Home
  By Author [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Title [ A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z |  Other Symbols ]
  By Language
all Classics books content using ISYS

Download this book: [ ASCII ]

Look for this book on Amazon


We have new books nearly every day.
If you would like a news letter once a week or once a month
fill out this form and we will give you a summary of the books for that week or month by email.

Title: Army Pulse Radiation Facility
Author: United States. Army
Language: English
As this book started as an ASCII text book there are no pictures available.


*** Start of this LibraryBlog Digital Book "Army Pulse Radiation Facility" ***

This book is indexed by ISYS Web Indexing system to allow the reader find any word or number within the document.

FACILITY ***



Transcriber’s Notes:

  Underscores “_” before and after a word or phrase indicate _italics_
    in the original text.
  Equal signs “=” before and after a word or phrase indicate =bold=
    in the original text.
  Illustrations have been moved so they do not break up paragraphs.
  Typographical and punctuation errors have been silently corrected.



Army Pulse Radiation Facility


[Illustration]



Contents


                                                               Page No.

    The Concept                                                    3
    The Facility                                                   5
    The Reactor                                                    7
    Exposure Locations and Performance Levels                     11
    APRF User Support Facilities                                  17
    Instructions to Potential Users                               20

                               Table I.
    APRFR Core Design Data                                         8

                               Table II.
    Typical APRFR Performance Levels                               8

                              Table III.
    APRFR Fluence and Flux Data                                   13

                               Table IV.
    Nominal APRFR Leakage and U235 Fission Spectra                13

                               Table V.
    Fluence-to-Dose Conversion Factors for APRFR Leakage Neutrons 14

                               Table VI.
    Kerma and Kerma Rate in Tissue for APRFR Exposure Conditions  14

                              Table VII.
    Kerma and Kerma Rate in Silicon for APRFR Exposure Conditions 15

                              Table VIII.
    Neutron-to-Gamma Dose Ratios                                  15

                               Table IX.
    APRF User Support Equipment                                   18

                     Army Pulse Radiation Facility
           _U.S. Army Ballistic Research Laboratories_
                               AMXRD-BTD
            _Aberdeen Proving Ground, Maryland 21005_

[Illustration: Army Pulse Radiation Facility Location Map]

[Illustration]



The Concept


The Army Pulse Radiation Facility (APRF) is designed to meet an
Army need for a facility located near the Eastern Seaboard capable
of providing large fast neutron and gamma radiation doses within
microseconds. This fast pulse radiation capability is necessary for
the determination of transient responses of materiel in nuclear
environments.

The APRF increases Army capability by providing improved simulation of
radiative effects of a nuclear burst for studies of Army interest, and
provides a facility for testing Army materiel. Because of its location,
the APRF economically and efficiently serves the heavy concentration of
Army agencies and contractors located along the Eastern Seaboard.

The design of the APRF is a direct outgrowth of projected user
requirements. Thus the reactor can be used both for high dose
irradiations of small objects, as a point source for radiation detector
studies, and irradiation of bulk objects. The former requirement led
to the incorporation of a 1½-inch OD “glory hole” running through
the center of the core, and providing a fast neutron fluence of
about 9 × 10¹⁴ neutrons per square centimeter per pulse. The latter
two requirements have resulted in the design of a large volume,
low-radiation backscatter Reactor Building. Provision is made for
moving the reactor both within the Reactor Building and to an outdoor
test site at heights variable up to 44 feet above ground by means of a
mechanical device called the reactor transporter. The reactor is also
capable of intermittent steady state operation in the kilowatt range
for classes of experiments requiring this mode of operation.

[Illustration]

[Illustration]

[Illustration]



The Facility


The APRF is located on the military reservation of Aberdeen Proving
Ground (APG), in southeastern Harford County, Maryland. The Reactor
Building is at the center of the facility.

