Home
  By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII ]

Look for this book on Amazon


We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: Thinking and learning to think
Author: Schaeffer, Nathan C.
Language: English
As this book started as an ASCII text book there are no pictures available.


*** Start of this LibraryBlog Digital Book "Thinking and learning to think" ***


produced from images generously made available by The
Internet Archive)



                              LIPPINCOTT’S
                           EDUCATIONAL SERIES

                                EDITED BY
                    MARTIN G. BRUMBAUGH, PH.D. LL.D.
   PROFESSOR OF PEDAGOGY, UNIVERSITY OF PENNSYLVANIA, AND COMMISSIONER
                      OF EDUCATION FOR PUERTO RICO

                             [Illustration]

                                VOLUME I



Lippincott Educational Series

EDITED BY DR. M. G. BRUMBAUGH

Professor of Pedagogy, University of Pennsylvania

VOLUME I

Thinking and Learning to Think

By NATHAN C. SCHAEFFER, Ph.D., LL.D., Superintendent of Public
Instruction for the State of Pennsylvania. 351 pages. Cloth, $1.25.

VOLUME II

Two Centuries of Pennsylvania History

By ISAAC SHARPLESS, President of Haverford College. 385 pages.
Illustrated. Cloth, $1.25.

VOLUME III

Kemp’s History of Education

By DR. E. L. KEMP, Principal of East Stroudsburg Normal School. 385
pages. Cloth, $1.25.

VOLUME IV

Kant’s Educational Theory

By EDWARD FRANKLIN BUCKNER, Ph.D., Professor of Philosophy and Education
in the University of Alabama. 309 pages. Cloth, $1.25.



                    _LIPPINCOTT’S EDUCATIONAL SERIES_

                                THINKING
                                   AND
                            LEARNING TO THINK

                                   BY
                    NATHAN C. SCHAEFFER, PH.D., LL.D.
                SUPERINTENDENT OF PUBLIC INSTRUCTION FOR
                        THE STATE OF PENNSYLVANIA

                             [Illustration]

                              PHILADELPHIA
                        J. B. LIPPINCOTT COMPANY
                                  1906

                             COPYRIGHT, 1900
                                   BY
                        J. B. LIPPINCOTT COMPANY

          ELECTROTYPED AND PRINTED BY J. B. LIPPINCOTT COMPANY,
                          PHILADELPHIA, U.S.A.



EDITOR’S PREFACE


The progress of educational thought during the closing years of this
century has been marvellous. Professional schools have created a demand
for professional teaching by giving an increasing group of skilled
instructors to our schools. This professional activity has caused our
leading cities to provide training-schools, as integral parts of the city
system of education. Finally, our great universities have established
departments of pedagogy for the higher training in education. As a
result, the leading positions in higher schools and in supervision are
more and more demanding professionally trained leaders.

In this auspicious awakening for professional leadership there has
come an increasing demand for standard treatises upon the fundamental
problems of education. Treatises upon the history, methods, principles,
and systems of education have appeared with astonishing frequency.
That many of these are commercial treatises—made to sell—is doubtless
true. There is always a great temptation to profit by an active demand.
Well-disposed but not always widely trained and broadly cultured
teachers, who have achieved a local success with a method that owed its
virtue to the personality of its author and not to its intrinsic worth,
have been tempted into authorship. The wiser and nobler minds in the
profession wait. The days of unrest and experimentation, breeding discord
and confusion, have in part passed away, and the time has come when the
products of all this divergent activity may be put to the test of clear
analysis and adequate experience. This is especially true in the domains
of historic and philosophic inquiry. In experimental activity, touching
the problems of psychic life as related to its sensorium, much has been
done in a tentative way. Much must yet be done to produce results of
enduring significance.

This series of educational treatises is projected to give inquiring
minds the best thought of our present professional life. Fundamental
problems in education will be exhibited in the series from time to time
by thoroughly trained leaders of extended experience. Teachers may
confidently accept these as authoritative discussions of the cardinal
questions of their profession.

The highest endowment of the human spirit on the intellectual side is the
power to think. Learning to think is an essential process and end in all
school work. Thinking is the intellect’s regal activity. In a vague way,
all teaching appeals to the thought-activity of the pupil; but vagueness
in teaching is as pernicious as it is common. To exhibit the value,
scope, and process of thought is of inestimable service to the teacher.
It gives specific direction to teaching processes, and saves the child
from a thousand fanciful expedients.

In the craze of the passing decade for novelty in teaching, there
has resulted an undue emphasis upon forms of so-called expressional
activity. It has been, in many quarters, forgotten that education is
noblest when it produces reflective activity. The power to analyze and
synthetize thought-complexes is the most fruitful endowment of the
intellectual life. Expression without adequate reflection is productive
of superficiality.

We have been living a life of educational expedients. The path of
educational advance is strewn with countless cast-off practices which
once claimed attention largely because of the feeling among too many
that the newest theory is the best. There has come, let us hope, the
more rational resolve to test all new and loudly heralded theories by
fundamental laws of mental activity. To emphasize the significance of
this reaction, and to afford helpful criteria of educational processes,
this volume will be found most stimulating, suggestive, and sensible.

For the purposes of the teacher thinking may be distinguished as follows:

(_a_) _Clear thinking_, by which one is to understand thinking the thing,
and not some other thing in its stead. Much thinking is not clear. The
power of recall is not fully developed. The mind acts, but is not able
to assert confidently the accuracy of what it acts upon. Much needless
criticism is heaped upon schools because pupils cannot spell correctly,
solve problems accurately, recite a lesson in history or in geography
properly,—in short, because the pupil’s knowledge is not clear. The first
step in all true teaching is the step that makes clear to the pupil the
thing he is to think.

(_b_) _Distinct thinking_, by which one is to understand thinking the
thing in its relations. This phase of thinking is sometimes called
apperception. It is the second, and not the first step in thinking.
There is no value in teaching relations until the things to be related
are first clearly apprehended. Perception must precede apperception. The
pupil in the elementary school has been well taught if he has been taught
to think clearly and distinctly.

(_c_) _Adequate thinking_, by which one is to understand thinking the
thing in its essential parts. This is the analytic form of thought. The
child at first cannot think adequately. His mind thinks things as wholes.
He has not the power to think the whole and its parts, as parts of the
whole, simultaneously. He must rise to adequate thinking only after clear
and distinct thinking have become habits of mind. The fuller phase of
this activity, by which these analyzed parts are synthetically wrought
into an organic unity, is the process of concept-making,—the essential
prerequisite of all high orders of thought. This power every teacher
should possess. It is his surplus of knowledge, the possession of which
makes him easily master in the teaching process.

(_d_) _Exhaustive thinking_, by which one is to understand thinking the
thing in its causes. This is the highest form of thinking the thing. It
gives perspective to thought-processes, and eliminates all accidental
and misleading elements from the categories of thought. To achieve this,
one must specialize. The teaching of the future must be more and more
intensive in scope. The day of the encyclopædist is gone. The teacher of
to-morrow must be a teacher who knows one order of truth exhaustively,
and who possesses the skill to incite in others a permanent enthusiasm
for that order of truth. Scientific progress is conditioned by such
teaching.

The author has brought to this discussion the matured convictions of
broad training in American and European systems of schools, and a wide
and successful experience in teaching pupils and directing systems of
education. The discussion takes on the modest but stimulating style of
the public speaker. The author has for many years been among our foremost
lecturers upon education. The temper of the discussion is moderate and
constructive. There will be found here no wild excess, no straining after
fanciful effect, no advocacy of sensational and ephemeral methods; nor
is there a trace of pessimistic and destructive criticism of the earnest
teachers who are conscious of limitations and are reaching hopefully for
help. On the contrary, the discussion is full of real sympathy, founded
upon personal experience with teaching in all its phases, and abounds in
stimulating suggestion.

                                                                 M. G. B.

October 1, 1900.



PREFACE


For a number of years it has been the author’s duty as well as privilege
to lecture at county institutes on the difficult art of teaching pupils
to think. This led to the request that the lectures be thrown into
permanent form for publication. The lecturer who never publishes has
no pet theories to defend; he can change his views as often as he sees
fit; yet, in spite of this advantage, he cannot always escape or ignore
the art of printing. One who gives his thoughts to the public without
the use of manuscript and under the limitations of extemporaneous
speech, made necessary by the large audiences which gather at teachers’
institutes, especially in Pennsylvania, runs the risk of being misquoted
and misunderstood; he pays the penalty of being reported in fragmentary
if not distorted forms. This ultimately drives him, in justice to himself
and others, to write out his theories on education and to give them to
his coworkers in print.

Portions of these lectures were delivered at the annual meeting of the
superintendents of New England, before the State teachers’ associations
of Massachusetts, Rhode Island, and Florida, before the Connecticut
Council of Education, before the summer schools held under the auspices
of the Ohio State University and the University of Wisconsin, and at
several of the meetings of the National Educational Association. The
favorable hearing accorded on these occasions induces the hope that
the lectures will be kindly received by many who teach outside of
Pennsylvania, and by some who give instruction in our higher institutions
of learning.

Although no one can hope, on so difficult a theme, to say much that will
be entirely satisfactory to leading educators, surely no apology is
needed from any one who, after spending his best years in educational
work, attempts to contribute his mite towards the solution of any of the
problems which confront the teacher.

It is assumed that there is a body of educational doctrine well
established in the minds of teachers, and that on many school questions
we have advanced beyond the border line of first discovery. Those who
assert that our educational practice is radically wrong and in need
of thorough reformation should hasten to clarify their own views and
ideas, to substitute constructive for destructive criticism, and to
give definite shape to their reforms; otherwise a whole generation will
grow to maturity and the reformers themselves will pass away before
any of their reforms will have been accomplished. To give teachers the
feeling that what they are doing is all wrong, and to leave them without
anything better in place of what is condemned, robs them of joy in their
work, makes them victims of worry and neurasthenia, and unfits them for
the care of children. It is hoped that these lectures will be found to
suggest a better way whenever criticism is bestowed upon existing methods
of instruction.

No attempt is made to ridicule the arm-chair psychologists, or the
advocates of child study, or those patient and painstaking workers who
are honestly seeking to establish the facts of mind through experiments
in the laboratory. He who has carefully reflected upon the art of making
pupils think will not hesitate to admit that thus far he has received
more light from the standard psychology than from the labors of those
who claim to be the exponents of the new psychology. The latter can
hardly write or talk without using the terms coined by the older
students of mind; this shows their indebtedness to those who taught and
speculated before laboratories of psychology were established. Sometimes
the experiments have only served to test and give a reason for what was
already accepted. Often they have brought to our knowledge facts of mind
which could never have been discovered by the method of introspection. In
either case the experiments have resulted in clear gain. Let the facts of
brain and mind, of nervous and mental action, of human growth, maturity,
and decay be gathered, questioned, tested, and classified; let their
bearing upon educational practice be set forth in the clearest possible
light: every resulting step of progress and reform will be hailed with
delight by all who have no pet theories to defend.

The lecturer is limited by time, by the kind of audience which he
addresses, and by circumstances largely beyond his control. These
limitations drop out when he reduces his thoughts to writing, and a
rearrangement at many points becomes possible as well as desirable. The
expedients for relieving the strain of attention and winning back the
listless can be omitted; and omissions that become necessary through the
exigencies of the programme must be supplied for the sake of logical
sequence. Moreover, the aims which those who engage the lecturer set
before him frequently require a modification of the line of discussion,
so that a course of lectures on a specific theme cannot always follow the
same order of treatment, although substantially the same in content and
scope. Hence the division into chapters has been adopted as preferable
to the original sequence of lectures. Nevertheless, the style of the
rostrum has not been altogether eliminated, because when oral discourse
is thrown into new forms, and the phraseology is changed for the sake of
publication, the loss in vividness, directness, and simplicity is greater
than the gain in diction and fulness of statement.

Lecturing, as well as book-making, has its peculiar temptations. The
lecturer must interest his hearers in order to hold them; he is tempted
to play to the galleries, and to omit what is beyond the comprehension
of the average audience. The book-maker, on the other hand, is tempted
to display his learning, to make a show of depth and erudition. The
student of pedagogy is supposed to be in search of profound wisdom.
Those who write for him often dive so deep that their style becomes
muddy. Unfortunately, some of the best treatises on education have been
written in the style of the philosopher and wrought out on the plane of
the university professor, although intended for undergraduates at normal
schools, and for teachers whose meagre salaries do not enable them to
pursue courses of study at institutions of higher learning. The lucid
style of Spencer’s treatise on “Education” has done much to counteract
this tendency. Yet many of the authors of our treatises on pedagogy seem
to be haunted by a feeling similar to that of the German professor, who,
on reading the opening chapters of a new book, and finding them to be
intelligible to his colleagues, exclaimed, “Then I must rewrite these
chapters; otherwise nobody will read my book through.”

Huxley has well described the penalty which must be paid by those who
speak or write for the purpose of being understood. These are his words:

“At the same time it must be admitted that the popularization of
science, whether by lecture or essay, has its drawbacks. Success in this
department has its perils for those who succeed. The ‘people who fail’
take their revenge, as we have recently had occasion to observe, by
ignoring all the rest of a man’s work and glibly labelling him a mere
popularizer. If the falsehood were not too glaring, they would say the
same of Faraday and Helmholtz and Kelvin.”

One who can never hope to rival the style of Spencer and Huxley and those
to whom the latter refers, will nevertheless do well to emulate their
skill in making difficult things plain to people who are not specialists
or experts. He who writes for the teachers in our public schools should
put aside his ambition to be considered erudite or profound, and endeavor
above all things to be understood. Vague theories are apt to beget a bad
conscience in those who teach and to destroy the joy which every one has
a right to feel while doing honest and faithful work. Hence the writer
offers no apology for heaping illustration upon illustration in the
effort to make his meaning plain to those whom he aims to help.

There is at present great need for clear thinking and luminous
presentation of facts on the part of all who write on education for
the people or for teachers in our public schools. By a process similar
to that by which the mediæval imagination swelled the murder of the
innocents at Bethlehem into a slaughter of thousands of children (there
cannot have been many male children two years old and under in a small
Judean village), the harm which some pupils suffer is magnified into
a national crime at the feet of American parents; the evils which
result from “Bob White” societies, from children’s parties, from church
sociables for young boys and girls, are all ascribed to the school
curriculum; and reforms in home study are proposed which never fail to
provoke a smile on the face of a healthy boy.

The hygienic conditions of the average school are quite equal to those
of the average home. The health of many children improves during their
attendance at school. The pupils who are born with a sound mind in a
sound body, who get healthful diet, enough sleep, and treatment from
their elders which is not calculated to make them nervous or unhappy,
show none of the illness from overwork, the dulness of brain from
fatigue, and the exhaustion of nervous energy which are made to furnish
the narrow basis of fact for vague and broad generalizations. The haze
in which those who must furnish the printer a given amount of copy in a
given time are apt to envelop whatever they write has an effect like that
of misty air upon the size of visible objects. Travellers who have come
into a cloud while ascending a mountain report that a small wood-pile
then looks like a barn, a cow seems larger than an elephant, men appear
as giants, and the surrounding heights assume threatening proportions.
As soon as sunlight clears the atmosphere, objects are again seen in
their true dimensions. The moment the light of common sense penetrates
the haze and mist and fog and cloud which are used to heighten the
effect of essays upon school work, the need of radical reform seems
far less urgent; and teachers, instead of wasting their time in worry
and uncertainty, begin with cheerful heart to impart that which modern
civilization requires every child to know as a condition of bread-winning
and complete living.

There is, of course, a worse fault than obscurity of style,—namely,
dearth of ideas. The danger to which the lecturer is always exposed, that
of losing his hearers and failing to be recalled (their minds may leave
while they are bodily present), spurs to effort in two directions. Either
he will try to say something worth listening to, or he will strive to
entertain by amusing stories and incidents. If he be conscious of a lack
of talent for humor, he will try to stuff his lectures full of sense. If
the lectures here published lack in this respect, the writer is willing
to acknowledge failure.

In preparing a course of lectures it is proper to bear in mind the
difference between the lecturer, the orator, the poet, and the
philosopher. The philosopher investigates ideas and truths, explores
their essence and relations, and unfolds them in their deepest unity and
in their greatest possible compass. When this has been done throughout
the whole domain of thought, his mission is accomplished. The poet seeks
to clothe his ideas in beautiful forms. When the idea is perfectly suited
to the form and the form to the idea, his mission is accomplished. The
orator aims to move the will; he quotes authorities, uses ideas, appeals
to the feelings, and subordinates everything to the one end of gaining a
verdict, winning a vote, or getting a response in the conduct of those
whom he addresses. The lecturer seeks to impart information. He aims
to get a response in the thinking of those whom he addresses. He tries
to reach the intellect rather than the will. Beautiful language and
exhaustive treatment are not essential parts of his mission. It is his
province to elucidate the theme under consideration, to guide the efforts
and inquiries of those who come to him for instruction, to direct them
to the sources of information, and to furnish such incentives as he can
towards independent study and investigation.

Since the data for pedagogy are derived mainly from kindred fields of
investigation, the lecturer on the science and art of education has
frequent occasion to cite authorities and to utilize the labors and
conclusions of the men eminent in the sciences which throw light upon
the growth of the child, more especially upon the development of mind
and character. The most original writers quote very little, and those
who are anxious to establish a reputation for originality refrain from
quoting others. It is the business of the lecturer to lead the hearer to
the sources of information. When anything has been so well said that he
cannot improve upon the form of statement it is proper that he should
quote the language, carefully giving the source whence it is derived.
Without doubt, when the genius appears who will do for pedagogy what
Aristotle did for logic and Euclid for geometry, he will so polish every
gem he gets from others and give it a setting so unique and appropriate
that the world will recognize the touch of the master and acknowledge the
contribution as peculiarly his own handiwork. In painting and sculpture
we look to the past for the greatest works of art. In music the century
now closing has rivalled, if not surpassed, its predecessors. In the
science and art of education the greatest achievements belong to the
future. It is currently reported and sometimes believed that when the
president of a celebrated university was asked why he had transferred a
certain professor from the department of geology to that of pedagogy, he
replied, “I thought the fellow would do less harm in that department.” If
the story is not a myth, he probably meant less harm to the reputation
of the university. When in our day a course in geology or logic or
geometry is announced, one can foretell the ground that will be covered.
No such prediction can be made with reference to a course of lectures
on teaching. The prophet is yet to come who will fix the scope of the
science of education and give it something like definite and abiding
shape.

This volume is not designed to supplant systematic treatises on
psychology and logic. Its aim is to throw light upon one important phase
of the art of teaching. If it contributes but two mites to the treasury
of information on the science and art of education, the labor bestowed
upon it has not been in vain. Should any critic hint that two mites are
all one has to give, it may be said in reply that it is better to give
something than to give nothing at all, and that according to Holy Writ
the smallest contributions are not to be despised if made in the right
spirit. And it may add to the critic’s stock of ideas to be informed
that a small English weight, called mite, outweighs very many of the
current criticisms upon modern education, that of this small weight it
takes twenty to make a grain, and that to a faithful teacher a tenth of a
grain of helpful suggestion is worth more than many tons of destructive
criticism.



CONTENTS


    CHAPTER                                                           PAGE

        I.—MAKE THE PUPILS THINK                                        21

       II.—THINKING IN THINGS AND IN SYMBOLS                            35

      III.—THE MATERIALS OF THOUGHT                                     47

       IV.—BASAL CONCEPTS AS THOUGHT-MATERIAL                           63

        V.—THE INSTRUMENTS OF THOUGHT                                   85

       VI.—TECHNICAL TERMS AS INSTRUMENTS OF THOUGHT                    99

      VII.—THOUGHT AND LANGUAGE                                        111

     VIII.—THE STIMULUS TO THINKING                                    123

       IX.—THE RIGHT USE OF BOOKS                                      137

        X.—OBSERVATION AND THINKING                                    155

       XI.—THE MEMORY AND THINKING                                     167

      XII.—IMAGING AND THINKING                                        191

     XIII.—THE STREAM OF THOUGHT                                       209

      XIV.—THE STREAM OF THOUGHT IN LISTENING AND READING              223

       XV.—THE STREAM OF THOUGHT IN WRITING, SPEAKING, AND ORAL
             READING                                                   239

      XVI.—KINDS OF THINKING                                           255

     XVII.—THINKING AND KNOWING                                        269

    XVIII.—THINKING AND FEELING                                        289

      XIX.—THINKING AND WILLING                                        303

       XX.—THINKING AND DOING                                          317

      XXI.—THINKING IN THE ARTS                                        331

     XXII.—THINKING AND THE HIGHER LIFE                                341



I

MAKE THE PUPILS THINK

    The value of a thought cannot be told.

                                                            BAILEY.

    He who will not reason is a bigot; he who cannot is a fool; he
    who dares not is a slave.

                                                             BYRON.

    Reason is the glory of human nature, and one of the chief
    eminences whereby we are raised above the beasts in this lower
    world.

                                                             WATTS.

    Man is not the prince of creatures,
    But in reason. Fail that, he is worse
    Than horse, or dog, or beast of wilderness.

                                                             FIELD.

    Man is a thinking being, whether he will or no. All he can do
    is to turn his thoughts the best way.

                                                     SIR W. TEMPLE.


I

MAKE THE PUPILS THINK

[Sidenote: A test of teaching.]

For the purpose of testing the quality of gold alloy jewellers formerly
used a fine-grained dark stone, called the touchstone. In the eyes of an
educator good instruction is more precious than pure gold. The touchstone
by which he tests the quality of instruction, so as to distinguish
genuine teaching from its counterfeit, rote teaching, is thinking. The
schoolmaster who teaches by rote is satisfied if the pupils repeat his
words or those of the book; the true teacher sees to it that the pupils
think the thoughts which the words convey.

[Sidenote: Thring’s practice.]

Thring, who, next to Arnold, was perhaps the greatest teacher England
ever had, laid much stress upon thinking. Sometimes he would startle a
dull lad, in the midst of an exercise, by asking, “What have you got
sticking up between your shoulders?” “My head,” was the reply. “How does
it differ from a turnip?” And by questioning he would elicit the answer,
“The head thinks; the turnip does not.”

[Sidenote: Views of others.]

So important is thinking in all teaching that at the World’s Educational
Congress, in 1893, one educator after another rose in his place to
emphasize the maxim, “Make the pupils think.” One of the most advanced of
the reformers shouted in almost frantic tones, “Yes, make even the very
babies think.” After the wise men had returned to their homes, a Chicago
periodical raised the query, “How can you stop a pupil from thinking?”
And the conclusion it announced was that neither the teacher behind
the desk nor the tyrant upon his throne can stop a pupil from thinking.
Evidently, if that which sticks up between a boy’s shoulders is a head
and not a turnip, if the pupil is rational and not an imbecile or an
idiot, he does some thinking for himself; and the maxim, “Make the pupils
think,” requires further analysis before it can be helpful in the art of
teaching.

[Sidenote: Thinking for one’s self. Relying on others.]

We who teach are very apt to overestimate thinking in our own line
of work and to undervalue thinking outside of the school. There is,
perhaps, as much good thought in a lady’s bonnet as in the solution of
a quadratic equation. A sewing-machine embodies as much genuine thought
as the demonstration of a geometrical theorem. The construction of a
locomotive or a railway bridge displays as much effective thinking as
Hegel’s “Philosophy of History,” or Kant’s “Critique of the Pure Reason.”
Most men think very well in doing their own kind of work; in many other
spheres of activity they must let other people think for them. When the
professor of astronomy discusses a problem connected with his science, he
thinks for himself; but when he buys a piece of land, he gets a lawyer to
think for him in the examination of the title and the preparation of the
deed. The lawyer thinks for himself in the court-house; but when he goes
home to dine, he expects his wife, or the cook, to have done the thinking
for him in the preparation of the dinner. Grover Cleveland had the
reputation of thinking for himself: many a politician found out that this
reputation was founded on fact; but when the ex-President is sick, or has
the toothache, he is willing to let a physician or a dentist think for
him. In like manner, a pupil may think very well upon the play-ground;
but if the teacher, whose very name indicates the function of guiding,
fails to guide the pupil aright, the latter may become a mere parrot in
the class-room. What, then, is involved in making a pupil think?

[Sidenote: Thinking defined.]

The difficulty in answering this question is increased by the diversity
of meanings of the word _thinking_. The teacher who is not clear in his
use of the term may employ exercises calculated to develop one kind of
mental activity, and then accuse the pupils of dulness because they do
not show facility in some other intellectual process. When a text-book on
mental science defines the intellect as the power by which we think, the
term _thinking_ is used to designate every form of intellectual activity.
The Century Dictionary defines thinking as an exercise of the cognitive
faculties in any way not involving outward observation, or the passive
reception of ideas from other minds. The logician defines thinking as the
process of comparing two ideas through their relation to a third. Many
exercises of the school are supposed to cultivate thinking in the last
sense of the word, when in reality they cultivate thinking only in the
widest acceptation of the term.

[Sidenote: A faulty exercise.]

The writer saw a normal school principal conduct an exercise in thinking,
as the latter called it. Turning to one of the pupils, he said, “Charley,
will you please think of something?” As soon as the boy raised his hand
the principal asked, “Does it belong to the animal, the vegetable, or
the mineral kingdom?” Then turning to the other members of the class,
he said, “Who of you can think of the vegetable in Charley’s mind?” The
names of at least forty different vegetables were given and spelled and
written upon the black-board. At last a pupil succeeded in naming what
was in Charley’s mind. Then there was a look of triumph upon the faces
of the principal and the class, as much as to say, “Isn’t that splendid
thinking?” At least one person felt like burying his face in his hands
for very shame; for here was resurrected from the dead an old exercise
of philanthropinism which was buried more than a hundred years ago. What
should one call that kind of mental activity? _Guessing._ That is all it
is. The exercise tended to beget a habit very difficult to break up after
it has been formed.

[Sidenote: A better plan.]

Far better was an exercise which the writer witnessed in a graded school.
The teacher had called the class in the second reader. As soon as all
the pupils were seated she said, “You may read the first paragraph.”
Instead of reading orally, the class became so quiet that one might have
heard a pin drop. After most of the hands were raised she called upon
one pupil to tell what the paragraph said. The second paragraph was read
and the substance of it stated in the pupil’s own words. An omission was
supplied by another pupil; an incorrect phrase was modified by giving
the correct words for conveying the thought. In the course of the lesson
it became necessary to clarify the ideas of some. This was accomplished
by a few pertinent questions which made the pupils think for themselves.
After the entire lesson had been read in this way she dismissed the
class without assigning a lesson. Every member of the class went to
his seat, took out his slate, and began to write out the lesson in his
own language. The interest and pleasure depicted on their faces showed
that it was not a task but a joy to express thought by the pencil. The
teacher had given them something to think about; she had taught them to
express their thoughts in spoken and written language; her questions had
stimulated their thinking, and when, later in the day, the lesson in oral
reading was given, the vocal utterance showed that every pupil understood
what he was reading. There was no parrot-like utterance of vocables,
but an expression of thought based upon a thorough understanding and
appreciation of what was read. The silent reading was an exercise in
thought-getting and thought-begetting, the language lesson upon the slate
was an exercise in active thinking through written words, and the oral
expression furnished a test by which the teacher could ascertain what she
had accomplished in getting her pupils to think.

[Sidenote: A suggestive reply.]

The first thing necessary in making the pupil think is best shown by
relating another incident. The catalogue of a well-known school announced
that the teachers were aiming to get their pupils to read Latin at
sight and to think in more tongues than one. A captious superintendent
wrote to the principal, saying, “I envy you. How do you do it? We would
be satisfied if we could make pupils think in English.” The reply was
equally sharp and suggestive: “You ask how we make pupils think. I
answer, By giving them something to think about. If you ask how we
make them think in more tongues than one, I answer, By giving them, in
addition to the materials of thought, the instruments of thought as found
in two or more languages.”

[Sidenote: The first essential.]

The first step in training a pupil to think is to furnish him proper
materials of thought, to develop in his mind the concepts which lie at
the basis of a branch of study, and which must be analyzed, compared,
and combined in new forms during the prosecution of that study. Just as
little as a boy can draw fish from an empty pond, so little can he draw
ideas, thoughts, and conclusions from an empty head. If the fundamental
ideas are not carefully developed when the study of a new science is
begun, all subsequent thinking on the part of the pupil is necessarily
hazy, uncertain, unsatisfactory. How can a pupil compare two ideas or
concepts and join them in a correct judgment if there is nothing in his
mind except the technical terms by which the scientist denotes these
ideas? The idea of number lies at the basis of arithmetic. How often are
beginners expected to think in figures without having a clear idea of
what figures denote! What teacher has not seen children wrestling with
fractions who had no idea of a fraction save that of two figures, one
above the other, with a line between them! How many of our arithmetics
are full of problems involving business transactions of which the pupil
cannot possibly have an adequate idea! Not having clear ideas of the
things to be compared, how can the learner form clear and accurate
judgments and conclusions?

[Sidenote: Proper thought-material.]

So essential to correct thinking is the development of the concepts and
ideas which lie at the basis of each science, that we may designate the
giving to the pupil of something to think about as the first and most
important step in the solution of the educational problem before us. In
other words, the furnishing of the proper materials of thought is the
first step in teaching others to think. The force and the validity of
this proposition are easily seen if we reflect upon the essential oneness
of the manifold diversities of thinking as they appear at school and in
subsequent years.

[Sidenote: Thinking in the professions.]

It is universally conceded that education should be a preparation for
life. The thinking at school should be an adumbration of the thinking
beyond the school. The possession of enough data, or thought-materials,
for reaching trustworthy conclusions, which is the indispensable
requisite of successful thinking at school, is likewise a necessary
requisite of successful thinking in practical life. It behooves us to
inquire into the nature and foundation of the thinking of men in the
professions, and in other vocations, for the purpose of gaining further
light upon the problem before us. Let us, then, inquire into the nature
and foundation of the thinking of men eminent in a profession or
prominent in some other vocation. The professional man may have less
native ability, less general knowledge, less culture and education, less
mental power than the client whom he advises or the patient for whom he
prescribes; and yet his inferences and conclusions are accepted as more
trustworthy than those of men outside of the given profession, because
he has a knowledge of facts and data which they do not possess. If he be
a physician, special training and professional experience have taught
him how to observe the symptoms of different diseases; how to eliminate
sources of doubt and error; how to reach a correct diagnosis of difficult
cases, and how to apply the proper remedies. If he be a lawyer, he has
been taught how to examine court records; how to detect and guard against
flaws in legal documents; how to find and interpret the law in specific
cases; how to protect the life and property of his client. The judge on
the bench is learned in the law, though he may be ignorant of science,
literature, agriculture, commerce, and manufactures. He is aided in
arriving at correct conclusions by thought-materials which are not in the
possession of laymen.

[Sidenote: The thinking of experts.]

[Sidenote: Teaching not a trade.]

How does the thinking of an expert differ from that of other men? Not so
much in the processes of thought as in the data upon which he reasons.
An ordinary witness may testify as to matters of fact; the expert is
supposed to possess extensive knowledge and superior discrimination in a
particular branch of learning or practice; hence he may be a witness in
matters as to which ordinary observers cannot form just conclusions, and
he is held liable for negligence in case he injures another from want of
proper qualifications or proper use of the thought-materials necessary
to form trustworthy conclusions. From this point of view we can see new
force and beauty in the remark of Fitch that teaching is the noblest of
the professions, but the sorriest of trades. The aim of a trade is to
make something that will sell; its ultimate aim is money, a livelihood.
Teaching and the other professions, although they cannot be sundered from
money-making, have a nobler aim. This arises out of the thought-materials
with which they deal. If a teacher’s mind does not busy itself with
these, he sinks to the level of a tradesman. A very keen observer said of
the head of a large boarding-school, that he had learned his trade from
the principal of a large normal school under whom he had been trained.
The remark, if true, was severe, but significant. It was an intimation
that the substance of the thinking of these two men was business rather
than education; that their conversation about the quality of the beef and
mutton served, about the loaves of bread, the pounds of butter, and the
bushels of potatoes consumed each week, indicated that they were thinking
more of the stomach and the purse than of the things of the mind; that
their aim was a large attendance and a large cash-balance at the end
of the year rather than the mental growth and professional preparation
of their students. Their thinking was efficient and trustworthy in
the domain in which it was exercised. It partook of the nature of
trade-thinking, and lacked professional quality because it did not
concern itself with problems of mental growth and moral training, with
the proper sequence of studies, with the educational value of different
kinds of knowledge, and with the best methods of economizing the time and
effort of their students.

[Sidenote: Mysteries.]

In several aspects teaching is like a trade. Every art has its mysteries,
with which those who practise it must be familiar if they would succeed.
Teaching is no exception; and if the annual institute or the school of
pedagogy fails to clarify these mysteries by putting the teachers in
possession of materials for thought and of methods of applying knowledge
to beget thinking which are not within the ken of the average parent
and the general public, then failure must be written over the outcome.
A mystery is a lesson to be learned. A scrutiny of the mysteries which
characterize every trade and every art will serve not merely to emphasize
the necessity for furnishing proper thought-materials, but will be
helpful also in paving the way for the consideration of another essential
in training pupils to think. Let us view them in the concrete.

[Sidenote: Examples.]

A machinist, who was also a skilled mechanic, was compelled by
circumstances to quit his trade and to accept a position as janitor.
One day the pipe leading from the sink to the sewer was clogged. The
teacher, in conjunction with a carpenter, worked a long time to fix it,
but in vain. The janitor was called, who in a few moments overcame the
difficulty by the application of a principle in natural philosophy on
which the teacher could have talked learnedly, although he knew not how
to apply it in the given case. The janitor related how the foreman in a
foundry was baffled in the effort to bore a hole through a piece of iron
until a workman, trained under a foreign master, suggested the purchase
of two things at a drug-store by means of which the hole was easily
bored. When the druggist asked about the use that was to be made of these
chemicals, he was told that the use was one of the mysteries of the
machinist’s trade.

Next, the carpenter fixed the mortise lock of a door which needed
attention, and the others lauded the skill with which he handled his
tools and applied his knowledge. Before the three separated, the
janitor’s son came with a word which he could not find in his lexicon.
With the aid of chalk and black-board and grammar, the teacher showed
how to dig out the roots of a Greek verb and what beautiful changes occur
in its conjugation. The turn had come for the tradesmen to admire the
mysterious skill and power of the teacher.

In applying the principle of natural philosophy, the janitor made skilful
use of one or two tools which the teacher and the carpenter had never
seen. He could express thought through the tools of his own handicraft,
in ways that they could not. Each one of the three men knew the tools
and the mysteries of his own vocation. During the entire scene there was
not a logical flaw in the thinking of any one of them. Probably there
was little difference in their native ability; certainly none in the
fundamental nature of their thought-processes. The practical difference
resulted from the data at their command and from the tools they were
using to express the thoughts peculiar to their several vocations.

[Sidenote: Man, the tool-user.]

[Sidenote: Instruments of thought the second essential.]

The power to use tools, instruments, and machinery lifts man above the
brute creation. There is labor-saving machinery in thinking as well
as in manual labor. The more perfect the tools with which we work the
greater the results we can achieve without waste of effort. In thinking
as well as in working we must use the best tools in order to attain the
greatest facility and efficiency. Yonder are two wheat-fields. In one
of them a giant is wielding the sickle of our forefathers; in the other
a youth, not yet out of his teens, is at work. At the close of the day
the work of the giant will not bear comparison with that of the lad,
because the latter was sitting upon a self-binder. They had the same
material to work upon, yet, in spite of his superior strength, the giant
could not cope with his weaker though better-equipped competitor. In
like manner, the youth who has mastered the algebraic equation, or the
symbols and formulas of chemistry, is in many respects the superior of a
much brighter man who is not in possession of these tools or instruments
of thought. A boy of average capacity who goes through a good high
school thereby acquires certain fundamental ideas and the accompanying
instruments of thought by which he is enabled to solve problems entirely
beyond the power of a much brighter boy who never studies beyond the
grammar grade.

[Sidenote: Confusion in thought and practice.]

The instruments of thought are generally spoken of as symbols, whilst
the materials of thought are the things for which the symbols stand. In
thinking, the mind may employ the ideas which correspond to the things
in the external world; or it may employ the symbols by which science
indicates things that have been definitely fixed or quantified. Failure
to distinguish the sign from the thing signified, the symbol from its
reality, leads to confusion in thought and to the most disastrous results
in mental development. Loss of appetite for knowledge must inevitably
result from methods of teaching by which the pupil is expected to learn
the sounds of the letters from their names, or musical sounds from the
notation on the staff, or the ideas of number from the arabic notation,
or a knowledge of flowers from the technical terms of a text-book, or
a knowledge of chemical elements and substances from the definitions,
descriptions, and formulas of a scientific treatise. The symbol is
indispensable in advanced thinking; but to expect the learner to get the
fundamental ideas of a science from words, symbols, and definitions is
evidence that the teacher does not understand the nature of thinking. It
may, therefore, be helpful to set forth clearly the important distinction
between thinking in things and thinking in symbols; to point out their
relative value in mental development; and to fix their place in a
rational system of education.



II

THINKING IN THINGS AND IN SYMBOLS

    The rote system, like other systems of its age, made more of
    forms and symbols than of the things symbolized. To repeat
    the words correctly was everything, to understand the meaning
    nothing; and thus the spirit was sacrificed to the letter.

                                                   HERBERT SPENCER.

    Words are men’s daughters, but God’s sons are things.

                                                           JOHNSON.

    For words are wise men’s counters,—they do but reckon by
    them,—but they are the money of fools.

                                                            HOBBES.

    It is only by the help of language (or some other equivalent
    set of signs) that we can think in the strict sense of the
    word; that is to say, consider things under their general or
    common aspects.

                                                             SULLY.


II

THINKING IN THINGS AND IN SYMBOLS

[Sidenote: Lesson in geography.]

[Sidenote: Two kinds of thinking.]

Within half a mile of the Susquehanna River a teacher was asking the
class, “Of what is the earth’s surface composed?” “Of land and water,”
was the reply. In answer to a question by the superintendent concerning
the earth’s surface, one boy declared that he had never seen the earth.
He had been acquiring words without the corresponding ideas. Turning to
another boy, this official said, “Will you please show me water?” With
a gleam of satisfaction on his face, the lad raised his atlas, pointed
to the blue coloring around the map of North America, and said, “That
is water.” “Will you please drink it?” The expression on the faces of
teacher and pupils indicated that all felt as if some one had committed
a blunder. Where did the blunder lie? Had the teacher taught what should
not be learned? Surely, every child should learn how water is indicated
on a map. Did the boy use language wrong in idiom? By no means; for, as
every student who has handled a lexicon well knows, many words have both
a literal and a tropical, or figurative, meaning. If, pointing to an
object, the teacher says, “This is a desk,” he uses the word is in its
literal sense. On the other hand, if he points to a division on the map
of the United States, and says, “This is Pennsylvania,” he does not mean
that the colored surface to which he is pointing is the real State of
Pennsylvania (if it were, a political boss could pocket it, and carry it
the rest of his days without further trouble). What is meant is, that
a given space on the map indicates or represents Pennsylvania, the word
_is_ being used, in the latter instance, in a figurative sense. Whether
the word _is_, in the expression, “This is my body,” should be understood
in a literal or in a figurative sense has been discussed for ages in the
Christian church. In the answer of the boy we strike a distinction in
thought that lies at the basis of good teaching in all grades of schools,
from the kindergarten to the university,—namely, the distinction between
thinking in things and thinking in symbols. In one sense of the word, all
thinking is symbolic; for the percepts, concepts, and images of external
objects which the mind employs in the thinking process are symbolic of
the things for which they stand. But in advanced thinking, and especially
in scientific investigations, objective symbols, such as words, signs,
letters, equations, formulas, technical terms and expressions, are
utilized to facilitate the thinking process. Take the age questions in
mental arithmetic that have been prematurely inflicted upon so many
pupils in the public schools. So long as the mind consciously carries
A’s age and the wife’s age, using the clumsy instruments of arithmetical
analysis, the thinking is difficult indeed. As soon as _x_ is made
the symbol of A’s age, and _y_ the symbol of the wife’s age, so that
the conditions of the problem can be thrown into algebraic equations,
the difficulty vanishes. In the algebraic solution the mind drops all
thought of A’s age and the wife’s age while manipulating the signs and
symbols of the equation, and restores the meaning of the symbols only
when their value in figures has been found. The algebraic solution is a
genuine specimen of thinking in symbols, and illustrates the labor-saving
machinery which the human mind employs, more or less, in all the most
difficult scientific investigations.

[Sidenote: Symbol defined.]

What is a symbol? It is a mark, sign, or visible representation of
an idea. The mathematician uses the symbol to represent quantities,
operations, and relations. The chemist uses the symbol to indicate
elements and their groupings or combinations. The theologian applies the
term symbol to creeds and abstract statements of doctrine. The grips,
countersigns, and passwords of a secret society may be spoken of as
symbols of the ideas, aims, and principles of the organization. Often
the symbol is chosen on account of some supposed resemblance between
it and that for which it stands, as when black is made the symbol
of mourning, white of purity, the oak of strength, and the sword of
slaughter. “A symbol,” says Kate Douglass Wiggin, “may be considered to
be a sensuous object which suggests an idea, or it may be defined as the
sign or representation of something moral or intellectual by the images
or properties of natural things, as we commonly say, for instance, that
the lion is the symbol of courage, the dove the symbol of gentleness.
It need not be an object any more than an action or an event, for the
emerging of the butterfly from the chrysalis may be a symbol of the
resurrection of the body, or the silver lining of the cloud typify the
joy that shines through adversity.” Frequently the symbol is chosen
arbitrarily, or because it is the first letter of the word which denotes
the quality, substance, thing, or idea for which the symbol stands.
Generally the symbol is a visible representation, but it may also address
the other senses, notably the ear and the sense of touch. The Standard
Dictionary excludes the portrait from the extent or scope of the symbol,
and confines it to the representation of that which is not capable of
portraiture, as an idea, state, quality, or action. It is well to bear
this limitation in mind during the present discussion.

[Sidenote: Examples.]

A few illustrations will serve to fix the sense of the word symbol. In
some parts of America the tramps have a system of symbols of their own, a
given mark on the front gate indicating a good place to ask for a meal,
another indicating a cross dog in the rear yard. That which the tramp
fears or likes is not the mark which he sees, but a very real thing which
that mark suggests to his mind. A number of the apostles were fishermen
by trade. The fish became a very significant symbol in the days of early
Christianity. The letters in the Greek name for fish are the initial
letters of the expression, Jesus Christ, God’s Son, Saviour. It is one of
many instances showing how the human mind delights in heaping symbol upon
symbol to conceal precious meanings from the uninitiated.

[Sidenote: Symbols for water.]

What was the mental condition of the lad spoken of at the beginning of
this chapter? The boy knew the real thing long before he knew the first
symbol for water. Without doubt he had tasted it, played in it against
his mother’s will, been washed in it against his own will, for months
before he learned the first symbol for water used in common by him and
others, which was probably the spoken word. Up to that time he thought
of water in some mental picture or image which had been formed upon the
eye and then upon mind somewhat as the picture is formed through the art
of the photographer. Up to the time that he learned the spoken word for
water this liquid suggested mental pictures which constituted a thinking
in things[1] rather than in symbols, using the latter term according to
the limitation set by the Standard Dictionary. On entering school he
was taught to read; he added to the ear-symbol the eye-symbol,—that is,
the written or printed word, which he may have associated at first with
the real thing, or with the spoken word; of course, very soon with both,
if correct methods of teaching were followed. Next, he was taught the
map-symbol. The blunder which the teacher on the banks of the Susquehanna
had committed consisted not in teaching how water is indicated on a map,
but in not pointing to the majestic river near the school-house, and
associating the water in its channel with the representations of water
on a map. If the boy studied Latin or Greek, he was taught new symbols
for water in the corresponding words of these languages. If he studied
chemistry, he early learned the composition of water, and was thenceforth
taught to write it H₂O, a symbol enshrining a new truth and lifting him
to higher planes of thought by giving him a new instrument as well as new
materials of thought.

[Sidenote: Sources of error.]

[Sidenote: Elementary instruction.]

Half the errors in teaching arise from the fact that the teacher does not
constantly bear in mind the distinction between the symbol and the thing
for which the symbol stands, thus giving rise to confusion in the mind
of the learner. A class was bounding the different States of the Union.
At the close of the recitation the superintendent suggested that the
class bound the school-house. It was bounded on the north by the roof,
on the south by the cellar, on the east and west by walls. The geography
classes of an entire city were caught in that way. Either the pupils had
not been taught, or else they had forgotten the difference between the
real directions and the ordinary representation of them on the surface
of a wall map. Sometimes the confusion exists in the mind of the teacher
as well as in the minds of the pupils. Then he expects them to learn one
thing while he teaches them another. By the methods formerly in vogue
the pupil was expected to learn the sounds of the letters from their
names; the pronunciation of the word from the names of the letters which
compose it; the names, forms, and sounds of letters from the word taught
as a whole; the musical sounds from the notation on a musical staff; the
ideas of number, of fractions, from the corresponding symbols; the units
of denominate numbers and of the metric system from the names used in
the tables of weights and measures; the flowers of the field from the
nomenclature of the botany; the substances and experiments in chemistry
from the descriptions and pictures of a text-book. Such teaching has
given rise to endless lectures, editorials, and discussions upon the use
of the concrete in teaching, upon the value of thinking in things, upon
the importance of object-lessons, laboratory methods, and the like.

[Sidenote: More advanced instruction.]

But there is another side to the question. There comes a time in the
development of the pupil when he must rise above the sticks and shoe-pegs
and blocks of the elementary arithmetic, and learn to think in the
symbols of the Arabic notation. Later he must learn to think in the more
comprehensive symbols of the algebraic notation. He must learn to think
the abstract and general concepts of science, and, in thinking these, to
use the devices, technical terms, and other symbols which the scientists
have invented to facilitate their thinking.

[Sidenote: A parable.]

Hear a parable. A teacher sat down to dinner. The waiter handed him the
bill of fare. The proprietor followed the waiter to the kitchen, directed
him to cut out the names of the eatables which had been ordered, and to
carry these names on plates to the dining-room. “It is not these words,”
exclaimed the guest, “that I desire to eat, but the things in the
kitchen for which these words stand.” “Isn’t that what you pedagogues
are doing all the time, expecting children to make an intellectual meal
on words such as are found in the columns of the spelling-book and
attached on maps to the black dots which you call cities? My boy gravely
informs me that every State capital has its ring, because on his map
there is always a ring around the dot called the capital of a country.”
The teacher was forced to admit that there is, alas! too much truth
in the allegation. In the afternoon he took revenge. Knowing that the
proprietor had a thousand-dollar draft to be cashed, he arranged with
the banker to have it paid in silver coin. When the landlord saw the
growing heap of coin, he exclaimed, “If I must be paid in silver, can
you not give me silver certificates?” “Did you not intimate to me,” said
the teacher, tapping him on the shoulder, “that it is the real things we
want, and not words and symbols which stand for realities?” The landlord
was obliged to admit that in the larger transactions of the mercantile
world it saves time and is far more convenient to use checks, drafts,
and other symbols for money than it would be to use the actual cash. In
elementary transactions, like the purchase of a necktie, it is better
to use the cash, to think and deal in real money, but when it comes to
the distribution of five and one-half million dollars among the school
districts of Pennsylvania, it is better to draw warrants upon the State
Treasurer, to use checks and drafts, and to think in figures, than it
would be to count so much coin, and send the appropriation in that form
all over a great commonwealth.

[Sidenote: Its interpretation.]

The parable hardly needs an interpretation. Its lesson points in two
directions. On the one hand, it shows in the true light every species of
rote teaching, of parrot-like repetition of definitions, statements,
and lists of words which give a show of knowledge without the substance.
It puts the seal of condemnation on most forms of pure memory work. It
sounds the note of warning to all teachers who are trying to improve the
memory by concert recitations. The boy whose class was taught to define
a point as position without length, breadth, or thickness, and who, when
asked to recite alone, gave the definition, “A point has a physician
without strength, health, or sickness,” is but one of many specimens of
class-teaching condemned by the parable. It says in unmistakable terms
that all elementary instruction must start in the concrete, taking up
the objects or things to be known, and resolutely refusing to begin with
statements and definitions which to the children are a mere jargon of
words.

[Sidenote: Making blockheads.]

On the other hand, the parable indicates how too long-continued use of
the concrete may arrest development, and hinder the learner from reaching
the stages of advanced thinking. It hints that the too constant use of
blocks, however valuable at first, ultimately begets blockheads, instead
of intelligences capable of the higher life of thought and reflection. A
rational system of pedagogy involves proper attention to the materials of
thought and proper care in furnishing the instruments by which advanced
thinking is made easy and effective. In one respect the parable does
not set forth the whole truth. It makes no account of differences in
thinking due to heredity and mental training. The differences in native
ability are, however, not as great as is generally supposed (unless the
feeble-minded enter into the comparison); the differences due to correct
training, or the neglect of it, are far more striking. The work expected
of the pupil should, of course, tally with his capacity; otherwise it
will force him to resort to pernicious helps, beget in him wrong habits
of study, rob him of the sense of mastery and the joy of intellectual
achievement, and destroy his self-reliance, his power of initiative, and
his ability to grapple with difficult problems and perplexing questions.
The power to think grows by judicious exercise. Here better than anywhere
else in the whole domain of school work can we distinguish the genuine
coin from its counterfeit, and discriminate between true skill and
quackery, between the artist and the artisan. It is at this point that
most help can be given to young teachers by a good course of lectures
on learning to think and on the difficult art of stimulating others to
think.



III

THE MATERIALS OF THOUGHT

    A vast abundance of objects must lie before us ere we can think
    upon them.

                                                            GOETHE.

    The young have a strong appetite for reality, and the teacher
    who does not make use of that appetite is not wise.

                                                     J. S. BLACKIE.

    The child’s restless observation, instead of being ignored
    or checked, should be diligently ministered to, and made as
    accurate as possible.

                                                   HERBERT SPENCER.

    What do you read, my lord?
      Words, words, words.

                                                            HAMLET.

    You have an exchequer of words, and I think no other treasure.

                                           TWO GENTLEMEN OF VERONA.


III

THE MATERIALS OF THOUGHT

[Sidenote: Words without thoughts.]

The hotel man was right in his criticism of teachers who expect their
pupils to make an intellectual meal on mere words. For three hundred
years educational reformers have been hurling their epithets against
this abuse. Has it been banished from the schools? By no means. It
crops out anew with every generation of teachers and in every grade of
instruction from the kindergarten to the university. During the years in
which a child acquires several languages without difficulty, if it hears
them spoken, the mind is eager for words and often appropriates them
regardless of their meaning. The child learns rhymes and phrases for the
sake of the jingle that is in them, and cares very little for clearly
defined ideas and thoughts. So strong and retentive is the memory for
words that the child finds it easier to learn by heart entire sentences
than to think the thoughts therein expressed. Like a willing and obedient
slave, the verbal memory can be made to do the work of the other mental
powers. The merest glimpse at a picture may recall all the sentences on
the same page, so that the pupil can repeat them with the book closed or
the back turned towards the reading chart. The recollection of what the
ear has heard may thus relieve the eye of its function in seeing words,
degrade the child to the level of a parrot, and thereby greatly hinder
progress in learning to read. Very frequently the memory is required to
perform work belonging to the reflective powers, because the learner
is thereby saved the trouble of comprehending the lesson and expressing
its substance in his own language. Moreover, the accurate statement
of a truth is apt to be accepted as evidence of knowledge and correct
thinking. The average examination tests very little more than the memory.
If the answers are given in the language of the text-book or the teacher,
the examiner seldom supplements the written work by an oral examination.
Thus there is a constant tendency on the part of teachers and pupils to
rest satisfied with correct forms of statement; and the pernicious custom
of feeding the mind on mere words is encouraged and perpetuated. Exposed
in plain terms, this abuse of words is condemned by everybody; yet it
is as easy at this point to slide into the wrong practice as it is to
fall into the sins forbidden by the decalogue. Like Proteus, this abuse
assumes diverse and unexpected forms; instance after instance is needed
to put young teachers on their guard and to expose its pernicious effect
upon methods of instruction and habits of study. To cry “words, words,
nothing but words,” will not suffice to correct the evil, for words must
be used in the best kind of instruction. Line upon line, precept upon
precept, example after example is needed to expose the folly of learning
words without corresponding ideas, of teaching symbols apart from the
things for which they stand. No apology is needed for citing laughable
and flagrant instances in point; ridicule sometimes avails where good
counsel fails.

[Sidenote: Spelling.]

A superintendent who advocates spelling-bees and magnifies correct
orthography out of all proportion to its real value startled a class
in the high school by asking for the spelling of a word of five
syllables. Not receiving an immediate answer, he referred to the Greek.
This made the spelling easy for at least one pupil. A year later he
accosted this pupil, saying, “You are the only person that ever spelled
psychopannychism for me.” “What does it mean?” was the question flashed
back at him in return for his compliment. He could not tell, because
he did not know. For years he had worried teachers and pupils with the
spelling of a word whose meaning he had failed to fix accurately in his
own mind.[2] What more effective method could be devised for destroying
correct habits of thinking?

[Sidenote: Eyesight.]

There is a time in the life of the child when it is hungry for new words.
The habit of seeing words accurately and learning their spelling at first
sight is then easily acquired, provided there is no defect in the pupil’s
eyes. In cases of defective eyesight the first step towards the solution
of the spelling problem, as well as the first condition in teaching the
pupil to think accurately, is to send him to a skilled oculist (not to a
so-called graduate optician or doctor of refraction, who must make his
living out of the spectacles he sells, and whose limited training does
not enable him to make a correct diagnosis in critical cases). Correct
vision will assist the pupil not merely in learning the exact form of the
words which he uses in writing, but also in forming correct ideas of the
things with which the mind deals in the thought-processes. Although great
stress should be laid upon the orthography of such words in common use as
are frequently misspelled,—daily drill upon lists of these should not be
omitted at school while the child’s word-hunger lasts,—yet it is vastly
more important to acquire an adequate knowledge of the ideas, concepts,
and relations for which the words stand. To spend time upon the spelling
of words which only the specialist uses, and which are easily learned
in connection with the specialty by a student possessing correct mental
habits, is a form of waste that cannot be too severely condemned. It is
far better to spend time in building concepts of things met with in real
life.

