proximal, the right side
distal. ×920. pp. 61, 62, 64, 65.

Fig. 13. Sagittal dorsoventral section of a proximal complex eye. Conant
drew and published this as his Fig. 69. Conant’s evidence regarding
the axial fibers of the prism cells was incomplete; so that, in this
respect, he left his figure unfinished. I have drawn in these fibers and
republish the figure. At the right of the retina and next the lens (the
white space) the vitreous body is incomplete and the fibers from the
retinal cells project freely into the space. This part of the retina also
remains unpigmented. Like my Fig. 7, this figure evidently represents
a section somewhat to one side of a sagittal dorsoventral plane of the
club, so that the endoderm cells of the ampulla are cut diagonally or
transversely. pp. 41-44, 60, 64-68.

Fig. 14. This is drawn to show how regularly small shrinkage spaces may
occur in transverse sections of the vitreous bodies. This figure is from
a transverse section of the vitreous body of a proximal complex eye.
I believe that these spaces are determined by the axial fibers of the
prisms. Prism outlines are not shown. ×950. pp. 54.

Fig. 15. This figure is a drawing of a portion of a transverse section of
one of the simple eyes. Note the flagella from the retinal cells. pp. 62.

Fig. 16. The section of the lower left hand corner of this figure is
through a portion of one of the proximal complex eyes, and shows the
centrad continuation of the axial nerve fibers of the retinal cells. The
section is such, that, besides the simple eye, the nuclei of the proximal
complex eye (upper part of figure) and two network cells are cut. ×920.
pp. 47, 62, 63.

Fig. 17. A transverse section through the tips of the ampulla cells is
here shown. To the left is towards the upper end of the ampulla. The
basal bodies with the centrad fibers are in the plane of the section,
while the flagella are supposed to extend below the plane of the section.
×1350. pp. 71.

Fig. 18. These bodies, from within the ampulla cells, contain some of
the secretion of the ampulla cells, and resemble the “floating bodies.”
×1350. pp. 72.

Fig. 19. The “floating bodies” here represented are from the ampulla.
Globules of a secretion similar to that found in the ampulla cells are
seen both within and without the bodies. Note also the two black bodies
without the cells and two or three similar ones within the cells. These
latter bodies are of doubtful nature. ×1320. pp. 72.

Fig. 20. This figure represents sections of the various nuclei found
within the ampulla cells. ×1350. pp. 69, 70.

Fig. 21. These cells are from the same preparation as Fig. 6. They are
evidently retinal cells from the simple eyes. The tendency of their
pigmented ends to become globular, I believe, is due to their having
become isolated before they hardened during maceration. ×920. pp. 62.

Fig. 22. This diagram illustrates the retraction of the long pigment
cells. The dotted lines in the vitreous body mark the outlines of the
prisms, while the continuous lines represent the axial fibers of the
prism and pyramid cells. pp. 45, 46, 48, 49, 53.

Fig. 23. These cells are from the epithelium of a sensory club. They are
from the same preparation as Fig. 6. Flagella are not shown. ×900. p. 64.

Fig. 24. This group of epithelial cells of a club are from the same
preparation as Fig. 6. ×850. p. 64.

Fig. 25. This sketch is a transverse section through the tips of the
epithelial cells of a club. The polygonal areas are the cells, while the
central dots are the centrad continuations (nerve fibers) the flagella of
the cells. ×920. pp. 63, 65, 66.

Fig. 26. The flagella of the epithelium of a club are in this figure seen
to extend centrad, some beyond the nuclei. Cell outlines are not shown.
×920. pp. 64, 65, 66.

Fig. 27. The cells of the lower half of this figure belong to the
ampulla, those of the upper half to the canal of the peduncle. The right
side of the figure is towards the eyes (the ventral side) of the club.
Globules of secretion are seen within the ampulla cells, as also a
globule without. The ring above the latter globule is probably an empty
shell of a floating cell. ×1320. pp. 68, 69, 71, 73.

Fig. 28. This figure is from a transverse section of a tentacle of
Charybdea. The mass with darkly stained granules is the remains of a
thread cell. The ectoderm and a small part of the supporting lamella only
are figured. Note the large ganglion cell. ×920. pp. 74, 75.

Fig. 29. Part of a transverse section of a tentacle of Tripedalia.
The endoderm is not figured. The supporting lamella is seen to be
considerably thinner than in Charybdea. Note the subectodermal muscles,
as also the muscle fibers to the thread cells. ×920. pp. 69, 74, 75.

Fig. 30. This is a transverse section through the endothelium of a
tentacle of Charybdea in the line c d of Fig. 32. The dark lines bounding
the polygonal areas are the thickenings of the sides of the walls of
the cells in the line indicated. The central dots are the centrad
continuations of the flagella. ×920. p. 76.

Fig. 31. This figure is a transverse section through a tentacle of
Charybdea at about the middle of Fig. 32, _i. e._ so near to where the
tentacle joins the pedalium, that the muscles within the lamella have all
come to lie under the ectoderm. The ectoderm is not shown. ×920. pp. 75,

Fig. 32. A longitudinal section through the supporting lamella only, of
a tentacle of Charybdea, is here shown. In the upper part of the figure
the muscle fibers are seen wholly enclosed by the supporting lamella. In
the middle of the figure they are seen to pass out of their canal. In the
lower part of the figure, the supporting lamella is seen to bend to the
right where it becomes continuous with the lamella of the pedalium. ×920.
p. 75.

[Illustration: CUBOMEDUSÆ. PLATE I.

E. W. Berger, del.]

[Illustration: CUBOMEDUSÆ. PLATE II.

E. W. Berger, del.]


E. W. Berger, del. Heliotype Printing Co., Boston.]

*** End of this Doctrine Publishing Corporation Digital Book "Physiology and histology of the Cubomedusæ - including Dr. F.S. Conant's notes on the physiology" ***

Doctrine Publishing Corporation provides digitized public domain materials.
Public domain books belong to the public and we are merely their custodians.
This effort is time consuming and expensive, so in order to keep providing
this resource, we have taken steps to prevent abuse by commercial parties,
including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the files We designed Doctrine Publishing
Corporation's ISYS search for use by individuals, and we request that you
use these files for personal, non-commercial purposes.

+ Refrain from automated querying Do not send automated queries of any sort
to Doctrine Publishing's system: If you are conducting research on machine
translation, optical character recognition or other areas where access to a
large amount of text is helpful, please contact us. We encourage the use of
public domain materials for these purposes and may be able to help.

+ Keep it legal -  Whatever your use, remember that you are responsible for
ensuring that what you are doing is legal. Do not assume that just because
we believe a book is in the public domain for users in the United States,
that the work is also in the public domain for users in other countries.
Whether a book is still in copyright varies from country to country, and we
can't offer guidance on whether any specific use of any specific book is
allowed. Please do not assume that a book's appearance in Doctrine Publishing
ISYS search  means it can be used in any manner anywhere in the world.
Copyright infringement liability can be quite severe.

About ISYS® Search Software
Established in 1988, ISYS Search Software is a global supplier of enterprise
search solutions for business and government.  The company's award-winning
software suite offers a broad range of search, navigation and discovery
solutions for desktop search, intranet search, SharePoint search and embedded
search applications.  ISYS has been deployed by thousands of organizations
operating in a variety of industries, including government, legal, law
enforcement, financial services, healthcare and recruitment.