This building is a windowless, circular structure with aluminum siding.
Inside, the building is 100 feet in diameter and 65 feet high. There
is a roll-up door in the south wall for the passage of the reactor
transporter to the outdoor test site and another in the west wall for
the access of vehicles to the building. A shielded stairway and maze
provides access from the underground Control Building. This concrete
structure provides radiological shielding for the personnel and
controls associated with the operation of the reactor and the conduct
of experiments.

The area within a ~450-yard radius of the Reactor Building constitutes
the APRF high-radiation area defined by a 10-foot anti-personnel fence.
This high-radiation area is in turn surrounded by a nearly concentric
restricted area defined at its outer boundary by a barbed wire warning
fence at a radius of ~1500 yards from the Reactor Building.

The Laboratory Building, located at the periphery of the restricted
area, houses the administrative and support personnel for the APRF.
Access to APRF is controlled at this point.

[Illustration: APRF Reactor Core Assembly]

[Illustration]



The Reactor


The reactor, (APRFR), is designed for both self-limited,
super-prompt-critical pulse operation and steady state operation. The
maximum available pulse has a yield of ~2.1 × 10¹⁷ fissions, while
steady state operation is limited to about 10 kilowatts by the reactor
core cooling system and activation of the core.

[Illustration: High Yield Prompt Pulse Shape]

The APRFR is an advanced version of the Health Physics Research
Reactor (HPRR) at Oak Ridge National Laboratory (ORNL), which has
been operating since 1962. ORNL has played a key role in the design
and testing of the APRFR. In pulse operation, the power level may
rise on periods as short as 10 microseconds. Electro-mechanical scram
systems are too slow to terminate such an excursion. Shutdown results
from increased neutron leakage due to fuel expansion, resulting in
a large prompt negative temperature coefficient of reactivity. This
self-limiting feature depends almost entirely on the thermal expansion
of the fuel alloy, and thus it is regarded as completely reliable and
safe.

Following a pulse, additional reactor shutdown capability is provided
by a safety block which, when ejected from the core, reduces the
reactivity to about 20 dollars below delayed-critical. At lower yield
pulses, below about 6 × 10¹⁶ fissions, the safety block is ejected by
the electro-mechanical scram system in about 0.1 seconds after a pulse.
At higher yield pulses, the safety block is ejected in much shorter
times due to thermo-mechanical shock forces which cause the safety
block to bounce out. The large shutdown margin provided by the safety
block is also the primary design device for preventing accidental
criticalities during periods of reactor shutdown.

The APRFR core is an unmoderated cylindrical assembly containing about
125 kilograms of an alloy of uranium 235 containing 10% molybdenum. The
actual core mass varies with the experiment. The core is cylindrical
and consists of two concentric annuli: a fixed outer shell of stacked
fuel discs bolted together with nine fuel bolts and Inconel nuts and
a movable inner safety block, also of fuel alloy. The 1½-inch OD
“glory hole” runs vertically through the center of the safety block.
Key reactor data is summarized in Tables I and II. The APRFR has been
operated during tests at ORNL at more than twice its design yield.



Table I.

APRFR Core Design Data


    Core Diameter                         8.90 inches
    Core Height[1]                         8.0 inches
    Fuel Alloy                      90 wt % uranium -
                                   10 wt % molybdenum
    Uranium-235 Enrichment                     93.14%
    Total Fuel Mass[2]                            125
    Safety Block Mass                         15.7 kg
    Safety Block Height                   8.06 inches
    Safety Block Diameter                 4.00 inches
    Glory Hole Diameter                   1.50 inches
    Number of Control Rods                      Three
    Core Cooling                           Forced Air
    Number of Core Bolts                         Nine
    Safety Block Reactivity Worth                ~$20
    Pulse Rod Reactivity Worth                 ~$1.15
    Core Environment During Pulse        Dry Nitrogen
    Core Cooling                           Forced Air

[1] This value varies with experimental environment of core.

[2] This value varies with experimental environment of core.



Table II.