The meaning of very many words is, of course, learned from the connection
in which they occur. This, however, is not true of sesquipedalian words
like the one mentioned above, nor of the technical terms by which science
designates the things that have been accurately defined or quantified.

[Sidenote: Fundamental ideas.]

Technical terms are used to denote the ideas which lie at the basis of
science. These fundamental ideas are appropriately called basal concepts.
Since basal concepts cannot be transferred from the teacher’s mind to
the pupils’ minds by merely teaching the corresponding technical terms,
they must be developed by appropriate lessons. If this be neglected,
there may be juggling with words and a show of knowledge; but close,
accurate thinking is impossible. This seems to be so self-evident that
one would hardly expect to meet violations of such a simple rule in the
art of teaching. And yet it is related of the professor of physics in
one of our largest universities that he began his course of lectures in
this wise: “A rearrangement of the courses of study deprived you of the
usual instruction in elementary physics. That is your misfortune, and
not my fault.” Thereupon, he began his lectures on advanced physics as
if the preparation of his class to think the concepts at the foundation
of his science could be ignored without detriment to the progress of
the student, as if confused minds and unsatisfactory thinking were not
the inevitable outcome of juggling with technical terms apart from the
concepts which they denote. A master in the art of teaching would have
started on the plane occupied by the students. By development lessons he
would have lifted them to the plane of thought on which he intended to
move. He would have considered their mental progress of more consequence
than the course of lectures which he was in the habit of delivering.
The student, and not the study, should have held the chief place in his
professional horizon.

[Sidenote: Abuse of text-books.]

In another State university the professor of physics applied to an
influential member of the board of trustees for an appropriation for
apparatus. “Teach what is in the text-book; then you will not need
apparatus,” was the reply. It seems almost incredible that a trustee of a
modern university should fail to see the difference between an experiment
actually performed and a description of the experiment in a text-book.
More incredible still does it seem when we hear of professors who see no
difference between an experiment made in the presence of a student and an
experiment made by the student himself.

[Sidenote: Apparatus and experiments.]

[Sidenote: Agassiz.]

Pictures of apparatus and descriptions of experiments should, of course,
not be despised or neglected. They are helpful in forming concepts of
that which cannot be brought before a class. When made by the learner
himself, as a result of his own work, they serve to clarify his thinking,
and furnish a sure test of the pupil’s progress and of the teacher’s
skill as a guide and instructor. A drawing, or even a statement in the
pupil’s own words, is often an astonishing revelation of the crude
notions which pictures give. The city lad who said that a cow was no
bigger than a finger-nail because he had often measured its size in the
First Reader is a typical example. The ability to interpret pictures
and descriptions comes from actual knowledge of things similar to what
is depicted or described. The noted teacher, Agassiz, made a difference
in his directions to beginners and advanced students. To the former he
would give specimens, with directions to study them without referring
to a book. Having taught them how to use their eyes, he would gradually
lead them to the method of interpreting and verifying the statements of
an author. And when the advanced student was set to work at original
investigations, he was told to study certain books, as it would save
much valuable time. One of his pupils writes, “I shall never forget a
forceful lesson given me by the great Agassiz, when I studied with him
in the Museum of Cambridge. I worked near a young man from Cleveland,
Ohio, who has since achieved distinction as a teacher of biology. I
was comparatively a beginner, however, while he was well advanced in
his studies. On a certain day Agassiz came sauntering by, and stopped
long enough to tell me not to use the library so much, but to confine
myself to observations of the specimens on hand and the writing of my
observations and comments. Passing on a little farther, he spoke to my
friend and said, ‘Albert, when you go home, this summer, to Cleveland, I
wish you would make a special study of a certain kind of fish found in
the harbor there. It is not found plentifully anywhere else in the world.
Take a row-boat and go three hundred yards northeast of the point of the
breakwater, and you will find them in abundance. Before going home, get
the only three books ever written on this fish from the library here and
read them. It will save your time to read them before beginning to study
the fish itself.’”[3] Agassiz was as anxious to teach the right use of
books as is the professor of literature; but he adapted his directions
to the degree of advancement which his students had attained, and did
not neglect the formation of the basal concepts and the habits of study
needful in the sciences he taught.

[Sidenote: Botany.]

How little the exhortations of our educational reformers have been
taken to heart by some teachers is evident from the recent experiences
of a normal school principal, who had great difficulty in finding a
satisfactory teacher of botany. The students could invariably answer
the questions of the State Board of Examiners by filling pages of
manuscript with technical terms. In the field they could not distinguish
one plant from another. In despair, the principal said to his teacher
of psychology, “Why can we not apply common sense to the teaching of
botany? Can we not plant seeds, watch their growth, and study the growing
specimens instead of the pictures in a text-book?” “If you will give me
the class in botany, I will try it,” was the reply. Before the next class
took up botany, every chalk-box was emptied and every flower-pot utilized
in the planting of seeds. In no long time there appeared on the fences
of neighboring farms sign-boards with the inscription, “Trespassing on
these fields is forbidden, under penalty of the law.” The members of the
class were traversing the country, studying the real flowers, the growing
plants, instead of the technical terms of a text-book. At the next final
examination, the herbarium which each one had prepared, together with the
accompanying analysis and drawings of parts which could not be described,
including colorings in imitation of the actual colors of the flowers,
gave evidence of real knowledge, and served to satisfy the examiners,
although the array of technical terms was far less formidable.

If violations of the fundamental laws of teaching occur in our higher
institutions of learning, what may we not expect in the lower schools
where the teaching is intrusted to young people of limited education?
Nevertheless, it is a notorious fact that the worst forms of teaching
are found in our higher institutions of learning, where many of the
professors seem to know as little of the science of education as the
motorman knows of the science of electricity; otherwise they would make
impossible the use of “ponies, coaches, and keys,” by means of which the
student taxes the memory rather than the understanding, and ultimately
loses all power of independent thought and investigation. Such helps
arrest mental development, destroy the power of original thinking, and
do more harm than the practice of feeding the mind with mere verbal
statements which in course of time may acquire content and meaning. The
study of the sciences which classify minerals, plants, insects, birds,
fishes, and other animals may degenerate into a mere study of words,
even when the student acquires some familiarity with the specimens to
be classified. The scientific name is the one thing about a flower with
which the Creator has had nothing to do, and if the recognition of the
scientific name is the chief or sole aim of the student of botany, it is
a genuine case of feeding the mind on words.

[Sidenote: Words as material for thought.]

[Sidenote: Geometry as thought-material.]

By those who are fond of scientific pursuits the dead languages are
sometimes despised as though the study of them were learned playing with
mere words. Among people who begin their education somewhat late in life
there is a strong temptation to estimate linguistic studies very far
below their true value as a means for disciplining the reasoning faculty.
When pursued in the right way, the study of the classical languages
furnishes as much good material for thought as the natural sciences.
Huxley may charm an audience by a lecture on a piece of chalk; the
philologist can excite equal interest by a lecture on the word chalk.
Words grow and undergo changes according to well-defined laws which
furnish as much food for thought as the laws governing the union of atoms
or the motions of the heavenly bodies. The words of a lexicon contain
as much of precious interest in the sight of man as the manufactured
gases or the plucked leaves and dissected flowers of the laboratory.
Greek and Latin roots have more vitality in them than the collections of
stones, stuffed birds, and transfixed bugs in the museum. The endings
of nouns, adjectives, pronouns, and verbs furnish ample opportunity for
observation, comparison, and reflection; their functions in the syntax
of the sentence furnish splendid exercises in formal and qualitative
thinking. If, however, the time of the pupil is entirely consumed in
mastering the hundreds of exceptions to the rules of gender and case,
of declensions and conjugations, of syntax and prosody, it is another
sad instance of feeding the mind on mere words. The pupil who begins the
study of any foreign language before he has reached his teens should
acquire the power to read the language at sight; otherwise there has been
something faulty in the methods of teaching or of study, or in both. A
man is as many times a man as he knows languages; and the comparison of
the idioms of two or more languages furnishes most excellent material
for careful and accurate thinking. In translating an author like Plato
the student must think the thoughts of a master mind, weigh words so as
to detect the finer shades of meaning, and arrange them in sentences
that shall adequately express the meaning of the original. The value
of pure mathematics, especially the Euclidian geometry, as a means for
the cultivation of thinking, lies in the limited number of fundamental
concepts which must be clearly fixed and in the nature of the reasoning
by which the truth of the theorems is established. The axioms are few
in number and easily grasped; the quantities to be defined can, without
difficulty, be set in a clear light before the understanding; the chain
of proof compels the mind to join ideas by their logical nexus, and if
the learner persists in memorizing the demonstration, he is at once
detected. And yet when, as sometimes happens, he goes over several books
of geometry without clearly perceiving the difference between an angle
and a triangle, it must be a genuine specimen of acquiring words without
the corresponding ideas.

[Sidenote: S. S. Greene’s views.]

The words of S. S. Greene deserve the attention of every teacher anxious
to prevent the formation of vicious habits of thought by the pupils
in our schools and colleges. Years ago he wrote as follows: “While an
external object may be viewed by thousands in common, the idea or image
of it addresses itself only to the individual consciousness. My idea or
image is mine alone,—the reward of careless observation, if imperfect;
of attentive, careful, and varied observation, if correct. Between mine
and yours a great gulf is fixed. No man can pass from mine to yours, or
from yours to mine. Neither, in any proper sense of the word, can mine
be conveyed to you. Words do not convey thoughts; they are not vehicles
of thought in any true sense of that term. A word is simply a common
symbol which each associates with his own idea or image. Neither can
I compare mine with yours, except through the mediation of external
objects. And, then, how do I know that they are alike; that a measure
called a foot, for instance, seems as long to you as to me? My idea of
a new object, which you and I observe together, may be very imperfect.
By it I attribute to the object what does not belong to it, take from
it what does, distort its form, and otherwise pervert it. Suppose, now,
at the time of observation we agree upon a word as a sign or symbol
of the object or the idea of it. The object is withdrawn; the idea
only remains,—imperfect in my case, complete and vivid in yours. The
sign is employed. Does it bring back the original object? By no means.
Does it convey my idea to your mind? Nothing of the kind; you would be
disgusted with the shapeless image. Does it convey yours to me? No; I
should be delighted at the sight. What does it effect? It becomes the
occasion for each to call up his own image. Does each now contemplate
the same thing? What multitudes of dissimilar images instantly spring
up at the announcement of the same symbol!—dissimilar not because of
anything in the one source whence they are derived, but because of
either an inattentive and imperfect observation of that source, or some
constitutional or habitual defect in the use of the perceptive faculty.”

[Sidenote: J. P. Gordy’s statement.]

[Sidenote: Pestalozzi’s reform.]

Dr. J. P. Gordy, to whom credit is due for the preceding quotation,
further says, “Words are like paper money; their value depends on
what they stand for. As you would be none the richer for possessing
Confederate money to the amount of a million dollars, so your pupils
would be none the wiser for being able to repeat book after book by
heart, unless the words were the signs of ideas in their minds. Words
without ideas are an irredeemable paper currency. It is the practical
recognition of this truth that has revolutionized the best schools in
the last quarter of a century.... In what did the reform inaugurated
by Pestalozzi consist? In the substitution of the intelligent for the
blind use of words. He reversed the educational engine. Before his time
teachers expected their pupils to go from words to ideas; he taught
them to go from ideas to words. He brought out the fact upon which I
have been insisting,—that words are utterly powerless to create ideas;
that all they can do is to help the pupil to recall and recombine ideas
already formed. With Pestalozzi, therefore, and with those who have been
imbued with his theories, the important matter is the forming of clear
and definite ideas.”[4]

[Sidenote: Sight and insight.]

It was a remark of Goethe that genius begins in the senses. With equal
truth we may say that thinking begins in the senses. Like unto the
genius, the thoughtful man perceives and interprets what has escaped
the notice of other people. To sight he adds insight. That which he
sees is subsumed under the proper class or category, and is viewed from
different sides until its significance is discovered, and a place is
assigned to it in the intellectual horizon and in the external world.
Every fact thus seen in its relation to other facts serves as a basis for
further observation, reflection, and comparison. Not merely the genius,
but every other person whose thinking is above the average in vigor and
accuracy, has the power to perceive things which escape the eyes and
ears of other people. Through habits of careful and correct observation
he fills his mind with images, ideas, concepts of the objects of thought
and of the relations which exist between these objects, and thereby
acquires the materials for the comparisons which constitute the essence
of good thinking. If the strength of a student is exhausted in gathering
and storing the materials for thought, his mind becomes a wilderness of
facts; if he reasons without the facts, his conclusions are more unreal
than the figments of the imagination.

[Sidenote: Truth the proper thought-material.]

Truth is the best thought-material for the mind to act upon. The
possession of truth is the aim and the goal of all correct thinking.
Knowledge of the truth implies the conformity of thinking with being. The
world within should be made to correspond with the world outside of us.

[Sidenote: The laboratory and the library.]

[Sidenote: Aristotle.]

Fortunately, the self-activity of children is towards the objective world
of things which they can see, hear, smell, taste, and handle. From inner
impulse their thinking is directed towards the cognition of objects.
One of the functions of nature study is to beget habits of careful and
accurate observation. This is a characteristic feature of the laboratory
method as distinguished from the library method. A training in both is
essential to a complete education. The library stores the treasures of
knowledge which the human race has gathered and makes them accessible to
the learner. The laboratory shows him by what methods truth is discovered
and tested and verified. The German professor who declined to visit a
menagerie, asserting that he could evolve the idea of the elephant from
his inner consciousness, may have spent much time in reading books and
in speculation; but he certainly never worked in a laboratory; nor had
he taken to heart the lessons which he might have learned from the sages
of antiquity. Aristotle knew the importance of asking nature for facts,
and he induced his royal pupil, Alexander the Great, to employ two
thousand persons in Europe, Asia, and Africa for the purpose of gathering
information concerning beasts, birds, and reptiles, whereby he was
enabled to write fifty volumes upon animated nature. After teachers had
forgotten his methods they still turned to his books for the treasures
which he had gathered. In the ages in which men hardly dared to ask
nature for her secrets, fearing that they might be accused of witchcraft,
they turned to Aristotle as if he were an infallible guide—so much so
that when Galileo announced the discovery of sun-spots a monk declared
that he had read Aristotle through from beginning to end, and inasmuch
as Aristotle said nothing about spots on the sun, therefore there are
none. This book-method of studying science has not entirely disappeared
from the seats of learning. Books like Tyndall’s “Water and the Forms
of Water,” Faraday’s “Chemistry of a Candle,” and Newcomb’s “Popular
Astronomy” may, indeed, be read or studied as literature, and thus prove
a means of culture; but to accept the facts and statements of a text-book
without verification is the lazy man’s method of studying science; and as
a method it fails to lay the foundation upon which a solid superstructure
can be built. The correct method starts with observation of the things
to be known, develops the basal concepts which lie at the foundation of
the science under consideration, ends by teaching the pupil how to make
independent investigations, how to utilize the treasures which have been
preserved in our libraries, thereby furnishing an adequate supply of
proper materials for thought.

[Sidenote: Productive minds.]

The habits of men who have surprised the world by their intellectual and
professional achievements are very suggestive. Spurgeon kept his mind
filled by constant reading. Goethe was fond of travel and utilized what
he learned from others. Emerson visited the markets regularly, conversed
with the men and women from whom he bought, and sought to learn their
views on current events. Study the greatest thinkers the world has
known, and you will find their memories to have been a storehouse of
thought-materials which they analyzed, sifted, compared, and formulated
into systems that win the admiration of all who love to think.



IV

BASAL CONCEPTS AS THOUGHT-MATERIAL

    Thought proper, as distinguished from other facts of
    consciousness, may be adequately described as the act of
    knowing or judging of things by means of concepts.

                                                            MANSEL.

    We cannot learn all words through other words. There is a
    large and rapidly increasing part of all modern vocabularies
    which can be comprehended only by the observation of nature,
    scientific experiment,—in short, by the study of things.

                                                             MARSH.

    The question we ask of each thing (and of the whole experience)
    is, What _are_ you? You have qualities which I find everywhere
    else; your color I find in other things; your texture and
    hardness and odor and form I find in other things; but they
    are combined in you in such a way as to make you a thing by
    yourself, and not anything else. And I want to know what you
    truly _are_,—in short, what is your essence, which is also your
    idea, and the purpose or τέλος of your existence.

                                                            LAURIE.


IV

BASAL CONCEPTS AS THOUGHT-MATERIAL

[Sidenote: Building concepts.]

The head may be likened unto a walled city, with comparatively few
building materials on the inside, and with a limited number of gate-ways
through which all other materials for building purposes must pass.
The walls are not made of brick or stone, but of bone; the gate-ways
are the different senses through which knowledge enters the mind. The
building materials on the inside are intuitive ideas which take shape in
conjunction with the entrance of materials from without. The structures
which are built up out of the ideas within and the sense-impressions
from without are individual and general concepts. Take an orange. Its
shape, color, parts, are known through the eye. Its flavor, as sweet
or sour, is ascertained through taste; its odor through smell; its
temperature, shape, and some other qualities through touch. These
various sense-impressions, giving the mind a knowledge of essential
and accidental qualities and attributes, are combined in the idea of
a particular orange. If the object were a bell, its sound, parts,
uses, and qualities would make impressions through different gate-ways
of knowledge; the builder inside would combine them into the more or
less complete idea of the object presented to the senses. From each
sense-impression the mind may get a percept; the synthesis of these
percepts produces the individual concept or notion.

It is helpful at this point clearly to distinguish between essential
and accidental attributes. The orange may have been kept in the open
air when the temperature is low. To the hand it feels cold, and this
quality enters into the idea of the first orange which the child has. As
other oranges which have been in a warmer atmosphere are brought to the
child, the attribute cold is seen to be accidental,—that is, it is not a
necessary quality of oranges in general. On the other hand, the qualities
which are found in every orange—many of them hard to describe in
words—become fixed in the mind as essential attributes of the orange. In
course of time many objects of the same kind are presented to the senses,
cognized by comparison so as to retain the essential attributes and to
omit the accidentals. By this process the general notion or concept is
formed.

[Sidenote: Gate-ways of knowledge.]

It is self-evident that the mind’s comparisons and conclusions are
unreliable in so far as the gate-ways of knowledge are defective. Few
persons have perfect ears; many can never become expert tuners of pianos
or reliable critics of musical performances. The man who is color-blind
is not accepted in the railway service or as an officer in the navy. The
man who is totally blind is never selected as a guide in daylight. On the
other hand, the blind girl spoken of by Bulwer could find her way better
in the darkness of the last days of Pompeii than other people, because
she was accustomed to rely upon the data furnished by the other senses in
making her way through the city, and had improved these as gate-ways of
knowledge beyond the needs of those gifted with sight.

[Sidenote: From things to symbols.]

[Sidenote: From sign to thing or idea.]

[Sidenote: The sense to be addressed.]

In building concepts of objects in nature it would be a great mistake to
begin with the word instead of the thing. Just as little as a blind man
can conceive the qualities color, light, darkness, through mere words,
so little can children conceive classes of objects which have never
addressed the senses. Hence great stress has been laid by educational
reformers upon the cultivation of habits of observation, upon the supreme
necessity of teaching by the use of objects, or so-called object-lessons.
First, things, then words, or signs for things, was at one time a
favorite maxim in treatises on teaching. Consistent application of
the maxim would have banished the dictionary from the school-room, or
at least its use as a means for ascertaining the meaning of words. In
consulting the dictionary for the meaning of a word, we pass not from the
thing to its sign, but in the opposite direction,—that is, from the sign
to the thing signified, from the symbol to the idea for which the symbol
stands. The main essential in good instruction is that the words be made
significant. In primary instruction this is best accomplished by passing
from the idea to the word; but in advanced instruction it is of less
importance whether we pass from the word to the idea or from the idea to
the word. The meaning of very many words is acquired from the connection
in which they are used. For the meaning of the larger number of words
in our vocabulary we never consult a dictionary. The finer shades of
meaning we get not from definitions, but from quotations taken from
standard authors. This fact should never tempt the teacher to trust to
words, definitions, and descriptions in the formation of basal concepts.
He should seek to give unto himself a clear and full account of the
things or ideas which cannot spring from mere words, however skilfully
arranged in sentences. The music-teacher who complained of the public
schools because a seven-year-old child did not grasp his meaning when
he spoke of half-notes, quarter-notes, eighth-notes, sixteenth-notes,
should have known that many children of that age have never been taught
fractions, and that the idea of a fraction is obtained not from sounds
(who distinguishes between half a noise and a whole noise?), but from
objects which address the eye. Instead of complaining about the school
which the pupil attended, a teacher acquainted with the mysteries of his
art would have started with the comparison of things visible; and after
having developed the idea of halves, quarters, eighths, sixteenths, by
the division of visible objects into equal parts, he would have applied
the idea to musical sounds.

[Sidenote: Different gate-ways for different ideas.]

[Sidenote: Integers.]

In seeking to build in the mind of the learner the concepts which lie
at the basis of a new branch of study, it is a legitimate question to
ask by which of the gate-ways of knowledge the materials or elements
for the new idea can best be made to enter the mind. At the basis of
arithmetic lies the idea of number,—an idea that is evoked by the
question of how many applied to a collection of two or more units. Taste
and smell must be ruled out from the list of senses which can be utilized
to advantage. Three taps on the desk are as easily recognized as three
marks or strokes on the black-board. The sense of touch is helpful in
passing from concrete to abstract numbers. To think a number when the
corresponding collection of objects is not visible, but is suggested by
tactile impressions, helps to emancipate the thinking process from the
domination of the eye; in other words, it helps to sunder the thinking of
number from a specific sense, and thus aids in the evolution of the idea
of number apart from concrete objects.

[Sidenote: Fractions.]

As already indicated, there are some basal concepts, like that of a
fraction, in the development of which only one sense can be utilized to
advantage. Whilst imparting the idea of a whole number, the appeal may
be to the eye, the ear, and the sense of touch; the instruction designed
to impart the idea of fractions to the normal child is limited to visible
objects. In the instruction of the blind the other senses are addressed
from necessity. The extent to which touch can supply the function of
sight is full of hints to teachers in charge of pupils possessing all the
gate-ways of knowledge.

[Sidenote: Teaching decimals.]

Moreover, not all units are equally adapted for imparting the first ideas
of a fraction. Half of a stick is still a stick to the child, just as
half of a stone is still called a stone in common parlance. The half
should be radically different from the unit; hence an object resembling
a sphere or a circle is best adapted for the first lessons in fractions.
In teaching decimals the square or rectangle is better than the circle.
It is difficult to divide a circumference into ten equal parts. On the
contrary, the square is easily divided into tenths by vertical lines,
and then into hundredths by horizontal lines, thus furnishing also a
convenient device for the first lessons in percentage.

[Sidenote: Basal concepts.]

[Sidenote: John Fiske on symbolic conceptions.]

It is one of the aims of the training-class and the normal school to
point out the best methods of developing the different basal concepts
which lie at the foundation of the branches to be taught. Many of
these are complex, and require great skill on the part of the teacher.
The difficulty is well stated in John Fiske’s discussion of Symbolic
Conceptions. He says, “Of any simple object which can be grasped in a
single act of perception, such as a knife or a book, an egg or an orange,
a circle or a triangle, you can frame a conception which almost, or
quite exactly, _represents_ the object. The picture, or visual image,
in your mind when the orange is present to the senses is almost exactly
reproduced when it is absent. The distinction between the two lies
chiefly in the relative faintness of the latter. But as the objects of
thought increase in size and in complexity of detail, the case soon comes
to be very different. You cannot frame a truly representative conception
of the town in which you live, however familiar you may be with its
streets and houses, its parks and trees, and the looks and demeanor of
the townsmen; it is impossible to embrace so many details in a single
mental picture. The mind must range to and fro among the phenomena, in
order to represent the town in a series of conceptions. But practically,
what you have in mind when you speak of the town is a fragmentary
conception in which some portion of the object is represented, while you
are well aware that with sufficient pains a series of mental pictures
could be formed which would approximately correspond to the object. To
some extent the conception is representative, but to a great degree it
is symbolic. With a further increase in the size and complexity of the
objects of thought, our conceptions gradually lose their representative
character, and at length become purely symbolic. No one can form a mental
picture that answers even approximately to the earth. Even a homogeneous
ball eight thousand miles in diameter is too vast an object to be
conceived otherwise than symbolically, and much more is this true of the
ball upon which we live, with all its endless multiformity of detail. We
imagine a globe, and clothe it with a few terrestrial attributes, and in
our minds this fragmentary notion does duty as a symbol of the earth.

“The case becomes still more striking when we have to deal with
conceptions of the universe, of cosmic forces such as light and heat,
or of the stupendous secular changes which modern science calls us to
contemplate. Here our conceptions cannot even pretend to represent
the objects; they are as purely symbolic as the algebraic equations
whereby the geometer expresses the shapes of curves. Yet so long as
there are means of verification at our command we can reason as safely
with these symbolic conceptions as if they were truly representative.
The geometer can at any moment translate his equation into an actual
curve, and thereby test the results of his reasoning; and the case is
similar with the undulatory theory of light, the chemist’s conception of
atomicity, and other vast stretches of thought which in recent times have
revolutionized our knowledge of nature. The danger in the use of symbolic
conceptions is the danger of framing illegitimate symbols that answer to
nothing in heaven or earth, as has happened first and last with so many
short-lived theories in science and in metaphysics.”

The word conception as used in this quotation is synonymous with concept,
but elsewhere it is also used in two other senses,—namely, to signify
the mind’s _power_ to conceive objects, their relations and classes, and
to name the activity by which the concept is produced. Hence the term
concept is preferred in this discussion.

[Sidenote: Concepts of distance.]

[Sidenote: Large cities.]

To give a full account of the development of the basal concepts in the
different branches of study would require a treatise on the methods of
teaching these branches. All that can be attempted is to draw attention
to some of the typical methods and devices adopted by eminent teachers
in the development of the concepts which Mr. Fiske calls symbolic
conceptions. Distance is one of the concepts at the basis of geography
and astronomy. To say that the circumference of the earth is twenty-five
thousand miles, that the distance of the moon from the earth is two
hundred and forty thousand miles, and that the distance of the sun is
ninety-two and one-half millions of miles may mean very little to the
human mind, especially to the mind of a child. Supposing, however, that
a boy finds a mile by actual measurement, and that he finds he can walk
four miles an hour, he can gradually rise to the thought of walking forty
miles in a day of ten hours, or two hundred and forty miles in the six
working days of a week. In one hundred and four weeks, or two years, he
could walk around the globe. To walk to the moon would require a thousand
weeks, or about twenty years. It is by the method of gradual approach
that concepts of great distance, of immense magnitudes, of the infinitely
large and the infinitely small, must be developed. To this category
belong large cities like New York and London, quantities denoting the
size of the earth and its distance from the sun and the fixed stars, the
fraction of a second in which a snap-shot is taken, or an electric flash
is photographed; such quantities are apt to remain as mere figures or
symbols in the mind of the learner unless the method of gradual approach
is adopted. Starting with a town or a ward with which the pupil is
familiar, several may be joined in idea until the concept of a city of
fifty or sixty thousand population is reached. It takes about twenty of
these to make a city like Philadelphia, and five cities like Philadelphia
to make a city like London. A lesson on how London is fed will add much
to the formation of an adequate idea of such a large city.[5]

[Sidenote: Shape of the earth.]

An adequate idea of the shape of the earth can be formed only by gradual
development. The three kinds of roundness (dollar, pillar, ball) must
be taught; then the various easily intelligible reasons for believing
it to be round like a ball may follow in the elementary grade. As the
pupil advances he may be told of the dispute between Newton and the
French, the former affirming it to be round like an orange,—that is,
flattened at the poles,—the latter asserting that it resembled a lemon
with the polar axis longer than the equatorial diameter; and how, by
measuring degrees of latitude and finding that their length increases
as we approach the poles, the French mathematicians, in spite of their
wishes to the contrary, proved Newton’s view to be correct. The same
lesson might be taught by starting with the rotation of the earth,
showing by experiment the tendency of revolving bodies to bulge out at
the equator, and then drawing the inference that the degrees of latitude
are shortest where the curvature is greatest, and that they are longest
where the curvature is least. Either method is strictly logical; but the
method which follows the order of discovery, whenever it is feasible, is
calculated to arouse the greater interest in minds of average capacity.
The teacher who is a master of his art will supplement the historical
lesson by a lesson passing from cause to consequence, so as to fix and
clarify the concept formed by passing from the ground of knowledge to the
necessary inference. Finally, by drawing attention to the fact that the
equatorial diameters are not all of the same length, he will build up in
the pupil’s mind a concept of the real shape of the earth,—a shape unlike
any mathematical figure treated of in the text-books on geometry. The
attempt to give a complete idea of the shape of the earth in the first
lessons on geography would have ended in confusion of thought; the wise
teacher develops complex concepts gradually and not more rapidly than
the learner is able to advance. This process may be called enriching the
concept. The successive concepts, although only partial representations
of what is to be known, are adequate for the thinking required at a given
stage of development; the number of complete or exhaustive concepts in
any department of knowledge is small indeed.

[Sidenote: The order of discovery and of instruction.]

Instructive as it often is to follow the order of discovery, it must not
be inferred that this is invariably the best order of instruction. What
teacher of astronomy would be so foolish as to lead a student through the
nineteen imaginary paths which Kepler tried before he discovered that an
elliptical orbit fitted the recorded observations of Tycho Brahe![6]

Much may be learned from the methods pursued by eminent teachers. It
will abundantly pay any teacher of science to study Faraday’s lectures
on the chemistry of a candle,—a series which for models of developing
the fundamental concepts of chemistry is unsurpassed. The devices used
by such teachers are often very suggestive. For instance, in teaching
the concept of the new geography that the earth revolves not like a body
with a liquid interior, but like a body with an interior as rigid as
glass, Lord Kelvin suggests a comparison of the spinning of a hard-boiled
egg and of an egg not boiled at all,—an experiment easily made in every
school-room.

[Sidenote: Ideas of great distances.]

A few quotations from the astronomer Young will show how concepts of
great distances can be developed so as to be more than a numeral with a
row of ciphers annexed:

    “If one were to try to walk such a distance, supposing that he
    could walk four miles an hour, and keep it up for ten hours
    every day, it would take sixty-eight and one-half years to make
    a single million of miles, and more than sixty-three hundred
    years to traverse the whole. If some celestial railway could
    be imagined, the journey to the sun, even if our trains ran
    sixty miles an hour, day and night, without a stop, would
    require over one hundred and seventy-five years. To borrow
    the curious illustration of Professor Mendenhall, if we could
    imagine an infant’s arm long enough to enable him to touch
    the sun and burn himself, he would die of old age before the
    pain could reach him, since, according to the experiments of
    Helmholtz and others, a nervous shock is communicated only
    at the rate of one hundred feet per second, or one thousand
    six hundred and thirty-seven miles a day, and would need more
    than one hundred and fifty years to make the journey. Sound
    would do it in about fourteen years if it could be transmitted
    through celestial space, and a cannon-ball in about nine, if
    it were to move uniformly with the same speed as when it left
    the muzzle of the gun. If the earth could be suddenly stopped
    in her orbit, and allowed to fall unobstructed towards the sun
    under the accelerating influence of his attraction, she would
    reach the centre in about two months. I have said if she could
    be stopped, but such is the compass of her orbit that to make
    its circuit in a year she has to move nearly nineteen miles
    a second, or more than fifty times faster than the swiftest
    rifle-ball; and in moving twenty miles her path deviates from
    perfect straightness by less than one-eighth of an inch.”[7]

Professor Young uses a very suggestive device in his astronomy for
showing the comparative sizes and distances of heavenly bodies:

    “Representing the sun by a globe two feet in diameter, the
    earth would be twenty-two-hundredths of an inch in diameter—the
    size of a very small pea or a ‘twenty-two caliber round
    pellet.’ Its distance from the sun on that scale would be just
    two hundred and twenty feet, and _the nearest star_ (still on
    the same scale) _would be eight thousand miles away at the
    antipodes_.”[8]

Sometimes the employment of a new unit aids in realizing the idea of
very great distances. The ordinary astronomical unit is the distance
of the sun from the earth; it is not large enough to be convenient in
expressing the distances of fixed stars. Hence astronomers have found
it more satisfactory to take as a unit the distance light travels in a
year, which is about sixty-three thousand times the distance of the sun
from the earth. The tables of fixed stars give distances in terms of this
unit from 3.5 upward. A glance at these figures fills the mind with an
idea of the infinite grandeur of the universe and with feelings of awe
and sublimity akin to those which must fill the soul on approaching the
throne of Almighty God.

[Sidenote: Time of snap-shot.]

Scientists assert that the infinitely great is more easily conceived
than the infinitely small; that quantities represented by billions and
trillions are more easily grasped than fractions of a unit with a million
in the denominator; that ages of time are more easily comprehended than
fractions of a second. In a lecture delivered at the International
Electrical Exhibition, Professor Charles F. Himes employed a very
ingenious device for giving an idea of how a “snap-shot” may be made,
or a photographic impression taken of an electric spark, or a flash of
lightning. He exhibited a photograph of the sparks of a Holtz machine,
which are of shorter duration than any instantaneous drop or slide could
be made to give. “They impressed themselves upon an ordinary collodion
plate as they passed. Suppose we assume one-twenty-thousandth of a second
as the time, and we will be within bounds. That is a fraction difficult
to comprehend. Our mental dividing engine fails as we work towards
zero. The twenty-thousandth of a second is so small that it eludes
our mental grasp.... Looking at it from another point of view, let us
regard the effect as a space-effect instead of a time-effect. Light has
a velocity, in round numbers, of one hundred and ninety thousand miles
per second. That would be one hundred and ninety miles in one-thousandth
of a second, nineteen in one-ten-thousandth, or, say, ten miles in our
one-twenty-thousandth of a second. Ten miles of light drive in upon our
plate in that time; or, if we held the corpuscular theory of Newton,
a chain of these little pellets ten miles long would have delivered
themselves upon the sensitive surfaces. Ten miles is comprehensible,
one mile is, so that we could easily conceive of an effect in one-tenth
of the time allowed to our electric sparks. But let us take another
look at it. Light is not corpuscles, but undulations, tiny wavelets,
ripplets of ether, eight hundred million million in a second for violet,
a number we can easily understand, as Sir William Thomson[9] has told
us. That would make eight hundred thousand million in one-thousandth,
eight thousand million in one-ten-thousandth, or forty thousand million
impulses striking our sensitive molecules in our one-twenty-thousandth
of a second. Surely that number should produce an effect. We can readily
conceive that one thousand million wavelets would produce an appreciable
effect. They would represent one-eight-hundred-thousandth of a second,
say one-millionth of a second. That would seem, then, to be ample time to
produce a photographic effect.”[10]

[Sidenote: Idea of total depravity.]

Many teachers of science spend all their spare time in reading scientific
literature and in posting themselves upon the latest achievements in
their specialty. It might be to them a less delightful occupation if they
traversed fields of investigation already well explored for the purpose
of seeing how the student can be led over these most expeditiously and
with minimum expenditure of time and effort. Thought bestowed upon
the best way of imparting the elements of science would have a most
beneficial effect upon their methods of instruction, and would greatly
increase their skill in teaching. Many of the most abstruse and complex
ideas can be resolved by analysis into their elements, and thereby be
made intelligible to people of ordinary training. An eminent teacher of
theology felt called upon to impart to a promiscuous audience an idea
of the doctrine of total depravity as taught by the Church. He started
by referring first to the popular mistake that the doctrine teaches the
utter depravity of the human race, then to the ancient heresy that the
depravity of human nature resides in the body, and not in the soul, and,
finally, to the meaning of total as signifying not that man is as bad
as he can become, but that he is depraved, or has a tendency towards
sin not merely in his physical body, but in the totality of his being.
Analysis prepared them to see that by total depravity is not meant
that men are as bad as they can be, nor that they do not have in their
natural condition certain amiable qualities or certain laudable virtues;
that the doctrine means that depravity, or the sinful condition of man,
infects the whole man,—intellect, feeling, heart, and will,—and that in
each unrenewed person some lower affection, and not the love of God,
is supreme. Such analysis of a complex concept into its elements, the
explicit setting forth what it is and what it is not, followed by the
synthesis of the parts into a thought-unit, is the plan pursued by the
best teachers in teaching difficult subjects. By analysis we resolve
complex concepts into their elements, which may be simple percepts or
their relations. Things are separated in thought which go together in
time, space, motion, force, or substance. Every essential attribute or
constituent can then be viewed by itself until the mind has gone around
it with the bounding line of thought, grasped its nature and essence,
and explored it in its different aspects and relations. In this way the
most abstruse subjects are shorn of their difficulties, the most complex
problems are solved and elucidated.

[Sidenote: Value of analysis.]

The bearing of all this upon the art of teaching is easily shown. A
teacher of geometry, whose mind was quite logical, failed, through
lack of power, to make things plain. If the class did not grasp the
demonstration of a theorem, he invariably started at the beginning,
tried to throw light upon every link in the chain of proof, and by the
time he reached the point of difficulty the members of the class were
thinking of something else. A younger colleague pursued a different plan.
Starting some pupil upon the demonstration, he detected the difficulty,
and by a few words of explanation, or by a well-framed question, he
focussed attention upon the simple elements, into which he resolved the
difficulty, and frequently surprised the class by showing the simplicity
of what had puzzled their minds. Under the clarifying light of analysis
half the difficulties and half the sophistries of human thinking vanish
like dew and mist before the morning sun.

[Sidenote: The moral nature.]

For the purpose of making an impression upon the moral nature
word-painting is sometimes very helpful. All the text-books on physiology
and hygiene intended for use in the public schools seek to teach the
evils of strong drink by showing the effect of alcoholic stimulants upon
different parts of the human system. Yet the most exhaustive lessons on
how whiskey is made, and what are its exhilarating and its pernicious
effects, cannot equal the effects of the word painting of Robert
Ingersoll and the paraphrase by Dr. Buckley. In making a gift to a friend
the former penned the following eulogy on whiskey:

    “I send you some of the most wonderful whiskey that ever drove
    the skeleton from the feast or painted landscapes in the brain
    of man. It is the mingled souls of wheat and corn. In it you
    will find the sunshine and the shadow that chased each other
    over the billowy fields, the breath of June, the carol of the
    lark, the dew of night, the wealth of summer, and autumn’s rich
    content, all golden with imprisoned light. Drink it, and you
    will hear the voice of men and maidens singing the ‘Harvest
    Home,’ mingled with the laughter of children. Drink it, and
    you will feel within your blood the starlit dawns, the dreamy,
    tawny dusks of perfect days. For forty years this liquid joy
    has been within the staves of oak, longing to touch the lips of
    man.”

This was Dr. Buckley’s statement of the other side:

    “I send you some of the most wonderful whiskey that ever
    brought a skeleton into the closet, or painted scenes of lust
    and bloodshed in the brain of man. It is the ghosts of wheat
    and corn, crazed by the loss of their natural bodies. In it
    you will find a transient sunshine chased by a shadow as cold
    as an Arctic midnight, in which the breath of June grows icy
    and the carol of the lark gives place to the foreboding cry
    of the raven. Drink it, and you shall have ‘woe,’ ‘sorrow,’
    ‘babbling,’ and ‘wounds without cause.’ Your eyes shall
    behold strange women, and ‘your heart shall utter perverse
    things.’ Drink it deep, and you shall hear the voices of demons
    shrieking, women wailing, and worse than orphaned children
    mourning the loss of a father who yet lives. Drink it deep and
    long, and serpents will hiss in your ears, coil themselves
    about your neck, and seize you with their fangs; for at the
    last it biteth like a serpent and stingeth like an adder. For
    forty years this liquid death has been within staves of oak,
    harmless there as purest water. I send it to you that you may
    put an enemy in your mouth to steal away your brains, and yet I
    call myself your friend.”

[Sidenote: The languages.]

There comes a stage of development of the learner at which the word
itself becomes the object of thought. Words are then classified as
parts of speech, and their function in sentences is studied. Their
properties and endings must be learned and compared. There is abundant
room for thought in the eleven hundred variations of the Greek verb.
The variations of words by declension and conjugation can be made the
material for thought, and as these are always at hand in the text-book,
no excursions to the field being needed to secure specimens, and no
preparation of difficult experiments being required on the part of
the teacher, the ancient languages have held their own in the schools
with most wonderful tenacity. The study of language has not merely the
advantage of supplying material for thought in the words, grammatical
forms, and sentences which are always at hand in the text, but through
the classics it brings the learner into intellectual contact with the
best thoughts of the best men in ancient and modern times. To translate
an author like Virgil or Demosthenes is to think the thoughts of a
master mind, to weigh words as in a most nicely adjusted balance, and
finally to arrange them in sentences that shall adequately convey the
meaning of the original text.

[Sidenote: Science.]

Science is, of course, a product of the human mind, quite as much as
the so-called humanities, and answers the same purpose when studied
as literature; but then it ceases to have the value of training the
intellect in the rigid methods of original research and scientific
investigation. Whilst it is the function of the laboratory to initiate
the student into the mysteries of the methods by which new discoveries
are made and verified, and thus to enable him to avail himself of the
labors of others through their publications, it does not bring the
student into living contact with human hopes, emotions, and aspirations
as do the poems of Goethe, Schiller, and Shakespeare.

[Sidenote: History.]

History deals with what man has achieved. The materials for thought which
it furnishes are mostly in the shape of the testimony of eye-witnesses
and other original sources of information. The incidents, the
achievements, the struggles, the victories and the defeats, the thoughts,
feelings, and experiences of historic personages, are an inexhaustible
supply of material from which authors, editors, and orators draw
illustrations, figures of speech, and other matter for their thinking.
Here is a field which must not be neglected by those who would influence
their fellows or figure as leaders of men.

[Sidenote: Vigorous thinking.]

Some minds are slow at gathering materials; yet they think vigorously.
They look at facts and ideas from every possible point of view, explore
their nature and relations, their content and extent, and point out
their bearing upon other things by the conclusions they reach. Sometimes
they go astray because they do not have sufficient data to warrant a
conclusion. Their condition resembles that of the King of Siam, who did
not believe that water could become solid because he had been in the nine
points of his kingdom and had not seen ice.

[Sidenote: Intellectual gluttony.]

Other men are intellectual gluttons. They keep pouring into themselves
knowledge from every quarter, carry it in their minds as the overloaded
stomach carries food, and end in mental dyspepsia. Better the man with
few ideas, who can apply these in practical life, than the man of
erudition who cannot apply his knowledge.

Too little food produces inanition and starvation; too much food brings
on dyspepsia and a host of other ills and distempers. The haphazard
selection of studies by inexperienced youth from the large list of
electives offered by a great university is apt to result either in mental
overfeeding or in intellectual starvation. The mind can be rightly formed
only when it is rightly informed. To expect satisfactory thought-products
when the mind lacks proper materials to act upon would be as irrational
as to expect good grist from a flour-mill whose supply of grain is
deficient in quality and quantity. In the process of making flour very
much depends upon the instruments employed. The rude implements of
antiquity, the buhr-stones of our fathers, and the improved machinery of
the roller process make a difference in the product, even though the same
quality of grain is used. In the elaboration of the thought-material the
well-educated man uses instruments which may be likened to our modern
inventions for saving labor in the domain of the mechanic arts. These
instruments of thought will next claim our attention.



V

THE INSTRUMENTS OF THOUGHT

    But words are things; and a small drop of ink
      Falling, like dew, upon thought, produces
    That which makes thousands, perhaps millions, think.

                                                             BYRON.

    Constant thought will overflow in words unconsciously.

                                                             BYRON.

    The great Lagrange specifies among the many advantages of
    algebraic notation that it expresses truths more general than
    those which were at first contemplated, so that by availing
    ourselves of such extensions we may develop a multitude of
    new truths from formulæ founded on limited truths. A glance
    at the history of science will show this. For example, when
    Kepler conceived the happy idea of infinitely great and
    infinitely small quantities (an idea at which common sense
    must have shaken its head pityingly), he devised an instrument
    which in expert hands may be made to reach conclusions for
    an infinite series of approximations without the infinite
    labor of going successively through these. Again, when Napier
    invented logarithms, even he had no suspicion of the value of
    this instrument. He calculated the tables merely to facilitate
    arithmetical computation, little dreaming that he was at the
    same time constructing a scale whereon to measure the density
    of the strata of the atmosphere, the height of the mountains,
    the areas of innumerable curves, and the relation of stimuli to
    sensations.

                                 LEWES’S PROBLEMS OF LIFE AND MIND.


V

THE INSTRUMENTS OF THOUGHT

[Sidenote: Labor-saving in thinking.]

[Sidenote: Squaring the circle.]

Of the people who, though inheriting a rich vernacular like the English,
spend their lives in the routine of a farm, a trade, or a store, very
few have an adequate conception of the labor-saving instruments and
appliances which modern civilization places at the disposal of the
thinker. The machinery by which one man does as much as a thousand hands
formerly did is not a whit more wonderful than the modern appliances
for reaching results in the domain of thought. Reference might be made
to the machines for adding used in counting-houses, to the tables of
interest used by bankers, to the tables of logarithms by which it is as
easy to find the one-hundredth power as the square of a number. The last
named have, so to speak, multiplied the lives of astronomers by enabling
them to make in a short time calculations that formerly occupied months,
and even years. It is not necessary to discuss these; their value is
apparent at a glance. But the value of a rich vocabulary, the function
of the symbols and formulas of chemistry, physics, mathematics, and
other sciences, and the advantages derived from the use of the technical
terms peculiar to every domain of thought are not so easily seen. The
teacher who fails at the right time to put the pupils in possession
of these instruments of thought cripples their thinking, wastes their
time and effort, and seriously mars their progress. Hence it is worth
while to devote a chapter or two to the consideration of instruments
of thought, for the purpose of showing how, by means of them, thinking
is made easier and more effective. Let some one write the amounts in a
ledger column by the Roman notation, then endeavor to add them without
using any figures of the Arabic notation, either in his mind or in any
other way, and he will soon realize what a labor-saving device our ten
digits are. Then let him face the problem of squaring the circle as it
confronted Archimedes, using the obvious truth that the perimeter of
an inscribed polygon is less, while the perimeter of the circumscribed
polygon is greater than the circumference of the circle, and long
before his calculations reach the regular polygon of ninety-six sides
(which is as far as Archimedes carried it), he will realize how the
great Syracusan was hampered by the lack of the arithmetical notation
now in use. Next, supposing himself in possession of the Arabic method
of notation, let him conceive the labor of Rudolph von Ceulen, who,
before logarithms were known, computed the ratio of the circumference to
the diameter to thirty-five decimal places,—an achievement considered
so great that the result was inscribed upon his tombstone,—and then,
turning to the calculus, let him examine the formulas by which Clausen
and Dase, of Germany, computing independently of each other, carried out
the value to two hundred decimal places, their results agreeing to the
last figure; this will give him a conception of the superior instruments
of thought invented by those who developed the calculus. His idea of
the labor-saving devices introduced by the calculus will be heightened
still more on learning that Mr. Shanks, of Durham, England, carried the
calculation to six hundred and seven decimal places,—a result so nearly
accurate that if it were correctly used in calculating the circumference
of the visible universe, the possible error would be inappreciable in
the most powerful microscope. On further learning that in 1882 Lindeman,
of Königsberg, rigorously proved this ratio, commonly represented by the
symbol π, to be incapable of representation as the root of any algebraic
equation whatever with rational coefficients, he will not only refrain
from joining the common herd of squarers of the circle, but no further
argument will be needed to show the nature and value of the labor-saving
devices introduced into the domain of thought by modern mathematics.

Since it is unreasonable to expect that every reader shall be familiar
with higher mathematics, the duty of using simpler illustrations cannot
be evaded. Fortunately for the purpose in hand, the book of experience
furnishes these with an abundance that is almost bewildering.

[Sidenote: Chemistry.]

A professor of chemistry was lecturing to an audience of teachers on
agriculture. When he began to write upon the black-board they smiled
at his spelling. Iron he wrote Fe. Water he spelled H₂O. They soon saw
that he was using the instruments of thought furnished by a science
with which, unfortunately, few of them were familiar. He had found that
the use of these chemical symbols made his thinking as much superior to
that of the ordinary man as the work of the youth upon a self-binder is
superior to that of the giant working with no better instrument than the
sickle of our forefathers.

[Sidenote: Arabic notation.]

The school furnishes numerous examples to illustrate this point. When
the teachers of a well-known city began the use of objects to impart the
ideas of number and of the fundamental rules in arithmetic, the interest
of the pupils and their facility in calculation grew wonderfully. The
teaching was in accordance with the laws of mental growth. For fear the
pupils would manipulate the Arabic figures without corresponding ideas,
collections and equal parts of objects were drawn upon the slate to
illustrate addition and subtraction of integers and fractions. The plan
was followed for years and carried upward through the grades. Finally
the pupils were examined for admission into the high school. A problem
involving the four fundamental rules in combinations which could not be
illustrated by pictures of objects, or the objects themselves, was set
for solution. Out of fifty-nine applicants, only ten succeeded in giving
the correct answer. The same kind of problem was given three times by
three different persons, and with practically the same outcome. The
teachers realized that they had kept up for too long a time the thinking
in things, instead of drilling the pupils upon the process of thinking in
the symbols of the Arabic notation. It is, of course, possible to think
number without using the Arabic digits. The Romans did so by means of
their counting-boards, and the Chinese do so by devices of their own.
The characters which were brought into Western Europe through Arabic
influences are derived, according to Max Mueller, from the first letters
of the Sanskrit words for the first ten numerals. Their use facilitated
calculation to such an extent that arithmetic gradually ceased to be
the prerogative of slaves and ecclesiastics; its operations began to
be understood by freemen and by the nobility. If children are denied
the use of objects in their early lessons in number, they resort to
counting on their fingers. If they are not led from this thinking on
their fingers to thinking in figures, they will never become expert in
arithmetic. Sometimes the fingers no longer move, but the mind conceives
pictures of the hand, and the mind’s eye runs along the fingers of
hands not visible to the corporeal eye. It is equally bad if the pupils
never think number except by mental pictures of blocks, sticks, balls,
and the like. When the pupil sees 7 × 9, he should not conceive seven
heaps of nine shoe-pegs each, and then a rearrangement into six groups
of ten shoe-pegs, and three stray ones alongside of these groups; but
instantaneously the symbols 7 × 9 should suggest, with unerring accuracy,
the result,—63.

[Sidenote: Fractions.]

In the schools of another district the principal proposed concrete
work in fractions. The teachers and pupils began to divide things into
halves, and thirds, and fourths, and sixths. They added and subtracted
by subdividing these into fractions that denoted equal parts of a unit.
Whilst the charm of novelty still clung to the process, a stranger who
visited the schools asked one of the teachers how the pupils and parents
liked the change. “Everybody is delighted,” was the exclamation. A year
later the same teacher was asked by the visitor, “How are you succeeding
with your concrete work in fractions?” With a dejected air she replied,
“We are disappointed with the results.” “Just as I expected,” exclaimed
the visitor; “for you were making the children think on the level of
barbarism, instead of teaching them to use the tools and labor-saving
machinery of modern civilization.”

[Sidenote: Reckoning interest.]

Still another incident, taken from actual life, will serve to throw
light upon the subject under discussion. In the booming days of the iron
industry a laborer had saved and put out at interest twelve hundred
dollars. The rate was six per cent., and no interest had been paid for
one year and four months. Unable to reckon interest with figures, the
toiler asked the principal of the schools to tell him the amount of
interest due. Next day he greeted the principal by asking, “Did you not
make a mistake in your calculation?” The reply was, “In my hurry to
avoid being late at school I may have made a mistake.” He found that
the man was right, and curiosity led him to ask how the error had been
detected. “I reckoned it,” said the man. This aroused still greater
curiosity; for the principal knew that, beyond the ability to count, the
man had no knowledge of arithmetic. By agreement they met on Saturday
afternoon, so that the man might show his method of reckoning interest.
At the appointed hour the man laid six pennies on the floor to denote a
year’s interest on one dollar, and then laid two pennies alongside of
these as the additional interest on a dollar for four months. The supply
of pennies being exhausted, he made strokes with chalk, and proceeded to
do this twelve hundred times, and then to count them for the purpose of
ascertaining the interest. It was thinking in things with a vengeance.
And yet the making of strokes with chalk was a step in symbolic
representation, and shows the innate tendency of the human mind to use
symbols in thinking.

[Sidenote: Words.]

[Sidenote: Dialects.]

Even the words used in counting are symbols. In fact, every word that
signifies anything is a symbol used by the mind to indicate an idea more
or less complex, as well as the thing or things or relation of things in
the external world which corresponds to the idea. In advanced thinking
the words denote ideas more and more complex as the problems grow in
difficulty or involve more of the abstract and general concepts under
which the mind classifies the objects of which it takes cognizance. This
is more largely true of the words in a developed language than it is of a
dialect with little or no literature. A reference to the writer’s early
home will be pardoned in this connection. His father, a plain farmer in
Eastern Pennsylvania, sent four sons through college and gave each of
them a professional or university education. When they gather under the
parental roof they use the dialect of their early days in discussing life
on the farm and in rehearsing the funny experiences of their boyhood;
but when they discuss a question in science or mathematics, in law,
medicine, or theology, they drop the dialect of their boyhood and use the
instruments of thought furnished by languages having a literature. Some
one has facetiously said of one town in the Lehigh Valley that the people
pray in seven languages and swear in eight. It is a witty statement of an
actual fact. The Welshman can pray as well as swear in his native tongue.
The Pennsylvania German can vent his feelings fully in his own dialect
when he grows profane. As soon as he says his prayers he reverts to the
language of the pulpit and of Luther’s Bible because he there finds the
words which express the deepest wants and emotions of the human soul.