Typical APRFR Performance Levels


    PULSE MODE
    Routine Yield                     1.5 × 10¹⁷ fissions/pulse
      Reactivity Insertion                                $1.10
      Pulse Half-Width                                  48 μsec
      Initial Prompt Period                             18 μsec
      Maximum Fuel Temperature Rise                       400°C
      Temperature Coefficient                     -0.3 cents/°C
    Maximum Available Yield          ~2.1 × 10¹⁷ fissions/pulse
    STEADY STATE MODE
    Continuous Operation                                  ~1 kw
    Intermittent Operation                               ~10 kw

Steady state power levels are limited by effectiveness of core cooling
system and core activation.

[Illustration]

[Illustration: APRF Floor Plan]



Exposure Locations and Performance Levels


The highest fluence and dose rates are available in the 1½-inch glory
hole. Since the reactor is supported from above by the transporter, the
areas around and below the core are also available for experiments.

The core can be positioned by remote control anywhere within the range
of travel of the transporter. Vertical travel is limited to about 44
feet above the Reactor Building floor level. Horizontal travel is
limited by the range of the rails on which the transporter travels. Six
pairs of rails extend radially from a turntable in the center of the
Reactor Building. These rails terminate within the Reactor Building,
except for one pair which extends 90 feet outside the building to an
outdoor test site. Each pair of rails defines one experimental location
where semi-permanent equipment and shielding can be set up without
tying up the entire reactor operation.

Fluence and flux data for three typical exposure locations are given in
Table III. In the absence of reflecting material beyond 1 meter from
core center (position P3), these values fall off essentially as

     1
    ——
     R²

where R is the distance to core center. Other performance data are
summarized in Tables IV through VIII.

[Illustration]

[Illustration]

[Illustration]

[Illustration]



Table III.

APRFR Fluence and Flux Data


    -------------------------------------------------------------------
                            Routine Pulse Yield     Maximum Pulse Yield
                            1.5 × 10¹⁷ Fissions     2.1 × 10¹⁷ Fissions
    -------------------------------------------------------------------
    Fluence, n/cm²
        P1[3]                   6.7 × 10¹⁴             9.3 × 10¹⁴
        P2                      2.0 × 10¹⁴             2.8 × 10¹⁴
        P3                      1.7 × 10¹²             2.4 × 10¹²
    Flux Density, n/cm²/sec
        P1                      1.4 × 10¹⁹             2.0 × 10¹⁹
        P2                      4.3 × 10¹⁸             6.0 × 10¹⁸
        P3                      3.7 × 10¹⁶             5.2 × 10¹⁶

[3] P1: Center of Glory Hole; P2: Core Surface (11.3 cm from Core
Center); P3: 1 meter from Core Center.



Table IV.

Nominal APRFR Leakage and U235 Fission Spectra[4]


    --------------------------------------------------------
    Energy             Average       APRFR    U235 Fission
    Group    Energy    Energy       Spectrum      Spectrum
    Number    Range      Eₙ         Fraction      Fraction
      n       (Mev)    (Mev)          XₙΔEₙ          XₙΔEₙ
    --------------------------------------------------------
      1       3.0-∞     4.41          0.133         0.204
      2       1.4-3.0   2.10          0.251         0.344
      3       0.9-1.4   1.14          0.164         0.168
      4       0.4-0.9   0.65          0.262         0.180
      5       0.1-0.4   0.26          0.168         0.090
      6       0-0.1     0.059         0.022         0.014
                                      -------------------
     SUM                              1.000         1.000
                                      -------------------
     Mean Energy (Mev)               ~1.55         ~1.8

[4] These values are approximate and meant for qualitative comparison
only.



Table V.

Fluence-to-Dose Conversion Factors for APRFR Leakage Neutrons


    --------------------------------------------------------------------
    Material                   Quantity                Conversion Factor
    --------------------------------------------------------------------
    Tissue                        Kerma    2.4 × 10⁻⁷      erg/gram
                                                          -----------
                                                          neutron/cm²

    Tissue    Maximum Absorbed Dose For    3.5 × 10⁻⁹         rad
                                                          -----------
                                                          neutron/cm²

             Normally Incident Neutrons
    Silicon        Elastic Recoil Kerma    2.7 × 10⁻⁹      erg/gram
                    (~Permanent Effect)                   -----------
                                                          neutron/cm²

    Silicon            Ionization Kerma    2.9 × 10⁻⁹      erg/gram
                   (~Transient Effects)                   -----------
                                                           neutron/cm²

    Silicon               (Total) Kerma    5.6 × 10⁻⁹      erg/gram
                                                          -----------
                                                          neutron/cm²
    --------------------------------------------------------------------



Table VI.

Kerma and Kerma Rate in Tissue for APRFR Exposure Conditions


    --------------------------------------------------------------------
                           Routine Pulse Yield      Maximum Pulse Yield
                           1.5 × 10¹⁷ Fissions      2.1 × 10¹⁷ Fissions
    --------------------------------------------------------------------
    Kerma in Tissue
      (ergs/gm)
        P1[5]                   1.6 × 10⁸             2.2 × 10⁸
        P2                      4.9 × 10⁷             6.8 × 10⁷
        P3                      4.1 × 10⁵             5.7 × 10⁵

    Kerma Rate in Tissue
      (ergs/gm/sec)
        P1                      3.5 × 10¹²            4.7 × 10¹²
        P2                      1.1 × 10¹²            1.5 × 10¹²
        P3                      8.8 × 10⁹             1.2 × 10¹⁰

[5] P1: Center of Glory Hole; P2: Core Surface; P3: 1 Meter from Core
Center.

[Illustration]

[Illustration]

[Illustration]

[Illustration]



Table VII.

Kerma and Kerma Rate in Silicon for APRFR Exposure Conditions


    --------------------------------------------------------------------
                             Routine Pulse Yield    Maximum Pulse Yield
                             1.5 × 10¹⁷ Fissions    2.1 × 10¹⁷ Fissions
    --------------------------------------------------------------------
    Total Kerma in Silicon,
          ergs/gm[6]
            P1[7]                2.7 × 10⁶              5.2 × 10⁶
            P2                   1.1 × 10⁶              1.6 × 10⁶
            P3                   9.5 × 10³             13.3 × 10³
    Total Kerma Rate in
      Silicon, (ergs/gm/sec)
            P1                   5.8 × 10¹⁰            11.0 × 10¹⁰
            P2                   2.4 × 10¹⁰             3.5 × 10¹⁰
            P3                   2.0 × 10⁸              2.9 × 10⁸

[6] Ionization and elastic recoil processes contribute roughly equal
amounts to the total kerma.

[7] P1: Center of Glory Hole; P2: Core Surface; P3: 1 Meter from Core
Center.



Table VIII.

Neutron-to-Gamma Dose Ratios[8]


    -----------------------------------------------------------------
                           neutron rads tissue          n/cm²/sec
                           -------------------      -----------------
                            gamma rads tissue       gamma rads tissue
    -----------------------------------------------------------------
    Core Center (P1)                10                  2.7 × 10⁹
    Core Surface (P2)               10                  2.7 × 10⁹
    1 Meter from Core Center (P3)    9                  3.3 × 10⁹
    10 Meters from Core Center       7                  2.5 × 10⁷

[8] Representative data. Actual values influenced by core operating
history.

[Illustration: Cross Section of Reactor Building]



APRF User Support Facilities


APRF is designed and staffed to assist its users in all key areas
relating to reactor utilization.

=Physical Space= Several areas in the underground Control Building
are available to experimenters. These include the trailer tunnel with
room for two full-sized trailers, the data acquisition room, and the
instrument shop. All of these areas are provided with conduits so that
cables can be run directly to them from the Reactor Building. In the
trailer tunnel the minimum cable length required to run to the core
surface is about 30 feet.

The exposure areas in the Reactor Building and the outdoor test site
are equipped with conduits for communication and instrumentation cables.

Available areas in the Laboratory Building include a high-bay set
up area, a machine shop, laboratory space, fume hood with remote
manipulator, photography laboratory, and offices.