[Sidenote: Melanchthon.]

[Sidenote: Growth of the German language.]

[Sidenote: Value of a rich vocabulary.]

When Melanchthon prepared the Saxony school plan he insisted that pupils
should read Latin, write Latin, and speak Latin to the exclusion of the
mother tongue. If an educator of to-day should advocate this policy in
the fatherland, he would be banished. Melanchthon, surnamed preceptor
Germaniæ, knew what he was about. He taught at a time when teachers of
the humanities lamented that children were born in the homes of parents
speaking German. He lectured at a time when Luther and his colleagues
were visiting market-places to talk with the peasants for the purpose
of gathering words and phrases by which the New Testament might be
adequately rendered in the vernacular of the common people. A development
extending over one hundred and fifty years was required before the
lecturers at the universities found in it enough words and phrases to
serve as instruments of thought for purposes of advanced investigation
and ratiocination. So rich and flexible has the German become that Voss
succeeded in translating Homer into German, using the same metre, the
same number of lines, without adding to or subtracting from the ideas of
the original. Schlegel’s translation of Shakespeare is equally famous
and equally successful. Both of these masterpieces show how essential
a rich vocabulary is in rendering or in reproducing the best thoughts
of the best minds; they show the importance of linguistic development
and linguistic teaching. For purposes of thought and culture a rich
mother tongue is of untold advantage. It is a great blessing to be born
and raised in a home presided over by a well-educated mother. It is an
invaluable help to be trained in schools whose teachers speak and write
the languages which have felt the touch of the genius of Shakespeare and
of Goethe. Next to furnishing ideas or something to think about, the
thing of most importance in teaching a pupil to think is to enrich his
vocabulary, to train him in language. Dr. Whewell has well remarked that
“language is the atmosphere in which thought lives, for there is hardly
a subject we can think about without the aid of language. Consequently,
without knowledge of the language of a science all thinking with regard
to that science is impossible; for although we conceive the world by
means of our senses, we comprehend it only in and through the form of
language.” In this connection one cannot do better than listen to the
conclusions of men who have attained eminence as scholars, thinkers, and
writers. Speaking from experience, they can throw light upon the art of
correct and efficient thinking.

[Sidenote: Dr. Morrell.]

“Language, we must remember,” says Dr. Morrell, “is not constructed
afresh by every individual mind which uses it. It is a world already
created for us,—one into which we have simply to be introduced, and in
which the process of human development, up to any given period, is more
or less perfectly preserved and registered. Recollection, accordingly,
by enabling us to appropriate to ourselves a whole system of signs,
with the ideas attached to them, initiates us insensibly into the
intellectual world of the present, puts us upon the vantage-ground of
the latest degree of civilization, and enables us to grasp the ideas of
the age without the labor of thinking them out consecutively by our own
individual effort.”[11]

[Sidenote: Dr. Whewell.]

“Language,” says Dr. Whewell, “is often called an instrument of thought;
but it is also the nutriment of thought; or, rather, it is the atmosphere
in which thought lives; a medium essential to the activity of our
speculative power, although invisible and imperceptible in its operation;
and an element modifying, by its qualities and changes, the growth and
complexion of the faculties which it feeds. In this way the influence of
preceding discoveries upon subsequent ones, of the past upon the present,
is most penetrating and universal, though most subtle and difficult to
trace. The most familiar words and phrases are connected by imperceptible
ties with the reasonings and discoveries of former men and most distant
times. Their knowledge is an inseparable part of ours; the present
generation inherits and uses the scientific wealth of all the past. And
this is the fortune not only of the great and rich in the intellectual
world, of those who have the key to the ancient storehouses and who have
accumulated treasures of their own, but the humblest inquirer, while he
puts his reasoning into words, benefits by the labors of the greatest
discoverers. When he counts his little wealth, he finds he has in his
hands coins which bear the image and superscription of ancient and
modern intellectual dynasties; and that, in virtue of this possession,
acquisitions are in his power, solid knowledge within his reach, which
none could ever have attained to if it were not that the gold of
truth, once dug out of the mine, circulates more and more widely among
mankind.”[12]

[Sidenote: Dr. Hinsdale.]

“The word ‘vernacular,’” says Hinsdale, “is derived from _vernaculus_,
which comes from _verna_, a slave born in his master’s house; and it
means the speech to which one is born and in which he is reared,—the
_patrius sermo_ of the Roman, the _Mutter-sprache_ of the German,
the mother tongue of the Englishman. Command of a noble vernacular
involves the most valuable discipline and culture that a man is capable
of receiving. It conditions all other discipline and culture.... The
greatest mental inheritance to which a German, a Frenchman, or an
Englishman is born is his native tongue, rich in the knowledge and
wisdom, the ideas and thoughts, the wit and fancy, the sentiment and
feeling, of a thousand years. Nay, of more than a thousand years; for
these languages, in their modern forms, were enriched by still earlier
centuries. To come back to the old thought, such a speech as one of these
only flows out from such a life as it expresses, and is in turn essential
to the existence of that life.”[13]

[Sidenote: English.]

Parents who wish their children to possess the best instruments of
thought cannot be too careful in the selection of teachers for them.
Children whose mother tongue is a dialect should be trained in one or
more of the languages that have been enriched by centuries of development
and literary culture. The best that the people of Pennsylvania-German
extraction can do for future generations is to make the transition
as speedily as possible from their vernacular—so poverty-stricken in
its vocabulary—to the English, with its abundant vocabulary and its
unsurpassed literary treasures. In the English they will find the
instruments of thought fitted to develop native powers that have been
inherited from an ancestry of sturdy husbandmen, and strengthened through
heredity by centuries of contact with the soil, even as the giant Antæus,
in wrestling with Hercules, is fabled to have gained new strength as
often as he came in contact with mother earth. The same advice will
apply to the other nationalities who have come to live on American soil,
even though they have brought with them a more developed vernacular.
The English dictionary contains one hundred and twenty thousand
words; but besides these words in common use, the dictionaries of the
specialists contain several hundred thousand more, which may be called
technical terms, and which serve as instruments of thought in scientific
discussions and investigations. To these we next turn our attention.



VI

TECHNICAL TERMS AS INSTRUMENTS OF THOUGHT

    It is the power of thinking by means of symbols which
    demarcates men from animals, and gives one man or nation the
    superiority over others.

                                                             LEWES.

    Hardly any original thoughts on mental or social subjects ever
    make their way among mankind or assume their proper importance
    in the minds even of their inventors until aptly selected words
    or phrases have, as it were, nailed them down and held them
    fast.

                                                        J. S. MILL.

    Though most readers, probably, entertain, at first, a
    persuasion that a writer ought to content himself with the use
    of common words in their common sense, and feel a repugnance to
    technical terms and arbitrary rules of phraseology, as pedantic
    and troublesome, it is soon found by the student of any branch
    of science that, without technical terms and fixed rules, there
    can be no certain or progressive knowledge. The loose and
    infantine grasp of common language cannot hold objects steadily
    enough for scientific examination, or lift them from one stage
    of generalization to another. They must be secured by the rigid
    mechanism of a scientific phraseology. This necessity has been
    felt in all the sciences, from the earliest periods of their
    progress.

                                                           WHEWELL.

    Ideas and existences are represented by terms and phrases;
    and as terms and phrases are representative of thoughts and
    things, and are the means which enable us to speak about them,
    the definitions, descriptions, and explanations of terms form
    a very necessary part of science; and he who would understand
    science must learn the meaning of the special terms employed in
    it.

                                                              GORE.


VI

TECHNICAL TERMS AS INSTRUMENTS OF THOUGHT

[Sidenote: Technical terms.]

[Sidenote: Their value.]

Some teachers are very much afraid of technical terms. They teach
their pupils to say name-word instead of noun, action-word instead
of verb, and bring over instead of transpose. There is no end to the
phrases they invent for the sake of avoiding technical terms. Acting
on the maxim that a pupil shall never be allowed to use a word without
comprehending its meaning, they prefer to use compound words and phrases
to denote the fundamental ideas of the various branches of study. This
fear of technical terms is a natural result of the reaction against
rote teaching. So much has been said and written against the teaching
of mere words, especially big words, against parrot-like recitations
of definitions, rules, principles, and forms of statement given in the
text-book or wrought out by the teacher, that many people fail to see the
value of technical terms as instruments of thought. A separate chapter
is necessary to point out their function in scientific thinking and
instruction. In common parlance the use of technical terms should be
avoided. Do we say that Nebuchadnezzar had a long noun or a long name?
Noun is a technical term; name is the word in ordinary use. Do we say
that a man broke his femur or his leg? The doctors who set the limb will
probably use the technical term in their conferences. In talking with
the common people they use the common names, unless they wish to awe
the multitudes by a show of learning. Often, indeed, men use big words
to hide their ignorance. In physiology the investigations are carried
as far as possible, and then a term is coined to cover the unknown.
Often high-sounding words are strung together to cover a lack of ideas
or to establish a reputation for erudition. These are tricks to which a
genuine teacher has no occasion to resort. It is his duty to ascertain
the educational value of the technical terms of science, and to use these
terms for the purpose of fixing scientific ideas in the mind and of
causing the pupil to think clearly and exactly.

[Sidenote: Basal concepts.]

At the basis of every science, as we have seen, there are certain ideas
which cannot be conveyed to other minds by the use of the corresponding
technical terms. These basal concepts must be built up in the learner’s
mind by skilful teaching, sometimes by the very process by which the
race acquired or discovered them. It may require a trip to the field, to
the museum, or to the mine; or an experiment in the laboratory may be
necessary. Perhaps a development lesson is needed to enable the pupil to
grasp the idea clearly and fully. It is very certain that if the idea is
hazy and ill-defined, the subsequent thinking will be loose, obscure,
and unsatisfactory. The glib use of technical terms may often hide from
the teacher the defects of the pupil’s thinking, and it may require
an examination to reveal the points wherein the teacher has failed.
Questions which require a pupil to look at his knowledge from a new point
of view are helpful; an examination abounding in such questions may be
an intellectual blessing to both teacher and pupil. The examiner should,
of course, avoid puzzling catch-questions, for these are calculated to
embarrass the pupil and confuse his thinking.

[Sidenote: Popular lectures.]

A clear thinker can always make his ideas intelligible to those who
have acquired the basal concepts of the things, principles, and laws
with which he deals. Lecturers on popular science avoid the abstruse
questions of advanced science and the technical terms which do not convey
a definite meaning to the average hearer. They select topics which can be
discussed in the language of common life, and often state the results of
scientific research without leading the audience through the successive
steps by which these results are obtained. The popular lecture requires
special gifts that are not in the possession of every scientist. Huxley
was one of the most gifted men of the century; yet he says of himself,—

[Sidenote: Huxley.]

“I have not been one of those fortunate persons who are able to regard
a popular lecture as a mere _hors d’œuvre_ unworthy of being ranked
among the serious efforts of a philosopher, and who keep their fame as
scientific hierophants unsullied by attempts—at least of the successful
sort—to be understanded by the people. On the contrary, I have found that
the task of putting the truths learned in the field, the laboratory,
and the museum into language which, without bating a jot of scientific
accuracy, shall be generally intelligible, taxed such scientific and
literary faculty as I possessed to the uttermost; indeed, my experience
has furnished me with no better corrective of the tendency to scholastic
pedantry, which besets all those who are absorbed in pursuits remote from
the common ways of men, and become habituated to think and speak in the
technical dialect of their own little world, as if there were no other.”

[Sidenote: Exact thinking.]

There is an error, on the other hand, into which practical men fall when
they object to the technical language of the scientist. There are many
things in science which cannot be made plain to the non-scientific
mind. The difficulty lies not in the terminology employed, but in the
lack of the basal concepts necessary for the advanced thinking which
must be employed. Says Robert Galloway, “Words when employed in science,
unlike their employment in common use, have a meaning steadily fixed and
precisely determined; this precision in the meaning of scientific terms
necessarily requires on the part of those who can make proper use of them
_accurate habits of thought_; this is an indispensable qualification for
attainment in any science; there is no dispensing with it, consequently
one who does not know the language of a science, and who has not been
taught to think accurately with respect to it, cannot understand properly
what may be told or shown him about the facts or principles of that
science.”

[Sidenote: De Quincey.]

From this point of view it is easy to see the use which the teacher
should make of technical terms. Circumlocutions and explanatory phrases
may be helpful in developing fundamental ideas, but the corresponding
technical terms should be associated with the ideas as soon as these
assume clear, definite shape. Language is the atmosphere in which
thinking lives; technical language is as necessary to the scientific
thought as the air we breathe is to the physical life. In one of his
letters to a young man whose education had been neglected, De Quincey
renders an important service to the science of teaching. “In assigning
to the complex notion X the name transcendental, Kant was not simply
transferring a word which had previously been used by the school-men to
a more useful office; he was bringing into the service of the intellect
a new birth; that is, drawing into a synthesis, which had not existed
before as a synthesis, parts or elements which exist and come forward
hourly in every man’s mind. I urge this upon your attention, because you
will often hear such challenges thrown out as this (or others involving
the same error): ‘Now, if there be any sense in this Mr. Kant’s writings,
let us have it in good old mother English.’ That is, in other words,
transfer into the unscientific language of life scientific notions which
it is not fitted to express. The challenger proceeds upon the common
error of supposing all ideas fully developed to exist _in esse_ in all
understandings, ergo, his own; and all that are in his own he thinks we
can express in English. Thus the challenger, in his own notions, has
you in a dilemma, at any rate; for, if you do not translate it, then it
confirms his belief that the whole is jargon; if you do (as, doubtless,
with the help of much periphrasis, that will be intelligible to a man
who already understands the philosophy), then where was the use of the
terminology? But the way to deal with this fellow is as follows: My good
sir, I shall do what you ask; but before I do it I beg you will oblige
me by (1) translating this mathematics into the language of chemistry;
(2) translating this chemistry into the language of mathematics; (3)
both into the language of cookery, and, finally, solve me the Cambridge
problem, Given the captain’s name, the year of our Lord, to determine the
longitude of the ship? This is the way to deal with such fellows.”

[Sidenote: Images.]

[Sidenote: Higher forms of thinking.]

Technical terms are very helpful in dealing with that which cannot be
imaged or visualized. When Francis Galton began his inquiries into the
power possessed by different minds to conceive the breakfast table, to
recall vividly the various dishes and the way in which they are placed
upon the table, many men of scientific habits of thought declared that
there is no such human faculty. On the other hand, the educational
reformer whose early training did not make him familiar with the
thought-processes of higher mathematics may honestly declare that he
cannot conceive an abstract number, and, as a matter of course, he can
have no adequate conception of the value of the higher forms of thinking
in symbols. Dr. W. T. Harris has well said that the mind can think ideas
which cannot be pictorially conceived or made to stand before the mind
in thought-images. In thinking this class of ideas, technical terms are
indispensable as instruments of thought.

[Sidenote: Symbols classified.]

[Sidenote: Suggestive symbols.]

The value of technical terms as instruments of thought is seen in a still
clearer light if we try to classify the various uses of the signs and
symbols which are employed as aids in thinking. Many of these have no
office beyond that of _suggesting_ the things or ideas for which they
stand. To this class belong the marks which suggest to the tramp a cross
dog or a good meal. As soon as he has seen them, they could be erased;
the train of thought which they started in his mind can go on without
them. Of a similar character are the devices by which the merchant marks
the buying and the selling prices of goods, the red and blue lights used
on railways and ocean steamers, the secret signs and signals employed by
the signal corps of an army, and the steps, grips, signs, countersigns,
and passwords employed by secret societies as a means of identification.
Very many of the artificial devices used in systems of mnemonics have no
higher function than that of suggesting what otherwise might be forgotten.

[Sidenote: Symbols as substitutes.]

Very different are the signs and symbols which mathematics employs as
substitutes for the quantities to be considered. In adding a column
in the ledger or in a statistical table the mind thinks the figures
without reference to the concrete objects which they denote. In the
solution of a problem in algebra the unknown quantities are represented
by symbols like _x_ and _y_, the known quantities by the first letters
of the alphabet or by numerical expressions; the relations between
the quantities are indicated by equations; there is no thought of the
quantities themselves while the mind is engaged in manipulating the
symbols according to well-defined rules of operation, and only when the
result is to be interpreted do the quantities reappear in the field of
consciousness. The substitute symbol is a device for temporarily dropping
an idea until it is needed for interpretation; the suggestive symbol is
a means of bringing an idea or thought into the domain of consciousness.
The latter furnishes or recalls material for the mind to act upon; the
former lightens the burden which the mind would otherwise have to carry.
The arithmetical solution of an age question in which the mind constantly
carries the thought of A’s age and his wife’s age as compared with the
algebraic solution of the same question in which A and his wife, as
well as their ages, sink temporarily out of sight, shows the value of
substitute signs and symbols in mathematical thinking, and explains why
algebraic methods are so far superior to the clumsy and involved methods
of arithmetical analysis.

[Sidenote: Expressive symbols.]

Different from either of these is the class of symbols used in expressing
ideas. This class includes not only the words of written and spoken
language, but also the natural signs of gesture language and the
conventional signs of manual language taught to deaf mutes. The language
is full of faded metaphors indicating the office of common words. They
are said to express meaning, to convey thought, to embody ideas, to
enshrine content. They may be likened to window-panes through which one
sees what is back of them. Sometimes the window-panes, like spectacles
when first worn, attract more attention from the person looking than the
objects seen through them,—a parallel to what occurs when the articulate
speech, or its rhetorical adornment, attracts more attention than the
thought expressed. But if that which is seen through the window-pane
is on the order of a Santa Claus loaded with toys and Christmas-gifts,
then no notice is taken of the medium through which the object is seen.
Hence the very best teaching—that which rivets attention upon the thought
conveyed—always fails to teach the spelling of words incidentally.
Furthermore, the instruction which frequently stops to draw attention to
the grammar of the sentences, the spelling of the words or their mode of
utterance, interferes with the formation of logical habits of thinking
and divests the words of their function as expressive signs. When the
word itself becomes an object of thought the mind is not thinking by
means of that word. It has been well said that we may fail to apprehend
the meaning of what a person is saying because the tone of his voice
arrests our attention through its resemblance to that of some one else
in whom we feel an interest; that so far as signs thus attract notice
on their own account, they fail to fulfil their function as a means of
attending to something other than themselves. For this very pertinent
observation credit is due to Mr. G. F. Stout, who (“Mind,” lxii. page 18)
has very clearly drawn the distinction between the three classes of signs
or symbols used as helps in thinking. He says,—

[Sidenote: G. F. Stout.]

“Suggestive signs serve only to bring something to mind; they are not
a means of minding it when once recalled. An expressive sign, on the
contrary, is a means of attending to its signification.... Expressive
signs differ from substitutes in a manner exactly the inverse of that
in which they differ from suggestive signs. A suggestive sign has
fulfilled its purpose and becomes of no further avail so soon as it has
suggested its meaning. A substitute sign is a counter which takes the
place of its meaning; so long as it fulfils its representative function
it renders useless all reference to that which it represents. The
counters are manipulated according to certain rules of operation until a
certain result is reached, which is then interpreted. The operator may
be actually unable to interpret the intermediate steps. Algebraical and
arithmetical symbols are to a great extent used as mere substitute signs.
The same is true of the symbols employed in formal logic. It is possible
to use signs of this kind whenever fixed and definite rules of operation
can be derived from the nature of the things symbolized, so as to be
applied in manipulating the signs without further reference to their
signification. A word is an instrument for thinking about the meaning
which it expresses; a substitute sign is a means of not thinking about
the meaning which it symbolizes.”

[Sidenote: Fixing concepts.]

In addition to these three purposes the technical term may serve still
another important end. It helps to fix the new concept or notion after
it has been developed by skilful instruction. Its association therewith
makes it a suggestive sign whenever occasion requires the recurrence
of the concept or thought for which it stands. The train of thought is
facilitated and made possible by the use of technical terms as expressive
signs. And if the idea denoted by it can be accurately defined, so
that the definition becomes a triumph of intellect, or if it can be
quantified, so as to become a unit of measure like the volts, ohms,
ampères, and watts in applied electricity, the technical term may even
serve a purpose analogous to the substitute signs in sciences like formal
logic and mathematics.

[Sidenote: Proper use of technical terms.]

The foregoing analysis indicates the proper method of teaching technical
terms. First, the basal concept should be carefully developed and
clearly presented; it should then be fixed in the mind by association
with the corresponding technical term; finally, the union should be
made permanent by frequently causing the two to appear together in
the domain of thought, by treating them as welcome guests when they
appear together in the citadel of mind. Divorce of one from the other
should be as impossible as in the case of the two parties to a suitable
marriage. On the _fête_ days of science they should appear together,
each suggesting the presence of the other, the technical term serving
as a helpmeet to the idea, and as its representative when, in the
charmed circle of scientific investigation, the presence of the idea
is not absolutely required. Circumlocutions, like name-word for noun,
quality-word for adjective, and relation-word for preposition, may be
helpful in presenting the idea or in introducing the technical term; they
may be tolerated, like a third party in the making of a match; but when
the match has been made, and the wedding has been solemnized, they should
drop out of sight as of no further use. The figure of speech could easily
be pressed too far; for many objects known to science have a common as
well as a technical designation. Each has its proper place in the realm
of thought,—the common name in ordinary conversation, the technical term
when scientific precision is required.



VII

THOUGHT AND LANGUAGE

    It seems to me quite certain that we can and do think things
    without thinking of any sound or words. Language seems to me
    to be necessary to the progress of thought, but not at all
    necessary to the mere act of thinking. It is a product of
    thought: a vehicle for the communication of it, a channel for
    the conveyance of it, and an embodiment which is essential
    to its growth and continuity. But it seems to be altogether
    erroneous to represent it as an inseparable part of cogitation.
    Donkeys and dogs are without true thought, not because they
    are speechless, but they are speechless because they have
    no abstract ideas, and no true reasoning powers. In parrots
    the power of mere articulation exists sometimes in wonderful
    perfection. But parrots are not so clever as many other birds
    which have no such power.

    Man’s vocal organs are correlated with his brain. Both are
    equally mysterious, because they are co-operative, and yet
    separable, parts of “one plan.”

                                                            ARGYLL.

    That the language may be fitted for its purpose, not only
    should every word perfectly express its meaning, but there
    should be no important meaning without its word. Whatever we
    have occasion to think of often, and for scientific purposes,
    ought to have a name appropriated to it.

                                                        J. S. MILL.


VII

THOUGHT AND LANGUAGE

[Sidenote: Three possible contingencies.]

In the development of intellectual life three contingencies are possible.

1. The growth of the vocabulary may be more rapid than the acquisition of
ideas.

2. The accumulation and development of ideas may exceed the ability to
express them in language.

3. The acquisition of ideas and words, of thought and language, may be
simultaneous.

Without doubt, these possibilities in mental growth exist for wise and
beneficent purposes.

[Sidenote: Words without ideas.]

The tendency to acquire words without the corresponding ideas is, in
at least one direction, a source of gain rather than loss. The pert
phrases, profane words, and other objectionable language which the child
accidentally hears from the lips of older persons, and at times uses to
the unspeakable annoyance of parents and teachers, would be an occasion
for far more serious alarm if the meaning were fully understood. Were it
a law of our mental life that the hearing and learning of a profane or
obscene word necessarily carried with it a clear grasp of the meaning,
the resulting harm to the inner life of the soul would be immeasurably
greater, and the stain upon the character would be vastly more difficult
to remove. The objectionable language may mirror the habits of thought
and speech into which those in charge of the child have fallen, awaken
in them a new sense of their responsibility, and cause them to be more
careful of what they say; or it may prove an index to the kind of company
into which the child is drifting, and thus serve as a danger-signal to
parent and teacher. When the mind has not learned to think the thought
expressed, a simple warning against the use of such ugly words generally
suffices to eradicate them from the child’s vocabulary; and in such
instances it is a blessing in disguise that the learning of the words
was not accompanied by the acquisition of their meaning. The loss to the
intellectual life is more than balanced by the gain in moral training.

[Sidenote: Thinking without words.]

Is thinking possible without language? If by language is meant oral
speech and written words, the sign-language of deaf mutes is sufficient
to compel an affirmative answer to the question. Moreover, there are
modes of thinking and of expressing thought other than by the use of
words. Of the means of expressing thought without words, symbols like the
ten digits and the sigma of the new psychology are well-known examples.
The player in a game of chess, croquet, or billiards thinks movements
in advance of making them, and generally without describing the same in
words. The drawings and plans by means of which the architect designs a
new building, the mental images of mechanical contrivances which precede
the invention and construction of machines, the mental pictures used in
designing, engineering, and sketching, in original geological thought,
prove beyond the shadow of a doubt that thinking may go forward without
words and sentences, and may find expression in ways better adapted to
the needs of the artisan. The graphic method of presenting to the eye
the results of an investigation is less cumbersome than any description
in words. Some men depend so much upon mental pictures in their thinking
that they assert they cannot think at all without them. In some kinds
of gymnastic drill the movement is described in words, then conceived by
the mind, and finally executed. This exercise has a different educational
value from the exercise in which the student simply imitates the
movements of the teacher, the latter being an instance of thinking and
expressing thought without the help of words. The speed with which many
movements must be executed, as in fencing, legerdemain, athletic sports,
the manipulation of the lever in the hands of the engineer, requires
thinking without the intermediate agency of words and sentences. The time
it takes for an idea to pass into words, and through them into actions,
is measurably greater than the time required for the direct translation
of thought into action. Although the difference in specific instances is
measured by the fraction of a second, it would involve serious loss of
time as well as energy in the handicrafts if thoughts could only pass
into action through speech or written language.

[Sidenote: Superfluity of words.]

[Sidenote: Thought and action.]

[Sidenote: Francis Galton.]

Some persons run to mouth; others lack in this respect. To the former
class belong those whose lips move in study; those who talk to
themselves; and many whose paucity of ideas does not justify their
superfluity of words. Let such a man be elected as a delegate to a synod
or a convention, and the sessions will be prolonged beyond the usual
time. As a rule, the energy of such men is exhausted in speech; they
are not noted for getting things done. On the other hand, the men of
great executive ability are oftentimes men of few words; their thought
is translated into doing rather than talking. The man of deeds is always
estimated above the man of words, the general above the orator, Cæsar
the commander above Cæsar the orator. Sometimes the men of original
turn of mind find that their thinking outstrips their power to express
thought. Francis Galton says of himself, “It is a serious drawback to
me in writing that I do not so easily think in words as otherwise.
It often happens that after being hard at work and having arrived at
results that are perfectly clear and satisfactory to myself, when I try
to express them in language I feel that I must begin by putting myself
on quite a different intellectual plane; I have to translate my thoughts
into a language that does not run evenly with them. I therefore waste a
great deal of time in seeking for appropriate words and phrases, and am
conscious, when required to speak on a sudden, of being often obscure
through mere verbal maladroitness, and not through want of clearness
of perception. This is one of the small annoyances of my life. I may
add that often while engaged in thinking out something I hatch an
accompaniment of nonsense-words, just as notes of a song might accompany
the thought. Also, that after I have made a mental step, the appropriate
word frequently follows as an echo; as a rule, it does not accompany it.”

[Sidenote: Knowing and telling.]

This throws a new light upon one phase of school work. The boy who has
a notion of the content of a lesson sometimes stops in the midst of a
recitation and, without premeditation, exclaims, “I know it, but cannot
say it.” The teacher retorts, “You do not know what you cannot express.”
Both are right and both are wrong. There is, probably, a measure of
truth in what each claims. If the pupil had mastered the text, he
would not only have a clear idea of the lesson, but he would also have
acquired from the book or from the teacher the words to express the idea.
Nevertheless, if there is reason for thinking that the pupil has devoted
reasonable time to the lesson, his linguistic powers should be developed
by questions and other appropriate help. The good sense and native
instincts of most teachers lead them to give this help. The teacher whose
captious disposition issues in remarks calculated to repress a backward
pupil’s powers of expression should find employment outside of the
school-room.

[Sidenote: Foreign-born children.]

The child of foreigners may outstrip native children and astonish the
school by unprecedented progress because, being already familiar with
the ideas of the lesson, it is compelled simply to acquire the language
by which the ideas are expressed. By reason of their inability at first
to tell what they know, such children are often classified with those
less mature, and the mastery of the new language in their case is not as
difficult as the mastery of new ideas for which brain-growth may be the
essential condition. To ignore the fact that such children often know
more than they can tell is pedagogic folly in the highest degree.

[Sidenote: Language clarifies thought.]

[Sidenote: Literary societies.]

Courses of study are sometimes mapped out so as to cause inequality in
the pace with which ideas are accumulated and language is developed.
Undue stress on grammar, rhetoric, and belles-lettres may cause abnormal
development in the direction of flowery language, a verbose style, an
ornate diction. It is a fault difficult to correct. To insist that such a
student shall have something to say, to force him into studies that will
bring him face to face with great questions as yet unsettled, to beget
in him a state of mind in which he is troubled with ideas, to compel him
to work over and over what he writes until his sentences are as clear
as crystals, seems necessary to counteract the one-sided development
of such students. The curriculum of study may err on the other side.
The graduates in the various courses of engineering (civil, electrical,
mechanical, and mining) sometimes develop technical, to the neglect of
linguistic, skill. In the presence of a body of capitalists they are
made deeply conscious of the difference between the ability to think and
the ability to express thought.[14] In one large school of technology the
graduates established prizes in English composition and endowed chairs
of the English language and literature, so that future students might
acquire the power to state in clear and intelligible language the results
of their work as specialists. In no long time it was discovered that
for this purpose they also needed training in an art similar to that of
the teacher,—namely, the art of developing the ideas and thoughts which
underlie and condition the engineering project under consideration. For
him who would be a leader among men, the ability to express thought is
quite as important as the ability to think. Moreover, there is a vast
difference between ability to express thought on one’s feet in the
presence of an audience and ability to express it on paper in the privacy
of the home. J. J. Rousseau and Washington Irving could write well, but
neither of them could make a speech. Patrick Henry’s eloquence before an
audience was unsurpassed; he never could write a satisfactory report.
Power in both directions may be acquired in a college course through the
exercises of a good debating society. The student who, during four years,
carefully writes out his thoughts, then discards his manuscript while
speaking, and studies how he can best convince his hearers and how he can
prune himself of the defects pointed out by the merciless criticism of
his fellows, can feel sure of ultimate success. President Barnard says
of one of our largest institutions that half its glory departed when
its literary societies were killed through the influence of the Greek
letter fraternities. A public speaker who is a slave to his manuscript is
deserving of pity. College authorities may well exercise their ingenuity
in finding a substitute for the drill and practice which the literary
societies of by-gone days afforded in learning to think and to express
thought in the face of opposition, criticism, and other unfavorable
conditions.

[Sidenote: Influence of language upon thinking.]

[Sidenote: Teaching English.]

Thought and language exercise a reciprocal influence. Thought is
stimulated and clarified by the effort to express it. Often it is shaped
by the limitations of one’s vocabulary and the range of the words with
which one’s hearers or readers are familiar. The faded metaphors of
language betray us into fallacies. Phrases like the witness of the
spirit, total depravity, have led to extravagant expectations and
unwarranted conclusions. People sometimes have a religious phraseology
without a corresponding religious experience, and hence deceive
themselves and others. Everywhere we see instances that go to show how
important it is that the development of the power to think should keep
pace with the growth of the power to express thought. Very much is said
in these days about the use of good English. As Adam threw the blame
upon Eve, and Eve cast it upon the Serpent, so every one blames some
one else for the poor English used at school and college. In the end
the teachers are usually made to bear most of the blame: the college
professor blames the teachers in the high school; these, in turn, blame
the teachers in the lower grades; and when the matter is cast up to the
primary teacher, she throws the blame upon the street and the home. A
professor in the college department of a university gave many ludicrous
specimens of English in the work handed to him by students. He was asked
of what college class he had charge, and when he replied the sophomore, a
high-school teacher suggested that the specimens reflected quite as much
upon the teachers of the freshman class as upon the schools below the
university.

[Sidenote: The committee.]

A women’s society in one of our large cities sent a committee to the
superintendent to complain of the poor English used by the children in
the schools. He agreed that strenuous efforts should be made to provide
a remedy. He added, “If you will take care of the English in the homes
and on the streets, I will get the teachers to look after the English in
the schools.” Instead of throwing blame upon others, it were far more
sensible for each educated person to ask wherein he is to blame for
setting others a bad example and wherein he can help the teachers of
English to accomplish the desired result.

[Sidenote: Aim.]

The aim in teaching English is twofold,—first, to get the student to
appreciate good English and good literature; secondly, to get him to use
it in speaking and writing. The latter end cannot be reached by mere
practice in essay-writing. Ability to think is a condition of ability
to express thought. Too many of the subjects assigned lay stress upon
the forms of speech and not upon the content of language. When pupils
think in words and disconnected phrases rather than sentences, when
they violate the rules for capitals, punctuation, and paragraphs, the
teachers of English may be solely to blame; but, in so far as the use
of good English depends upon good thinking, the blame for the use of
faulty language rests upon all who teach. If the ability to think is not
developed in proportion to the use of language, the school will produce
stylists who exalt the forms of speech above their content, slaves of
beautiful and flowery language who resemble the fops and dudes of social
life. To emancipate from such slavery requires more than an emancipation
proclamation from the president of a college association.

[Sidenote: Linguistic studies.]

[Sidenote: Language tributary to thinking.]

The labors of the brothers Grim, Max Müller, and others have reduced
the knowledge of language to a science. Linguistic studies have become
as interesting as any branch of natural science. They shed new light
upon the history of mankind. In furnishing material for thought, as well
as mental discipline, they are not inferior to any other study in the
curriculum. It would, however, be a mistake to suppose that philological
studies are superior to other disciplines as means for developing power
to think and power to express thought. The professor of any language
is apt to regard that language as an end, and not as means to an end.
Primarily, language is a medium of communication. It distinguishes man
from the brute creation, and furnishes him the instruments of thought by
which he carries forward processes of reasoning beyond the reach of the
lower animals. At the university language in general, or any particular
language, may be studied as a specialty, and can thus be made an end in
itself as appropriately as any other subject which is studied for its
own sake. In the lower schools language should always be made tributary
to the art of thinking. It should be employed to embody thought, and
to convey thought, without intruding itself upon our attention as the
thing of chief value. Any phase of linguistic study may be lifted by
an enthusiastic teacher into the chief place in the course of study.
Orthography has sometimes been taught as if it were the chief end of man
to spell correctly. Grammar has been taught as if a faulty sentence
were one of the sins forbidden by the Decalogue, and as if the fate
of the republic depended upon parsing, analysis, and diagramming. The
pronunciation of words may be emphasized until the lips of teacher and
pupil smack of an overdose of dictionary, until the overdoing of obscure
vowels draws attention away from the thought to the manner of utterance.
A sensible man articulates his words in such a manner as readily to be
understood, but never in such a way as to excite remark or draw the mind
of the listener from the subject-matter of the discourse.

In educational practice, the manner of expressing the thought should
not supplant the more important art of making the pupil think. Getting
and begetting thought are of more consequence than the expression of
thought; in fact, they condition the correct use of language. All talk
about English, or German, or Spanish, or Latin, or Greek, as if any
one of these languages were an end in itself for the average pupil,
is wide of the mark. Correct sentences, beautiful expressions, and
rhetorical phrases can never make a nation great or perpetuate its free
institutions. Flowery language can never save a dying sinner or console
the widow who is following the bier of a son, her only child and support.
Fine words never win a battle by land or by sea. The most eloquent
orations against Philip of Macedon did not keep him from destroying the
liberties of Greece.

Correct and forceful language is a gift to be coveted, a prize worth
striving for; but it should never be made the all-absorbing aim of
education. The teacher of any phase of language must for a time make his
instruction the object of chief concern; but he should never ignore the
fact that language is and ever should be an aid to thought, a stimulus to
thinking, an embodiment of ideas, a medium of communication, a means to
an end.



VIII

THE STIMULUS TO THINKING

    Good methods of teaching are important, but they cannot supply
    the want of ability in the teacher. The Socratic method is
    good; but a Socrates behind the teacher’s desk to ask questions
    is better.

                                                 THOMAS M. BALLIET.

    Of all forms of friendship in youth, by far the most effective
    as a means of education is that species of enthusiastic
    veneration which young men of loyal and well-conditioned minds
    are apt to contract for men of intellectual eminence in their
    own circles. The educating effect of such an attachment is
    prodigious; and happy the youth who forms one. We all know
    the advice given to young men to “think for themselves;” and
    there is sense and soundness in the advice; but if I were
    to select what I account perhaps the most fortunate thing
    that can befall a young man during the early period of his
    life,—the most fortunate, too, in the end, for his intellectual
    independence,—it would be his being voluntarily subjected for a
    time to some powerful intellectual slavery.

                                                      DAVID MASSON.


VIII

THE STIMULUS TO THINKING

[Sidenote: Thought stimulus.]

Whilst the distinction between thinking in things and thinking in
symbols should never be ignored or lost sight of by the teacher, it need
not be brought to the attention of the learner,—at least not in the
elementary stages of instruction. It is more profitable for the learner
to be absorbed in gathering the materials of thought and in learning
by practice how the educated man uses the instruments of thought for
drawing correct conclusions by the most effective methods. If the eye of
consciousness is turned inward upon the mental processes too early, the
flow of thought is interrupted and turned away from its logical trend.
The teacher, on the other hand, is expected to watch the growth of the
mind, to awaken its powers, and to rouse these into vigorous activity.
It is essential not merely that he furnish the pupils with the proper
materials and the best instruments of thought, but it is necessary also
to stimulate and direct their thinking; otherwise that which is given
them may overload the memory, lie undigested in the mind, exhaust the
energy of the intellect in the effort at retention, and ultimately cause
mental dyspepsia.

[Sidenote: Competition.]

[Sidenote: Socratic question.]

Men engaged in the struggle for existence or preferment usually find
ample stimulus to their thinking faculties in the competition which real
life affords. If the merchant does not think accurately and effectively,
the consequences make themselves visible in his bank-account. The desire
for gain is the stimulus to thought in the commercial world. An appeal
to the same motive is often made through the offer of prizes and
fellowships. The competition of maturer years finds an adumbration in
the competition for class-standing and for superiority in field sports.
The teacher who employs no higher stimulus to thought must be a stranger
to the mysteries of the art which he professes to practise. The best
device for stimulating thought has come down to us hallowed by the ages.
It bears the name of the greatest teacher of ancient Athens. It is the
question as employed in the Socratic method. Not every question is the
Socratic question. A man who has lost his way may ask a question, but it
is for the sake of getting information. The teacher may be striving to
fix in the memory the salient points of the lesson: he asks questions,
the answers to which the pupils are expected to have at their tongue’s
or fingers’ end. A question thus used for purposes of drill is often
called a categorical question. It is not the Socratic question. Yonder
sits a boy who for half an hour has been wrestling with a problem. Unable
to find a clue to the solution, he asks the teacher for help. Instead
of telling him directly what he wishes to know, the Socrates behind the
teacher’s desk asks a question which causes the pupil to put side by side
in his mind two ideas never before linked together in his thought. Upon
the learner’s face is seen an expression as if light had broken in from
on high. He goes back to his seat, and ere five minutes have elapsed
he is rejoicing in the glory of a triumph. The teacher did not do the
pupil’s thinking; he simply asked the Socratic question, which aims to
make the pupil think for himself.

[Sidenote: Substitute teachers.]

This stimulus to thought is employed by every master in the art of
teaching. The question may be used to badger and confuse a pupil,
especially if the teacher is not fully acquainted with the ideas and
thoughts already in the learner’s mind. To cause each pupil to place
side by side in his mind ideas and concepts whose relation he had not
before perceived, it is necessary that the teacher be familiar with the
intellectual storehouse of every member of the class. At this point the
substitutes who occasionally supply the places of regular teachers are
at a serious disadvantage. Not knowing what the pupils have mastered,
they must often waste time in finding out where the new should be linked
to the old, and where it is necessary to clarify and develop ideas with
which the members of the class are only partially familiar. Often these
lose interest in the recitation while the new teacher quizzes them on
things that have grown stale by repetition.

[Sidenote: The living teacher.]

[Sidenote: The dead line.]

[Sidenote: Knowledge and teaching power.]

[Sidenote: The course of study.]

[Sidenote: Difficulties.]

Back of the Socratic method must be a Socrates to ask the questions.
Education results not from highly differentiated methods, but primarily
from the play of mind upon mind, heart upon heart, will upon will. In
the difficult art of making others think the most important factor is
the teacher himself. Thinking begets thinking. In this connection one
cannot forbear contrasting the living teacher with other educational
forces. Treatises on education are in the habit of printing nature with
a capital letter, whilst words like teacher, humanity, unless they
stand at the beginning of the sentence, begin with a small letter. Are
lifeless rocks, dead leaves, stuffed birds, and transfixed bugs more
potent in begetting thought than the teacher himself? If nature were
such a wonderful teacher, then the savage, who is in daily contact with
nature, and who knows little or nothing of the artificial life of our
great cities and great seats of learning, should be the best thinker. A
teacher whose power to stimulate thought is not superior to dead leaves
and bugs and butterflies must have reached the dead line. Teachers may be
divided into two classes,—those who have ceased to grow and those who
are still alive and growing. Under the tuition of the former the boy soon
loses interest in study, and seldom acquires the power to think. From
a dead tree you cannot propagate life. Ingraft a lifeless teacher upon
the school; the most skilful devices of school management and recitation
serve only to intensify the dull routine, the mechanical iteration and
repetition which Bishop Spalding declares to be the most radical defect
in our systems of education. It takes life to beget life. A growing mind
is required to beget growth in other minds. A good thinker begets habits
of close and careful thinking in those whom he moulds. Some minds are
more gifted in this respect than others. Without doubt the reader can
recall the difference between knowledge and teaching power which he felt
while under several instructors at the same time. From those gifted with
stimulating power he came away with a mind full of interrogation points,
and with the attention riveted upon problems calling for investigation.
Under their tuition the commonest things acquired new interest and
became food for thought. The thinking seemed to spring out of that upon
which the mind was feeding. Without the stimulating influence which
comes from a live teacher, contact with nature, access to libraries and
laboratories, may amount to very little. The chief trouble in our schools
is not that the courses of study are too crowded, but the teachers are
too empty. There is not enough fuel in their minds to keep alive the
glow of thought. A course of study in the hands of a skilful instructor
is like a good bill of fare under the direction of a skilful caterer.
The latter does not expect every guest to eat his way through the entire
bill of fare; he so manages the succession of dishes as to stimulate
the appetite to the end of the feast; he sends the guests away without
the feeling of satiety,—in fact, anxious for the next banquet. The wise
teacher does not expect the pupils to assimilate everything in the course
of study; he aims so to feed and stimulate their minds that they find
genuine pleasure in thinking, and go away from him with a desire not
only for more knowledge, but also for things that give suitable exercise
to the reflective powers. Watch a boy at work upon a puzzle, and you
will be convinced that he finds genuine delight in thinking that which
is difficult. The most popular teachers are not they who smooth away
every difficulty in the pathway of the student, but they who stimulate
his thinking and help him to a sense of mastery over intellectual
difficulties. The quickening, stimulative influence of the Socratic
question lies in its content rather than its form; and both form and
content derive their vivifying power from the personality of the teacher.

[Sidenote: Conscious and unconscious influences.]

The stimulating influences which go forth from a live teacher are
partly conscious and partly unconscious. The latter are the more
effective. Minds gifted with quickening power create about themselves
an intellectual atmosphere that is like the invigorating atmosphere of
the mountains or the tonic breezes which blow from the sea. The woman
who touched the hem of the Saviour’s garment felt at once the vivifying
influences which were all the time going forth from the Great Teacher.
Here we stand face to face with the greatest mystery of the teacher’s art.

[Sidenote: The heart.]

Some light is shed upon the mystery by the intimate relation which exists
between the conscious and the subconscious life of the soul. The ideas
upon any subject which the individual cherishes during his conscious
moments, the train of logical thinking which he pursues when the will
gives direction to reflection, the creative effort which he seeks to
put forth in a given direction,—these shape the activities which go
forward in the depths of the soul when perhaps the attention is directed
to the discharge of routine duties. “Out of the heart are the issues of
life.” “Out of the fulness of the heart the mouth speaketh.” From the
treasure-house of the heart come welling up thoughts, ideas, sentiments,
and purposes which largely determine the influence exerted upon others
when the individual is not aware of it. The teacher must make himself
what he wishes his pupil to be. If foot-ball and base-ball and boating
form the staple of his thinking, the centre of his affections, these
athletic sports, in ways that are marvellous and often past finding out,
become the objects of thought in which his students will delight. If
the truths and principles of science absorb his interest and engage the
best thought of his conscious hours, these will determine the moulding
influence which he will unconsciously exert upon others. If he delights
in germ-ideas, in seed-thoughts, these will emanate from him whenever he
is thrown into contact with inquiring minds. Much, of course, is due to
native ability, to inherited qualities. The circle of minds which one
teacher can reach is further limited by the breadth or narrowness of his
views, by the points which he has in common with others, by the amount of
sympathetic interest which he manifests in their progress and welfare,
by the sum total of the characteristics of generic humanity which he has
taken up into himself. In other words, his stimulating power depends upon
the extent to which his inner life is representative of the best thought
and the best traits of the age in which he lives and of the people to
whom he belongs.

[Sidenote: Exhaustive treatment.]

[Sidenote: Hope.]

A teacher may destroy his power to awaken and stimulate thought by
developing every subject in all its bearings to its logical or final
conclusion. He should send his classes away from the daily lecture or
recitation to the library or the laboratory, to the study, the shop, or
the field, with the sense of something to be achieved, with the feeling
that there are fields of research for them to explore, fields that will
amply repay careful study, investigation, and reflection. There is
nothing that tires a boy so soon as the feeling that there is nothing for
him to do, nothing that he can master, achieve, or conquer on his own
account. The normal child is so constituted that it loves activity, looks
into the future, and regards itself as an important factor in the world’s
life. The advance from childhood to youth is marked by a transition into
the period that is brimful of hope and ambition. The pampered son of a
rich man may feel no longing of this sort; his opportunities for early
travel and premature indulgence in every whim may have brought him to
the point where the whole world seems like a sucked orange for which
one has no further use. Unless the rich father and mother possess an
extraordinary amount of good sense, their children do not have an even
chance with the children of the middle classes whose outlook upon life
supplies abundant motives for study and exertion.

[Sidenote: The field of vision.]

If a boy has not made a mistake in selecting his parents, if the
atmosphere of the home in which his first six years are spent is normal,
he comes to school with a sense of something to be achieved. Should
this feeling be lacking, the true teacher will aim to beget it by the
instruction he gives and by appeals to the innate desire for knowledge.
As the intelligence dawns, the interrogation points on the boy’s face
multiply; his appetite for knowledge grows by what it feeds on. If the
branches of study do not become more interesting than any occupation by
which the boy can earn coppers, there is something wrong either with the
boy or his teacher, or with both. In the ascent of the hill of science
every step upward widens the horizon, increases the field of vision, and
stimulates to new effort. Every field explored beckons to new fields of
investigation. It is the prerogative of the teacher to point out what is
in store for the aspiring youth. Take, for instance, the domain of pure
mathematics. A pupil had learned in his geometry that parallel lines
never meet. The teacher told him that his geometrical studies would after
a while acquaint him with lines that are not parallel and yet never
meet. No sooner had he met lines of this kind, situated in different
planes, than his teacher told him of lines that continually approach but
never meet. The appeal to his curiosity helped to stimulate the desire
for knowledge and kept him thinking earnestly and seriously until he
met the asymptote and its curve. The study of asymptotes soon grew more
interesting than chess or any sports upon the athletic field.

[Sidenote: Master minds.]

The aim of the teacher should be to make himself useless. In other words,
the school should aim to lift the pupil to the plane of an independent
thinker, capable of giving conscious direction to his intellectual
life and of concentrating all his powers upon anything that is to be
mastered. It is to be reckoned a piece of good fortune for a bright
and talented youth to fall under the dominating influence of a master
mind. In endeavoring to walk in the footsteps of an intellectual giant,
to comprehend his theories and speculations, and to carry the burden
of his thoughts, unexpected strength and power are developed, and when
the day of emancipation comes—as it always does come in the case of
gifted youth—the learner will find that he has entered a higher sphere
of intellectual activity, and will henceforth rank among the world’s
productive thinkers.

[Sidenote: False stimulants.]

[Sidenote: Mental lethargy.]

As was said at the beginning of the chapter, the competition of men
in mature life is usually sufficient to stimulate their thinking. The
men whose duties make a constant drain upon their productivity need
other forms of thought-stimulation. Reference is not here made to the
narcotics, alcoholic stimulants, and other drugs which brain-workers use
in periods of reaction and fatigue: these stimulate only for a short
time, and leave the nervous system and the brain weaker than before; they
shorten life by burning the candle at both ends; they cannot supply the
need of sleep, rest, and recreation. To take rational exercise, to eat
proper food, and to obey all the laws of health is the sacred duty of
every person who teaches by word of mouth or pen. Every effort should be
made to keep vitality at its maximum. Often the mind resembles the soil
which yields a richer harvest if permitted to lie fallow for a time. If
at the close of a period of rest or a summer vacation the mind refuses
to work, what shall then be done to stimulate mental activity? Different
men derive stimulus from different sources. One finds help from taking a
pen in hand, another by facing a sea of upturned faces. A clergyman of
considerable repute uses an Indian story to start his mental machinery.
Henry Ward Beecher declared that the greatest kindness which could be
shown him was to oppose his public utterances. Opposition roused all his
powers and helped him to think vigorously and to the best advantage.
Schiller is said to have kept rotten apples in his desk, because he
believed that the odor stimulated his mind. Some men find help in
solitude, from the singing of birds, from the sound of rustling leaves
and falling waters, from the noise of ocean waves, or from the glimpse of
distant waters or far-off mountains. An eminent theologian is stimulated
by the playing of a piano in the next room. The stimulus from books is
reserved for discussion in a separate chapter on the Right Use of Books.

[Sidenote: Hinderances.]

As there are helps, so there are hinderances to good thinking. Petty
cares, executive duties, noises in the same room, or in the next room,
or upon the street, are well-known examples. Their name is legion, and
their cost is enormous if they come from manufacturing establishments
near the school. A word about the extra-mural music which emanates from
vile machinery on the streets is not out of place in this connection. An
English writer asserts that the organ-grinders of London have done more
in the last twenty years to detract from the quality and quantity of the
higher mental work of the nation than any two or three colleges at Oxford
have effected to increase it. A mathematician estimates the cost of the
increased mental labor these street-musicians have imposed upon him and
his clerks at several thousand pounds’ worth of first-class work, for
which the government actually paid in added length of the time needed for
his calculations.

[Sidenote: Our fellow-men.]

In matters of this kind every man must be a law unto himself. Since no
two human beings are exactly alike, but each is a new creation fresh from
the hands of the Creator, it follows that each person must study his
own peculiarities, form his own habits of work, and acquire the power
to think in the midst of the circumstances in which he is placed. By
resolute effort the mind can ignore many a hinderance and distraction.
The best stimulus from without comes from our fellow-men. “Our minds need
the stimulus of other minds, as our lungs need oxygen to perform their
functions.” At school the stimulus comes from classmates, from those in
the higher and lower classes, but above all else, from the best books
and the best teachers. In the life beyond the school the stimulus comes
from the daily contact and competition with others, from conversation and
discussions with those who think, from communion with the best books,
with nature, and with nature’s God.

[Sidenote: Sources of stimulus.]

After the powers of the mind have been awakened and disciplined,
stimulus and inspiration may come from ten thousand sources. Silence
and solitude, city and country, business and pleasure, observation and
travel, observatories and laboratories, libraries and museums, nature and
art, poetry and prose, fiction and history, may each in turn serve as a
spur to creative, inventive, and productive thinking, as an incentive
to original research, fruitful investigation, and profitable reasoning.
Among all the sources of stimulation, the good teacher and the good book
take superlative rank.



IX

THE RIGHT USE OF BOOKS

    Even the very greatest of authors are indebted to miscellaneous
    reading, often in several different languages, for the
    suggestion of their most original works, and for the light
    which has kindled many a shining thought of their own.

                                                          HAMERTON.

    He reads a book most wisely who thinks everything into a book
    that it is capable of holding, and it is the stamp and token of
    a great book so to incorporate itself with our own being, so
    to quicken our insight and stimulate our thought, as to make
    us feel as if we helped to create it while we read. Whatever
    we can find in a book that aids us in the conduct of life, or
    to a truer interpretation of it, or to a franker reconcilement
    with it, we may with a good conscience believe is not there by
    accident, but that the author meant we should find it there.

                                                            LOWELL.

    Much as a man gains from actual conflict with living minds,
    he may gain much even of the same kind of knowledge, though
    different in detail, from the accumulated thinking of the
    past. No living generation can outweigh all the past. If
    books without experience in real life cannot develop a man
    all round, neither can life without books do it. There is a
    certain dignity of culture which lives only in the atmosphere
    of libraries. There is a breadth and a genuineness of
    self-knowledge which one gets from the silent friendship of
    great authors without which the best work that is in a man
    cannot come out of him in large professional successes.

                                                            PHELPS.

    The great secret of reading consists in this,—that it does
    not matter so much what we read or how we read it as what we
    think and how we think it. Reading is only the fuel; and, the
    mind once on fire, any and all material will feed the flame,
    provided only it have any combustible matter in it. And we
    cannot tell from what quarter the next material will come. The
    thought we need, the facts we are in search of, may make their
    appearance in the corner of the newspaper, or in some forgotten
    volume long ago consigned to dust and oblivion. Hawthorne in
    the parlor of a country inn on a rainy day could find mental
    nutriment in an old directory. That accomplished philologist,
    the late Lord Strangford, could find ample amusement for an
    hour’s delay at a railway station in tracing out the etymology
    of the names in Bradshaw. The mind that is not awake and alive
    will find a library a barren wilderness.

                                             CHARLES F. RICHARDSON.


IX

THE RIGHT USE OF BOOKS

[Sidenote: A novel.]

A clergyman who found the reaction from his pulpit efforts so great that
often he could not bring himself to think vigorously and consecutively
before the middle of the following week was advised by his physician to
try the effect of an Indian tale or an exciting story, and found that
a good novel works like a charm in bringing the mind back to normal
action. After the interest in the story or novel begins to grow there is
danger of reading too long, of reading until another spell of fatigue and
reaction comes. The book should be laid aside as soon as the first glow
of mental action is felt.

[Sidenote: Books.]

Most thinkers need the stimulating influence of other minds. These can
be found at their best upon the shelves of a well-selected library. They
are ready to help us whenever we feel ready to give them our attention.
Men put the best part of themselves into their books. The process of
writing for print intensifies mental activity, spurs the intellect to the
keenest, most vigorous effort, and arouses the highest energy of thought
and feeling. Authors that exert a quickening influence upon our thinking
should be kept for use whenever we need a stimulus to rouse the mind from
its lethargy.

Leibnitz got his best ideas while reading books. He had acquired the
habits of a librarian to whom favorite volumes are always accessible.

[Sidenote: As stimulus.]

A scientist of repute says he gets the necessary stimulus from Jevons’s
treatise on the inductive sciences. Professor Phelps has collected an
instructive list of authors whose writings have been helpful to other
authors of note. He says,—

[Sidenote: Examples.]

“Voltaire used to read Massillon as a stimulus to production. Bossuet
read Homer for the same purpose. Gray read Spenser’s ‘Faerie Queene’ as
the preliminary to the use of his pen. The favorites of Milton were Homer
and Euripides. Fénelon resorted to the ancient classics promiscuously.
Pope read Dryden as his habitual aid to composing. Corneille read Tacitus
and Livy. Clarendon did the same. Sir William Jones, on his passage to
India, planned five different volumes, and assigned to each the author he
resolved to read as a guide and awakener to his own mind for its work.
Buffon made the same use of the works of Sir Isaac Newton. With great
variety of tastes successful authors have generally agreed in availing
themselves of this natural and facile method of educating their minds to
the work of original creation.”[15]

[Sidenote: Great thinkers.]

The most valuable function of standard authors lies in their quickening
influence upon the intellectual life. The effort to appropriate their
ideas and to master their thoughts is the best possible exercise for the
understanding. In thinking their thoughts, weighing their arguments, and
following their train of reasoning the mind gains vigor, strength, and
the capacity for sustained effort. The invigorating atmosphere which
a great thinker creates has a most remarkable tonic effect upon all
who dwell in it. By unconscious absorption they acquire his spirit of
inquiry, his methods of research, his habits of investigation, his way
of attacking and mastering difficulties. While trying to walk in his
footsteps they learn to take giant strides. His idioms, his choice of
words, his favorite phrases and expressions are at their service when
they enter new fields of truth. Both in power and aspiration they become
like him through the mysterious process of mind acting upon mind, of
heart evoking heart, and of will transfusing itself into will. A great
thinker gets his place in the galaxy of shining intellects through the
truths which he communicates; and as truth is the best food for the soul,
so the quest of truth is the best exercise for all its faculties.

[Sidenote: The literature of knowledge and the literature of power.]

De Quincey, in his essay on Alexander Pope, draws an important and
oft-quoted distinction between the literature of knowledge and the
literature of power. He says the function of the one is to teach, of
the other to move. The former he likens to a rudder, the latter to
an oar or a sail. To illustrate the difference he asks, “What do you
learn from ‘Paradise Lost’? Nothing at all. What do you learn from a
cookery-book? Something new, something that you did not know before, in
every paragraph. But would you, therefore, put the wretched cookery-book
on a higher level of estimation than the divine poem? What you owe to
Milton is not any knowledge, of which a million separate items are still
but a million of advancing steps on the same earthly level; what you owe
is _power_,—that is, exercise and expansion to your own latent capacity
of sympathy with the infinite, where every pulse and each separate influx
is a step upward, a step ascending, as upon Jacob’s ladder, from earth to
mysterious altitudes above the earth. All the steps of knowledge, from
first to last, carry you farther on the same plane, but could never raise
you one foot above your ancient level of earth; whereas, the very first
step in power is a flight, is an ascending into another element where
earth is forgotten.”

[Sidenote: Lowell.]

The value of the literature of power as a means of imparting power to
every soul that lives under its influence is easily seen and generally
acknowledged. But the literature of knowledge serves the double purpose
of furnishing us material for thought and of acting as a stimulus to
thought. On this point we have the testimony of the wisest who have
ventured to give advice upon the use of books. Lowell says, “It is
certainly true that the material of thought reacts upon the thought
itself. Shakespeare himself would have been commonplace had he been
padlocked in a thinly shaven vocabulary, and Phidias, had he worked in
wax, only a more inspired Mrs. Jarley.”

The advice which Lowell gives concerning a course of reading and the ends
of scholarship to be kept in mind by those who read with a purpose is too
valuable to be omitted in this connection:

[Sidenote: His advice.]

“One is sometimes asked by young people to recommend a course of reading.
My advice would be that they should confine themselves to the supreme
books in whatever literature, or, still better, to choose some one great
author and make themselves thoroughly familiar with him. For, as all
roads lead to Rome, so do they likewise lead away from it, and you will
find that in order to understand perfectly and to weigh exactly any vital
piece of literature you will be gradually and pleasantly persuaded to
excursions and explorations of which you little dreamed when you began,
and will find yourselves scholars before you are aware. For, remember,
there is nothing less profitable than scholarship for the mere sake of
scholarship, nor anything more wearisome in the attainment. But the
moment you have a definite aim, attention is quickened, the mother of
memory, and all that you acquire groups and arranges itself in an order
that is lucid, because everywhere and always it is in intelligent
relation to a central object of constant and growing interest. This
method also forces upon us the necessity of thinking, which is, after
all, the highest result of all education. For what we want is not
learning, but knowledge; that is, the power to make learning answer its
true end as a quickener of intelligence and a widener of our intellectual
sympathies. I do not mean to say that every one is fitted by nature or
inclination for a definite course of study, or, indeed, for serious study
in any sense. I am quite willing that these should ‘browse in a library,’
as Dr. Johnson called it, to their heart’s content. It is perhaps the
only way in which time may be profitably wasted. But desultory reading
will not make a ‘full man,’ as Bacon understood it, of one who has
not Johnson’s memory, his power of assimilation, and, above all, his
comprehensive view of the relations of things. ‘Read not,’ says Lord
Bacon, in his ‘Essay of Studies,’ ‘to contradict and confute; not to
believe and take for granted; nor to find talk and discourse; but to
weigh and consider. Some books are to be tasted, others to be swallowed,
and some few to be chewed and digested; that is, some books are to be
read only in parts; others to be read, but not curiously (carefully), and
some few to be read wholly and with diligence and attention. _Some books,
also, may be read by deputy._’

“This is weighty and well said, and I would call your attention
especially to the wise words with which the passage closes. The best
books are not always those which lend themselves to discussions and
comment, but those (like Montaigne’s ‘Essays’) which discuss and comment
ourselves.”[16]

Professor Phelps, in his lectures to divinity students, gives golden
advice to the class of professional men whose life-work compels them
to draw upon their productive intellect more than any other class of
professional men.

[Sidenote: Phelps.]

“There is an influence exerted by books upon the mind which resembles
that of diet upon the body. A studious mind becomes, by a law of its
being, like the object which it studies with enthusiasm. If your favorite
authors are superficial, gaudy, short-lived, you become yourself such
in your culture and your influence. If your favorite authors are of the
grand, profound, enduring order, you become yourself such to the extent
of your innate capacity for such growth. Their thoughts become yours not
by transfer, but by transfusion. Their methods of combining thoughts
become yours; so that on different subjects from theirs you will compose
as they would have done if they had handled those subjects. Their choice
of words, their idioms, their constructions, their illustrative materials
become yours; so that their style and yours will belong to the same class
in expression, and yet your style will never be merely imitative of
theirs.

“It is the prerogative of great authors thus to throw back a charm over
subsequent generations which is often more plastic than the influence of
a parent over a child. Do we not feel the fascination of it from certain
favorite characters in history? Are there not already certain solar minds
in the firmament of your scholarly life whose rays you feel shooting down
into the depths of your being, and quickening there a vitality which you
feel in every original product of your own mind? Such minds are teaching
you the true ends of an intellectual life. They are unsealing the
springs of intellectual activity. They are attracting your intellectual
aspirations. They are like voices calling to you from the sky.

“Respecting this process of assimilation, it deserves to be remarked
that it is essential to any broad range of originality. Never, if it
is genuine, does it create copyists or mannerists. Imitation is the
work of undeveloped mind. Childish mind imitates. Mind unawakened to
the consciousness of its own powers copies. Stagnant mind falls into
mannerism. On the contrary, a mind enkindled into aspiration by high
ideals is never content with imitated excellence. Any mind thus awakened
must, above all things else, be itself. It must act itself out, think its
own thoughts, speak its own vernacular, grow to its own completeness.
You can no more become servile under such a discipline than you can
unconsciously copy another man’s gait in your walk or mask your own
countenance with his.”[17]

“Give to yourself a hearty, affectionate acquaintance with a group of
the ablest minds in Christian literature, and if there is anything in
you kindred to such minds, they will bring it up to the surface of your
own consciousness. You will have a cheering sense of discovery. Quarries
of thought original to you will be opened. Suddenly, it may be in some
choice hour of research, veins will glisten with a lustre richer than
that of silver. You will feel a new strength for your life’s work,
because you will be sensible of new resources.”[18]

[Sidenote: Two ways of reading.]

There are two ways of reading books,—one a help to thinking, the other
destructive of ability to think. If the reader allows the ideas of a
book to pass through his mind as a landscape passes before the eye of
a traveller, ever seeking the excitement of something new and never
stopping to reflect upon the contents of the book so as to weigh its
arguments, to notice its beauties, and to appropriate its truths, the
book will leave him less able to think than before. Passive reading is
permissible when the aim is merely recreation, but he who would read
to gain mental strength must read actively, read books that he can
understand only as the result of effort. President Porter gives this
advice:

[Sidenote: President Porter.]

“The person, particularly the student, who has never wrestled manfully
and perseveringly with a difficult book will be good for little in this
world of wrestling and strife. But when you are convinced that a book is
above your attainments, capacity, or age, it is of little use for you,
and it is wiser to let it alone. It is both vexing and unprofitable to
stand upon one’s toes and strain one’s self for hours in efforts to reach
the fruit which you are not tall enough to gather. It is better to leave
it till it can be reached more easily. When the grapes are both ripe
and within easy reach for you, it is safe to conclude that they are not
sour.”[19]

[Sidenote: Reading as a source of material.]

There are many phases of the library problem which do not call for
consideration in this connection, but in addition to their value as
a stimulus to thinking, the function of books in furnishing proper
material for thought and suitable instruments of thought deserves special
consideration on the part of those charged with the duty of teaching
others to think. There was a time when libraries were managed as if it
were the mission of the librarian to keep the books from being used.
The modern librarian seeks to make the accumulated wisdom of the past
accessible to all. He regards the library as a storehouse of knowledge,
from which any one able to read can get what he needs. Cyclopædias and
dictionaries of reference, card catalogues, and helps like Poole’s
“Index to Periodical Literature” make the best thought of the best minds
in these and other days accessible to the student. He who wishes to gain
a hearing on any theme must know what others have said upon it. Disraeli
has well said that those who do not read largely will not themselves
deserve to be read. The prize debates between different colleges are
teaching students how to utilize books in getting material for public
discussions. Theses for graduation develop the ability to use books in
the right way. And yet, valuable as books are for furnishing fuel to the
mind, they may be used to destroy what little ability to think a pupil
has otherwise developed. To assign topics for composition which require
a culling of facts from books, and to allow the essays to be written
outside of school hours, expose the pupil to unnecessary temptations. In
the public schools there should be set apart each week several periods of
suitable length, during which the pupil, under the eye of the teacher,
writes out his thoughts. In such exercises the attention should not be
riveted upon capitals, spelling, punctuation, grammatical construction,
and rhetorical devices; the mind should be occupied solely and intensely
with the expression of the thought. Mistakes should be corrected when the
pupil reviews and rewrites his composition. Books can be used to furnish
material for thought; the elaboration can be helped by oral discussions;
the interest thereby aroused will make each member of the class anxious
to express his thoughts; hesitation in composing and distraction from
dread of mistakes can be overcome by making the class write against time.

[Sidenote: Enriching one’s vocabulary.]

Books are helpful in enriching one’s vocabulary. Treatises on rhetoric
teach what words should be avoided. The student finds more difficulty in
getting enough words to express his thoughts. The study of a good series
of readers is more valuable as a means of acquiring a good vocabulary
than all the rules on purity, propriety, and so forth, which are found in
the text-books on rhetoric. A good series of school readers employs from
five to six thousand words. With these the average teacher is familiar
to the extent of knowing their meaning when he sees them in sentences.
He does not have a sufficient command of a third of them to use them in
writing or speaking. The selections of a Fifth Reader contain more words
than are found in the vocabulary of any living author. The step from
knowing a word when used by another to the ability to use that word in
expressing our own thoughts has not been taken in the case of the larger
proportion of the words with which we are familiar on the printed page.
Most persons use more words in writing than in oral speech, more words in
public speaking than in ordinary conversation. We unconsciously absorb
many words which we hear others use, but we pick up a far larger number
from those we see in print simply because the printed page contains a
larger variety of words than spoken language. In this respect there is a
vast difference between the oral discourse and the written manuscript of
the same person. The style is different; the sentences in oral discourse
are less involved; the diction is less complicated; the vocabulary is
less copious. Hence the advantage of the boy who has access to standard
authors over the youth who has access to few books, and these not well
selected. Without any effort, the former gains possession of a vocabulary
which makes thinking easier and richer.

[Sidenote: School readers.]

The lack of a library of standard authors can be supplied, to some
extent, by a judicious use of the school readers. If the mastery of the
words and the getting of the thought precede the oral reading of the
lesson, and if the vocal utterance is followed by oral and written
reproduction of the thought, correct habits of study will be formed, and
the working vocabulary of teacher and pupil will be vastly increased.
The habit of eying every stranger on the printed page will be fixed, and
the appropriation of new words will rise above the subconscious stage.
Only one other exercise is comparable,—namely, the comparison of words
in a lexicon for the purpose of selecting the right one in making a
translation from some ancient or modern language. Such translations, if
honestly made, enrich the vocabulary and furnish exercise in the study of
the finer shades of meaning which words have, as well as in the use of
the words for the purpose of expressing thought.

[Sidenote: Franklin’s plan.]

[Sidenote: Correcting papers.]

Most persons, when they face an audience or feel at all embarrassed,
think in phrases, in broken sentences. Hence exercises designed to
cultivate the habit of thinking in sentences are very valuable.
Franklin’s plan of rewriting the thought of a book like “The Spectator,”
and then comparing his own sentences with those of a master-mind, can be
followed with great advantage, because it lifts the burden of correction
from the teacher’s shoulders and throws it upon the pupil, giving the
latter the full benefit of the exercise. Moreover, it cultivates in the
pupil the habit of watching how thought is expressed by standard authors.
The teacher’s interest in the thought side of language often makes him
forget that the correct use of capitals, punctuation marks, sentences,
and paragraphs is a matter of thinking quite as much as invention and the
arrangement of materials. These externals of the process of composing
must at some time be made the object of chief regard. The reason so
many pupils do not learn their use is found in the fact that teachers
hate the drudgery of correcting papers, and they expect the pupils to
acquire this knowledge incidentally. The right use of books obviates the
necessity for much of this drudgery, and secures the desired end with a
minimum expenditure of time and effort. Skill in the use of capitals and
punctuation marks is best acquired when the attention is not absorbed
by the elaboration of ideas or by the labor of composing. The externals
involved in putting sentences upon paper can claim the chief attention in
the dictation of standard selections from a school reader. This exercise
enables the pupil to make his own corrections, and is worth a dozen in
which the teacher makes the corrections, only to be cast aside after a
momentary glance by the pupil. The exercise may be varied by copying a
selection from a standard author upon the black-board, covering it with
a screen or shade (on rollers) during the dictation, and exposing it to
view only while the corrections are made. If each one of the punctuation
marks is made an object of special attention in a particular grade, there
are enough grades to cover them all before the pupil reaches the high
school.

[Sidenote: Dictation.]

A superintendent revolutionized the language-work of an entire county by
dictating to the applicants at the annual examination for provisional
certificates a selection from a First Reader for the purpose of testing
their knowledge of capitals and punctuation and the other details of
written speech. Every one saw the value of the test, and it led to a
study of the school reader from a new point of view.

[Sidenote: Books for all.]

[Sidenote: Right use of books.]

It is not easy to overestimate the value of books, not merely for those
who aspire to become thinkers, but even for all classes of men in
civilized life. Books treasure the wisdom of the ages and transmit it to
future generations. They kindle thought, enliven the emotions, and lift
the soul into the domain of the true, the beautiful, and the good. They
furnish recreation and instruction, comfort and consolation, stimulation
and inspiration. They confirm or correct the opinions already formed, and
give tone to the entire intellectual life. They enlarge the vocabulary,
exemplify the best methods of embodying thought in language, and show
how master-minds throw their materials into connected discourse, how
they organize facts, truths, inferences, and theories into systems of
science or speculation. One can subscribe to all that is said in favor
of object-teaching and laboratory methods, and still be consistent in
maintaining that it should be one of the chief aims of the school to
teach the right use of books, that the college and university fail in
their mission if they neglect to put the student into the way of using
a library to the best advantage. If the policy of many schools were
adopted in other fields of human activity, the folly would be too glaring
to escape notice. Suppose, by months of effort, a botanist could create
in his son a liking for the plants of the nightshade family, some of
which, like the potato and the tomato, are good for food and others are
poisonous. Having created the appetite, the father makes no effort to
gratify it. The son, failing to distinguish between the good and the bad,
the esculent and the poisonous, and finding the latter within easy reach,
begins to gratify his appetite by eating without discrimination. The
deadly effects are more easily imagined than described.

[Sidenote: Good literature.]

A parallel folly has been committed in hundreds of communities which have
taxed themselves to banish illiteracy and to make ignorance impossible
among the young people. Reading is carefully taught; the ability to
read is followed by an appetite for reading; a strong desire for the
mental food derived from the printed page is created. Yet nothing is
done to supply the right kind of books for the purpose of gratifying
this appetite. The average youth is allowed to get what he can from the
book-stalls, which contain much that is as deleterious to the soul as
some plants of the nightshade family are to the body. It is as much a
duty to supply proper literature as it is to impart the ability to read.
When, in the twentieth century, some historian shall give an account
of the educational development of Pennsylvania, he will record it as a
fact passing strange and well-nigh incapable of explanation that for
more than three decades there stood upon the statute-books of a great
commonwealth a law preventing boards of directors from appropriating any
school funds to the purchase of books for a school library except such
works of a strictly professional character as were necessary for the
improvement of the teachers. Within the last decade a new era has dawned
in library legislation and in the purchase of books. Directors are now
empowered to levy a tax for library purposes, and free libraries are
springing into existence not only in the large centres of population, but
even in the rural schools. The movement has come not a whit too soon;
for habits of reading are sadly needed to supplement life in the factory
and on the farm. To make from day to day nothing except the head of a
pin, or the sixtieth part of a shoe, may develop marvellous skill and
speed in workmanship, but such division of labor leaves little room for
intellectual activity or for anything above the merest mechanical routine.

[Sidenote: The factory.]

It should not occasion surprise that operatives in factories seek the
mental excitement which human nature always craves after hours of
monotony. Far better that they should find recreation in a good book than
in a game of cards, in a free library than in a drinking-saloon. That the
workman may taste the joys of the higher life of thought, it is essential
that he have access to the best literature in prose and poetry, to books
of travel, biography, history, science, and sociology. If he lack these,
his mind will lose itself in local gossip, in discontent over his lot,
in envy of those who have more to eat and drink, better clothes to wear,
and better houses to live in. Of the pleasures of the higher life he can
have as many as, if not more than, others have; for at the close of the
day his mind is not exhausted by professional thinking, and he can enjoy
a good book far more than the men whose daily occupation obliges them to
seek recreation in physical exercise.

[Sidenote: The farm.]

[Sidenote: Twentieth century.]

The same remarks apply to life on the farm. The incessant drudgery
of monotonous toil day after day from early dawn till late at night
has sent farmers and their wives to untimely graves, sometimes to the
insane asylum. They need the intellectual stimulus which comes from
good books, the health-giving recreation which comes with the change
from the fatiguing toil of the day to the perusal of good literature in
the evening. Under the more rational policy of providing a supply of
good books along with the creation of a taste for reading, the working
people of the next generation will be as well read, as well informed,
and as capable of sustained thought as those who think money all day, or
spend their strength in vocations which act upon the mind very much as a
grindstone acts upon a knife,—narrowing the blade while sharpening the
edge. Let it be hoped that early in the twentieth century the laboring
classes will have shorter hours of work, more leisure for reading, and an
appreciation of good books equal to that of Charles Lamb, who asserted
that there was more reason for saying grace before a new book than
before a dinner. Under the beneficent influence of free text-books and
free libraries it should be possible to create in the rising generation
a spirit like that of Macaulay, who declared that if any one should
offer to make him the greatest king that ever lived, with palaces and
gardens, and fine dinners and wines, and coaches and beautiful clothes,
and hundreds of servants, on condition that he should not read books, he
would decline the offer, preferring to be a poor man in a garret with
plenty of books rather than a king who did not love reading.



X

OBSERVATION AND THINKING

    The degree of vision that dwells in a man is the correct
    measure of a man.

                                                    THOMAS CARLYLE.

    When general observations are drawn from so many particulars
    as to become certain and indubitable, these are the jewels of
    knowledge.

                                                      DR. I. WATTS.

    To behold is not necessarily to observe, and the power of
    comparing and combining is only to be obtained by education. It
    is much to be regretted that habits of exact observation are
    not cultivated in our schools; to this deficiency may be traced
    much of the fallacious reasoning, the false philosophy which
    prevails.

                                                          HUMBOLDT.

    You should not only have attention to everything, but quickness
    of attention, so as to observe at once all the people in the
    room, their motions, their looks, and their words, yet without
    staring at them or seeming to be an observer. This quick and
    unobserved observation is of infinite advantage in life, and is
    to be acquired with care; and, on the contrary, what is called
    absence, which is a thoughtlessness and want of attention about
    what is doing, makes a man so like either a fool or a madman,
    that, for my part, I see no real difference. A fool never has
    thought, a madman has lost it, and an absent man is for the
    time without it.

                                                 LORD CHESTERFIELD.


X

OBSERVATION AND THINKING

[Sidenote: Inventors.]

Very few thinkers have let us into the secret of their thinking. Probably
most of them could not if they would. They are too much absorbed in that
which engrosses their attention to pay any heed to the processes of the
inner life. Occasionally an inventor or discoverer gives us a glimpse
of the state of his mind when the new idea flashed into consciousness.
Such glimpse always reveals his indebtedness to habits of careful
observation. His thinking was stimulated by some felt want or puzzling
phenomenon, and perhaps by contact with others engaged in similar lines
of study. Oftentimes a number of persons are thinking of ways, means, and
contrivances by which a widely felt want may be supplied or a perplexing
fact explained. After prolonged effort and meditation, during which
the mind is concentrated upon one thing to the neglect of everything
else having no bearing upon the problem in hand, the happy thought is
suggested by the observation of some neglected fact or the perception
of some unsuspected relation. Probably half the inventions are made in
that way. What seems accidental or a piece of good luck is in reality the
result of long musing and reflection, during which many comparisons are
made, until at length the right combination gives the desired result.
Wants keenly felt by mankind in general or by some gifted individual in
particular serve as a powerful stimulus to thought, and quicken the eye
and the ear to perceive what was before unnoticed, thereby laying the
foundation for invention, discovery, or progress in new fields of thought.

[Sidenote: Writers.]

Great writers are equally indebted to their powers of observation. Of the
men of genius whom the world delights to honor, probably no one watched
his inner development more closely than Goethe. He gives us the following
account of how his works were produced:

[Sidenote: Goethe.]

“To each one of my writings a thousand persons, a thousand things have
contributed. The learned and the ignorant, the wise and the foolish,
childhood and age have all a share therein. They all, without suspecting
it, have brought me the gifts of their faculties, their thought and
experience. Often they have sown, and I have reaped. My works are a
combination of elements which have been taken from all nature and which
bear the name—Goethe.”

[Sidenote: Human nature.]

Human nature furnishes as much room for observation as all the rest
of nature. The hopes and fears, the joys and sorrows, the trials and
struggles, the thoughts and beliefs, the aspirations and achievements,
the motives and deeds of the men and women whom we meet in our daily life
and on the pages of history and fiction (such as is true to life) offer
a field for observation as vast, as interesting, and as important as all
the rocks and soils, the bugs and beetles, the insects, birds, beasts,
and fishes that dwell beneath or above or on the surface of the earth.
The larger proportion of the books taken from free libraries are works of
fiction,—a fact which shows that the interest of most of those who read
is centred upon the things of the human heart and in the observation of
human life.

Goethe’s views of originality are these:

[Sidenote: Originality.]

“We are always talking about originality, but what do we mean? As soon
as we are born the world begins to work upon us, and this goes on to the
end. After all, what can we call our own except our energy, strength, and
will? If I could give an account of all that I owe to great predecessors
and contemporaries, there would be little left of my own.”

[Sidenote: Observation.]

Observation lies at the basis of the thinking which leads to invention in
the arts, to discovery in the domain of science, to productivity in the
fields of literature, journalism, and oratory. It lies at the foundation
of success in the professions and in the ordinary walks of life. The
medical school, for instance, seeks to develop the power of noting facts
and making careful observations. It encourages the student to put his
observations on paper while the patient is before him, to compare the
diseased or injured part with the corresponding healthy part, and to
watch symptoms as a basis for a correct diagnosis of the case to be
treated.

[Sidenote: Books.]

[Sidenote: Daily life.]

The use of the encyclopædia, if pursued without any attempt to verify its
statements, may destroy the habits of observation which are so essential
to correct thinking. Mere reliance on books cannot beget trustworthy
habits of thought, for books contain the errors, as well as the wisdom,
of the ages. Errors of judgment may be corrected by thinking; errors of
fact must be corrected by observation. Many a book is made useless by new
observations and discoveries. “Send to the cellar as useless every book
on surgery that is eight years old,” said the professor to the librarian
of a great university. The order is an indication of the rapid advances
which science is making under the influence of observation, experiment,
hypothesis, and verification. Observation is needed not merely to extend
our scientific knowledge, but far more imperatively to acquaint us with
our environment. We cannot learn from books the multitudinous details
of business, or of our daily life. Books cannot make us acquainted
with the circle of friends in which we move, the pupils whom we teach,
the things in dress, toilet, and behavior upon which our standing and
reputation very largely depend. No thinker has a right to neglect these.
Many a famous professor has diminished his usefulness by carelessness in
the observation of such details. The worst failures in the class-room
are due to failure in observing either the difficulties or the conduct
of the pupils. If conduct is to be regulated, it must be observed; if
difficulties are to be explained, the teacher must perceive when and
where they occur.

Men noted for their absent-mindedness nevertheless owe much of their fame
and success to their ability to make accurate observations in favorite
lines of study. Notwithstanding the many ludicrous tales about Newton’s
failure to see ordinary conditions and circumstances, he showed himself
indefatigable in watching the effect of a glass prism upon the ray of
light admitted into a dark room. The falling of an apple started in
his mind a train of thought which led to the discovery of the law of
gravitation.

[Sidenote: Experiment.]

[Sidenote: Daguerre.]

Our best thinking is based upon experience, and our two main sources of
experience are observation and experiment. How does experiment differ
from simple observation? In the latter we watch conditions, phenomena,
and sequences as they follow one another in the ordinary course of
nature. In an experiment we change or control the course of nature by
varying the conditions and causes for the sake of seeing the effects
produced. In experiment the relation of causes and effects is studied by
adding or excluding one factor after another. Take the discovery which
made Daguerre famous. Up to his time men had tried in vain to fix the
impression of the image formed in the camera obscura. No alchemist ever
went to work at a more unpromising task than the one Daguerre set before
himself. “As years rolled on, the passion only took deeper hold upon him.
In spite of utter failures and discouragement of all kinds, for years in
loneliness and secrecy, suspected of mental weakness even by his wife,
he kept on in the same line of experiment.” Finally an accident gave him
a clue to discovery. The plates with which he experimented were stowed
away in a rubbish closet. One day he found, to his surprise, upon one
of these plates the very image which had fallen upon it in the camera.
Something in the closet must have produced the effect. He removed one
thing after another, getting the same effect, until nothing remained
except some mercury which had been spilled upon the closet floor. This
was inferred to be the agent which developed the image, and thus was laid
the foundation of the modern art of photography.[20]

[Sidenote: Accidental observations.]

The observation of a fact often stimulates thought in new directions. In
fact, new sciences have arisen from accidental observations. “Erasmus
Bartholinus thus first discovered double refraction in Iceland spar;
Galvini noticed the twitching of a frog’s leg; Oken was struck by the
form of a vertebra; Malus accidentally examined light reflected from
a distant window with a double refracting substance; and Sir John
Herschel’s attention was drawn to the peculiar appearance of a solution
of quinine sulphate. In earlier times there must have been some one who
first noticed the strange behavior of a loadstone, or the unaccountable
motions produced by amber. As a general rule we shall not know in what
direction to look for a great body of phenomena widely different from
those familiar to us. Chance, then, must give us the starting-point; but
one accidental observation well used may lead us to make thousands of
observations in an intentional and organized manner, and thus a science
may be gradually worked from the smallest opening.”[21]

[Sidenote: Factories.]

In recent years experimental research has become a regular occupation in
connection with large manufacturing establishments. In some factories
along the Rhine upward of sixty men are employed in chemical experiments
for the purpose of finding what use can be made of waste products. In
this way over two hundred useful products from petroleum have been
discovered, and a large increase in profits has been the result. The
great electrical works spend time and money upon experiments, and
jealously censor every article written by their employees for scientific
journals lest their valuable secrets should be given away. A company
engaged in the manufacture of cash registers offers a yearly premium for
the most helpful suggestion from the men and women in its employ. In one
year the firm received over eleven hundred suggestions, of which at least
eight hundred were utilized in improvements of various kinds.

[Sidenote: Universities.]

[Sidenote: Where observation is needed.]

[Sidenote: The weather.]

These instances are only samples of many that could be cited to show
how systematic observation and experiment lend a helping hand to our
national prosperity. Manufacturers carry them on for the sake of gain,
the universities for the sake of widening the field of knowledge. To aid
in such research large endowments have been established, and many of
the common people willingly pay tax in support of State universities.
Treatises on inductive logic and on the physical sciences have been
prepared by Herschel, J. S. Mill, Jevons, and others for the purpose
of showing the correct methods of research by the use of instruments
of precision, of standards of measurement, and of other apparatus; for
the laws of thought must be obeyed in the interpretation of natural
phenomena. Although as a matter of discipline the teacher in our public
schools may well study these advanced treatises, yet the habits of
observation which the elementary school should aim to beget and to foster
are simpler in detail, more easily acquired, and, it may be added,
of inestimable value in the subsequent life of the pupils. Habits of
observation are needed not only by authors, inventors, and scientists,
but also by all other people for the interpretation of the books they may
read and for the discharge of the daily duties devolving upon them. The
engineer, the fireman, the conductor, the tradesman, the mechanic, the
detective, the scout, the warrior, must be able to see things as they are
or face partial failure. Too many of them have eyes and see not; they
have ears and hear not. The study of nature is valuable as a preparation
for life either in the country or in the city. Our rural population
have not learned to see and appreciate the marvels in nature which are
transpiring on every side. The way in which the almanac is consulted
for signs to guide in sowing and planting, for prognostications of the
weather, show how little the average man can make observations. The
printers have found it necessary to retain these absolutely unreliable
weather predictions in their almanacs; the attempted omission has been
an experiment involving the loss of thousands of dollars. The success of
the quack is largely due to limited observation. One cure is made much of
while multitudes of failures are always forgotten.

[Sidenote: Country and city.]

Our rural population would be far more contented if the boys and girls
were taught at school how to observe and appreciate their surroundings.
They have many advantages over city folks which they never realize as
sources of enjoyment. The senses themselves, which have been styled
the gate-ways of knowledge, may be improved by judicious exercise; and
the power of the mind to interpret sense-impressions may be developed
to a marvellous degree. The savages of our North American forests had
developed keen eyes and ears; the more civilized backwoodsmen were soon
more than a match for the wily Indian. To-day, when the latter watches
the trained sharp-shooters hitting with unerring accuracy a mark more
than half a mile distant, he shakes his head and walks away in silence.

[Sidenote: The child.]

It has been asserted that a child gains more knowledge in the first
seven years of its life than in all its subsequent days. If the domain
of abstract and scientific knowledge be excluded from the comparison,
this is probably true. At any rate, if the thinking which is based upon
the knowledge of facts thus gained is to be correct, the facts must be
correctly observed.

[Sidenote: Observation a source of thought-material.]

Observation is thus of prime importance, not merely as furnishing a
stimulus to thought, but also as supplying abundant materials of thought.
Travel, experience, experiment, as well as the ordinary course of natural
phenomena, furnish abundant opportunity for the formation of correct
habits of observation. The observations thus made should be recorded in
the memory, if not on manuscript. From the storehouse of the memory, thus
filled with materials for thought, the mind derives many of the best
data for reaching conclusions. Observation, experience, and reading, as
sources of thought-material, presuppose an accurate and retentive memory
in those who think well and act well. The relation of memory to thinking
deserves treatment in a separate chapter.

[Sidenote: Nature-study.]

There is a limit to the number of observations which the mind can carry
and use. Nature-study may be overdone. Mere seeing is not thinking. What
the eye beholds must be sorted and assigned to its appropriate class;
otherwise the treasure-house of memory will soon resemble a wilderness
of meaningless facts. Than this only one thing can be worse,—namely, a
wilderness of meaningless words.

[Sidenote: Reading and observation.]

[Sidenote: Teaching a child to read.]

[Sidenote: First test.]

[Sidenote: Second test.]

Reading is a species of observation. An exercise in oral reading, during
which each pupil is called down as soon as he miscalls a word, is often
an astonishing revelation, showing how few of the advanced pupils can
accurately see and correctly name every word in a stanza or paragraph.
Methods of teaching a beginner to read are correct in seeking to
develop the ability to pronounce words without help from others. Faulty
application of a method that is right in this respect may seriously
retard, and even destroy, the power of thinking what is on the printed
page. What on earth is a first-year pupil to do with the many hundred
words which he is sometimes taught to pronounce? Often words are arranged
in sentences which come dangerously near the slang of the slums, and
which no child ever hears in a cultured home. Furthermore, some sentences
in primers and first readers are well-nigh void of meaning, the aim being
to teach the words for the sake of the combinations of letters which
they contain. The first test to apply to a method of teaching a beginner
to read is the question, How quickly does it teach that which must be
known as a condition of pronouncing new words,—namely, the shape and the
sound or sounds of each of the letters of the alphabet? As compared with
the sound and the shape, the name of the letter is of relatively little
importance. Students of Hebrew may read that language fluently without
being able to repeat the Hebrew alphabet, the names of the letters being
a mere matter of convenience in talking about them. The second great
test to be applied to the method of teaching a beginner to read is the
question, Does it form the habit of getting thought from the printed
page? Grown men have admitted that they passed through several readers
before they discovered that there was a meaning or connected story in the
words which they were pronouncing. They saw and gave names to words very
much as people see and give names to objects round about them without
recognizing the significance of what is seen, or thinking the thoughts
which the Author of the Universe has spread out before them in the great
book of nature.

[Sidenote: Third test.]

The third test to be applied to the method of teaching reading is
the question, Does it save the pupil from the unnatural tones of the
school-room by training him to use his voice in the right way? To this
test reference will be made later.

[Sidenote: Observation should lead to thinking.]

If observation is to have abiding value, it must lead to thinking. This
is as true of the observation of words and sentences on the printed or
written page as it is of the observation of earth and sky and sea, of
the starry heavens above and the moral law within (which filled the soul
of the philosopher Kant with never-ceasing awe). How the things obtained
from books and from the world outside are appropriated in thought and
made our own will appear more fully when we discuss the relation of
memory to thinking.



XI

THE MEMORY AND THINKING

    Overburden not thy memory to make so faithful a servant a
    slave. Remember Atlas was weary. Have as much reason as a
    camel, to rise when thou hast thy full load. Memory, like a
    purse, if it be overfull that it cannot shut, all will drop
    out of it: take heed of a gluttonous curiosity to feed on many
    things, lest the greediness of the appetite of thy memory spoil
    the digestion thereof.

                                                     THOMAS FULLER.

    To impose on a child to get by heart a long scroll of phrases
    without any ideas is a practice fitter for a jackdaw than for
    anything that wears the shape of man.

                                                      DR. I. WATTS.

    The habit of laying up in the memory what has not been digested
    by the understanding is at once the cause and the effect of
    mental weakness.

                                                   SIR W. HAMILTON.

    There is no one department of educational work in which
    the difference between skilled and unskilled teaching is
    so manifest as in the view which is taken of the faculty
    of memory, the mode of training it, and the uses to which
    different teachers seek to put it.

                                                             FITCH.


XI

THE MEMORY AND THINKING

[Sidenote: Memory and judgment.]

Many people freely admit that they have a poor memory. Their
misstatements, breaches of etiquette, and failure to keep engagements
they excuse by claiming a poor memory for dates, names, faces, facts,
and the like. Accuse them of possessing poor judgment, and they are very
much offended. They fail to see the close relation between a good memory
and good judgment, between an accurate memory and sound common sense,
which is but another name for good judgment in matters that all men have
in common. Judgment affirms the agreement or disagreement between two
objects of thought. It involves comparison. How can the comparison be
accurate if the memory is not accurate in the ideas it recalls of the
things to be compared?

[Sidenote: Comparison.]

At one time it was a mooted question whether the mind can think of more
than one thing at a time. As a matter of doubt this question is no longer
discussed. For, since all thinking involves comparison, if two objects
are to be compared, they must be held before the mind at one and the same
time. A good memory is, therefore, a very important aid to reflection.

[Sidenote: Memorizing.]

[Sidenote: Two forms of memory.]

And yet Thucydides and Lord Bolingbroke are said to have complained of a
memory so retentive of details that it seriously interfered with their
processes of thought. It is commonly believed that much memory work
interferes with the growth and development of a pupil’s ability to think.
“Much memorizing deadens the power of thought,” says W. T. Harris, who
is recognized at home and abroad as one of the profoundest thinkers that
America has produced. Innumerable anecdotes are told of great thinkers
to show their forgetfulness in the commonest details of every-day life.
These anecdotes are handed down from one generation of students to the
next; their mirth-provoking character gives them vitality; they grow
more ludicrous the oftener they are told; they do harm because they
lead pupils to undervalue the importance of a good memory to those who
are ambitious to shine as thinkers. Often, after it is too late, the
student finds how he has crippled his whole intellectual life by neglect
and abuse of the memory. A correct conception of the nature of memory
and its function in every department of thought and research is of
immense importance to those who teach, as well as to those who have gone
far enough in their studies to give conscious direction to their own
intellectual life. Most writers on education have treated, directly or
indirectly, of the use and abuse of the memory; every examiner appeals
to it more or less in the questions he puts; and every teacher shows
the nature and extent of his skill in the kind of demands he makes
upon the retentive power of his pupils. Take, for instance, the lesson
in geometry. There are two ways of learning and giving the proof of a
theorem: the language of the text-book may be committed to memory, and
accepted in the class-room; or the pupil may fix in his mind the line
of argument and give in his own language the successive steps of the
demonstration. The former method is a sure sign of bad teaching and of
defective habits of study. Whenever a skilful teacher finds his pupils
giving the exact words of the text-book on geometry, he changes the
lettering of the figure, and sometimes even the figure itself. He is not
satisfied until he feels sure that the pupil is thinking the thoughts
of the geometry and recalling the ideas by the inner nexus which binds
them into a line of argument. He insists on it that the learner shall
cultivate a memory for ideas rather than words.

[Sidenote: Verbal memory.]

Does it follow that the verbal memory is to be neglected and despised?
This is the feeling of the learner who has tasted the joys of thinking;
he hates the drudgery of learning by heart, because he has reached the
age when logical memory begins to assert itself at the expense of the
verbal memory. No less a psychologist than Professor James of Harvard
has recently put in a plea for the verbal memory which, by reason of the
abuses to which it was formerly subjected, has fallen into such disuse
that pupils on reaching the high school are often unable to quote a
single stanza of poetry. In his “Talks on Psychology to Teachers” he
says,—

“The older pedagogic method of learning things by rote, and reciting them
parrot-like in the school-room, rested on the truth that a thing merely
read or heard, and never verbally reproduced, contracts the weakest
possible adhesion to the mind. Verbal recitation or reproduction is thus
a highly important kind of reactive behavior on our impressions; and
it is to be feared, in the reaction against the old parrot recitations
as the beginning and end of instruction, the extreme value of verbal
recitation as an element of complete training may nowadays be too much
forgotten.”[22]

[Sidenote: Association.]

Psychologists have shown that, in remembering and recollecting, the
mind works according to certain laws of association. Of two words or
ideas which have been before the mind at the same time, or in immediate
sequence, the one naturally tends to suggest the other. If the attention
is directed to the words as they follow each other in a line of poetry,
the memory will recall these in the order in which they occur. If the
mind’s eye is fixed on the ideas which the words express, the memory may
carry these by reason of the logical connection which exists between
them. Often the connection between the two things which are to be
remembered is purely arbitrary. Then the link which binds them together
must be forged by some mechanical process like frequent oral repetition,
or by constant gazing at them upon the printed page, or by writing them
out so that the impression made upon the mind through the eye and the ear
is further strengthened through the muscular sense. The latter species of
memory is usually called the mechanical memory, in distinction from the
memory for ideas, which has been aptly styled the logical memory.

[Sidenote: Mechanical memory.]

The verbal memory is but one form of the mechanical memory. There is no
necessary connection between persons and their names, between events
and dates, between things and their symbols; these must be learned by
bringing them together before the mind until by the law of association,
called contiguity in time and place, the link that binds them is forged;
or, to change the figure, until they occupy places side by side on the
tablets of the mechanical memory. It is sometimes supposed that there is
a necessary connection between the two factors and their result in the
multiplication table. But the moment we construct an arithmetical scale
based on the dozen instead of ten, 7 × 8 = 48 instead of 56 (the former
combination of figures signifying four twelves and eight ones), and the
arbitrary character of the combinations in the Arabic notation becomes
apparent at a glance. Sometimes a peculiarity in a rule like that for the
middle and the opposite parts in the right-angled spherical triangle may
assist the memory; but in most cases the formulas which are in constant
use in the higher mathematics must be fixed by the methods of drill
appropriate for the mechanical memory.

[Sidenote: Pestalozzi’s mistake.]

It is a mistake in teaching as well as in practical life to neglect the
mechanical memory. In many directions it takes care of itself through
the conditions and requirements of a person’s daily occupation. The
salesman in a large store, the conductor on a railway, the politician
on the hustings remembers many things in this way, and not because they
are bound together by a logical nexus like that which binds together the
thoughts of a geometrical proof. Many things which the pupil must carry
from the school into practical life must be retained through drill and
repetition. Pestalozzi imagined that if he taught pupils how to construct
the multiplication table it would not be necessary for them to commit it
to memory. The Swiss teachers long ago found out the insufficiency of his
method; found out that, whilst it pays to let a pupil construct the table
for himself, because it increases his interest in the combinations, and
thus lightens the burden of the mechanical memory, the drill must be kept
up until the sight of two factors suggests their product with infallible
accuracy. Valuable time can be saved if the teacher will make a list of
things that must be fixed in the mechanical memory for the purpose of
facilitating the thought-processes in more advanced stages of instruction
and in the discharge of the duties of practical life. The following are
typical examples of what should be lodged in the mechanical memory:

1. A reasonable vocabulary of words in the mother tongue.

2. A working vocabulary of words in the foreign languages which the
circumstances or occupation of a student will compel him to use.

3. The combinations of addition up to one hundred, the multiplication
table, and the tables of weights and measures.

4. Algebraic and other formulas which constantly recur in the higher
mathematics.

5. The fundamental formulas in chemistry, physics, and other sciences.

6. Declensions, conjugations, comparison, and genders of words in such
foreign languages as the pupil expects to read, write, and speak.

7. The most necessary fact-lore of history and geography.

8. Choice selections from the best literature and such definitions as
mark a triumph of intellect in the history of human thought.

This enumeration may indicate the range and kind of knowledge which
should be fixed in the mechanical memory so that the mind may be in
possession of the best instruments of thought evolved by ages of
civilization. Many of the things above named must be learned by an
effort of retention, pure and simple, like that of the boy who is sent
to a store to buy half a dozen sheets of paper, two yards of ribbon,
five dozen eggs, and specified quantities of salt, flour, and other
provisions. He may write these on paper and thus ease the memory burden,
but in solving mathematical problems and in reading, writing, or speaking
a foreign language it is impossible always to carry for use written or
printed tables, vocabularies, and lexicons. To use these in thinking,
one must have them on his tongue and at his fingers’ end. Of course it
makes a difference whether one wishes simply to read a language, like
Latin or Greek, or to use it, like French and German, in conversation and
correspondence. In the former instance it is sufficient to learn the
language symbols through the eye; in the latter they must be acquired
through the ear, the tongue, and the pen.

[Sidenote: Time for learning languages.]

It is a wise provision of nature that the perceptive powers and the
mechanical memory are most active in childhood and youth. The normal
child is hungry for words and facts, and gathers information from every
conceivable quarter. The judgment and the reason develop after the mind
has been stored with the materials upon which these may act. Parents
and teachers who are ignorant of this order of development often force
the reasons for arithmetical processes upon the pupil when these are
difficult and when he could learn the eleven hundred variations of the
Greek verb without difficulty, whilst the study of the classical and
foreign languages is postponed to an age when the acquisition of a
new language becomes a difficult task because the logical memory has
driven the mechanical into the background, and the growth of judgment
and reason makes the pupil crave the intellectual food furnished by
the thought-studies. It is a species of cruelty to force upon children
the consideration of the why’s and the wherefore’s of mathematical
operations, when learning how to go through the motions would be quite
enough of a tax upon their mental strength. Some of the demonstrations
in arithmetic are logically more difficult than many of the proofs in
geometry; hence no pupil should be asked to pass his final examination in
arithmetic before he has mastered the elements of geometry. The proper
sequence of subjects is of immense importance in leading the child
from the lower to the higher forms of intellectual activity. With the
proper study of geometry the logical memory steps to the front, and the
thought-studies should then supplant those which largely appeal to the
mechanical memory.

Nevertheless, it is a distinct loss if the verbal or mechanical memory is
ever allowed to drop into desuetude. On this point the practice, as well
as the testimony, of Dr. W. T. Harris is worthy of the attention of every
person charged with the training of himself or others.

[Sidenote: Harris on the memory.]

“If a person finds himself forgetful of names, it is a health-giving
process to take a certain portion of time in committing to memory
words. If this is done by committing new masterpieces of poetry and
prose, or in committing to memory the words of a new language, there
is profit or gain to the thinking powers, as well as to the memory.
Doubtless the cultivation of verbal memory, building up, as it does,
a certain convolution in the brain, has a tendency to prevent atrophy
in that organ. This contains a hint in the direction of keeping up in
the later part of life the faculties which are usually so active in
youth. The tendency is to neglect childish faculties and allow them to
become torpid. But if this is liable to weaken certain portions of the
brain in such a way as to induce hemorrhage, ending in softening of the
brain, certainly the memory should be cultivated, if only for the health
of the brain, and the memory for mechanical items of detail should be
cultivated on grounds of health as well as on grounds of culture. The
extreme advocates of the rational method of teaching are perhaps wrong in
repudiating entirely all mechanical memory of dates and names or items.
Certainly they are right in opposing the extremes of the old pedagogy,
which obliged the pupils to memorize, page after page, the contents of
a grammar _verbatim et literatim et punctuatim_ (as, for instance, the
graduates of the Boston Latin School tell us was the custom early in
this century). But is there not a middle ground? Is there not a minimum
list of details, of dates and names which must and should be memorized,
both on account of the health of the nervous system and on account of
the intrinsic usefulness of the data themselves? And must not the person
in later life continue to exercise these classes of memory which deal
with details for the sake of physical health? This is a question for the
educational pathologist.”[23]

[Sidenote: Vocabularies.]

A teacher of Hebrew spent one-fourth of his time in drill on Hebrew roots
and their meaning. His students groaned under the drudgery imposed. At
the end of the first six chapters of Genesis, he surprised his class by
the announcement, “Now you know half the words in the Hebrew Bible.”
He had selected words used five hundred times, then words used three
hundred times, and drilled on these in various ways until he had fixed
all the words in most frequent use in the Hebrew text. It was a great
saving of time in the end, and a great step towards reading at sight the
Old Testament in the original. By the modern short-cuts to knowledge
the pupils are hurried from one classic author to another, and hence
they never master the vocabulary to the extent of reading Latin or Greek
at sight. A little less haste at the start, and a little more drill
for the purpose of fixing new words as they come up, thus avoiding the
everlasting turning to the lexicon for more than half the words in a
lesson, would facilitate progress and enable the student to find some
pleasure in the study of foreign languages.

[Sidenote: Teaching languages.]

An old teacher of Latin, who had discovered this secret in the
acquisition of a foreign tongue, agreed to take a small class in Livy
on condition that the students write in a special blank-book and review
every day all the words whose meaning they were required to hunt in the
lexicon. At the end of ten weeks half the class read two pages without
looking up more than two words. Their study of Latin not only gave them
a sense of pleasure, but, in thinking the thoughts of the author through
the medium of the eye-symbols and then putting them into good English,
they acquired excellent thought-material, an extensive vocabulary, and
superior skill in syntactical construction. It proved a most valuable
exercise in thinking and in the expression of thought.

[Sidenote: Logical memory.]

Valuable as the mechanical memory is for the purpose of furnishing the
thought-instruments, it sinks into comparative insignificance alongside
of the logical memory. The latter is the memory for ideas, binding them
by associations based on cause and effect, reason and consequence,
similarity and contrast, the general and the particular. It is the kind
of memory by which the mind carries a knowledge of the laws of science,
the principles of art, the salient points of a discourse, the train of
ideas in a book, the leading thoughts in a system of philosophy. It
converts history and geography from a dry collection of facts, dates,
and names into a living organism whose parts are internally related by a
plastic principle, and combined into a whole that has order and system
in every detail. How much better that a pupil’s knowledge of history
and geography should be thus systematized than that it should resemble
a wilderness of facts! As a means for furnishing thought-material, the
logical memory is far more valuable than the memory which holds words and
things by the accidental ties of sound, sight, and fanciful relations.

[Sidenote: Latham’s classification.]

A classification of the forms of memory into portative, analytical, and
assimilative, given in Latham’s book on the “Action of Examinations,” is
helpful in determining the relation of memory to thinking.

[Sidenote: Portative memory.]

The portative memory simply conveys matter. “Its only aim, like that
of a carrier, is to deliver the parcel as it was received.” It is the
form of memory that enables some people to carry the contents of entire
volumes in their minds, sometimes in the very words, oftener in ideas
only. The rhapsodists in ancient Greece who could repeat entire books of
Homer are examples in point. Some men of superior talent have possessed
this power in an eminent degree. Macaulay, on a voyage across the Irish
Channel, rehearsed from memory an entire book of Virgil’s “Æneid.” It is
the kind of memory that shines at examinations and excites the envy of
persons less gifted with powers of retention. It may easily be degraded
into a slave, doing work which should be performed by higher mental
powers. Hence it has been appropriately styled the Cinderella faculty
of the mind. Like the girl in the story, it may be abused dreadfully by
having all sorts of useless drudgery heaped upon it. To require a child
to learn the five thousand isolated facts formerly scattered through
treatises on geography was an exercise as useless as the picking of the
lentils which were poured into the ashes to give Cinderella something to
do, and, unfortunately, there is no bird from fairyland to assist in the
accomplishment of the task.

Much as we may admire the power of Thomas Fuller, who could repeat five
hundred unrelated words in foreign languages after hearing them twice, it
is an accomplishment not worth acquiring. As an accomplishment it recalls
the king to whom a man exhibited his skill in throwing a pea so that it
would stick on the end of a pin,—a feat acquired after years of patient
practice. The man hoped to get a valuable present for his exhibition of
skill. The king ordered a bag of pease to be given him, saying that it
was all his accomplishment was worth.

There is no end of warnings as to the possible evil effects of a good
memory upon the power to think,—warnings that a teacher may take to heart
with advantage to himself and others.

[Sidenote: Memory and the understanding.]

Dr. Carpenter asserts that when the form of memory by which children
learn a piece of poetry whose meaning they do not comprehend exists in
unusual strength, it seems to impede rather than aid the formation of the
nexus of associations which makes acquired knowledge a part of the mind
itself. In illustration, he cites the suggestive case of Dr. Leyden, “who
was distinguished for his extraordinary gift of learning languages, and
who could repeat long acts of Parliament, or any similar document, after
having once read it. Being congratulated by a friend on his remarkable
gift, he replied that, instead of being an advantage to him, it was often
a source of great inconvenience, because, when he wished to recollect
anything in a document he had read, he could only do it by repeating
the whole from the commencement till he reached the point he wished to
recall.”