=Data Acquisition and Processing= The basic element here is the
APRF Data Acquisition System described in Table IX. Various other
instrumentation is available as summarized in Table IX. Data processing
is available at the ARDC computer center and with on-line equipment at
APRF.

=Dosimetry= Routine dosimetry is performed by APRF personnel.
Methods available include fluence and spectrum measurements using
foil techniques, glass rod microdosimetry, thermoluminescence, and
diverse active dosimeters. Foils are analyzed using the APRF Automatic
Dosimetry System and data are available within a short time following
exposure.

Measurements are supplemented by analytical methods including one
and two dimensional transport theory, Monte Carlo, and special foil
analysis codes.

=Staff= The APRF staff is available to guide, plan and set up
experiments at the reactor, perform dosimetry, and assist in data
acquisition. APRF participation is determined on a case-by-case basis.

=Health Physics= Health physics survey, monitoring, decontamination
and related services are available in conjunction with the BRL Health
Physics Division.



Table IX.

APRF User Support Equipment


    --------------------------------------------------------------------
    =Transient Data Recording System=
    --------------------------------------------------------------------
    TAPE RECORDERS:     _Three each—14 track Honeywell Model 7600_

    FREQUENCY:          _DC to 80 kHz FM, 400 Hz to 700 kHz Direct_

    SIGNAL              _Universal Strain gauge and thermocouple with_
     CONDITIONING:      _100 KC DC amplifiers_

    TIME CODE:          _IRIG A, 1 millisecond resolution_

    PATCH PANELS:      _Coaxial and triaxial connectors for all inputs_
                       _and outputs, insulated shields._

    AUTO CALIBRATION:   _50 channel, 3 step_

    CHANNEL ID:         _Automatic ID in binary code_

    PLAYBACK:           _12” oscillograph_
    --------------------------------------------------------------------
    =Dosimetry=
    --------------------------------------------------------------------
    Basic Foil Calibration System

    5000 Curie Co-60 source

    Automated Sulfur, Fission Foil and Gamma Well Counting System,
    100 Samples each per cycle

    Eight channel active dosimeter system with digital read out and
    computer analysis of neutron fluence and energy

    Toshiba Glass Rod and Harshaw TLD Gamma System
    --------------------------------------------------------------------
    =Computer=
    --------------------------------------------------------------------
    16 bit/16K memory with foreground/background operation. Automatic
    acquisition and reduction of foil counting data on-line. On-line
    monitoring of reactor power pulse with analysis of peak, half-width
    and yield. On-line monitoring of active dosimeters with data
    reduction. Real time/Fortran IV.
    --------------------------------------------------------------------
    =General Equipment=
    --------------------------------------------------------------------
    3300 Nuclear Data Multiparameter Analyzer, 4096 channel with
    magnetic tape; RIDL 400 Channel Pulse Height Analyzer.

    Oscilloscopes, cameras, electronic calibration equipment.

    Hood areas with manipulators, photographic laboratory, radiation
    monitoring equipment and services, machine shop.
    --------------------------------------------------------------------

[Illustration]

[Illustration]

[Illustration]

[Illustration]

[Illustration]



Instructions To Potential Users


It is imperative to realize that there are stringent safety
requirements connected with the use of the APRFR. All experiments will
follow a written test plan approved at APRF. In order to perform an
experiment with maximum usefulness and efficiency, it is essential
that APRF be contacted during the early planning stages of a potential
experiment. Failure to do this may result in erroneous experiment
planning as regards safety and use of exposure space resulting in
schedule delays, and possibly cancellation or drastic revision of the
experiment.

_For further information contact_:

    Commanding Officer
    U.S. Army Ballistic Research Laboratories
    ATTN: AMXRD-BTD, Facility Coordinator
    Aberdeen Proving Ground, Maryland 21005



*** End of this LibraryBlog Digital Book "Army Pulse Radiation Facility" ***

Copyright 2023 LibraryBlog. All rights reserved.



Home