Latham has well said, “The ready mechanical memory of a youth, besides
enabling him to mislead unpractised examiners, makes him deceive himself.
Teachers find that a very ready memory is a bad educator; it stunts the
growth of other mental powers by doing their work for them. A youth who
can recollect without trouble will, as it were, mask the difficulty in
his classical author or his mathematics by learning by rote what stands
in his translation or text-book, and march forward without more ado. Thus
a quick memory involves a temptation which may enervate its possessor
by suffering him to evade a difficulty instead of bracing himself to
encounter it in front.”[24]

Maudsley writes in the same strain: “This kind of memory, in which
the person seems to read a photographic copy of former impressions
with his mind’s eye, is not, indeed, commonly associated with high
intellectual power; for what reason I know not, unless it be that the
mind, to which it belongs, is prevented, by the very excellence of its
power of apprehending and recalling separate facts, from rising to
that discernment of their relations which is involved in reasoning and
judgment, and so stays in a function which should be the foundation of
further development, or that, being by some natural defect prevented from
rising to the higher sphere of a comprehension of relations, it applies
all its energies to a comprehension of details. Certainly one runs the
risk, by overloading the memory of a child with details, of arresting the
development of the mental powers of the child; stereotyping details on
the brain, we prevent that further development of it which consists in
rising from concrete conceptions to the conception of relations.”[25]

Here is another warning from the pen of Archbishop Whately:

“Some people have been intellectually damaged by having what is called
a good memory. An unskilful teacher is content to put before children
all they ought to learn, and to take care that they remember it; and so,
though the memory is retentive, the mind is left in a passive state, and
men wonder that he who was so quick at learning and remembering should
not be an able man, which is as reasonable as to wonder that a cistern if
filled should not be a perpetual fountain. Many men are saved by their
deficiency of memory from being spoiled by an education; for those who
have no extraordinary memory are driven to supply its place by thinking.
If they do not remember a mathematical demonstration, they are driven to
devise one. If they do not remember what Aristotle or Bacon said, they
are driven to consider what they are likely to have said or ought to have
said.”[26]

In his letter to a student who lamented his defective memory, P. C.
Hamerton says that, so far from writing, as might be expected, a letter
of condolence on a miserable memory, he felt disposed to write a letter
of congratulation. “It is possible that you may be blessed with a
selecting memory which is not only useful for what it retains, but also
for what it rejects. In the immense mass of facts which come before you
in literature and in life it is well that you should suffer as little
bewilderment as possible. The nature of your memory saves you from this
by unconsciously selecting what has interested you and letting the rest
go by.”[27]

[Sidenote: Analytical memory.]

In the last quotation we get a hint of the form of memory which Latham
styles the analytical. “The analytical memory is exercised when the
mind furnishes a view of its own and thereby holds together a set of
impressions selected out of a mass. Thus a barrister strings together the
material facts of his case, and a lecturer those of his science by their
bearing on what he wants to establish.”

Many thinkers sift everything they read, hear, and see. That which they
do not need is rejected and forgotten. That which has a bearing upon
their investigations is selected, retained, and utilized. As an aid in
thinking a form of retention called the index memory is very helpful.
The lawyer should know where to find such law as he does not carry in
his head. Having found the required statute or judicial interpretation,
he applies it to the case in hand. No sooner is a case finally decided
or settled than he drops its details from his mind and directs his
intellectual strength to the interests of the next client.

In this ability to sift, select, and reject, as the occasion demands,
lies the secret of the success of many a public lecturer, of many a
magazine writer. The men in the pulpit or upon the platform who lack
this gift soon wear out; the public speedily detects when they have
nothing more to give. The preparation of debates, speeches, essays, and
theses trains these forms of memory. After the analytical habit has been
formed, the student unconsciously, yet constantly, gathers, classifies,
and stores materials for thought. The public are frequently surprised by
the array of striking facts, interesting data, apt illustrations, and
pleasing anecdotes with which he enlivens every topic of discussion and
elucidates every subject of investigation.

[Sidenote: Assimilative memory.]

Higher than the analytical is the assimilative form of memory which
“absorbs matter into the system so that the knowledge assimilated
becomes a part of the person’s own self, like that of his name or of a
familiar language.” The assimilation of knowledge has a parallel in the
assimilation of food. The phrase that knowledge is the food of the mind
has almost become classical in treatises on education. The figure of
speech throws light upon the relative functions of memory and thinking
in the acquisition and elaboration of knowledge. Before the food is set
before the child it should be cooked and put into the most palatable
form,—a parallel to the preparation of the lesson by the teacher so that
he may put it before the learner in its most attractive form.

Before the food is swallowed it should be masticated, broken into
parts,—a parallel to the act of analysis by which the chunks of knowledge
are resolved into their elements and each set before the mind in the
simplest form, in the form in which it can be grasped most easily.

[Sidenote: Transformation of knowledge.]

If the food remains in the stomach unchanged, it produces dyspepsia and a
long train of bodily ills. If the knowledge which the mind appropriates
is retained unchanged, it produces mental dyspepsia, and there is
no real assimilation. From this point of view we can easily see why
Montaigne said that to know by heart is not to know at all. Just as the
food which is taken into the body must be transformed into chyme and
chyle and blood before it can be assimilated, so the knowledge which is
taken up by the mind must be transformed if it is to be assimilated.
The best illustration of the transformation of knowledge is that given
by an anecdote of Gough, which has now become classic. In a Pullman
car a crying child was disturbing the slumbers of every passenger. At
last a gruff miner, whose patience was exhausted, stuck his head out
of his berth and exclaimed, “I should like to know where that child’s
mother is?” “In the baggage car in a coffin,” was the reply of the
person in charge of the child. The knowledge imparted by that phrase
was immediately transformed into new thought and sentiment and purpose.
There was not another word of complaint throughout the entire journey;
every passenger was thinking of the unfortunate child in the light of an
orphan. Their hearts were stirred with feelings of sympathy, which, in
the case of the old miner, issued into will and purpose, for he got up,
began to carry the little one, and did his best to make it feel contented
in the new surroundings. If the lessons in civil government and history
of the United States remain in the memory a mere tissue of dates, names,
and events, the teacher has failed, no matter how brilliant the answers
in class or at the examination. If these lessons do not issue in new
thoughts, sentiments, and purposes, if they do not enlarge the mental
vision of the pupils, beget in them the sentiment of patriotism and cause
them to resolve that they will support the government by paying a just
share of its taxes and by insisting on a pure ballot,—in a word, if these
lessons do not make the pupil say that he will live for his country and
even die in its defence,—then the teacher has failed because there has
been no adequate assimilation of knowledge.

Another figure of speech is sometimes used to describe the transformation
of knowledge. “Except a grain of wheat fall into the earth and die, it
abideth by itself alone; but if it die, it beareth much fruit.”[28] If
the knowledge which enters the mind remains unchanged, it abideth by
itself alone. But if it perish in its original form, if it is changed
through the process of growth so as to enter into new relations, it
brings forth a harvest of thought and sentiment and purpose. The last two
should be the concomitants of the crop of new thoughts which spring from
seed-thoughts implanted in the soul.

That the ancients understood the use and abuse of the memory is evident
from their method of teaching law.

[Sidenote: Teaching the law.]

The Roman school-boy learned by heart the Twelve Tables of the Law.
His teachers were not satisfied with a mere knowledge of the words;
they insisted that he should understand the meaning of the law, and
apply it in regulating his own conduct and in passing judgment upon the
conduct of others. Is it any wonder that the Roman people became the
exponents of law and order throughout the civilized world, and that Roman
jurisprudence still exerts a moulding influence upon the legislation of
the Latin races, if not of the entire civilized world?

There is still another nation of antiquity whose youth were instructed
in the law with the most scrupulous care. The Ten Commandments of the
Mosaic Law were committed to memory. In Chapter VI., 6-9, of Deuteronomy,
we read: “And these words, which I command thee this day, shall be in
thine heart: and thou shalt teach them diligently unto thy children,
and shalt talk of them when thou sittest in thine house, and when thou
walkest by the way, and when thou liest down, and when thou risest up.
And thou shalt bind them for a sign upon thine hand, and they shall be
as frontlets between thine eyes.” Verse 18 of Chapter XI. is still more
explicit: “Therefore shall ye lay up these my words in your heart and in
your soul, and bind them for a sign upon your hand, that they may be as
frontlets between your eyes.”

The exact words of the law were to be fixed in the memory, and kept both
before the bodily and mental eye until they passed into the deeds and
conduct of every-day life. In John vii. 49 we find the same thought:
“This people who knoweth not the law are cursed.” This was the universal
conviction of the Jewish people after the Babylonian exile, if not
before. The reading of the Talmud has been likened unto travelling
through endless galleries of lumber, where the air is darkened and the
lungs are well-nigh asphyxiated with the rising dust. On one point,
however, the Jewish Rabbis speak with the authority and earnestness of
those who know whereof they affirm. “To the Law!” is the exhortation
sounded abroad in every key. “Let your house,” says one, “be a house of
assembly for those wise in the law; let yourself be dusted by the dust
of their feet, and drink eagerly their teaching.” “Make the study of the
law thy special business,” says another. “The more teaching of the law,”
says a third, “the more life; the more school, the more wisdom; the more
counsel, the more reasonable action. He who gains a knowledge of the law
gains life in the world to come.”

Maxims like the following show the stress that was laid upon exercises
designed to bring out the full force and import of the law: “When two
sit together and do not converse about the law, they are an assembly of
scorners, of which it is said, ‘Sit not in the seat of the scorners.’
When, however, two sit together and converse about the law, the Shechinah
(the Divine Presence) is present among them.” “When three eat together at
one table, and do not converse about the law, it is as though they ate of
the offerings of the dead. But when three eat together at one table and
converse about the law, it is as though they ate at the table of God.”
“The following are things whose interest is enjoyed in this world, while
the capital remains for the world to come; Reverence for fathers and
mothers, benevolence, peacemaking among neighbors, and the study of the
law above them all.”

It is very apparent that the chosen people were not satisfied with
mere memorizing of the law. Their teachers sought to make it a living,
regulative force in all the relations of man. Their practice emphasized
a phase of memory work which should be borne in mind whenever pupils are
requested to learn by heart any form of words or selection of literature.
Words have no value so long as they remain mere words. When words convey
the intended meaning, the more perfect the form in which they are joined
together the deeper and more lasting is the impression made upon the
mind of the learner. The thoughts which have been transmitted in forms
fixed for ages may not produce a harvest of new thought and linguistic
expression, but may issue in feeling and will, in lofty emotions and
noble purposes, in heroic deeds and unselfish devotion, in righteousness
and right conduct far more valuable than mediocre effusions of prose and
poetry, or many of the speculations of scientists and philosophers.

[Sidenote: Seed-thoughts.]

Thoughts that are to regulate conduct and life may be remembered in the
form in which a nation has treasured them for ages. If thoughts are to
become seed-thoughts, their form must be changed through the process of
growth; otherwise no crop of new thoughts can mature. The expression,
seed-thoughts, is a figure of speech based upon vegetable life. The
mind may be likened unto soil that has become fertile through the labor
and skill of the husbandman. The mind grows fertile and productive by
cultivation. Like the sower going forth to sow, the good teacher deposits
in the youthful mind ideas which germinate and bring forth a harvest
of thought, sentiment, and purpose. If the grain of wheat be cut in
pieces, and then put into the soil, there can be no growth, because the
life has been destroyed. The ideas which the teacher instils into the
minds of the pupils should be living ideas. Their vitality should not be
destroyed by dissection into fragments from which all life has departed.
Sunshine and moisture are conditions of growth. Lack of sympathy is
lack of sunshine. Cold natures have an Arctic effect in stunting and
preventing growth. Again, instruction may be so dry that nothing can
thrive under its influence. Like a drought, it may speedily evaporate
the child’s love of school and interest in study. Weeds may choke the
growing crop. These the husbandman removes and destroys, so that the
good seed may have a chance to ripen. With equal solicitude the faithful
teacher watches the development of the seed-thoughts which are sprouting
in the mind. For a time the seed is hid in the earth. Seed-thoughts
disappear in the unconscious depths of the soul. They are not lost. By
processes which we cannot explain, they sprout and grow and ripen. That
such mysterious processes are going forward in the hidden depths of the
soul cannot be doubted. A process of growth may be unseen; its visible
results are evidence that it exists and is going forward. If the soil be
barren or the conditions of growth be wanting, no harvest is possible.
Unfortunately, the unskilful husbandman always blames the soil and the
weather when he himself is at fault. Unfortunate is the pupil whose
teacher is a fossil, devoid of life and the power to infuse life. Under
such a teacher the pupil always gets the blame.



XII

IMAGING AND THINKING

    Things more excellent than any image are expressed through
    images.

                                                        JAMBLICHUS.

    An unimaginative person can neither be reverent nor kind.

                                                            RUSKIN.

    Few men have imagination enough for the truth of reality.

                                                            GOETHE.

    Science does not know its debt to the imagination.

                                                           EMERSON.

    The human race is governed by its imagination.

                                                          NAPOLEON.


XII

IMAGING AND THINKING

Every human being divides the world into two parts, the self and the
not-self. It would not be right to say that he divides the world into two
hemispheres, because self may occupy more space and engross more thought
than all else in the universe.

[Sidenote: Self.]

The idea of self is complex. It includes our thoughts, emotions, and
purposes. Kindred and friends, home and country, creed and occupation,
dress and personal appearance, possessions and the work one has done,—in
fact, all one has and is and does enters into the idea of self. When
we lose a child, a manuscript, an investment, a position, we are apt
to feel as if a part of ourselves had been lost. So closely are the
things of self identified with the inner self, the self in the narrowest
signification of the term, that the latter is oftentimes lost in the
former; and the end of existence is sought in wealth, fame, honor, social
position, erudition, and the thousand other things which intensify the
feeling of self by giving it form and content.

[Sidenote: Image of self.]

An important element in the thought of self is the image of self that
every man carries in his own mind. This image of self is derived from
looking-glasses and photographs, from the sight of hands and feet and
the other impressions of the physical organism which reach the mind
through the senses. In the minds of many persons the image of self is
ever present, it matters not whether they are eating or drinking, walking
or talking, singing or thinking, posing or working. The perpetual
presence of the image of self gives rise to vanity and pride, to avarice,
ambition, and other detestable forms of selfishness.

It is the province of education to bring self and the things of self into
proper relation with the not-self, with God and the universe. That this
may be accomplished the images of sense and the idea of self must be made
to take their proper place in the domain of thought and volition.

[Sidenote: Education defined.]

Not many years ago it was customary in certain quarters to define
education as the process of unsensing the mind and unselfing the will.
The definition never became popular. It contains a truth and an error,
both deserving of careful consideration. The maxim may signify that by
the process of education the soul is to be emancipated from the tyranny
of the senses and from the domination of selfish desires. The mind may
be hindered in its growth because it is under the thraldom of desire and
appetite. Excess in eating and drinking, in sight-seeing, and in other
pleasures which so easily ripen into dissipation may check the normal
development of the higher faculties. The delight which some gifted
natures find in beautiful colors and good music may prevent them from
acquiring the power of abstract and abstruse thinking. The things of the
mind may be sacrificed to the things of sense, the higher life of the
soul may be stifled through the exaltation of self and the domination of
selfish desires.

[Sidenote: Unsensing the mind.]

What is meant by unsensing the mind? It may mean, for instance, that
the student of arithmetic is to be freed from the necessity of counting
strokes or fingers in finding the sum or the product of two numbers; that
the learner is to get away from the cats and dogs of the First Reader as
soon as possible; that he is to be lifted by education to the plane on
which he can think in abstract and general terms. In this sense it is
correct to say that it is the purpose of education to unsense the mind.
The phrase may also be interpreted to imply that the habit of thinking
by means of visual images is to be got rid of. In this sense it is a
dangerous maxim.

[Sidenote: Arrested development.]

The first thinking of children is carried on in mental pictures. It is
one of the aims of the school to lift the learner above this necessity
of thinking in things by enabling him to think in symbols. These symbols
are in their turn visualized; and we may have specimens of arrested
development in the use of figures as well as in the use of fingers,
blocks, or other objects employed in teaching the fundamental operations
of integers and fractions. The principal of a well-known ward school
aimed at great speed in arithmetical calculations. The results which
his teachers obtained excited surprise and admiration. The test of
progress was the number of digits that a pupil could add, or subtract, or
multiply, or divide in a minute. The danger of this instruction became
apparent when it was found that of five or six hundred children drilled
in that way only one ever reached the high school, and she was only a
third-rate student, who never acquired skill or proficiency in thinking
in abstract and general terms. Mental energy was exhausted in the attempt
to develop lightning calculators. There was no growth in the direction of
thinking the laws and truths which make knowledge scientific.

[Sidenote: The thinking of savages.]

The untutored savage is guided by sense impressions; he thinks in mental
pictures; he is incapable of a chain of reasoning like the demonstration
of a theorem in geometry. Tribes have been found who could not count
beyond three; any number in excess of two was called many or a multitude.
Whilst their powers of observation were developed to a remarkable degree,
they lacked the power of abstruse thought. Their descendants, who are
now at school, make rapid progress in knowledge which appeals to the
senses; they find more than the usual difficulty in studies requiring
demonstrative reasoning or sustained effort in scientific thought. Music
is their delight; they can be taught to sing like birds in the air;
their bands give sighs to brass itself. As in the eighteenth century the
Iroquois, who would not submit to the doctrines of Christianity, were
overcome by concerts, so, in the nineteenth, the missionaries of British
Columbia appeal to the red man’s ear for music in winning him for the
Christian religion.

[Sidenote: Popular audiences.]

Language is full of faded metaphors which show how the things of the mind
are conceived in images formed through the senses. Those who address
popular audiences clothe their thoughts in figures of speech based upon
the mental pictures in which the common people carry on their thinking.
The ability to think in the language of science and philosophy is a later
development, and those who by disuse or neglect impair their power to
think in sense-images pay a penalty in losing, or never acquiring, the
power to move the multitudes.

[Sidenote: Mental pictures.]

The power to think in mental pictures, or through the sense-impressions
which memory recalls, varies in different persons. Occasionally the sense
of touch is very active; the child in such cases manifests a desire to
handle everything within reach, and undoubtedly gains impressions of
peculiar strength answering its desire to know. A limited number of
children in every school get their best impressions through the ear,
and hence are said to be ear-minded; but the far larger proportion are
eye-minded to the extent of connecting their most accurate knowledge
with images obtained through vision. Similar peculiarities exist among
older persons. A friend claims that he hears the voices of speakers while
reading the proof-sheets of their speeches. Another friend claims that
he cannot bring up a mental picture of the faces of his children and his
friends, but he writes out strains of music which he thinks and hears
while seated on railway cars. The power of bringing up a vivid picture of
the breakfast-table, or of some scene of special interest, is possessed
by many persons. They live over again in memory the delights of travel,
and enjoy scenery through the vivid mental pictures stored away in the
treasure-house of memory. The ability to appreciate the best literature
in prose and poetry depends largely upon the power of visualizing the
realities at the basis of the descriptions and figures of speech. Francis
Galton thinks that the perspicuous style of French literature and the
wonderful manual skill of the French people is due to their power of
thinking in visual images. He says,—

[Sidenote: The French.]

“The French appear to possess the visualizing faculty in a high degree.
The peculiar ability they show in prearranging ceremonials and fêtes of
all kinds and their undoubted genius for tactics and strategy show that
they are able to foresee effects with unusual clearness. Their ingenuity
in all technical contrivances is an additional testimony in the same
direction, and so is their singular clearness of expression. Their phrase
‘figurez-vous,’ or ‘picture to yourself,’ seems to express their dominant
mode of perception. Our equivalent of ‘imagine’ is ambiguous.”[29]

[Sidenote: Galton’s investigations.]

The profession of teaching owes Mr. Galton a special debt of gratitude
for the light which his investigations throw upon the process of
thinking. These investigations were published in a volume entitled
“Inquiries into Human Faculty.” When he began to inquire among
his friends as to their power to call up mental pictures of the
breakfast-table, those engaged in scientific pursuits were inclined
to consider him fanciful and fantastic in supposing that the words
_mental imagery_ really expressed what he thought everybody supposed
them to mean. He says they had no more notion of its true nature than a
color-blind man who has not discerned his defect has of the nature of
color. When he spoke to persons in general society, he got very different
replies. Among other curious things which he discovered, he found that
the power of thinking in sense-images, or mental pictures, may be partly
inherited, partly developed by practice, and that it may be impaired
by disuse or by the habit of hard thinking peculiar to men engaged in
scientific pursuits. Scientific men, as a class, have feeble powers of
visual representation. He reached the conclusion that “an over-ready
perception of sharp mental pictures is antagonistic to the acquirement
of highly generalized and abstract thought, especially when the steps of
reasoning are carried on by words as symbols, and that if the faculty of
seeing the pictures was ever possessed by men who think hard, it is very
apt to be lost by disuse.”

[Sidenote: Wrong methods.]

He further claims that the visualizing faculty can be developed by
education. This is very significant. It shows how unwise methods may harm
our children in two directions. The wrong method may keep the mind at
work in the concrete when the science under consideration demands more
advanced and very different methods of thought. In the other direction
the mind may be tied to words, descriptions, book methods, and symbolic
representations, whereas the thinking which one’s future duties demand
points in the direction of drawing, mechanics, and handicrafts, in which
success turns upon the power of thinking in visual images and mental
pictures. One cannot forbear quoting his language in so far as it bears
upon the thinking developed by schools for manual training in distinction
from the thinking developed by the university which aims to fit its
students for the professions and for scientific thought and experimental
research.

[Sidenote: Thinking in images.]

“There can, however, be no doubt as to the utility of the visualizing
faculty when it is duly subordinated to the higher intellectual
operations. A visual image is the most perfect form of mental
representation wherever the shape, position, and relations of objects
in space are concerned. It is of importance in every handicraft and
profession where design is required. The best workmen are those who
visualize the whole of what they propose to do before they take a tool in
their hands. The village smith and the carpenter who are employed on odd
jobs employ it no less for their work than the mechanician, the engineer,
and the architect. The lady’s maid who arranges a new dress requires it
for the same reason as the decorator employed on a palace, or the agent
who lays out great estates. Strategists, artists of all denominations,
physicists who contrive new experiments, and, in short, all who do not
follow routine, have need of it. The pleasure its use can afford is
immense. I have many correspondents who say that the delight of recalling
beautiful scenery and great works of art is the highest that they know;
they carry whole picture-galleries in their minds. Our bookish and wordy
education tends to repress this valuable gift of nature. A faculty
that is of importance in all technical and artistic occupations, that
gives accuracy to our perceptions, and justness to our generalizations
is starved by lazy disuse instead of being cultivated judiciously in
such a way as will, on the whole, bring the best return. I believe
that a serious study of the best method of developing and utilizing
this faculty, without prejudice to the practice of abstract thought in
symbols, is one of the many pressing desiderata in the yet unformed
science of education.”[30]

What is meant by the process of unselfing the will? If the maxim is
interpreted to mean that education must eliminate the selfishness of
the individual, and teach him to will and act for the good of humanity,
especially of all with whom he comes in contact, the maxim points out an
important end of education. If, on the other hand, the maxim is made to
mean that the self, with its peculiarities, is to be sacrificed in the
educative process, it carries a contradiction on its face. The lower self
may have to be sacrificed in order that the higher self may be conserved.
He that loseth his life shall save it; he that saveth his life shall lose
it, is the teaching of Holy Writ.

Open a dictionary and search for words indicating how the belief in the
necessity of emancipating life from the dominion of self has been woven
into the very texture of the English language. Egotism, which originally
meant the excessive use of the pronoun I, has come to signify all kinds
of self-praise, self-exaltation, and to include all manner of parading
one’s virtues and excellencies; egoism denotes a state of mind in which
the feelings are concentrated on self. Vanity and self-conceit are two
words closely allied to the natural selfishness of the human heart. The
former indicates the feeling which springs from the thought that we are
highly esteemed by others; the latter is an overweening opinion of one’s
talents, capacities, and importance. There is another list of compound
words, like self-denial, self-sacrifice, self-abnegation, which point to
the importance of eliminating self and thoughts of self from the soul’s
activities in thinking and willing. Virtues like humility, love, service,
sacrifice, are lauded in every Christian land. They are the Christian
virtues exemplified by Jesus of Nazareth, who lived to do good to others,
and who died that the sinning, sorrowing millions on earth might find
peace and consolation for their troubled souls.

[Sidenote: Selfishness.]

The unselfing of the will depends as much upon right thinking as does the
unsensing of the mind. The untrained mind deals too much with things near
at hand in the objective world; the uneducated will deals too much with
the thing nearest to every man in the subjective world,—the individual
self. The thought of self may enter so thoroughly into the feelings and
activities of the soul that the rights of others are never thought of
in the gratification of self and in the efforts at self-aggrandizement
and self-glorification. Selfish desire and selfish ambition may dominate
the soul and cause the individual to trample upon the dearest rights
of others. The millions which some men heap up are squeezed from the
productive toil of thousands, perhaps millions, of human hands. Colossal
fortunes can seldom be made without reducing a considerable number of
human beings to a condition of living from hand to mouth, to a state of
chronic poverty. That the inordinate ambition of a masterful politician
may be gratified, the hopes of other aspirants must be frustrated and
their rights must be trampled upon. Hence in the end there is little
happiness among office-holders and office-seekers. The selfishness of
great conquerors is still more inexcusable. In the effort to gratify an
unholy ambition the lives of thousands are sacrificed, their blood is
spilt upon the battle-field, and their health is undermined by suffering
and disease. If the men who send the soldier to the front were themselves
compelled to sleep in ditches, or to expose themselves to the fire of
machine-guns upon the open field, wars would not be declared, or, if
declared, would soon cease.

[Sidenote: Self-sacrifice.]

The higher life demands that the lower self be subordinated, regulated
and sublimated in the education of man. The individual may be taught to
find happiness in self-sacrifice for the sake of others, in deeds of
love, charity, and benevolence. That this may result from the educative
process, there should occur a change of heart, resulting in a change of
view and in a transformation of the habits of thought so that self is
seen in its true relation to mankind and to God, so that the things of
time and sense shall stand in true relation to the verities of eternity
and the interests of the higher life.

[Sidenote: Self-development.]

On the other hand, if the maxim is interpreted to mean that any gifts
_or_ powers of the self are to be sacrificed in preparation for a given
calling, say for the army or navy, it becomes a dangerous heresy. The
true end of education is found in the harmonious development of all our
faculties. Every man is in one sense the product of countless ages and
generations, and from another point of view he is a new creation fresh
from the hand of his Maker, and a distinct setting forth of the creative
power of Him who said, “Let us make man in our own image, after our
likeness.” As such he has a claim upon immortality, as well as upon all
the help which earth can give him towards a full realization of self.
Every person feels that there are possibilities of his being which are
never realized in this world; that it will require the ceaseless ages
of eternity to unfold and mature his God-given powers and traits. Any
unselfing of the will in the sense of sacrificing or checking the growth
and fruition of the best of which the self is capable, is a violation of
Spencer’s famous definition that education is a preparation for complete
living.

[Sidenote: Justice to others.]

What, then, is the relation of the imaging power to the proper unselfing
of the will and the full realization of the self? “A great deal of the
selfishness of the world comes not from bad hearts, but from languid
imaginations.”[31] To do justice to others, we must put ourselves in
their place. This we cannot do except through the exercise of the
imagination. The imagination is the creative power of the mind. By means
of it we can create for our thinking the world in which our neighbor
lives, and learn to understand his motives, aims, hopes, needs, and
temptations. This will keep us from many a mistake in judging his conduct
and estimating his character. Moreover, this thinking of ourselves
into the life and surroundings of our fellow-men is a condition of
success in dealing with them. It helps the merchant to sell his wares
and the teacher to govern his pupils. It helps the orator to reach the
hearts of the audience whom he is addressing, and the journalist to
write editorials that will modify the views and mould the thinking of
the reading public. Every profession and every occupation requires the
constant exercise of the imagination so that we may see life from our
neighbor’s point of view, and, in sympathizing with him or helping him,
outgrow our innate selfishness. A hard, cruel, unforgiving man makes a
failure of life even though he win riches, fame, and public position.

[Sidenote: Ideals.]

By means of the imagination we paint ideals of life and conduct, which
hover before the mind in the hour of struggle and trial, luring us onward
and upward, spurring us to greater effort, and giving to life added
charms and glories. Without the power to imagine what is beyond the
real, the workman sinks to the level of drudgery, and never rises to the
plane of artistic production.

[Sidenote: The child’s imagination.]

[Sidenote: Geography.]

The imagination is very active in children. Watch their plays if you
would see how they convert a stick into a horse, the play-house into a
home, and mimic the drama of life in their games and contests. Their life
is largely make-believe and thinking in images. This tendency to think in
images can be utilized in the lessons in arithmetic, geometry, geography,
and history. Without the combination of images into new forms and
products, the pupil cannot think the thoughts peculiar to these branches.
For instance, the lesson in geography starts with what the child has seen
or can see at home, and proceeds to that which is away from home, using
pictures, drawings, lantern-slides, and vivid descriptions to aid the
imagination in picturing scenery, cities, countries, and forms of life in
other parts of the globe. It may be a question what the mind should think
in connection with the symbols and truths of that science. The form of
a continent is without doubt best conceived as given on a map. For many
practical purposes, cities may be thought as mere starting-points and
halting-places in a journey. Many a river is for mature minds a winding
black line on colored surfaces called maps. Nevertheless, if geography
means for a pupil no more than this, it will be dry and uninteresting
indeed. Out of the images of things observed the mind should be led to
construct images of what it has not seen. These images are never an
adequate picture of the foreign city or country, even after they have
been supplemented or modified by visits to museums, conservatories, and
zoological gardens, by excursions to the field, the forest, and the
factory, or even by travel at home and abroad. The thoughts of a country
that one has journeyed through, or lived in for a time, consist partly
of images and partly of symbolic representations. Since thinking in
images is easier for beginners than thinking in symbols, the instruction
in geography should begin with child-life at home, with the things on the
breakfast-table, with the garments worn and the means of transportation
used, and proceed from these to the life, the home, the dress, and the
sports of children living in other lands and other climes. The lessons in
geography make constant appeals to the imagination, and call for thinking
in images or mental-pictures in connection with map-symbols and the
discussions of causes and laws.

[Sidenote: History.]

Not less valuable is the power of imaging in the study of history. Many
details are worthless and meaningless until the imagination weaves them
into a fabric in which their relations and significance become apparent.
So far as the trend of history is concerned, it would have mattered
very little if the name of the ship in which the Pilgrim fathers sailed
had been Aprilshower instead of Mayflower, if the number of passengers
had been one hundred and one instead of exactly one hundred, if they
had landed at some place other than Plymouth Rock. Their coming, their
compact, their religious life and purposes were of chief importance.
Details help to fill out the mental picture of their voyage, landing,
and settlement. They throw a halo of interest around the central event,
or germinal idea. Or, to change the figure, they furnish the scaffolding
by means of which the teacher gradually raises the edifice of historical
knowledge. After the edifice has been completed the scaffolding may be
removed. After the essential or central idea has been grasped and fixed,
details like the name of the ship, the number of emigrants, and the exact
day of their arrival may be forgotten. The mind can often unload the
luggage that is not absolutely needed, and move with more ease and speed
into new fields of thought and investigation.

[Sidenote: Geometry.]

[Sidenote: Arithmetic.]

Geometry has been aptly styled eine Augenwissenschaft, “a science of the
eye” (the last word being used not as the object with which the science
deals, but as the means by which its ideas are acquired). The line drawn
upon the black-board has breadth, and is not at all a mathematical
line. Through the eye it serves to suggest the line which has length
without breadth or thickness. Progress in solid geometry is impossible
if the mind does not image or conceive the volumes of three dimensions
indicated by the drawings on a surface which has but two dimensions. In
arithmetic many of the business transactions upon which the problems
are based have not come into the experience of the child, but must be
evolved by appeals to the imagination if the solutions are to be brought
within easy reach of the understanding. The power of combining images
into new forms aids greatly in the construction of apparatus and in the
making of experiments. It helps the scientist to evolve his theories and
hypotheses. It is the faculty by which man becomes a creator in science,
art, literature, and philosophy.

[Sidenote: Creative imagination.]

[Sidenote: Productive thinking.]

[Sidenote: Knowledge uncommunicated.]

Few suggestions for the exercise of the creative imagination can be
given. Here rules are more of a hinderance than a help. The imagination
is not creative in the sense of evolving something out of nothing,—this
notion has misled many in their estimate of genius,—but in the sense
of producing that which never existed, at least for the individual
himself. Its activity has been denominated plastic from the fact that
it moulds and fashions the materials or images into the forms which the
new product is to assume. The influence of judgment is needed to keep
the imagination from violating the laws and principles inherent in the
things from which its materials are drawn. The understanding aids and
is aided by this creative, plastic function of the imagination. The
two should have free play in productive thinking. Let the student of
science or art saturate himself with the theme on which he is working;
let him keep health and energy of body and mind at their highest point;
let him concentrate his best powers on what is to be accomplished,
keeping clearly in mind the end to be reached and the materials to be
used; the product for which he is working will spring into being in
ways that he cannot explain. Like an unfathomable well which has been
gathering its waters through hidden channels from mysterious sources,
the stream of thought comes welling up from the depth of the soul into
the conscious life of the thinker, giving him the living waters by
which he can satisfy the thirst for knowledge felt by other souls. In
expressing, formulating, and communicating the thoughts which thus come
to him he cannot help feeling the “joy of creating.” “The history of
literature,” says Shedd, “furnishes many examples of men whose knowledge
only increased their sorrow, because it never found an efflux from their
own minds into the world. Knowledge uncommunicated is something like
remorse unconfessed. The mind, not being allowed to go out of itself, and
to direct its energies towards an object and end greater and worthier
than itself, turns back upon itself, and becomes morbidly self-reflecting
and self-conscious. A studious and reflecting man of this class is
characterized by excessive fastidiousness, which makes him dissatisfied
with all that he does himself or sees done by others; which represses
and finally suppresses all the buoyant and spirited activity of the
intellect, leaving it sluggish as ‘the dull weed that rots by Lethe’s
wharf.’”

[Sidenote: Forms of creative effort.]

No teacher and no system of training can furnish both brains and culture.
It is not the mission of any person to create in every line of effort.
Some find their joy in evolving and expressing thought with tongue or
pen, others through the brush or the chisel, and still others through
machinery and the handicrafts. In every occupation man may experience
the joy of creating if his powers of imaging are allowed to play and
interplay with other activities of thought. Each in normal conditions
helps the others, and the activity of all combined is essential to
complete living.



XIII

THE STREAM OF THOUGHT

    At Learning’s fountain it is sweet to drink,
    But ’tis a nobler privilege to think;
    And oft, from books apart, the thirsting mind
    May make the nectar which it cannot find.
    ’Tis well to borrow from the good and great;
    ’Tis wise to learn; ’tis godlike to create!

                                                        J. G. SAXE.

    Madame Swetchine says that to have ideas is to gather flowers:
    to think is to weave them into garlands. There could be no
    happier synonym for thinking than the word weaving,—a putting
    together of the best products of observation, reading,
    experience, and travel so as to represent a patterned whole,
    receiving its design from the weaver’s own mind. We have plenty
    of flowers; we want more garlands. We have libraries, books,
    and newspapers; we want more thinkers.

                                               T. SHARPER KNOWLSON.


XIII

THE STREAM OF THOUGHT

In speaking of our inner life we employ language that abounds in
metaphors drawn from the external world. Some are faded metaphors; others
are still fresh and new enough to suggest what was in the minds of those
first using them. Many of these metaphorical expressions draw attention
to one side or phase of the truth. If pressed with the design of making
them embody the whole truth, they become untruths.

[Sidenote: The flow of thought.]

One fact of our waking consciousness is that thought goes on without
stopping so long as we remain awake. Indeed, some philosophers have drawn
the inference that the soul always thinks, that during the hours of deep
sleep the brain-centres may be at rest, but that thought nevertheless
flows on in the unconscious depths of our being. Locke combats this idea
at length and with more than usual warmth. During sleep on a railway
train we sometimes seem to be awake, the ends of our conscious thinking
apparently fitting into each other without gaps; and yet the calling
out of the stations convinces us that we must have been wrapped in
unconscious slumber when we passed certain stations without noticing that
the train stopped and the stations were announced. On the other hand, it
is the experience of earnest students that the striking of a clock may
escape notice because the mind has been deeply absorbed in a difficult
problem.

[Sidenote: Teacher’s duty.]

The question need not concern us beyond the fact that the thinking of
our most wakeful moments perpetually plays into our subconscious life.
In order that the flow of thought welling up from the deepest depths of
the soul may be clear, copious, and full, it is the duty of the teacher
to keep himself and his pupils wide awake during the hours of study and
recitation. He should not worry them by excessive tasks or unreasonable
examinations so that the hours of sleep are disturbed by dreams, followed
during the day by weariness and fatigue. The folly of burning the
midnight oil and of spending too many hours each day in mental toil is
fraught with evil consequences in the domain of thought. In the main
Harbaugh was right when he undertook to change Franklin’s maxim about
early rising into the following form: “Go to bed early, and get up late;
but then keep awake all day.”

[Sidenote: Thought like a stream.]

So far as we are aware, thought is going forward continuously while we
are awake. This phase of consciousness has been likened to a stream, and
has given rise to the expression, _The stream of thought_. The metaphor
can be pressed very far without conveying untruths. A stream does not
always flow with the same velocity. It is at times deep, at other times
shallow, now moving forward like a swollen torrent, now flowing placidly
with scarcely a wave or a ripple perceptible on its surface. Here its
smooth course is disturbed by wind and storm and rain; there its even
flow is influenced by rocks and irregularities in the bed of the stream.
Again and again its current is modified by affluents which empty their
waters into the main stream, perhaps changing the appearance from clear
to cloudy or muddy, or, it may be, exerting the opposite effect. To all
these peculiarities in the flow of the stream there are likenesses in
the stream of thought. At times it is deep and at other times shallow,
now violent and disturbed, now calm and placid, sometimes clear to the
bottom, sometimes cloudy, yea, muddy, always modified more or less by
influences from without, which are taken up into the main current of
thought and alter the stream like the tributaries of a great river.

[Sidenote: Early life.]

[Sidenote: Other metaphors.]

On reaching the level country a river may spread out into a lake,
resulting in a clearing up of the water and resembling the periods
of calm meditation during which the soul clarifies its thinking. The
lifelike behavior of rivers and the carving of land forms from their
youth through maturity to old age have furnished many a figure of speech
for our poetic literature. The change from the active upper waters to the
sedate lower current may typify the change in the stream of thought as we
pass from youth to age. While the volume of the stream is small and the
channel lacks depth, it is easy to change the direction of the current,
as sometimes happens when a straight channel is dug to take the place of
its windings. In early life the stream of thought is apt to wander in
meandering courses; the teacher may very frequently find it necessary to
keep the mind from wandering, to direct the stream of thought towards the
destined goal, and to make it groove for itself channels in harmony with
logical habits. In teaching pupils to think it is quite as essential to
give direction to thought as it is to furnish either thought-stimulus
or thought-material. In one respect the metaphor, stream of thought,
fails utterly to express the truth. The constituents of thought are not
related to each other like the molecules of a liquid which move freely
among themselves. Thoughts have a connection with those that precede and
those that follow. An inner nexus binds the successive portions of a
demonstration. Hence other figures of speech have been employed to denote
the connection between the successive elements of a logical proof, such
as the train of thought, the line of argument, the chain of reasoning.

[Sidenote: Cognitive function.]

It will be readily admitted that often our thinking is so loose and
disjointed that its component parts resemble the liquid more than the
chain, whereas our best thinking—namely, that which leads to a goal in
the shape of a trustworthy conclusion—resembles a train of cars in which
motive power is derived not from steam, but from a conscious expenditure
of will-power. The teacher may perform the triple function of fireman,
engineer, and switch-tender, supplying the fuel for the process,
regulating the speed, and directing it along the lines of track which
lead to the desired goal. It is as natural for a pupil to think as it
is for a stream to flow towards the ocean. The stream may run shallow
if no supply of water is received from the outside. It is the mission
of the teacher to keep up the supply, to remove as far as possible the
obstructions which are likely to throw the current of thought into
unexpected channels. It is a peculiarity of this current of thinking that
it is cognitive, or possesses the function of knowing. Human thought
resembles the stream in seemingly taking up and carrying what was not a
part of itself. Just as the stream of water carries minerals in solution
as well as silt, sand, pebbles, and even heavier objects, so the stream
of thought appears to lay hold of objects and to carry them as part of
itself. Here, however, the strings of the analogy break. The stream of
thought is in the mind; the objects with which it deals are outside of
the mind. Mental pictures of these objects float in the stream of thought
as objects on the bank of a river are mirrored in its waters; yet the
parallel is not complete, because the mind may turn the eye upon itself
and make what is thus seen the object of thought. This turning upon
itself may be likened to eddies in the stream. But even when the mind
thus turns back upon itself and views its own states and activities,
these are regarded as objective, as related to the thinking process very
much like the objects of knowledge in the external world.

Another important phase of thinking finds no likeness in any of the
figures of speech above referred to. The mind meets certain objects of
thought on which it seems to tarry or fasten itself. This has led some
writers to deny that the stream of thought is a continuous current.
This view causes undue stress to be laid upon the material of thought,
and leads the teacher to undervalue his function as directing guide in
teaching pupils to think. Even Professor Bain claims that,—

[Sidenote: Bain’s view.]

“The stream of thought is not a continuous current, but a series of
distinct ideas, more or less rapid in their succession, the rapidity
being measurable by the number that pass through the mind in a given
time. Mental excitement is constantly judged of by this test; and if we
choose to count and time the thoughts as they succeed one another, we
could give so much more precision to the estimate.”[32]

[Sidenote: Transitions.]

[Sidenote: Two phases.]

These transitions should not be confounded with the relations between
objects of thought or between objects in the external world. The
relations may be part of the thought of that which is perceived or known,
or they may be made distinct ideas or thoughts. The important phase
under consideration is the passage of the mind from one idea or thought
to another. Such transitions are quite as important and quite as much a
part of the current of thought as the premises and conclusions on which
the mind seems to rest. These two phases of the thought-process may be
likened to the perching and the flight of a bird. This figure of speech
is used by Professor James, among whose services to the profession
of teaching it is not the least that he has called attention to the
importance of these transitions in the stream of consciousness. His
account is so lucid and satisfactory that one cannot forbear to quote his
words at some length. Referring to the stream of thought, he says,—

[Sidenote: View of Professor James.]

“Like a bird’s life, it seems to be made up of an alternation of flights
and perchings. The rhythm of language expresses this, where every thought
is expressed in a sentence and every sentence closed by a period. The
resting-places are usually occupied by sensorial imaginations of some
sort, whose peculiarity is that they can be held before the mind for an
indefinite time and contemplated without changing; the places of flight
are filled with thoughts of relations, static or dynamic, that for the
most part obtain between the matters contemplated in the periods of
comparative rest. _Let us call the halting-places_ the ‘substantive’
parts and the places of flight the ‘transitive’ parts of the stream of
thought. It then appears that the main need of our thinking is at all
times the attainment of some other substantive part than the one from
which we have just been dislodged. And we may say that the main use of
the transitive parts is to lead us from one substantive conclusion to
another. Now it is very difficult, introspectively, to see the transitive
parts for what they really are. If they are but flights to a conclusion,
stopping them to look at them before a conclusion is reached is really
annihilating them. Whilst if we wait until the conclusion be reached,
it so exceeds them in vigor and stability that it quite eclipses and
swallows them up in its glare. Let any one try to cut a thought in the
middle and get a look at its section, and he will see how difficult
the introspective observation of the transitive tract is. The rush of
the thought is so headlong that it almost always brings us up at the
conclusion before we can arrest it. Or if our purpose is nimble enough
and we do arrest it, it ceases forthwith to be itself. As a snow-flake
crystal caught in the warm hand is no longer a crystal, but a drop,
so, instead of catching the feeling of relation moving to its term, we
find we have caught some substantive thing, usually the last word we
were pronouncing, statistically taken, and with its function, tendency,
and particular meaning in the sentence quite evaporated. The attempt
at introspective analysis in these cases is, in fact, like seizing a
spinning top to catch its motion, or trying to turn up the gas quickly
enough to see the darkness. And the challenge to _produce_ these
psychoses, which is sure to be thrown by doubting psychologists at any
one who contends for their existence, is as unfair as Zeno’s treatment
of the advocates of motion, when, asking them to point out in what place
an arrow _is_ when it moves, he argues the falsity of their thesis from
their inability to make to so preposterous a question an immediate
reply.”[33]

[Sidenote: Nouns, verbs, etc.]

[Sidenote: Connectives.]

The science of logic deals almost altogether with the halting-places,
with the substantive parts, with the ideas, notions, concepts that
are to be compared, and with the resulting judgments, inferences, and
conclusions. Whether the teacher has studied the science of logic or not,
it is to these he devotes his chief attention; they can be analyzed,
defined, and clearly fixed as thought-products or knowledge. Defects in
the thinking-process are apt to show themselves here; at least, they
furnish tangible data for criticism, corrections, and reviews. These
thought-products on which the mind loves to linger are denoted by nouns,
verbs, adjectives, and adverbs,—the parts of speech which constitute the
bulk of the vocabulary of every language. The movements of the mind from
one object of thought to another are indicated by conjunctions and other
connectives. Thinkers are often known by their favorite connective words
and phrases. Pupils catch these from the phraseology of their teachers,
or pick them up unconsciously from the books they read. Some languages
are richer in such connective words and phrases than others; the mind
carries away some influence in the way of making these transitions in
thought from every language which it studies; its thinking is moulded
by the language which it masters. Logic has very little to say about
these transitions for which one language sometimes supplies words and
expressions altogether wanting in another. Frequently we grow conscious
of them through the feeling of a gap to be filled, or of a chasm to be
leaped over, or of an obstacle to be cleared away, or of something that
obstructs our thinking and hinders it from reaching the goal. Here again
one cannot refrain from quoting Professor James, although his words do
not indicate that he fully realizes the value for elementary instruction
of what he has written. Here are his words:

“The truth is that large tracts of human speech are nothing but _signs
of direction_ in thought, of which direction we, nevertheless, have an
acutely discriminative sense, though no definite sensorial image plays
any part in it whatsoever. Sensorial images are stable psychic facts;
we can hold them still, and look at them as long as we like. These bare
images of logical movements, on the contrary, are psychic transitions,
always on the wing, so to speak, and not to be glimpsed except in
flight. Their function is to lead from one set of images to another. As
they pass, we feel both the waxing and the waning images in a way quite
different from the way of their full presence. If we try to hold fast
the feeling of direction, the full presence comes, and the feeling of
direction is lost. The blank verbal scheme of logical movement gives us
the fleeting sense of the movement as we read it, quite as well as does a
rational sentence awakening definite imaginations by its words.”[34]

[Sidenote: Directing the youthful mind.]

Right here the teacher who is an artist finds the opportunity for the
display of his highest skill. It is his privilege to direct the flights
and the perchings of the youthful mind. He can shape the thoughts and
their sequence. He can cause the intellect to move from the reason to
its consequence, or in the reverse direction if that be more natural or
more appropriate. He can guide the thought from cause to effect, from
the whole to the parts, from the general to the particular, from the
end to the means, from the design to its execution; or a movement the
other way is possible in each of these categories. While thus choosing
the direction which thought shall take, he can select the objects upon
which it shall tarry. This directing influence he will often exert when
he is not aware of it. His own habits of mind will be reflected in the
mental life of his pupils. There was profound philosophy in the reply of
a gifted author who, when asked by his daughter what she should study,
said, “I am more concerned about the teachers under whom you study than
about the branches of study which you may select.” Habits of thought
depend far more upon the teacher than upon the text-book, upon the
quality of the instruction than upon its general content. There is, of
course, a difference in the culture value of different branches of study;
but a study as valuable as geometry may be pursued in a loose way, whilst
branches of much inferior value for developing power to think may be
taught and studied by the methods of rigid and exact thought.

[Sidenote: The artist-teacher.]

[Sidenote: Forms of speech.]

In shaping the activity of thought, the artist-teacher makes the mind
tarry long enough for clear apprehension, sometimes for thorough
comprehension, upon the ideas, judgments, and conclusions which are the
framework of a system of thought, but he does not neglect the transitions
from one to the other, as if these were of little account or necessarily
took care of themselves. The transitions in thought are aided by set
phrases and forms of solution. As soon as these are mastered, there
develops the tendency to think them as algebraic symbols, which do
substitute duty in the absence of that for which they stand. For fear
of this, the teacher sometimes fails to drill on them long enough to
fix them in the mind,—certainly a radical mistake. Drill is a condition
of the highest discipline in the school as well as in the army. The
drill-master seeks to habituate the soldier to the word of command,
so that he will obey in the face of danger without thinking of the
consequences. The drill-master at school seeks to make it second nature
for a pupil to go through the logical motions, but not without conscious
thought of the process or the consequences. Whenever the learner uses
forms of parsing, analysis, or solution, his mind should go through the
movements of thought expressed by the language. Ask any ordinary class
to give you a noun of the first person; they are almost sure to give
you either a noun of the third person or a pronoun of the first person.
Dictate a sentence with a noun in the first person, and ask the pupils to
parse it in the customary way; in nearly all cases they will parse it as
a noun of the third person. Ask them to tell why a personal pronoun is so
called; frequently they say because it indicates a person,—a statement
quite applicable to other kinds of pronouns. If the logical or customary
forms of speech are employed, the stream of thought moves on, the mind
often failing to perceive the new truth, or error, or nonsense inherent
in the language employed. School-boys have tricks of their own which turn
upon this peculiarity in the movement of thought. “Who killed Cain?” is
suddenly asked. “Abel,” is the reply generally elicited by the question.
Should you say, Nine times seven _is_ or _are_ forty-two? The boy who
decides in favor of _is_ or _are_ gets a shock of surprise on being told
that the product of nine times seven is not forty-two.

[Sidenote: A strange reply.]

One day a teacher was lecturing upon education in the dark ages. To show
how the energies of the common people were exhausted in the struggle
for existence, the resolution of a synod in the south of France was
cited. The resolution enjoined upon the bishops the duty of seeing to
it that during a period of scarcity of food the peasants were at least
provided with bread made of acorns. A few minutes later a reference was
made to the autobiography of Thomas Platter, in which certain things are
described as happening about the time of the Diet of Worms. On being
asked in what period of history that was, a pupil promptly replied, “When
the common people were fed on worms.”

[Sidenote: Biblical phraseology.]

[Sidenote: Huxley’s story.]

Very much of the sermonizing of our day gives rise to the same kind of
thinking. The mind is borne along by the customary flow of words. The
phrases used have an orthodox sound; perhaps they are biblical in the
sense that they occur in the Bible. It is impossible to tell whether any
clear idea or real religious experience is suggested to the hearer’s
mind by the words used. The ideas excited in the hearer should be those
for which the words stand in the mind of the speaker. If the ideas of
the speaker are not clear, how can his words suggest anything definite
to the audience? Huxley relates an amusing story of an after-dinner
orator who was endowed with a voice of rare flexibility and power, and
with a fine flow of words, and who was called upon to speak without much
preparation. The applause was terrific. When Huxley asked a neighbor who
was especially enthusiastic what the orator had said, the latter could
not tell. Nothing was lacking in the post-prandial speech save sense and
occasionally grammar.[35]

The fuller consideration of the stream of thought in listening and
lecturing, in reading, speaking, and composing, is deserving of separate
chapters. The mental attitude in listening resembles that in getting
thought from the printed page. Silent reading is for the reader’s own
benefit; it comprises by far the larger proportion of our reading. In
oral reading, the stream of thought is somewhat different, the aim being
similar to that of public speaking,—namely, to suggest or convey to the
hearer thoughts from some other mind. In the act of composing, the aim
is to evolve thought from the mind’s own resources and activities. The
thought process is very much the same, no matter whether we dictate to
a stenographer, or speak to an audience, or use the pen in giving to it
form and abiding shape. It will be most convenient to treat together the
stream of thought in listening and in silent reading, and to reserve for
separate consideration the activity of the mind in writing, speaking, and
oral reading.



XIV

THE STREAM OF THOUGHT IN LISTENING AND READING

    Reading is thinking along a prescribed line that lies goldenly
    beneath the flow of words.

                                                         BRUMBAUGH.

    Whittier uses words as stepping-stones upon which with a light
    and joyous bound he crosses and recrosses at will the rapid and
    rushing stream of thought.

                                                        LONGFELLOW.

    To listen well is to think well,—the hearing ear must be
    attended by the alert mind, eager to seize upon incoming
    sensations and weave them into a garland of thought.

                                                           M. G. B.

    Words, however well constructed originally, are always tending,
    like coins, to have their inscription worn off by passing
    from hand to hand; and the only possible mode of reviving it
    is to be ever stamping it afresh by living in the habitual
    contemplation of the phenomena themselves, and not resting in
    our familiarity with the words that express them.

                                                        J. S. MILL.


XIV

THE STREAM OF THOUGHT IN LISTENING AND READING

[Sidenote: A suggestive dialogue.]

Two men engaged in speculative pursuits met after one had published a
book. Let us speak of them as A and B.

A: I have just read your new book. Many things in it please me very much,
but in it you say so and so, with which I do not find myself in full
accord.

B: I say nothing of the kind in that book.

A: I surely read your book.

B: You never read a book in your life. You read some sentences or
paragraphs; your mind begins to react upon what you have read; and ere
long you imagine that your inferences are the conclusions of the author.

A: I have a notion to write a psychology, and to set forth my views in
full.

B: Don’t you do it. You know no psychology. You have been of great
service in stimulating others to think; you are a most delightful
lecturer; but you have never mastered psychology.

[Sidenote: Feeling.]

[Sidenote: Interest.]

If a third party could have listened to the conversation, what stream
of consciousness would have started in his mind? Possibly surprise at
the frankness of B and the composure of A, mingled with thoughts of
what they were discussing. In other words, a strong tinge of feeling
would be perceptible in the stream of thought. In the minds of the two
engaged in the dialogue, feeling must have greatly modified the current
of thought. The greatest kindness that can be shown to some men is to
oppose or criticise their views. Opposition and criticism stimulate their
thinking, and rouse their mental powers to the highest possible tension
and activity. In men of the opposite temperament, feeling beclouds their
thinking, and makes the stream of thought more sluggish. The common
prejudice against appeals to feeling are due to the abuse of the right
which every orator has of addressing the feelings through the intellect,
and of thereby moving the will. To move the will is the essence and aim
of all eloquence. In listening or lecturing, in reading or composing,
some form of emotion always accompanies the stream of thought. The
orator may move the hearer to tears or to laughter; he is not untrue to
his mission if he can thereby win a vote, secure a verdict, or move the
hearer to action. A lecture is addressed primarily to the understanding.
It is greatly improved if the stream of thought which it starts and
supplies is accompanied by feelings of interest and the pleasurable
emotions attendant upon novelty, curiosity, or admiring approval. The
consciousness that we understand a lecture is accompanied by pleasurable
emotions which help to sustain the attention.

[Sidenote: Spurgeon.]

The writer once paid a shilling to hear Spurgeon. It was his purpose to
get a good seat, so that he might study this famous preacher’s gestures
and delivery, the quality of his voice, and the secret of his eloquence.
The text was hardly announced before every one in the audience, including
the writer, forgot all about Spurgeon, and thought only of his message to
the thousands before him. The secret of his oratory lay in his ability to
make the audience forget everything except the gospel he was preaching.
If people, after hearing a speaker, talk of his fine delivery, his
flowery language and beautiful figures of speech, or his peculiarities
of pronunciation and other eccentricities, it is proof positive that he
has failed. Instead of holding the attention to what he was saying, the
audience was thinking of his manner and delivery. A well-printed book
has the advantage of keeping the author’s personal characteristics from
interfering with the stream of thought. It has the disadvantage of losing
all the helps to listening and thinking which come from the tones of the
voice and eloquent delivery.

The accusation of B against A, referred to at the beginning of this
chapter, is applicable to many readers. For several sentences the mind is
riveted upon the author’s meaning. Presently a train of thought starts;
the eye runs along the sentences to the bottom of the page. On turning
the page, the reader wakes up to the consciousness that his mind does not
retain, perhaps never had the slightest notion of the contents of said
page. Often the train of thought leads to no goal; the thinking resembles
the process of wool-gathering, the tufts of wool on bushes and hedges
necessitating much wandering to little purpose.

[Sidenote: The works of great thinkers.]

For the sake of cultivating ability to think, students are advised to
read the works of great thinkers, like Kant, Schleiermacher, and Hegel.
Such reading is often a sham and a delusion. No one has done more to
shape the critical thinking of the world than Kant; and yet how many
young men waste time upon his pages because they are not prepared to
think his thoughts. Schleiermacher stimulated and modified the thinking
of theologians in every department of their science except Old Testament
exegesis; and yet the celebrated Dr. Kahnis, of the University of
Leipsic, used to say of Schleiermacher, “Er ist rein nicht zum studiren.”
Nevertheless, students for the ministry have been known to waste hours in
trying to read his writings, which they were not prepared to understand.
Of the obscurer passages in Hegel an eminent authority says, “It is a
fair question whether the rationality included in them be anything more
than the fact that the words all belong to a common vocabulary, and are
strung together on a scheme of predication and relation,—immediacy,
self-relation, and what not,—which has habitually recurred. Yet there
seems no reason to doubt that the subjective feeling of the rationality
of these sentences was strong in the writer as he penned them, or even
that some readers by straining may have reproduced it in themselves.”[36]

It may be worth an honest effort for students and teachers to try to
grasp the meaning of such writers; but if after a fair trial the mind
is left empty of meaning, it is wise to follow the advice of Locke with
regard to obscure ancient authors:

“In reading of them, if they do not use their words with a due clearness
and perspicuity, we may lay them aside, and, without any injury done
them, resolve thus with ourselves:

“Si non vis intelligi, debes negligi.”[37]

Several months or years of study may be required to prepare the mind for
grasping the ideas or phraseology of new departments of investigation.
No one can comprehend the treatises on physiological psychology without
devoting several weeks to the anatomy of the brain.

[Sidenote: Reading.]

[Sidenote: Lewes’s view.]

The words, phrases, and sentences of the printed or written page should
call up in the mind of the reader that for which they stand in the mind
of the author. What the stream of thought should be in reading a book is
well worthy of careful consideration. G. H. Lewes, in “Problems of Life
and Mind,” claims that “our thought is a constant interchange of ideas
and images, some trains of thought being carried on mainly by images
more or less vivid, others mainly by ideas with only a faint escort of
images.” It should be said, by way of explanation, that he does not use
the word “ideas” in the Platonic sense of patterns fixed in nature, of
which the individual objects in any given class are but imperfect copies,
and by participation in which they have their being; nor in the sense of
a mental image or picture, which (in opposition to Sir William Hamilton),
the Century Dictionary claims, has been the more common meaning of the
term in English literature since the sixteenth century. In Lewes’s pages
ideas never stand for images, nor for copies of sensations. Sully says
that the term idea is used to include both images and concepts, marking
off the whole region of the representative from the presentative, but
that, like the term notion, it now tends to be confined to concepts.
With Lewes all ideas are thoughts, but not all thoughts are ideas. He
does not reject the popular usage of the word in phrases like the idea
of Shakespeare’s Othello, of Bismarck’s policy. Take the following
sentence from Justin McCarthy’s “History of Our Own Times:” “Unluckily,
Lord Palmerston became possessed with the idea that the French minister
in Greece was secretly setting the Greek government on to resist our
claims.” In thinking the thought of this sentence the mind is not filled
with any images of Greece or mental pictures of any other kind. Possibly
the adjective Greek may bring to the minds of some persons the map symbol
of Greece or even scenery and cities in Greece, especially if they have
travelled or resided there; but such mental pictures really interfere
with the current of thought in reading. In planning a route from New
York to San Francisco one is apt to think it in the lines and dots of
railway maps. That in the mind for which words stand may be styled their
meaning, and Lewes claims that much of our reading does not translate
the words into their full signification, but proceeds by a process of
logical symbolism. He asserts that “the greater proportion of all men’s
thinking goes forward with confident reliance on the correctness of the
logical operations, and with only an occasional translation of symbols
into images. The translation—verification—does, indeed, from time to time
take place, and always in proportion to the novelty of the connections;
but how easily and how fatally the mind glides along the path of logical
operation without pausing to interpret more than the relation of the
symbols is humorously illustrated in the common story of a physicist,
whose claim to omniscience was the joke of his friends. Being asked
earnestly whether he had ‘read Biot’s paper on the malleability of
light?’ ‘No,’ he replied; ‘he sent it me, but I have not yet had time to
read it.’”

[Sidenote: An example.]

Lewes’s meaning is made somewhat clearer by two examples which he uses.
“Suppose you inform me that the blood rushed violently from the man’s
heart, quickening his pulse, at the sight of his enemy. Of the many
latent images in this phrase, how many were salient in your mind and
in mine? Probably two,—the man and his enemy,—and these images were
faint. Images of blood, heart, violent rushing, pulse, quickening, and
sight were either not revived at all or were passing shadows. Had any
such images arisen, they would have hampered thought, retarding the
logical process of judgment by irrelevant connections. The symbols had
substituted _relations_ for these _values_,—the logical relations of
inclusion and exclusion which constitute judgment. You were not anxious
to inform me respecting the qualities of blood, heart, pulse, etc., but
only of a certain effect produced on one man by sight of another; and
this effect you expressed in the physiological terms which came first
to hand; you might have expressed it equally well in very different
psychological terms,—‘fierce anger seized the man’s soul, rousing all
his energies at the sight of his enemy,’ when assuredly there would not
have been present images of ‘anger,’ ‘seizing,’ ‘soul,’ ‘rousing,’ and
‘energies.’ These terms are symbols which stand for clusters of images,
and can at will be translated into images, just as algebraic letters
stand for values which can be assigned. But for purposes of thought
and calculation such translation is unnecessary, is hampering; all
that is necessary is that the terms should occupy their proper logical
position.”[38]

[Sidenote: Another example.]

The other example is still more striking. “Suppose I read the phrase,
‘The ship which carried Nelson was appropriately named the Victory;’
unless the ship itself is the prominent interest, I have probably no
image at all, or at least only a faint and fleeting shadow of some vague
outline. I do not picture a man-of-war, I do not see the hull, masts,
cordage, and cannon, though these, with the figure-head, fluttering
flags, and pennons, may successfully emerge if I dwell on the ship. I
perhaps do not see Nelson, or, at any rate, do not see his pale face, one
eye, and one arm, but only some faint suggestion of a human form. The
purpose of the phrase was not to raise images, but to communicate a fact
respecting the name of the ship; and my intelligence has been occupied
with this purpose. I must, it is true, have understood each word, or,
at any rate, each clause of the sentence; but for this understanding
it is not necessary that I should translate, nor even that I should be
capable of translating, each word into an image or cluster of images;
it is enough if I apprehend a series of logical relations. We all use
occasional words with intelligent and intelligible propriety, the meaning
of which as isolated terms we cannot translate. We read Shakespeare and
Goethe without a suspicion of the many words which for us have no images.
But if one of these words occurs in an unfamiliar connection we are at
once arrested, as we are if any familiar word is placed in an unfamiliar
position. Suppose we come upon the sentence, ‘The ship which carried
Nelson was named _Victory_; the ship which carried Napoleon across the
desert was named _Akbar_,’—we are at once arrested; the connection of
ship and desert is unusual, and is seen, on reflection, to be contrary to
experience; but when we learn that the camel is called the ‘ship of the
desert,’ we recognize the new value assigned to the term, and the logical
correctness of the phrase is thereby recognized.”[39]

These examples, and others like them which Lewes gives, bring us face
to face with the proposition that “much of our thinking is carried on
by means of symbols without any images, which is the same thing as
thinking being carried on by words without any meanings and with only the
accompanying intuition of their logical relations.” Thus, after a century
of exhortation against the blind use of words we are brought face to face
with the question of using words in thinking without realizing the full
meaning, an abuse of words for which reformers have shot their arrows at
rote teaching from every possible point of view. What truth is there in
the statement of Mr. Lewes? What can be his meaning?

[Sidenote: Literature.]

[Sidenote: Imaging in poetry.]

[Sidenote: The correct plan.]

It must be admitted that men in mature life skim newspapers, magazines,
and books, especially books of fiction and books of reference, without
realizing in their minds the import of all the words upon which the eye
falls. The aim may be to get the plot of the story or a fact for some
specific use, or a hurried view of the news and current events of the
last twenty-four hours. But this is not the kind of thinking which the
teacher aims to beget in the minds of his pupils. Nor does it ever lead
to a just appreciation of literature. All literature which appeals to the
imagination cannot be read and enjoyed in that way. No one can rightly
read a choice selection without thinking what was in the author’s mind,
reconstructing the images and scenes which were before his mental eye and
following the movements depicted by his language. Movement is more easily
conceived than scenery, and abounds in the stories which are most popular
among children. Judicious exercises will soon enable the pupil to call up
all kinds of imagery. In the Standard Fifth Reader it is suggested that
the pupils sit with closed eyes and close attention while the teacher
or one of the pupils reads a paragraph or stanza. For illustration, Kate
Putnam Osgood’s poem, entitled “Driving Home the Cows,” is selected.

    Out of the clover and blue-eyed grass
      He turned them into the river lane;
    One after another he let them pass,
      Then fastened the meadow bars again.

    Under the willows and over the hill
      He patiently followed their sober pace;
    The merry whistle for once was still,
      And something shadowed the sunny face.

    Only a boy! and his father had said
      He never could let his youngest go;
    Two already were lying dead
      Under the feet of the trampling foe.

    But after the evening’s work was done,
      And the frogs were loud in the meadow-swamp,
    Over his shoulder he slung his gun,
      And stealthily followed the foot-path damp;

    Across the clover and through the wheat,
      With resolute heart and purpose grim;
    Though the dew was on his hurrying feet
      And the blind bat’s flitting startled him.

    Thrice since then had the lanes been white,
      And the orchard sweet with apple-bloom;
    And now, when the cows came back at night,
      The feeble father drove them home.

    For news had come to the lonely farm
      That three were lying where two had lain;
    And the old man’s tremulous, palsied arm
      Could never lean on a son’s again.

    The summer days grew cool and late:
      He went for the cows when the work was done;
    But down the lane as he opened the gate
      He saw them coming, one by one:

    Brindle, Ebony, Speckle, and Bess,
      Shaking their horns in the evening wind;
    Cropping the buttercups out of the grass;
      But who was it following close behind?

    Loosely swung in the idle air
      An empty sleeve of army blue;
    And worn and pale, from the crisping hair,
      Looked out a face that the father knew.

    The great tears sprang to their meeting eyes
      For the heart must speak when the lips are dumb;
    And under the silent evening skies
      Together they followed the cattle home.

[Sidenote: Some thoughts are not images.]

Who can fully appreciate these stanzas without picturing the landscape of
clover, blue-eyed grass, meadow bars, river lane, cows moving homeward,
and especially the boy with the shadow on his face, the two older
brothers lying dead under the feet of the trampling foe? The subsequent
parts of the poem lend themselves to the activity of the imagination,
to a play of sympathy for the father seemingly bereft of all his sons,
until on a summer day cool and late he sees fluttering in the wind an
empty sleeve of army blue, beneath a face that he knew,—a scene which,
if constructed by the imagination, cannot help stirring the emotional
life of the reader and giving him proper tones and inflections in oral
reading while more fully realizing the price paid in war for the saving
of the nation. Very much of our thinking does not turn on images or
mental pictures. We do not primarily think justice, law, kindness, mercy
under the form of images, though by a secondary process we can throw
these ideas into concrete examples and image them as occurring in life.
Very many ideas cannot be made concrete in that way, as, for example,
the ideas of infinity, eternity. Sometimes an indistinct or faded image
does duty for the idea of horses in general, but in such cases the image
is representative of the idea, and should not be confounded with the
idea. Both are thoughts, but not all thoughts are ideas or images. Many
thoughts are propositions and cannot be imaged at all.

[Sidenote: Putting content into words.]

The images which go with words grow in fulness as one’s experience
enlarges. Take the word fire. The first idea was formed from fire in
the stove and in the smithy. A fuller idea resulted from the sight of a
distant mountain on fire. Then a distant conflagration resulting in the
loss of a block of town property gave the word still fuller content.
Finally, the destruction of the State Capitol, in which part of the
manuscript of a book, other valuable papers and records were destroyed,
and in which one or two friends almost lost their lives, gave a meaning
to the word fire which it never had before. Without doubt it hampers the
mind and impedes the logical processes of thought if the word invariably
calls up the idea of these fires with the accompanying emotions.

[Sidenote: Books on mathematics and other sciences.]

We saw the value of the labor-saving devices introduced by the symbols
and formulas of mathematics and other sciences. Analysts carry forward
long trains of thought by means of symbols whose meaning can be, but
is not always, called up with the successive links of the chain of
reasoning. In adding a column of figures, in solving an algebraic
equation, in reading a work on higher mathematics or logic, in thinking
the formulas of chemistry, physics, astronomy, etc., and in dealing
with objects, forces, and relations which have been accurately and
definitely quantified, the thinking may be carried forward by the use
of symbols which can be interpreted and applied whenever the occasion
requires, but whose meaning is not always present to the mind. In reading
of things which have not been quantified, the stream of thought often
flows on without images, or mental pictures, or copies of sensations.
Nevertheless, the examination of any school reader or book of selections
from the best literature will show how our best writers and orators
appeal to the imagination, and to what a large field the method of
thinking in images or mental pictures is applicable for the purpose of
securing due appreciation of good literature and proper expression in
oral reading.

The simplest thinking is the comparison of objects when these are present
to the senses. It prevails largely in the handicrafts and in the ordinary
duties of life. More difficult is the comparison of images or mental
pictures of things when these are not present to the senses, but must be
recalled by the memory. This thinking is essential to the appreciation of
poetry, to the vivid presentation of thought, and should not be neglected
by those who wish to move the multitudes with tongue or pen. “Imaging,”
says Dryden, “is in itself the very height and life of poetry, which,
by a kind of enthusiasm or extraordinary emotion of the soul, makes it
seem to us that we behold those things which the poet paints.” Higher,
from the scientist’s point of view, is the thinking in substitute symbols
which stand for ideas definitely fixed or quantified. Higher still is
the comparison of abstract and general ideas through expressive symbols,
including their application to the problems of life; for this is the kind
of thinking that characterizes the scientist and the philosopher, the
engineer and the surgeon, the editor and the orator, and, in fact, all
whose vocation has risen to the rank of a profession. But highest of all
is the thinking which creates and invents, begetting progress in science
and art, in literature and history, in government and civilization.



XV

THE STREAM OF THOUGHT IN WRITING, SPEAKING, AND ORAL READING

    The highest joy is the freedom of the mind in the living play
    of all its powers.

                                                          SCHILLER.

    The historian Niebuhr, speaking of the historian’s vocation,
    remarks that he who calls past ages into being enjoys a bliss
    analogous to that of creating. With still more truth may we
    say of that mind which is able, in the conscious awakening of
    all its powers, to give full and satisfactory utterance to its
    thick-coming thoughts, that it enjoys the joy of a creator. If
    there is one bright particular hour in the life of the educated
    man, in the career of the scholar, it is that hour for which
    all other hours of student-life were made,—that hour in which
    he gives original and full expression to what has been slowly
    gendering within him.

                                                             SHEDD.

    Unless a man can link his written thoughts with the everlasting
    wants of men so that they shall draw from them as from wells,
    there is no more immortality to the thoughts and feelings of
    the soul than to the muscles and bones.

                                                           BEECHER.


XV

THE STREAM OF THOUGHT IN WRITING, SPEAKING, AND ORAL READING

[Sidenote: The first speech.]

Eventful in his career is the day on which a young person speaks in
public for the first time. His hands and arms are in his way; his lower
limbs quake; his lips and throat feel dry and parched; the vocal organs
refuse to obey his bidding; he experiences other discomforts which he
cannot explain and which are due to embarrassment and nervousness. What
is worst of all, he cannot tell what has gone wrong in his mind. If his
speech was committed, the memory fails to recall some word or sentence
that seems absolutely essential to the sequence of thought. If he speaks
extemporaneously, the stream of thought stops flowing, or turns back
in eddies, or perhaps spreads out over all the land instead of moving
towards the proper goal. In fact, all these annoyances have their fontal
source in the mind, in a play of emotions in which stage-fright is the
principal element. To this young man some trusted friend should whisper,
“Take courage;” for if ever in his life a young man needs encouragement
it is when he makes his first speech or preaches his first sermon.

[Sidenote: Public speakers are made, not born.]

Public speakers are made, not born. Native talent is helpful, but not all
sufficient. Most of the obstacles to success disappear as soon as one has
learned to think on his feet; that is, to control the stream of thought
when facing an audience.

[Sidenote: Dangers of fluency.]

There are, of course, exceptions to all rules. Some young men possess
an amount of self-confidence which is proof against embarrassment. Such
youth are sometimes gifted with a flow of words that is fatal to ultimate
success. It enables them to fill time without previous preparation.
Bautain describes a “fatal facility a thousand times worse than
hesitation or than silence, which drowns thought in floods of words, or
in a torrent of copiousness, sweeping away good earth and leaving behind
sand and stones alone. Heaven keep us from these interminable talkers,
such as are often to be found in southern countries, who deluge you,
relatively to anything and to nothing, with a shower of dissertation and
a down-pouring of their eloquence. During nine-tenths of the time there
is not one rational thought in the whole of this twaddle, carrying along
in its course every kind of rubbish and platitude. The class of persons
who produce a speech so easily and who are ready at the shortest moment
to extemporize a speech, a dissertation, or a homily, know not how to
compose a tolerable sentence; and I repeat that, with such exceptions as
defy all rule, he who has not learned how to write will never know how to
speak.”[40]

No one stands in greater need of the discipline derived from the use of
the pen than those who overflow with words and sentences. Their dearth
of ideas can be remedied in no other way. The sentence which escapes
from the lips is fleeting and soon forgotten. The sentence in black
and white, which stares you in the face from the written page, can be
read and re-read until its lack of sense and its wealth of nonsense and
absurdity grow too glaring to be endured. Paragraph after paragraph can
thus be tested, condensed, and stuffed full of meaning. This discipline
ultimately enables a fluent talker to speak with force and to the point,
because it gradually transforms his habits of thinking, deepening the
stream of thought and enabling it to carry craft too weighty to be borne
by a shallow stream.

[Sidenote: Hesitating speakers.]

The person who is afflicted with hesitation and embarrassment also
stands in sore need of the discipline of writing. In the solitude of the
home one can take time to find and fix the right word, to weave it into
sentences that stand the test of grammar, logic, and rhetoric, and to
arrange a line of thought from which everything irrelevant is excluded.
Embarrassment vanishes with the advent of the feeling that one has
something to say. The growth of language, which invariably accompanies
the evolution and clarification of thought, corrects hesitation. Soon
the hands drop to the side or obey the will in gesture, and the feeling
of ease begins to color the delivery. Nothing more beneficial can happen
to a young preacher than the call to preach the same discourse a number
of times in succession, each time to a different audience. Repetition
will make him a master of the train of ideas, improving his phraseology,
and deeping the stream of thought. Who has not watched with delight the
improvement in the presentation of a lecture heard from the same lips
half a dozen times in succession? The change for the better was due to
the deepening, straightening, and improvement of the channel in which the
stream of thought seems to flow.

[Sidenote: Writing.]

If a student several times each month during a college course writes out
and fixes a line of argument for a debate, he can acquire the power to
fix and retain the thoughts as fast as he writes. The habit of memorizing
the words is, of course, pernicious, because it is apt to make him the
slave of his manuscript, to destroy his freedom in meeting the blows of
an antagonist, and to divest him of the glow of feeling and animation
which gives force to the delivery while the mind is engaged in the
elaboration of the argument. The sequence of ideas rather than of words
should be fixed in the mind, very much as the student of Euclid fixes
in his mind, not the words, but the ideas which constitute the chain of
proof. This kind of practice gives a young speaker the sense of security
without destroying his freedom in modifying the line of thought while
standing upon his feet.

[Sidenote: Criticism.]

From this point of view the folly of much criticism in teaching is
very apparent. The current of thought is frequently interrupted by
drawing attention at the wrong time to mistakes in grammar and errors of
pronunciation. The proper time for such criticism is after the movement
of thought has reached the goal; and even then the critic should not call
attention to too many defects at one time; otherwise the effect will be
to discourage and bewilder the pupil.

[Sidenote: The thought.]

The stream of thought is the most essential thing in writing, speaking,
and oral reading. The management of face and hands and feet, the
postures of the body, and the vocal utterance should, of course, not
be neglected. The intelligent counsel of a good friend is needed to
point out mannerisms and eccentricities. The practice prescribed by a
wise teacher is helpful in pruning the delivery of defects and harmful
habits which are sure to grow where attention to the thought sinks the
delivery into the subconscious realm. Nevertheless, the main thing in
writing and speaking is the stream of thought. A profound truth was
stated by the Kentucky backwoodsman, who said that he would have it in
him to become as great an orator as Henry Clay, were it not that he found
himself lacking in two things: Whenever a favorable opportunity for a
great speech presented itself he never knew _what to say_ nor _how to
say it_. The how is more easily acquired than the _what_. Both should
receive attention, from the kindergarten to the university. The getting
of something to say is invention. It is the one thing in which special
teachers and special courses give least help. The power of invention is
acquired by years of effort and discipline. Tributaries from many sources
must pour into the stream of thought before it becomes full, copious, and
capable of carrying great thoughts, or of supplying the motive power for
great undertakings.

[Sidenote: Hinderances.]

In writing nothing should be allowed to interfere with the stream of
thought. Some can write in the midst of noise. Others must seek silence
and solitude. Gifted men like Horace Greeley can write in the cars, upon
the knee, anywhere. Habit has much to do with the art of composing. In
any event, the stream of thought must be kept flowing. In so far as
the rules of grammar, logic, rhetoric have become unconscious guiding
principles, they do not interfere with the evolution of thought. In so
far as they absorb the attention and hinder the flow of thought, they
should be cast to the winds during the first glow of writing. Better
think of these during the process of rewriting, polishing, and correcting.

So great a thinker and successful a writer as Charles Darwin makes the
following suggestive statement concerning his own methods of composing:

[Sidenote: How Darwin composed.]

“There seems to be a sort of fatality in my mind, leading me to put at
first my statement or proposition in a wrong or awkward form. Formerly
I used to think about my sentences before writing them down; but for
several years I have found that it saves time to scribble in a vile hand
whole pages as quickly as I possibly can, contracting half the words;
and then correct deliberately. Sentences thus scribbled down are often
better ones than I could have written deliberately.”[41]

No one should speak as he writes, nor should any one write as he speaks.
Few men are satisfied with the stenographic report of a speech, exactly
true to the language at the time of delivery. A reporter who cannot make
a speech read better, without changing the line of thought, than if it
were printed exactly as spoken is not a master of the art of reporting.
Written discourse abounds in longer sentences, in more involved
constructions, in forms of diction which please the eye, but are too
cumbersome for the voice and the ear. The public speaker is prone to use
short, simple sentences in which the subject of the sentence does not
pass out of the mind before the predicate is reached. His style abounds
in questions which arrest the attention of the hearer; if necessary, he
indulges in colloquial expressions to which the ears of the hearer are
accustomed, thereby bringing himself nearer the common people.

[Sidenote: Fox’s opinion.]

[Sidenote: Written discourse.]

Upon a speech delivered in the British Parliament high praise was
bestowed in the hearing of Mr. Fox. “Does it read well?” he inquired.
“Yes, grandly,” was the reply. “Then,” said he, “it was not a good
speech.” It may be difficult to point out exactly wherein speaking
differs from writing so far as the stream of thought is concerned; yet
one feels the difference. Austin Phelps shows the difference by using an
extract from an essay on the “End of God in Creation:”

“What was the final cause of creation? The transition from the
unconditioned to the conditioned is incomprehensible by the human
faculties. What that transition is, and how it could take place, and
how it became an actualized occurrence, it is confessed on all hands
are absolutely incomprehensible enigmas. We cannot reasonably imagine,
then, that, if we are thus ignorant of the nature and mode of this
stupendous fact, we can nevertheless comprehend its primitive ground,
can explore its ultimate reasons, can define its final motive. Nor can
we think to unveil the infinite soul at that moment when, according to
our conceptions, the eternal uniformity was interrupted and a new mode
of being, absolutely unintelligible to us, was first introduced. We
cannot think to grasp all the views which were present to that soul,
extending from the unbeginning past to the unending future, and to fathom
all its purposes, and to analyze all its motives. If anywhere, we must
here repel everything like dogmatic interpretation of the phenomena, and
admit whatever is put forth only as conjectural in its nature, or, at
all events, partial, and belonging far more to the surface than to the
interior of the subject.”

[Sidenote: Example of spoken discourse.]

One can easily see how ill adapted to oral delivery these sentences are.
Phelps throws the same leading thoughts and succession of thoughts into a
form adapted for public speaking:

“Why did God create the universe? Creation is incomprehensible to man.
What is creation? How was it possible? How did it ever come to be? I
cannot answer. Can you? Every man of common sense confesses his ignorance
here. But if we are ignorant of what creation is, and how it is, can we
imagine that we understand why it is? Shall we think to unveil the mind
of God in the stupendous act? That moment when God said ‘Let there be
light’ was a moment of which we can know nothing but that ‘there was
light.’ Shall we think to see all that God saw? Can we look through the
past without beginning, and the future without end, and fathom all His
purposes and all His motives? Can we, by searching, find out God? If we
must repel assertion anywhere, we must do so here. Whatever we may think,
it is but little more than guess-work. At the best it can be but knowing
in part. The most we can know must be on the surface. It cannot penetrate
to the heart of the matter.”[42]

[Sidenote: Two kinds of style.]

The plan of writing down a line of discussion helps to clarify the
thought. Casting aside the manuscript as soon as the sequence of ideas is
fixed in the mind emancipates the speaker from the written page. Several
years of practice develop two kinds of style, one adapted for writing,
the other for speaking. After this stage of development is reached, it
may be no longer necessary to formulate on paper every line of argument.
Nevertheless, the pen cannot be laid aside entirely without detriment to
the quality of the thought and the effectiveness of oral discourse.

[Sidenote: Dictating.]

Everything calculated to interfere with the stream of thought should, so
far as possible, be eliminated from the act of composing. Some men find
the pen an irksome drain upon their energy and vitality. Their thought
moves faster than they can write. The employment of a stenographer aids
them in the work of composing. The danger against which they must guard
is a growing dislike to the use of the pen, and a deterioration of their
style resulting in the obliteration of the difference which distinguishes
effective speaking from successful writing.

[Sidenote: Lectures and orations.]

There is a radical difference between a lecture and an oration. Public
speaking which partakes of the nature of the lecture, aiming primarily
at instruction or the communication of knowledge, may be assisted by
experiments, by maps, charts, and pictures upon the screen, by specimens
and models designed to throw light upon the theme under discussion.
Public speaking which partakes of the nature of oratory, its aim being to
move the will to action, is generally limited in the appliances it can
utilize, and in the way it must appeal to the hearer. It must not exhaust
the attention of the hearer by consuming his time in the establishment of
principles, and in showing, by lengthy details, how results are obtained.
Far better is it to cite authorities, to quote their language if
necessary, and to make the application to the case in hand. In referring
to recognized standards, like a dictionary, a treatise on law, or the
Sacred Scriptures, it is always best to quote the exact words. This is
also more appropriate on the written page than a reproduction of the
thought in inferior forms of statement. In public speaking, however, the
original statement may be too involved, and a breaking up into shorter,
simpler sentences may aid the forward movement of the stream of thought.
The first aim of the speaker is to be understood. If he fails to reach
the understanding, he can neither persuade nor convince, nor spur the
will to action.

[Sidenote: Starting in too high a key.]

There is another limitation to the kind of public speaking which partakes
of the nature of oratory. The idea which the speaker seeks to have
realized in the vote, or verdict, or conduct of others, must be carried
back to the necessary ideas of the hearer. The full discussion of this
peculiarity in the stream of thought belongs to treatises on rhetoric.
Such a discussion can be found in Theremin’s Rhetoric, translated by
Shedd. Suffice it to say that the recognition of this principle makes
the speaker a more thoughtful man. It causes him to rely for the effect
he seeks to produce upon solid and sterling qualities rather than showy
rhetoric. It tends to make the stream of thought flow deeper, fuller,
yet clearer and with more power. Any interference with the stream of
thought while the speaker is before the audience may be disastrous.
The crying of a child, or an outburst of feeling in the audience,
or some other mishap may disconcert his mind. Legouvé tells how the
world-renowned advocate, Berryer, lost a very good cause by unconsciously
starting his speech in too high a key. “His temples soon felt the unusual
fatigue of the larynx; from the temples it passed to the brain; the
strain being too great, the brain gave way; the thought became confused,
and the language disarranged and indistinct.” He broke down in open court
because he never thought of descending from the lofty perch on which
his voice started at the beginning of his plea. Legouvé claims, and the
experience of many speakers confirms the claim, that the abuse of the
high notes has not infrequently affected injuriously the orator’s very
flow of thought.

[Sidenote: The three generals.]

Three generals made stump speeches on a joint trip during the last
Presidential campaign. One day the name of the candidate of the other
great political party was mentioned, when there was a perfect storm of
applause in the gallery. A second reference elicited similar applause,
and the disconcerted general, who had bravely faced the enemy on the
battle-field, took his seat. The next general, walking on a crutch,
came forward, and requested that all who had been sent to disturb the
meeting should rise. Ho one moved. He exclaimed, “There are some cowards
here.” Then he asked that all who had come to listen and learn should
rise. Everybody rose. He exclaimed, “There are some liars here.” Next
he announced that any one attempting to disturb the meeting would be
pitched out of doors, the general on the crutch declaring he would
lead the attack. Soon a man arose as if to ask a question. Whereupon
a big burly policeman threw the fellow out, and there was no further
outside interference with the stream of thought in the mind of speaker
or listeners. The man on the platform always has the advantage over
disturbers in the audience, provided he is master of his faculties, full
of resources, and quick at repartee.

[Sidenote: The schools of France.]

[Sidenote: The reading lesson.]

The schools of France have been quoted to show the uselessness of
exercises in oral reading. As in other things, so in school matters,
distance lends enchantment to the view. Legouvé, in his lectures on the
“Art of Reading,” mentions with approval that in the great Republic of
North America reading aloud is justly considered one of the very first
elements of a child’s education, whilst in France, reading aloud does not
reach even the sorry dignity of a diverting art, but is regarded as a
curiosity, a luxury, often something hardly better than a pretension.[43]
This was written several decades ago, and may not be just to the French
nation at this time. The value of oral reading depends upon the way
in which it is done. If it amounts to no more than calling words and
parrot-like imitation of the teacher’s manner of reading, the exercise is
a waste of time. The mastery of the new words and of the thought embodied
should precede the attempt to read a lesson aloud. The mastery of the
words involves ability to recognize them at sight, to pronounce them with
fluency and ease, and to spell them by letter and by sound. It implies
both a knowledge of their meaning and ability to use them in a sentence.
An average series of readers has a vocabulary of five thousand words. The
meaning of all these words may be known at sight, but ability to use them
by tongue or pen is quite another thing, the vocabulary of most persons
being not much in excess of a thousand words. The thought can be mastered
by an exercise in silent reading, followed by the oral and written
reproduction of the lesson. The mastery of the thought is a condition of
proper vocal utterance.

[Sidenote: Acting and reading.]

[Sidenote: Reading and talking.]

There is a difference between acting and reading. The actor endeavors
to speak and act after the exact manner of the character whom he
impersonates. The reader aims to suggest the thought instead of imitating
the original actors. An actor will go through the motion of stabbing
or shooting an enemy; the reader simply aims to suggest the thought of
what was done. Exercises in breathing, gesture, tone, pitch, cadence,
voice may be needed for the sake of correcting defects; nevertheless,
everything connected with oral reading should turn on and culminate in
the stream of thought. If anything else is made the object of chief
regard, the main purpose of oral reading is lost. It furnishes an
excellent test by means of which the teacher can determine whether the
pupil understands what he reads or is merely calling words after the
manner of a parrot. To correct the unnatural tones acquired in the
school-room, the pupil is wisely exhorted to read as he would talk. In
the effort to develop a style of reading exactly like talking, some
teachers ruin their natural way of talking and reading. In conversation,
they talk as if they were trying to read. While reading, they seem to be
trying to talk. The human voice is so made that it puts the quotation
marks to selections recited from memory and to sentences read from a
manuscript or book. As a rule, a person can read best what he himself
has written; yet his voice tells whether his sentences and thoughts are
framed and evolved at the moment of delivery, or taken from a manuscript
prepared beforehand. As a matter of fact, no one can read as he talks or
speaks. A blindfolded listener could tell when Spurgeon was reading or
speaking. The same was true of Charles Sumner, and of every other great
speaker America has produced.

[Sidenote: Abiding thoughts.]

To think the best thoughts of the best men is the privilege of him who
can read. To plant these thoughts in other minds by reading aloud is a
noble achievement. To give in speech something from our own resources
that others shall treasure is nobler still, because it links our life
with the creative workers of the world. But noblest of all is it to
write what shall be read by our own and future generations, in our own
and other lands, as a source of light and life, of uplift and enjoyment.
The worst punishment that can befall a human being is to be cut off from
participation in the movement of the race towards greater well-being
and perfection. One naturally desires to employ his gifts and powers
for the benefit of mankind. The stream of thought determines what we
shall accomplish. If others are to be benefited by our thinking, they
must think our thoughts. The stream of our thought must carry ideas of
interest and value to them, ideas they will care to get and keep. If
our thinking is busy with things of transient interest, transient will
be our influence over others. If our thought is to abide, it must deal
with verities of eternal moment to humanity, with the works of Him who
made the heavens and the earth, with the truth of Him who is “the same
yesterday, to-day, and forever.”



XVI

KINDS OF THINKING

    “What we want is not the example of Democritus, who put out
    his eyes that, ceasing to read, he might think the more; or
    the example of Pythagoras, who devoted his evenings to solemn
    reflections on the events of the day. We want men and women of
    all-round activities who will set apart an hour for thought’s
    own sake, and thus fulfil the exhortation of a wise man whose
    practice it was to ‘sort his thoughts and label them.’”

                                                    T. S. KNOWLSON.

    “People read a great deal more than they used to do,—there
    is more to be read,—but they think less. The chief danger of
    to-day is that of intellectual apathy. Life is so complex, the
    struggle for existence is so keen, and pleasures of various
    kinds so cheap and abundant, that men and women seem to live
    entirely on the surface of things. What we need is a call to
    independent thought.”

                                                              IBID.


XVI

KINDS OF THINKING

[Sidenote: Equivocal terms.]

[Sidenote: The term _thinking_.]

[Sidenote: Kinds of thinking.]

As was pointed out in the first chapter, the word _thinking_ has several
meanings. One can hardly write or speak on education without using the
word in more senses than one, and it is not always convenient to break
the line of thought or discussion by indicating with a definition the
meaning intended. This is a violation of Pascal’s rule, that no terms
in the least obscure or equivocal shall be used without defining them.
Pascal possessed one of the most remarkable intellects the world has ever
known. His style has been described as a garment of light. Few thinkers
have attained, to an equal degree, clearness of expression and perfect
grasp of the truth. Nowhere are these qualities more essential than in
lectures and treatises on teaching. It is a misfortune that so useful
a word as _thinking_ should ever be ambiguous. The use of equivocal
terms leads to misunderstandings in theory and faults in practice. The
advantage of technical terms lies in the fact that after they have
been clearly defined they can always be used in the same sense. The
disadvantage in the use of technical terms is that they convey no meaning
to minds unfamiliar with the terminology of the specific science to
which they belong. Hence the best thinkers cannot escape the necessity
of employing words in current use to convey their thoughts. As soon as
words pass into common parlance they acquire a variety of meanings and
of shades of meaning. The thought of a people is always more or less
in advance of their vocabulary; the same word must be used in several
meanings, because no other term equally simple and convenient can serve
as a substitute. No one, for instance, can write or speak in the English
language without using the word _is_ in both its figurative and its
literal sense. The connection must show what signification is intended.
The same remark applies to the word _thinking_. The connection must show
whether it is used in the colloquial sense of guessing, or in the logical
sense of a comparison of two ideas through their relation to a third,
or in the broader sense of imaging, reflecting, and reacting upon what
one reads or hears, or in a still broader sense, to designate any form
of mental activity. Since the popular mind employs the word as a general
term to cover the entire intellectual life, it is convenient to specify
kinds of thinking by the use of adjectives like independent, loose,
continuous, organic, technical, scientific, and other qualifying phrases.
Inasmuch as these distinctions are made for the purpose of characterizing
differences observed in the thought-processes of the maturer life for
which our pupils are to be trained, it is helpful to glance at them for
the purpose of seeing the bearing of what we do at school upon habits of
thought beyond the school.

[Sidenote: The independent thinker.]

What is meant by an independent thinker? Evidently one who is not
indebted to others for the inferences which he draws or the conclusions
at which he arrives. Many practices at school are subversive of habits
of independent thinking. The assignment of lessons of such length
and difficulty that the weaker pupils must rely upon their stronger
classmates for help, or resort to “coaches, keys, and ponies” for
assistance, makes them helpless instead of self-reliant, and cultivates
the memory at the expense of the understanding. The lessons should be
graded so as to beget the sense of mastery. Every difficulty that is
overcome by a pupil’s own efforts tends to develop in him an ambition to
conquer other difficulties. Few, if any, joys can be compared with the
ecstatic joy of victory. Moreover, it should be the aim of the teacher
to beget in the pupil a love of truth more potent and profound than
reverence for a favorite authority. On the contrary, the feeling of
independence and the desire of distinction by differing from other people
may grow into a passion. This seldom does much harm in the case of an
editor or a professor. If you give either of them leave to criticise and
to print, he is well satisfied. If he is elected to a board of managers
or the national assembly, his critical faculty and his fondness for
finding fault and thinking differently from other people may make him
a hinderance to the leaders, who must get things done, or cause him to
stand apart, like Ewald, in the German Reichstag, as a one-man party,
whose views must be ignored on all questions requiring prompt action or
immediate decision. To counteract this tendency in a youth of strong
personality, it is difficult to devise anything better than the moulding
supremacy of class-spirit, the chastening influence of a contest in the
literary society, and the relentless lessons which a boy gets on the
play-ground when he will not play because the game does not go his way.
Independence of thought in the quest of truth, on the one hand, and
concert of action for the public good, on the other, are two of the most
useful lessons to be learned at school. At this point there is room for a
kind of child-study apart from a syllabus of set questions, and leading
to results which cannot be tabulated in statistics or averages. The
average in such cases is untrue as a guide, and may be utterly subversive
of correct habits of thinking, or the correct method of dealing with the
individual. To give enough optional or specific work for the brightest,
and not too much general or required work for the slowest, is an ideal
hard to realize in the assignment of work, and yet of supreme importance
in the endeavor to develop habits of independent thinking.

[Sidenote: Independent thinking and popular government.]

There is great need for independent thinking under a system of popular
government, especially on the part of those who exercise the elective
franchise. In the modern caucus or convention one man often does the
thinking for the rest. “If he is the man whom I follow, I call him my
leader. If he is the man whom you follow, I call him your boss.” When the
leader or boss is not sufficiently sure of his ability to bind the others
by his orders, those who have a following are invited to a conference, at
which a line of action is agreed upon to relieve the multitudes of the
trouble of thinking. A delegate who was giving very vociferous vent to
his feelings was rebuked by a colleague, saying, “Just think where you
are.” He replied with more emphasis than elegance, “I was not brought
here to think, but to shout.” Independent thinking is as hard work as
the average man cares to do. He craves a guide, an authority to relieve
him of the trouble of thinking for himself. Outside of their particular
vocation or profession it is absolutely necessary at times for the
strongest intellects to accept the conclusions of other thinkers. The man
who has been successful at making money, and who finds that his thinking
in financial matters is trustworthy, often makes himself obnoxious by
assuming that his opinions and conclusions should be accorded equal
weight in every other sphere of human activity. There is no better
place to teach the individual his limitations without destroying his
independence as a thinker than the atmosphere of a great university.

The dependent thinker is aptly described by a writer in _Leisure Hours_
in the following language:

[Sidenote: The dependent thinker.]

“It is sometimes amusing to hear a man of this order coming out strongly
with opinions which he would have you believe are thoroughly independent
and original, but which you can trace directly to the source from which
he got them. You could indicate those sources if it were not uncivil to
do so, very much as a shrewd but not very well-behaved old gentleman
is said to have indicated at church, in a tone sufficiently loud to be
heard by the clergyman and the congregation, too,—which was especially
galling,—the authors to whom the said clergyman had been indebted for
his sermon, ‘That’s Sherlock; that’s Tillotson; that’s Jeremy Taylor.’
‘I tell you what, fellow, if you don’t hold your tongue, I’ll have you
turned out of church.’ ‘That’s his own.’”

The men who must depend upon others to do their thinking for them deserve
pity and commiseration. The bureaus which thrive by furnishing essays
and orations for commencements, sermons for special occasions, and even
for the regularly recurring Sunday services, show how often our schools
make their pupils dependent instead of self-reliant. On being cast upon
the sea of life, their minds resemble a craft which has lost its rudder;
they drift with wind and tide, uncertain where they shall land. Their
thinking is not grounded on first principles; hence their minds reflect
transient views on every question. The strong personality in the sunlight
of whose influence they happened last to bask moulds their opinions
and directs their intellectual life until they move into the sphere of
new influences, constantly resembling those whom Randolph of Roanoke
stigmatized as dough-faces because their votes were under the control of
party leaders and were cast regardless of their convictions of right.

[Sidenote: Continuous thought.]

The men whom the world reveres as great thinkers have been distinguished
by their ability to give continuous thought to whatever engaged their
serious attention. Newton claimed that he made his discoveries by always
thinking about them. His biographers relate how he would for hours remain
seated upon his bed, half dressed, absorbed in thought, forgetful of his
surroundings. Stories of the absent-mindedness of Socrates, Sydney Smith,
Neander, Edison, and many others who attained eminence as philosophers,
authors, or inventors, are interesting indeed, but they throw no light
upon the way in which these men acquired their marvellous powers; they
merely show a capacity for focussing all the energies of the soul upon
one point to the exclusion of sense impressions from without. It is
very certain that men who excel in any line of work acquire habits of
concentrated and continuous thought in one direction. Very different from
these are the mental habits of the boy and the average man. A writer in
_Cornhill Magazine_ describes their intellectual activity as follows:

“The normal mental locomotion of even well-educated men and women (save
under the spur of exceptional stimulus) is neither the flight of an
eagle in the sky, nor the trot of a horse upon the road, but may better
be compared to the lounge of a truant school-boy in a shady lane, now
dawdling passively, now taking a hop-skip-jump, now stopping to pick
blackberries, and now turning to right or left to catch a butterfly,
climb a tree, or make dick-duck-drake on a pond; going nowhere in
particular, and only once in a mile or so proceeding six steps in an
orderly and philosophical manner.”

[Sidenote: Loose thinkers.]

[Sidenote: Organic thinking.]

The thoughts of some men resemble mosaic work. Each part is beautiful in
itself, but has no inner connection with those next to it. Men of this
class are called loose thinkers; it is always difficult to retain what
they say. The thinking of a totally opposite class of men resembles the
growth of an organism. They start from a germinal idea, which, like seed
sown into good soil, begins to grow, throwing out parts which have inward
connection and which together constitute an organic unity. In a machine
any part can be replaced by another. In the organism no such substitution
is possible. For each organ bears a life relation to the whole, and if
it is wanting the unity of the organism is destroyed. Organic thinking
gives the hearer the feeling that the several parts and inferences of
a discourse are evolved from his inner consciousness. Having had the
germ-idea in his mind, he feels as if he had held all it involves; the
speaker supplied the conditions of development as the sun supplies warmth
for vegetable growth. The effect of such thinking is irresistible. The
branches of study which thus grow out of a fundamental idea, and show
the inner relation between the subjects not as a mere sequence, but as
a living organic relation, have an educative value which cannot be too
highly prized. The organic thinker, if he makes himself understood, has
the audience on his side; and his cogency can seldom be refuted except by
showing either that his germinal idea is wrong or that his conclusions
have no connection with his premises.

[Sidenote: Harris on stages of thinking.]

Dr. Harris has drawn attention to three stages of thinking. He claims
that in the first stage things are regarded as the essential elements
of all being, that in the second the mind discovers relations,—truly
essential relations,—and that in the third stage the mind thinks the
self-related. “Self-relation is the category of the reason, just as
relativity is the category of the understanding, or non-relativity
(atomism) the category of sense-perception.” Theoretically this
distinction is important as giving us a rational basis for the knowledge
of God as revealed to man. Practically, every child thinks the idea of
God. Where the study of science or philosophy leads to atheism, the wish
is always father to the thought.

[Sidenote: Technical and scientific thinking.]

Clifford has made a distinction between technical and scientific
thinking. The former enables one to do with skill and accuracy what has
been done heretofore. The latter partakes of the nature of prophecy or
prediction. He claims that scientific as well as merely technical thought
make use of experience to direct human action, but that while technical
thought or skill enables a man to deal with the same circumstances he has
met before, scientific thought enables him to deal with circumstances
different from any he has met before. In his opinion, scientific thought
is human progress itself. An example or two can best be given in his own
language.

“If you make a dot on a piece of paper, and then hold a piece of Iceland
spar over it, you will see not one dot, but two. A mineralogist,
by measuring the angles of a crystal, can tell you whether or not
it possesses this property without looking through it. He requires
no scientific thought to do that. But Sir Rowan Hamilton, the late
Astronomer Royal of Ireland, knowing these facts, and also the
explanation of them which Fresnel had given, thought about the subject,
and predicted that by looking through certain crystals in a particular
direction we should see not two dots, but a continuous circle. Mr.
Lloyd made the experiment and saw the circle, a result which had never
been even suspected. This has always been considered one of the most
signal instances of scientific thought in the domain of physics. It
is most distinctly an application of experience gained under certain
circumstances to entirely different circumstances.”[44]

Clifford compares two well-known achievements in the domain of astronomy
which help to set the distinction between technical and scientific
thought in a still clearer light:

“Ancient astronomers observed that the relative motions of the sun and
moon recurred all over again in the same order every nineteen years. They
were thus enabled to predict the time at which eclipses would take place.
A calculator at one of our great observatories can do a great deal more
than this. Like them, he makes use of past experience to predict the
future; but he knows of a great number of other cycles besides the one of
nineteen years, and takes account of all of them; and he can tell about
the solar eclipse of six years hence, exactly when it will be visible,
and how much of the sun’s surface will be covered at each place, and to
a second at what time of the day it will begin and finish there. This
prediction involves technical skill of the highest order, but it does
not involve scientific thought, as any astronomer will tell you. By such
calculations the place of the planet Uranus at different times of the
year had been predicted and set down. The predictions were not fulfilled.
Then arose Adams, and from the errors in the prediction he calculated
the place of an entirely new planet that had never yet been suspected;
and you all know how the new planet was actually found in that place.
Now this prediction does involve scientific thought, as any one who has
studied it will tell you. Here, then, are two cases of thought about the
same subject, both predicting events by the application of previous
experience, yet we say one is technical and the other scientific.”[45]

[Sidenote: Science as knowledge of things in their causes and relations.]

The foregoing distinction may be valuable in the training of university
students whose career is to be that of original research and discovery,
but it has very little value for teachers in schools of lower grade. For
ordinary purposes, science is the knowledge of things in their causes and
relations. If the teacher begets the habit of asking why, and makes the
pupils dissatisfied with simply knowing the how and the what, he has gone
far towards making them thinkers in the scientific sense of the word.

How shall the knowledge of things in their causes and relations be
attained? The mind first thinks things as isolated units apart from and
without reference to other things. Under the impulse to know it resolves
the thing into its elements or constituent parts, and then puts them
together in a more complete idea of each thing as a whole. The boy whose
curiosity impels him to take apart a watch or clock is following the bent
of the mind to proceed analytically. If he does not try to put the pieces
together, so that the reconstructed whole will keep time as before, he
needs stimulus in the direction of synthetic thinking. Soon his interest
in time-pieces leads him to detect similarities between American watches
and those made in Switzerland, and he learns to classify time-pieces,
to see a multitude of details and peculiarities at a glance, one
characteristic or peculiarity bringing to his mind the distinctive parts
and construction of every watch in a given class. From the way in which
a given watch keeps time, he draws inferences in regard to the entire
class. This is inductive thinking. From the conclusions he has framed, he
makes up his mind as to the new watch which the jeweller offers him for
sale. He is now thinking deductively.

[Sidenote: Distinction between laws and causes.]

From thinking things as units, the mind passes to thinking the relations
of things. The adaptation of means to ends in play, in ministering to
bodily wants, occupies the mind in very early stages of thinking. The
gifts of the kindergarten appeal to this tendency in the mind, and help
to develop it into habit and faculty. Design and its execution, means and
end, the tool and its use, the raw material and the purpose for which
it is to be used, thought-material and the essay in which it is to be
formulated,—these are so many ways of thinking things or ideas in their
relations. Not only may a relation become a distinct object of thought,
but relations between relations, classes of relations,—for instance, in
simple and compound proportion,—can thus be made to stand apart before
the mind as distinct objects of thought. The most important of all these
relations is that of cause and effect. How things come to be, their
origin and development, the forces that make them what they are, are
the questions of profound and abiding interest to the scientific mind.
Laws are often spoken of as if they were causes. A law is a generalized
statement of an invariable sequence of things or motions of things. We
sometimes personify these sequences, and speak of them as if they were
forces in nature. The laws are personified, as if they were conscious
beings demanding obedience, and inflicting punishment for disobedience.
The consciousness of the personification is lost, and then along with
spelling nature with a capital letter, we fall into the mistake of
making laws stand for the Maker and Creator of all things. Furthermore,
it is very important to distinguish the ground of knowledge from causes
that are operative in the world outside of mind. The rain of last night
caused the streets to be muddy; but the condition of the streets, an
effect of rainfall, may be the ground of our knowledge that it must have
rained last night. The fact that the earth is flattened at the poles,
or, in other words, that its curvature is less at the poles than at the
equator, explains the fact that degrees of latitude get longer as we
approach the poles. The former is the cause, the latter is an effect.
But the mind drew the former as an inference from the determination
of degrees of latitude by actual measurement. The effect became the
ground of knowledge. Frequently the cause is known or inferred from its
effect. That which is causal in the world of mind is effect in the world
outside of mind; and that which is effect in nature becomes the ground of
knowledge in the processes of thought. From this point as vantage-ground,
we spy the land in which thinking becomes knowing.



XVII

THINKING AND KNOWING

    When a man’s knowledge is not in order, the more of it he has
    the greater will be his confusion of thought. When the facts
    are not organized into faculty, the greater the mass of them
    the more will the mind stagger along under its burden, hampered
    instead of helped by its acquisitions.

                                                        H. SPENCER.

    That knowledge cannot be gained without more or less of correct
    and prolonged thinking is a practical maxim which no one would
    be found to dispute. But that there is much knowledge which
    does not come by _mere_ thinking is a maxim scarcely more to
    be held in doubt. Thinking is, then, universally recognized
    as an important and even necessary part of knowing; but it is
    not the whole of knowing. Or, in other words, one must make
    use of one’s faculties of thought as an indispensable means
    to cognition; but there are other means which must also be
    employed, since it is not by thought alone that the human mind
    attains cognition.

                        LADD’S “PHILOSOPHY OF KNOWLEDGE,” page 130.


XVII

THINKING AND KNOWING

One morning a teacher was awakened by a noise, the like of which he had
never heard and hopes never to hear again. It was unlike anything in his
former experience. Soon he began to distinguish the hissing of steam and
the moaning of men, but the cause was still a mystery. Later, he learned
that the blast furnace in the neighborhood had exploded, and that several
men were killed and others had been seriously injured by the explosion.

[Sidenote: Interpretation of sense-impressions.]

The cause of the noise could not be inferred, because there was nothing
in his former experience with which it could be compared. The escaping
steam and the voices of the suffering workmen were recognized because
they could be interpreted in the light of what he had seen and heard
before. In order that any one may derive definite knowledge from
sense-impressions, there must be something in past experience to give
meaning to the new experience.

Observation that issues in knowing is coupled with a process of thought
in which the new perception is linked to the ideas which the mind brings
to the perception. In other words, observation always involves the
element of thinking; without thinking, sense-impressions cannot give us
knowledge.

Knowing is impossible without thinking, and yet not all thinking gives
ripe to knowing. What is the relation between the two?

[Sidenote: What is knowledge?]

Knowledge has been defined as firm belief in what is true on sufficient
ground. The explanation of this definition which Locke gives is well
known to every student of philosophy. “If any one is in _doubt_
respecting one of Euclid’s demonstrations, he cannot be said to _know_
the proposition proved by it; if again he is fully _convinced_ of
anything that is not true, he is mistaken in supposing himself to know
it; lastly, if two persons are each _fully confident_, one that the moon
is inhabited, and the other that it is not (though one of these opinions
must be true), neither of them could properly be said to _know_ the
truth, since he cannot have sufficient _proof_ of it.”[46]

[Sidenote: Belief.]

The foregoing definition consists of three parts,—1, firm belief; 2,
in what is true; 3, on sufficient ground. In common parlance, belief
is distinguished from knowledge, the latter implying a higher degree
of assurance than the former. In some treatises on psychology belief
denotes all forms of assent, including the highest possible certainty and
conviction. The expression _firm belief_ excludes the element of doubt
from knowledge.

[Sidenote: Truth.]

Truth, according to the etymology of the word, signifies that which the
mind trows or believes to be fact or reality. It has its source in God,
whilst knowledge proceeds from man. To be true, a proposition must be
in exact accordance with what is or has been or shall be. Truth exists
apart from the cognitions of the human mind. It would continue to exist
if the mind of man were blotted out of existence, and there was truth
long before the intelligence of man was called into being. The aim of
thinking is to find out and lay hold of the truth. Thinking in which
truth and error are mixed may have value as partial knowledge and as a
stepping-stone to fuller knowledge. Knowledge becomes full and complete
only in so far as it contains the truth, the whole truth, and nothing but
the truth.

[Sidenote: The ground of knowledge.]

Full knowledge implies a basis upon which it may rest. There may be
sufficient ground for the firm belief which constitutes the essence of
knowledge even when the truth cognized is incapable of full and complete
demonstration.

[Sidenote: The reason why.]

It is natural for a child to believe. The statements of others are
accepted as true without question, so long as the child has not been
deceived by others. Hence many teachers have assumed that their chief
function is to ask the reason _why_, so that belief in what is true may
be based upon sufficient ground, and that nothing shall be accepted as
true until it is proved. This was one of the erroneous views under which
Pestalozzi labored. He justified the undue attention paid to mathematics
in his school on the ground that he wished his pupils to believe nothing
which cannot be demonstrated as clearly as two and two make four.
Whereupon Père Girard replied, “In that case, if I had thirty sons I
would not intrust one of them to you; for it would be impossible for you
to demonstrate to him, as you can that two and two make four, that I am
his father and that I have a right to his obedience.”[47]

[Sidenote: Exhaustive study.]

[Sidenote: The question how.]

The progress of a pupil may be hindered by too much emphasis upon the
ground of knowledge. The human mind cannot make an exhaustive study of
very many things. Exhaustion is a term applied by logicians to a method
of proof in which “all the arguments tending to an opposite conclusion
are brought forward, discussed, and proved untenable or absurd, thus
leaving the original proposition established by the exclusion of every
alternate.” Speaking positively, we may say that exhaustive study of
a subject explores it in all its bearings and relations as well as
in its nature and essence. In every subject the known is bounded by
the unknown; new methods of preparation and investigation constantly
reveal novelties in whole classes of objects which it was supposed had
been studied exhaustively. The specialist seeks to know all that has
been brought to light in his field of research, and to push out the
limits of knowledge beyond the goal reached by his predecessors. The
thoroughness of the specialist is not required in elementary instruction.
The writer knows of a teacher who for an entire term kept a class of
boys at work upon highest common factor and least common multiple on the
plea that they did not thoroughly understand these subjects. No better
plan of disgusting boys with arithmetic and algebra could have been
devised. Thorough knowledge of these two subjects involves reasoning and
demonstrations more difficult to grasp than half the theorems in Euclid.
Instead of aiming at exhaustive treatment, the true teacher is satisfied
with knowledge adequate for the subsequent work of the course. If the
pupil has reached the stage where he can appreciate the reason why, it
may be (though it is not always) wise to raise this question, and to
insist on a comprehension of the proof. Very often the mind has enough
to do in trying to see _how_; the question _why_ then interferes with
the mastery of the mechanical operations. Let any adult take up a system
of arithmetic with which he is unfamiliar, say the arithmetic based on
counting by fives, or by twelves, or by thirties (each of the last two,
mathematically speaking, better than the arithmetic based on tens), he
will soon find it is work enough at first for his intellect to perform
the operations of adding, subtracting, multiplying, and dividing without
reference to the philosophic explanations which exhaustive study would
require at every step in the operations.

[Sidenote: When knowledge is clear, when distinct.]

Descartes applied several of the technical terms of optics to the science
of mind, and in this he has been followed by Locke, Leibnitz, and others.
An object seen at a great distance or in insufficient light looks
obscure; as the eye approaches, or as the dawn increases, the object, as
a whole, becomes clear enough to be distinguished from other objects,
although its constituent parts are still confused. Increasing light or a
nearer approach finally enables us to discern the parts, and the vision
of the object grows distinct. Clear vision occurs where the object, as a
whole, can be recognized; distinct vision occurs when the parts of the
object seen can be recognized. In like manner ideas are said to be clear
as distinguished from obscure, when they are discerned in outline; they
are distinct (opposed to indistinct or confused) when they are discerned
in their elements or constituent parts. Distinct mental vision requires
analytic and synthetic thinking.

Of many objects the mind needs only clear knowledge for ordinary
purposes. One may distinguish two brothers by the total impression of
each which he carries in his mind, and yet be totally unable to tell any
specific marks by which he knows the one from the other. The painter,
on the other hand, cannot be satisfied with this total impression; he
studies the individual features until he has a distinct impression of
their likenesses and differences.

Of the map of one’s own country it pays to know the States and
Territorial divisions. Of one’s State, a knowledge of the counties,
and of one’s county, a knowledge of the townships may be helpful.
For specific vocations more minute knowledge may be desirable. Each
individual mind can well afford to stop with a measure of geographical
knowledge that is adequate for the duties of his vocation and the
purposes of his reading of books and newspapers.

Very little of our knowledge of geography is based upon experience; most
of it rests upon testimony. The eye at a glance may take in the outlines
of an island of the Susquehanna river. The fact that Great Britain is an
island rests upon the testimony of maps; our belief is based upon what we
have always heard and read, and is further strengthened by the absence of
testimony to the contrary. If the fact had ever been questioned, the mind
might hold its judgment in suspense until sufficient ground was found to
warrant a conclusion.

[Sidenote: Value of questions.]

When the knowledge which a pupil has is to be deepened or made more
distinct a series of well-chosen questions may beget the required
thinking. For instance, let us take the case of a pupil who has
reached the stage where his knowledge of the properties of the parts
of speech should be made more complete. Let the teacher ask for the
difference between a pencil and a part of speech, between a noun and a
name, between gender and sex, between number in grammar and number in
arithmetic, between person in grammar and a person like the President
of the United States, between case in grammar and a case in division
of fractions, between tense and time, between mode and manner, between
action and a verb, between the object of an action and the object of a
verb. Comparison will soon show the inaccuracy of the statement that the
direct object of an action is in the accusative case; and the learner
will see that case is a property of nouns, not of objects, and cannot be
predicated of the object of an action, but of the _word_ which _denotes_
the object of the action, which word may be either in the nominative
or the accusative case as the verb is either in the passive or active
voice. Comparison will lead the pupil to see clearly that gender is
a property of nouns, whereas sex or the absence of sex is predicated
of that for which nouns stand. Comparison will serve to bring out the
distinction between number in grammar as a property of nouns indicating
one or more than one, and numbers in arithmetic, of which there are as
many as there are units or collections of units in the universe. Thinking
by comparison will lead to the detection of similarities and differences,
to discrimination, combination, and generalization, and through these to
more distinct and more adequate knowledge.

Questions which draw attention to likenesses and differences, to causal
relations and logical sequences, stimulate analysis and comparison; the
resulting judgments clarify the stream of thought and push the boundary
of knowledge into the regions of the hitherto unknown.

[Sidenote: Theory, true and false.]

The greatest minds when working under the influence of a false theory
fail to arrive at truth. Socrates rejected the view of Anaxagoras that
the sun is a fire, because we can look at a fire, but not at the sun,
because plants grow by sunshine and are killed by fire, and because a
stone heated in fire is not luminous, but soon cools, whereas the sun
always remains equally hot and luminous. Newton did more than all other
thinkers combined to make astronomy a science; his discoveries in physics
and mathematics rank him among the greatest investigators the world has
thus far known; yet he spent many nights trying to find the method by
which the baser metals could be transmuted into silver and gold; his
researches as an alchemist led to nothing, because he was working under
the spell of a false theory.[48]

[Sidenote: Scientists.]

Faraday acknowledged that he was often compelled to give up his
preconceived notions, and in some cases his failures are almost as
instructive as his discoveries. It was characteristic of him to hold
to his theories until he proved them either true or false, and he was
ever ready to reject any hypothesis as soon as he found it inconsistent
with the laws of nature. Newton was willing to suspend judgment for
years upon his theory of gravitation, until more accurate measurements
of the earth’s size and the moon’s distance showed his theory and
calculations to be right. Socrates advised his followers to quit the
study of astronomy, probably because he felt that in his time the data
were not sufficient to warrant definite conclusions. Hosts of instances
can be cited showing that the thinking of the strongest intellects does
not issue in knowing when it is based upon or biassed by a wrong working
hypothesis. And yet it must be confessed that wrong hypotheses may lead
to valuable negative results, as in the case of Kepler’s investigations,
each exploded theory making room for the construction of a theory more
in accordance with the facts. The superiority of men of genius lies in
their love of truth and fidelity to fact; in the facility with which
they construct theories to account for observed phenomena; in the
patience with which they test theory by fact, and in the readiness with
which they reject every hypothesis as soon as it is found to be in
irreconcilable conflict with well-established facts. The average life of
a theory in science is said to be only ten years. The average would be
lower still if all rejected theories had been put into books. The men
possessed of a truly scientific spirit differ from ordinary men not only
in the painstaking accuracy of their observations and in the surprising
fertility with which they frame theories, but also in the habit of
verifying every hypothesis until there is sufficient ground to establish
its truth and to receive it as an addition to the sum total of human
knowledge.

[Sidenote: The common people.]

The common people are quite as ready to frame theories as the scientists
and philosophers. It would be well if they were equally patient in
testing their theories and in verifying their suppositions. The human
mind cannot help generalizing. The moment a child uses a common noun it
begins to classify. Its tendency to pull things to pieces and to put them
together again are exhibitions of the mind’s tendency to treat everything
by analysis and synthesis. Purpose and design, cause and effect early
show themselves in the thinking of children. The teacher need but guide
these activities and give the mind the proper material to work upon; the
result cannot be doubtful if the mind which plays upon the learner’s mind
has been trained to operate according to the laws of thought and the
principles which must guide in the discovery of the truth.

[Sidenote: Doubt.]

Doubt is sometimes the prerequisite of knowledge. To raise a doubt in
the mind of a growing youth may cause him to think. It may cause him to
explore the grounds of his knowledge, to ascertain the rational basis
upon which his beliefs rest, and to reject such as were of the nature
of prejudice or of tradition with no sufficient warrant for acceptance.
Rational belief is far superior to blind faith.

When the doubt is raised in regard to the verities of one’s religious
faith there is grave danger of landing in scepticism or infidelity. What
is truth? may be asked in the spirit of Pilate, who turned away from the
Great Teacher with a despairing sneer and without waiting for a reply.
Pilate had trifled with his own conscience until he could no longer
discern truth and righteousness. Some men need better hearts in order
that they may think and know the highest truth. The hope can be held out
that whenever the truth is earnestly sought by the human heart the soul
will ultimately be guided into a knowledge of the truth. To disturb the
grounds upon which rest the principles of morality and religion is a
dangerous experiment, especially in the case of immature minds. The flood
of doubt may sweep away the solid foundations of a pupil’s moral nature
and leave him a wreck upon the quicksands of vice or upon the rock of
scepticism.

It is the nature of the child to believe, to cherish faith in what others
tell him and in what the world presents to his vision. To disturb the
fervor and strength of this trust before the understanding is ripe for
fuller knowledge may result in life-long injury. The child’s faith in
fairyland, in Santa-Claus, should, of course, be kept from becoming a
source of terror. The stories of ghosts, spooks, and hobgoblins sometimes
employed in the nursery to influence conduct may cause fears, terrors,
and horrors from which it is well to emancipate the child as speedily as
possible through the light of clearer knowledge.

[Sidenote: The desire to know.]

Better than doubt as a stimulus to thought is the desire to know. St.
Augustine was on _fire to know_. The teacher who kindles and keeps
burning this fire in the soul of the pupil has supplied the most powerful
incentive to thought; for without thinking knowledge is impossible of
attainment.

[Sidenote: Full cognition.]

As we may start our wood flaming by coals hot from another’s fire, so we
may kindle a burning desire for knowledge by bringing the mind in contact
with minds that are all aglow with the desire to know. A burning fire may
soon exhaust its fuel if left to itself. The teacher supplies the fuel,
fans the flame, directs its activity for well-defined purposes. Here the
analogy breaks. Instead of smoke and ashes we want living products as
the result of knowing. As thinking leads to knowing, so knowing should
give rise to further thinking. Nowhere is the teacher’s function of
guiding more indispensably necessary than in the interplay of these two
activities. While the learner is engrossed in the pursuit of knowledge,
the teacher is watching the process and the results. He is not satisfied
unless the activity of thinking and knowing ends in full cognition. It
has been well said that a dog knows his master, but does not cognize
him; that to cognize means to refer a perception to an object by means
of a conception. The objects of thought must be sorted and arranged in
groups; the particular notion must take its place in the general concept;
the materials upon which the mind acts must be assimilated and organized
into a unity, showing how each has its origin and how it stands in living
relation to every other part of the organic whole; otherwise thinking
cannot lead to complete cognition.

[Sidenote: The limit of instruction.]

The incident at the beginning of this chapter shows that some preparation
is necessary to interpret sense-impressions and organize the materials
of thought for the purpose of cognition. The degree of preparation
determines how far the instruction at a given time shall aim to go. To
get a clearer idea of the thing to be known may exhaust the learner’s
strength. If so, the presentation should stop at that point. But as soon
as his power and interest are equal to the task he should be led to
analyze the object of thought so as to cognize the constituent elements,
the essential attributes, a process whereby he will arrive at distinct
knowledge. It may be advisable before dropping the inquiry to institute
comparisons between objects of the same class, for the purpose of calling
attention to differences and likenesses and evolving general concepts or
universal propositions. For many thinkers these are the goal of thinking.
If they can resolve the universe to a few simple generalizations,
their minds are satisfied. Nothing more barren can well be imagined or
conceived.

[Sidenote: Application of knowledge.]

Cognition is not complete until the knowledge has been or can be applied.
At times there may be a division of labor and glory in the discovery and
application of truth. The discoveries of Professor Henry which made the
electric telegraph possible involved thinking quite as valuable as the
invention of Professor Morse. The achievement of Cyrus W. Field in laying
the Atlantic cable involved thinking quite as important as the researches
and experiments of Lord Kelvin which made the cable successful.
Interesting examples of such division of labor in thinking cannot justify
neglect of the applications after a general truth has been evolved and
stated.

The instruction may sometimes begin with a statement of applications,
in order to prepare the mind for the thinking that issues in knowing.
The applications of color in the railway service, in navigation, and in
the arts will create an interest in the study of color without which the
presentation of the fundamental ideas may be in vain. Several lecturers
have admitted that they failed, in the presentation of color lessons,
to hold the attention of their pupil-teachers until they excited an
interest in color by indicating important applications. This statement of
applications by way of preparation must, however, not be confounded with
the applications which should follow the framing of general propositions
and the cognition of general truths.

The hypotheses of the scientist correspond to the general truths and
principles which instruction always aims to reach. In all except the most
advanced investigations, the pupil should work under the guidance of
principles that have risen above the hypothetical stage. He should think
under the inspiration of well-established truths. He should master the
known in his chosen field before he seeks to enlarge the boundaries of
human knowledge by invasions into the realm of the unknown. Sad is the
spectacle of a talented mind wasting its strength in fruitless efforts to
rediscover what is already well established.

[Sidenote: The formulation of truths.]

[Sidenote: Similarity in diversity.]

The formulation of truths in mathematical studies is sometimes carried to
extremes. The pupil may at times be allowed to work under the guidance
of principles which he knows by implication, and which he has never had
occasion to formulate in explicit statements. The formulation of the
principles of algebra can be carried into the statement of hundreds of
general propositions. If the pupil is asked to fix all these in the
crystallized or specific form given in the text-book, it may result in a
prodigious waste of time. Furthermore, the effort to follow invariably
any formal steps in the order of instruction is apt to make the
instruction unduly formal and lifeless. No thinker can afford to think
in the set forms of the syllogism while evolving a train of thought.
Conscious conformity to these hinders progress in the spontaneous
evolution of germinal ideas. In like manner, although the student of
pedagogy may find a guide in the rules and principles of his science
while preparing the subject-matter of a lesson, yet, in giving the
instruction, the truth must be the object of chief regard, the centre of
attention in consciousness. Constant thought of prescribed steps makes
the teaching stiff and formal, and dissipates the joyous interest which
accompanies free and spontaneous thinking. Formal rules are very often
like hobbles on the feet of the horse. They impede his speed, rob him of
half his power and energy, and spoil his enjoyment of the open field.
Bearing this in mind, the young teacher will perhaps not be harmed by
the advice that in his teaching he should ever seek to lead the learner
to clear and distinct perception of likenesses and differences in the
subject-matter of each and every lesson. The newer methods of teaching a
beginner to read, wisely draw attention to the points of similarity and
difference in the shapes and sounds of the letters of the alphabet. They
even go to the extreme of comparing sounds with the noises of animals,
with which the child in the larger cities is totally unfamiliar. This
error is not half so bad as the opposite extreme. Very much of the bad
teaching by which the schools are afflicted arises from the assumption
that the learner sees the points of agreement and difference which are
so very obvious to the mature mind of the teacher. The consequence is
mental confusion and loss of the joy of definite thinking. The detection
of likeness in objects having many points of diversity gives the mind an
agreeable surprise. This emotion is an element in the pleasure afforded
by the various forms of wit, metaphor, and allegory. Professor Bain
has shown how greatly progress in science and art is indebted to the
discovery of similarity in the midst of great diversity.[49] Much of the
child’s progress in knowledge must be ascribed to the same principle.
Children notice points of similarity that often escape older persons. On
seeing the picture of a tiger, they call it a cat. A mother who showed
her little daughter, just beginning to talk, the caricature of a man
prominent in the public eye, was surprised to hear the child exclaim,
“Papa.” It was the child’s word for man, as she afterwards discovered.
Where she saw contrast, the child only noticed the points of similarity
between one man and another. As the power of discrimination advances,
the mind pays more attention to points of difference than to points
of likeness. Indistinguishableness gives way to clear and distinct
knowledge. With the further growth of intelligence the mind seeks the
hidden resemblances in objects far removed from one another in space
and time, or by surface appearances. At first sight the bat seems like
a bird, because it can fly. Scientific discrimination assigns it to the
class of mammals. The identification of the lightning in the clouds with
the sparks of the electric machine gave Franklin world-wide reputation
as a philosopher. The identification of the force which causes bodies
to fall to the earth with the force which holds the moon in its orbit,
and with the kind of force by which the sun attracts the bodies of the
solar system, has been justly called the greatest example of the power
to detect likeness in the midst of diversity. The power of detecting
similarity in diversity should be appealed to whenever it is helpful
either for purposes of illustration or discovery. Algebra is shorn
of half its difficulty as soon as the learner is led to see that the
operations in multiplication, division, involution and evolution of
monomials turn on signs, coefficients, and exponents. Let him grasp the
thought that the words add, subtract, multiply, and divide respectively
express the law of exponents in the four operations above named; and he
will not only escape the perplexities of the average student in the more
difficult operations of ordinary algebra, but he will also see at a
glance the beautiful truth which underlies the manipulation of logarithms.

[Sidenote: The thinking that ripens into knowing.]

Thinking that ripens in knowing involves comparison, discrimination, and
formation of judgments. Through the detection of likeness and unlikeness
in objects and their relations, judgments are formed, inferences are
made, and conclusions are drawn, which mark the transition from thinking
to knowing. Discrimination, identification, judgment, reasoning,
definition, division, and classification mark the stages through which
the mind passes in thinking things, their relations, more especially
their causes, effects, laws, and ends. Analysis and synthesis, induction
and deduction, are the processes by which the intellect explores the
content and extent of concepts, and passes to general principles and
truths, and to their applications in thought and action. As processes of
mental activity, these are discussed in detail by the psychologist. The
laws of thought to which they must conform in order to be correct are set
forth in treatises on logic. It would be a mistake to underestimate the
value of a knowledge of logic and psychology; but neither of them can
supply the place and function of the living teacher. He who would learn
to think in some special line of research should go to a master of that
specialty, learn of him what is well established in the chosen field of
study, imbibe his methods of work, think his thoughts, catch his spirit,
and follow his advice until the hour for independent investigation comes.
Great is the tonic effect of a university atmosphere; but greater still
is the bracing influence of the atmosphere created by a specialist who is
both a master in his department and a master in the art of teaching. The
choice of a teacher is of more account than the choice of a university,
either at home or abroad.

[Sidenote: Knowing involves more than mere thinking.]

Thinking is not the whole of knowing. Feeling and willing play an
important part in thinking and knowing. Words like heretic, sceptic,
and sophist have a history which shows the distrust of mankind in pure
intellectual effort. It would be hard to find a better commentary on the
effect of a perverse heart upon the operations of the intellect than the
following paragraph from Max Müller, although it was penned for a purpose
entirely different from the use here made of it.

“No title could have been more honorable at first than was that of
Sophistes. It was applied to the greatest thinkers, such as Socrates and
Plato; nay, it was not considered irreverent to apply it to the Creator
of the Universe. Afterwards it sank in value because applied to one who
cared neither for truth nor for wisdom, but only for victory, till to be
called a sophist became almost an insult. Again, what name could have
been more creditable in its original acceptation than that of sceptic?
It meant thoughtful, reflective, and was a name given to philosophers
who carefully looked at all the bearings of a case before they ventured
to pronounce a positive opinion. And now a sceptic is almost a term
of reproach, very much like heretic,—a word which likewise began by
conveying what was most honorable, a power to choose between right and
wrong, till it was stamped with the meaning of choosing from sheer
perversity what the majority holds to be wrong.”[50]

There are realms in which thought cannot beget knowledge of the truth
until there is a radical change in the wishes and desires of the heart,
in the choice and alms of the will, in the movings of the inmost depths
of the soul.



XVIII

THINKING AND FEELING

    There is much contention among men whether thought or feeling
    is the better; but feeling is the bow and thought the arrow;
    and every good archer must have both. Alone, one is as helpless
    as the other. The head gives artillery; the heart, powder. The
    one aims, and the other fires.

                                                           BEECHER.

    It may be noted that medical men, who are a scientific
    class, and, therefore, more than commonly aware of the great
    importance of disinterestedness in intellectual action, never
    trust their own judgment when they feel the approach of
    disease. They know that it is difficult for a man, however
    learned in medicine, to arrive at accurate conclusions about
    the state of a human body that concerns him so nearly as his
    own, even though the person who suffers has the advantage of
    actually experiencing the morbid sensations.

                                                          HAMERTON.

    When pupils are encouraged to make for themselves fresh
    combinations of things already known, additional progress is
    certain. Variety of exercise in this way is as attractive to
    children as many of their games. If, when such exercises are
    given, the rivalry involved in taking places were discontinued,
    and all extraneous excitement avoided, the play of intelligence
    would bring an ample reward. I plead for discontinuance of
    rivalry in such exercises, because, while it stimulates
    some, in other cases it hinders and even stops the action
    of intelligence. If any teacher doubts this, he may subject
    a class to experiment by watching the faces of the pupils,
    and next by asking from the child who has been corrected an
    explanation of the reason for the correction. Hurry in such
    things is an injury, and so is all commingling of antagonistic
    motives. All fear hinders intellectual action, and the fear
    of wounded ambition offers no exception to the rule. The fear
    of being punished is more seriously detrimental than any
    other form of fear which can be stirred. It is essentially
    antagonistic to the action of intelligence. Let mind have free
    play.

                                                        CALDERWOOD.


XVIII

THINKING AND FEELING

[Sidenote: Bodily conditions.]

In all our thinking it is very important to get a clear and full vision
of the thing to be known. This is not always as easy as it seems. Like
Nelson in the battle of Copenhagen, we may consciously turn the blind eye
towards what we do not like and exclaim, “I do not see it.” The lenses
through which we gaze may be green, or smoked, or ill-adjusted, and thus
without suspecting it we may see things in false colors or distorted
shapes. Our bodily condition may color everything we see and think. In
health and high animal spirits every thought is rose-colored. In periods
of disease and depression everything we think seems to pass, “like a
great bruise, through yellow, green, blue, purple, to black. A liver
complaint causes the universe to be shrouded in gray; and the gout covers
it with inky pall, and makes us think our best friends little better than
fiends in disguise.”

[Sidenote: Prejudice.]

One of the greatest hinderances to correct thinking is prejudice. Hence
all who have presumed to give advice on the conduct of the understanding
have had something to say concerning prejudice. Bacon has a chapter
on the idols of the mind, and Locke contends that we should never be
in love with any opinion. In a charming little volume on the “Art of
Thinking,” Knowlson has a chapter in which he enumerates and discusses
the prejudices arising from birth, nationality, temperament, theory, and
unintelligent conservatism. The list might easily be enlarged. Close
analysis must convince any one that feeling strengthens all forms of
prejudice, and there are very few, if any, fields of thought in which
it is not essential for the attainment of truth to divest ourselves
of preconceived notions and the resultant feelings, and to weigh the
arguments on both sides of a question before reaching a conclusion.

[Sidenote: The wishes of the heart and the conclusions of the intellect.]

A student may take up geometry with a feeling of prejudice for or against
the study, based upon what he has heard from others concerning its
difficulties or the teacher who gives the instruction; but after he has
mastered the demonstration of a theorem he does not lie awake at night
wishing the opposite were true. In the realms of mathematics the wishes
of the heart are not in conflict with the conclusions of the intellect.
In the domain of ethical, social, historical, or religious truth the head
often says one thing and the heart another. “We see plainly enough what
we ought to think or do, but we feel an irresistible inclination to think
or do something else.” In most of the instances in which the study of
science has led to agnosticism the wish was father to the thought. When
two men argue the same question, weighing the same arguments and reaching
opposite conclusions, as did Stonewall Jackson and his father-in-law at
the outbreak of the Civil War, the inclinations and wishes of the heart
must have influenced their thinking.

[Sidenote: Feeling an element in all mental activity.]

Feeling is an element in all forms of mental activity. The intellect
never acts without stirring the emotions. The teacher who reproved a
pupil for showing signs of pleasure and delight over the reasoning of
Euclid, saying, “Euclid knows no emotion,” must have been a novice in the
art of introspection. Who cannot recall the thrill of delight with which
he first finished the proof of the Pythagorean proposition? Mathematics
is considered difficult; the emotions connected with victory and mastery
sustain the student as he advances from conquest to conquest. The effort
which some thinkers make to reduce the phenomena of the universe to a
few universal principles is, without doubt, sustained and stimulated by
a feeling that there must be unity in the midst of the most manifold
diversity.

[Sidenote: Descartes.]

Scientists and philosophers are prone to imagine themselves free from
the prejudices which warp the thinking of the common mind. Descartes
started to divest himself of all preconceived notions; yet he could not
divest himself of the notion that he was immensely superior to other men.
“This French philosopher regarded himself as almost infallible, and had
a scorn of all his contemporaries. He praised Harvey, but says he only
learned a single point from him; Galileo was only good in music, and here
he attributed to him the elder Galileo’s work; Pascal and Campanella are
pooh-poohed. Here is an instance of how pride in one’s own work may beget
a cheap cynicism with regard to the work of others; and how as a feeling
it blinds the mind to excellences outside those we have agreed to call
our own.” Of men in general Jevons, in his treatise on the “Physical
Sciences,”[51] says,—

“It is difficult to find persons who can with perfect fairness register
facts for and against their own peculiar views. Among uncultivated
observers, the tendency to remark favorable and to forget unfavorable
events is so great that no reliance can be placed upon their supposed
observations. Thus arises the enduring fallacy that the changes of the
weather coincide in some way with the changes of the moon, although exact
and impartial registers give no countenance to the fact. The whole race
of prophets and quacks live on the overwhelming effect of one success
compared with hundreds of failures which are unmentioned or forgotten.
As Bacon says, ‘Men mark when they hit, and never mark when they miss.’
And we should do well to bear in mind the ancient story, quoted by Bacon,
of one who in Pagan times was shown a temple with a picture of all the
persons who had been saved from shipwreck after paying their vows. When
asked whether he did not now acknowledge the power of the gods, ‘Ay,’
he answered; ‘but where are they painted that were drowned after their
vows?’”

Sometimes the feeling that a given way of looking at things is
undoubtedly correct prevents the mind from thinking at all. A lady
claimed that she had been taught to accept the statements of the Bible
in their literal sense, and that in this belief she was going to live
and die. She was asked to read the twenty-third Psalm. At the end of
the first verse she was asked whether she could be anything else than a
sheep if the Lord was literally her Shepherd. When, a little farther on,
she was asked in what green pastures she had been lying down, she burst
into tears. Her condition, and that of hundreds of thousands of others,
is correctly given in the opening pages of J. S. Mill’s “Subjection of
Women.”[52]

[Sidenote: J. S. Mill on the influence of feeling upon thinking.]

“So long as an opinion is strongly rooted in the feelings, it gains
rather than loses in stability by having a preponderating weight
of argument against it. For if it were accepted as the result of
argument, the refutation of the argument might shake the solidity of
the conviction; but when it rests solely on feeling, the worse it fares
in argumentative contest the more persuaded its adherents are that
their feeling must have some deeper ground which the arguments do not
reach; and while the feeling remains, it is always throwing up fresh
intrenchments of argument to fill any breach made in the old.”

[Sidenote: Regard for truth.]

When a man’s opinions are, as he thinks, grounded in first principles,
it is but natural that he should be unwilling to abandon them without
a struggle to intrench himself behind impregnable arguments. If he has
reached his conclusions as the result of long and careful inquiry, he has
a right to hold on to them with more than ordinary tenacity. The same
regard for truth which led him to form an opinion should, however, make
him willing to change whenever he finds himself in the wrong. He should
avoid the frame of mind of the Scotch lady who, when it was charged that
she was not open to conviction, exclaimed, “Not open to conviction! I
scorn the imputation. But,” added she, after a moment’s pause, “show me
the man who can convince me.” The secret of this tenacity of opinion is
not love of truth, but love of self,—in one word, pride.

[Sidenote: Emotions are helpful.]

[Sidenote: Dr. Brumbaugh on the emotions.]

In view of the hinderances which certain kinds or degrees of feeling
throw into the way of thinking, it might be inferred that the thinker
must suppress the element of feeling in his inner life. No greater
mistake could be made. If the Creator endowed man with the power to
think, to feel, and to will, these several activities of the mind are
not designed to be in conflict, and so long as any one of them is
not perverted or allowed to run to excess, it necessarily aids and
strengthens the others in their normal functions. Whilst it is a duty to
overcome prejudice, fear, embarrassment, anxiety, and other emotions or
degrees of emotion which interfere with our ability to think correctly,
especially when face to face with an audience or with our peers and
superiors, it is equally a duty to cultivate the emotions which
stimulate thinking and strengthen the will. Without the ability to feel
strongly, it is impossible to stir the hearts of an audience. A strong
character is impossible without strong emotion. Jesus could weep and
denounce. He showed the strongest emotion in his public discourses and
at all the great turning-points of his life. The men and women who have
done most for the race showed the element of strong feeling in their
thinking and in their efforts at philanthropy and reform. It is the
feeling of patriotism that sustains the soldier on the field of battle
and the statesman in the midst of public criticism and personal abuse.
According to Plato, the feeling with which education begins is wonder.
“The elementary school,” says Dr. Brumbaugh, “does its best work when it
creates a desire to learn, not when it satisfies the learner.” Teachers
everywhere are beginning to see that it is the mission of the elementary
school to beget a desire for knowledge that will carry the pupil onward
and upward, and not to make him feel satisfied with a mere knowledge of
the rudiments, so that he will leave the school at the first opportunity
to earn a penny.

Dr. Brumbaugh further says,—

“We must recognize the emotional life as the basis of appeal for all high
acting and high thinking. We can never make men by ignoring an essential
element in manliness. To live well, we must know clearly, feel keenly,
and act nobly; and, indeed, we shall have noble action only as we have
gladsome action,—action inspired of feeling, not of thought. The church
made men of great power because it made men of great feeling.”

[Sidenote: Playing upon the feelings.]

The close connection between thinking and feeling cannot be ignored
without serious detriment to the intellectual development of the pupil.
Some teachers play upon the feelings in ways that prevent accurate
and effective thinking. The tones of voice in which they speak, their
manner of putting questions and administering discipline, their lack of
self-control, and their frantic efforts to get and keep order cause the
pupils to feel ill at ease and destroy the calmness of soul, which is
the first condition of logical thinking. The skilful teacher calls into
play feelings like joy, hope, patriotism, that stimulate and invigorate
the whole intellectual life; he is extremely careful not to stir emotions
like fear, anger, and hate, which hinder clear and vigorous thinking.

[Sidenote: Responsibility for failure at examinations.]

Feeling plays an important part in the examinations by superintendents
for the promotion of pupils, or by State boards whose function it is
to license persons to teach or preach, to practise law, medicine, or
dentistry, or to test the fitness of applicants for some branch of civil
or military service. Examiners are often responsible for the failure
of those whom they examine. If the first questions arouse the fear of
failure, causing the mind to picture the disappointment and displeasure
of parents and teachers and friends, and the other evils which result
from a loss of class standing, the resulting emotions hinder effective
thinking and thus prevent the pupil from doing justice to himself and
his teachers. The expert seeks to lift those whom he examines above all
feelings of embarrassment. With a friendly smile, a kind word, and a few
easy questions he puts the mind at ease, dissipates the dread of failure,
and gets results which are an agreeable surprise to all concerned. If he
cannot otherwise make those before him work to the best advantage, he
will even sacrifice his dignity by the use of a good-natured joke which
turns the laugh upon himself or upon some other member of the board of
examiners. Jokes at the expense of any one of those examined are a
species of cruelty which cannot be too severely condemned, to say nothing
of the effect upon the results of the examination.

[Sidenote: Speculative thinking.]

[Sidenote: Darwin’s experience.]

Within certain limits thinking begets feeling, and feeling stimulates
thinking. Beyond these limits each interferes with the other. When
feeling rises to the height of passion it beclouds the judgment and
prevents reflection. Certain kinds of speculative thinking leave the
heart cold and ultimately destroy the better emotions and the warmer
affections. “It is terrible,” said the daughter of a voluminous writer
on theology, “when a man feels a perpetual impulse to write. It makes
him a stranger in his own house, and deprives wife and children of
their husband and father.” Abstract thinking may be indulged in to the
exclusion of the tastes and emotions which help to make life worth
living. The oft-quoted experience of Darwin is a case in point. In
his autobiography he gives his experience, showing the effect of his
exclusive devotion to scientific pursuits upon his ability to enjoy
poetry, music, and pictures. “Up to the age of thirty and beyond it
poetry of many kinds gave me great pleasure, and even as a school-boy I
took intense delight in Shakespeare, especially in the historical plays.
I have also said that pictures formerly gave me considerable and music
very great delight. But now for many years I cannot endure to read a
line of poetry. I have tried lately to read Shakespeare, and found it so
intolerably dull that it nauseated me. I have also almost lost my taste
for pictures or music. Music generally sets me thinking too energetically
on what I have been at work on, instead of giving me pleasure.... My mind
seems to have become a kind of machine for grinding general laws out of
large collections of facts; but why this should have caused the atrophy
of that part of the brain alone, on which the higher tastes depend, I
cannot conceive.... If I had to live my life again, I would have made a
rule to read some poetry and listen to some music at least once a week;
for perhaps the parts of my brain now atrophied would thus have been
kept alive through use. The loss of these tastes is a loss of happiness,
and may possibly be injurious to the intellect, and more probably to the
moral character by enfeebling the emotional part of our nature.”[53]

[Sidenote: The sight of an audience.]

Every teacher has both felt and witnessed the effect of embarrassment
upon ability to think. To face an audience of a thousand people was
embarrassing to some excellent thinkers like Melanchthon and Washington.
On the other hand, the sight of a multitude of listening, upturned faces
stimulates natures and temperaments like that of Martin Luther and
Patrick Henry, causing them to think more vigorously and to feel more
deeply.

[Sidenote: Great thoughts.]

Great thoughts spring from the heart. This is certainly true of thoughts
which have lifted men to higher planes of effort. And it is true of the
best thoughts and volitions which a pupil puts forth. The desire for
knowledge may develop into the love of truth. The student is half made as
soon as he seeks knowledge for its own sake and values the possession of
truth above all other worldly possessions.

[Sidenote: Interest.]

The Herbartians deserve praise for the attention they have given the
doctrine of interest. The older text-books on psychology seldom refer
to interest as an important element in the education of the child. The
greatest boon which can come to a child is happiness, and this was
impossible in the days when fear of the rod held sway in the school-room.
Then children looked forward to the school with feelings of dread; they
went with fear and trembling. From the day that the children became
interested in their lessons the rod was no longer required. Instead of
crying because they must go to school, they now cry because they cannot
go. Through interest the school becomes the place to which children best
like to go.

[Sidenote: Interest in a clock.]

A boy who was pronounced incorrigible, and who had been transferred
from school to school because he could not get along with his teachers,
at last met a teacher who discovered that he could take apart and put
together watches and clocks. She allowed him to fix her clock, and thus
won his heart. She asked him to explain to the school the mechanism of
instruments for keeping time. His interest in clocks she connected with
the numbers twelve and sixty, then with the time-table, with denominate
numbers, and finally with the whole subject of arithmetic. Interest
in the exercises of the school converted the incorrigible boy into an
obedient and studious pupil.[54]

There is no more important element of emotion for teachers to cultivate
than that which enters into the feeling of interest. Interest sustains
the power of thought, diminishes the need of effort in the direction of
voluntary attention, and lies at the basis of all successful teaching,
book-making, and public speaking. The teacher, the writer, the speaker
who wearies us has lost his power over us. The lesson, the book, the
sermon that interests us has found an entrance to our minds; the greater
the interest the more potent and profound the influence upon the inner
life.

[Sidenote: Interest conditions ability to think.]

The moment a teacher begins to lose interest in a subject, that moment
he begins to lose his ability to teach that subject. From this point of
view the recent graduate has a manifest advantage over the old pedagogue
whose interest in the subjects of instruction has been dulled by frequent
repetition. The latter can keep himself from reaching the dead-line
by keeping up his studies in the allied departments of knowledge, and
by watching the growth of mind and heart in his pupils,—a growth that
always reveals something new and interesting by reason of the boundless
possibilities that slumber in every human being. The interest in the
growing mind is spontaneously transferred to the branches of knowledge
which stimulate that growth, and, in ways that no one can explain, the
interest which the teacher feels is communicated to the pupils whose
minds are prepared to grasp his instruction.

[Sidenote: Fiction.]

By far the larger proportion of books taken from our free libraries are
books of fiction,—books which appeal to our emotional life. It shows
that even those who are habitual readers can be best reached through the
emotions. Of course, the act of reading proves that their feelings are
reached through the intellect; yet it cannot be denied that emotion is
the element of their inner life which sustains the interest in the novel.
Appeals to the intellect which do not touch the heart fail to reach the
deepest depths of our being, and hence fail to stimulate in others the
productive powers of the soul. Only thoughts which come from the heart
can reach the heart. This is true of the child and the adult, of the
reader and the listener, of the scientist and the man of affairs, of the
author and the editor, of the orator and the philosopher, of the teacher,
and, in short, of all whose duty it is to stimulate the thinking and to
influence the conduct of their fellow-men.



XIX

THINKING AND WILLING

    Strong reasons make strong actions.

                                                       SHAKESPEARE.

    Bad thoughts quickly ripen into bad actions.

                                                    BISHOP PORTENS.

    The man of thought strikes deepest, and strikes safely.

                                                            SAVAGE.

    Reason is the director of man’s will, discovering in action
    what is good; for the laws of well-doing are the dictates of
    right reason.

                                                            HOOKER.


XIX

THINKING AND WILLING

Much thinking is spontaneous, in the sense that there is no conscious
effort of the will to direct and control the activity of the mind. Under
normal conditions the stream of thought flows onward, like the current
of water in the bed of a river. When the onward movement is interrupted,
an act of volition may be needed to bring the mind back to the regular
channel. There are forms of intellectual activity called dreaming,
reverie, and meditation, in which the ideas follow each other without
any effort to regulate them. Often they are fanciful, incoherent, and
illogical; they are suggested by passing objects, by musical sounds,
perhaps by the stimulating influence of a drug or narcotic. Few can
start a train of thought, winding up their minds as they would a clock,
and then letting it run down until the discourse, lecture, or newspaper
article is complete, no conscious effort of the will being required to
keep the mind from wandering. This may be partly a gift of nature, but
mostly it is the result of discipline.

[Sidenote: Discipline.]

[Sidenote: Mental discipline.]

What is discipline? We speak of mental discipline, of military
discipline, of family discipline. What is the element which all these
have in common? An army is under discipline when every soldier and every
officer is subject to the will of his superior, so that the entire
body of men can be moved against the foe at the will of the commanding
general. A family is under discipline when the entire household is under
the control of the head of the house. The school is under discipline when
all the pupils are subject to the will of the teacher, and to the rules
which he has laid down for the regulation of conduct. The mind is under
discipline when its powers are under the control of the will, and its
activities are in accord with the laws of thought. It is important to
ascertain the laws of thought which underlie correct thinking. These are
developed and discussed in treatises on logic,—a science that should be
mastered not only by those who must meet others in the field of argument
and controversy, but by all who seek to regulate the thinking of their
own minds, or to aid others in the formation of correct habits of thought.

[Sidenote: Habit.]

Fortunately, the law of habit here comes into play to lighten the
conscious effort of the will. When the intellect, through the guidance of
a conscious will, has acted according to the forms of thought in which
the logician can find no fallacies, it tends to act again in that way,
and the next time a less expenditure of conscious effort is required. The
thinking of the teacher, if correct and logical, tends to beget correct
and logical habits of thought on the part of the pupil. It is a piece
of good fortune to fall under the dominating influence of a towering
intellect. For a time the growing mind that is engaged in thinking
the thoughts, and mastering the speculations, the reflections, the
reasonings, of a master who is such not merely in name, but also in fact,
may be in a subjection very like unto intellectual slavery. Sooner or
later the day of emancipation arrives; and those who were not under the
invigorating tuition of such an intellectual giant are surprised at the
thought-power developed by the youth whose equal they hitherto fancied
themselves to be.

[Sidenote: Volitional control.]

Those who expect to spend their days in teaching, lecturing, preaching,
pleading, or writing have great reason to strive after the discipline
which results in placing all the powers of mind and heart under the
control of the will. The feelings which interfere with reflection should
be repressed and expelled by strenuous effort. The emotions which
stimulate thinking should be cherished and fostered. The inner nexus,
which binds ideas in logical trains of thought, should be followed until
the habit becomes second nature.

Thinking which goes forward according to some established habit
requires less effort than intellectual work that is accompanied with
much volitional effort. This fact serves as a valuable indication to
men who must do intellectual work for the press or the pulpit or the
lecture-room. Perhaps no one is better qualified to speak on this point
than Dr. Carpenter, who studied mental action from the physiological
point of view, and whose publications show the quality, as well as the
quantity, of his intellectual labor. He says,—

[Sidenote: Dr. Carpenter.]

“To individuals of ordinary mental activity who have been trained in the
habit of methodical and connected thinking, a very considerable amount
of _work_ is quite natural; and when such persons are in good bodily
health, and the subject of their labor is congenial to them,—especially
if it be one that has been chosen by themselves, as furnishing a
centre of attraction around which their thoughts spontaneously tend to
range themselves,—their intellectual operations require but little of
the controlling or directing power of the will, and may be continued
for long periods together without fatigue. But from the moment when
an indisposition is experienced to keep the attention fixed upon the
subject, and the thoughts wander from it unless coerced by the will, the
mental activity loses its spontaneous or automatic character; and (as in
the act of walking) more effort is required to maintain it volitionally
during a brief period, and more fatigue is subsequently experienced from
such exertion than would be involved in the continuance of an automatic
operation through a period many times as long. Hence he has found it
practically the greatest economy of mental labor to work vigorously when
he feels disposed to do so, and to refrain from exertion, so far as
possible, _when it is felt to be an exertion_. Of course, this rule is by
no means universally applicable; for there are many individuals who would
pass their whole time in listless inactivity if not actually spurred
on by the feeling of necessity. But it holds good for those who are
sufficiently attracted by objects of interest before them, or who have in
their worldly position a sufficiently strong motive to exertion to make
them feel that they _must_ work; the question with them being, _how_ they
can attain their desired results with the least expenditure of mental
effort.”[55]

[Sidenote: Jokes.]

There is a danger to which public speakers are exposed, against which
the efforts of a resolute will are not too potent. To capture a crowd
that is more easily moved by jokes than by argument, the speaker resorts
to sallies of wit and humor and turns the laugh upon an opponent. The
temptation to cultivate one’s gifts in this direction is very strong,
and when yielded to, it destroys the powers of logical reflection and
consecutive thought. Wit is illogical, because it introduces into
the current of thought what is foreign to the subject in hand, the
incongruity giving rise to the laughter. Wit and humor serve a useful
purpose in acting as a safety-valve to let off the discontent which
accumulates in the human breast, and may be used for that purpose with
great effect. But they should never be allowed to divert the stream
of thought from its logical channel. The reputation for wit and humor
may dispose people to laugh at everything a man says. It destroys their
respect for his judgment and impairs his power to follow a line of
thought to its legitimate conclusion. The ability to discuss a theme in
all its bearings and details implies the power to investigate a subject
in its essence and relations, to resolve an idea into its elements, and
to present these in the form most easily understood,—an object which
is as far from the purposes of the funny man as the poles are from the
equator.

[Sidenote: Forms of thought-expression.]

[Sidenote: Thinking in action.]

All thinking tends towards the expression of thought. “Every expression
of thought,” says Tracy, “whether it be word, or mark, or gesture,
is the result of an active will, and as such may be classed among
the movements.” Word, mark, and gesture do not exhaust the list of
movements by which the mind expresses thought. Every handicraft is a
form of expressing thought quite as important as writing and speaking
and gesticulating. The fine arts and the useful arts are so many ways
through which the will passes into thinking and issues in the expression
of thought. Movements for reform are the intense expressions of great
thoughts which have their origin in the heart. The men who spend their
lives in the atmosphere of colleges and universities are apt to be
satisfied if they have expressed their thoughts in a lecture or on the
printed page. They live in books, and their thinking terminates in books.
The thinking which issues in getting things done, in deeds, actions,
achievements, is undervalued and too often ignored. University men are
waking up to this defect in their thinking. They are throwing themselves
into movements for reform and giving the world splendid examples of the
translation of thought into vigorous action. The effort to carry theory
into practice reacts powerfully upon the mind, forces the individual to
see things as they are, and saves him from the habit of looking only
for things which the schools have taught him to expect. When thinking
issues in doing, the process promotes intellectual honesty. This remark
is especially applicable to exercises in which the hand makes in wood,
metal, marble, or clay what the mind has conceived. The execution cannot
be accurate unless the thinking has been accurate and satisfactory.
Drawing is a universal language. It imposes upon the mind a degree of
accuracy which is wanting in the fleeting spoken word or even in the more
permanent printed or written sentences.

[Sidenote: Thinking in business.]

The movements in manual training are an excellent preparation for the
movements in the handicrafts and the daily occupations by which men gain
the necessaries and the comforts of life. Ten thousand men are active
in supplying our breakfast-table, and many thousand more in providing
clothing, shelter, light, heat, and the manifold necessities and luxuries
of modern society. All these involve thinking quite as useful, as
logical, and as effective as the thinking which ends in talk or printer’s
ink. The relation of thinking to doing and the reflex influence which the
latter exerts upon the former is seen in the solution of problems and in
all exercises involving the application of knowledge. Manual training
is really and primarily a training in thinking, but it is the kind of
thinking most closely related to thinking in things, and its value in
education is so great that it has led to the formulation of the maxim,
We learn to do by doing,—a maxim which deserves separate consideration,
because, as usually applied, it is taken to mean that doing by the hand
necessarily and inevitably leads to thinking and knowing.

[Sidenote: Growth of the will.]

Another aspect of the relation of thinking to willing claims our
attention. Thinking is an important element in the growth of the will.
The education of the will is coming to be recognized as a matter
of supreme importance. The development of character is everywhere
emphasized. No teacher in these days regards intellectual training
as the sole or chief aim of the school. The philosopher is no longer
regarded as the highest type of humanity. The age demands that thought
shall pass into volition, and that volition shall manifest itself in
action. The executive is not satisfied with the investigation of a
subject in its essence and relations, with the elaboration of thought
into a system; he must get things done. Mere thinking he despises. The
philosopher he regards as a man troubled with ideas, the poet as a man
troubled with fancies and rhymes; he hates men who let their minds “go
astray into regions not peopled with real things, animate or inanimate,
even idealized, but with personified shadows created by the illusions of
metaphysics or by the mere entanglement of words, and think these shadows
the proper objects of the highest, the most transcendental philosophy.”
And the sympathies of the multitudes are on the side of the executive in
his exaltation of the will as the chief element of utility and success.

The acts of the will should be guided by intelligence. The will is weak
and vacillating if the ends to be accomplished are not clearly conceived,
if the purposes to be accomplished are not definitely thought out.
Thinking is the guide to willing. Thought gives direction to volition.

[Sidenote: Self-gratification.]

[Sidenote: Self-denial.]

[Sidenote: The right.]

There are successive stages in the growth of the will as clearly defined
as the activities of memory and imagination. In the first or lowest stage
the aim is some form of happiness. In the second stage the will acts
under the influence of some ethical idea, commonly finding expression
in a maxim like the command, Thou shalt not steal, or in some fixed
occupation like a trade or farm work. In the third the will acts under
the inspiration of the good or its opposite, and from motives grounded
in right or wrong. In all these stages of growth thinking is a most
important factor. Let us go into details for purposes of illustration.
The human will in its process of development starts on a physical rather
than a spiritual basis. On the one hand a want is felt and on the other
an impulse towards the satisfaction of that want. In course of time this
impulse or appetence assumes the form of intelligent or conscious purpose
looking towards the gratification of felt wants, and then the will begins
to show itself in the form of clear, definite volitions and actions. The
strength of the will depends largely upon these impulses or appetences;
and their strength in turn depends upon the health, the temperament, the
organization (physical and psychical) of the individual. If by careful
diet, exercise, or otherwise, we invigorate these, we thereby furnish
capital that will in after years bear compound interest in the form of
strong will-power. If the diet, exercise, play, sleep, and work are not
properly regulated, first by the parent, the nurse, and the teacher, and
later by the individual himself, the appetences develop into appetites
that enslave the will and seriously interfere with its further growth. As
the power to think is developed, the will passes over into a higher stage
of activity. The very longing for happiness leads the child to impose
restrictions upon itself. It feels happy if it can secure the approbation
of those with whom it associates. If we show our displeasure at something
it has done, the little philosopher begins to practise self-denial in
certain directions for the purpose of regaining and retaining our good
will. The second stage is now reached in which self-gratification gives
place to self-denial, the will acting under the influence of one or more
ethical ideas. The child at school is lifted upon this loftier plane
by the circumstances which surround him; it must practise the school
virtues,—punctuality, industry, obedience, and the like; it accepts
certain forms of self-restraint in keeping quiet, in abstaining from
play, in observing the rules of the school. Where the discipline is rigid
and the instruction lacks interest, it may even conceive of the school as
a mere place of self-denial and self-restraint. “Why do you come here?”
asked a director. The little boy replied, “We come here to sit and wait
for school to let out.” The hours at school can be sweetened by exercises
in thinking and expressing thought to such an extent that the school
becomes the place to which children best like to go. Some full-grown men
have not advanced very far beyond this second stage in the growth of
the will. They follow some regular occupation as the boy does in going
to school; they practise certain forms of virtue,—say honesty, so that
you could intrust to them your pocket-book with perfect safety,—but
they break the Sabbath, use God’s name in vain, and commit daily many
other sins and transgressions. Occasionally one finds a school in which
no pupil would dare to be caught telling a lie, and yet the moral tone
is low, there being vices which, like a cankerworm, eat out the moral
life of the school. The teacher should not feel satisfied until he has
raised the pupil to the third stage, where the will is brought under the
inspiration of the good, and right becomes the law of life.

Upon this highest plane different phases of development can be detected.
The law of right may brandish the avenging rod of conscience and drive
the individual into paths of rectitude. The idea of duty thus operating
alone may reduce him to the subservience of a slave and prevent him from
reaching the high stature of perfect human freedom. This kind of slavery
is apt to be followed by a struggle in which the lower nature seeks to
assert itself against the higher, and if the latter conquers, the person
is apt to be elated with the feeling of victory. Whenever you hear a man
boast of the sacrifices he has made in his devotion to duty, you can
rest assured he has not yet reached that lofty elevation in will-culture
upon which the person does right spontaneously and without effort, and
never dreams of having made a sacrifice in the performance of the hardest
duties.

[Sidenote: Evil.]

Of course, the development from the first stage may move in the opposite
direction. If the appetences are gratified beyond the requirements of
self-preservation, or of the well-being of the child, they grow into
uncontrollable desires and passions; the individual sinks deeper and
deeper into selfishness. He may deny himself for the sake of some
ambition, or vice, or wicked end which the soul cherishes; then, unless
lifted up by the grace of God, he will ultimately land in a state
bordering on that of Mephistopheles in Goethe’s Faust, a character who
found pleasure in human suffering, and whose will was constantly under
the direction and inspiration of the principle of evil. He will at last
become like Milton’s Satan, who exclaimed, “Evil, be thou my good.”
College boys who delight in hazing innocent freshmen have gone far
towards this loathsome stage of moral degradation, the lowest which the
will can reach in its downward career.

[Sidenote: Thought and volition.]

Now, it is easy to see the relation of thinking to these several stages
of will-development. Volition presupposes something to be done, an end
to be sought and accomplished. If the will is to act steadily in the
endeavor to realize this end, the end must be clearly thought and held
before the soul in definite form. To do the right implies that the right
be known as the result of right thinking. A soul ignorant of right cannot
be expected to practise the virtues which are grounded in the law of
right. On the other hand, many forms of evil are never conceived by young
people unless suggested to them by their superiors.

Volition issues in doing, and doing is a powerful stimulus to thinking.
Making things out of wood, metal, marble, wax, papier-maché, or even
out of paper is genuine thinking in things. It is a species of doing
which flows from thinking through willing and reacts upon the process
of thinking. To see how a thing is made is better than to be told
how, but to make it by our own effort, skill, and thought is vastly
more educative than seeing and hearing. Manual training tends to make
the pupil intellectually honest. He cannot get away from a thought
expressed in wood or other material as he can from a thought expressed
in language which may suffice to suggest his idea, but not to give it
adequate expression. This influence of doing upon thinking has led to
the formulation of the maxim, We learn to do by doing,—a maxim whose
limitations and legitimate meaning it will be necessary to discuss in a
separate lecture.



XX

THINKING AND DOING

    When we turn to modern pedagogics, we see how enormously the
    field of reactive conduct has been extended by the introduction
    of all those methods of concrete object-teaching which are the
    glory of our contemporary schools. Verbal reactions, useful as
    they are, are insufficient. The pupil’s words may be right, but
    the concepts corresponding to them are often direfully wrong.
    In a modern school, therefore, they form only a small part of
    what the pupil is required to do. He must keep note-books,
    make drawings, plans, and maps, take measurements, enter the
    laboratory and perform experiments, consult authorities, and
    write essays. He must do, in his fashion, what is often laughed
    at by outsiders when it appears in prospectuses under the
    title of original work; but what is really the only possible
    training for the doing of original work thereafter. The most
    colossal improvement which recent years have seen in secondary
    education lies in the introduction of manual-training schools;
    not because they will give us a people more handy and practical
    for domestic life, and better skill in trades, but because they
    will give us citizens with an entirely different intellectual
    life. Laboratory work and shop work engender a habit of
    observation, a knowledge of the difference between accuracy and
    vagueness, and an insight into nature’s complexity and into the
    inadequacy of all abstract verbal accounts of real phenomena,
    which once brought into the mind remain there as life-long
    possessions. They confer precision; because, if you are _doing_
    a thing, you must do it definitely right or definitely wrong.
    They give honesty; for, when you express yourself by making
    things, and not by using words, it becomes impossible to
    dissimulate your vagueness or ignorance by ambiguity. They
    beget a habit of self-reliance; they keep the interest and
    attention always cheerfully engaged, and reduce the teacher’s
    disciplinary function to a minimum.

                                                     WILLIAM JAMES.


XX

THINKING AND DOING

[Sidenote: Saying and doing.]

The best methods of instruction in the ordinary school aim at the
expression of thought in language. If a thing has been well said, the
teacher and the examiner are apt to make no further inquiries. Although
the expression of thought in written or spoken language is a species
of doing, there is often a wide chasm between getting a thing said and
having it done. Many of the reforms and revolutions thought out by
university professors never get beyond the room in which they lecture or
the page on which they formulate their ideas. The freedom of speech in
the universities never troubles a despotic government until the ideas
of the professors and students show signs of passing into the life of
the nation. The difference between speech and action, between the man
of words and the man of deeds, has long been felt and emphasized. The
favorite method of teaching by lectures, and requiring the pupil to
take notes, fails utterly if it stops with mere telling how a thing
is to be done, and is not followed by actual doing on the part of the
learner. Work in the shop, in the field, and in the factory often proves
more effective in fitting a boy to earn a living than the theoretical
instruction of the schools. The advantage of doing over telling as a
means of learning has led to the formulation of the maxim, “We learn to
do by doing,” and some educational reformers have announced the maxim as
a principle of education universal in its application. Hence it is worth
while to clarify its meaning and to ascertain its limitations. In so
doing, we shall get a glimpse of the true relation between thinking and
doing.

[Sidenote: The maxim applied to medicine and surgery.]

A young man possessed of unbounded faith in this maxim came to town for
the purpose of practising medicine and surgery. He announced that if
any persons got sick he proposed to give them medicine in the hope of
learning the physiological and therapeutic effects of the various drugs.
If any limbs were to be amputated, he was willing to try his hand, in the
hope of ultimately learning how to perform surgical operations. He was
too simple to succeed as a quack. He did not get a single patient; the
people wisely gave him no opportunity of learning to do by doing.

[Sidenote: The maxim in the other professions.]

Equally foolish were it thus to apply the maxim to any of the other
professions. Would you, with life or property at stake, allow a novice
to plead your cause at court in order that he might learn to plead by
pleading? Who would waste the golden Sabbath hours in listening to one
who was trying to learn to preach by preaching? The civilized world
regards knowledge, which is the product of the act of learning, as the
indispensable guide of those who offer their services at the bar, from
the pulpit, or in the sick-room. When a Yale professor was asked whether
study was required of those divinely called to preach, he replied that
he had read of but one instance in which the Lord condescended to speak
through the mouth of an ass.

[Sidenote: Comenius.]

Even an ass may learn to do some things by continually doing them in a
blind way, and that, too, in spite of his proverbial stubbornness; but
such learning by blind practice is unworthy of the school-life of a being
gifted with human intelligence, and capable, it may be, of filling a
profession. Instinct may guide a bee or a beaver: but knowledge should
guide man in the arts and habits which he acquires. This fact is not
ignored in the maxim as originally given by Comenius. “Things to be
done should be learned by doing them. Mechanics understand this well:
they do not give the apprentice a lecture upon their trade, but they
will let him see how they, as masters, do; then they place the tool in
his hands, teach him to use it and imitate them. Doing can be learned
only by doing, writing by writing, painting by painting, and so on.”
There is in this statement a clear recognition, on the one hand, of the
knowledge-getting which precedes and accompanies all intelligent doing,
and, on the other, of the practice which is needful for the attainment
of skill. The master mechanic seeks first to give his apprentice a clear
concept of what is to be done; and the knowledge thus acquired through
the eye, and perhaps partly through hearing directions and explanations,
is afterwards put into practice by the actual manipulation of tools and
materials. If the maxim had been allowed to stand in this, its original
form and meaning, no one could have objected to its use and application.
But when the attempt was made to elevate it into a principle of binding
force for all teaching; when, furthermore, the form was shortened so as
to widen the meaning, and the maxim was then applied to regulate the
acquisition of every form of human activity, both physical and mental, it
is not surprising that protests were heard, and the necessity was felt of
investigating the maxim for the purpose of ascertaining its limitations
and defining its meaning.

[Sidenote: Value of the maxim.]

Yet we must not fail to make grateful acknowledgment of the services to
education rendered by those who lifted the maxim into prominence. How
often were pupils expected to learn one thing by doing another. Drawing
was advocated because it would improve the penmanship. Silent reading or
thought-getting was to be learned by oral reading or thought-giving. The
alphabet was taught as if the names of the letters would make the child
familiar with the sounds. The idea of number was to be gotten by naming
the numbers or imitating the Arabic notation. Facility and accuracy in
the use of language were to be acquired from exercises in parsing and
analysis. Familiarity with birds, flowers, minerals, chemicals, etc., was
to be gained from the learned phraseology of the text-books. Sometimes
even the teachers knew very little more than the technical terms. When
the great ornithologist, Wilson, visited Princeton College, the professor
of natural history scarcely knew a sparrow from a woodpecker. A great
change has come over Princeton and all other higher institutions of
learning; and the new influence has been felt in our high schools, and
even in the grades below.

[Sidenote: Maxims, principles.]

Whilst cheerfully acknowledging the value of the maxim of Comenius,
we should, nevertheless, insist on the difference between a maxim
which may regulate our conduct in specific cases and a principle
which is an all-controlling guide in operations. Coleridge says, “A
maxim is a conclusion upon observation of matters of fact, and is
speculative; a principle has truth in itself, and is prospective.” It
is always dangerous to generalize upon facts observed in one realm of
investigation, and then to allow others to apply these general statements
to realms as diverse from the original field of observation as mind or
spirit is from matter. The disciples in such cases always manifest the
hidden weaknesses in the system of their master. They rush in where he
would have feared to tread. They push his language to extremes, from
which his deeper insight, broader vision, and larger experience would
have caused him to shrink. Comenius framed the maxim from the observation
of bodily acts; some seek to apply it to every form of human activity.
The original language has been twisted into a statement that sounds
paradoxical. “We learn to do by doing.” What can these words mean? If we
_can_ do a given thing, what need is there of learning to do that thing.
If we cannot do the thing to be learned by the doing of it, how can any
doing on our part issue in learning? Evidently the maxim in its modern
form, if it is at all valid, must partake of the nature of a paradox,
which, though seemingly absurd, is yet true in essence or fact. For
the purpose of testing the validity of a paradoxical statement, there
is no better way than to ascertain its possible meanings, to eliminate
those evidently not intended, and finally to investigate the one or more
senses or interpretations that may legitimately be put upon the language.
The investigation will, in this instance, reveal the relation existing
between doing and the act of learning.

[Sidenote: Analysis of the maxim.]

In the first place, the maxim cannot mean that we learn to do by every
kind of doing. The kind of doing by which the young man hoped to learn
medicine and surgery was ridiculed centuries ago; no one in our day would
advocate mere blind doing as a means of learning. The maxim must refer to
doing guided by an intelligent will. The doing must be guided by thinking
that is based upon correct and reliable data or premises.

Again, the maxim cannot mean that we learn one thing by doing another.
The maxim was emphasized in protest against the absurdity of some of
our methods of teaching. It may happen that the learner accidentally
discovers one thing while seeking to find out some other thing; to expect
that this shall always be the case is to invite disappointment. For
instance, pupils do not learn to spell while studying books if attention
is absorbed in the meaning, and is not drawn, in separate exercises, to
the correct orthography of words that are apt to be misspelled.

[Sidenote: Fatigue.]

There is a third limitation to the maxim on the side of attention. How,
for instance, is the art of writing acquired? It is undoubtedly true that
a boy cannot learn to write without himself writing; it is equally true
that he is not always learning or improving in penmanship while he is
practising with his pen upon paper. From the teacher or the copy he gets
a concept of the letters to be made. The first efforts at imitation are
fraught with defects. The pupil must clearly recognize wherein he failed,
and earnestly strive to remedy the defects, if the next attempt is to
be an improvement. The maxim, if here applied, must mean that the pupil
learns to do by continually doing, as nearly as he can, the thing to be
done. With each step of progress, his concept of the form of the letters
and how to make them becomes more accurate; or, in other words, his power
and skill keep pace with his knowledge. Finally, after much practice,
the nerves and muscles which control the act of writing are properly
co-ordinated; the habit of writing with ease is acquired; the process
becomes largely subconscious, if not altogether automatic. The learner
has at length reached the stage in which his attention is no longer
concentrated upon the form and beauty of the letters, but rather upon
the thought to be expressed, and it is quite possible that henceforth
his chirography will grow more illegible the more he writes. Of course,
he is now learning the art of composing by composing; but he has ceased
to learn in the direction of his handwriting by writing, because the
attention is riveted upon something else. Even before the subconscious
stage is reached, practice, if too long continued, may exhaust the powers
of attention, and doing can no longer issue in learning by reason of
fatigue.

On the score of attention there is a limit to the application of the
maxim in another direction. Talking, oral reading, and public speaking
may be spoiled by too much attention. Practice in these, under the
guidance of an injudicious teacher, may serve to make the gestures too
studied, the pronunciation too precise, and the tones of the voice too
artificial, defects by which the hearer’s mind is drawn from the thought
to the delivery.

[Sidenote: Injudicious criticism.]

The lack of good elocutionary drill in youth is a serious misfortune, yet
the writer cannot help blaming the elocutionists for ruining one public
speaker among his acquaintances. Under their tuition the gestures and
articulation of this friend have become almost faultless; but there is
such a self-conscious air about his platform utterances that the audience
can think of nothing except the delivery. By his efforts at doing he
has learned most emphatically not to do. The same thing may happen in
elementary instruction, and in the practice-schools connected with our
State normal schools. Injudicious criticism by the teacher may so rivet
the attention upon the utterance that the pupils lose sight of the
thought to be expressed, and the more they practise under his guidance
the worse their reading becomes. The vocal and physical elements, in
the act of oral reading or speaking, should spring spontaneously out of
the thought and sentiment to be conveyed. Any drill which interferes
with this natural connection between the mental and the physical is
indescribably bad, and should never be regarded as a means of learning.
Equally severe must be the sentence of condemnation upon much of the
criticism to which pupil teachers are subjected by their fellow-students
and their critic-teachers at our normal schools, and upon the comments
made by candidates for the ministry and their professors upon the efforts
of the embryo preacher during the so-called homiletical exercises.
Injudicious fault-finding leads to a kind of doing which cannot issue in
learning.

[Sidenote: Application.]

[Sidenote: The arm and hand.]

Within these limitations we find a wide field for the application of the
maxim to our efforts at learning to think and to express thought. The
hand performs a very important function in aiding the mind to perfect
its concepts. The metric system remains a dark, confused mass of names
so long as the pupil does not actually handle and use the metric units
of weights and measures. A few days of manual training, during which
the learner is compelled to measure accurately, are of immense account
in developing accurate ideas and accurate thinking. Of all the ways of
expressing thought, those by the hand and the tongue are more perfect
than those by the eye, the face, the gesture, the bodily movement. The
latter are well adapted to express feeling; the former, to express
thought. Few have ever thought of the marvellous mechanism given to a
human being in the arm and hand. A glimpse from the mathematician’s point
of view is here very interesting. A pencil fastened to the end of a ruler
revolving around a fixed point will describe a circle. If the pencil be
fastened to the end of a second ruler revolving around the end of the
first, while the first revolves around the original centre, the pencil
will describe a very complicated curve. If three radii, revolving in this
way, be joined together, the pencil at the end of the third can be made
to describe the cycles and epicycles by which the ancient astronomers
explained the movements of the planets. The modern mathematician has
shown that, by annexing a fourth, a fifth, and a sixth radius, each
revolving around the preceding, while the first is moving around the
original centre, all curves of the fifth and sixth orders can be
described. Let any one examine his right arm, starting from the shoulder
and ending with the fingers, and he will find that since infancy he has
had this mechanism for executing curves and movements, has been using
this wonderful system of revolving radii to express thought, and that
it has been to him a source of skill in thinking and doing. When viewed
in their anatomical and physiological aspects, human arms and hands are
seen to be a still more wonderful mechanism, rivalled only by the tongue
in capability for describing any curve and uttering any kind of thought.
Whilst the tongue may speak many oral languages, the hand writes them
all, and supplies additional methods for expressing thought in drawing,
painting, sculpture, instrumental music, in the various handicrafts, and
in the machines which act like man’s hand made bigger, more powerful,
more tireless.

[Sidenote: Apprentices.]

[Sidenote: Manual training.]

From this point of view one can see a wide field for the intelligent
application of the maxim to our efforts at learning to write, to talk,
to walk, to play on a musical instrument, or to handle the tools of some
handicraft. If questioned with reference to these and kindred activities,
the physiologist would answer that the repeated action of the nerves
and muscles in specific functions fits them the better to act in the
same functions, and that the effect of the exercise of any function may
be stored up so as to increase the facility of the nervous structure
to exercise again every similar function. The psychologist would say
that any normal act performed under the guidance of an intelligent
will leaves, as its enduring result, an increased power to act and a
tendency to act again in like manner. Common parlance, which is apt to
enshrine its wisdom in proverbs, simply says, Practice makes perfect.
Doing, when it engrosses the attention, exerts a reflex influence upon
thinking; after it sinks to the subconscious level it ceases to exert
a helpful influence. The methods adopted in our manual-training schools
are, in this respect, much superior to those pursued under the old
apprentice system. The master mechanic found it to his interest to keep
the apprentice upon one kind of work until a high degree of skill was
attained. He used the apprentice as a means to an end,—the end being the
production of things that would sell and thus reimburse the master for
the time and trouble of teaching his trade to another. The mysteries
of the trade were kept to the last for fear the apprentice would quit
before the expiration of the time for which he was indentured. No better
plan for crushing the intellectual life could have been conceived. The
manual-training school, on the other hand, makes the boy, and not the
product, the end of its training, the object of chief concern. It seeks
not merely to make the man a better workman, but the workman a better
man. No pupil is asked to go through the same movement, to do the same
piece of work, for the purpose of developing skill, until every trace of
interest is gone. Nothing is made for the purpose of selling; everything
prescribed is for the purpose of developing the pupil’s powers, to enable
him to express thought by the use of working-tools and instruments. The
working-drawing and the model are the symbols which come nearest to a
full representation of the thing to be made. The word, the clay, the
stone, the metal, the leather, the cloth, are the materials in which
thought finds its final expression. Nothing is carried so far as to
deaden the boy’s interest in what he is doing; the charm of novelty is
kept up from day to day. If the first product is defective, a new problem
is set, involving the same fundamental operations, or the use of the same
tools and instruments. The manual-training school and the trade school,
if properly conducted, thus become a most valuable means for developing
the power to think in things. It aims to create the power to think, as
well as the power to do; the two are made commensurate and mutually
helpful. The thinking is made to issue in doing, and the doing is kept
from sinking into the subconscious stage, where it tends to degrade the
individual to the mere level of a machine. Within these limitations we
can endorse Professor Wilson’s tribute to the hand, and subscribe to his
demand that, as in the days of Israel’s glory, it shall be trained in
some useful handicraft, not merely as a means of livelihood, but more
especially as a means of making the pupil a better thinker, a completer
man.

[Sidenote: Handicrafts.]

“When I think of all that man’s and woman’s hand has wrought,” says he,
“from the day that Eve put forth her erring hand to pluck the fruit
of the forbidden tree to that dark hour when the pierced hands of the
Saviour were nailed to the predicted tree of shame, and of all that
human hands have wrought of good and evil since, I lift up my hand and
gaze upon it with wonder and awe. What an instrument for good it is!
What an instrument for evil! And all day long it never is idle. There
is no implement which it cannot wield, and it should never in working
hours be without one. We unwisely restrict the term handicrafts-man or
hand-worker to the more laborious callings; but it belongs to all honest,
earnest men and women, and is a title which each should covet. For the
queen’s hand there is the sceptre, and for the soldier’s hand the sword;
for the carpenter’s hand the saw, and for the smith’s hand the hammer;
for the farmer’s hand the plough; for the miner’s hand the spade; for
the sailor’s hand the oar; for the painter’s hand the brush; for the
sculptor’s hand the chisel; for the poet’s hand the pen; and for woman’s
hand the needle. And if none of these, or the like, will fit us, the
felon’s chain should be round our wrist, and our hand on the prisoner’s
crank. But for each willing man or woman there is a tool they may learn
to handle; for all there is the command, ‘Whatsoever thy hand findeth to
do, do it with thy might.’”



XXI

THINKING IN THE ARTS

    A meagre soul can never be made fat, nor a narrow soul large,
    by studying rules of thinking.

                                                 PROFESSOR BLACKIE.

    Have your thinking first, and plenty to think about, and then
    ask the logician to teach you to scrutinize with a nice eye the
    process by which you have arrived at your conclusions.

                                                 PROFESSOR BLACKIE.

    Invention, though it can be cultivated, cannot be reduced to
    rule; there is no science which will enable a man to bethink
    himself of that which will suit his purpose. But when he has
    thought of something, science can tell him whether that which
    he has thought of will suit his purpose or not. The inquirer
    or arguer must be guided by his own knowledge and sagacity in
    his choice of the inductions out of which he will construct his
    argument. But the validity of the argument when constructed
    depends upon principles, and must be tried by tests which are
    the same for all descriptions of inquiries, whether the result
    be to give A an estate, or to enrich science with a new general
    truth.

                                                        J. S. MILL.


XXI

THINKING IN THE ARTS

For centuries men have been disposed to look with disdain upon the
occupations in which the hands and the body are more concerned than the
mind. The arts in which thought predominates were honored above the
handicrafts; and it is only in recent years that educators have begun to
recognize the educative value of thinking through the hand as we find it
exemplified in schools for manual training. A comparison of the various
arts will serve to dignify this kind of training and to set it in a
clearer light before teachers and boards of education.

Mediæval thinkers divided the arts into two classes, which they called
the mechanic and the liberal arts, and enumerated seven arts in each
class.

[Sidenote: Mechanic arts.]

The seven mechanic arts were Agriculture, Propagation of Trees,
Manufacture of Arms, Carpenter’s Work, Medicine, Weaving, and
Ship-building. The primary operations were mechanical, as the name
implies, and hence involved a genuine thinking in things. Their number
has been greatly multiplied; the operations have grown wonderfully
complex; thought upon the activities which they necessitate has led to
the discovery of guiding principles, and some have risen to the rank of
regular professions. The growth and the care of trees have given rise to
forestry. Ship-building and the manufacture of arms involve science of
the highest order. The practice of medicine and surgery requires skill
based upon kinds of knowledge and thinking that are rigidly scientific.
The thoughts which have been crystallized in modern inventions deserve
equal rank with the thoughts which philosophers have woven into systems.
The various trades of civilized society necessitate the expression of
thought through the hand. Manufactures and commerce involve transactions,
operations, and competition requiring the highest intelligence, the most
accurate thinking, the most vigorous effort. Any youth whose training has
fitted him to excel in these is sure of work and fair compensation.

[Sidenote: The useful occupations.]

Far too often the school has taught the pupil to undervalue and even to
despise useful occupations. Scientific research, philosophic speculation,
and literary productivity have been lauded as more honorable vocations.
Any honest occupation that furnishes adequate exercise for man’s
marvellous faculties is honorable in the sight of God. If two angels
should be sent from heaven, one to rule a kingdom, the other to break
stones upon the highway, each of them would be happy in the thought that
he was fulfilling his divinely appointed mission, and each would receive,
upon the completion of his task, the “well done” which will finally be
spoken to every good and faithful servant.

[Sidenote: Woman in the arts.]

In 1840 Harriet Martineau visited the United States and reported only
seven occupations open to women,—teaching, needlework, keeping boarders,
working in cotton factories, typesetting, bookbinding, and household
service. The school has been blamed for causing the rising generation to
underestimate the last named in comparison with the other occupations
open to women. When anything goes wrong in American life the school is
not only blamed, but also expected to supply the remedy. It must be
admitted that there is much false thinking on the subject of household
service in so-called polite society. A woman may cook for herself and
her own household without losing caste. As soon as she becomes the cook
in another woman’s kitchen she is banished from the parlor of fashionable
society. She can stand in a store or work in a factory without losing her
place in the social scale; but if she works for hire in the kitchen, she
is thenceforth treated as belonging to a lower caste. Is thinking in the
culinary art less valuable or less difficult than the thinking involved
in selling ribbons and laces? Does the preparation of a palatable meal
require less brains and less skill than the setting of type or the making
of yarn? Does good cooking add less to the welfare of the race than
playing on the piano or painting in oil- or water-colors? The teaching of
domestic science is calculated to change public opinion and to add to the
sum of human happiness by emancipating the home from the tyranny and the
caprices of the servant girl and by securing to deserving help a juster
appreciation of efficient thinking in household service.

[Sidenote: America the paradise of woman.]

America has been aptly named the paradise of woman. The American woman is
not expected to break stones upon the highway, to carry market-baskets on
the top of her head, to pull the milk-cart alongside of the dog, to do
all kinds of rough manual labor, whilst strong-armed and able-bodied men
have charge of the elementary schools. Fully two-thirds of the teachers
in America are women. Her sphere of activity has been greatly enlarged in
other directions. She may be the inferior of the stronger sex in original
and creative work,—time will settle that question,—but in ability to
carry college work and to do practical thinking she has shown herself
the equal of her brother and in every respect deserving of the exalted
position assigned to her in the New World. She has attained her standing
in America through her ability to think and to apply thought in the
useful arts.

[Sidenote: The liberal arts.]

The liberal arts were subdivided into the trivium and the quadrivium. The
trivium, consisting of grammar, logic, and rhetoric, sought to teach the
art of thinking correctly, of expressing thought in correct language, and
of presenting it in forceful, persuasive discourse.

[Sidenote: Quadrivium.]

[Sidenote: Discovery.]

The quadrivium, consisting of arithmetic, geometry, astronomy, and music,
was composed of thought-studies, and furnished material for the thinking
of generations of the best men. The enlargement of the boundaries of
human knowledge has increased the number of studies to such an extent
that no student need weep like Alexander because there are no more worlds
to conquer. Moreover, in many directions the human race is simply on the
border-land of discovery. At the beginning of this century a professor
lamented that the age of discovery had passed. The professor who quoted
him in the middle of the century could point to the steam-engine, the
electric telegraph, and the use of anæsthetics. In the closing year
of the century we can point to a record of inventions and discoveries
unsurpassed in the thought-achievements of the race. Man has learned
to put thought into machines that do work with a speed and accuracy
impossible of attainment by the human hand. His thought is changing the
face of the earth and developing a civilization based upon a degree of
physical well-being and comfort of which the man of the last century had
not the faintest conception. To follow in thought the achievements of a
single year in the improvement of machinery and the resulting additions
to our material wealth is to fill the soul with wonder at the marvellous
powers of the race. All is due primarily to the exercise of the power
of thought, and secondarily to the manifold ways of expressing and
realizing thought. Never were there such magnificent opportunities for
those who have learned to combine thought and action, intelligence and
skill, brains and the handicrafts. The tradesman deserves honor and
recognition with those who earn their bread by their wits. Both can live
the higher life of thought and culture.

[Sidenote: Trivium.]

The relation of the trivium to the art of thinking is often misconceived.
Grammar, logic, and rhetoric furnish valuable food for thought, excellent
discipline for the mind, especially for the understanding; but they
do not beget the power of thinking in new fields of investigation.
Their function is corrective, not creative. Those who hope to learn
the art of composition by the study of English grammar are sure to be
disappointed. Grammar furnishes the tests and rules by which one may
determine the correctness of sentences. It may furnish discipline for
the understanding, and thus prove valuable as a means of culture. It
utterly fails to produce thinkers beyond the thinking required in the
interpretation of language. Parsing, analysis, and diagramming often
become a mechanical iteration of set phrases, resulting in mental apathy.
Questions in unexpected forms may then be needed to rouse the slumbering
powers of the intellect.

Homer and Plato wrote good Greek, although neither of them had any
knowledge of grammar as a science. Men used correct sentences long before
there was a scientific treatment of the sentence.

The same remarks are applicable to the other studies of the trivium.
Men’s minds obeyed the laws of thought and drew correct inferences
long before the science of logic was formulated. He who studies logic
in the hope that it will make him an original thinker is doomed to
disappointment. Logic has a critical as well as a disciplinary value.
Its influence upon the intellectual life is like that of mathematics.
It furnishes a test for one’s own thinking and provides the means for
detecting fallacies in the reasoning of others. Logic can be taught with
advantage to those who have learned to think; it fails to make creative
spirits who have the power of gathering thoughts, weaving them into a
system, and reaching trustworthy conclusions.

Rhetoric possesses great disciplinary value for the understanding. It
deserves careful study on the part of those who express their thoughts in
public discourse. The moment it becomes an end, instead of means to an
end, it defeats its own purpose. To draw the attention to the figures of
speech and other rhetorical devices of an oration is to divert the mind
from the line of thought and to defeat the purpose for which rhetoric
is taught. The studies of the trivium are like the handicrafts in that
they serve as means to an end. From one point of view they deserve to
be classed with the useful arts; from another it is apparent that they
furnish material for thinking quite as valuable as the multitudinous
branches of study into which the quadrivium has been expanded.

[Sidenote: Fine arts.]

The arts are sometimes divided upon the basis of use and beauty. From one
point of view, as already indicated, the liberal arts may be regarded as
belonging to the category of the useful, and thus as forming part of a
class distinct from the fine arts. Yet the idea of beauty enters into all
that man does. Sooner or later he seeks to adorn his home, his language,
everything that he employs in giving expression to his inner life.

The thinking which lies at the basis of the fine arts has distinguishing
qualities and characteristics. The mind may be so completely absorbed
in poetry, music, painting, sculpture, and in the other things which
make life beautiful that it ceases to be a fit instrument for useful
living or for engaging in more advanced thinking. The element of feeling
predominates in the appreciation of the beautiful. The two factors which
enter into the beautiful are the idea and the form. By casting into the
alembic of the imagination the materials which the mind gathers from
the external world, there is evolved the ideal; as soon as this ideal
is found embodied in any form of nature or art the object is called
beautiful. The power to see the idea in the form, the ideal in the work
of art, is a function of thinking, and deserves attention from those who
are teaching others to think.

[Sidenote: Æsthetic and scientific studies differ.]

Vast is the difference between the æsthetic and the scientific
appreciation of nature. The scientist pulls the flower to pieces,
analyzes its parts, imposes hard names, and destroys that about the
flower which is most attractive to the child and the poet. The student of
beauty admires it as it is in its original surroundings. He cultivates it
to adorn the garden, the yard, the home, the school-room.

Very much, therefore, depends upon the way in which nature is studied.
The study may be pursued to beget habits of observation or to cultivate
a sense of the beautiful. It may be studied for the sake of ascertaining
the laws which govern the growth of plants, the changes of the seasons,
the movements of the heavenly bodies, the forces which give us light,
heat, and all else we need for body and mind. When it is studied for the
sake of truth and beauty, the effort lifts us into the domain of the
higher life.

[Sidenote: The higher life.]

Why should any portion of our life, as compared with another, be
styled the higher life? Because a man’s life may abound in some of the
activities which are essential to his existence and still fail to realize
the end of his existence. Take life on the farm with all its splendid
opportunities for the study of nature and of all that is attractive in
God’s universe. Which should be of most account in the education of the
farmer’s sons and daughters,—mind or money, light or lucre, the soul or
the soil, character or capacity for getting riches? The curse of wealth,
fame, office, and the like is that, if they become the chief object of
one’s ambition, they drag the soul into the dust of dishonor, if not the
dust of the street.

[Sidenote: The farmer boy.]

“If the farmer boy has only been taught how to raise better stock, what
will he do when that better stock ranges his farm? Will he be a happier
father and a nobler citizen? Will his home life be any less coarse and
dull? Will the possession of blooded stock make him any more honest
than common stock? If that is all you have taught him, will he not
still be a brute among his brutes? Indeed, just so far as you increase
his money-making without increasing his true culture and manliness,
you increase the probability that he will die a drunkard, his son a
spendthrift, and his grandson a pauper. The supreme need is character to
guide these resources.”[56]

[Sidenote: The things of the mind.]

Whilst it is worth while to dignify labor in all the handicrafts by
showing the need for intelligent thought on the part of those who follow
them, it is of vastly more importance to emphasize the things of the
mind, and to show how the ability to think conditions the activities of
the higher life and is essential to the full realization of man’s being.
The relation of thinking to the higher life will claim our attention in
the concluding chapter.



XXII

THINKING AND THE HIGHER LIFE

    How vastly disproportionate are the pleasures of the eating
    and of the thinking man! indeed, as different as the silence
    of an Archimedes in the study of a problem, and the stillness
    of a sow at her wash. Nothing is comparable to the pleasure of
    an active and prevailing thought,—a thought prevailing over
    the difficulty and obscurity of the object, and refreshing the
    soul with new discoveries and images of things, and thereby
    extending the bounds of apprehension, and enlarging the
    territories of reason.

                                                         DR. SOUTH.

    What is more pleasant than to read of strong-hearted youths,
    who, in the midst of want and hardships of many kinds, have
    clung to books, feeding, like bees to flowers? By the light
    of pine-logs, in dim-lit garrets, in the fields following the
    plough, in early dawns when others are asleep, they ply their
    blessed task, seeking nourishment for the mind, athirst for
    truth, yearning for full sight of the high worlds of which they
    have caught faint glimpses; happier now, lacking everything
    save faith and a great purpose, than in after-years when
    success shall shower on them applause and gold.

                                                   BISHOP SPALDING.


XXII

THINKING AND THE HIGHER LIFE

[Sidenote: The Book of books.]

The preceding chapter pointed out the function of thinking in the arts,
and the reciprocal influence of these upon the power of thought. It
remains to point out the relation of thinking to the higher life. The
best point of departure for such a discussion is the book which has done
more to foster the higher life of the soul than all other books combined.
From some points of view the best book on teaching ever made is the
Book of books. In it we find not only practical examples and marvellous
illustrations of the art of the teacher, but also the most significant
maxims and statements bearing upon the development of the inner life. In
the account of the Temptation in the Wilderness, we have an utterance
from the lips of the Great Teacher, directing our attention towards the
higher life. “Man shall not live by bread alone, but by every word that
proceedeth out of the mouth of God.” (Matt. iv. 4.)

[Sidenote: Bread-studies.]

[Sidenote: The Great Teacher.]

In the universities one hears a great deal about bread-studies. Knowledge
for its own sake, culture for culture’s sake, education, not for the
sake of its money-value, but for the mind’s sake, are the ideals held
up before the minds of the students. A world-famous professor of
mathematics demonstrated a new theorem, and closed the demonstration
with the exclamation, “Now, that is true, and, thank God, nobody can use
it!” Does knowledge increase in value as its utility diminishes? This
professor was drawing an annual salary of five thousand dollars, and
could well afford to ignore the money-value of an education. Lifted above
the struggle for bread, he had no sympathy with the multitudes in whose
experience the struggle for bread is the all-absorbing problem of life.
The theory of life propounded by the Great Teacher is very different.
He did not despise the arts that make bread and win bread. Twice He
miraculously multiplied the loaves and fishes, in order to feed the
multitudes. For many years He worked at the carpenter’s bench, and after
the death of His father helped to support His mother. When hanging upon
the cross, He intrusted His mother to the care of John, the “disciple
whom Jesus loved.”

But when Satan came to him and suggested the making of bread by unlawful
means, He repelled the tempter, saying, “Man shall not live by bread
alone, but by every word that proceedeth out of the mouth of God.” Bread
here stands for more than physical food. It is symbolic of the life that
turns upon what we eat and drink, the garments we wear, and the houses we
live in.

[Sidenote: The French king.]

[Sidenote: Earning power.]

The best of French kings cherished it as the ambition of his life to
make every one of his subjects so well off as to be able on Sunday to
have roast fowl for dinner. Had he lived in our day, he would have
included among the objects of his ambition a new bonnet for every woman
at least twice a year. Roast fowl and new bonnets cost money; and money
indicates the plane from which very many people look at every question of
government and education. Money stands for what we eat and drink, for the
garments we wear and the houses we live in, for the thousands of creature
comforts which we deem essential to our well-being and happiness. Perhaps
the school has not done all it is destined to accomplish in fitting the
pupils to win these, but there is abundant evidence to show that a good
school increases the earning power of the individual, and thereby makes
possible the higher life of mind, or of the soul. The untutored red man
eked out a scanty existence in spite of unparalleled advantages in soil
and stream and climate; the intelligence begotten by the modern school
has enabled our people to utilize and develop the material resources of
the New World to such an extent that Carlyle sneeringly said, “America
means roast turkey every day for everybody.” Let us accept the remark
as an acknowledgment that the American people are better fed than those
of England or Continental Europe; and yet Carlyle was right in hinting
that there is a life higher than that which turns upon what we eat and
drink and wear, for this is in accord with the view of life taught by the
greatest Teacher of all the ages.

[Sidenote: The basis of the higher life.]

It is worth while to pause a moment for the purpose of pointing out the
relation of the higher life to the side of life symbolized by bread. In
a word, the higher life rests upon the other as a basis. Where the vital
energies of a people are exhausted in the struggle for bread, the very
mention of education is a mockery. The school lays the foundation for the
higher life when it increases the average earning power of the industrial
classes, and thereby makes it easier for them to gain a livelihood.
Here is the first point of contact between the school and the higher
life. There is no language sufficiently strong to condemn the spirit
of the professor who, when he had demonstrated a new theorem in higher
mathematics, thanked God that nobody could use it.

[Sidenote: What money can and cannot buy.]

Only professors filling well-endowed chairs at our universities can
afford to speak disparagingly of Brot-studien and to advocate theories
of education which would sunder the school from practical life. An
education that unfits the pupil for bread-winning in case of necessity
cannot be too severely condemned; among other reasons, because it fails
to lay a proper foundation for the higher life. On the other hand, the
school that does not aim at something higher than dollars and cents
deserves equally severe condemnation; for that which makes life worth
living cannot be bought with money. If you are rich, you may buy a fine
house, but you cannot buy a happy home; that must be made,—_made_ by
you and by those who occupy it with you. With money you may rent a pew
in some fashionable church, but you cannot rent a good conscience,—that
depends upon your manner of living and dealing with others. Money will
enable you to buy a fine copy of Shakespeare, but it cannot purchase
for you the ability to appreciate a play of Shakespeare,—that is the
result of education. Wealth will enable you to cover the walls of your
costly mansion with beautiful pictures; and the sewing-girl, if she has
been properly taught in a public school, will get more enjoyment out of
them than can possibly be gotten by the sons and daughters of wealth and
luxury whose proper education has been neglected.

[Sidenote: Thinking God’s thoughts.]

[Sidenote: The objection.]

[Sidenote: True contentment.]

Plato wrote above the door of the academy, “Let no one enter here who
is destitute of geometry.” Why did he value geometry so highly? Not
merely as an introduction to the study of philosophy, for in one of
his dialogues he says, “God geometrizes.” He had an idea that a youth
in thinking the theorems of geometry is thinking divine thoughts. When
Kepler discovered the laws of planetary motion, he exclaimed, in ecstasy,
“O God, I think thy thoughts after thee!” When a pupil learns to think
the thoughts which the Creator has put into the starry heavens above us
and into all nature about us, he is thinking God’s thoughts and tasting
the enjoyments of the higher life. When he is taught the right use of
books, and given access to a public library, he may acquire the power to
think the best thoughts of the best men at their best moments. In nature
study, in the reading lesson, in the teaching of science and literature,
the school fosters the higher life of the pupil by enabling him to think
God’s thoughts and man’s best thoughts as these are enshrined in creation
and in the humanities. The objection is sometimes heard that the school
makes the working-classes discontented with their lot. “Teach a man to
think,” says the opponent of universal education, “and you make him
dissatisfied with what he has and knows.” If the school fixes the eye
upon wealth, fame, glory, official position, and other things which can
be attained only by a few, and which, when sought as the chief end of
life, resemble the apples of the Dead Sea, turning to ashes on the lips
as soon as they are tasted, then, indeed, the school may doom its pupils
to a life of discontent and disappointment. But if the school fixes the
eye upon the things of the higher life, things which are within the reach
of every boy and girl at school, it lays the foundation for a contentment
far transcending the possibilities of a life that turns upon feasting,
office-holding, and the things that can be bought with money.

It must be admitted that the exercise of the higher powers carries with
it a certain feeling of discontent, but it is a feeling that conditions
true progress and is not doomed to ultimate disappointment. The true test
of what is preferable is the testimony of those who have knowledge of
both modes of existence. Who that knows both does not value the pleasures
of thinking above those of eating? Who would exchange the joy of doing
right for anything attainable by the man who, for the sake of success,
banishes ethics from his business or his politics? “Few human creatures,”
says Mill, “would consent to be changed into any of the lower animals for
a promise of the fullest allowance of a beast’s pleasures; no intelligent
human being would consent to be a fool, no instructed person would be an
ignoramus, no person of feeling and conscience would be selfish and base,
even though he should be persuaded that the fool, or the dunce, or the
rascal is better satisfied with his lot than they with theirs.” “It is
better to be a human being dissatisfied than a pig satisfied, better to
be a Socrates dissatisfied than a fool satisfied. And if the fool or the
pig is of a different opinion, it is only because they know only their
own side of the question. The other party to the comparison knows both
sides.” Who would not rather be an intelligent workingman seeking to
better his condition, than an ignoramus contented with little because he
knows nothing of the joys of the higher life?

[Sidenote: Life’s contradictions.]

[Sidenote: Tragedy and comedy.]

[Sidenote: Beauty.]

Life is full of contradictions and incongruities and disappointments.
Over against these, the school, in its relation to the higher life,
has a duty to perform. For the discontent which springs from life’s
contradictions and incongruities a safety-valve has been given to man
in his ability to laugh. The person who never laughs is as one-sided
and abnormal as the person who never prays. The comic is now recognized
as one form of the beautiful, and the beautiful is closely allied
to the true and the good. Without going into the philosophy of this
matter, attention may be drawn to the fact that beauty has a home in the
domain of art, as well as of nature; that the queen of the fine arts is
poetry; that the greatest poet of all the ages was Shakespeare; that
Shakespeare’s literary genius reached its highest flights in tragedies
and comedies; that whilst tragedy and comedy are two forms of the
beautiful in art, comedy is the highest form of the comic, whilst tragedy
is the highest form of the sublime. In teaching us to appreciate the
plays of Shakespeare, the school not merely teaches us when to laugh
and when to weep, thereby furnishing the safety-valve to let off our
discontent and to reconcile us anew to our lot, but puts us in possession
of that which money cannot buy,—namely, the ability to appreciate the
beautiful in its subtlest and sublimest forms. Who owns the moonlit
skies, the millionaire or the poet? Who owns the hills and the valleys,
the streams and the mountains; he in whose name the deeds and mortgages
are recorded, or he whose soul can appreciate beauty and sublimity?
Beauty has a home in nature and in art. It is the province of the school
to put us in possession of the beautiful, the sublime, and the comic, for
these quite as much as the true and the good belong to the things of the
higher life.

[Sidenote: Faith, hope, and love.]

How about life’s disappointments? Higher than the life of thought is the
life of faith and hope and love,—higher, because these are rooted and
grounded in the life of thought, ripen above it as its highest fruitage
and efflorescence. The nineteenth century has been an age of faith. Every
scientific mind has profound faith in nature’s laws, in the universal
efficacy of truth; and, like Agassiz and Gray and Drummond, multitudes of
the best minds have made the step from faith in natural laws to faith in
the laws which govern the spiritual world.

The common people evince a faith almost bordering on credulity in the
readiness with which they accept the results of scientific research and
investigation. Faith lies at the basis of great achievements. Bismarck
declared that if he did not believe in the divine government of the
world, he would not serve his country another day. “Take away my faith,”
he exclaimed, “and you take away my country, too.” Whilst no religious
test can he applied to those who teach in our public schools, our best
people prefer teachers who have faith in the unseen to teachers who lack
faith in the truths of revelation. In ways that escape observation, the
spirit of faith passes from teacher to pupil, and gives the latter a
sense of something to live for and something to be achieved.

[Sidenote: Immortality.]

Faith begets hope. The hope of glory, of rewards in civil and military
life, of immortality on the pages of history, has stimulated to deeds
of heroism and self-sacrifice, and will continue to do so to the end
of time. The higher life knows of higher objects of hope than these.
Immortality on the pages of history is only an immortality in printer’s
ink. The true teacher wishes his pupils to cherish the hope of an
immortality far more real than an immortality in printer’s ink; he seeks
to implant in their hearts the hope of an immortal life in a world where
the soul shall be robed in a body like unto Christ’s risen body, which
Stephen saw in a vision of glory and Paul beheld in a manifestation of
overwhelming splendor.

[Sidenote: Love makes life worth living.]

That which makes life worth living is the life of love. In the thirteenth
chapter of First Corinthians, which is a poem, though lacking metre
and rhyme, Paul speaks of faith, hope, and charity, and says that, of
these three, the greatest is charity, or love, as the Revised Version
translates it. Faith shall be changed to sight, and hope to glad
fruition, but love shall abide forever. Throughout the ceaseless ages
of eternity, love of the truth, as it is, in Jesus,—yea, man’s love
for his Maker and his Saviour, and for the whole glorious company of
the redeemed,—will continue to glow and to grow, lifting the soul to
ever loftier heights of ecstasy and bliss. A foretaste of this ecstatic
bliss is possible in this life. Love of home and country, of kindred
and friends, of truth and righteousness, of beauty in all its forms,
of goodness of every kind, up to the highest forms of the good, gives
life on earth a heavenly charm. Even in this world, the love that binds
human hearts, that makes homes and brotherhoods, that issues in deeds of
kindness, friendship, and charity, is bringing more happiness to the race
than all other agencies combined.

    “The night has a thousand eyes,
      And the day but one;
    Yet the light of the whole world dies
      With the setting sun.

    “The mind has a thousand eyes,
      And the heart but one;
    But the light of a whole life dies
      When love is done.”

[Sidenote: Thinking and living.]

The school makes possible the higher life when it teaches the pupil to
think. Right thinking puts intelligence into the labor of his hands,
increases his earning-power, lays the foundation for his physical
well-being, and lifts him above an existence that is a mere struggle
for bread. It promotes the higher life by teaching him to think God’s
thoughts, as enshrined in all His works, and the best thoughts of the
best men, as embodied in literature and the humanities. It fits the
pupil for complete living by developing in him the power to appreciate
the beautiful in nature and art, power to think the true and to will the
good, power to live the life of thought, and faith, and hope, and love.


THE END.



FOOTNOTES


[1] For brevity’s sake the phrase, thinking in things, is preferred to
the more accurate but less convenient expression, thinking in the images
of things.

[2] Psychopannychism denotes the doctrine that the soul falls asleep at
death, not to awaken until the resurrection.

[3] For this incident the writer is indebted to Superintendent L. H.
Jones, of Cleveland, Ohio.

[4] “Lessons in Psychology,” pages 260-267.

[5] See “How London Lives,” Thomas Nelson & Sons, London.

[6] “Johannes Kepler (1571-1630) was at one time in Prague assistant to
the Danish astronomer Tycho Brahe. Unlike Tycho, Kepler had no talent for
observation and experimentation. But he was a great thinker, and excelled
as a mathematician. He absorbed Copernican ideas, and early grappled with
the problem of determining the real paths of the planets. In his first
attempts he worked on the dreams of the Pythagoreans concerning figure
and number. Intercourse with Tycho led him to reject such mysticism and
to study on the planets recorded by his master. He took the planet Mars,
and found that no combinations of circles would give a path which could
be reconciled with the observations. In one case the difference between
the observed and his computed values was eight minutes, and he knew that
so accurate an observer as Tycho could not make an error so great. He
tried an oval orbit for Mars, and rejected it; he tried an ellipse, and
it fitted. Thus, after more than four years of assiduous computation, and
after trying nineteen imaginary paths, and rejecting each because it was
inconsistent with observation, Kepler in 1618 discovered the truth. An
ellipse! Why did he not think of it before? What a simple matter—after
the puzzle is once solved! He worked out what are known as Kepler’s
laws, which accorded with observation, but conflicted with the Ptolemaic
hypothesis. Thus the old system was logically overthrown. But not until
after a bitter struggle between science and theology did the new system
find general acceptation.”—Cajori’s “History of Physics,” pages 29, 30.

[7] Young’s “The Sun,” pages 43, 44, second edition.

[8] Young’s “Astronomy,” page 174.

[9] Now the well-known Lord Kelvin.

[10] “Actinism,” by Professor Charles F. Himes, pages 18, 19.

[11] Dr. Morrell’s “Elements of Psychology,” quoted by Galloway in
“Education, Scientific and Technical,” page 165.

[12] Quoted by Galloway in “Education, Scientific and Technical,” pages
116, 117.

[13] Hinsdale’s “The Language Arts,” pages 17, 18.

[14] Mr. Smiles, “Life of Stephenson,” third edition, page 474, tells
how George Stephenson, arguing one evening on the coal question with
Dr. Buckland, was quite unable to make good his case. The next morning
he talked over the matter with Sir W. Follett, and that illustrious
advocate, from the materials supplied by the practical knowledge of
Stephenson, was able easily to discomfit the learned dean. Quoted by A.
S. Wilkins’s “Cicero de Oratore,” page 105, second edition.

[15] Phelps’s “Men and Books,” page 303.

[16] Lowell’s “Books and Libraries,” pages 88-90, vol. vi., _Riverside
Edition_.

[17] Phelps’s “Men and Books,” pages 105, 106.

[18] Ibid., page 124.

[19] N. Porter’s “Books and Reading,” page 57.

[20] Charles F. Himes’s “Actinism,” pages 5, 6.

[21] Jevons’s “Principles of Science,” pages 399, 400.

[22] “Talks on Psychology,” page 34.

[23] “Psychologic Foundations of Education,” pages 177, 178.

[24] Latham, “Action of Examinations,” pages 229, 230.

[25] Maudsley’s “Physiology of the Mind,” page 518.

[26] Annotations on Bacon’s Essay “Of Studies.”

[27] Hamerton’s “Intellectual Life,” page 125.

[28] John xii. 24, Revised Version.

[29] F. Galton’s “Inquiries into Human Faculty,” pages 100, 101.

[30] F. Galton’s “Inquiries into Human Faculty,” pages 113, 114.

[31] James Freeman Clarke’s “Self-Culture,” page 183.

[32] Bain’s “The Emotion and the Will,” page 29.

[33] James’s “Psychology,” vol. i., pages 243, 244.

[34] James’s “Psychology,” vol. i., page 253

[35] Huxley’s “Discourses, Biological and Geological Essays,” pages vi,
vii.

[36] James’s “Psychology,” vol. i., page 264. Of Charles Darwin’s habits
of reading, his son says, “I have often heard him say that he got a kind
of satisfaction in reading articles which (according to himself) he could
not understand. I wish I could reproduce the manner in which he would
laugh at himself for it.” Of his scientific reading, this son writes as
follows: “Much of his scientific reading was in German, and this was
a great labor to him; in reading a book after him, I was often struck
at seeing, from the pencil-marks made each day where he left off, how
little he could read at a time. He used to call German the ‘Verdammte,’
pronounced as if in English. He was especially indignant with Germans,
because he was convinced that they could write simply if they chose, and
often praised Dr. F. Hildebrand for writing German which was as clear as
French.”—“Life and Letters of Charles Darwin,” vol. i., page 103.

[37] Locke’s “Human Understanding,” vol. ii., page 85.

[38] Lewes’s “Problems of Life and Mind,” Fourth Problem, pages 474, 475.

[39] Lewes’s “Problems of Life and Mind,” Fourth Problem, pages 475-477.

[40] Bautain’s “Art of Extempore Speaking,” pages 68, 69.

[41] “Autobiography,” page 80.

[42] “Men and Books,” pages 221, 222.

[43] “In the name, then, of a sound condition of mind and body, and
in the confident hope of obtaining both for France, I call on our
people to imitate the people of the United States of North America
by making the art of reading aloud the very corner-stone of public
education.”—Legouvé’s “Art of Reading,” page 145.

[44] Clifford’s “Essays,” page 88.

[45] Clifford’s “Essays,” page 87. Thus the movements of Sirius led
astronomers (Peters and Auwers) to infer the existence of a satellite,
which was subsequently discovered by Alvan Clark & Son through the
eighteen-inch glass which they were completing for the Chicago
Observatory. Similarly, Professor Wright, of Oberlin, carefully studied
the Trenton deposits and their relations to the terrace and gravel
deposits to the westward, and predicted that similar paleolithic
implements would be found in Ohio. Two years afterwards Dr. Mertz
found, eight feet below the surface, a true paleolith of black flint at
Madisonville, in the Little Miami Valley. Other instances of scientific
prediction will occur to the reader.

[46] “Essay on the Human Understanding,” Book IV., Chapter I.

[47] Compayre’s “History of Pedagogy,” page 437, American translation.

[48] “There can be no doubt that Newton was an alchemist, and that he
often labored night and day at alchemical experiments. But in trying to
discover the secret by which gross metals might be rendered noble his
lofty powers of deductive investigation were wholly useless. Deprived of
all guiding clues, his experiments were like those of all the alchemists,
purely haphazard and tentative. While his hypothetical and deductive
investigations have given us a true system of the universe, and opened
the way for almost all the great branches of natural philosophy, the
whole results of his tentative experiments are comprehended in a few
happy guesses, given in his celebrated ‘Queries.’”—Jevons’s “Principles
of Science,” pages 505, 506.

[49] “The Senses and the Intellect,” pages 488-524.

[50] Max Müller’s “Science of Thought,” page 605.

[51] Page 402.

[52] Page 6.

[53] Darwin’s “Autobiography,” page 81.

[54] For this incident the writer is indebted to Dr. A. E. Winship.

[55] “Mental Physiology,” page 389.

[56] Crooker’s “Student in American Life,” pages 23, 28.





*** End of this LibraryBlog Digital Book "Thinking and learning to think" ***

Copyright 2023 LibraryBlog. All rights reserved.



Home